
Dataflow Analysis in a Language
Workbench

Master’s Thesis

Matthijs Daniël Bijman

Dataflow Analysis in a Language
Workbench

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Matthijs Daniël Bijman
born in Lochem, the Netherlands

Programming Languages Group
Department of Software Technology

Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewi.tudelft.nl

www.ewi.tudelft.nl

© 2022 Matthijs Daniël Bijman.

Cover picture: Lattice structure, created using Processing

Dataflow Analysis in a Language
Workbench

Author: Matthijs Daniël Bijman
Student id: 4490304
Email: m.d.bijman@student.tudelft.nl

Abstract

Dataflow analysis is a powerful tool used for program optimization, static analysis,
and editor services for many programming languages. Spoofax, a language workbench,
contains a domain-specific language called FlowSpec for the definition of control-flow
and dataflow semantics that language developers can use to implement dataflow anal-
yses for their language. FlowSpec however cannot be used to efficiently optimize pro-
grams. Other solutions are not suitable for language developers, or lack the ergonomics
of a domain-specific language. In this thesis we present Flock: an incremental implemen-
tation of FlowSpec. We analyze the performance of Flock and show that it is efficient
enough for use in optimization pipelines. Flock gives language developers the tools to
succinctly write dataflow analyses for a wide variety of applications.

Thesis Committee:

Chair: Dr. ir. S. E. Verwer, Faculty EEMCS, TU Delft
Member: Dr. S. S. Chakraborty, Faculty EEMCS, TU Delft
University Supervisor: J. Smits MSc., Faculty EEMCS, TU Delft

m.d.bijman@student.tudelft.nl

Preface

This thesis contains the result of almost two years of work, concluding my seven years at
the TU Delft. Even though the last two of these did not exactly go according to plan I am
happy with the result in the form of this thesis. I am lucky to have worked on a topic that is
incredibly interesting to me, and I hope I can put this knowledge to good use in the future.

There are some people that I need to thank for getting me through the this thesis project,
as I am sure I would not have been able to complete it without them.

Foremost I need to thank Jeff Smits for his role as supervisor. It is a lot to ask someone to
supervise a Master thesis, let alone one that takes two years to complete. I am lucky to have
had a supervisor as calm and helpful as Jeff during this period.

I also need to thank my parents for their unending support, and for providing me with a
space to go to whenever my room in Delft became too small.

And of course I want to thank all my friends and housemates who helped me stay sane
and provided the necessary distraction. The weekly bouldering sessions with Tom were
easily worth the tendonitis.

Finally I would like to thank Eelco Visser for sparking my interest in programming lan-
guages many years ago. His enthusiasm and mentorship during those years are what ulti-
mately lead to me taking on this thesis project. I am sure he would have enjoyed reading the
result.

Matthijs Daniël Bijman
Delft, the Netherlands

June 22, 2022

iii

Contents

Preface iii

Contents v

List of Figures vii

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Questions . 2
1.3 Contributions . 2
1.4 Thesis Overview . 3

2 Background 5
2.1 Program Optimization . 5
2.2 Optimizations in Compilers . 7
2.3 Compilers in a Language Workbench . 11

3 Dataflow Analysis in a Language Workbench 15
3.1 Applications of Dataflow Analysis . 15
3.2 Use cases and Limitations of FlowSpec . 16
3.3 Other Implementations of Dataflow Analysis 17

4 Data Analysis in Flock 21
4.1 Control-Flow Specification . 21
4.2 Data-Flow Specification . 21
4.3 Queries, Optimizations, and Diagnostics . 23

5 Solution Implementation 27
5.1 Flock Compiler . 27
5.2 Flock Stratego API . 28
5.3 Flock Runtime . 30
5.4 Incremental Analysis in an Immutable Language 36

6 Evaluation 39
6.1 Run Time Analysis of an Optimization Pipeline 39
6.2 Memory Analysis of an Optimization Pipeline 42
6.3 Analysis of Query Latencies . 43
6.4 Threats to Validity . 43

7 Related work 47
7.1 Dataflow Analysis . 47
7.2 Incremental Dataflow Analysis . 47
7.3 Incremental Datalog . 48

8 Conclusion 51
8.1 Future Work . 52

v

CONTENTS

Bibliography 55

A Tiger FlowSpec Control-Flow Spec 59

B Tiger FlowSpec Data-Flow Spec 63

vi

List of Figures

2.1 A Tiger program that computes 10!, the factorial of the value stored in x 7
2.2 Abstract Syntax Tree (AST) for the Tiger fact program 7
2.3 Simplified Control Flow Graph (CFG) for the Tiger fact program 8
2.4 Value analysis of the control-flow graph for the Tiger fact program in three steps.

Analysis results are shown in blue. Analysed nodes are white, other nodes are gray. 8
2.5 A Tiger program that branches on a value and its corresponding control-flow graph 9
2.6 Worklist algorithm for solving forward dataflow analysis problems 10
2.7 Example of grammar specification with SDF3 . 11
2.8 Example of a for-loop matching the grammar rule 11
2.9 Example of the for-loop in ATerm form according to the grammar rule 11
2.10 A FlowSpec rule specifying the control-flow semantics of a For-loop node 11
2.11 A FlowSpec rule specifying the control-flow semantics of a VarDec node 12
2.12 A FlowSpec rule specifying the control-flow semantics of a FunDec node 12
2.13 FlowSpec dataflow rules that implement a liveness analysis 12
2.14 Rewrite rule to optimize a binary and-expression 12
2.15 Rewrite rule to apply optimizations to a program term 13

3.1 Program with value analysis results shown in brackets in the comments 16
3.2 Program with outdated analysis results after constant propagation 16
3.3 Program with updated analysis results after constant propagation 16
3.4 Program with available expressions between {} and liveness analysis between [] 17
3.5 Program with dead variable x eliminated, leaving invalid available expressions . 17
3.6 Program with unsound available expression optimization applied 17
3.7 A Stratego expression that creates a dynamic rule called PropConst 17
3.8 A strategy that defines generic forward dataflow analysis for an if term 18

4.1 Declaration of AST sorts and constructors in FlowSpec 22
4.2 Declaration of CFG rules in FlowSpec . 22
4.3 Property definition for liveness analysis for Tiger in Flowspec 22
4.4 Dataflow rules for liveness analysis for Tiger in FlowSpec 22
4.5 Property definition and rules for value analysis for Tiger in Flowspec 23
4.6 Type definitions for value analysis for Tiger in FlowSpec 23
4.7 Property definition and rules for array length analysis for Tiger in Flowspec . . . 24
4.8 Generated Stratego API for liveness, value, and array length analysis 24
4.9 Optimization pipeline for Tiger in Stratego . 24
4.10 Diagnostics that report out-of-bounds array accesses 25
4.11 Example of out-of-bounds diagnostics reported by array length analysis 25
4.12 Implementation of hover tooltips to show value analysis results 25
4.13 Example of on-demand dataflow analysis in an editor 26

5.1 Output file of the Flock compiler when compiling a FlowSpec Control Flow spec-
ification . 27

5.2 Output files of the Flock compiler when compiling a FlowSpec analysis 27
5.3 Pipeline stages of the Flock compiler . 28

vii

LIST OF FIGURES

5.4 High-level overview of the runtime component structure 29
5.5 Steps performed during initialization . 30
5.6 Steps performed after an analysis is queried . 30
5.7 Steps performed after a transformation is perform 31
5.8 Replacement of term in Stratego term and Flock term. Note that P is unchanged

in the Flock runtime, so that references into P remain valid. 31
5.9 Creation of CFG from a Flock term. Green nodes are entry nodes, red nodes are

exit nodes. 32
5.10 Replacement of a (sub-)CFG . 32
5.11 Resulting SCCs after a replacement with no cycles present. 33
5.12 Update to SCCs after a replacement within a cycle. 34
5.13 Adapted worklist algorithm used in the Flock runtime 35
5.14 Example of a dataflow rule that copies a map and changes a single entry 36
5.15 Class diagram of a compiled analysis. 36

6.1 Run time of optimization pipelines on various sizes of the program shown in Fig.
6.2 . 40

6.2 Example program for n=3 . 40
6.3 Run time of optimization pipelines on various sizes of the program shown in Fig.

6.4 . 40
6.4 Example program for n=3 . 40
6.5 Run time of optimization pipelines on various sizes of the program shown in Fig.

6.6 . 41
6.6 Example program for n=3 . 41
6.7 Run time of optimization pipelines on various sizes of the program shown in Fig.

6.8 . 41
6.8 Example program for n=3 . 41
6.9 Run time of optimization pipelines on various sizes of the program shown in Fig.

6.10 . 42
6.10 Example program for n=3 . 42
6.11 Normalization transformation that is applied before a peephole optimization can

be used to fold the addition . 42
6.12 Memory usage of Flock andDynamic Rules in various benchmarks. Vertically the

line represents the memory usage of the optimizer during the optimization of a
program, horizontally the line represents a measurement as a percentage of total
measurements. The graphs do not depict runtime. 43

6.13 Sorted latencies for value analysis queries shown for Flock (cached) andDynamic
Rules (uncached) on a logarithmic (left) and linear (right) scale 44

7.1 Control-flow graph rules for a C-style if in IncA (Szabó, Erdweg, and Voelter 2016) 49
7.2 Control-flow graph rules for a C-style if in FlowSpec 49

8.1 An optimizable program that does not match a peephole optimization 52
8.2 An optimizable program that will match a peephole optimization 52

viii

Chapter 1

Introduction

Compilers are complex pieces of software that bridge the gap between code written by hu-
mans, and code understood by machines. Compilers were invented in the late 1940’s and
early 1950’s, and reached widespread use with the development of the first high-level lan-
guages: Fortran, Cobol, and Lisp. By moving away from assemblers that required intimate
knowledge of the hardware, programming was made easier and more robust. As resources
were highly limited in the decades following their invention, the use of these languages re-
mained constrained and somewhat controversial. For this reason, the developers of FORTAN
aimed at generating efficient code that was better than handwritten assembler, to ensure that
the language would be attractive to customers (Spencer 1997). Thus from the invention of
high-level languages, optimization was an essential aspect of their implementation.

In stark contrast to the resource-limited machines from the 50’s, the average person to-
day owns several orders of magnitude more powerful hardware that fits in their pockets.
Nevertheless, the demand for optimization in compilers has remained. The increase in com-
puting power available comes with a seemingly even greater increase in computing power
required. Moreover, the development of new programming languages with different seman-
tics and constraints spurred the invention of new techniques to maintain sufficient perfor-
mance. JavaScript for example, a dynamic scripting language invented in 1996 for program-
mingwebsites, cannot be compiled ahead-of-time (AOT) because it is sent across the network
to be run on unknown hardware. The widespread adoption of the language, new versions of
the language, and the competition between implementations (called engines) keeps driving
the complexity and effectiveness of optimizations forward to this day.

The design and implementation of compilers has evolved considerably since their inven-
tion in the 50’s. Modern compilers include many steps, algorithms, and data structures,
each responsible for a part of the translation process. At a high level, many compilers can
be viewed as three stages. The front-end parses the textual input into an abstract-syntax tree
(AST) format, performs language-specific analyses such as typechecking, and transforms the
AST into an intermediate representation (IR). The middle-end performs optimizations on the
IR that are independent of input language or target architecture. The back-end targets a single
architecture, performing architecture-specific optimizations, and transforming the IR into as-
sembly. This modular three-tiered architecture has several advantages over more rigid archi-
tectures. Implementing a new language requires only a new-frontend, while the middle-end
and back-ends can be reused. Furthermore, new optimizations in the middle-end or newly
supported architectures in the back-end can be used by many different languages. A promi-
nent example of this architecture can be found in LLVM (C. A. Lattner 2002; C. Lattner and
Adve 2004), which contains the language agnostic middle- and back-ends. New languages
can be implemented by translating to the LLVM IR, and the rest of the compilation process
is performed by LLVM.

Many optimizations used in compilers such as LLVM are based on a technique called
dataflow analysis. Using this technique, we can safely approximate the state of a program at
various points during its execution. By choosing the various parameters of dataflow analysis
we can approximate many different types of behaviour. We can analyse the values computed
during program execution, which variables are never used, expressions that are redundantly
recomputed, and many more. These analyses can then be used to implement optimizations.

1

1. INTRODUCTION

1.1 Problem Statement
The three-stage architecture by projects such as LLVM allows language developers to har-
ness the power of dozens or hundreds of optimizations without additional effort beyond the
translation from their source language to LLVM bytecode. While a great benefit, LLVM may
not be a suitable target for every language. A language can be highly dynamic, interpreted,
or otherwise embedded in a wider runtime and thus may not be suitably compiled by LLVM.
Furthermore, a language may require or benefit from specific types of analyses that are not
present in LLVM. The analyses present in LLVM can also not be used for purposes besides
optimization, such as advanced diagnostics (Jetbrains Dataflow Analysis 2022). Due to one
or more of these constraints, a language developer may need to manually implement the
necessary dataflow analyses. This however reintroduces the challenges that LLVM allevi-
ates, including efficient and correct implementation of the analyses and optimizations, and
phase-ordering of analyses and optimizations.

In this thesis we investigate these challenges in the context of the language workbench
Spoofax. Spoofax includes several metalanguages for the implementation of programming
languages, and more specifically DSLs. Since LLVM bytecode is rarely a suitable target for
DSLs developed with Spoofax we see potential for a valuable addition to the toolset of the
workbench. Furthermorewefind thatwhile research exists in area of composition of analyses
and optimizations, this work does not exist in the context of language workbenches, where
flexibility, usability, and integration with the larger language implementation are important
aspects.

1.2 Research Questions
The research questions that we aim to answer based on the problem statement are as follows:

• RQ1 What does a flexible but efficient dataflow analysis and optimization framework
for language developers look like within Spoofax?

• RQ2 How can we efficiently and automatically compose dataflow analyses and opti-
mizations without imposing strong restrictions on language developers?

• RQ3 How does the efficiency of such a framework compare to other approaches when
applied to optimization and analysis?

• RQ4 How much effort is required to implement an optimization pipeline, static analy-
sis, or editor services with such a framework?

1.3 Contributions
This thesis contains contributions to the problem of using dataflow analysis for the imple-
mentation of languages developed within a language workbench. It contains a compiler and
runtime for FlowSpec, a DSL for dataflow analyses, that generates incremental implemen-
tations of analyses. The runtime exposes a Stratego API that can be used to query analy-
ses and perform program transformations. To evaluate the framework we use quantitative
benchmarks to understand the performance of the framework compared to other optimiza-
tion frameworks. We investigate the flexibility by implementing both optimizations, static
analysis, and editor services with the framework. The key contributions of this thesis can be
summarized as follows:

• Amethod for incrementally updating control-flowgraphs and their strongly connected
components following program updates given a high-level control-flow specification

• A method for deriving incremental dataflow analyses from a high-level dataflow spec-
ification

• An implementation of the FlowSpec language that can be used within the Spoofax lan-
guage workbench to implement optimization pipelines, static analyses, and editor ser-
vices

2

1.4. Thesis Overview

1.4 Thesis Overview
The remainder of this thesis consists of seven chapters. InChapter 2we introduce and explain
the concepts that underlie this thesis to provide the necessary background information. This
chapter can be (partially) skipped if the reader is familiar to the material. In Chapter 3 we
investigate the problem presented here inmore detail. In Chapter 4we show our approach to
solving this problem, followed by a discussion of the implementation in Chapter 5. Chapter
6 contains the evaluation of the solution, containing benchmarks of a variety of analyses and
optimizations applied to the Tiger language. Chapter 7 contains a discussion of related work.
Finally, in Chapter 8 we summarize the thesis and discuss future work.

3

Chapter 2

Background

In this chapter we will take a dive into the problems and techniques used in program opti-
mization. The goal is to provide the background knowledge necessary to understand both
the problem definition and the proposed solution of this thesis. This assumes some basic
level of familiarity with programming, and algorithms used in compilers.

The field of program optimization is incredibly broad, and as such there are many inter-
esting subjects that we cannot discuss here. Optimization happens during many stages in a
compiler with a wide variety of techniques, each with their own strengths and weaknesses.
We will not discuss all of these techniques, instead we focus on the material necessary to
understand the work in this thesis.

Thiswork in this thesis performs optimizations using dataflow analysis, a techniquewidely
used for optimization. We will begin by discussing some examples of optimizations that can
be performed using dataflow analysis in Section 2.1. In Section 2.2 we look at the various
components that make up an optimizing compiler, from parsing programs to analysing and
transforming them.

2.1 Program Optimization
In this section we will take a first look at optimizations. We will present some programs in
a language called Tiger (Appel 2004), and consider possible optimizations that may be ap-
plied to the programs to make them more efficient. Tiger is a simple language (relative to
mainstream languages such as C++ and Java), but it containsmany features that are interest-
ing to study and translate well to real-world cases. This includes features such as functions,
loops, IO, and arithmetic and boolean operations.

Propagating and Folding Constant Values
We will start our tour of dataflow-based optimizations by looking at an optimization called
Constant Propagation. Constant propagation replaces variables with their corresponding con-
stant value if possible. The resulting program the often be further optimized by performing
Constant Folding. Constant folding transforms expressions such as 1 + 1 or 3 ∗ 3 ∗ 3 into their
results, 2 and 27 respectively. We can compute such expressions once during compile time
to avoid computing them (possibly repeatedly) during run time. An example of a program
optimized in this manner is shown here:

(a := 1;
b := a + 1;
c := b + a
)

⇒

(a := 1;
b := 2;
c := 3
)

5

2. BACKGROUND

Dead Code Elimination
After applying other optimizations it is common to uncover paths in the code that can never
be executed. For example, a piece of code that conditionally logs some information based on
a debug flag will never run if the debug flag is disabled. After propagating the constant to
the branch, we can perform dead code elimination:

(r := readinput();
if 0 then
(print(r); r)
else
r)

⇒ (r := readinput();
r)

Common Subexpression Elimination
Common subexpression elimination is an optimization that removes redundant computa-
tion by identifying expressions that are computed multiple times with identical results. The
following example shows a program with common subexpressions that are optimized by
introducing a new variable that stores the common expression:

(a := 1;
b := 2;
c := a * b + 3;
d := a * b + 4)

⇒

(a := 1;
b := 2;
tmp := a * b;
c := tmp + 3;
d := tmp + 4)

Function Inlining
The final optimization we will discuss is not quite an optimization. Function Inlining is the
transformation that replaces a function call with the body of the corresponding function.
While this will remove the overhead of performing a function call, it can also degrade per-
formance by increasing instruction cache pressure, program size, etc. Regardless, function
inlining is an important transformation because it unlocks other optimizations. In this ex-
ample we can see how function inlining makes it possible to perform additional constant
propagation and folding optimizations:

let
function sum(a: int,
b: int): int = a + b

in
sum(1, 2)

end

⇒

let
function sum(a: int,
b: int) : int = a + b
in
let
var a : int := 1
var b : int := 2

in
a + b

end
end

⇒ 3

6

2.2. Optimizations in Compilers

let
function nfactor(n: int): int =
if n = 0 then 1 else (n * nfactor(n-1))

var x: int := 10
in
nfactor(x)

end

Figure 2.1: A Tiger program that computes 10!, the fac-
torial of the value stored in x

Figure 2.2: Abstract Syntax Tree (AST) for the Tiger fact program

2.2 Optimizations in Compilers
In this section we will discuss how the optimizations we introduced in the previous section
can be implemented in a compiler. We will begin by describing how code is parsed into var-
ious structures that the compiler can process efficiently. Then we describe how the compiler
can analyse these structures to discover and apply optimizations. As a running example we
will take the Tiger program shown in Fig. 2.1. It computes the factorial of whatever value is
stored in x.

The Abstract Syntax Tree
One of the first steps a compiler takes when it compiles a program is to turn the textual input
written by the programmer into a structure that is easier to work with. The textual input
consists of one or more pieces of text which the compiler transforms into an abstract syntax
tree (AST). This process is called parsing. The rules that decide what the AST of a program
looks like is called the grammar. The result of parsing is a tree datastructure that can be
transformed, searched, iterated, etc. more efficiently than in text form due to the explicit
relations between parts of the program. This datastructure forms the basis of all other steps
of a compiler. When a compiler performs optimizations they are applied on the AST. The
optimized AST is then used by later stages, such as translation to binary code.

TheAST also lends itselfwell to visual representation. Fig. 2.2 shows theAST correspond-
ing to the program shown in Fig. 2.1. We can see some important characteristics of ASTs in
this visualisation. An AST has a single root node, in this case the Module, representing the
entire module (or file). Furthermore, in contrast to textual input the AST clearly subdivides
parts of the program through child/parent relations. This is a key advantage of the AST, as
the compiler can efficiently lookup elements of the program by traversing the tree. Finally,
we see that the values in our Tiger program are present as leaf nodes.

7

2. BACKGROUND

Figure 2.3: Simplified Control Flow Graph (CFG) for the Tiger fact program

The Control Flow Graph
The AST is easier to manipulate for a compiler, but there are more suitable and useful rep-
resentations when optimizing programs. One such representation is a control flow graph
(CFG). The CFG for the factorial program can be seen in Fig. 2.3. The CFG is a derivative of
the AST in which control-flow is explicit in the graph. In the graph, nodes correspond to ex-
pressions in the program, while the possible transitions between expressions are (directed)
edges. This means that when we are traversing the CFG through its edges, we are traversing
the nodes of the program in the same way they are traversed when it is executed. Conse-
quently when we want to analyse our program in a way that depends on the control-flow,
we do not have to look at the types of AST nodes we are traversing, and instead can look at
the edges of our CFG.

Figure 2.4: Value analysis of the control-flow graph for the
Tiger fact program in three steps. Analysis results are shown
in blue. Analysed nodes are white, other nodes are gray.

Dataflow Analysis
Once the control-flow graph is constructed, we can perform program analysis to discover op-
timizations. In this section we will describe how we can use a control-flow graph to analyze
a program with the aim of finding optimizations that can be applied to it. A common type
of program analysis is called dataflow analysis, and it is the main tool used in this thesis to an-
alyze and optimize programs. We have seen examples of optimizations that we can perform
using dataflow analysis in 2.1.

Dataflowanalysis can be used to approximate the behaviour of a programwithout execut-
ing it by simulating the behaviour of the programnodewisewhile traversing the control-flow
graph. Using the analysis results the compiler can determine if an optimization can be safely
applied without changing the semantics of the program.

8

2.2. Optimizations in Compilers

A dataflow analysis can be used to analyse which values are stored in variables at each
point in the program. For example, consider Fig. 2.4which shows in three steps how analysis
results propagate from a VarDec node to a variable reference node.

Other instances of dataflow analysis may record different information about the program
(such as computed expressions, or read variables), or propagate in the reverse direction over
the control-flow graph (as is the case when we compute which variables are live).

Dataflow analysis becomes more complex when we introduce branches and loops in the
control-flow graph. As we are trying to find an approximation of the behaviour of the pro-
gram, we must decide how information is merged when two paths come together. Consider
the program and its control-flow graph shown in Fig. 2.5.

When we perform the same value analysis on this new control-flow graph, we find that
the value of y at the last node of the graph depends on the path taken. We can easily tell
that the program will always assign 2 to y, but our analysis cannot. Furthermore, we can
encounter programs where we can never be sure what path is taken. Imagine for instance a
program that prints the current day of the week. We cannot know in advance on which day
of the week the program is executed.

The solution to this problem is to choose an abstract domain to represent the values of
our program, and define operators that merge multiple values of this domain together. The
choice abstract domain is generally a tradeoff between precision and performance. For in-
stance, we can choose the abstract domain of a single value. In this case merging two differ-
ent values is not possible, and the analysis will propagate a Top value, indicating a lack of
precision. Another option is to choose the abstract domain of the powerset of values. In this
case we can merge values by performing a set union. The analysis result will then be {2, 3},
containing the possible values for y. A drawback of this approach is that the set of values
might grow very large, impacting the performance of the analysis.

let
var x := 1
var y := 0

in
if x = 1 then y := 2 else y := 3;
y

end

Figure 2.5: A Tiger program that branches on a value and its corresponding control-flow
graph

9

2. BACKGROUND

Formal Definition
In this section we will formally introduce dataflow analysis. We will use the precise defini-
tion from Marlowe and Ryder (1989). A dataflow analysis consists of a tuple (G,L, F,M, n)
where:

• G is a rooted digraph of (V,E, p), vertices, edges, and the root respectively

• L a semilattice
• F a space of functions mapping L into L

• M a mapping of graph edges E into F

• n is an element of L

The rooted digraph G is the control-flow graph representation of a program or proce-
dure, where the root represents its entry point. In practice we create a separate rooted di-
graph for each procedure in the program. A semilattice is the mathematical object that we
use to approximate information about our program. It represents the abstract domain of our
analysis. A (semi)lattice instance represents the analysis results computed at its correspond-
ing control-flow node. The flow function (an element of F) is associated with graph edges
through mappings in M . It determines how information (represented as an instance of the
chosen semilattice) is propagated along that edge. n is the initial value in L associated with
the root p of the graph.

We also define a solution S to the dataflow problem as a mapping from V to L, repre-
senting the semilattice instance computed at each program point. The result of our analysis
S maps V to L, such that we have a lattice value for each vertex.

We obtain a fixpoint solution to our dataflow problem when evaluating any of the flow
functions corresponding to the edges of the graph does not change S.

Performing Dataflow Analysis
Given the precise definition above, we would like an algorithm to compute the solution S for
our program, such that the compiler can implement and use the dataflow analyses. A simple
method and common method for solving a dataflow problem is using an iterative worklist
algorithm, shown in Fig. 2.6.

The algorithmfirst adds all vertices of the graph to theworklist, to ensure that each vertex
is processed at least once. The algorithm then iteratively takes an element v of the worklist,
applies the flow functions from to each of its incoming edges, joins the results, and updates
the solution corresponding to v in S. If the solution is changed, the successors of v are added
to the worklist. For a backwards dataflow problem (such as liveness analysis) we instead
add the predecessors.

When none of the flow functions change the results in S, the work list will be empty, thus
we have reached a fixpoint.

worklist = {}
for v in V:

initialize v
add v to worklist

while len(worklist) > 0:
v = worklist.pop
recompute the solution at v
if the solution changed:
add successors to worklist

Figure 2.6: Worklist algorithm for solving forward dataflow analysis problems

10

2.3. Compilers in a Language Workbench

Exp.For = <
for <Var> := <Exp> to <Exp> do

<Exp>
>
Figure 2.7: Example of grammar
specification with SDF3

for a := 1 to 5 do
print("in a loop")

Figure 2.8: Example of a for-loop
matching the grammar rule

Mod(
For(

Var("a")
, Int("1")
, Int("5")
, Call("print", [

String(
"in a loop"

)
])

)
)

Figure 2.9: Example of the for-loop in
ATerm form according to the gram-
mar rule

2.3 Compilers in a Language Workbench
In this section we will discuss how the various techniques from the previous section are
implemented in a compiler in the context of a languageworkbench, Spoofax (Kats andVisser
2010). Spoofax contains a collection of declarative metalanguages (languages for developing
languages) that aim to reduce the implementation effort for language developers.

2.3.1 Parsing with SDF3
Syntax Definition Formalism 3 (SDF3) (Souza Amorim and Visser 2020) is a metalanguage
that automates the implementation of the parsing algorithm given a language grammar. It
allows the compiler developer to specify the grammar rules of a language declaratively, and
receive a program that will parse program written in their language into an AST, in ATerm
format. Fig. 2.7 shows an example of a grammar rule for Tiger for-loops in SDF3, with a
snippet of Tiger code that follows the rule shown in Fig. 2.8. Finally Fig. 2.9 shows the result-
ing ATerm from parsing the snippet according to the grammar rule. Besides these grammar
rules, we can also specify syntax elements such as operator associativity, precedence, format-
ting, keywords, andmore. We use a syntax definition written in SDF3 for our Tiger compiler.

2.3.2 Control-Flow Graphs with FlowSpec
FlowSpec (Smits and Visser 2017) is a metalanguage, similar to SDF3, for specifying control-
flowgraph semantics of a language. It aids a compiler developer in implementing the process
of converting an AST into a CFG. FlowSpec will be discussed in more detail in Chapter 4
because the work in this thesis includes an implementation of FlowSpec, however we will
discuss how we can use FlowSpec to construct CFGs from ASTs here.

For(binding, body) =
entry -> binding -> body -> exit,

body -> binding

Figure 2.10: A FlowSpec rule specifying the control-flow semantics of a For-loop node

Consider a FlowSpec rule that builds the CFG of a for loop in Tiger in Fig. 2.10. The
control-flow starts at the loop binding, and then either traverses the body and returns to the
binding, or exits the loop. FlowSpec will create the sub-CFGs for the binding and body, and
create edges between them as the FlowSpec declaration specifies. The entry and exit names
specify how the edges between the parent CFG and this sub-CFG should be created.

When executed, the rule in Fig. 2.10 creates edges between sub-CFGs, but it does not
create CFG nodes itself. An example of how we can create CFG nodes is shown in Fig. 2.11.

11

2. BACKGROUND

VarDec(n, t, e) = entry -> e -> this -> exit

Figure 2.11: A FlowSpec rule specifying the control-flow semantics of a VarDec node

When declaring a variable in Tiger, the expression will be evaluated before the declaration
itself is evaluated. This mirrors how the program stores the result of the expression in the
variable. To show this in a CFG we can use the this name in FlowSpec rules. When used,
FlowSpec creates a node corresponding to the outermost AST node thatwas patternmatched
in the rule.

root FunDec(n, args, rt, body) = start -> body -> end

Figure 2.12: A FlowSpec rule specifying the control-flow semantics of a FunDec node

Finally, we need to be able to specify which AST nodes form the root of our CFG. Shown
in Fig. 2.12 is a FlowSpec rule that specifies that every function declaration is a root, and
thus requires its own CFG. This implies that a Tiger program with multiple function decla-
rations will have multiple CFGs. Instead of entry and exit, we use start and end, since they
correspond to the start and end of the entire CFG.

2.3.3 Dataflow Analysis with FlowSpec
Aside from creating control-flow graphs, FlowSpec also allows you to specify dataflow rules
to implement analyses. Fig. 2.13 contains an example of an implementation of liveness analy-
sis. We will informally describe how this analysis maps to the formal definition from Section
2.2.

The input of our FlowSpec analysis is a CFG created from the control-flow graph rules,
matching graph G. The semilattice L is the result type of our analysis rules, which is a set
of variable names. Sets are part of FlowSpec, and implement the required lattice operations.
The flow functions F are the bodies of the dataflow rules, while the pattern matches on the
lhs of the rules provide the mapping M between edges and functions (the rhs). Finally, the
first dataflow rule specifies the initial/default lattice value, the empty set, corresponding to
n.

Given this mapping (which we can extend to include more FlowSpec features) we can
treat any FlowSpec analysis as a dataflow analysis, and solve it using the worklist algorithm
shown above.

live(_.end) = {}
live(VarDec(n, _, _) -> next) = {m | m <- live(next), m != n}
live(Var(n) -> next) = {n} \/ live(next)
live(_ -> next) = live(next)

Figure 2.13: FlowSpec dataflow rules that implement a liveness analysis

Transformations with Stratego
In this sectionwewill describe howwe can perform transformations on our program. Unlike
previous sections where we described the theory and tools separately, the method used to
implement transformations is highly dependent on the language and datastructures used to
implement a programming language. Spoofax however contains a metalanguage for trans-
forming programs, called Stratego (Visser 2004). Stratego allows a language developer to
describe transformations on program terms and compose them together to implement sys-
tems such as compilers.

opt: And(Var(a), Var(a)) -> Var(a)

Figure 2.14: Rewrite rule to optimize a binary and-expression

In the context of optimizers, Stratego allows us to traverse our AST and look for opti-
mization opportunities by inspecting the structure of terms. As an example, consider the

12

2.3. Compilers in a Language Workbench

rule defined in Fig. 2.14. It defines a simple optimization called opt that turns an expression
of the form n & n into n. The rule cannot be used on its own however; we need a rule that
takes a program term, and tries to find subterms where it can apply the opt rule.

opt-program: Mod(terms) -> Mod(<topdown(try(opt))> terms)

Figure 2.15: Rewrite rule to apply optimizations to a program term

Fig. 2.15 shows a rule that performs the desired transformation. Itwill try to apply our opt
rule to each subterm of our program, in topdownmanner (from root to leaf terms). Whenwe
execute this rule on a program with an expression like n & n, it will produce a new program
with the optimization applied.

While this approach is well suited for many types of program transformations, it is not
a good fit for complex optimizations that require dataflow analysis. For this reason Stratego
was extended to include support for dynamic rules (Bravenboer et al. 2006). Dynamic rules
make it possible to simulate the effects of terms while traversing the program, similar to
dataflow analysis. We discuss the use of dynamic rules for dataflow analysis in more detail
in Ch. 3 and 6.

Correctness in Language Development
As we have seen so far the goal of optimization is to produce a faster program. Of course
we would also like the optimized program to behave similarly to our input program. This
constraint on our optimizer is called correctness. The definition of correctness depends on the
language that we are optimizing.

For Tiger, we want our optimized programs to produce the same output (the accumu-
lation of all printed strings) as our unoptimized programs. If we only have the output of a
program to go by, we should not be able to determine whether it is optimized or not. For
Tiger this means that memory usage and run time can be changed by the optimizer freely.
In other domains such as cryptography constraints can be much stronger. Compilers may
inadvertently introduce timing vulnerabilities to cryptographic libraries (Pornin n.d.). Cor-
rectness thus not only depends on the language, but also the domain of the program.

For more complex languages such as Java, C++, etc. there are many more ways the lan-
guage interacts with its environment. A programmer can edit files on the filesystem, send
data over the network, play sounds and video, etc. Each of these actions may need to be
conserved by the compiler for the program to remain semantically identical.

Determining if a compiler is correct is a very difficult problem. Formal proofs fall most
commonly in one of twomethods. Either we prove that the compiler is correct for all possible
inputs, or we prove (automatically) that the compiler has correctly compiled a particular
input. Proving a compiler to be correct is an exceedingly difficult problem, and examples of
it are rare. CompCert (Leroy et al. 2016) is a prominent example of a verified C compiler.

More commonly compilers are not formally verified, and instead thoroughly tested with
a variety of approaches. Unit tests, regression tests, and fuzzing are common techniques
used to improve robustness. Even though mature compilers are tested to an extreme extent
because of the potential consequences of a bug, there is no guarantee of correctness like a
verified compiler can give. Yang et al. (2011) show that even mainstream compilers with
millions of users like GCC and LLVM contain a myriad of bugs. The possibility remains that
a fault in the compiler slipped by each test case, to be discovered by an unlucky programmer.

In this thesis we do not consider correctness as part of our research goals, as it is outside
our scope.

13

Chapter 3

Dataflow Analysis in a Language
Workbench

In this chapter we will investigate the challenges involved in building an efficient and flex-
ible dataflow analysis framework that fits within the Spoofax environment. We begin by
setting requirements based on a variety of use cases, so that we can evaluate existing solu-
tions. We then consider the capabilities of the existing FlowSpec implementation, and why
these are not sufficient for implementing an optimization pipeline. Then we investigate two
other approaches that use dataflow analysis and evaluate them against our requirements.

3.1 Applications of Dataflow Analysis

In this section we discuss the three applications that we wish to support with a framework
for dataflow analysis. We base these requirements on the use cases for dataflow analysis that
we find in literature and industry.

3.1.1 Optimization
The first and foremost application of dataflow analysis is in optimization by compilers. As
we have seen in Ch. 2, dataflow analysis forms the basis for a variety of optimizations. It is
widely used by industrial compilers, such as GCC (Hayes 1999) and LLVM (C. Lattner and
Adve 2004).

3.1.2 Program Checking

Besides optimization, a common use for dataflow analysis is in program checking. A promi-
nent example is Java, in which a field marked final must be initialized in the constructor
of a class (Gosling et al. 2000). This check is performed using dataflow analysis. Similarly
the Rust language implements a variety of checks including finding unitialized variables,
determining borrows at each program point, and determining live variables across yield
statements, using dataflow analysis (Dataflow Analysis 2022). The Clang frontend similarly
uses dataflow analysis to detect bugs (Clang Dataflow 2022).

3.1.3 Diagnostics

A variant of program checking is the use of dataflow analysis for diagnostics. Diagnostics in
the form of IDE warnings do not prevent a user from compiling a program, but they provide
feedback on potential errors or inefficient operations. Analysis can also be initiated by the
user (Jetbrains Dataflow Analysis 2022), to aid in understanding or debugging the code.

15

3. DATAFLOW ANALYSIS IN A LANGUAGE WORKBENCH

3.2 Use cases and Limitations of FlowSpec
FlowSpec (Smits and Visser 2017) is a declarative domain specific language for defining
control-flowanddata-flow rules. It allows a languagedeveloper to succinctly definedataflow
analyses over a Spoofax-based language. The implementation of a Read-Write analysis for
the Green-Marl (Hong et al. 2012) language has shown its real-world applicability to an ex-
tent, however there are other use cases which FlowSpec cannot efficiently support. Crucially
the evaluation in Smits and Visser (2017) is limited to analyses that are executed once, on
the entire control-flow graph, due to limitations in the implementation of FlowSpec. This
constraint prevents its use in other common use cases, the most important of which is opti-
mization pipelines. In this section we will investigate why this is the case.

Optimizations Invalidate Analyses
Running a dataflow analysis to a fixpoint before looking for optimizations is inefficient due
to the interaction between optimizations and analyses. Because dataflow information prop-
agates through the edges of the control-flow graph, a change to node n may change the
analysis results at all nodes reachable from n in the CFG. Consequently if we wish to look
for further optimizations in the program we must perform the analysis again, updating the
outdated information.

As an example consider the program in Fig. 3.1. The analysis results computed initially
tell us that the value of y is unknownwhen it is printed (indicated by the top value). However
we can perform an optimization by propagating the constant assigned to x to the assignment
to y, shown in Fig. 3.2. After this transformation, our analysis will discover that y has a
constant value at the time of printing. The old analysis results are outdated, and the program
must be reanalysed to discover the new optimization.

let
var x: int := 10
// {x -> 10}

var y: int := x
// {x -> 10,
// y -> top}

in
print(y)
// {x -> 10,
// y -> top}

end
Figure 3.1: Program with
value analysis results
shown in brackets in the
comments

let
var x: int := 10
// {x -> 10}

var y: int := 10
// {x -> 10,
// y -> top}

in
print(y)
// {x -> 10,
// y -> top}

end
Figure 3.2: Program with
outdated analysis results af-
ter constant propagation

let
var x: int := 10

// {x -> 10}
var y: int := 10

// {x -> 10,
// y -> 10}

in
print(y)

// {x -> 10,
// y -> 10}

end
Figure 3.3: Program with
updated analysis results af-
ter constant propagation

Optimizations Invalidate Optimizations
While imprecise, the outdated analysis results shown in Fig. 3.2 are not incorrect. Thismeans
we can continue looking for optimizations even though the information is not up-to-date. It
may seem that we can exhaustively apply optimizations before reanalysis, but it is also pos-
sible that the analysis results become unsound after an optimization is performed. Consider
the program in Fig. 3.4, on which both liveness and available expressions are analysed. Live-
ness analysis tells us the assignment to x is dead and can be removed, however this leaves
unsound available analysis information. The assignment y is replaced with x, because the
analysis result tells us x also holds 2 * 2.

Whereas in the previous case, wewere able to soundly continue looking for optimizations
after the analysis results became outdated, we can see it is also possible for analysis results

16

3.3. Other Implementations of Dataflow Analysis

let
var x: int := 2 * 2

// {x -> 2 * 2}
// []

var y: int := 2 * 2
// {x -> 2 * 2,
// y -> 2 * 2}
// [y]

in
print(y)

// {x -> 2 * 2,
// y -> 2 * 2}
// [y]

end
Figure 3.4: Program with
available expressions be-
tween {} and liveness
analysis between []

let
var y: int := 2 * 2
// {x -> 2 * 2,
// y -> 2 * 2}
// [y]

in
print(y)
// {x -> 2 * 2,
// y -> 2 * 2}
// [y]

end

Figure 3.5: Program with
dead variable x eliminated,
leaving invalid available ex-
pressions

let
var y: int := x
// {x -> 2 * 2,
// y -> 2 * 2}
// [y]

in
print(y)
// {x -> 2 * 2,
// y -> 2 * 2}
// [y]

end

Figure 3.6: Program with
unsound available expres-
sion optimization applied

to become unsound, requiring a reanalysis before we can continue optimizing. Due to these
interactions, using FlowSpec for optimization pipelines as-is is highly inefficient.

3.3 Other Implementations of Dataflow Analysis
In this section we will look at two other approaches to dataflow analysis. First we will look
at another approach in Spoofax to data-flow analysis and optimization from Bravenboer et
al. (2006), followed by a look at dataflow analysis in LLVM (C. Lattner and Adve 2004). In
Chapter 6 we compare the performance and flexibility of both approaches against our own.

Dynamic Rules in Spoofax
Dataflow analysis and optimization can be implemented using dynamic rules in Spoofax
(Bravenboer et al. 2006). We will briefly introduce dynamic rules and look at an example of
an optimization, constant propagation, implemented using them.

Dynamic rules are rewrite rules that can be dynamically created and can capture variables
from the context in which they are created. Fig. 3.7 shows how we can create a dynamic
rule that maps a Var term to its assigned value. After running the rule on an appropriate
Assign term with a constant rhs, we can invoke the PropConst rule on an identical Var term
and receive the constant rhs. While traversing the program (in the order of execution) we
can create dynamic rules whenever we encounter a constant assignment, and invoke them
wheneverwe encounter a variable reference. If this invocation succeeds, itmeans the variable
holds a constant value and we can perform the optimization.

prop-const-assign =
?Assign(x, e)

; where(<is-value> e)
; rules(PropConst : Var(x) -> e)

Figure 3.7: A Stratego expression that cre-
ates a dynamic rule called PropConst

Dynamic rules in Spoofax support some additional features that are necessary to fully
implement dataflow analysis, which we will briefly mention here. First is overwriting/un-
defining rules, which can be used to undefine a rule with respect to a term, to make sure
that previously created dynamic rules cannot be invoked anymore. Second are rule scopes,

17

3. DATAFLOW ANALYSIS IN A LANGUAGE WORKBENCH

to limit the lifetimes of rules, similar to how variables can be scoped in programs. Finally, it
is possible to perform a union or intersection over rule sets (the set of rules with the same
name) to implement the equivalent of lattice glb or lub operations, which are necessary to
perform analysis over branches. For loops there is support for fixpoint iteration.

The dynamic rule approach to dataflow analysis has been shown to be a very effective
tool for implementing optimizers (Bravenboer et al. 2006). We believe this same approach
can support both program checking and simple diagnostics, as they follow a similar pattern:
traverse the program while performing analysis, albeit without transformations.

One drawback of dynamic rules is the lack of caching, which impacts the latency when
using dynamic rules-based dataflow analysis as an editor service. A more significant draw-
back is that Dynamic Rules is a relatively low-level operational encoding of dataflow analy-
sis. Fig. 3.8 shows an example of dataflow analysis with Dynamic Rules for an if term. The
snippet shows several drawbacks of such an operational encoding. Control-flow semantics
are implicitly encoded by the order of recur applications, the merging of dataflow informa-
tion must be explicitly specified, and optimizations must be performed in lock-step with the
traversal of the program. Ideally we can decouple the optimization from the control-flow
semantics, and automatically merge dataflow information where necessary.

We include dynamic rules in our benchmarks in Ch. 6.

forward-prop-if(transform, before, recur, after | Rs1 , Rs2) =
?If(b, t, e)

; !If(<recur> b, <id> t, <id> e)
; (transform
<+ before
; (?If(b, t, e); !If(<id> b, <recur> t, <id> e)
/~Rs1 \~Rs2 / ?If(b, t, e); !If(<id> b, <id> t, <recur> e))
; after)

Figure 3.8: A strategy that defines generic
forward dataflow analysis for an if term

LLVM
While the scope of LLVM far exceeds dataflow analysis and optimization, it is an impor-
tant part of the project. LLVM provides language developers the power of dataflow analysis
by providing a compilation target called LLVM IR. A language developer must provide a
frontend that can translate the source language into LLVM IR, and LLVM will take care of
optimization and code generation. This approach has proven to be very successful, and there
are popular frontends for a wide variety of languages including C, C++, Rust, Fortran, Go,
etc.

The optimizer and code generation capabilities of LLVM are state-of-the-art, and repro-
ducing those capabilities is far outside the scope of most language developers. There are
however some downsides to this approach. First of all, the translation from source language
to LLVM IR can mean losing semantic information about the program. Consider the type
system of a functional language such as Haskell. It provides strong guarantees on the be-
haviour of the program due to characteristics such as laziness and purity, which enables a
Haskell compiler to apply optimizations that LLVM cannot.

A second disadvantage is that compiling to LLVM IR locks you into the existing LLVM
backends. Many languages, especially DSLs, cannot easily be compiled to binary format
as they are designed to run within a runtime that is not compatible with a binary artifact.
LLVM does include a JIT engine, which makes it a more widely usable target for dynamic
languages, but this has not seen the level of adoption the AOT compiler has. For instance,
the WebKit project replaced their LLVM based JavaScript JIT with a custom implementation
(Pizlo 2016).

The conclusion is that LLVM is an excellent for optimization using dataflow analyses, if
none of the drawbacks apply. The foremost reason it may not suitable is if the execution

18

3.3. Other Implementations of Dataflow Analysis

targets supported by LLVM are not sufficient. It is also not a solution for languages that
require dataflow analyses for program checking, nor can it aide in the implementation of
(interactive) diagnostics (although LLVM can still support other parts of the compilation
process). We also include LLVM in our benchmarks in Ch. 6.

19

Chapter 4

Data Analysis in Flock

Flock is our implementation of FlowSpec with support for incremental analysis. It integrates
into the Spoofax language workbench to provide language developers with the tools to write
and execute control-flow and dataflow specifications. To validate our implementation we
have implemented an optimizer and editor services for the Tiger language. This chapter
serves as an exposition of the FlowSpec language and Flock runtime. We discuss both the
FlowSpec specifications, as well as the Stratego code that interfaces with the Flock API to
query analyses and implement optimizations.

4.1 Control-Flow Specification
The first component that is required when using Flock for a language implementation is
the control-flow graph definition. This serves as the basis for writing analyses in FlowSpec,
since the data-flow rules refer to sorts and constructors defined in this definition. The CFG
definition in FlowSpec consists of several sections. The full CFG definition can be found in
Appx. A.

4.1.1 Signatures
The first section, shown in Fig. 4.1, contains signatures of the subject language, consisting
of the sorts and constructors. These sorts and constructors mirror the syntax definitions
for Tiger in SDF3, since the terms produced by parsing with SDF3 must match the terms
expected by Flock. The signatures defined in this section can be used in the next section to
define the CFG semantics.

4.1.2 Control-Flow Rules
The second section consists of the control-flow rules that dictate how the AST should be
turned into a CFG. Fig. 4.2 contains some example rules from the Tiger language. The ex-
ample contains the three variants of control-flow rules: a root rule, a node rule, and regular
rules. The semantics of these rules are explained in Ch. 2.

4.2 Data-Flow Specification
Following our CFG definition we can now implement the necessary analyses for our opti-
mizations. An analysis consists of one or more property definitions, the property rules that
specify the transfer functions of the analysis, and optional type and function definitions. We
show three different types of analyses: liveness, value, and array length analysis with differ-
ent types of flow functions and abstract domains.

21

4. DATA ANALYSIS IN FLOCK

module sorts
signature
sorts
Id = string
Var
Exp
// ...

constructors
VarDec : Id * Type * Exp -> Dec

Eq : Exp * Exp -> Exp
Times : Exp * Exp -> Exp
If : Exp * Exp * Exp -> Exp

Occ : Id -> Occ
// ...

Figure 4.1: Declaration of AST sorts
and constructors in FlowSpec

control-flow rules
root ProcDec(n, args, body) = start

-> body -> end
ProcDec(_, _, _) = entry -> exit

VarDec(n, t, e) = entry -> e
-> this -> exit

Eq(lhs, rhs) = entry -> lhs -> rhs
-> this -> exit

Times(lhs, rhs) = entry -> lhs -> rhs
-> this -> exit

If(c, t, e) = entry -> c -> t -> exit,
c -> e -> exit

node Var(_)
//...

Figure 4.2: Declaration of CFG rules in
FlowSpec

Property Definition
The property is the lattice type computed for each program node. A property declaration
consists of a name and a lattice type. The lattice type can be a builtin lattice type such as a
may/must set or map type, or a user-defined lattice type.

Property Rules
The property rules, also called transfer functions, define how the property is computed. These
rules use the signatures defined in the signature section to pattern match on AST terms. For
each AST term, the first rule with the first pattern to match is executed.

Type Definitions
A dataflow analysis can also include definitions for types as shown in Fig. 4.6. There are
two kinds of types: datatypes and lattice types. These type definitions allow a language
developer to specify the abstract domain and lattice operations for their analyses.

properties
live: MaySet[string]

Figure 4.3: Property definition
for liveness analysis for Tiger in
Flowspec

property rules
live(_.end) = {}
live(VarDec(n, _, _) -> next) =

{m | m <- live(next), m != n}
live(Var(n) -> next) =

{n} \/ live(next)
// ...
live(_ -> next) = live(next)

Figure 4.4: Dataflow rules for liveness analysis
for Tiger in FlowSpec

4.2.1 Liveness
Fig. 4.3 and Fig. 4.4 show the property definitions and rules for liveness analysis. Liveness
analysis computes the set of live variables at every program point. A variable is live at a

22

4.3. Queries, Optimizations, and Diagnostics

program point if its value at that time may be used later. Inversely, a dead variable holds a
value that is never read. The definition of liveness does not include custom type definitions
since the builtin types of MaySet and string suffice.

The property rules specify that a VarDec removes the assigned variable from the set of
live variables, while a Ref adds to it. We omit some property rules for simplicity, such as the
rules for loop bindings. The full specification can be found in Appendix B.

properties
values: SimpleMap[string, Value]

property rules
values(_.end) = {}

values(prev -> VarDec(n, _, Int(i)))
= { k |-> v | (k |-> v)

<- values(prev), k != n }
\/ {n |-> Const(i)}

values(prev -> VarDec(n, _, _))
= { k |-> v | (k |-> v)

<- values(prev), k != n }
\/ {n |-> Top()}

// ...

Figure 4.5: Property definition and
rules for value analysis for Tiger in
Flowspec

types
ConstProp =
| Top()
| Const(int)
| Bottom()

lattices
Value where

type = ConstProp
bottom = Bottom()
top = Top()
lub(l, r) = match (l, r) with
| (Top(), _) => Top()
| (_, Top()) => Top()
| (Const(i), Const(j)) =>

if i == j then (Const(i)) else (Top())
| (_, Bottom()) => l
| (Bottom(), _) => r

Figure 4.6: Type definitions for value analysis
for Tiger in FlowSpec

4.2.2 Value
Value analysis approximates the value corresponding to each variable at each program point.
The abstract domain of our value analysis consists of a top value, bottomvalue, and an integer
constant. This data type is defined in the types section in Fig. 4.5, and is called ConstProp. It
is then used in the Value lattice definition, which defines the necessary lattice operations on
this abstract domain.

The property rules in Fig. 4.6 specify that a variable declaration with a constant right-
hand side is stored in the lattice with a Const value, whereas any other declaration is stored
as Top, indicating that the analysis cannot derive useful information about the value of the
variable. The full definition can be found in Appendix B.

4.2.3 Array Length
To provide diagnostics such as bounds-checking as editor service, we implement a simple
array length analysis as shown in Fig. 4.7. The property rules for this analysis are similar to
value analysis, but instead of recording values stored in variables we record the lengths of
array values. Again we omit some of the rules which can be found in Appendix B. We show
how this analysis can be used for diagnostics in Section 4.3.3.

4.3 Queries, Optimizations, and Diagnostics
In this section we will show how the analysis definitions of the previous section can be used
to perform analysis queries for optimizations and diagnostics.

23

4. DATA ANALYSIS IN FLOCK

properties
lengths: SimpleMap[string, Value]

property rules
lengths(_.end) = SimpleMap[string, Value].bottom

lengths(prev -> VarDec(n, _, Array(_, Int(i), _)))
= { k |-> v | (k |-> v) <- lengths(prev), k != n } \/ {n |-> Const(i)}

lengths(prev -> VarDec(n, _, _))
= { k |-> v | (k |-> v) <- lengths(prev), k != n } \/ {n |-> Top()}

// ...

Figure 4.7: Property definition and rules for array length analysis for Tiger
in Flowspec

external flock-get-live(|)
external flock-live-contains(|key)

external get-values(|)
external get-values(|key)

external get-lengths(|)
external get-lengths(|key)

Figure 4.8: Generated Stratego API for liveness, value, and array length analysis

4.3.1 Query API
After compiling the analyses and incorporating the built output in our project, we can query
the analyses using the generated Stratego-Flock API shown in Fig. 4.8 and use the results for
optimization.

pipeline = flock-initialize; flock-fixpoint(pass|3)

pass = oncetd(propagate-constant); oncetd(remove-dead-vardec)

propagate-constant: lv@LValue(v@Var(n)) -> <flock-replace-node(|lv)> Int(c)
where
n' := <strip-annos> n

; Const(c) := <flock-get-values(|n')> v

remove-dead-vardec: a@VarDec(n, _, _) -> <flock-replace-node(|a)> Hole()
where
<not(flock-is-live(|n))> a

Figure 4.9: Optimization pipeline for Tiger in Stratego

4.3.2 Optimization Pipeline
Shown in Fig. 4.9 is a high-level example of an optimization pipeline for Tiger. Given a Tiger
program p, we initialize the runtime, and proceed to execute two optimization passes that
first propagates constant values and then removes dead variables. We execute these passes
three times or less if we reach a fixpoint.

24

4.3. Queries, Optimizations, and Diagnostics

Dead variables are removed by replacing them with Hole terms as we cannot efficiently
remove elements of a list of terms due to a limitation in the Flock API. These Hole terms can
be efficiently removed in a later stage.

editor-analyze: (ast, path, project-path) -> (ast', [], warn, [])
where

ast' := <flock-initialize> ast
; warn := <collect(out-of-bounds); map(make-message(|"Out of bounds"))> ast'

out-of-bounds: s@Subscript(LValue(v@Var(n)), Int(i)) -> s
where

n' := <strip-annos> n
; x := <flock-get-lengths(|n')> v
; Const(l) := x
; i' := <string-to-int> i
; <string-to-int; int-leq(|i')> l

make-message(|m): subscript -> (subscript, m)

Figure 4.10: Diagnostics that report out-of-bounds array accesses

4.3.3 Editor Diagnostics
We can also use Flock to provide editor diagnostics to a language user. Fig. 4.10 shows a
Stratego implementation of out-of-bounds diagnostics using the array length analysis. The
implementation defines the editor-analyze strategy, which is a hook for adding diagnostics
to Spoofax. This strategy is invoked once when a file is loaded. The strategy initializes the
runtime and then finds all array accesses that are known to be out-of-bounds by comparing
the index to the analysed array length.An example of a program with an out-of-bounds ac-
cess and the resulting warning can be seen in Fig. 4.11. This program defines an array with
a single element but attempts to access the third element.

Figure 4.11: Example of out-of-bounds diagnostics reported by array length analy-
sis

editor-hover: (v@LValue(_), _, _, _, _) -> val
where val := <get-analysis-value + !Top()> v

get-analysis-value: lv@LValue(v@Var(n)) -> <flock-get-values(|n')> v
where
n' := <strip-annos> n

Figure 4.12: Implementation of hover tooltips to show value analysis results

Finally, we use Flock to provide value information on hover. This means a user can
hover over a variable and inspect the dataflow information of that variable. Fig. 4.12 shows
the implementation of a simple value analysis result on hover. Similar to editor-analyze,
editor-hover is a hook to provide Spoofax with hover information. This strategy is given the

25

4. DATA ANALYSIS IN FLOCK

AST node being hovered over, invokes the value analysis, and returns the result. Spoofax/E-
clipse then renders the result in the editor. The results can be seen in Fig. 4.13

Figure 4.13: Example of on-demand dataflow analysis in an edi-
tor

26

Chapter 5

Solution Implementation

In this chapter we will discuss the implementation of the Flock compiler, the Flock Stratego
API, and the Flock runtime. For each of thesewewill provide an overviewof the components,
and important datastructures and algorithms we used.

5.1 Flock Compiler
The Flock compiler has two compilation pipelines. The first processes the control-flow rules
in a FlowSpec declaration into a Java class that turns Tiger programs into the runtime’s con-
trol flow graph structure, called the CFG Builder. The second processes the dataflow rules in
a FlowSpec declaration into the Java classes that perform the specified analysis.

Figure 5.1: Output file of the Flock compiler when compiling a FlowSpec Control Flow spec-
ification

As shown in Fig. 5.1, the compiler can compile a FlowSpec file containing control-flow
rules into a CFG builder class. This class transforms a program into its CFG for use in
dataflow analysis. This is a separate compilation pipeline since the user only needs to spec-
ify these control-flow rule and generate the CFG builder once, regardless of the number of
analyses.

Figure 5.2: Output files of the Flock compiler when compiling a FlowSpec analysis

27

5. SOLUTION IMPLEMENTATION

Shown in Fig. 5.2 are the various artefacts generated by the compiler for an analysis writ-
ten in FlowSpec. The analysis file contains definitions of transfer functions, pattern matching
logic to assign transfer functions to CFG nodes, lattice datatypes, and user functions. The
datatypes file contains other datatypes. The strategies files contain the implementation of the
strategies exposed to the user to query the analysis results.

5.1.1 Compilation Pipeline

Figure 5.3: Pipeline stages of the Flock compiler

The process of compilation from FlowSpec declaration to Java classes consists of several
phases, shown in Fig. 5.3.

The compilation process starts in the parsing stage. This phase is implemented in the
SDF3metalanguage, which takes a grammar specification and gives us a parser. This parser
outputs the FlowSpec declaration in ATerm format, which we can process using Stratego in
the following phases.

After parsing the program is typechecked using a specification written in Statix. This
phase ensures that our program is well-typed, and moreover exposes type information to
further phases in the compilation pipeline.

The next phase, called normalization, performsmany small transformations that simplify
the code generation phase. First of all, we rename variables to ensure uniqueness compared
to autogenerated names. Then we normalize various expressions, including hoisting com-
plex expressions into let bindings. Finally we embed type information explicitly into the
AST, so that the compiler does not need to interface with Statix during the code generation
phase. This type information exists in the AST in the form of explicit casts in favour of im-
plicit conversions, typed lattice operations, typed let bindings, etc.

The final phase is code generation. This phase is the only phase that differs between the
various output files. The most complex implementation performs the code generation for
the analysis file. It turns the type-annotated FlowSpec code into their corresponding Java
components. The final step of this phase is pretty-printing the generated code, which is in
ATerm format, to a Java file.

5.1.2 Runtime Integration
After compilation, the generated files are integrated into the runtime. Fig. 5.4 shows an
overview of the dependencies between the optimization pipeline, generated components,
and standard components. The user can invoke either generated strategies that represent
analysis queries, or the user can invoke standard strategies to communicate program changes.
All of these strategies interface with the runtime. The runtime in turn depends on the gener-
ated analyses or CFG builder classes.

5.2 Flock Stratego API
The Flock Stratego API is the set of Stratego strategies (analogous to functions in other lan-
guages) that are available to the user. They are the interface between the optimizationpipeline
written in Stratego and the runtime written in Java. The API consists of a set of common
strategies, and strategies generated from the analyses.

• flock-initialize(|): Initializes the Flock runtime, clearing any previous instance data.

• flock-remove-node(|): Removes the given node from the Flock program model.

28

5.2. Flock Stratego API

Figure 5.4: High-level overview of the runtime component structure

• flock-remove-all(filter|): Removes every nodewithin the given list forwhich filter
succeeds.

• flock-replace-node(|old-node): Replaces the old-nodewith the givennode in the Flock
program model.

• flock-make-id(|): Adds the required FlockNodeId to each (sub)term in the given term.

• flock-fixpoint(strategy|bound): Runs strategy on the given term to afixpoint, bounded
to bound iterations.

• flock-debug-graph(|property): Prints a .dot representation of the Flock programmodel,
with the property values for each node added. This allows for easy visualization using
Graphviz (Ellson et al. 2001).

The strategies generated for an analysis depend on the type of the property it computes.
The following strategies are available for an analysis with a property named S of type Set:

• flock-get-S(|): Returns the computed set at the location of the given node.

• flock-S-contains(|name): Succeeds if the name string is present in the computed set at
the location of the given node. This strategy avoids synthesizing a Stratego list.

The following strategies are available for an analysis with property named M of type
Map:

• flock-get-M(|): Returns a list of (name -> value) pairs that correspond to the com-
puted map at the location of the given node.

29

5. SOLUTION IMPLEMENTATION

• flock-get-M(|key): Returns the value corresponding to the given key at the location of
the given node. This strategy avoids synthesizing a Stratego list.

Other types of properties, those that do not produce a Set or Map result, compile only to
a generic flock-get-’property’.

Aminimalworking optimizationpipeline using Flockwill need to invoke flock-initialize
and flock-make-id once, followed by invocations of the analysis query strategies coupled
with program edit strategies such as flock-replace-node. The flock-fixpoint strategy serves
as a convenience strategy to repeatedly apply a set of optimizations that may unlock new op-
timizations within that set. It also allows the user to bound the number of iterations.

5.3 Flock Runtime
The runtime provides the user with on-demand incremental analysis results. In this section
we will discuss the implementation of the runtime, including the incrementalization of the
analyses. We start by describing at a high-level the steps performed by the runtime after 1)
a transformation is performed and 2) an analysis is queried. We will then describe these
steps in more detail, and discuss the algorithms and datastructures involved. Finally we will
discuss the class structure of generated analyses and the role of the runtime in providing
functionality to these analyses.

5.3.1 High-Level Overview
In the simplest terms, the runtime is able to incrementally run an analysiswhen the optimizer
queries it, and it can incrementally update its datastructures when a program transformation
is performed. Furthermore, the runtime contains an initialization phase during which its in-
ternal datastructures are initialized. An overview of each of these steps are shown in Figures
5.5, 5.6, and 5.7.

Figure 5.5: Steps performed during initialization

Figure 5.6: Steps performed after an analysis is queried

Flock IDs
Due to the immutability of term in Stratego, terms of a programare often copied, meaningwe
cannot use referential equality to determine to which part of the program a given term refers.
For instance, a term such as Add(Int("1"), Int("1"))may appear twice in a program. When
the optimizer invokes the flock-replace-node strategy, replacing this term with Add("2"), it
is not clear which of the two occurrences is being replaced. For this reason we annotate each

30

5.3. Flock Runtime

Figure 5.7: Steps performed after a transformation is perform

term in the program with a unique identifier, the Flock ID. Additionally, whenever a term
is replaced in the tree we annotate each of its (sub)terms with new identifiers. This gives
us a way of uniquely identifying any term in the program under analysis. These identifiers
are used wherever we need to address a term uniquely, such as the mapping between CFG
nodes and terms of our program.

5.3.2 Transformations
When a transformation is performed the runtime must incrementally update its internal
datastructures as shown in Fig. 5.7, so that an analysis can be performed if it is queried.
These datastructures depend on each other in a linear order, from Flock term to CFG, to the
SCC partitioning of the CFG and their stratification. We will describe what these datastruc-
tures are, why they are necessary, and how they are updated.

Flock term
The Flock term is a mutable mirror of the program under analysis. The runtime uses this
Term Tree during CFG construction and analysis instead of a Stratego term representing the
program. The need for the Term Tree is explained in more detail in Section 5.4.

Initially, the Flock term is constructed from the Stratego termpassed to the flock-initialize
strategy. The Flock term class hierarchy and structure mirrors that of the Stratego term, so
mirroring changes to the Stratego term is straightforward.

Figure 5.8: Replacement of term in Stratego term and Flock term. Note that P is unchanged
in the Flock runtime, so that references into P remain valid.

31

5. SOLUTION IMPLEMENTATION

Replacement Replacement of a Stratego term translates to a replacement of a subtree of in
the Flock term. Given a Stratego term T and its replacement Stratego term R in a program
P , we find the Flock term Tf that has the same Flock ID as T and remove it from the Flock
term. We create a new Flock term Rf from R, and add it to P . Finally we set the parents of
Rf to be the previous parents of Tf , if they exist.

Deletion Deletion of a Stratego term is a simple deletion of a subtree in the Flock term.
Similar to the case of replacement we use the Flock ID of T to find its corresponding subtree
and remove it.

Figure 5.9: Creation of CFG from a Flock term. Green nodes are entry nodes, red nodes are
exit nodes.

Control-Flow Graph
The Control-Flow Graph (CFG) is a graph datastructure that explicitly encodes the control-
flow of the program in its edges and nodes. In this section we will discuss the design of the
CFG datastructure and the incremental updates that we can perform on it.

The design of the CFG in Flock is a slightlymore complex variation on the CFG discussed
in Ch. 2.2. The difference is that CFGs in Flock have explicit entry, exit, start, and end nodes,
mirroring their use in FlowSpec.

A start node functions solely as a root node, and similarly an end node functions solely
as a leaf node. Other nodes in the graph can not be a root or leaf node.

Entry and exit nodes are explicit in our CFG because they greatly simplify incremental
updates to the graph which we describe in the following sections. Together with the CFGwe
maintain a mapping from Flock terms to each of these special nodes.

Figure 5.10: Replacement of a (sub-)CFG

Replacement The CFG builder transforms a Flock term node into a CFG. Given the same
Stratego terms T ,R, andP as before, we use the builder to createRcfg, the CFGofR as shown
in Fig. 5.9. We then replace the existing Tcfg with Rcfg in the program CFG as follows:

Let Tentry/Texit be the entry/exit node corresponding to the root term of T . We call the
nodes in Pcfg with edges to Tentry the predecessors of Tcfg, or Tpred. Similarly we call the
nodes in Pcfg with edges from Texit the successors of Tcfg, or Tsucc.

32

5.3. Flock Runtime

We remove the edges between Tpred and Tentry and create edges between Tpred andRentry.
Similarly we replace the edges between Texit and Tsucc with edges between Rexit and Tsucc.
An example of this replacement can be seen in Fig. 5.10.

As part of the removal of Tcfg we also remove each associated special node from Pcfg.

Deletion In the case of deletion Rcfg will be empty. We create edges from each node in
Tpred to each node in Tsucc to bridge this hole in the CFG.

Partitioning CFG into Strongly Connected Components
We initially compute the strongly connected components (SCCs) of the CFG in topological
orderwith Tarjans algorithm (Tarjan 1972). The SCCs partitioning of the CFGgives the order
in which nodes must be processed during analysis. It also gives us a way to categorize which
nodes are up-to-date and which must still be analyzed, which we will describe in the next
section.

We incrementally update the SCCs at the same time as the CFG. We will describe the
procedure for doing so, assuming the same T , R, and P as before. Our implementation
maintains a set of components, a bidirectionalmapping between components, and amapping
from nodes to components. Given this last mapping from a node to its component, we find
the set of components CsT that contain at least one of the nodes in T . Similarly, we compute
the sets of components Cspred and Cssucc for the set of predecessors and successors of T ,
computed earlier.

Figure 5.11: Resulting SCCs after a replacement with no cycles present.

We distinguish two cases based on the structure of the CFG. The first case, as shown in Fig.
5.12, is when there is a common component C in Cspred and Cssucc. This implies that there
is a path from the leafs of Tcfg back to its roots, outside of the Tcfg itself. When we replace
Tcfg with Rcfg, this path will be unchanged (an assumption discussed in the Limitations),
and thus Rcfg will be part of C. No components are created or destroyed.

The second case is when there is no common component between Cspred and Cssucc as
shown in Fig. 5.11. This implies that the components CsT only contain the nodes in T (an
assumption similarly discussed in the Limitations). Therefore we compute the SCCs formed
by Rcfg in isolation and can assume the components are also SCCs in P .

Limitations
The procedure described above is an efficient way to incrementally maintain the SCCs of a
program, but it is also limited in the types of control flow constructs it can support due to
several assumptions made about the structure of the CFGs. This procedure is only correct if
the control-flow rules in the FlowSpec specification a) only refer to surrounding CFG nodes
through the entry and exit constructs, and b) there always exists a path from the entry to
the exit node. In other words, there is no limitation on how the CFG nodes are constructed
and connected locally (within the scope of a single term), but they cannot be connected to
surrounding CFG nodes arbitrarily. In practical terms this means that non-local control-flow

33

5. SOLUTION IMPLEMENTATION

Figure 5.12: Update to SCCs after a replacement within a cycle.

constructs such as goto, exceptions, etc. cannot be supported, as they may affect the SCCs of
the CFG in more complex manners.

As a fallback, Flockwill mark terms that do notmeet the constraints as irregular. When an
irregular node is created or replaced, Flock will recompute the SCCs of the entire program.
This of course incurs a performance penalty thatwe do notmeasure as Tiger does not support
such constructs. Many other languages make do support these more complex control-flow
constructs, so this presents a threat to validity of our experiments which we discuss in more
detail in Ch. 6.4.3.

Stratification of SCCs
Our last step is the division of the SCCs into two groups: clean and dirty. A clean SCCs
only contains nodes with fully up-to-date analysis results. Analysis results in dirty SCCs
are considered outdated. By the definition of SCCs and dataflow, we know that a result
computed at a node n in SCC C can propagate to any other node in C, and any other SCC
reachable from C. The same holds for the invalidation of analysis results, since if the results
at a node n may propagate to a node m, a change in n implies a possible change in results at
m. Given a change to an SCC C, we mark C and all other SCCs reachable from C as dirty
with a simple depth-first traversal. This means they must be reanalyzed before their results
can be used.

Furthermore, we maintain a set of new nodes. We initialize our worklist only with these
new nodes, since any changes to the analysis results must come from them.

5.3.3 Queries
Queries are incrementalized by using the SCCs as explained in Section 5.3.2. Given a query
at node n in SCC C, we must initialize our worklist with every new node that may reach n.
Every node in a dirty SCC that can reach C (including C itself)may be added to the worklist
during iteration. All other nodes in the CFG are skipped. After analysis is complete wemark
each of these SCCs as clean, since we know they have been fully analyzed.

Worklist Algorithm
The worklist algorithm performs the actual analysis. It is based on the regular worklist algo-
rithm from Chapter 2, Section 2.2. The algorithm is shown in pseudocode in Fig. 5.13. Given
a query at node n that is part of component C, the worklist algorithm is invoked for each
component for which C is reachable, in topological order.

This worklist algorithm differs from the standard algorithm in a few ways. First are the
loops before ourmain loop. The first loop remains unchanged. The second loop computes an

34

5.3. Flock Runtime

initial dataflow solution at the Start nodes to bootstrap the analysis. The third loop pulls in
dataflow information frompredecessor components, aswedonot propagate this information
across component boundaries during the main loop.

The main loop is of the worklist algorithm pops a node v off the queue and propagates
dataflow information to its successors. This makes it easy to ignore predecessor nodes out-
side of the current component in our main loop.

Finally we need to update the status of our component for future queries by marking
them as clean.

worklist = {}
for v in C:
initialize v
add v to worklist

for v in C:
if v is Start node:

compute initial solution at v

for v in C:
compute solution at v from predecessors

while len(worklist) > 0:
v = worklist.pop

for s in successors of v:
if s not in C:
continue

recompute solution at s
if the solution changed:
add successors to worklist

mark C clean
mark nodes in C as clean

Figure 5.13: Adapted worklist algorithm used in the Flock runtime

5.3.4 Analysis Class Structure
The runtime provides a set of common classes to reduce the complexity of the generated
analyses and the compiler. Fig. 5.15 shows these classes in relation to an analysis implemen-
tation. The Analysis, Lattice, Value, TransferFunction, and Property classes are abstract base
classes that provide functionality to the analysis, and keep the runtime generic with regards
to analysis implementations. The Helpers and Utils classes provide common functionality
for dealing with Stratego terms, Set/Map types, etc. in a lattice-aware manner.

5.3.5 Avoiding Copies with the Capsule Library
A common pattern in dataflow analyses written in FlowSpec is to have a rule that adds or
removes a single entry from a map or set. Consider for example the rule shown in Fig. 5.14.
This rule applies to a VarDec node with a constant RHS. It specifies that the resulting lattice
is a copy of its input with a single entry replaced.

A naive implementation of this dataflow rule may create a distinct map for each control-
flow graph node, even though all but one entry is unchanged. A more efficient implementa-

35

5. SOLUTION IMPLEMENTATION

values(prev -> VarDec(n, _, Int(i)))
= { k |-> v | (k |-> v) <- values(prev), k != n } \/ {n |-> Const(i)}

Figure 5.14: Example of a dataflow rule that copies a map and changes a single entry

tion can share the entries of the map that are unchanged, while separately recording unique
entries. This decouples the cost of executing this dataflow rule from the size of the map. We
implement this optimization by using efficient immutable collections (Steindorfer 2017).

Figure 5.15: Class diagram of a compiled analysis.

5.4 Incremental Analysis in an Immutable Language
One of the key challenges we encountered while implementing Flock was due to the im-
mutability of Stratego terms.

The program under analysis lives in the user environment, since we do not want to re-
strict what the user can do in the optimization pipeline. The runtime must also have access
to the program, as analyses use terms (such as numbers, string, or expressions) of the pro-
gram in the flow functions and during pattern matching. The runtime must maintain a view
of the program that it can use during analysis, because the changes communicated to the
runtime are separate from the changes being applied to the actual program term. This is
because several optimizations may be chained together before the optimized program is ac-
tually synthesized.

The challenge lies in providing the analyses with an up-to-date view of the program,
while the input to the runtime are diffs. Since the analyses are not designed to operate on
a sequence of diffs, we considered two options. Either we redesign parts of the system to
implement analyses on sequences of diffs directly, or we avoid this complexity and translate
diffs into mutations of an internal representation of the program, so that the analyses can
remain mostly the same. We chose the latter option since we do not know the impact on
complexity and performance of the first option.

The implemented solution translates diffs into mutations on a separate representation of
the program. This internal datastructure is called the TermTree in e.g. Fig. 5.7. It is homo-
morphic to the Stratego representation of a program, but allows mutation of subterms. This
means references pointing inside the tree (used for e.g. pattern matching) do not need to be
updated when a subterm of the pointee is changed. Each CFG node contains a reference to

36

5.4. Incremental Analysis in an Immutable Language

the term from which it was created. Importantly, this implies there are no invalid references
left after a program change as the CFG is updated together with the TermTree, and no other
references pointing inside the tree exist.

The analysis results live within the environment of the runtime, so can be mutated di-
rectly by the analysis classes. The API was not designed to give the user diffs of the analysis
results, so this did not introduce any problems. When the optimizer queries an analysis re-
sult, we build a Stratego term representing the result. Due to the performance penalty and
inconvenience of producing large maps or sets we generate additional strategies described
in section 5.2 that can be used to avoid this penalty in many cases.

37

Chapter 6

Evaluation

In this chapter we discuss our evaluation of the Flock project. The evaluation of the project
consists of several parts. First, we implement and run an optimization pipeline on several
families of programs and measure the run times. Second, we measure the memory usage
of these same optimization pipelines. Finally, we measure the latency of random analysis
queries without program edits similar to how a user may interact with the editor.

6.1 Run Time Analysis of an Optimization Pipeline
We measure the run time of three different optimizers: Flock, Dynamic Rules, and LLVM.
The Flock-based optimizer is our own implementation. The Dynamic Rules optimizer is also
implemented with Spoofax and is adapted from Bravenboer et al. (Bravenboer et al. 2006).
The LLVM optimizer is a well-known and widely used optimizer (C. A. Lattner 2002).

6.1.1 Benchmarking Methodology
We benchmark the run time of the three optimizers by synthesizing various programs that
can be optimized to a single constant value. We chose five different types of programs that
differ across the following characteristics: size and shape of the generated control-flowgraph,
types of transformations required to optimize, and the number of (nested) scopes introduced.
We chose these characteristics as we believed these would each provide valuable insight into
the performance of Flock. The number of nested scopes is a characteristic that is known to
impact the performance of the Dynamic Rules optimizer (Bravenboer et al. 2006), and is thus
an interesting characteristic to measure against the Flock optimizer.

For each type of program we generate instances ranging from small sizes up to n = 5000,
to require a long enough run time for significant results.

We test the Flock and Dynamic Rules optimizers using JMH (JMH: Java Microbenchmark
Harness 2022) to achieve repeatable results. Both optimizers expose a Stratego strategy that
takes a program term and returns its optimized equivalent. For each program, we measure
the time taken for these strategies to execute.

We test the LLVM optimizer by generating equivalent C-lang versions of our test pro-
grams. We compile these to LLVM bitcode using Clang, with optimizations disabled. We
then run and measure the time taken by LLVM to optimize these bitcode files to ensure we
do not include the translation from C to LLVM bitcode in our measurements.

6.1.2 Benchmark: Vars
The first benchmark is a simple chain of variable definitions and variable uses. An example
of a generated program is shown in Fig. 6.2. This program is generated for various instances
of n, up to n = 5000. The run time of the optimizers for each n is shown in Fig. 6.1. We
can see that Flock is significantly slower than the other implementations. The performance
of LLVM may be explained by their use of single-static assignment form, which makes it
possible to optimize this type of program without dataflow analysis as the entire program
fits within a single basic-block. The performance difference with DR may be caused by the

39

6. EVALUATION

extra cost incurred by building and updating the control-flow graph. This means DR gains
performance at the cost of flexibility, as the order of strategy applications must match the
control-flow of the program.

1000 2000 3000 4000 5000
Count

0.0

0.1

0.2

0.3

0.4

0.5

Ti
m
e
(s
)

Vars
dynamic rules
flock
llvm

Figure 6.1: Run time of optimization pipelines
on various sizes of the program shown in Fig.
6.2

let var a0: int := 1
var a1: int := a0 + 1
var a2: int := a1 + 1

in
a2

end
Figure 6.2: Example program for n=3

6.1.3 Benchmark: Branches
The second benchmark is a variation of the previous by adding branching logic to each vari-
able declaration, as shown in Fig. 6.2. The run time of the optimization pipeline for each n is
shown in Fig. 6.3. We see that Flock takes roughly twice the time compared to the previous
benchmark, matching the increase in size of the CFG. LLVM shows a non-linear run time,
and is quickly outperformed by Flock. This matches our expectations as this program con-
tains many basic blocks in its LLVM bitcode representation, requiring the more expensive
dataflow analysis to optimize.

1000 2000 3000 4000 5000
Count

0.0

0.5

1.0

1.5

2.0

Ti
m
e
(s
)

Branches
dynamic rules
flock
llvm

Figure 6.3: Run time of optimization pipelines
on various sizes of the program shown in Fig.
6.4

let var a0: int := 1
var a1: int := if a0 > 0 then a0 else 0
var a2: int := if a1 > 0 then a1 else 0

in
a2

end

Figure 6.4: Example program for n=3

6.1.4 Benchmark: Nested Scopes
The third benchmark introduces nesting of scopes with variable accesses to the outermost
scope, as shown in Fig. 6.6. The run time of the optimization pipeline for each n is shown
in Fig. 6.3. We see that the Dynamic Rules implementation slows down significantly due

40

6.1. Run Time Analysis of an Optimization Pipeline

to the distance between scopes of variable accesses and their declarations. This is a known
characteristic of this implementation (Bravenboer et al. 2006).

1000 2000 3000 4000 5000
Count

0.0

0.5

1.0

1.5

Ti
m
e
(s
)

Scoped Vars
dynamic rules
flock
llvm

Figure 6.5: Run time of optimization pipelines
on various sizes of the program shown in Fig.
6.6

let var a0: int := 1 in
let var a1: int := a0 + a0 + 1 in

let var a2: int := a1 + a0 + 1 in
a2

end
end

end
Figure 6.6: Example program for n=3

6.1.5 Benchmark: Inlining (Linear)
The fourth benchmark requires function inlining for optimization, shown in Fig. 6.8. We
see that Flock is slowest, similar to the first benchmark, but with similar linear growth as
Dynamic Rules and LLVM.

1000 2000 3000 4000 5000
Count

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m
e
(s
)

Inlining (Linear)
dynamic rules
flock
llvm

Figure 6.7: Run time of optimization pipelines
on various sizes of the program shown in Fig.
6.8

let function a0(a: int): int = a + 1
function a1(a: int): int = a + 1
function a2(a: int): int = a + 2

in
a0(1) +
a1(1) +
a2(1)

end

Figure 6.8: Example program for n=3

6.1.6 Benchmark: Inlining (Recursive)
The fifth benchmark similarly requires function inlining for optimization, but in a recursive
manner such that each inlining transformation leaves a new function call to inline (except
the leaf function). We see that Flock cannot efficiently optimize (large) programs with this
structure.

This performance issue is the result of a lack of flexibility offered by the Flock API. Dur-
ing the optimization of the program we perform three types of transformations: function
inlining, constant folding, and normalization. The normalization is necessary to bring con-
stants next to each other in the AST such that we can fold them using pattern matching. An
example of such a normalization can be seen in Fig. 6.11.

41

6. EVALUATION

0 1000 2000 3000 4000 5000
Count

0.0

2.5

5.0

7.5

10.0

12.5
Ti
m
e
(s
)

Inlining (Recursive)
dynamic rules
flock
llvm

Figure 6.9: Run time of optimization pipelines
on various sizes of the program shown in Fig.
6.10

let function a0(n: int): int = n + 1
function a1(n1: int): int = a0(n1) + 1
function a2(n2: int): int = a1(n2) + 1

in
a2(1)

end

Figure 6.10: Example program for n=3

let
var n: int := 1

in
1

end + 1

⇒

let
var n: int := 1

in
1 + 1

end

Figure 6.11: Normalization transformation that is applied before a peephole optimization
can be used to fold the addition

This transformation is communicated to the Flock runtime through the flock-replace-node
strategy as a replacement of the entire let termwith a new let term. This lack of granularity
causes Flock to recompute the control-flow graph and connected components for the entire
term, even though the declarations in the let are unchanged. In our benchmark program this
inner term grows linearly with the number of functions inlined, as each inlining introduces
a new let term. This also means our optimizer must repeatedly apply the normalization
transformation, to move the addition further inside the let structure. Due to the large cost
of each individual transformation this causes a rapid slowdown as the input program grows.
A single additional function requires n normalization transformations. We discuss a poten-
tial solution to this problem in the Section 8.1.

6.2 Memory Analysis of an Optimization Pipeline

6.2.1 Benchmarking Methodology
We measure the memory usage of the Flock and Dynamic Rules optimizers during the opti-
mization process for each of the previously discussed programswhere n = 5000. We include
the results for only two of the benchmarks because the other benchmarks showed near iden-
tical results. For Flock, wemeasure the total amount of memory used whenever a value anal-
ysis query was performed. Similarly for DR, we measure the total amount of memory used
whenever a dynamic rule was invoked to query the value of a reference. In both instances
we first request the JVM to run the garbage collector to attempt to reduce noise caused by
garbage memory. We do not measure the memory usage of LLVM for two reasons. First, the
compiled nature of LLVM makes it difficult to compare results to the Flock and DR projects
even though we aim to reduce the noise caused by garbage collection. Second, the complex-
ity of the LLVM codebase makes it difficult to implement a comparable method of memory
management.

42

6.3. Analysis of Query Latencies

6.2.2 Results

0 20 40 60 80 100

Completion (%)

0

20

40

60

80

M
em

or
y
(M

B)
Memory Benchmark (Branches)

DR
Flock

0 20 40 60 80 100

Completion (%)

0

20

40

60

80

100

120

M
em

or
y
(M

B)

Memory Benchmark (Mod. Inlining)

DR
Flock

Figure 6.12: Memory usage of Flock and Dynamic Rules in various benchmarks. Vertically
the line represents the memory usage of the optimizer during the optimization of a program,
horizontally the line represents a measurement as a percentage of total measurements. The
graphs do not depict runtime.

Fig. 6.12 shows the memory usage of Flock and Dynamic Rules during the optimization
of the two benchmarks. We see a similar pattern in both benchmarks. The memory usage of
Flock sharply rises as the runtime is initialized when the control-flow graph and connected
components are created. When the size of the program decreases due to an optimization so
does the memory usage decrease. Dynamic Rules does not create these structures, and we
thus do not see the same increase and decrease in memory usage. The small increases in
memory usage can be attributed to the creation of dynamic rules.

6.3 Analysis of Query Latencies
6.3.1 Benchmarking Methodology
To measure query latencies we perform 5000 value analysis queries on the Vars benchmark
with n = 5000. For each variable reference in the programwe query the value analysis results
for that reference. The variable references of the program are processed in random order to
show the effects of caching in the Flock runtime. We measure the latency for each query and
sort them in descending order. We include five warmup runs for both implementations to
reduce the noise caused by JVM warmup.

6.3.2 Results
Fig. 6.13 shows the latencies for 5000 value queries sorted in descending order. The Dynamic
Rules implementation does not include caching, and we can see that the latency for a query
correlates linearly to how far a variable reference is from the root of the program. The Flock
implementation does support caching (with no additional effort from the programmer), and
we see that there are few queries with high latencies (> 10ms), and many queries with very
low latencies (< 0.1ms). We find that Flock outperforms Dynamic Rules in use cases where
no program transformations are performed and initialization is performed in advanced, such
as when a programmer uses dataflow analysis to inspect the behaviour of a program.

6.4 Threats to Validity
In this section we discuss some threats to the validity of the results shown and discussed
in this chapter. In summary, we find that the strength of these results are limited by three
aspects:

43

6. EVALUATION

0 2000 4000
Query

10−2

10−1

100

101

102

Ti
m
e
(m

s)
Flock
DR

0 2000 4000
Query

0

50

100

150

200

Ti
m
e
(m

s)

Flock
DR

Editor Benchmark (Vars)

Figure 6.13: Sorted latencies for value analysis queries shown for Flock (cached) and Dy-
namic Rules (uncached) on a logarithmic (left) and linear (right) scale

• The synthetic nature of the benchmarks

• The small set of analyses and optimizations implemented

• The lack of complex control-flow constructs in Tiger

6.4.1 Synthetic Benchmarks
Our quantitative benchmarking consists of generating programs with predictable structure
to stress-test specific aspects of each implementation. While these programs are far from
realistic, they still give insight into the behaviour of the performance of Flock.

Ideally we would also benchmark real programs, as this would give us more confidence
in the significance of the results, however we do not have a database of programs written
in Tiger which are large enough to draw reliable conclusions from. Synthetic benchmarks
are thus a best effort to gain useful insight into the performance of Flock. It has provided
us with several unexpected results, leading to a better understanding of the runtime and
improvements to the implementation. In Ch. 8 we discuss future work to improve this aspect
of the research.

6.4.2 Small Set of Analyses
The set of optimizations and analyses included in the Flock pipeline is only a small subset of
the total number of dataflow analyses used in an industrial compiler such as LLVM.We have
implemented value, liveness, and very busy expression analyses for use in optimizations, as
well as an array length analysis for use in static analysis. The limited number of analyses
implemented and tested presents a threat to the validity of this research as the performance
characteristics measured in this chapter may differ when a larger number of analyses is exe-
cuted.

6.4.3 Lack of Complex Control-Flow Constructs
Not all types of control-flow are (fully) supported by Flock. First, constructs that require
information about names in the program such as goto are not supported, because there is no
access to name information when writing a FlowSpec specification using Flock. Second are
constructs that do not require name information, but require non-local control-flow. Exam-
ples of this are return, and throw statements. These are supported by Flock, but their strongly

44

6.4. Threats to Validity

connected components cannot be efficiently updated. We discuss this in more detail as part
of the future work in Ch. 8.

45

Chapter 7

Related work

In this chapter we will discuss work related to incremental program analysis and optimiza-
tion. We subdivide the relevant relatedwork into three areas: dataflow analysis, incremental
dataflow analysis, and incremental Datalog.

7.1 Dataflow Analysis
Dataflow analysis was introduced by Gary Kildall as a tool for implementing optimizations
in compilers (Kildall 1973). The technique has become a cornerstone in the field of program
optimization, and is included in many educational texts on the topic in its own chapter such
as the The Dragon Books (Aho, Lam, et al. 1986; Aho, Ullman, et al. 1977) and Engineer a
Compiler (Cooper and Torczon 2011).

Dataflowanalysis can be found inmany industrial compiler projects such asClang/LLVM
(C. Lattner and Adve 2004; Clang 2022), GCC (Hayes 1999), the OCaml compiler (OCaml
Source Code 2022), WebKit (WebKit Source Code 2022), etc, where it is used to implement
analyses that are used for optimization. Another use case for dataflow analysis is in program
checking to ensure that programs are valid, such as in Java where it is used to ensure the
initialization of final fields (Gosling et al. 2000).

FlowSpec (Smits andVisser 2017) is aDSLwithin the Spoofax languageworkbench (Kats
and Visser 2010) for declarative dataflow analysis specification. FlowSpec aims to provide
language developers with a concise and expressive tool for implementing dataflow analyses,
as an improvement over operational encodings. We discussed the limitations of FlowSpec in
Ch. 3. This thesis reimplements the FlowSpec language as Flock with support for incremen-
tal execution of analyses.

Similar to FlowSpec, Dynamic Rules (Bravenboer et al. 2006) is a technique of imple-
menting dataflow analysis within Spoofax. In contrast to FlowSpec this approach does not
introduce a DSL for dataflow analysis, instead adding the necessary language features in
Stratego directly. The limitations of Dynamic Rules are similarly discussed in Ch. 3.

Dataflow analysis has also been used in integrated development environments (IDEs) to
provide additional functionality to programmers. The JetBrains IDE contains functionality
that lets a programmer invoke a dataflow analysis and inspect the results to better under-
stand a program (Jetbrains Dataflow Analysis 2022).

7.2 Incremental Dataflow Analysis
There is a large body of work relating to incremental dataflow analysis algorithms from the
80’s. Incremental dataflow analysis algorithms as defined in Ryder (1983) take a dataflow
solution and a program change, and aim to efficiently and correctly update the dataflow so-
lution. This is a different problem than we are trying to solve, as we do not assume a full
dataflow solution is present during program changes, nor do we require a full dataflow solu-
tion to be computed afterwards. Nevertheless most work from this period aims to solve this
problem (Ryder 1983; Zadeck 1984; Carroll and Ryder 1988; Marlowe and Ryder 1989; Pol-
lock and Soffa 1989). It is not clear to us if these approaches can be adapted to our problem.

47

7. RELATED WORK

FlowSpec also supports user-defined lattices, whereas these algorithms commonly make as-
sumptions about the abstract domain. Finally, there is a lack of empirical evidence on the
performance of these algorithms.

Demand-driven analysis is an approach that aims to compute only the necessary dataflow
information to answer a given query. Several demand-driven analysis algorithms have been
developed (Horwitz, Reps, and Sagiv 1995; Heintze and Tardieu 2001; Sridharan et al. 2005;
Lu et al. 2013). These approaches map a dataflow analysis problem to a path reachability
problem. Instead of propagating information from the root of the program to each program
point, we can start at the point forwhich information is queried, and seek a path from the pro-
gram point back to the root throughwhich the fact may be realized. This avoids unnecessary
work to answer a query. By caching analysis results future queries may be computed more
efficiently. This approach is more granular than our forward-propagation approach but re-
quires that the size of dataflow facts is finite, and that the dataflow functions are distributive.
Its application to interprocedural analysis is also different from our intraprocedural domain.

Lerner et al. (Lerner, Grove, and Chambers 2002) present a framework for program anal-
ysis and optimization that can automatically compose analyses. Their solution solves the
phase-ordering problem while avoiding manually implementing a superanalysis. The re-
sults show that automatically composed analyses generate similarly efficient code compared
to a manual superanalysis, with a compile-time overhead of less than 20%. Their framework
does not support non-local graph replacements, and does not show the size or complexity of
the implementation of the analyses aside from their composability. Further work focusses
on soundness of transformations (Lerner, Millstein, and Chambers 2003; Lerner, Millstein,
Rice, et al. 2005; Kundu, Tatlock, and Lerner 2009), which is relevant to this thesis but outside
of its scope.

7.3 Incremental Datalog
Datalog is a declarative logic programming language that has found use in a number of
areas, including program analysis. By representing program structure (such as AST and
CFG information) and analyses (such as the dataflow rules) as relations, Datalog can be
used to solve and query analysis results. Existing work on incrementality for Datalog has
also been successfully applied to program analysis.

The DRed algorithm (Gupta, Mumick, and Subrahmanian 1993) is an algorithm for in-
crementally maintaining relational and deductive databases, and supports negation, aggre-
gation, and recursion. A limitation of the DRed algorithm is that it does not support user-
defined recursive aggregation, which limits its application to analyses with abstract domains
of powersets.

Based on the DRed algorithm, IncA (Szabó, Erdweg, and Voelter 2016) is a domain spe-
cific language for the definition of incremental program analysis. Szabo et al. introduce
DRedL (Szabó, Bergmann, et al. 2018), an extension of DRed, which supports aggregation
over custom lattices. At a higher level IncA aims to provide language/IDE developers with
the tools to implement efficient incremental analyses that can be used for optimization, IDE
features, etc. Results show that analyses written in IncA can scale well to large programs
with low latency (measured in milliseconds). While powerful and flexible, the relational
paradigm of IncA is further removed from the domain of dataflow analysis than FlowSpec.
Fig. 7.1 shows the definition of control-flow rules for an if-statement in compared to the
equivalent FlowSpec definition. 7.2, which gives an impression of the difference in complex-
ities of the specifications written in these two languages.

48

7.3. Incremental Datalog

def cIf(trg : Statement): Statement = {
src := precedingStatement(trg)
assert src instanceOf IfStatement
return lastStatement(src)

} alt {
src := precedingStatement(trg)
assert src instanceOf IfStatement
assert undef src.else
return src

} alt {
assert undef precedingStatement(trg)
parent := trg.parent
assert parent instanceOf IfStatement
return parent

}

Figure 7.1: Control-flow graph rules for a C-
style if in IncA (Szabó, Erdweg, and Voelter
2016)

If(c, t, e) = entry -> c -> t -> exit,
c -> e -> exit

Figure 7.2: Control-flow graph rules
for a C-style if in FlowSpec

49

Chapter 8

Conclusion

This thesis presents an implementation and runtime called Flock for the FlowSpec DSL. Our
aim was to answer the following research questions:

• RQ1 What does a flexible but efficient dataflow analysis and optimization framework
for language developers look like within Spoofax?

• RQ2 How can we efficiently and automatically compose dataflow analyses and opti-
mizations without imposing strong restrictions on language developers?

• RQ3 How does the efficiency of such a framework compare to other approaches when
applied to optimization and analysis?

• RQ4 How much effort is required to implement an optimization pipeline, static analy-
sis, and editor services with such a framework?

RQ1 InChapter 4we showedwhat Flock looks likewhen applied to an optimizationpipeline
and editor services for Tiger. We find that the complexity of the Stratego code that queries
the Flock runtime is low, and the FlowSpec specifications can remain unchanged compared
to the original implementation. By exposing a Stratego API that returns the analysis results
as Stratego terms, the queries can be easily used to perform transformations. Using hooks
exposed by Spoofax in Stratego we can easily provide editor services.

RQ2 Chapter 5 contains a description of the implementation of Flock. We presented the
internal datastructures used by the runtime and the analyses, and howwe can incrementally
maintain themwhen program transformations are performed. Flock does not impose restric-
tions on the type of transformations that can be performed, the direction or composition of
analyses, the abstract domain of the analyses, etc. Flock does not support all the necessary
types of complex control-flow, which is an area of future work.

RQ3 The experimental evaluation is discussed in Chapter 6. For the purpose of optimiza-
tion, we find that while Flock is significantly slower than LLVM and DR in some cases, it
sometimes outperforms the other solutions. One large outlier is due to the lack of granular-
ity in the Spoofax API. Overall the performance of Flock is likely good enough for DSLs or
language prototypes, and there are several areas of future work that may improve its perfor-
mance and allow for broader applicability. When applied to editor services, we find that the
query latency of Flock is lower than that of the DR approach, especially when caching takes
effect.

RQ4 Chapter 4 contains the exposition of control-flow semantics, dataflow semantics, opti-
mizations, and editor services implementedusing Flock in Spoofax. Wefind that the FlowSpec
specifications remain unchanged from the existing (non-incremental) implementation, and
that the Stratego code used to invoke the runtime is succinct, but we are not able to draw
strong conclusions from this due to a lack of user studies.

51

8. CONCLUSION

let
function nfactor(n: int): int =
if n = 0 then 1 else (n * nfactor(n-1))

in
3

end + 1

Figure 8.1: An optimizable program that
does not match a peephole optimization

let
function nfactor(n: int): int =
if n = 0 then 1 else (n * nfactor(n-1))

in
3 + 1

end

Figure 8.2: An optimizable program that
will match a peephole optimization

8.1 Future Work
There is a broad array of possible directions in which to extend this research, some of which
we will discuss in this section.

Granularity of API Not all transformations can be efficiently represented with the API ex-
posed by Flock. A common transformation thatwe cannot express efficiently occurswhenwe
are normalizing an AST. Consider a peephole optimization that folds arithmetic expressions,
and the program shown in Fig. 8.1. The peephole optimizer will not be able to optimize this
program as the addition is not in the expected form. As a possible solution we can normalize
the program, for example by pushing all arithmetic expressions to the leafs of the AST. The
result of this normalization is shown in Fig. 8.2. To express this transformation in terms
of the Flock API we must communicate a replacement of the entire Let-term, including the
unchanged nfactor function. This leads the runtime to unnecessarily recompute the CFG
and SCCs for this function. The effects of this are clearly visible in the benchmark shown in
Section 6.1.6. We would like to be able to express that some subtrees are unchanged, such
that the runtime can reuse their derived CFGs and SCCs.

Phase-Ordering Problem The phase-ordering problem is a problem related to the ordering
of optimization passes within an optimizing compiler. The ordering of passes can have a
strong influence on the effectiveness of the optimizer. An example of existing work that
tackles the phase ordering problem is Lerner et al. (Lerner, Grove, and Chambers 2002). A
possible avenue of futurework is to similarly implement a type of eager optimization that can
transform the program before a fixpoint is reached. It has been shown that this approach can
unlock optimizations that cannot be achieved by executing optimization passes separately.

User Testing We were not able to draw strong conclusions on the ease of use of the Flock
framework due to a lack of users. An interesting area of future work will be to find users for
the Flock framework and gather information about the perceived ease of use and complexity
of the framework. A possible avenue for this is to integrate the use of Flock in the Compiler
Construction course at the TUDelft, in which students may use the framework to implement
optimizations for their language.

Complex Control-Flow As discussed in Ch. 6, the lack of support for name-dependent
control-flow such as goto, and the fallback support for control-flow such as return present
a threat to the validity of this research. This limitation has implications for the applicability
of the current implementation of Flock as many languages make use of such control-flow
constructs. The challenge in supporting these efficiently comes from the difficulty in incre-
mentally computing the strongly connected components of a control-flow graph with com-
plex control flow. One avenue may be found in using general algorithms for maintaining the
SCCs of our CFG. The problem is known as fully dynamic connectivity in literature (Roditty
andZwick 2016; Holm, Lichtenberg, and Thorup 2001). It is not clearwhat the impact on per-
formance will be if implemented. For our Tiger prototype, the control-flow rules fit within
the current limitations, since the language does not contain these control-flow constructs.

We hypothesize that the performance impact of the lack of efficient incremental updates
for such constructs depends mostly on the type of transformations that are performed. The

52

8.1. Future Work

impact is negligible if the program terms that have special control-flow semantics are never
part of the transformations. This is true for optimizations such as constant propagation and
constant folding, but false for others such as inlining, loop merging, etc.

53

Bibliography

Aho, Alfred V, Monica S Lam, et al. (1986). Compilers: principles, techniques and tools.
Aho, Alfred V, Jeffrey D Ullman, et al. (1977). Principles of compiler design. Addision-Wesley

Pub. Co.
Appel, Andrew W (2004). Modern compiler implementation in C. Cambridge university press.
Bravenboer, Martin et al. (2006). “Program transformation with scoped dynamic rewrite

rules”. In: Fundamenta Informaticae 69.1-2, pp. 123–178.
Carroll, Martin D and Barbara G Ryder (1988). “Incremental data flow analysis via domina-

tor and attribute update”. In: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pp. 274–284.

Clang (2022). https://clang.llvm.org/. [Online; accessed 16-June-2022].
Clang Dataflow (2022). https://clang.llvm.org/docs/DataFlowSanitizer.html. [Online;

accessed 28-March-2022].
Cooper, Keith D and Linda Torczon (2011). Engineering a compiler. Elsevier.
Dataflow Analysis (2022). https://rustc- dev- guide.rust- lang.org/mir/dataflow.html.

[Online, accessed 28-March-2022].
Ellson, John et al. (2001). “Graphviz—open source graph drawing tools”. In: International

Symposium on Graph Drawing. Springer, pp. 483–484.
Gosling, James et al. (2000). The Java language specification. Addison-Wesley Professional.
Gupta, Ashish, Inderpal Singh Mumick, and Venkatramanan Siva Subrahmanian (1993).

“Maintaining views incrementally”. In: ACM SIGMOD Record 22.2, pp. 157–166.
Hayes, Michael (1999). GCC Source Code - gcc/df-core.c.
Heintze, Nevin andOlivier Tardieu (2001). “Demand-driven pointer analysis”. In:ACMSIG-

PLAN Notices 36.5, pp. 24–34.
Holm, Jacob, Kristian de Lichtenberg, and Mikkel Thorup (July 2001). “Poly-Logarithmic

Deterministic Fully-Dynamic Algorithms for Connectivity, Minimum Spanning Tree, 2-
Edge, and Biconnectivity”. In: J. ACM 48.4, pp. 723–760. ISSN: 0004-5411. DOI: 10.1145/
502090.502095. URL: https://doi.org/10.1145/502090.502095.

Hong, Sungpack et al. (2012). “Green-Marl: a DSL for easy and efficient graph analysis”. In:
Proceedings of the seventeenth international conference on Architectural Support for Program-
ming Languages and Operating Systems, pp. 349–362.

Horwitz, Susan, Thomas Reps, andMooly Sagiv (1995). “Demand interprocedural dataflow
analysis”. In: ACM SIGSOFT Software Engineering Notes 20.4, pp. 104–115.

Jetbrains Dataflow Analysis (2022). https://www.jetbrains.com/help/idea/analyzing-data-
flow.html. [Online; accessed 22-March-2022].

JMH: Java Microbenchmark Harness (2022). https://openjdk.org/projects/code-tools/jmh/.
[Online; accessed 15-June-2022].

55

https://clang.llvm.org/
https://clang.llvm.org/docs/DataFlowSanitizer.html
https://rustc-dev-guide.rust-lang.org/mir/dataflow.html
https://doi.org/10.1145/502090.502095
https://doi.org/10.1145/502090.502095
https://doi.org/10.1145/502090.502095
https://www.jetbrains.com/help/idea/analyzing-data-flow.html
https://www.jetbrains.com/help/idea/analyzing-data-flow.html
https://openjdk.org/projects/code-tools/jmh/

BIBLIOGRAPHY

Kats, Lennart CL andEelcoVisser (2010). “The Spoofax languageworkbench: rules for declar-
ative specification of languages and IDEs”. In: Proceedings of the ACM international confer-
ence on Object oriented programming systems languages and applications, pp. 444–463.

Kildall, Gary A (1973). “A unified approach to global program optimization”. In: Proceedings
of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of programming languages,
pp. 194–206.

Kundu, Sudipta, Zachary Tatlock, and Sorin Lerner (2009). “Proving optimizations correct
using parameterized program equivalence”. In: ACM Sigplan Notices 44.6, pp. 327–337.

Lattner, Chris and Vikram Adve (2004). “LLVM: A compilation framework for lifelong pro-
gram analysis & transformation”. In: International Symposium on Code Generation and Op-
timization, 2004. CGO 2004. IEEE, pp. 75–86.

Lattner, Chris Arthur (2002). “LLVM: An infrastructure for multi-stage optimization”. PhD
thesis. University of Illinois at Urbana-Champaign.

Lerner, Sorin, David Grove, and Craig Chambers (2002). “Composing dataflow analyses and
transformations”. In: ACM SIGPLAN Notices 37.1, pp. 270–282.

Lerner, Sorin, Todd Millstein, and Craig Chambers (2003). “Automatically proving the cor-
rectness of compiler optimizations”. In: Proceedings of the ACM SIGPLAN 2003 conference
on Programming language design and implementation, pp. 220–231.

Lerner, Sorin, Todd Millstein, Erika Rice, et al. (2005). “Automated soundness proofs for
dataflow analyses and transformations via local rules”. In: ACM SIGPLAN Notices 40.1,
pp. 364–377.

Leroy, Xavier et al. (2016). “CompCert-a formally verified optimizing compiler”. In: ERTS
2016: Embedded Real Time Software and Systems, 8th European Congress.

Lu, Yi et al. (2013). “An incremental points-to analysis with CFL-reachability”. In: Interna-
tional Conference on Compiler Construction. Springer, pp. 61–81.

Marlowe, Thomas J and Barbara G Ryder (1989). “An efficient hybrid algorithm for incre-
mental data flow analysis”. In: Proceedings of the 17th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, pp. 184–196.

OCaml Source Code (2022). https://github.com/ocaml/ocaml/blob/trunk/asmcomp/dataflow.
mli. [Online; accessed 16-June-2022].

Pizlo, Filip (2016). Introducing the B3 JITCompiler. https://webkit.org/blog/5852/introducing-
the-b3-jit-compiler/. [Online; accessed 29-March-2022].

Pollock, Lori L and Mary Lou Soffa (1989). “An incremental version of iterative data flow
analysis”. In: IEEE Transactions on Software Engineering 15.12, pp. 1537–1549.

Pornin, Thomas (n.d.). Why Constant-Time Crypto? https://www.bearssl.org/constanttime.
html. [Online; accessed 25-March-2022].

Roditty, Liam and Uri Zwick (2016). “A Fully Dynamic Reachability Algorithm for Directed
Graphs with an Almost Linear Update Time”. In: SIAM J. Comput. 45, pp. 712–733.

Ryder, Barbara G (1983). “Incremental data flow analysis”. In: Proceedings of the 10th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pp. 167–176.

Smits, Jeff and Eelco Visser (2017). “FlowSpec: declarative dataflow analysis specification”.
In: Proceedings of the 10th ACM SIGPLAN International Conference on Software Language En-
gineering, pp. 221–231.

Souza Amorim, Luıś Eduardo de and Eelco Visser (2020). “Multi-Purpose Syntax Defini-
tion with SDF3”. In: International Conference on Software Engineering and Formal Methods.
Springer, pp. 1–23.

Spencer, Henrey (1997). URL: https://compilers.iecc.com/comparch/article/97-10-017.
Sridharan, Manu et al. (2005). “Demand-driven points-to analysis for Java”. In: ACM SIG-

PLAN Notices 40.10, pp. 59–76.
Steindorfer, Michael Johannes (2017). “Efficient immutable collections”. In.

56

https://github.com/ocaml/ocaml/blob/trunk/asmcomp/dataflow.mli
https://github.com/ocaml/ocaml/blob/trunk/asmcomp/dataflow.mli
https://webkit.org/blog/5852/introducing-the-b3-jit-compiler/
https://webkit.org/blog/5852/introducing-the-b3-jit-compiler/
https://www.bearssl.org/constanttime.html
https://www.bearssl.org/constanttime.html
https://compilers.iecc.com/comparch/article/97-10-017

Bibliography

Szabó, Tamás, Gábor Bergmann, et al. (2018). “Incrementalizing lattice-based program anal-
yses in Datalog”. In: Proceedings of the ACM on Programming Languages 2.OOPSLA, pp. 1–
29.

Szabó, Tamás, Sebastian Erdweg, and Markus Voelter (2016). “Inca: A dsl for the definition
of incremental program analyses”. In: Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering, pp. 320–331.

Tarjan, Robert (1972). “Depth-first search and linear graph algorithms”. In: SIAM journal on
computing 1.2, pp. 146–160.

Visser, Eelco (2004). “Program transformationwith Stratego/XT”. In:Domain-specific program
generation. Springer, pp. 216–238.

WebKit Source Code (2022). https://trac.webkit.org/browser/trunk/Source/JavaScriptCore/
dfg/DFGObjectAllocationSinkingPhase.cpp. [Online; accessed 16-June-2022].

Yang, Xuejun et al. (2011). “Finding and understanding bugs in C compilers”. In: Proceedings
of the 32nd ACM SIGPLAN conference on Programming language design and implementation,
pp. 283–294.

Zadeck, Frank Kenneth (1984). “Incremental data flow analysis in a structured program edi-
tor”. In: Proceedings of the 1984 SIGPLAN symposium on Compiler construction, pp. 132–143.

57

https://trac.webkit.org/browser/trunk/Source/JavaScriptCore/dfg/DFGObjectAllocationSinkingPhase.cpp
https://trac.webkit.org/browser/trunk/Source/JavaScriptCore/dfg/DFGObjectAllocationSinkingPhase.cpp

Appendix A

Tiger FlowSpec Control-Flow Spec

The following is the full Tiger control-flow specification written in FlowSpec.

module tiger/Cfg
signature
sorts
Id = string
StrConst = string
IntConst = int
Exp
LoopBinding
Dec
Type
Occ
TypeId
FArg
Var
Int
LValue

constructors
Mod : Exp -> Exp
ProcDec : Occ * list(FArg) * Exp -> Dec
FunDec : Occ * list(FArg) * Type * Exp -> Dec
VarDec : Id * Type * Exp -> Dec
VarDecNoType : Occ * Exp -> Dec
TypeDec : Occ * Type -> Dec
Type : TypeId -> Type
Occ : Id -> Occ
Tid : Occ -> TypeId

UMinus : Exp -> Exp
Minus : Exp * Exp -> Exp
Plus : Exp * Exp -> Exp
Times : Exp * Exp -> Exp
Divide : Exp * Exp -> Exp

59

A. TIGER FLOWSPEC CONTROL-FLOW SPEC

Lt : Exp * Exp -> Exp
Gt : Exp * Exp -> Exp
Eq : Exp * Exp -> Exp
Geq : Exp * Exp -> Exp
Leq : Exp * Exp -> Exp
Neq : Exp * Exp -> Exp
And : Exp * Exp -> Exp
Or : Exp * Exp -> Exp

Call : Occ * list(Exp) -> Exp
If : Exp * Exp * Exp -> Exp
IfThen : Exp * Exp -> Exp
Seq : list(Exp) -> Exp
For : LoopBinding * Exp -> Exp
LoopBinding : Var * Exp * Exp -> LoopBinding
Assign : LValue * Exp -> Exp
Let : list(Dec) * list(Exp) -> Exp
Return : Exp

String : StrConst -> Exp
Int : IntConst -> Exp
Var : Id -> Var
Array : TypeId * Exp * Exp -> Exp
Subscript : LValue * Exp -> LValue
Exp : LValue -> Exp
LValue : Var -> LValue

control-flow rules

root Mod(s) = start -> s -> end
root ProcDec(n, args, body) = start -> body -> end
root FunDec(n, args, rt, body) = start -> body -> end

ProcDec(_, _, _) = entry -> exit
FunDec(_, _, _, _) = entry -> exit
TypeDec(_, _) = entry -> exit

TypeDec(occ, t) = entry -> exit
VarDec(n, t, e) = entry -> e -> this -> exit
VarDecNoType(n, e) = entry -> e -> this -> exit

UMinus(exp) = entry -> exp -> this -> exit
Minus(lhs, rhs) = entry -> lhs -> rhs -> this -> exit
Plus(lhs, rhs) = entry -> lhs -> rhs -> this -> exit
Times(lhs, rhs) = entry -> lhs -> rhs -> this -> exit
Divide(lhs, rhs) = entry -> lhs -> rhs -> this -> exit
Lt(lhs, rhs) = entry -> lhs -> rhs -> this -> exit
Gt(lhs, rhs) = entry -> lhs -> rhs -> this -> exit
Eq(lhs, rhs) = entry -> lhs -> rhs -> this -> exit
Geq(lhs, rhs) = entry -> lhs -> rhs -> this -> exit

60

Leq(lhs, rhs) = entry -> lhs -> rhs -> this -> exit
Neq(lhs, rhs) = entry -> lhs -> rhs -> this -> exit
And(lhs, rhs) = entry -> lhs -> rhs -> this -> exit
Or(lhs, rhs) = entry -> lhs -> rhs -> this -> exit
Subscript(lval, idx) = entry -> idx -> lval -> this -> exit

Call(_, args) = entry -> args -> this -> exit
If(c, t, e) = entry -> c -> t -> exit,

c -> e -> exit
LValue(inner) = entry -> inner -> exit
IfThen(c, t) = entry -> c -> t -> exit
Assign(lval, expr) = entry -> expr -> lval -> this -> exit
Seq(stmts) = entry -> stmts -> exit
For(binding@LoopBinding(var, from, to), body) =
entry -> from -> to -> binding -> body -> binding,

binding -> exit
LoopBinding(var, from, to) = entry -> this -> exit
Let(decs, exps) = entry -> decs -> exps -> exit
Array(_, len, init) = entry -> len -> init -> this -> exit
Return() = entry -> end

node Var(_)
node Int(_)
node String(_)

61

Appendix B

Tiger FlowSpec Data-Flow Spec

The following is the Tiger value analysis data-flow specification written in FlowSpec.

module tiger/ValueAnalysis

imports
tiger/Cfg

properties
values: SimpleMap[string, Value]

property rules
values(_.end) = {}
values(prev -> VarDec(n, _, Int(i)))
= { k |-> v | (k |-> v) <- values(prev), k != n } \/ {n |-> Const(i)}

values(prev -> VarDec(n, _, _))
= { k |-> v | (k |-> v) <- values(prev), k != n } \/ {n |-> Top()}

values(prev -> Assign(LValue(Var(n)), Int(i)))
= { k |-> v | (k |-> v) <- values(prev), k != n } \/ {n |-> Const(i)}

values(prev -> Assign(LValue(Var(n)), _))
= { k |-> v | (k |-> v) <- values(prev), k != n } \/ {n |-> Top()}

values(prev -> LoopBinding(Var(n), _, _))
= { k |-> v | (k |-> v) <- values(prev), k != n } \/ {n |-> Top()}

values(prev -> _) = values(prev)

types
ConstProp =
| Top()
| Const(int)
| Bottom()

lattices
Value where
type = ConstProp
bottom = Bottom()
top = Top()

63

B. TIGER FLOWSPEC DATA-FLOW SPEC

The following is the Tiger liveness analysis data-flow specification written in FlowSpec.

module tiger/LiveVariableAnalysis
imports
tiger/Cfg

properties
live: MaySet[string]

property rules
live(_.end) = {}
live(VarDec(n, _, _) -> next) =
{m | m <- live(next), m != n}

live(Assign(LValue(Var(n)), _) -> next) =
{m | m <- live(next), m != n}

live(LoopBinding(Var(n), _, _) -> next) =
{m | m <- live(next), m != n}

live(Var(n) -> next) = {n} \/ live(next)
live(_ -> next) = live(next)

64

The following is the Tiger array length analysis data-flow specificationwritten in FlowSpec.

module tiger/ArrayLengthAnalysis

imports
tiger/Cfg

properties
lengths: SimpleMap[string, Value]

property rules
lengths(_.end) = SimpleMap[string, Value].bottom

lengths(prev -> VarDec(n, _, Array(_, Int(i), _))) =
{ k |-> v | (k |-> v) <- lengths(prev), k != n } \/ {n |-> Const(i)}

lengths(prev -> VarDec(n, _, _)) =
{ k |-> v | (k |-> v) <- lengths(prev), k != n } \/ {n |-> Top()}

lengths(prev -> Assign(LValue(Var(n)), Array(_, Int(i), _))) =
{ k |-> v | (k |-> v) <- lengths(prev), k != n } \/ {n |-> Const(i)}

lengths(prev -> Assign(LValue(Var(n)), _)) =
{ k |-> v | (k |-> v) <- lengths(prev), k != n } \/ {n |-> Top()}

lengths(prev -> LoopBinding(Var(n), _, _)) =
{ k |-> v | (k |-> v) <- lengths(prev), k != n } \/ {n |-> Top()}

lengths(prev -> _) = lengths(prev)

types
Length =
| Top()
| Const(int)
| Bottom()

65

	Preface
	Contents
	List of Figures
	Introduction
	Problem Statement
	Research Questions
	Contributions
	Thesis Overview

	Background
	Program Optimization
	Optimizations in Compilers
	Compilers in a Language Workbench

	Dataflow Analysis in a Language Workbench
	Applications of Dataflow Analysis
	Use cases and Limitations of FlowSpec
	Other Implementations of Dataflow Analysis

	Data Analysis in Flock
	Control-Flow Specification
	Data-Flow Specification
	Queries, Optimizations, and Diagnostics

	Solution Implementation
	Flock Compiler
	Flock Stratego API
	Flock Runtime
	Incremental Analysis in an Immutable Language

	Evaluation
	Run Time Analysis of an Optimization Pipeline
	Memory Analysis of an Optimization Pipeline
	Analysis of Query Latencies
	Threats to Validity

	Related work
	Dataflow Analysis
	Incremental Dataflow Analysis
	Incremental Datalog

	Conclusion
	Future Work

	Bibliography
	Tiger FlowSpec Control-Flow Spec
	Tiger FlowSpec Data-Flow Spec

