
A computer-checked library of category theory
Defining functors and their algebras

Rado Todorov

Supervisor(s): Benedikt Ahrens, Lucas Escot

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Rado Todorov
Final project course: CSE3000 Research Project
Thesis committee: Benedikt Ahrens, Lucas Escot, Kaitai Liang

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Category theory is a branch of abstract mathemat-
ics that aims to give a high-level overview of re-
lations between objects. Proof assistants are tools
that aid in verifying the correctness of mathemati-
cal proofs. To reason about category theory using
such assistants, fundamental notions have to be de-
fined. Computer-checked libraries contain all rele-
vant structures and theorems in an accessible way
for end users. However, current libraries of cate-
gory theory are not welcoming to people without
in-depth domain knowledge. This paper introduces
a library of category theory tailored towards new-
comers to the field as well as the learning journey
of the authors. We describe the project’s structure,
design choices and provide examples of the main
features. Moreover, a detailed overview is provided
of F-algebras and their relation with inductive data
types found in functional programming languages.
Construction and evaluation of types like lists and
binary trees can be defined in terms of algebras.
They provide a general framework for recursion
over these types which allow us to reason about
them with simple functions.

1 Introduction
Category theory addresses mathematical structures and al-
lows us to formally describe their relations. Definitions of
such structures are very convenient for capturing a specific
behaviour without worrying about the concrete implementa-
tion. This high level of abstraction allows for reasoning about
related concepts as a single entity by exploring their common
root.

Notions from category theory have been applied in com-
puter science to formally describe and reason about problems
like network management [1]. In functional programming,
languages interacting with encapsulated objects can be done
by incorporating Monads [2, Section 2.7]. Utilizing category
theory has also been shown to produce concise syntax that
can capture desired properties in domain-specific languages
[3].

Reasoning about mathematics is a tedious process, prone
to human errors. Proof assistants are software tools that aid
with rigorously proving mathematical theories [4, Section 3].
They rely on a type theory to enable the encoding of mathe-
matical proofs and laws. The correctness of proofs is ensured
as the assistant verifies that each step is sound. Thus, a library
of category theory implemented in a proof assistant, contain-
ing fundamental structures and theorems, can ease reasoning
about category theory.

Previous work which addresses the problem has been done
by researchers like J.Z. Hu et al. in the language Agda [5]
and F. Genovese et al. in the language Idris [6]. Defining cat-
egories and morphisms in code to express most of the theoret-
ical constructs, while also ensuring respectable performance
is a difficult task. Design suggestions have been presented
by J. Gross et al. [7]. However, due to the abstract nature of

the topic, most such libraries are not welcoming for newcom-
ers as their construction tends to be too complex and lacks
worked-out examples.

This paper presents an effort to create an accessible library
of category theory in the proof assistant Lean [8]. The library
contains fundamental notions of category theory supported by
examples related to computer science. Moreover, the design
choices and development process are reported.

In order to achieve these goals this paper is structured as
follows. A description of the research process and the re-
sulting library is presented in Section 2. Section 3 provides
background information about Lean. Details about the basic
constructs in the library are shared in Section 4. The def-
inition of Functor Algebras is the focal point of Section 5.
Design choices are discussed in Section 6. Section 7 focuses
on the reproducibility of the project and the integrity of the
research. Finally, section 8 will summarize the conducted re-
search work and touch upon possible future improvements.

2 Methods and Structure
The construction of complex notions in category theory relies
on simpler ones. Due to this, the research process has been
split into two parts. The fundamental structures of category
theory have been implemented as a group endeavor among
the 5 group members of the research group during part one.
They include the definitions of category, functor, and natural
transformations, with examples like the category of Sets and
the Maybe functor. For the latter part of the project different
areas have been explored individually. This paper presents
notions related to F-algebras - their theoretical definition, im-
plementation and examples.

Creating the library has been an iterative process. The de-
velopment process can be summarized by a cycle of acquiring
knowledge in a specific topic via literature reviews (e.g. defi-
nition of a category), writing a proper definition and proving
interesting examples. The correctness of the final product has
been ensured by employing a pipeline that performs an in-
spection of the code base.

The library is divided into folders by topics, due to broader
concepts consisting of multiple structures and supporting the-
orems. Default files containing imports from each topic are
positioned in the root of the file structure to ease the importing
of code structures when developing. A folder containing the
keyboard commands for the used notations and valuable re-
sources for learning category theory is also part of the repos-
itory.

3 Introduction to Lean
Proof assistants like Lean are built based on the
Curry–Howard correspondence which is a direct rela-
tion between programs and mathematical proofs. Therefore,
they allow us to present proofs using programs and the
compilation of the code can be interpreted as successful
proofs. Calculus of construction [9] is an extension to the
Curry-Howard correspondence that introduces reasoning
about quantified statements like "for all" and "some". This is
the basis of Lean which is extended by including inductive
types.

This paper presents code snippets of the implemented li-
brary. Thus, we now introduce some basic notations to alle-
viate confusion.

Arguments - In Lean explicit arguments are defined
using (). However, when working with parameterized
structures, we can also define implicit arguments using
{}. The example below shows a function which takes
another function f as input. Since f is a function, we
need its input and return type. We can use implicit argu-
ments for those and lean will infer them when applying
an argument.

def input_function {A B : Type} (f : A → B)
(X : A) : B := f X

Quantified statements - In lean we can use ∀ to form
proofs which hold for all instances of a given argument.
The Π notation shares this behavior and the two are in-
terchangeable. The library presented in this paper uses
∀ for stating theorems and Π for attributes.

Universes - The type system in lean begins at Type 0
and can grow endlessly. Each consecutive Type con-
tains the previous as an element. The number in this se-
ries is also known as the universe. Sort is essentially the
same notion with the difference that Type 0 = Sort 1.
Sort 0 is reserved for predicates. Due to this, our li-
brary makes use of Sort to define types and to make our
structures abstract enough, we have defined them for ar-
bitrary universes.

Tactics - Proofs in lean are usually wrapped by
begin and end keywords. Defined below are some of
the tactics used in our proofs and part of this paper:

intro(s) - introduces hypotheses to the proof
rw - attempts to rewrite the current goal with a pro-
vided equality.
simp - recursively attempts to rewrite the goal by
using either a provided equality or theorems em-
bedded in Lean.
cases - decomposes disjunctions

4 Basic constructs
The library aims to provide the tools necessary for most fun-
damental structures in category theory. Categorizing the no-
tions has been ruled by their importance for more complex
definitions, which have been researched individually. This
section displays some of the relevant structures defined in our
library.

4.1 Category Definition
The category as a structure is the basis of all other concepts.
It represents a construct of data, containing:

• A set of objects - C0

• A collection of structure-preserving maps between the
objects of the category, also called morphisms and usu-
ally displayed as X → Y

• An identity morphism for each object in the category,
mapping it to itself

X → X

• A composition of morphisms (depicted as ◦), which is a
binary operator that given a morphism
g : Y → Z and f : X → Y maps to h : X → Z.

In addition, the following properties should be satisfied:
• Associativity - For any three morphisms

f : X → Y, g: Y → Z and h: Z → W we have:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

• Left unit law - For any morphism f : X → Y, where 1X
is the identity morphism of X we have that:

f ◦ 1X = f

• Right unit law - For any morphism f : X → Y, where 1Y
is the identity morphism of Y we have that:

1Y ◦ f = f

The notion of a category is fundamental as it allows us to
group related objects and describe how they can be mapped to
one another. Our library implements it as a structure having
all properties and data as fields. The set of objects in the
category is defined as an arbitrary type and so is the set of
morphisms (also known as hom-set). As stated in section 3,
the attributes of the category are defined using the Π notation
to be differentiated from the properties.

structure category :=
(C0 : Sort u)
(hom : Π (X Y : C0), Sort v)
(id : Π (X : C0), hom X X)
(compose : Π {X Y Z:C0}
(g : hom Y Z) (f : hom X Y), hom X Z)

(left_id : ∀ {X Y : C0} (f : hom X Y),
compose f (id X) = f)

(right_id : ∀ {X Y : C0} (f : hom X Y),
compose (id Y) f = f)

(assoc : ∀ {X Y Z W : C0}
(f : hom X Y) (g : hom Y Z) (h : hom Z W),
compose h (compose g f) =
compose (compose h g) f)

4.2 Set category
The category of sets is a famous category that is addressed
as Set. To implement this category in Lean, we have taken
advantage of Lean’s type system, which begins at 0 and can
be incremented to infinity. Lean’s types can be also used as
objects in functions and other expressions. Essentially, the
initial type - Type 0 can be interpreted as the type containing
all sets.

To prove that Set is indeed a category, we need to provide
the appropriate data and prove that all properties of a cate-
gory hold. This proof pattern is how all examples of structure
definitions are proved in our library. The data of Set consists
of:

• The set of objects for this category is the set of sets.
• The morphisms of this category represent all functions

between two sets
• The identity morphism is a function, which simply maps

the input to itself.
• Composition of morphisms in Set can be depicted as ap-

plying a function to another:

g ◦ f = g(f)

Having defined the data in Set, we can now prove that the
properties of a category hold:

• Associativity can be proved by showing

f ◦ (g ◦ h) = (f ◦ g) ◦ h

Since morphisms in the category are simply functions,
we use their associativity directly. This means that

f ◦ (g ◦ h) = f(g(h)) = (f ◦ g)(h) = (f ◦ g) ◦ h

• Left unit law can be proven by using the fact that the
identity morphism is a function, which returns its input,
meaning that if we apply a function to the result of the
identity morphism it would be as if we apply that func-
tion directly to the input element.

• The proof to the right unit law is similar, with the dif-
ference being that the identity morphism will take and
return the value, after having a function f applied.

4.3 Functor Definition
Functors are structure-preserving mappings which enable us
to depict relations between categories. They are a funda-
mental structure in category theory, which finds many appli-
cations in computer science and specifically functional pro-
gramming. For instance, in Haskell functors are used as a
wrapper class:
class Functor f where
fmap :: (a -> b) -> f a -> f b

data List a = Nil | Cons a (List a)
instance Functor List where

fmap f Nil = Nil
fmap f (Cons x xs) = Cons (f a) (fmap f a)

-- Example application
fmap (+1) (Cons 1 (Cons 2 Nil))
==> Cons 2 (Cons 3 Nil)

Formally, a functor from category C to category D holds
the following data:

• A function that maps an object in C to an object in D
• A function that maps a morphisms in C

to morphisms in D
Additionally, the functor has to preserve:

• Composition - Applying a functor after a composition
of functions should be the same as applying the functor
mapping before the composition.

F (g ◦ f) = F (g) ◦ F (f)

• Identity morphisms - For each X ∈ C.C0 we have that
applying a functor mapping to the identity morphism of
X is equivalent to applying the identity morphism of the
element in category D, which X is mapped to:

F (1X) = 1F (X)

In the library, the implementation of the functor is a param-
eterized structure that is defined by two categories. Unlike
morphisms in the definition of a category, object mapping is
defined as the built-in function type as no matter the cate-
gories, its definition is unchanged.

structure functor (C D : category) :=
(map_obj : C → D)
(map_hom : Π {X Y : C} (f : C.hom X Y),
D.hom (map_obj X) (map_obj Y))

. . .

4.4 The 1 + (A × X) Functor
This functor maps an element X to 1 + (A × X) in the cat-
egory Set. Breaking down the notation, 1 stands for the sin-
gleton set (the set containing only one object) and (A × X)
is a binary product of an element A and X , for simplicity this
can be also interpreted as a pair of the two objects. Lastly,
+ represents a binary coproduct, also known as Either in
Haskell. The definition of (co)products in category theory
is more complex than the presented simplified explanation, a
thorough description can be found in [10, Sections 5.1 and
5.2].

Functors that map object from one category back to itself
are also known as endofunctors. It is also important to note
A is taken as input when defining the functor, making it a
parametarized functor. We can summarize how the function
operates by presenting its mappings:

def list_algebra_functor (A : Set.C0) : functor
Set Set :=

{
-- Objects are mapped to 1 + (A × X)
map_obj := λ X, Either Singleton (Pair A X),
-- Morphisms are mapped based on 2 cases:
-- 1) The Singleton element is unchanged,
-- 2) (A × X) is mapped to (A × f (X))
map_hom :=
begin
intros x y f E,
cases E,
case Either.left : a {
exact Either.left a

},
case Either.right : b {
exact Either.right ⟨fst b, f (snd b)⟩

}
end,
. . .

The proofs for composition and identity preservation have
been omitted, but readers are encouraged to inspect them in
the library’s files. Interestingly, this functor is at the root of
how lists as a recursive type are defined. Section 5 examines
this relation as well as how other similar types can be con-
structed. Other examples part of the library include the 1+X

and the A +X ×X functors, which define natural numbers
and binary trees respectively. The ideas and proofs regarding
them are similar to those of the presented 1 + (A × X)
functor.

5 F-Algebras
Another definition, part of our library is the algebra of a given
functor. Essentially, an algebra allows us to create expres-
sions and do calculations with them (i.e. evaluate them). For
instance, inductive data types as lists, binary trees and nat-
ural numbers, which are an essential part of all functional
programming languages, can be depicted as algebras. This
section aims to present the formal definition of an F-Algebra
and provide intriguing instances.

5.1 Definitions
F-Algebra
An algebra of a given endofunctor F : C → C consists of
the following data:

• An object in category C, also known as the carrier of the
algebra - X ∈ C.C0

• A moprhism - ϕ : F (X) → X

Due to this definition, our library defines the F-algebra as a
parameterized structure

structure Falgebra {C:category} (F:functor C C) :=
(object : C.C0)
(function : C.hom (F.map_obj object) object)

An algebra can be depicted as (X , ϕ), where X is the car-
rier and ϕ the morphism. Using a diagram, we can represent
an algebra with

F (X) X
ϕ

Multiple algebras exist for a given endofunctor, therefore,
we can reason about algebras as objects in the category of all
algebras, defined by a given endofunctor. The construction of
this category requires the definition of a suitable morphism.

Homomorphism
An algebra homomorphism is the structure that properly de-
picts the relation between two algebras. Formally, it is a mor-
phism between the carriers X and Y of algebras (X,ϕ) and
(Y, ψ) such that the following diagram commutes:

F (X) X

F (Y) Y

ϕ

F (f) f

ψ

For the diagram to commute, we expect that the paths from
F (X) to Y are equivalent

f ◦ ϕ = ψ ◦ F (f)

Our library implements this structure using two fields, the
morphism and a proof that it commutes the above diagram,
represented as the equality of the two paths.

structure Fhomomorphism {C:category} {F:functor C
C} (A B : Falgebra F) :=

(morph : C.hom A.object B.object)
(square_proof :

C.compose morph (A.function) =
C.compose B.function (F.map_hom morph))

Algebra category

The category of algebras Alg(F) can be implemented using
the previous definitions. Here, objects are algebras and mor-
phisms are homomorphisms. The category is parameterized
by an endofunctor F just like the algebras. An important
property of this category which finds practical applications
is the composition, further discussion of this property will be
given in section 5.3.

def AlgebraCategory {C:category} (F:functor C C) :
category := {

C0 := Falgebra F,
hom := λ A B, Fhomomorphism A B,
. . .

5.2 "List" Algebras

This is the algebra of the 1 + A ×X endofunctor in Set that
can be labelled as L. Algebras in Alg(L) allows us to reason
about various operations applied to a list or an intermediate
state. For instance, we can depict the intermediate state of
applying the function length by the algebra

1 + (A× N) N
[0,(1+)]

Here, the morphism F (X) → X maps the singleton set
to 0 and the pair P to 1 + the second element of P . The
morphism of the algebra is a simple function, which is both
easy to implement and reason about. The general framework
for the recursion of the types is given by the initial algebra
in the category. This algebra has a carrier of type List A,
due to which we have labeled the algebras under the "List"
umbrella. The algebra with carrier List A is defined by the
morphism [nil, cons]. Given 1, the morphism maps it to nil,
while A × ListA is mapped to cons A (ListA). Using nil
and cons as constructors is the exact way we can define a List
in functional programming languages.

An object I is initial if there exists a morphism from I to
any other object in the category and it is unique. For initial
algebrs, these unique morphisms are named catamorphisms
(depicted in isolation as L_M). They take ψ : the F (X) → X
morphism of other algebras as input and are then presented
as LψM. Due to this, they are a powerful tool that allows us
to reason about relations between algebra carriers in terms of
simple non-recursive functions. This abstracting power finds
an application in all functional programming languages. For
instance, when it comes to the algebra with carrier List A
this unique morphism turns out to be the well-known fold
function. Therefore, fold commutes the diagram

1 + (A× ListA) ListA

1 + (A× Y) Y

[nil,cons]

F (fold(ψ)) fold(ψ)

ψ=[ψa,ψb]

In programming languages like Haskell, fold is written as

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f acc [] = acc
foldr f acc (x:xs) = f x (foldr f acc xs)

From the diagram, we can see that the morphism ψ can be
split into two, just like the morphism of the initial algebra.
These cases fit exactly with the definition of fold since the
morphism that maps the singleton set can be used for an ac-
cumulator, and the one which handles the paired input, can be
used as the function f . This is equivalent to using ψ as a sin-
gle function, which expects arguments in the form 1 +A×X .
Our library adheres to the latter specification when defining
fold as it closely represents the definition of a catamorphism.
Moreover, fold being the unique morphism to an algebra B is
proven by utilizing the fact it commutes the square diagram
between the two algebras and usesB’s morphism recursively.

5.3 Fusion Property
The Fusion Property states that given a catamorphism ϕ be-
tween an initial algebra A and another algebra B, a morphism
f between the carriers of B and the carrier of another algebra
C, if we can provide a proof that their square diagram com-
mutes, then we can prove that the composition of ϕ and f is
equal to the catamorphism ψ from A to C. For instance, when
working with lists we can prove that

map (g) ◦map (f) = map (g ◦ f)

Functional programming languages can benefit from fu-
sion by allowing users to write more expressive code whilst
preserving computation speed. Code can be safely rewritten
during compilation using the fusion property to remove inter-
mediate products. When working with large amounts of data
or input which requires complicated processing, both mem-
ory usage and performance are optimized. The example of
map composition can be visualised by the following diagram,
where it is clear to see how the intermediate result can be
safely omitted.

1 + (A× ListA) ListA

1 + (A× ListB) ListB

1 + (A× ListC) ListC

[nil,cons]

F (map(ϕ))

F (map(ψ◦ϕ))

map(ϕ)

map(ψ◦ϕ)
ϕ

F (map(ψ)) map(ψ)

ψ◦ϕ

The power of fusion extends beyond the structure of lists.
It can be applied to inductive types using a generalized fold
in Haskell [11, Section 4].

Our library is equipped with a proof of the fusion property,
supported by examples of map composition and composition
of the functions length and filter. The proof of fusion in our
library utilizes the composition property of the category of
algebras, resulting in a concise definition. It is also defined as
a function in order to be easier to use in further proofs.

def fusion {C : category} {F : functor C C}
(A : initial (AlgebraCategory F))
(B C : Falgebra F)
(f : C.hom B.object C.object)
(square_proof : C.compose f B.function =
C.compose C.function (F.map_hom f)) :
C.compose f (A.exist_morph B).morph =

(A.exist_morph C).morph :=

begin
-- We can utilize the Algebra category's
composition of Homomorphisms to create one
from A to C.

-- Then, we apply the fact that A is an initial
object and it's morphism is unique.

have h := A.is_unique ((AlgebraCategory
F).compose {morph := f, square_proof:=
square_proof} (A.exist_morph B)),

-- Since the 2 homomorphisms are equal, this
implies that the underlying morphisms are also
equal.

cases (A.exist_morph C),
cases h,
simp [h],

end

5.4 Lambek’s Theorem
The catamorphism is the unique morphism from the carrier of
an initial algebra to the carrier of another algebra. However,
knowing that it exists does not help us with its construction.
Lambek’s theorem provides a solution. The theorem states
that the morphism ϕ : F (X) → X of the initial algebra in
the category of algebras defined by the endofunctor F is an
isomorphism.

An isomorphism between objects N and M is a morphism
that has a unique inverse. Moreover, their composition has to
equal the identity morphism. Our library contains the defini-
tion of an isomorphism, which is an object with a morphism
N → M as an argument, as well as the proof for the unique-
ness of the inverse. The design decision to divide the prop-
erty of composition into two fields has been made with con-
venience in mind because one would usually use them sepa-
rately in proof steps.

structure isomorphism {C : category} {N M : C.C0}
(hom : C.hom N M) :=
(inverse : C.hom M N)
(idl : C.compose hom inverse = C.id M)
(idr : C.compose inverse hom = C.id N)

Additionally, Lambek’s theorem states that the inverse of
ϕ is the catamorphism LF (ϕ)M.

F (X) X

ϕ

LF (ϕ)M

The proof of Lambek’s theorem involves the use of the Fu-
sion property as well as the uniqueness of the inverse in the
definition of an isomorphism. The idea of the proof revolves
around showing that LF (ϕ)M is the inverse in an isomorphism
with ϕ and that such inverse is unique. To construct the iso-
morphism, the Fusion property can be employed to prove that
ϕ ◦ LF (ϕ)M = IdX and LF (ϕ)M ◦ϕ = IdF (X). It can be visu-
alised with this diagram

F (X) X

F (F (X)) F (X)

F (X) X

ϕ

F (LF (ϕ)M)

IdF (X)

LF (ϕ)M

IdX
F (ϕ)

F (ϕ) ϕ

ϕ

Knowing this, we are now able to give a general definition of
how to construct a catamorphism. Applying Lambek’s theo-
rem to the diagram of a catamorphism, we can see that there
are two paths from the carrier of the initial algebra to the car-
rier of any other algebra.

F (X) X

F (Y) Y

F (LψM)

ϕ

LψM

LF (ϕ)M

ψ

Therefore, a catamorphism LψM can be defined as

ψ ◦ F (LψM) ◦ LF (ϕ)M

The proof for this has the following steps :

1. Apply the fact that LψM commutes the diagram

ψ ◦ F (LψM) = LψM ◦ ϕ

2. Since ϕ and LF (ϕ)M form an isomorphmism, we can ap-
ply

ϕ ◦ LF (ϕ)M = IdX

3. Lastly, we use the category’s left unit law to remove the
identity morphism

IdX ◦ LF (ϕ)M = LF (ϕ)M

This means that given an initial algebra, we can obtain the
recipe to construct the catamorphism to any algebra that is de-
fined by the same endofunctor. This allows us to abstract the
recursion and utilize non-recursive algebra morphisms that
are a lot easier to reason about.

6 Discussion
A major design decision has been to utilize as many fields as
possible in the structures that have been defined in the library.
Analyzing other category theory libraries, this approach has
been also chosen in other proof-assistants like Coq [7]. The
main advantage over prioritizing arguments is that it encour-
ages users to define instances outside their proof resulting in
them being more concise and understandable. Another bene-
fit is the shortened type signature. Lean’s Infoview is a panel
which aids users by informing them about the current goal of
the proof and providing available data such as lemmas and
variables which have been defined and can be used in the cur-
rent proof. Short type signatures are essential for maintaining
a clear view of the panel. Moreover, this allows for empha-
sis on the arguments when working with parameterized types.
For instance, the current category structure has no arguments,
and turning the attributes into arguments will cause a massive
increase in the type signature, which will then be propagated
to the signatures of other types

structure category :=
(C0 : Sort u)
(hom : Π (X Y : C0), Sort v)
(id : Π (X : C0), hom X X)
. . .

structure category (C0:Sort u) (hom:Π (X Y : C0),
Sort v) (id:Π (X : C0), hom X X):=

. . .

Effect on functor signature

structure functor (C D : category)
. . .

structure functor
(C0 : Sort u) (homC : Π (X Y : C0), Sort v)
(idC : Π (X : C0), homC X X)
(D0 : Sort w) (homD : Π (X Y : D0), Sort z)
(idD : Π (X : D0), homD X X)
(C: category C0 homC idC) (D: category D0 homD idD)

Another important choice has been the use of structures,
instead of functions, returning a boolean answer, for proper-
ties like initial or terminal objects. For instance, the initial
object of a category has been defined as a structure, whereas
it could have been a function, which given an object in a cat-
egory returns true or false.

structure initial (C : category) :=
(object : C.C0)
(exist_morph : Π (X : C.C0), C.hom object X)
(is_unique : ∀ {X : C.C0} (f : C.hom object X),
f = exist_morph X)

def is_initial {C : category} (object : C.C0) :
Prop :=

. . .

This is beneficial for proofs as we can use an instance of
the structure which carries all necessary data. Otherwise, the
data is not bundled and cannot be used directly in proofs. For
example, imagine proving that an object is initial is done with
a boolean function where we prove that a unique morphism

exists. Using this in a proof, we can understand that such
morphism exists, but it is unknown exactly which the desired
morphism is and Lean is unable to infer this information.

Duality in category theory is the concept of mirror images.
This means, that we could use the opposite category to apply
duality. We have opted away from applying the duality prop-
erty directly and have created the dual structures separately,
similarly to [5, Section 2.3]. For instance, the dual concept of
the algebra in category theory is the coalgebra, which finds its
application in functional programming in the form of streams.
Both have been independently implemented in the library.

Lastly, the library is intended for people without much
prior domain experience. Due to this, less emphasis has been
put on the automation and integration of the structures into
Lean’s ecosystem. This enforces users to rely on their knowl-
edge for proofs instead of relying on the library to automate
a large chunk of the work. Indubitably, it may be challeng-
ing for most newcomers to understand the theory and apply
it using our library. For this reason, emphasis has been put
on detailed documentation that walks through the example
proofs provided by the library.

7 Responsible Research
Despite the abstract nature of category theory, in this contri-
bution, we have aimed to present convincing evidence of the
direct connection with functional programming languages.
Moreover, the conducted research aims to help others have
an easier entrance to this branch of mathematics. Teaching or
presenting mathematics is a cornerstone of the ethics related
to the field [12, Section 2].

The integrity of our work is ensured due to the nature of
mathematics as the proofs provided in our library can be eas-
ily verified. Furthermore, Lean as a proof assistant aids with
the prevention of incomplete or simply wrong proofs. A pro-
gram that compiles can be viewed as correct. Because of
this, a pipeline has been employed in the repository of the
code base, which fails whenever Lean is not able to compile.
Therefore, incorrect statements have been disallowed to be
part of the library.

Nevertheless, the fact that a statement or proof is deemed
valid does not imply that it accurately represents the objective
it has been developed for. Therefore, ensuring that the defini-
tions and related proofs are correct and abide by their purpose
is a collective endeavour. Providing precise notions has been
established by adhering to the definitions in [13]. Peers have
reviewed all new structures before merging them with the ex-
isting collection, which has enforced quality control.

Reproducibility of the results is another fundamental char-
acteristic of Responsible Research because transparency is
essential for validating one’s work. Due to this, all code
has been committed to a repository hosted by the university.
Thus, interested readers are encouraged to analyze or extend
the provided definitions and examples.

8 Conclusions and Future Work
This paper presents the implementation of a new library of
category theory in the proof assistant Lean [8]. Fundamental
definitions of category and functor are defined, accompanied

by examples. Following, the notion of algebra in the realm
of category theory is introduced together with the category of
algebras. Comparing the design choices to other implementa-
tions of libraries of category theory resulted in the discovery
of many similarities.

The gap between category theory and functional program-
ming is bridged via the introduction of a general frame-
work of recursion over lists, known as fold. The paper also
covers proofs regarding the removal of intermediate results
when applying multiple operations to inductive data types and
the construction of fold-like functions for arbitrary recursive
types.

Due to the vast field of category theory, the library can be
extended in various ways. A natural extension would be the
addition of more examples like the category of categories or
monoidal categories. Currently, the library prioritizes con-
cepts closely related to computer science, but this may change
in the future. Notions like groupoids or the famous Yoneda
lemma can be interesting additions.

Performance and proof automation are other areas of im-
provement. However, this library is to be used for education
purposes and these additions are not primary. Therefore, the
focus will remain on providing definitions supported by ex-
amples.

References
[1] D. Borsatti, W. Cerroni, and S. Clayman, “From cat-

egory theory to functional programming: A formal
representation of intent,” in 2022 IEEE 8th Interna-
tional Conference on Network Softwarization (NetSoft),
pp. 31–36, 2022.

[2] J. M. Hill and K. Clarke, “An introduction to category
theory, category theory monads, and their relationship
to functional programming,” tech. rep., Citeseer, 1994.

[3] J.-P. Bernardy and A. Spiwack, “Evaluating linear func-
tions to symmetric monoidal categories,” (New York,
NY, USA), p. 14–26, Association for Computing Ma-
chinery, 2021.

[4] H. Geuvers, “Proof assistants: History, ideas and fu-
ture,” Sadhana, vol. 34, pp. 3–25, 2009.

[5] J. Z. Hu and J. Carette, “Formalizing category theory in
agda,” in Proceedings of the 10th ACM SIGPLAN Inter-
national Conference on Certified Programs and Proofs,
pp. 327–342, 2021.

[6] F. Genovese, A. Gryzlov, J. Herold, A. Knispel,
M. Perone, E. Post, and A. Videla, “idris-ct: A li-
brary to do category theory in idris,” arXiv preprint
arXiv:1912.06191, 2019.

[7] J. Gross, A. Chlipala, and D. I. Spivak, “Experience
implementing a performant category-theory library in
coq,” in Interactive Theorem Proving: 5th International
Conference, ITP 2014, Held as Part of the Vienna Sum-
mer of Logic, VSL 2014, Vienna, Austria, July 14-17,
2014. Proceedings 5, pp. 275–291, Springer, 2014.

[8] L. de Moura, S. Kong, J. Avigad, F. Van Doorn,
and J. von Raumer, “The lean theorem prover (sys-
tem description),” in Automated Deduction-CADE-25:

25th International Conference on Automated Deduc-
tion, Berlin, Germany, August 1-7, 2015, Proceedings
25, pp. 378–388, Springer, 2015.

[9] T. Coquand and G. Huet, The calculus of constructions.
PhD thesis, INRIA, 1986.

[10] T. Leinster, “Basic category theory,” 2016.
[11] P. Johann and N. Ghani, “Initial algebra semantics

is enough!,” in Typed Lambda Calculi and Applica-
tions: 8th International Conference, TLCA 2007, Paris,
France, June 26-28, 2007. Proceedings 8, pp. 207–222,
Springer, 2007.

[12] P. Ernest, “Mathematics, ethics and purism: An appli-
cation of macintyre’s virtue theory,” Synthese, vol. 199,
no. 1-2, pp. 3137–3167, 2021.

[13] B. Ahrens and K. Wullaert, “Category theory for pro-
gramming.” https://github.com/benediktahrens/CT4P.

https://github.com/benediktahrens/CT4P

	Introduction
	Methods and Structure
	Introduction to Lean
	Basic constructs
	Category Definition
	Set category
	Functor Definition
	The 1 + (A X) Functor

	F-Algebras
	Definitions
	F-Algebra
	Homomorphism
	Algebra category

	"List" Algebras
	Fusion Property
	Lambek's Theorem

	Discussion
	Responsible Research
	Conclusions and Future Work

