<]
TUDelft

Delft University of Technology

A new temperature evolution equation that enforces thermodynamic vapour-liquid
equilibrium in multiphase flows - application to CO2 modelling

Kumar, Pardeep; Sanderse, Benjamin; Esquivel, Patricio I.Rosen; Henkes, R. AW.M.

DOI
10.1016/j.compfluid.2024.106524

Publication date
2025

Document Version
Final published version

Published in
Computers and Fluids

Citation (APA)

Kumar, P., Sanderse, B., Esquivel, P. I. R., & Henkes, R. A. W. M. (2025). A new temperature evolution
equation that enforces thermodynamic vapour-liquid equilibrium in multiphase flows - application to CO2
modelling. Computers and Fluids, 289, Article 106524. https://doi.org/10.1016/j.compfluid.2024.106524

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1016/j.compfluid.2024.106524
https://doi.org/10.1016/j.compfluid.2024.106524

Computers and Fluids 289 (2025) 106524

Contents lists available at ScienceDirect

COMPUTERS

&FLUIDS

Computers and Fluids

journal homepage: www.elsevier.com/locate/compfluid

A new temperature evolution equation that enforces thermodynamic
vapour-liquid equilibrium in multiphase flows - application to CO,
modelling

Pardeep Kumar »2-*, Benjamin Sanderse »*“, Patricio I. Rosen Esquivel ¢, R.A.W.M. Henkes “¢
a Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

b Eindhoven University of Technology, Eindhoven, The Netherlands

¢ Shell Projects and Technology, Amsterdam, The Netherlands

d Delft University of Technology, Delft, The Netherlands

ARTICLE INFO ABSTRACT

Keywords: This work presents a novel framework for numerically simulating the depressurization of tanks and pipelines
CO, transport containing carbon dioxide (CO,). The framework focuses on efficient solution strategies for the coupled system
Real ?ash of fluid flow equations and thermodynamic constraints. A key contribution lies in proposing a new set of
UV-Flas

equations for phase equilibrium calculations which simplifies the traditional vapour-liquid equilibrium (VLE)
;E:::g:ﬁ;:on calculations for two-phase CO, mixtures. The first major novelty resides in the reduction of the conventional
HEM four-equation VLE system to a single equation, enabling efficient solution using a non-linear solver. This
significantly reduces computational cost compared to traditional methods. Furthermore, a second novelty is
introduced by deriving an ordinary differential equation (ODE) directly from the UV-Flash equation. This ODE
can be integrated alongside the governing fluid flow equations, offering a computationally efficient approach

for simulating depressurization processes.

1. Introduction

Carbon capture and storage (CCS) is a promising feasible alternative
for mitigating greenhouse gas emissions. In CCS, CO, needs to be
transported and conditioned from its capture location to a storage
facility. This process is normally accomplished via pipelines and ships.
For short distances and small volumes, transporting CO, in gaseous
or liquid form via ships can be cost-effective, but pipeline transport
in a dense liquid-like state is a more economical and scalable option
for large volumes and long distances [1]. The CO, is then re-injected
through a well into the target storage location such as an aquifer or a
depleted gas reservoir. The transport of CO, along pipelines and wells,
including multiphase flow transport and its associated transients, is the
focus of the current study.

During regular pipeline operation, changes in pressure and temper-
ature along the pipeline can lead to multiphase flow behaviour, such
as gas-liquid (two-phase flow) or gas-liquid-solid (three-phase flow).
Similarly, during pipeline depressurization, CO, will exhibit two-phase
behaviour with rapid cooling along the saturation line. Predicting the
lowest and highest temperatures during such an operation is crucial to
design, control, and optimize the pipeline and manage its integrity [2].

For this purpose and many other applications, simulation tools offer an
attractive alternative for predicting the performance of a given system
under varying conditions.

Two-phase flow of CO, is governed by the Navier-Stokes equa-
tions. A comprehensive overview of various two-phase flow models is
available in [3]. For an in-depth exploration of the models utilized in
simulating CO, transport and experimental data, we recommend the
review paper by Munkejord et al. [4] and the references therein. In
pipeline applications, cross-sectional averaging is employed to simplify
the Navier-Stokes equations and derive a one-dimensional two-fluid
model [5]. However, this averaging procedure can render the model
ill-posed, leading to discontinuous dependency of the solution on initial
data and unbounded growth rates for the smallest wavelengths [3,6].
In this paper, we circumvent this issue by considering the uncondition-
ally hyperbolic Homogeneous Equilibrium Model (HEM) [7], which is
suited for well-mixed two-phase flow systems in which the different
phases travel at approximately the same velocity. It has been used
in CO, simulation studies in for example [2,8,9]. Additionally, it has
found application in simulating heat exchangers and nuclear reac-
tors [10]. A comprehensive treatment of HEM is provided in the review
articles by Stewart and Wendroff [3] and Menikoff and Plohr [11].
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While HEM offers simplicity, it is acknowledged for its limitations
in handling strong non-equilibrium effects, such as those arising from
droplets in gas flow. These effects, albeit correctable with additional
terms, pose challenges to the model’s accuracy. To effectively capture
significant non-equilibrium effects, particularly of kinetic nature, more
complex two-fluid models are warranted, accounting for the momen-
tum of each phase [12]. Despite their computational expense, these
models offer enhanced accuracy. However, our present investigation
confines itself to HEM due to its simplicity.

Even though the HEM is a hyperbolic model, the fact that CO, is
a non-ideal gas complicates the simulation of two-phase CO, trans-
port problems: in addition to the flow equations, one needs to solve
an algebraic system of equations that describes the thermodynamic
vapour-liquid equilibrium (VLE). As the evolution of density and inter-
nal energy is available through the fluid flow conservation equations,
it is natural to solve the equilibrium problem in UV space [13] (where
U denotes the internal energy, and V the inverse of the density). A few
papers considering this so-called “UV flash” are available in literature,
see e.g. [14-16], and the review of Smejkal et al. [13]. These UV equi-
librium calculations consist of solving a system of non-linear algebraic
equations. For a pure component fluid, this amounts to solving a system
of four algebraic equations [17], in each grid cell along the pipeline.
The resulting coupled system of fluid flow and thermodynamics can be
rather expensive to solve, especially when complex equations of state
like Span—-Wagner [18] are involved (which we will use in this work).

In order to reduce the computational expense of solving a coupled
system of dynamic flow equations with non-linear algebraic equations,
Fang et al. [19] proposed a lookup table approach, earlier applied by
Lorenzo et al. [20] in water-steam fast transient simulations. How-
ever, lookup tables can sometimes lack thermodynamic consistency,
particularly near the critical point. In this work, we introduce two new
approaches to efficiently solve the HEM model with a UV flash, ensur-
ing accuracy across the various operating regimes. In the first approach,
we reduce the four algebraic equations to a single equation by using
saturation relations. Saurel et al. [21] had also developed a similar
approach for two-phase fluids using stiffened gas EOS. To address
the single-phase limit, they introduce a small volume fraction of the
other phase, applicable only near saturation boundary (e.g. metastable
states). We extend their approach by presenting a framework that
handles both single-phase and two-phase regime with a more complex
EOS. This reduces the computational expense significantly, even though
it still requires a non-linear equation solver. In the second approach,
we derive an ordinary differential equation from the reduced represen-
tation and thereby eliminate the need of a non-linear solver, further
reducing the computational expenses. To assess the new approaches,
we utilize the forward Euler method for time integration [22].

We evaluate these algorithms by simulating the depressurization of
a pipe filled with CO,. To gain fundamental insights into the role of the
VLE on the algorithms, we initially test them on the depressurization
of a tank filled with CO,. This is a simplified problem that shares
several physical characteristics with pipeline depressurization. In this
context, a relevant work is that of Sirianni et al. [23], who introduced
an explicit conservative-primitive solver for general thermodynamic
variables. However, their derivation relies on the choice of a specific
time-integration method (forward Euler in their case). In contrast, our
approach differs by focusing on discretizing the equations in space,
leading to the derivation of an evolution equation for the temperature
that is still continuous in time. In addition, the work by Sirianni et al.
is limited to single-phase scenarios, whereas our methodology covers
the case of two-phase systems as well.

The organization of this paper is as follows. In Section 2, we
start by recapitulating the fluid model (HEM) and the constitutive
relations from thermodynamics. In Section 3, we derive a new algebraic
equation, followed by a new evolution equation for the temperature.
In Section 4, we present spatial and temporal discretization schemes.
In Section 5, we present results for two problems, namely the tank
depressurization and the pipeline depressurization. Finally conclusions
are summarized in Section 6.
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2. Governing equations
2.1. Fluid flow in a pipeline

The Navier-Stokes (NS) equations govern the dynamics of fluid
flow. For fully-dispersed two-phase fluid flow, the NS equations can
be averaged and written in terms of mixture quantities, resulting in the
Homogeneous Equilibrium Model (HEM). For flow through a horizontal
pipe, the HEM (without wall friction) takes the following form [7]:

oV + 0, F(U) =S, @

where U'(x, t) is the vector of conserved variables, F(U") the flux vector
and S(V) the source term, which have the following form:

U-
p pu 2 2 0
Us=|pu|, FO)=| p?+p |=| 7 +pW) |, SW)=(0]
E E + p)u v 0
p CE+Pu] | Wy +p) 72
()
The model is supplemented with the constraint @, + «; = 1, where

a,(x,1) and a(x,1) are the gas and liquid volume fraction, respectively.
The mixture density and energy are defined as p := a,p, + a;p; and
E, + a;p, E;, where

pE = agp,

E, =¢ + %uz. 3)

Here, p,,e,, E, are the density, specific internal energy, and specific
energy (kinetic + internal) of each phase. The mixture specific internal
energy e follows as e = (a,p e, +a;p,¢;)/p. The two phases are assumed
to have the same velocity « and equilibrium thermodynamic pressure
p-

To close the system of fluid flow Egs. (1), the pressure p(U") must
be specified using an equation of state (EOS), as will be detailed in
Section 2.3. In addition, initial and boundary conditions are needed
to complete the problem specification, these will be described in later
sections.

The HEM model, when discretized with a finite volume method,
leads to the following semi-discrete form for the ith finite volume:
du; 1 -

— =——F,1 -F_1), i=1...N, 4
dr Ax( i+ —%) ' “

I
. . .. 2
numerical fluxes and N is the number of finite volumes. We use

the Harten-Lax-van Leer-Contact(HLLC) scheme (see Appendix B) to

compute the numerical fluxes, f’H 1. Eq. (4) can be written in the
-2

where U;(f) € R? = U'(x;,t), A x is the grid spacing, f?.+ 1 represent

general form

du@

BTl FU@), 5)
where

U@ = U@, ..., U;@), ..., Uy0]", U; = [, (pw);, (0E), 1",

and we have assumed that an expression of the form p(U) is given by
thermodynamics relations. This will be revisited in Section 2.3.

2.2. Tank model

As a simplification of the pipeline depressurization problem, we first
consider the depressurization of a tank, previously studied for example
in [8,24]. We can roughly think of it as a pipe discretized with a
single cell. The governing equations for mass and internal energy can
be written as:

dp _ mp,T)

dr — v
. 6
d(pe) _ O(T) — m(p, T)h(p,T) ©

dr v
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Fig. 1. Saturation curve/space for CO, in p—T and p — e co-ordinates.

where s is the mass flow rate and Q is the heat transfer rate, which for
the tank problem are given by

Q(T) = WA(Tamb =T),
1(p, T) = K,/ p(p(p, T) = Papp)-

Here, p, T, p, e and h denote the pressure, temperature, density, internal
energy and enthalpy of CO, in the tank; v is the volume of the tank; #
the heat transfer coefficient between tank and ambient; A is the surface
area of the tank; K, the flow coefficient of the valve. The subscript
‘amb’ denotes the ambient conditions outside the tank. Similar to the
fluid flow Egs. (1), the governing equations can be expressed in the
form:

dU
o =T )

where U = [p, pe]” and

—m(p, T
fy=L| D . ®
0 | OT) - (. T)h(p.T)

The system requires closure with thermodynamic relations that es-
tablish the connection between p, T and & and the conserved variables
p and pe, which will now be described.

2.3. Thermodynamics and standard UV-flash overview

For simple (e.g. ideal) gases, closed-form expressions for p are
sometimes available, such as p = p(p,e) or p = p(p,T) relations. For
more complicated fluids like CO,, we need to use a real gas equation of
state (EOS). The Span-Wagner EOS [18] is generally considered to be a
very accurate description for pure CO, and will be employed here. We
consider the formulation of the EOS specified in terms of the Helmholtz
free energy A(p,T), where A = e — T's and s is the specific entropy.
All thermodynamic properties can be computed through derivatives of
A(p,T), for example:

p(p.T) = p* <‘;—A> . ©)
0 )r

e(p,T)=A—T(%)p, (10)

s(p,T):—(g—“;>p, an

h(p,T):A+p<%>T-T(‘;—;‘)ﬂ. 12)

Given such an EOS, and two known thermodynamic quantities, one can
solve for any of the other quantities.

Fig. 1(a)-(b) show the saturation region generated using the Span—
Wagner EOS. Note that the saturation region is a curve in p — T space
whereas it corresponds to an area in p—e space. A point (T, p) or (e, p))
is in the two-phase conditions if it lies on the saturation curve in p—T
space and inside the saturation area in p — e space, otherwise it is in

single phase. If the system is in single phase conditions, and for example
p=p and e = ¢ are given, we can solve

e(p,T) = ¢, 13)

to determine the temperature 7. If the system is in two phase condi-
tions, we need to solve a system of algebraic equations representing
the vapour-liquid equilibrium to compute the various thermodynamic
quantities. In literature this is also known as a flash problem [25]. For
a single component system like pure CO,, the two-phase system is in
thermodynamic equilibrium when the pressure, temperature and Gibbs
free energy (G = h — T's) of both phases are equal. Depending upon
which inputs are given, different types of flash routines are available'.
Since we can compute p and e from the conservative variables U at each
time step of a transient simulation, the UV flash? is a natural choice in
our case. Given p and ¢, the UV flash can be formulated as a system of
four equations for the four unknowns a,, p,, p; and T as follows:

Agpg + (1 = ag)p, = p,

agpge(pg, T) + (1 — ag)pep;, T) = pé,

p(pe.T)=p(p.T).,

G (pg,T) =G (p,,T) .
We need to know in advance if the fluid is in single-phase or two-phase
conditions in order to determine whether Eq. (13) or system (14) has
to be solved. Discrimination between the single-phase and two-phase
regime is done as follows. For a given temperature 7', we compute the

saturation vapour and liquid densities, p,, p;. If p, < p < p;, then the
fluid is two-phase, otherwise it is single phase.

14

3. New vapour-liquid equilibrium equations
3.1. Reduced algebraic vapour-liquid equilibrium equation

The system of Egs. (14) can be simplified in the case of a pure
component. Consider a pure component in two-phase flow conditions
with a given mixture density, 5 and mixture internal energy, é. Once we
specify the temperature, all other thermodynamic quantities, e.g. p, p,,
Pis g and ¢;, can be determined through the saturation relations [18].
This enables us to parameterize the various thermodynamic quantities
as a function of only temperature; in other words:

p=p(T), (15)

1 PH flash for known pressure and enthalpy, PS flash for known pressure
and entropy etc. Please refer to [25] for a detailed overview of various types
of flashes.

2 U stands for internal energy, and V for specific volume; this is in
contrast to our notation where U denotes conserved variables and V' primitive
variables.
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Table 1
Uncertainty in Span-Wagner saturation correlations, from [18].
Temperature range (K) A p (%) A p, (%) Ap, (%)
T, <T <295 +0.012 +0.015 +0.025
295 <T <303 +0.012 +0.04 +0.08
33<T<T, +0.012 +1 +1
pg = pg(T), (16)
p = p(T), a7)
e, = e(pg(T). T), 18)
e = e(p(T),T). (19)

These saturation relations implicitly contain the information encoded
by the pressure equilibrium and Gibbs free energy equilibrium, i.e.
the last two equations of (14). Thus, if saturation relations are known
explicitly, one can directly apply them and avoid solving these two
equations numerically. Saurel et al. [21] also utilized a similar idea
to reduce the system of equations for two-phase fluids. Their approach
is limited to two-phase fluids and employs a simplified EOS (stiffened
gas) based on pressure and temperature. To handle the single-phase
limit, they introduce a small volume fraction of the other phase, which
is only valid when a phase is close to boiling or condensation (for
example at metastable states). Our work extends this idea by providing
a framework that handles both single-phase and two-phase regimes.
In addition, our Helmholtz energy-based EOS approach allows us to
directly address the UV flash problem; a fundamental but less explored
phase-split procedure that is important for pipe flow simulations. This
extension enhances the efficiency of two-phase flow simulations while
maintaining accuracy.

Saturation relations are normally provided as ancillary equations
for phase density and saturation pressure in terms of temperature,
e.g. Span-Wagner [18]. In principle, these saturation relations can
be constructed from the EOS to arbitrary accuracy using a procedure
outlined in Bell et al. [26], who used Chebyshev expansions to cre-
ate saturation relations. In this work, we use the saturation relations
of Span-Wagner [18]. Table 1 summarizes the uncertainties in the
saturation correlations linked to the Span-Wagner EOS.

Given the saturation relations, we can simplify system (14). Recall-
ing the definition of mixture density, we have
M)+ (1 —a)p(T) = => a, = % 20)
Substituting the expression for a, into the mixture internal energy
equation,

*gPg

agpg(Teg(T) + (1 — ag)p(T)e,(T) = pe, 21
we have
p(T) = P =pg(T) _
———p, (TM)e (T) + ——————p;(T)e,(T) = pe. 22
o = gD =y D = 8 @2
Defining
(M) —p
T) ;= ——p,(T)e, (T), 23
v (p, T) pI(T)_pg(T)pg( Ve (T) (23)
p—pg(T)
T) i= ————p,(T)e,(T 24
v, (p,T) o(T)—p ( )1’1( )e)(T), 24)
Eq. (22) can be rewritten as
v (5, T)+y;(p, T) = pe. (25)

For given j and ¢, Eq. (25) can be solved for T. In summary, by using
the saturation relations we have reduced the system of four Egs. (14)
to a single equation, namely Eq. (25). This is our first step in reducing
the computational expense of the coupled problem of fluid flow and
thermodynamics.
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Egs. (13) and (25) can be written in a succinct form as

v, T) = pe, (26)

pe(p,T), if single phase,
where (3, T) := 27)
v, (5, T) + (5, T), if two phase.

We shall refer to Eq. (26) as Reduced-VLE-Algebraic, whereas Egs. (13)
and (14) will be referred to as Full-VLE-Algebraic in the rest of this
document.

3.2. Reduced differential vapour-liquid equilibrium equation

Eq. (26) is a non-linear equation in terms of the temperature, T.
The common approach is to use a non-linear solver such as Newton—
Raphson to solve this equation (see, for instance, [2,8]). Here we
propose an alternative approach which stems from the fact that the
thermodynamic equilibrium (flash) problem is solved in conjunction
with the time-dependent fluid flow conservation equations (for pipe
or tank) as described in Sections 2.1 and 2.2. This means that the
temperature is a function of time, 7T(¢), like the other quantities such
as p(1), p(1), etc.

Our key insight is that we can derive an ODE for the evolution of the
temperature by differentiating the reduced VLE, Eq. (26), with respect
to 7. Assuming that y(p, T) is differentiable in time, we get

ow\ dp oy '\ dT _ d(pe)
MYy () Lo , 28
<ap>T dt <0T>p dt dt (28)

where the subscripts T and p indicate that a differential is evaluated at
constant 7 or p, respectively. This equation can be rewritten into the
following temperature evolution equation:

dT d(pe 0 d 0

dr _ | dGee) _ (dy () | (29)
dr dr ap )y dr|"\or ),

We call this the Reduced-VLE-ODE approach. In this approach, the
temperature evolution in time is determined such that the thermodynamic
equilibrium equation for the internal energy is always satisfied, provided

that it is satisfied by the initial conditions.
The time derivatives of mixture internal energy and density, </ d” ¢ and

T £ respectively, are given by the fluid flow conservation equatlons for
the pipe (Eq. (5)) or tank (Eq. (6)).

The partial derivatives of y in Eq. (29) are as follows.

Single Phase Case:

oy de
) = -~ , 30
<6ﬂ>r p<0ﬂ>r+e G0
oy _ de.
(%) = (35), oD

Two Phase Case:
oy a"’g

9

oy \ (% dy,

(%), —<—T> +< v, @

3.3. Summary of equations for VLE

(32)

We have so far discussed three ways of performing thermodynamic
calculations in single and two phase conditions. Table 2 summarizes
the various alternatives.

We started with the full VLE equations, system (14). For two-phase
conditions, we used the fact that the saturation line can be parame-
terized by the temperature, and reduced the system of equations to
a single equation, Eq. (26). The main advantage of this approach is
that the flash problem in both single phase and two phase conditions
becomes a single equation with a single unknown quantity (namely
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Table 2
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The three approaches for incorporating thermodynamic constraints as investigated in this work.

Approach Single phase Two phase
e(p,T)=¢ agpg + (1 —ap =
azpe(pg, T)+ (1 —ay)pelp,T) = pé
Full-VLE-Algebraic 5Pg\Pg IP1elp;
p(pT) =p(p),T)
G(p,.T)=G (p,, T
equation (14) ( f ) ( 1 )
Unknowns: T Unknowns: [a,, p,. ;. g
Reduced-VLE-Algebraic w(p,T) = pé v, (5. T) +y (5. T) = jo

equation (26) Unknowns: T

Unknowns: T

i (%)

where y(5,T) = pe(p, T)

d(pe)
dr

oy
dp

dp
. di

/

Reduced-VLE-ODE

equation (29)
Unknowns: T

Iy
oT

=l -, 5

where y(5,T) = v, (5.T) +v(5.T)

d(pe)
dt

w
dp

dp
rdt

oy
or

) ),

Unknowns: T'

temperature), which makes switching between single and two-phase
conditions easier. The main assumption and the associated error with
this approach lies in the accuracy of the applied saturation relations,
as discussed in Table 1.

By differentiating the flash problem and incorporating the time
derivatives of the mixture internal energy and density, we obtained
a new ODE for the evolution of the temperature, Eq. (29). The tem-
perature evolution equation can be used to perform time integration
of the coupled fluid flow - thermodynamics without requiring a non-
linear solver for the flash problem. The main assumption associated to
this approach is that the solution is sufficiently smooth (differentiable)
in time. Although the assumption of temporal smoothness could theo-
retically pose challenges when crossing the phase boundary or in case
of shocks, we did not encounter such issues in our simulations. This
is possibly due to the fact that we use a low-order method (Forward
Euler) to discretize the equations in time, which adds some numerical
diffusion. In addition, we remark that many numerical methods for
compressible flows that involve shock waves mostly focus on the spatial
treatment of discontinuities, and do not explicitly track discontinuities
in time or change the time integration method accordingly.

3.4. Coupling the ODE formulation to the tank and pipe equations

For the tank problem, the full system of coupled flow and thermo-
dynamics reads

dp _ m(p,T)

ar v S
dr _ d(pe)_ a_q/ d_p d_y/
W), 8 (), @

1 (Q'(T) — (. T)h(p. T) + <—"’
v 0,

) o) (3

oT

),,'

The original system of two evolution equations for the fluid with ther-
modynamic constraints has thus been reduced to only two evolution
equations. This ODE representation is computationally attractive when
combined with explicit ODE solvers, such as the forward Euler method,
so that the need to solve a nonlinear equation is entirely circumvented
(both for the flow equations and the thermodynamics).

In a similar fashion, the ODE system for the pipe problem can be
derived. One important difference between the pipe and the tank is that
the fluid flow equations and thermodynamic constraint are now written
for each grid point i. Another difference is that the pipe equations
feature the time evolution of %, whereas the tank features &f).
Therefore, we need to derive an equation for the evolution of the
internal energy.

The time derivatives of conservative variables are available through
Eq. (5). Writing (5) for each conservative variable in a particular grid
point i, we get

dp
L hw, 36)
d
P~ ., &%)
E
L0 - rw.m. 38)

where f,, f,, f3 are discretized flux divergence operators for mass, mo-
mentum and energy respectively. Compared to (5), we have added T as
argument in f, f,, f3, since the pressure follows from thermodynamics
relations of the form p(U,T), see Eq. (9). Using Egs. (36) and (37), we
can get the evolution equation for the (specific) kinetic energy:
d(pi?/2)  d((pw)*/2p) MM _ lu2d_”

dt dt dt 2 dt
Now, using Egs. (38) and (39), we can get an equation for the evolution
of the internal energy:

39

dpe _ d(pE)  d(pu*/2)

dt — dt dr (40)
_dGE)  dw) 1 ,dp
"o "a T2 ar (41)

This equation can be substituted in Eq. (29) to yield the evolution
equation for the temperature in grid point i:

dr _ (dE) _ d(w) 1 ,dp_(oy) dp) , (oy
E'( a  Ta T2 w <0p>rdt>/<0T>,,' “2
Using (36), (37) and (38) in (42), we have
(11_7; = <f3(U,T) —ufy,(U,T)+ %uzfl(U, T
oy ay
-(5) pen)/(GF),

The system of Egs. (36), (37), (38) and (43) constitutes a complete
set of governing equations that can be used to advance the pipeline
simulation to the subsequent time level. The thermodynamic constraint
(vapour-liquid equilibrium) is encoded into these equations, albeit
in a time-differentiated fashion. Upon time integration, errors can
accumulate, which can cause errors in the satisfaction of Eq. (26).

To avoid this issue, we propose to solve instead the following set of
equations: Egs. (36), (37), (26) and (43), written as

1
pE =w(p,T)+ Epuz.

For the time-continuous system, these four equations are equivalent to
using the four Egs. (36), (37), (38) and (43) as the energy conservation
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Eq. (38) can be derived from the temperature equation and the ther-
modynamic constraint. Upon discretizing in time with forward Euler,
this equivalence is lost and a first order temporal error is introduced in
the energy equation.

In summary, we have traded exact energy conservation with an in-
exact thermodynamic constraint for an exact thermodynamic constraint
with inexact energy conservation. In Section 4.2, the associated energy
conservation error will be numerically investigated.

4. Time integration methods

In the previous section, three different approaches for simulating
fluid flows coupled with thermodynamic constraints were introduced.
In this section, we discuss the time integration methods applied for each
approach.

4.1. Algebraic approaches: DAE interpretation

We first consider the algebraic approaches Full-VLE-Algebraic and
Reduced-VLE-Algebraic. The combination of the semi-discrete pipe flow
Egs. (4) (or tank Egs. (6)) and thermodynamics (see Table 2) forms a
system of 3N (pipe) or 2 (tank) ODEs with N algebraic constraints.
This constitutes a system of differential-algebraic equations (DAE). For
both the pipe and the tank problem, we can write the DAE system in
the so-called semi-explicit form [27]:

du
ol f, v, (44)
0=g(U,V). (45)

where U and V are the vectors of conservative and non-conservative
variables, respectively. For Full-VLE-Algebraic, if N p cells exhibit two-
phase conditions, then Ny = 4N;p + (N — Nyp) = 3Nyp + N for
pipes. For the tank, N = 1 for single-phase conditions and N = 4 for
two-phase conditions. For Reduced-VLE-Algebraic, two-phase and single-
phase conditions both require a single algebraic equation, so N, = N
for the pipe and N =1 for the tank.
For the pipe flow equations,

U=[U,,...,UN", U; = [p;, (pu);, (pE)1T,
V=0,....VyIT
where V; = [ag;.p,; ;. T;1" for Full-VLE-Algebraic and V; = T, for

Reduced-VLE-Algebraic. Furthermore, f represents the spatial discretiza-
tion of the fluid flow equations,

1 4 N
[UV) 1= == () WU Ui Vit V) = F L (UL U Vi Vi) (46)

and g represents either the full or reduced VLE equation(s) for the ith
cell. For example, the first equation of (14) for Full-VLE-Algebraic for

grid cell i in two-phase conditions reads:
8i1 1= agipgit+(L—ay)p; —p; =0. 47)

For the tank equations,
U = [p, pel”,

and V is the same as for the pipe and f is defined as per Eq. (8).

To solve the DAE system (44) in time we use half-explicit forward
Euler method [22], which constitutes an explicit update for the evolu-
tion Eq. (44), followed by a nonlinear equation solve for the constraint

(45).
We first solve
U™ =U" + ALf(U", V™), (48)

for U"*!, followed by solving the constraint equation
0= g(U"+l, Vn+l)’ (49)

for V"+! with the Newton-Raphson with line search.
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4.2. ODE approach

The system of Egs. (36), (37), and (43) for the pipe, and (34) and
(35) for the tank, collectively form a system of ODEs. Specifically, the
pipe system comprises 3N ODEs, while the tank system consists of 2
ODEs. Once the temperature T and density p are available, the internal
energy e for both the pipe and the tank can be computed using (26). For
the pipe, the total energy E is computed by incorporating the kinetic
energy term, which will be detailed shortly.

For both the pipe and tank problems, the ODE system can be
expressed as follows:

dUu _
=1, G0

where U and f need to be defined specifically for the pipe and tank
problems, and are differing here from the definitions used in the DAE
approach. For the pipe flow equations they take the form,

U=I[U,....,UNI", U =[p;(puw);, (D1,
viT) 1,

E,. = —Uu;
Pi

i

[ ]

1 . .
fiU) = —A—X(FH%(U,‘H’ Uy - ?,_%(Up Uin)),
whereas for the tank equations they take the form,

U=1[pTI",
—ii(p, T)

1
=5 (Q'(T)—m<p,T>h(p,T)+("a—‘g)rmmT))/(‘;—#)p '

We use forward Euler to integrate Eq. (50) in time.
U™l =U" + Atf(U™). (51)

Since we are using a numerical integrator rather than directly solving
the algebraic constraints to compute the temperature in this approach,
the numerical integration error(order of ((4t?) for forward euler) in
temperature will propagate as an error in the computed energy. We
will discuss this in the numerical experiments in Section 5. In addi-
tion, Eq. (29) contains the term i—“T’ in the denominator. If this term
approaches zero, it could cause numerical issues. However, we did not
encounter this difficulty in the conducted numerical experiments.

Remark 1. For improved accuracy, we use automatic differentiation to
evaluate the partial derivatives f)_: and 3—"T’ instead of finite differences.

4.3. Transition from single-phase to two-phase

The transition from single phase to two phase during time integra-
tion constitutes a discontinuity in the definition of the ODE (or DAE)
system. This discontinuity is typically characterized by what is referred
to in the literature as a switching function [27]. One approach to
detect the switching point is through the utilization of an event location
algorithm. In our case, the switching function returns a boolean value
indicating whether the system is in a two-phase state or not. Our
switching function is described as follows:

1. For a given temperature 7, we compute the saturation vapour
and liquid densities, p, and p,.

2. We discretize time into discrete intervals using uniform time
steps 4t = t;, — t;, denoted as {t,ty,....t; iy, ..oty ). TO
advance the solution from ¢; to t,,;, we employ the forward
Euler method. Before progressing to the subsequent time level,
we verify if p, < p < p;. If this condition holds, the fluid is in
a two-phase state; otherwise, it is classified as single phase. It
is possible that phase transitions between two-phase and single-
phase states might occur between time steps due to solution
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Table 3

Tank simulation parameters.
po (bar) T, (K) Pamp (Dar) Tomp (K) nA (W/K) K, (m?) v (m?) Simulation time (h)
100 300 10 293.15 1 5-1077 71072 0.6

updates. While this necessitates an iterative process to reconcile
temperature, pressure, and phase state at each time step, the
current study adopts a simplified approach by proceeding to
the next time step without explicitly addressing these complex-
ities. We note that, in principle, it is also possible to find the
intersection of the simulation path with the saturation boundary
by solving a nonlinear equation. Once the intersection point is
known, one can switch from single- to multi-phase equations (or
vice versa). This could avoid the use of small time steps but
comes at the cost of computing accurately the intersection point.

5. Numerical experiments
5.1. Tank depressurization

In this section, we conduct a depressurization simulation of a tank
containing CO,, as described by Eq. (6). The objective is to demon-
strate the performance of the two proposed approaches (Reduced-VLE-
Algebraic, Reduced-VLE-ODE) against Full-VLE-Algebraic on the test case
outlined by Hammer et al. [24]. Despite its apparent simplicity, this
ODE system (Egs. (6)) serves as an effective test case for the thermody-
namic flash problem as it simulates the transition of the fluid from its
initial liquid phase to a two-phase state (boiling of CO,), and finally,
to a completely gaseous phase.

5.1.1. Problem setup

The initial conditions and model coefficients are summarized in
Table 3. The initial conditions are defined in terms of pressure (p)
and temperature (7). To compute the initial density (p) and internal
energy (e), we solve the equation p, = p(p,T;) for p, where p, and Tj
denote the initial pressure and temperature in the tank, respectively.
Once p is determined, e is computed using Eq. (10). Additionally, it is
important to note that Hammer et al. utilized a test case that eventually
leads to three-phase (liquid/gas/solid) conditions as the simulation pro-
gresses. However, as the framework outlined in this paper is currently
developed only for single and two-phase scenarios, we terminated the
simulation before it entered the three-phase regime.

5.1.2. Comparison with hammer

First, we establish the validity of our simulation results by compar-
ing them with those by Hammer et al. as shown in Fig. 2. All three
approaches demonstrate excellent agreement with those reported in
Hammer et al.

Fig. 3 illustrates the simulation trajectory in p— T and p — e spaces.
In the p — e space, points within the coloured region denote the two-
phase regime, while those outside indicate single-phase conditions.
Initially, a rapid pressure drop (from 100 bar to 57 bar) occurs until
the saturation curve is reached, marking the transition of liquid CO,
into the two-phase region within approximately 26 s. Subsequently, the
pressure and temperature decrease along the saturation curve, reaching
a lowest temperature of 209.15K (—64 °C) at t = 0.6 h. At this point, CO,
transitions into a three-phase state and the simulation is terminated.
Notably, during the depressurization process much lower temperatures
are reached than those given by either the initial conditions or the
ambient conditions. This underscores the potential low temperature
risk associated with Joule-Thompson cooling of CO, during a depres-
surization, especially during the transitions between single-phase and
two-phase states.

5.1.3. Convergence study
Next, we proceed to analyse the two errors that were introduced
with the Reduced-VLE-Algebraic and Reduced-VLE-ODE approaches: (i)
the approximation error from introducing the saturation relations to
replace the full flash problem, and (ii) possible constraint-drift er-
ror arising from differentiating the constraint in time. The first error

(‘approximation error’) is computed as:
|pfull-v1e Ok preduced-vle(t)l

€p full-reduced () = el . (52)
€7 full-reduced (0= |Tfull-v1e Ok Treduced-vle(t)|
| [ Thupvie ™)
The second error (‘constraint error’) is computed as
€ prieode(d) = |Preduced-vie() = Pode(®) 53)
| Preduced-vie®I
er vieadeld) = Treduced-vie") — Tode ()
' | Treduced-vle ® |

Fig. 4 shows the approximation errors (52) incurred when going
from the Full-VLE-Algebraic approach to the Reduced-VLE-Algebraic ap-
proach. For example, the uncertainty in the pressure in the saturation
relations is +0.012% (see Table 1) and the maximum error throughout
the simulation stays well below this value (it is less than 0.01%).
Fig. 5 illustrates the constraint errors in pressure and temperature, as
defined by Eq. (53), introduced by transitioning from the Reduced-VLE-
Algebraic to the Reduced-VLE-ODE formulation for At = 1 s. Notably, the
maximum errors are observed at t ~ 26 s, coinciding with the phase
transition point. At this critical juncture, the pressure error reaches
approximately 0.33%, while the temperature error remains around
0.048%. This underscores the necessity for a sufficiently small time step
to accurately capture the rapid transients occurring around the phase
transition point (here, 1 ~ 26 s).

Figs. 6(a) and 6(b) depict the convergence analysis of our time
integration method under distinct simulation scenarios. In Fig. 6(a),
the simulation remains within a single-phase regime throughout its
entirety, and results are monitored at 7 = 16 s. Conversely, in Fig. 6(b),
the simulation commences and persists in a two-phase state, with
results monitored at + = 128 s. The errors in temperature are com-
puted as ey = (T — Tys)/Tres- For both approaches, the reference
solution is obtained by solving with the Full-VLE-Algebraic approach
with 4t = 1x10~*s. The observed convergence behaviour closely aligns
with the expected outcomes for each method (first order convergence
corresponding to the first order forward Euler method). As the relative
temporal discretization error approaches the uncertainty limit of the
saturation relations (approximately 107>, as detailed in Table 1), the
impact of errors inherent to the saturation relations becomes signifi-
cant. Consequently, for sufficiently small 4¢, the discretization error is
dominated by the inaccuracy of the saturation relations. In the Reduced-
VLE-Algebraic approach, this effect is evident from the stagnation of the
relative error, where the error curve begins to flatten for 4r ~ 2 s. A
similar trend is observed in the Reduced-VLE-ODE approach; however,
an anomaly is noted for Ar = 1 s, where the relative error suddenly
drops due to fortuitous error cancellation.

5.1.4. Computational efficiency

In this subsection, we discuss the computational gains of our two
new reduced approaches. Quantifying an exact speedup is challenging
due to its dependence on the time step. However, Fig. 7 illustrates the
relative error in temperature plotted against CPU time for all three
approaches. The reference solution for all approaches corresponds to
the solution computed using Full-VLE-Algebraic with 4r = 1 x 107*s.
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Fig. 4. Approximation error from Full-VLE-Algebraic to Reduced-VLE-Algebraic, At =1 s.

Notably, the reduced approaches require about one order of magnitude
less CPU time compared to the Full-VLE-Algebraic approach; for ex-
ample, for an error of 3 x 1074, the reduced approaches are about 8
times faster. However, it is important to note that once the relative
accuracy of the order of 1072 is achieved, the performance gain in the
ODE approach is lost. This can be attributed to the crossing of satura-
tion boundary in the simulation which acts like a discontinuity, thus
negating the advantages of the ODE approach beyond this accuracy
threshold.

In conclusion, the reduced VLE approaches (both algebraic and
ODE) demonstrate comparable performance, achieving significant
speedup for relative accuracy of the order of 10~3. This indicates
their suitability for practical applications where reduced computational
overhead is necessary without significant loss of accuracy.

5.2. Pipeline depressurization

In this section, we consider a more difficult test case: the depressur-
ization of a pipeline instead of a tank.

5.2.1. Problem setup

We follow again Hammer et al. [24], who describe the depressur-
ization of a pipe that results from opening the right end of a pressurized
pipe into the ambient. In Hammer et al. outflow boundary conditions
are specified at the right end of a pipe of length L = 100 m. However,
in our simulation, we avoid the use of outflow boundary conditions
by doubling the pipe length to L = 200 m and modelling it as a
shock-tube problem. The rationale behind this is that the flow at the
outlet will be choked so that information will not propagate upstream.
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The shock-tube has as initial condition a membrane in the middle,
separating it into a left (pressurized) and right (ambient) section. The
simulation is stopped before the fastest waves have reached the left
or right end of the pipe, so that the solution at both ends (x = 0 and
x = 200 m) of the pipe will correspond to the initial conditions. It is
noteworthy that the simulation configurations employed in Hammer
et al. (characterized by outflow boundary conditions) and the present
study (focusing on the shock-tube problem) are slightly different. Addi-
tionally, Hammer et al. utilizes the MUSTA scheme in conjunction with
a strong-stability-preserving Runge—Kutta method. These methodologi-
cal differences have the potential to induce deviations in the observed
results, as will be subsequently demonstrated.

Table 4 details the initial conditions for the simulation, employing
again CO, as the working fluid. Fig. 8 shows the location of the left
and right initial states with respect to the saturation curve. Initially,
the fluid is at rest(i.e. u = 0).

All simulations employ CFL values of 1.0 for algebraic approaches
and 0.84 for the ODE approach. It is crucial to highlight that the
ODE approach exhibits instability beyond a CFL value of 0.84 for
this particular test case. Results are reported at + = 0.2 s. Given
the discontinuous nature of initial conditions, an initial time-step of
1 x 10712 s is used to initiate the simulation.

The time step Ar used in the simulations is based on the fastest
travelling waves

Ax

At =CFL—MMM—,
max(|u; + a;])
1

where a; represents the speed of sound, and subscript i denotes the ith
cell. To compute the speed of sound, we employ the same expression as
used in Hammer et al. [24] (Eq. (51)) and Saurel et al. [21] (equation
5.20).
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Table 4
Pipeline simulation parameters based on Hammer et al. [24]. See also Fig. 8.
Simulation Length (m) Discontinuity  Left Right
time (s) location
par) T (K) pban) T (K)
0.2 200 Centre 100 300 30 300
100 :
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@ Left end initial condition
80 || @ Right end initial condition
= 60
=1
% 40
[ ]
20
//
220 240 260 280 300
T(K)
Fig. 8. Initial conditions in p— T space.
5.2.2. comparison with hammer

First, we establish the validity and convergence of our solution. In
Fig. 9(a), we validate our results with those from Hammer et al. [2],
which shows the results only for the left half of the pipe. A notable
alignment is observed with Hammer et al. across all three approaches,
albeit with a slight deviation at the right boundary. Additionally, all
three approaches are nearly identical, overlapping significantly in the
presented results. The discrepancy compared to Hammer et al. at the
right boundary is expected as we use a different test case set-up,
as explained before: a shock-tube experiment instead of an outflow
boundary condition as used by Hammer et al.

Fig. 9(b) presents a comparison of all three approaches for the
entire length of the pipe. All approaches demonstrate good agreement,
with nearly overlapping outcomes. It is important to note that the
constraints are satisfied to machine precision in the algebraic methods.
In contrast, the ODE approach involves computing the temperature for
the subsequent time step via numerical integration, which introduces a
truncation error of the order (9(4¢?) compared to the algebraic method.
This truncation error results in an energy drift error, as elaborated
in Section 5.2.5.

5.2.3. Convergence study

We now investigate the spatial and temporal convergence of the
new approaches. Spatial convergence is discussed in Appendix A. Here,
we focus on temporal convergence. Figs. 10(a) and 10(b) depict the
temporal convergence patterns observed in the Reduced-VLE-Algebraic
and Reduced-VLE-ODE methodologies, respectively, utilizing the L,-
norm for the error. The reference solution corresponds to the solution
computed with a time step of At = 5x 107> s. The error in temperature
is calculated for each cell as e = (T — Tyef)/Tes- Notably, the temporal
convergence of the Reduced-VLE-Algebraic approach exhibits a highly
favourable trend, demonstrating anticipated (first order) convergence
characteristics whereas the Reduced-VLE-ODE approach displays a near-
first order convergence behaviour. The observed outcome aligns with
expectations, given that the Reduced-VLE-ODE approach relies on the
smoothness of the function y in the thermodynamic phase-plane (p—7—
y space) which is a criterion that does not hold across phase transitions.
This is particularly evident in the right-hand side of the temperature
equation, which includes derivatives of w. From a thermodynamic
standpoint, it is known that across phase boundaries, the derivatives
of internal energy exhibit discontinuities.

10
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5.2.4. Computational efficiency

In this subsection, we discuss the computational efficiency of two
new reduced methodologies. The Reduced-VLE-Algebraic and Reduced-
VLE-ODE approaches exhibit comparable performance. Both methods
are significantly faster than the Full-VLE-Algebraic approach, being
approximately 3-4 times faster. This is evidenced in Fig. 11, which
presents plots of relative pressure and temperature error versus CPU
time. The reference solution in this figure corresponds to the results
obtained using 12000 cells with the Full-VLE-Algebraic approach. When
the relative error is @(107*), the ODE approach begins to experience
performance degradation due to smaller time steps needed near the
saturation boundary, i.e. where the evaporation wave and the contact
discontinuity originate. We have encountered such phenomena during
special cases like pipeline shut-in or depressurization, where rapid
phase changes occur. For regular pipeline transportation simulations
such effects are usually less frequent. In any case, an error of O(10™%)
is generally within acceptable engineering limits, making the ODE
method a practical and efficient choice for both routine and dynamic
applications.

5.2.5. Energy conservation error in Reduced-VLE-ODE

Our investigation into the higher error observed in the Reduced-
VLE-ODE approach is further illustrated in Fig. 12(a) by presenting the
relative energy error ¢, ,p, which quantifies the total energy deviation
throughout the entire pipe at time 7. The subscript 0 denotes the initial
state of the pipe. The error is defined as:

Z,ﬁl (pt,iE!,[ - l’o,on,i)
Z,Zl Po.iEo
where N represents the total number of cells, and i denotes the cell
index. This expression compares the total energy at time ¢ to the
initial energy state, offering a quantitative measure of the energy
discrepancy between the current and initial states of the system. Both
the Reduced-VLE-Algebraic and Reduced-VLE-ODE approaches are eval-
uated based on this energy error metric. The Reduced-VLE-Algebraic
approach inherently adheres to the energy conservation law, resulting
in energy errors at machine precision. In contrast, the Reduced-VLE-
ODE approach bypasses direct use of the energy conservation equation.
Instead, temperature is updated using Eq. (43), which introduces an
error of order O(4t%)in temperature computation. This updated temper-
ature is then used to calculate internal energy using the Span-Wagner
EOS [18], which consists of polynomial and exponential terms(with
negative exponents). Errors in combined quantities’ maintain their
original order through basic arithmetic operations, implying that errors
in internal energy are of the same order as those in density (p) and
temperature (7). Hence, in the total energy , we can expect an error
of the order of O(4r?). After a simulation time equal to NAt (where
N is the number of timesteps), an accumulation of these errors can
lead to an overall energy error of the order of O(4r). This behaviour
is confirmed by Fig. 12(b), which demonstrates an increase in energy
drift with larger timesteps. For longer simulations, the ODE method
may experience drift due to energy growth errors. This error can be
monitored, and when it exceeds a user-defined tolerance, one could
reduce the time step or temporarily switch to the algebraic method. It
is noteworthy that the energy conservation error in both our Reduced-
VLE-Algebraic and Reduced-VLE-ODE approaches closely aligns with that
reported in Sirianni et al. [23]. The primary distinction between their
numerical scheme and ours lies in the spatial discretization: while they
utilize second-order spatial discretization, we employ only first-order
spatial discretization. Additionally, it is pertinent to highlight that their
work pertains to single-phase flow, whereas the emphasis of this paper
lies in the realm of two-phase flow. Furthermore, our approach is based

Er,/;E =

)

3 Combination implies performing an operation between two num-
bers/quantities e.g. addition, multiplication etc.
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Fig. 11. Comparison of CPU time vs. error in all approaches.

on the time-continuous form of the temperature equation, which offers
more flexibility in employing different time integration methods. In
contrast, their approach first discretizes in time using the forward Euler
method.

We continue to describe the wave structure observed in the shock-
tube results within the framework of the classical Riemann prob-
lem, with a specific emphasis on phase transition phenomena in the
following subsection [11].

5.2.6. Wave structure

In this subsection, we discuss the wave structure observed in our
pipeline depressurization simulation. Fig. 13 presents comprehensive
results for test case 1 (Table 4) obtained using the Reduced-VLE-
Algebraic method. These findings align well with observations by Ham-

11

mer et al. (2013) [2]. The solution exhibits a rich wave structure,
characterized by the presence of four distinct waves:

1. Leftward-propagating rarefaction wave: This wave is character-
ized by a smooth decrease in both pressure and temperature as
it propagates through the fluid.

2. Evaporation wave: Marking the onset of boiling and the transi-
tion to two-phase CO, flow, the evaporation wave is accompa-
nied by a further decrease in both pressure and temperature.

3. Contact discontinuity: Separating the two-phase and single-
phase gas regions of CO,, the pressure remains constant across
the contact discontinuity, while temperature exhibits a signifi-
cant rise. Unlike in single-phase flows, the velocity undergoes a
change across the contact discontinuity which is a characteristic
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Fig. 13. Riemann problem solution for various quantities along the length of the pipe for test case 1 with 1000 cells. Results at r =0.2 s.

feature of two-phase flow. This behaviour is also observed in the 6. Conclusions
work by Foll et al. [28] (Fig. 14 in their paper).

4. Rightward-moving shock wave: This wave induces compres- In this paper, we have proposed two new numerical methods for
sion that leads to increased internal energy, temperature, and simulating the depressurization of tanks and pipelines containing CO,.
pressure. This involves solving fluid flow equations alongside thermodynamic

Fig. 14 further visualizes these distinct waves in pressure- equilibrium equations.

temperature space at the end of the simulation (¢ = 0.2 s). The fluid ini- A common approach is to advance the fluid equations while coupled
tially transitions to a two-phase state via the rarefaction wave, followed with the non-linear algebraic constraints imposed by thermodynamic
by a further decrease in pressure-temperature properties through the equilibrium. This approach, termed Full-VLE-Algebraic, is computation-
evaporation wave. The contact discontinuity then separates the two- ally expensive. We propose two novel approaches by reformulating the
phase mixture from the hot, high-pressure single-phase gas. Finally, the coupled system of equations, which we denote Reduced-VLE-Algebraic
shock wave reconnects the system to its initial state on the right end of and Reduced-VLE-ODE. Firstly, the Reduced-VLE-Algebraic approach is
the pipe. based on the insight that the four-equation system expressing the

12
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Fig. 14. Pressure-temperature profile at + = 0.2 s for test case 1 with 1000 cells.

thermodynamics constraint can be simplified to a one-equation con-
straint when using saturation relations in two-phase conditions. This
accelerates the solution procedure at a slight loss of accuracy, which
depends on the accuracy with which the saturation relations have
been determined from the complete EOS. Secondly, the Reduced-VLE-
ODE approach is based on the insight that the one-equation constraint
can be differentiated in time to yield an evolution equation for the
temperature, which can be efficiently solved with explicit time in-
tegration methods, thus avoiding the need to employ a non-linear
equation solver. However, this method introduces a small error in
energy conservation. For simplicity, we have used the forward Euler
method for time integration in all tests.

For the tank depressurization case, the two proposed methods are
shown to be accurate and stable for different time-step sizes. The
Reduced-VLE-Algebraic and Reduced-VLE-ODE approaches exhibit com-
parable performance and we gain a significant speedup compared to
Full-VLE-Algebraic. The results are in excellent agreement with those
reported in the literature. We also apply these methods to pipeline
depressurization, where both Reduced-VLE-Algebraic and Reduced-VLE-
ODE again, exhibit significantly improved computational efficiency
compared to the traditional approach.

The pipeline depressurization case modelled as a Riemann problem,
shows how four different waves appear: rarefaction, shock, contact dis-
continuity, and evaporation wave. All three methods effectively capture
these intricate wave dynamics and results show excellent agreement
with the literature.

One potential path to improve accuracy could be the incorporation
of advanced time integration methods for systems with constraints
into the current Reduced-VLE-ODE framework. Extending the method-
ology beyond single-component fluids to encompass multi-component
mixtures presents another compelling direction for future work. This
would necessitate addressing the complexities associated with multi-
component systems, such as intercomponent mass transfer and the
establishment of phase equilibria. Another promising avenue for future
research involves extending our approach to higher-dimensional sys-
tems. This extension seems feasible as the derivation of the temperature
equation for the semi-discrete equations is in principle not limited
to 1D. Successfully navigating these challenges would broaden the
applicability of the methodologies and enable the investigation of a
wider range of fluid systems with enhanced accuracy and fidelity.
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Appendix A. Spatial convergence

We now assess the spatial convergence for the pipeline simulation.
The problem setup is discussed in Section 5.2.1. For this verification,
we employ a high-fidelity reference solution obtained using a Full-VLE-
Algebraic approach with a very fine mesh of 12,000 cells. Fig. A.15
illustrates the spatial convergence of our results with mesh refinement,
employing the L, error norm in temperature. All three methodolo-
gies showed increased accuracy as the mesh is refined. Convergence
is achieved at a level between first and second order. Notably, the
plots corresponding to the Full-VLE-Algebraic and Reduced-VLE-Algebraic
approaches coincide, whereas the Reduced-VLE-ODE approach exhibits
slightly higher error.

T T
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1st order /
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-
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Fig. A.15. Pipeline depressurization: Spatial convergence along the pipe at t =0.2 s.



P. Kumar et al.
Appendix B. Spatial discretization of HEM model

To compute the numerical flux i’H L the HLLC scheme, known as
the Harten-Lax-van Leer-Contact scheme, is employed as an approx-
imate Riemann solver [29]. This scheme utilizes the wave structure
inherent in the Riemann problem to estimate the flux at the interface
between adjacent cells. In the context of single-phase flow, the Riemann
solution typically features three distinct waves: rarefaction, shock, and
contact waves. However, in the case of two-phase flow, an additional
wave called the evaporation wave may be present. Leveraging the
Rankine-Hugoniot condition, the HLLC scheme approximates the fluxes
associated with each of these waves. The intermediate region between
the rarefaction and shock waves is commonly referred to as the star-
region. A comprehensive derivation of the HLLC scheme for Euler’s
equations is provided by Toro [29]. Below, we present the expressions
for the fluxes at the interface i + %:

F,, if0o<sS,,
. F;, if S, <0<8%,
Fi+]/2 = (B.1)
Fg, if ST <0< Sg,
Fg, if 0> Sg.
Fj=F +S, (U -Up), (B.2)
Fp=Fp+SgUy - Up), (B.3)
S; =min(u; —ay,ug —ag), (B.4)
Sgp=max(uy +ay,up +ag), (B.5)
= PRZPL +prup(Sp —up) — prug(Sg — ”R)’ (B.6)
pL(Sp —up) — pr(Sg —ug)
1
S. —
UI*<=pK (K_“Ii) S* (B.7)
SK - * * PK
Ex + (87 —ug) [S + P (Sk—uK)
Here, K = L(left state) or K = R(right state), Uy =~ U'(xg,?),

Fyx = F(Ug),ag is the speed of sound computed using the equation
of state [18]. S; and Sy are the wave speeds of the left and right-
going waves, respectively, and S* denotes the speed of the contact
wave. The accuracy of the HLLC method crucially depends on the
precision of the estimates of the wave speeds S; and Sk. In this context,
we have presented one method for estimating these wave speeds. For
a comprehensive discussion of wave speed estimation, we refer the
interested reader to Toro [29].

Data availability

No data was used for the research described in the article.
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