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We propose a setup based on (solid-state) qubits coupled to a common multimode transmission line, which
allows for coherent spin-spin interactions over macroscopic on-chip distances, without any ground-state cooling
requirements for the data bus. Our approach allows for the realization of fast deterministic nonlocal quantum
gates, the simulation of quantum spin models with engineered (long-range) interactions, and provides a flexible
architecture for the implementation of quantum approximate optimization algorithms.

DOI: 10.1103/PhysRevB.99.241302

Introduction. One of the leading approaches for scaling up
quantum information systems involves a modular architecture
that makes use of a combination of short- and long-distance
interactions between the qubits [1,2]. In particular, long-
distance interactions can be implemented via a quantum bus
which can effectively distribute quantum information between
remote qubits, as shown in the context of trapped ions [3–7],
solid-state systems [8,9], electromechanical resonators [10],
as well as circuit QED architectures [11–16]. In this Rapid
Communication, we provide a unified theoretical framework
for robust distribution of quantum information via a quantum
bus that operates at finite temperature [17], fully accounts for
the multimode structure of the data bus, and does not require
the qubits to be identical. Our approach [cf. Fig. 1(a)] re-
sults in an architecture where fully programmable interactions
between qubits can be realized in a fast and deterministic
way, without any ground-state cooling requirements for the
data bus, thereby setting the stage for various applications
in the context of quantum information processing [18] in a
hot quantum network, different from quantum state transfer
discussed previously [19–21]. As illustrated in Fig. 1(b),
and discussed in detail below, one can use our scheme to
deterministically implement (hot) quantum gates between two
qubits. Moreover, we present a recipe to generate a targeted
and scalable evolution for a large set of N qubits coupled
via a single transmission line, thereby providing a natural
architecture for the implementation of quantum algorithms,
such as quantum annealing [22] or the quantum approximate
optimization algorithm (QAOA) [23–25], designed to find ap-
proximate solutions to hard, combinatorial search problems.

The model. We consider a set of qubits i = 1, 2, . . . , N
with corresponding transition frequencies ωi (typically in
the microwave regime) that are coupled to a (multimode)
transmission line of length L; compare Fig. 1 for a schematic
illustration. The transmission line is described in terms of pho-
tonic modes an with wave vectors kn = nπ/L, with a linear
spectrum ωn = knc = nω1, where ω1 = πc/L is the frequency
of the fundamental mode n = 1 and c is the (effective) speed

of light. As opposed to transversal (Jaynes-Cummings-like)
spin-resonator coupling [26,27], here we focus on longitu-
dinal coupling as could be realized (for example) with su-
perconducting qubits [8,28–31] or quantum-dot-based qubits
[8,9,32–36]. The Hamiltonian reads (h̄ = 1)

Hlab =
N∑

i=1

ωi

2
σ z

i +
∞∑

n=1

ωna†
nan +

∑

i,n

gi,nσ
z
i (an + a†

n), (1)

with the qubit Pauli matrices �σi and gi,n the coupling strength
between qubit i and mode n. We show below that for specific
times t , which are integer multiples of the round-trip time t ∝
τ ≡ 2L/c, the dynamics of the qubits and all photons fully
decouple, while giving rise to an effective interaction between
the qubits.

Analytical solution of time evolution. With the help of
the spin-dependent, multimode displacement transformation
U †

pol = exp[
∑

n,i
gi,n

ωn
σ z

i (a†
n − an)], in our model the spin dy-

namics can be decoupled from the resonator dynamics (in the
polaron frame), and we find Hlab = UpolHpolU

†
pol, where

Hpol =
∑

i

ωi

2
σ z

i +
∑

n

ωna†
nan +

∑

i< j

Ji jσ
z
i σ z

j , (2)

with the effective spin-spin interaction

Ji j = −2
∑

n

gi,ng j,n

ωn
. (3)

Therefore, the evolution in the laboratory frame reads
e−iHlabt = Upole−iHpoltU †

pol, as follows directly from a Tay-

lor expansion and U †
polUpol=1. Consider now the evolu-

tion at stroboscopic times tp = pτ (p positive integer), cor-
responding to multiples of the round-trip time τ . In this
case, all the modes synchronize, exp[−itp

∑
n ωna†

nan] =
exp[−2π i

∑
n npa†

nan] = 1, since the number operators a†
nan

feature an integer spectrum and ωntp = 2π pn; thus, the full
evolution reduces exactly to Ulab(tp) = exp[−iHlabtp],

Ulab(tp) = e−itp
∑

i (ωi/2)σ z
i e−itp

∑
i< j Ji jσ

z
i σ z

j . (4)
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FIG. 1. Hot quantum network. (a) Schematic illustration of N
qubits coupled to a transmission line of length L. (b) Dynamic evolu-
tion of two qubits, as exemplified for the von Neumann (VN) entropy
(left axis) and the concurrence (right axis) of the two-qubit density
matrix, with a = 0.03L. At the round-trip time t = τ , the qubits fully
decouple from the waveguide and form a maximally entangled state,
even though the transmission line is far away from the ground state
(here, kBT = ω1). (c) Quantum approximate optimization algorithm
(QAOA) with depth M solving Max-Cut with N = 6 qubits and
a 4-regular graph (inset), and with decoherence (ideal case: blue;
dephasing with rate γφ/Jmax = 0.003: orange; rethermalization with
rate κ/|	| = 0.004: green), and at finite temperature kBT =ω1.

Accordingly, for certain times the qubits fully disentangle
from the (thermally populated) resonator modes, thereby
providing a qubit gate that is insensitive to the state of
the resonator, while imposing no conditions on the qubit
frequencies ωi [37]. For specific times, the time evolution
in the polaron and the laboratory frame coincide and fully
decouple from the photon modes, allowing for the realization
of a thermally robust gate, without any need of cooling the
transmission line to the vacuum [9]. Moreover, our approach
can be straightforwardly combined with standard spin-echo
techniques in order to cancel out efficiently low-frequency
noise: By synchronizing fast global π rotations with the
stroboscopic times tp, one can enhance the qubit’s coherence
times from the time-ensemble-averaged dephasing time T 


2 to
the prolonged timescale T2.

Frequency cutoff. In principle, the spin-spin coupling
strength Ji j as defined in Eq. (3) involves all modes
n = 1, 2, . . . , naively leading to unphysical divergencies, as
discussed in the context of transversal qubit-resonator cou-
pling in Refs. [38,39]. In any physical implementation,
however, there is a microscopic lengthscale a that naturally
introduces a frequency cutoff. Specifically, we take the cou-
pling parameters gi,n as gi,n = gi

√
n

∫ L
0 cos(knx) f (x − xi )dx,

to account for the fact that the qubits couple to the local
voltage, where f (x − xi ) accounts for the microscopic spatial
extension of the qubit-transmission line coupling (cf. [40] for
details); the factor ∼√

n derives from the scaling of the rms
zero-point voltage fluctuations with the mode index n, which
also implies gi ∝ L−1. In the examples below, we will con-
sider for simplicity a box function f (x) = δx>0δx<a/a, leading
to gi,n = gi

√
n(sin[kn(xi + a)] − sin[knxi])/(kna). Note that if

the microscopic lengthscale a is set to zero, the summation
over n in Eq. (3) does not converge. Instead for a finite a, and

for |xi − x j | > a the effective interaction Eq. (3) simplifies to
Ji j = gig j/ω1 (cf. [40]). Accordingly, within this exemplary
model, the coupling Ji j does not depend on a, nor the position
of the qubits xi, and scales as L−1, showing that the time to
entangle qubits is only limited by the propagation time τ (∝L)
of light through the waveguide.

Applications. We now discuss three applications of our
scheme, with a gradual increase in complexity, namely, (i) a
hot two-qubit phase gate, (ii) the engineering of spin models,
and (iii) the implementation of QAOA in the presence of
decoherence and finite temperature. To this end, we consider
the possibility to potentially boost and fine-tune the effective
spin-spin interactions Ji j by parametrically modulating the
longitudinal spin-resonator coupling, as could be realized with
both superconducting qubits [8] or quantum-dot-based qubits
[33] (cf. [40] for further details).

Hot phase gate. As a first illustration, we consider the
realization of a phase gate between two remote qubits N = 2,
placed at each edge of the transmission line (x1 = 0, x2 =
L − a). Our initial state ρ0 = |0〉 〈0| ⊗n ρn consists of a
pure initial qubit state with |0〉 = ⊗ j (|0〉 + i |1〉) j/

√
2 and

a thermal state of the waveguide with ρn = exp(− a†
nanωn

kBT )[1 −
exp(− ωn

kBT )], and we use matrix-product-state (MPS) tech-
niques [42] to show numerically how the hot quantum network
generates the desired evolution, Eq. (4). We fix gi = ω1/

√
8

which (under ideal circumstances) leads to a maximally entan-
gled pure state |(t1)〉 = exp(−i π

4 σ z
1σ z

2 ) |0〉 at the gate time
tg = π/(4J12) after just one round-trip t1 = τ (generalizations
thereof are provided in [40]). In Fig. 1(b), we show the
von-Neumann entropy E and the concurrence C of the two-
qubit density matrix ρ1,2, showing the realization of the
gate at t = t1, in the presence of thermal occupation of the
waveguide. The corresponding fidelity F defined as overlap
of ρ1,2 with respect to the ideal state |(t1)〉 〈(t1)| is shown
in Fig. 2(a). In panels (b) and (c) both the mode occupation
〈a†

nan〉 and the real-space occupation 〈a†
xax〉 are displayed,

with ax, 0 < x < L, referring to the discrete sine transform
of an. In particular, the mode space picture [panel (b)] allows
one to visualize the excitation of the linear spectrum of the
waveguide, that synchronizes at time t = τ . Conversely, the
dynamics in real space [panel (c)] illustrates how qubit-qubit
interactions are mediated by photon wave packets propagating
ballistically. At the round-trip time t = τ , the waveguide
returns to its initial thermal state, as expected. In panel (d),
we study the scaling of timing errors by showing the evolu-
tion of the error 1 − F around t ≈ tp. In the limit of small
errors |	t | � (a/c)

√
ω1/J12, assuming a � L, the numerical

results are well approximated by 1 − F ≈ 4(c/a)2J12/ω1	t2

(black line), with 	t = t − tp. Accordingly, the timing error
is sensitive to the cutoff a (as it controls the frequency scale
of the couplings), and scales linearly with the effective spin-
spin interaction J12, as slower dynamics are less vulnerable
to timing inaccuracies ∼	t ; for further details, in particular
related to the influence of temperature on timing errors, and
effects due to nonlinear dispersion relations ωn, cf. [40].

Engineering of spin models. We now extend our dis-
cussion to the multiqubit case N > 2 and provide a recipe
how to generate a targeted and scalable unitary W =
exp(−i

∑
i< j wi jσ

z
i σ z

j ) with desired spin-spin interaction

241302-2



QUANTUM SIMULATION AND OPTIMIZATION IN HOT … PHYSICAL REVIEW B 99, 241302(R) (2019)

0.0 0.5 1.0
t/τ

0.5

1.0

x
/L

10−3

10−2

10−1

100

0.0 0.5 1.0
t/τ

10

20

30

n

10−3

10−2

10−1

100

−0.2 0.0 0.2

(c/a) J12/ω1Δt

0.00

0.05

0.10

1
−
F

a/L

0.1

0.2

0.3

0.4

(b)

(d)

a†
nan

0.0 0.5 1.0
t/τ

0.6

0.8

1.0

F
kBT/ω1

0

1

2

(a)

(c) a†
xax

FIG. 2. Hot phase gate between two distant qubits. (a),(b)
Fidelity as a function of time τ (a) for a = 0.03L and different trans-
mission line temperatures 0 � kBT � 2ω1. (b) Mode and (c) real-
space occupation as a function of the transmission line for a = 0.03L
and kBT = ω1, with ∼30 modes. (d) Error 1 − F around the gate
time tp for T = 0 and different values of the cutoff (legend) and
number of cycles p = 1, 4, 8, 16 (circles, crosses, stars, squares).
For small timing errors, all data points collapse to a single curve
4(c/a)2J12/ω1	t2, shown as a black line.

parameters wi j . To this end, we consider a sequence
q = 1, . . . , η of successive cycles where for each strobo-
scopic cycle (labeled by q) we may apply different coupling
amplitudes, i.e., gi → g(q)

i . For example, this could be done
by parametrically modulating the spin-resonator coupling via
microwave control [8,33]. The evolution at the end of the se-
quence is then given by Uη = exp(−itp

∑
i< j J (η)

i, j σ z
i σ z

j ), with

J (η)
i, j = ∑η

q=1 g(q)
i g(q)

j /ω1, and trun = ηtp being the total run
time. A straightforward way to generate the desired unitary,
i.e., to obtain wi j = J (η)

i, j tp, consists in diagonalizing the target

matrix as wi j = ∑N
q=1 wqui,qu j,q in terms of real eigenvalues

wq and real eigenstates ui,q. This leads immediately to the con-
dition g(q)

i = √
wqω1/tpui,q to generate exactly W within η =

N number of cycles, with tp � wq/Jmax, where Jmax denotes
the largest available spin-spin coupling [43]. In other words,
we can engineer efficiently arbitrary spin-spin interactions
after a time trun = Ntp which only scales linearly with the
number of qubits; trun = 2Ntp in the presence of spin echo.
These aspects are illustrated in Fig. 3, where we provide
examples for N = 25 and both (a) a one-dimensional long-
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FIG. 3. Engineering of spin models. (a) Long-range interactions
wi j = 1/|i − j| and periodic boundary conditions, for η = 11, 25.
(b) 2D nearest-neighbor interactions with open boundary conditions,
with η = 25. Here, the indices i correspond to 2D indices i = (ix, iy )
of a square of 5 × 5 sites using the convention i = ix + 5iy.
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FIG. 4. Simulation of QAOA for Max-Cut, in the presence of
decoherence. (a) d-regular graphs with N = 3, 4, 5 used for our
numerical analysis of decoherence. Our graph with (N, d ) = (6, 4)
is shown in Fig. 1(c). (b) Optimization parameters γm, βm for N = 6,
M = 5. (c),(d) Scaling of errors with respect to the optimized QAOA
wave function |γ, β〉 for (c) dephasing and (d) rethermalization. The
dashed lines correspond to the scaling expressions given in the text.
For each panel, we consider the different graphs, depth M = 1, 3, 5,
Jmax/|	| = 0.02, 0.08. For (d), we consider kBT = 0, ω0. In (c) and
(d), the dashed lines represent the curve y = x/2.

range spin model with power-law decay wi j = 1/|i − j|α
(α = 1) and (b) a two-dimensional (2D) model with nearest-
neighbor (NN) interactions. The latter demonstrates that our
recipe allows for the realization of general spin models in
any spatial dimension and geometry (using a simple one-
dimensional physical setup). For both models, we observe
the progressive emergence of the target spin interaction with
increasing values for η, reaching the exact matrix at η = N .
The case of a spin glass with random interactions, and the con-
vergence analysis with respect to η/N are presented in [40].

QAOA. Finally, we show how to generalize the techniques
outlined above in order to implement quantum algorithms
that provide approximate solutions for hard combinatorial
optimization problems such as Max-Cut (cf. Fig. 4 and [40]).
As shown in Refs. [23,24], good approximate solutions to
these kind of problems can be found by preparing the state
|γ,β〉 = Ux(βM )Uzz(γM ) · · ·Ux(β1)Uzz(γ1)|s〉, with Ux(βm) =
exp[−iβm

∑
i σ

x
i ], and Uzz(γm) = exp[−iγmHC], where HC

is the cost Hamiltonian encoding the optimization problem,
starting initially from a product of σ x eigenstates, i.e., |s〉 =
|−,−, . . . 〉, with |−〉 = (|0〉 − |1〉)/

√
2. In our scheme, this

family of states can be prepared by alternating single-qubit
operations Ux(βm) with targeted spin-spin interactions gener-
ated as described above, with W → Uzz(γm). Accordingly, for
QAOA we repeat our spin-engineering recipe M times with
single-qubit rotations interspersed in between. This prepara-
tion step is then followed by a measurement in the com-
putational basis, giving a classical string z, with which one
can evaluate the objective function 〈HC〉 of the underlying
combinatorial problem at hand. Repeating this procedure
will provide an optimized string z, with the quality of the
result improving as the depth of the quantum circuit M is
increased [23,24]. To illustrate and verify this approach, we
have numerically simulated QAOA with up to N = 6 qubits
solving Max-Cut for several d-regular graphs with weights
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wi, j = w
(d )
i, j + dδi,i, as depicted in Figs. 4(a) and 1(c), based

on our model Hamiltonian given in Eq. (1), while accounting
for both finite temperature and decoherence in the form of
qubit dephasing and rethermalization of the resonator mode.
While our general multimode setup should (in principle) be
well suited for the implementation of QAOA, here (in order
to allow for an exact numerical treatment) we consider a sim-
plified single-mode problem (with resonator frequency ω0), as
could be realized using the resonance condition introduced by
a monochromatically modulated coupling [8,33]. Specifically,
we simulate the Hamiltonian H = ∑

i(ωi/2)σ z
i + 	a†a +∑

i giσ
z
i ⊗ (a + a†) with controllable couplings gi [8,33],

detuning 	 = ω0 − � and Ji j = −2gig j/	 � Jmax, supple-
mented by standard dissipators to account for (i) qubit dephas-
ing on a timescale ∼T2 = 1/γφ and (ii) rethermalization of the
resonator mode with an effective decay rate ∼κ n̄th(ω0) [44]
(cf. [40] for further details). As demonstrated in Fig. 1(c), for
small-scale quantum systems (that are accessible to our exact
numerical treatment) our protocol efficiently solves Max-Cut
with a circuit depth of M � 5, finding the ground-state energy
with very high accuracy (blue curve), corresponding to four
cuts (shown in red in the inset), even in the presence of mod-
erate noise [compare the cross and plus symbols in Fig. 1(c)].

Decoherence and implementation. Based on our numerical
findings and further analytical arguments, we now turn to the
eventual limitations imposed by decoherence. Here, we focus
on the QAOA protocol, since both our (i) hot gate (cf. [40] for
a full decoherence-induced error analysis thereof) and (ii) the
spin engineering protocol can be viewed as less demanding
limits of QAOA, where either M or N (or both) are small,
thereby yielding comparatively smaller errors because of a
shorter run time; for example, for the two-qubit phase gate
M = 1, N = 2. The total QAOA run time trun can be upper-
bounded as trun ≈ γ MNd/Jmax, with γ = 1/M

∑
m γm and

the factor Nd/Jmax corresponding to the (maximum) time
required to implement all eigenvalues wq � d of the Max-Cut
problem. To keep decoherence effects minimal, this timescale
should be shorter than all relevant noise processes. The ac-
cumulated dephasing-induced error can be estimated as ξφ ∼
γφN × γ MNd/Jmax, where ∼γφN is the effective many-body
dephasing rate (cf. [40]); as shown in Fig. 4(c), we have
numerically confirmed this scaling for all graphs shown in
Figs. 4(a) and 1(c). Similarly, as demonstrated in Fig. 4(d),
the indirect rethermalization-induced dephasing error, me-
diated by incoherent evolution of the resonator mode, can
be quantified as ξκ ∼ κeff × γ MNd/|	|, with total linewidth
κeff = κ[2n̄th(ω0) + 1]. The total decoherence-induced error
ξ = ξφ + ξκ can then be optimized with respect to 	, yielding
the compact expression ξ ≈ γ dMN3/2/

√
C, with the cooper-

ativity C = g2/(γφκeff ). With this expression, we can bound
the maximum number of qubits N and circuit depth M for a
given physical setup with cooperativity C.

Specifically, our scheme could be implemented based on
superconducting qubits or quantum-dot-based qubits coupled
by a common high-quality transmission line, with details
given in [40]. For concreteness, let us consider quantum-dot-
based qubits [9,33–36] where longitudinal coupling could be
modulated via both the detuning [33] or interdot tunneling
parameter [34], respectively. With projected two-qubit gate
times of ∼10 ns [33,34], a coherence time of T2 ≈ 10 ms
[46,47], and ω0/2π ≈ 1 GHz with quality factor Q ∼ 106

[48–50], we estimate decoherence errors to be small (�3%)
for up to N ≈ 50 qubits and a QAOA circuit depth of M ≈ 10
for a graph with d ≈ 4, respectively, even in the presence
of nonzero thermal occupation with n̄th(ω0) ≈ 3. Further,
the performance will be affected by timing errors, as is
the case for any gate implementation. However, commercial
equipment allows experiments with timing jitter of only a
few picoseconds [40,51]. A similar analysis can be made for
superconducting qubits [40]. Note that these estimates might
be very conservative, as the essential figure of merit in QAOA
is not the quantum state fidelity F but the probability to find
the optimal (classical) bit-string z in a sample of projective
measurements {z1, z2, . . . } (obtained after many repetitions of
the experiments).

Conclusion. To conclude, we have presented a protocol to
generate fast, coherent, long-distance coupling between solid-
state qubits, without any ground-state cooling requirements.
While this approach has direct applications in terms of the en-
gineering of spin models (e.g., to implement QAOA) it would
be interesting to further develop our theoretical treatment in
order to increase the level of robustness of our scheme, e.g., to
apply protocols based on error correcting photonic codes [54],
which can protect against photon losses or rethermalization.
Yet another interesting research direction would be to adapt
our scheme to other physical setups, say solid-state defect
centers coupled by phonons [10].
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