
Genetic Algorithms for Solving the Global Geometry Optimization Problem
Evaluating Initialization and Crossover Strategies for Lennard-Jones Cluster Optimization

Emı̄ls Dzintars1

Supervisor(s): Peter Bosman 1 2, Anton Bouter 2, Vanessa Volz 2

1EEMCS, Delft University of Technology, The Netherlands
2Centrum Wiskunde Informatica, Amsterdam, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Emı̄ls Dzintars
Final project course: CSE3000 Research Project
Thesis committee: Peter Bosman, Anton Bouter, Vanessa Volz, Thomas Abeel

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Discovery of new materials is essential in a lot
if different fields, such as, space exploration,
maritime industry and others. To stop new ma-
terials undergoing spontaneous reactions or re-
acting with the environment, they have to sta-
ble or at least metastable. That is where Global
Geometry Optimization comes in, which tries
to find global minimum on its Potential En-
ergy Surface. But modeling atoms is diffi-
cult as there is complex interplay of forces be-
tween each atom. A common simplification
is to use the Lennard-Jones potential, which
treats atoms as 3D points and models their in-
teractions based on distance. To find global
minimum, Genetic Algorithm will be used and
this research plans to study multiple differ-
ent crossover strategies(sphere cut splice, uni-
form, two point, one point, arithmetical, plane
cut splice crossover) and initialization strate-
gies(box, sphere, octahedron initialization) to
determine, which is the best for finding mini-
mum for Lennard-Jones clusters. After analyz-
ing results, it is inconclusive, which crossover
produces best results, but it is clear that arith-
metical produces worst results and octahedron
initialization produces best results for clusters
with size 10 to 15.

1 Introduction
The discovery of new materials plays a crucial role in
advancing various fields, particularly those that require a
diverse range of materials to test under different condi-
tions. Such advancements can significantly enhance cur-
rent technologies and capabilities, for example, in space
exploration [11] [15] and the maritime industry [10].

To effectively utilize a new material and harness its
properties, it must be stable or at least metastable. If
a material is unstable, it may undergo spontaneous reac-
tions or interact with its environment, potentially altering
its structure and, consequently, its properties [14]. A key
factor in achieving stability is ensuring that the atomic
configuration of a cluster corresponds to a global mini-
mum on its potential energy surface (PES). This is where
Global Geometry Optimization (GGO) becomes essen-
tial, identifying the molecular structure with the lowest
potential energy.

Modeling atomic systems is inherently challenging
due to the complex interplay of forces acting on each
atom. A common simplification is to use the Lennard-
Jones potential, which treats atoms as point particles and
models their interactions based on distance. Equation (1)
potential is widely applied in areas such as protein fold-
ing [12].

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
(1)

V (r) Intermolecular potential between the two atoms
ε Well depth; a measure of how strongly the two

particles attract each other
σ Finite distance at which the inter-particle poten-

tial is zero
r Distance of separation between both atoms

[9]

Figure 1: Lennard Jones potential plot

Simplest algorithm to find global minimum for
Lennard-Jones clusters would be Random Search Algo-
rithm, where it would generate a random cluster, calcu-
late the potential energy of the cluster, compare it to the
last lowest potential energy cluster and replace if it is
lower. Additional improvement would be to add local
optimization after generating a new cluster, but it would
still be ineffective and useful for only small Lennard-
Jones clusters.

To solve this model, Genetic algorithm(GA) will be
used, which is also used in all kinds of other problems,
such as economics, engineering, politics, management,
and engineering [7]. It is considered to be population
based metaheuristic algorithm, which mimics the Dar-
winian theory of survival of fittest in nature. Each itera-
tion a new population is created from the previous popu-
lation using genetic operations(mutation and crossover).
Mutation operator takes only one parent as an input and
produces one or multiple children, which are used in the
future generations and are similar but not equal to the
parent. Crossover is similar to mutation operator, but
instead of one parent it has two parents and uses char-
acteristics from both parents. A basic GA algorithm
starts by randomly initializing its elements in the domain.
Calculate fitness of each element. Select elements for
crossover or mutation or both, and produces a new pop-
ulation, which then is used in the next iteration until a
stopping condition is reached. [7].

First well-known study to use genetic algorithms for
molecular structures was Bernd Hartke for small silicon
clusters[4] [5], where clusters were encoded as simple
bit strings, mutations are bit flips and used one-point
crossover.

With time researchers have created different GAs with
different genetic operators and operator sequences, such
as arimethical crossover, plane-cut-crossover, sphere-
cut-crossover, twist operator, interior operator and other
operators [13]. The most notable is plane-cut-crossover,
which is used in a many research papers with positive re-
sults [1]. In addition there are also multiple initialization
strategies, such as, box, sphere, octahedron initialization.

Although there are a lot of different studies conducted
on GAs, none of them have compared multiple initializa-
tion strategies and crossover strategies on Lennard Jones
clusters. That is why the study plan is to:

• Compare the run times of different crossover
methods.

• Compare the run times of different initialization
methods.

Context: These comparisons are performed using a ge-
netic algorithm to find the global minimum of Lennard-
Jones clusters.

This could help understand effectiveness, advantages,
disadvantages of certain crossovers and initialization
strategies or validate best practices, which are used to-
day.

In these experiments, all variations of the genetic al-
gorithm are applied solely to carbon atoms, with Python
libraries using angstroms (Å) as units of length and elec-
tronvolts (eV) as units of energy.

This paper is organized into seven sections: Intro-
duction, Baseline Genetic Algorithm, Strategies, Exper-
imental Setup and Results, Discussion, Responsible Re-
search, and Conclusion.

• Baseline Genetic Algorithm: Outlines standard
algorithm used in this study, detailing the imple-
mented methods and any modifications applied.

• Strategies: Describes the crossover and initializa-
tion strategies evaluated in the experiments, which
are compared against the baseline and each other.

• Experimental Setup and Results: Presents the ex-
perimental design, along with visualized results and
performance data.

• Discussion: Interprets the results, providing rea-
soning, comparisons to the baseline, and analysis
of observed trends.

• Responsible Research: Addresses the repro-
ducibility of the research and discusses its ethical
considerations.

• Conclusion: Summarizes the key findings and of-
fers recommendations for future research.

2 Baseline Genetic Algorithm

Figure 2: illustration of Baseline Genetic algorithm.

The baseline genetic algorithm was taken from previ-
ous projects, with minor modifications to improve per-
formance and simplify the integration of experimental
changes. As previously mentioned, genetic algorithms
are population-based metaheuristic methods inspired by
Darwinian natural selection, where the principle of sur-
vival of the fittest guides the evolution process.

Before starting the algorithm, initial population has to
be generated. Throughout the entire project, the popu-
lation size remained constant at 8. Default method for
generating population is the box model, where x, y, z co-
ordinates are uniformly generated from 0 to box length,
where box length gets larger as cluster size increases. In
each iteration, the algorithm generates a new population
based on the fittest individuals from the previous gen-
eration. The iteration begins with parent selection for
crossover. In this setup, elitism is used [19]: four parents
with the highest fitness values are selected (top 50%).
From these, eight valid children are generated through
crossover. To check if generated children are valid, algo-
rithm checks if all atoms are at least 0.15 Å from each
other. Since the crossover function requires two parents
to produce one child, it is called eight times per itera-
tion. Parents are randomly chosen from the four selected
individuals.

The plane-cut splice crossover method is used in the
baseline algorithm [1]. Once the eight offspring are cre-
ated, each has a chance to undergo mutation. Three types
of mutations are applied, each with distinct probabilities:

1. Twist Mutation: A random plane is generated to
divide a cluster into two parts. One part is then ro-
tated around the normal of this plane. This mutation
is applied with a 20% probability per cluster [13]
[5].

2. Displacement Mutation: Each atom in a cluster
has a 10% chance of receiving a small random dis-
placement vector [13].

3. Etching Mutation: This mutation has two variants
[17]:

• Etching Addition: A random atom is tem-
porarily added to the cluster, followed by a lo-
cal optimization step. The added atom is then
removed.

• Etching Subtraction: A random atom is re-
moved first, followed by local optimization,
and then the atom is reinserted.

Each variant has a 2.5% probability, resulting in a
combined 5% chance for etching mutation.

Because mutation types are applied on the basis of
independent probabilities, a single cluster may be sub-
jected to multiple mutations in a single iteration.

After the mutation phase, the algorithm checks for
stopping conditions. In the default implementation: the
algorithm terminated if either the iteration count reached
100, or if the best cluster had not changed over the last
10 iterations (i.e., convergence). However, this stop-
ping criterion was not ideal for benchmarking, as reach-
ing it did not guarantee that the global minimum had
been found—it was possible for the algorithm to remain
trapped in a local minimum for 10 iterations.

To address this, a new stopping condition was imple-
mented. The algorithm now compares the fitness value of
the current best cluster to the known global minimum ob-
tained from a reference database [16] from Cambridge.
If the fitness value is within a defined margin (10−6 eV
) of the global minimum, the algorithm stops; otherwise,
it proceeds to the next iteration. This margin was chosen
to be as small as possible and to be able to counteract the
floating point error.

3 Strategies
In the experiment 6 different crossover methods and 3
different initialization strategies were used. All of the
methods have been previously documented and used in
different articles. For all of the methods, documentation
was provided, but not a implementation, so it is likely
that methods used in this experiment are slightly differ-
ent. Furthermore, all crossover strategies return only one
child. Although some crossovers are capable of produc-
ing two children, only one is randomly selected and re-
turned.

3.1 Crossovers
• One Point Crossover

One-point crossover[2] between two parents is per-
formed by selecting a random breakpoint—between
the 2nd and 3rd elements in the figure (see Fig-
ure 3). The segments before and after the breakpoint
are exchanged between the parents to produce two
offspring: the first segment from Parent 1 is com-
bined with the second segment from Parent 2, and
vice versa. In the experiment, the atom sequence
is randomized and scrambled if a valid child cannot
be generated. Sorting the parent atoms was delib-
erately avoided, as it would resemble the plane-cut
splice crossover.

Figure 3: illustration of One Point Crossover

• Two Point Crossover
Two-point crossover [5], similar to one-point
crossover, uses two breakpoints instead of one, as
described. This results in each parent being divided
into three segments. These segments are then re-
combined to produce new offspring. As with the
one-point crossover, the atom sequence is random-
ized.

Figure 4: illustration of Two Point Crossover

• Uniform Crossover
In uniform crossover[5] [13], the atom sequences
for both parents are randomly generated, as in one-
point and two-point crossover. A single child is pro-
duced by comparing corresponding elements from
each parent and randomly selecting one of them for
each position. Experiment employed a 70/30 bias in
favor of the higher fitness parent [13].

Figure 5: illustration of Uniform Crossover

• Sphere cut splice Crossover

In the Sphere Cut Splice Crossover [13] method,
atomic positions actually matter. Each parent struc-
ture is divided into two regions: an inner sphere and
an outer sphere. A child is generated by combin-
ing the inner sphere of one parent with the outer
sphere of the other. The inner sphere’s radius is se-
lected randomly, while the outer sphere’s radius is
adjusted to ensure all atoms are accounted for. This
crossover is repeated until valid offspring with the
correct number of atoms are produced.

Figure 6: illustration of Sphere cut splice Crossover. Circles
were used instead of spheres to better illustrate the process.

• Arithmetical Crossover

In arithmetical crossover [13], atoms are arranged in
a random sequence, similar to one-point, two-point,
and uniform crossover methods. A single child is
produced by averaging the positions of the corre-
sponding n-th atoms from both parents. This aver-
aging process is repeated until a valid child cluster
is obtained.

Figure 7: illustration of Arithmetical Crossover.

• Plane Cut Splice Crossover
Similar to the Sphere Cut Splice Crossover , the
Plane Cut Splice Crossover [13] also relies on the
spatial positions of atoms. However, instead of us-
ing spheres, this method uses an infinite plane to di-
vide each parent into two regions. A randomly gen-
erated plane slices through space, partitioning both
parents. A child is then created by combining one
region from each parent—one from each side of the
plane. This crossover process is repeated until valid
clusters with the correct number of atoms are pro-
duced.

Figure 8: illustration of Plane Cut Splice Crossover.

3.2 Initialization
• Box initialization

In the box initialization method, the x, y, and z co-
ordinates of atoms are generated uniformly within

a cube ranging from 0 to the box length. The box
length is defined as:

box length = 2

(
1

2
+

(
3× num atoms

4π
√
2

)1/3
)
(2)

This Equation (2) ensures that the box size in-
creases with the number of atoms, preventing spa-
tial biases that could otherwise arise in larger clus-
ters.

Figure 9: illustration of Box initialization.

• Sphere initialization
Rather than generating atoms uniformly within a
box, the sphere initialization method places atoms
uniformly within a sphere of radius R. The radius
is defined as:

R = re

(
1

2
+

(
3× num atoms

4π
√
2

)1/3
)

(3)

[13] This Equation (3) ensures that the spatial dis-
tribution scales larger with the cluster size.

Figure 10: illustration of Sphere initialization.

• Octahedron initialization
Octahedron initialization [18] differs from the box
and sphere models by using fixed, patterned po-
sitions instead of fully random atom placements.
However, using fixed positions can lead to identi-
cal clusters across the initial population. To ad-
dress this, the method generates all possible posi-
tions for a higher-degree octahedron (example of
different degree octahedrons in figure 11) and then
randomly selects a subset of these positions to place
the atoms. This approach introduces controlled ran-
domness while maintaining the geometric structure.
As shown in Figure 11, the structure consists
of multiple layers containing varying numbers of
atoms arranged in a rectangular layout. Each layer
is separated by a distance of 0.5 Å (0.05 nm), and
within each layer, atoms are positioned to form
small rectangles with side lengths of 0.5 Å. All lay-
ers are centered along the same two axes. The max-
imum extent along each axis is calculated and used
to define a simulation box of corresponding dimen-
sions.

Figure 11: Rendered different degree octahedron positions.

Figure 12: Final positions for Lennard-Jones cluster 7. Differ-
ent 12 positions were randomly removed.

4 Experimental Setup and Results
In this experiment, multiple variants of the genetic algo-
rithm were evaluated, focusing on crossover and initial-
ization strategies. The goal was to compare their perfor-
mance, including potential runtime improvements. This
constitutes a comparative performance evaluation, struc-
tured as two separate experiments: one testing different
crossover methods and the other testing various initial-
ization strategies, both using the baseline genetic algo-

rithm as a mold to put in the corresponding strategy.
The algorithm and all the code were created in Python

using the Atomic Simulation Environment [8] library,
which provides a structured implementation of atoms
and the Lennard-Jones potential. All simulations were
performed on a desktop computer (see Appendix A for
hardware specifications).

In the experiment, six different crossover strategies
and three different initialization strategies were evalu-
ated.

For the first part of the experiment, the baseline setup
was used. However, instead of relying solely on the plane
cut splice crossover method, five additional crossover
strategies were introduced. Cluster sizes ranging from
10 to 31 were tested, with each size run 10 times for ev-
ery crossover strategy. These runs were computationally
manageable, which made it feasible to test all strategies
extensively at smaller sizes. Also cluster size 31 have
multiple deep local wells, which might increase run time
for some configurations of the algorithm.

Beyond size 31, the computation time increased sig-
nificantly, making it impractical to run each cluster 10
times for every crossover strategy up to size 40. There-
fore, a selected subset of larger cluster sizes was tested
instead: 33, 35, 36, 40. Due to time constraints, larger
Lennard-Jones clusters were excluded, and most of sizes
between 31 and 40 were skipped to conserve resources.

In the second part of the experiment, three initial-
ization strategies were tested: Box model initializa-
tion, Sphere model initialization, Octahedron initializa-
tion. Since there were fewer initialization strategies
than crossover strategies and baseline crossover method
(plane cut splice) is not the worst, the computational cost
was lower. Consequently, the same set of cluster sizes
used in the crossover strategy tests was applied here as
well and also larger cluster sizes: 43, 48, 51, 55.

To ensure reproducibility and fairness, the
np.random.seed(29 + run) function from the NumPy
library [3] was used. Since all sources of randomness
in the genetic algorithm—including crossover and ini-
tialization strategies—originate from NumPy, setting the
seed based on the run index (e.g., np.random.seed(30)
for run 1, np.random.seed(31) for run 2) ensures con-
sistent randomness within each run. This means that
running the genetic algorithm with the plane cut splice
crossover on run 1 will always yield the same output. It
also guarantees that the initialization strategy produces
the same initial population across all crossover methods
within the same run.

In addition, simple parallelization was used: up to 4
instances of genetic algorithm worked on different strate-
gies and clusters. Each instance reserved 10-15% of CPU
resources and a few MB of RAM. Further increasing
number of instances might affect run times of other in-
stances.

The results of running different crossovers are chaotic
and the order of the best crossovers change often based
on the cluster size, but it can be observed that arithmeti-
cal often is above all other crossovers in Figure 13.

(a) Lennard-Jones Clusters 10–25

(b) Lennard-Jones Clusters 26–40

Figure 13: Run time for different crossover strategies. Cluster
size is on x-axis. Log run time of the algorithm is on y-axis.
Dots are medians, upper whisker excludes top 20% worst runs,
lower whisker excludes top 20% best runs.

To eliminate any biases, statistical tests were also
used. All pairwise combinations of crossovers and their
distributions were compared and only crossover pairs
with p value below 0.05 were considered as it means
that there is a significant difference between these two
crossover distributions (for example, for cluster sizes 20,
21 in Table 1). Among these results even in the full table,
the arithmetical crossover was always one of the pairs
and the mean difference was always negative, indicating
that the mean run time for the arithmetical crossover was
always higher and other crossovers did not have signifi-
cant difference between each other.

For initialization strategies, all run times seem to be
close together, except for octahedron initialization for
cluster sizes from 10 to 15, where it seems to be faster
than the competition.

Cluster Method p ∆Mean (s) 95% CI (s)

20 Arith. vs PCS 0.0146 -75.44 (-140.67, -10.22)
Arith. vs SCS 0.0064 -81.74 (-146.96, -16.51)
Arith. vs TP 0.0399 -67.19 (-132.42, -1.97)
Arith. vs UN 0.0332 -68.76 (-133.98, -3.53)

21 Arith. vs OP 0.0028 -230.49 (-401.90, -59.07)
Arith. vs PCS 0.0000 -307.68 (-479.10, -136.27)
Arith. vs SCS 0.0000 -327.71 (-499.13, -156.30)
Arith. vs TP 0.0002 -276.53 (-447.94, -105.12)
Arith. vs UN 0.0345 -179.86 (-351.27, -8.45)

Table 1: All pairwise comparisons between initialization strate-
gies for cluster sizes 20, 21, where p value was below 0,05.
Arith. = Arithmetical, PCS = Plane Cut Splice, SCS = Sphere
Cut Splice, TP = Two Point, UN = Uniform, OP = One Point.
For the complete table of cluster sizes 10–40, refer to Appendix
C.

Figure 14: Run time for all of the initialization strategies. Clus-
ter size is on x-axis. Log run time of the algorithm is on y-axis.
Dots are medians, upper whisker excludes top 20% worst runs,
lower whisker excludes top 20% best runs.

Statistical tests were also performed for initialization
strategies to remove bias. The same configuration, which
was mentioned for crossover strategies, was also used for
initialization strategies. In Table 2, the octahedron ini-
tialization seems to be better than the sphere initializa-
tion for clusters 12, 13 and appears to be better than the
box initialization for clusters 13, 14. However, not all
pairs that include octahedron initialization with cluster
sizes from 10 to 15 have a p-value below 0,05 threshold.

Also in Table 2 it can be observed that sphere initial-
ization is the worst for cluster size 51 and performs worse
than box initialization for cluster size 19.

5 Discussion
For smaller clusters (10-15), the octahedron initialization
seems to be a winner, but in statistical tests some pair-
wise comparisons between the octahedron initialization
and other initializations had a p value above 0,05. In
addition, when the cluster size increases, run times get
closer together.

Cluster Method p ∆Mean (s) 95% CI (s)

12 Octa. vs Sphere 0.0350 3.8935 (0.23, 7.56)

13 Box vs Octa. 0.0078 -3.4237 (-6.06, -0.79)
Octa. vs Sphere 0.0214 3.0140 (0.38, 5.65)

14 Box vs Octa. 0.0002 -5.6762 (-8.81, -2.54)

19 Box vs Sphere 0.0173 18.5503 (2.95, 34.15)

51 Box vs Sphere 0.0011 4322.1139 (1669.32, 6974.91)
Octa. vs Sphere 0.0231 3023.1741 (370.38, 5675.97)

Table 2: All pairwise (clusters 10-55) comparisons between
initialization strategies for all cluster sizes, where p value was
below 0,05. Arith. = Arithmetical, PCS = Plane Cut Splice,
SCS = Sphere Cut Splice, TP = Two Point, UN = Uniform, OP
= One Point. For the complete table of cluster sizes 10–40,
refer to Appendix C.

This can be attributed to the initialization strategy,
which generates an initial population that often falls
within the global minimum well. To assess this, a method
was developed to check whether the best cluster in the
first iteration was within 0.1 Å (0.01 nm) of the true
global minimum (see Figure 15).

Figure 15: Graph of number of runs near global minimum.

From 15 it can be seen that octahedron almost always
starts in the global minimum well for cluster sizes 10-
14 and drastically decreases after size 15, which could
explain fast run times for all the cluster sizes below 15
for octahedron initialization.

Since initialization is performed only once per execu-
tion, it is reasonable that the runtime differences between
initialization strategies for larger clusters are minimal, as
all other algorithmic steps are executed over a thousand
times. Additionally, for smaller clusters, there is a higher
likelihood of generating an initial population within the
global minimum well, making it plausible that some ini-
tialization strategies can exploit this advantage more ef-
fectively than others.

From statistical tests (Table 1, Appendix C) and from
the plot (Figures 13), the arithmetical crossover was the
worst crossover strategy, as it was a pair in all pairwise

comparisons with a p value below 0,05 and with a mean
value greater than the other pair.

The worst performing crossover is easy to identify, but
determining the best one is less straightforward, as the re-
maining five crossovers show no significant differences
in their distributions. The uniform, one-point, and two-
point crossovers use a shuffle method to randomize the
atom sequence in memory when valid child clusters can-
not be generated with the current atom sequence, which
could explain similarities between them. However, it is
harder to explain non significant distributions between
uniform, one-point, two-point crossovers, which manip-
ulates atom sequence to create new children, and plane
cut splice, sphere cut splice crossovers, which manipu-
lates atom cartesian positions to create new children. Ex-
ploring other variables (such as population size, selection
strategies, and mutation methods) could lead to differ-
ent results, as it is unlikely that the current configuration
represents the optimal setup of the genetic algorithm for
solving the Lennard-Jones cluster optimization problem.

Furthermore, despite 5 weeks of continuous testing of
crossover strategies, it was unfortunately not possible to
complete all 10 runs for each crossover on every cluster.
Specifically, Cluster 33 has 9 runs per crossover, while
Clusters 35 and 40 each have 8 runs per crossover. This
may impact the results by increasing variance. On the
positive side, all runs for the initialization strategies were
successfully completed.

It is also important to acknowledge the limitations of
the p-value, which played a key role in analyzing the re-
sults for both crossover and initialization strategies. The
p-value is susceptible to false positives, and over-reliance
on it can promote questionable research practices. More-
over, even trivial effects can appear statistically signifi-
cant given a sufficiently large sample size [6].

6 Conclusion
Based on the experimental results, arithmetical crossover
performs the worst among the tested crossover methods
for solving the global optimization problem of Lennard-
Jones clusters. However, it remains unclear which of
the remaining crossovers (Sphere Cut Splice, Plane Cut
Splice, Uniform, One-Point, or Two-Point) is the most
effective.

For Lennard-Jones clusters of sizes 10 to 14, the oc-
tahedron initialization strategy proves to be the most ef-
fective, as it has a higher probability of generating initial
populations near the global minimum. For clusters larger
than 15 atoms, no single initialization strategy clearly
outperforms the others.

To enhance the baseline genetic algorithm in future
work, several improvements can be considered: intro-
ducing multi-threading to enable simulations of larger
clusters, ensuring all cluster sizes are included without
omissions, increasing the number of runs per configura-
tion, running the algorithm on more powerful hardware,
and take into account other variables (such as population
size and mutation, selection strategy).

7 Responsible Research
Significant consideration was taken to ensure that the re-
search conclusions remain as unbiased as possible. To
avoid cherry-picking the results, no data was excluded
from the dataset throughout the study. Due to inherent
randomness in the algorithm and its initialization, it was
essential to mitigate runtime variance. Therefore, each
cluster size and algorithm configuration were run at least
10 times, or more, when there was extra time.

Additionally, factors related to the system, such as
background processes and hardware load, can introduce
additional variability. To reduce this impact, efforts were
made to standardize the system environment across runs,
even when the runs occurred on different days and on
parallel runs. Increasing the number of repetitions also
helped counteract this variability and ensure more reli-
able results.

During the research process, large language models
(LLMs) were used as tools to assist with various tasks,
such as improving code snippets, interpreting error mes-
sages, checking grammar, generating latex syntax for
plots and images, modifying Overleaf templates, gen-
erating bibtex references and providing a second opin-
ion on whether certain text made sense. Overleaf built
in grammatical checker and ChatGPT was used for this.
However, their suggestions were not followed blindly.
For python code, for example, it is much slower to iterate
through all atoms using python ”for” loops, but with help
of numpy and other libraries, the code was optimized to
improve performance. To make sure the method func-
tions the same as before, it was tested to ensure it pro-
duced same output as before. Generating ideas, analy-
sis was avoided as there was enough information from
found research articles, provided templates, information
from brightspace platform and ideas for analysis was dis-
cussed in the meetings and with other students. All of
the text was written by one person. In writing process
LLM was used to refine individual sentences for clarity
or fluency, and grammar suggestions in Overleaf were
reviewed and selectively accepted or ignored during the
writing process. See Appendix B for prompts.

References
[1] D. M. Deaven and K. M. Ho. Molecular geome-

try optimization with a genetic algorithm. Physical
Review Letters, 75(2):288–291, 1995.

[2] David E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-
Wesley, Reading, Massachusetts, 1989.

[3] Charles R. Harris, K. Jarrod Millman, Stéfan J.
van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebas-
tian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk,
Matthew Brett, Allan Haldane, Jaime Fernández
del Rı́o, Mark Wiebe, Pearu Peterson, Pierre
Gérard-Marchant, Kevin Sheppard, Tyler Reddy,

Warren Weckesser, Hameer Abbasi, Christoph
Gohlke, and Travis E. Oliphant. Array program-
ming with NumPy. Nature, 585(7825):357–362,
September 2020.

[4] Bernd Hartke. Global geometry optimization of
clusters using genetic algorithms. The Journal of
Physical Chemistry, 97(39):9973–9976, 1993. Re-
ceived: May 11, 1993.

[5] Roy L. Johnston. Evolving better nanoparticles:
Genetic algorithms for optimising cluster geome-
tries. Dalton Transactions, pages 4193–4207,
2003. Received 21st May 2003, Accepted 15th
August 2003, First published online 1st September
2003.

[6] Samuel C. Karpen. P value problems. American
Journal of Pharmaceutical Education, 81(9):6570,
2017.

[7] Sourabh Katoch, Sumit Singh Chauhan, and Vi-
jay Kumar. A review on genetic algorithm: Past,
present, and future. Multimedia Tools and Appli-
cations, 80:8091–8126, 2021. Received: 27 July
2020 / Revised: 12 October 2020 / Accepted: 23
October 2020.

[8] Ask Hjorth Larsen, Jens Jørgen Mortensen, Jakob
Blomqvist, Ivano E Castelli, Rune Christensen,
Marcin Dułak, Jesper Friis, Michael N Groves,
Bjørk Hammer, Cory Hargus, Eric D Hermes,
Paul C Jennings, Peter Bjerre Jensen, James Ker-
mode, John R Kitchin, Esben Leonhard Kols-
bjerg, Joseph Kubal, Kristen Kaasbjerg, Steen
Lysgaard, Jón Bergmann Maronsson, Tristan Max-
son, Thomas Olsen, Lars Pastewka, Andrew Peter-
son, Carsten Rostgaard, Jakob Schiøtz, Ole Schütt,
Mikkel Strange, Kristian S Thygesen, Tejs Vegge,
Lasse Vilhelmsen, Michael Walter, Zhenhua Zeng,
and Karsten W Jacobsen. The atomic simulation
environment—a python library for working with
atoms. Journal of Physics: Condensed Matter,
29(27):273002, 2017.

[9] LibreTexts. Lennard-jones potential. Accessed:
2025-05-22.

[10] A. P. Mouritz, E. Gellert, P. Burchill, and K. Chal-
lis. Review of advanced composite structures for
naval ships and submarines. Composite Structures,
53(1):21–41, 2001.

[11] Prachi Patel. Materials for space exploration take
a giant leap. ACS Central Science, 9(4):582–585,
2023.

[12] Peter Schwerdtfeger and David J. Wales. 100 years
of the lennard-jones potential. Journal of Chemical
Theory and Computation, 20(9):3379–3405, 2024.
Published April 26, 2024.

[13] Frederico T. Silva, Mateus X. Silva, and Jadson C.
Belchior. A new genetic algorithm approach ap-
plied to atomic and molecular cluster studies. Fron-

tiers in Chemistry, 7:707, 2019. Published: 05
November 2019.

[14] Adrian P. Sutton. Concepts of Materials Science.
Oxford University Press, Oxford, United Kingdom,
1st edition, 2021.

[15] Odile Patrick Thalia. Advanced materials for space
exploration. Research Output Journal of Biological
and Applied Science, 3(1):18–22, 2024.

[16] D. J. Wales, J. P. K. Doye, A. Dullweber, M. P.
Hodges, F. Y. Naumkin, F. Calvo, J. Hernández-
Rojas, and T. F. Middleton. The cambridge cluster
database. http://www-wales.ch.cam.ac.uk/CCD.
html, n.d. Accessed: 2025-06-02.

[17] Matthew D. Wolf and Uzi Landman. Genetic algo-
rithms for structural cluster optimization. The Jour-
nal of Physical Chemistry A, 102(30):6129–6137,
July 1998. Received: March 11, 1998; In final
form: May 1, 1998.

[18] Yuhong Xiang, Haiyan Jiang, Wensheng Cai, and
Xueguang Shao. An efficient method based on lat-
tice construction and the genetic algorithm for opti-
mization of large lennard-jones clusters. The Jour-
nal of Physical Chemistry A, 108(14):3586–3592,
April 2004. Received: December 10, 2003; In final
form: February 11, 2004.

[19] Eckart Zitzler, Kalyanmoy Deb, Carlos
Artemio Coello Coello, David Corne, and Lothar
Thiele, editors. Evolutionary Multi-Criterion
Optimization: First International Conference,
EMO 2001, Zurich, Switzerland, March 7–9,
2001, Proceedings, volume 1993 of LNCS, Berlin,
Heidelberg, March 2001. Springer. CR Subject
Classification (1998): F.2, G.1.6, G.1.2, I.2.8.

A Computer specifications
• CPU: AMD Ryzen 5 5600 6-Core Processor
• Memory: Corsair DDR4 3200MHz OC, 16GB
• GPU: AMD Radeon RX 6700 XT
• Motherboard: MSI B350M Gaming Pro
• Operating System: Windows 11
• Storage: Western Digital Blue 7200RPM 1TB

HDD

B Questions and answers from chatGPT
This section includes all prompts, which were used in
some process in the research.

• Question: Can you rewrite this sentence:
“To make sure the method functions the same as be-
fore, it was tested if it produces the same output.”
Answer: “The method was tested to ensure it pro-
duces the same output as before.”

• Question: Can you itemize this in LaTeX?
Answer:

http://www-wales.ch.cam.ac.uk/CCD.html
http://www-wales.ch.cam.ac.uk/CCD.html

\begin{itemize}
\item \textbf{CPU:}
AMD Ryzen 5 5600 6-Core Processor
\item \textbf{Memory:}
Corsair DDR4 3200MHz, 16GB
\item \textbf{GPU:}
AMD Radeon RX 6700 XT
\item \textbf{Motherboard:}
MSI B350M Gaming Pro
\item \textbf{Operating System:}
Windows 11
\item \textbf{Storage:}
Western Digital Blue 7200RPM
1TB HDD

\end{itemize}

• Question: how to make overwrite if the file exists
def save_last_pop(self):

path_base = f"./data/ga/
LJ{self.num_atoms}/pop"
os.makedirs(path_base, exist_ok=True)

data = {}
for i, cluster in enumerate(self.cur_clusters):

data[f"pop{i}"] = cluster.positions
with open(path_base, "w") as f:

json.dump(data, f, indent=4)

Answer:
file_path = os.path.join(path_base,
"last_pop.json")

• Question: can you rewrite this sentence ”But not all
pairs, which include octahedron initialization, from
cluster size 10-15 have p value below 0,05.”
Answer: However, not all pairs that include octahe-
dron initialization with cluster sizes from 10 to 15
have a p-value below 0.05

• Question: what is the difference between results
and discussion sections in a research paper
Answer: Results: To present the data and findings
of your research objectively, without interpretation.
Discussion: To interpret and analyze the meaning
and implications of the results in the context of your
research question and the broader field.

• Question: can you rewrite this ”From these tests
only pairs with p value below 0.05 were the ones,
which include arithmetical crossover and mean diff
was always negative, which means arithmetical
crossover mean run time was always higher.”
Answer: ”Among these tests, only the pairs with p-
values below 0.05 involved arithmetical crossover,
and the mean difference was consistently negative,
indicating that the mean run time for arithmetical
crossover was always higher.”

• Question: does reject == True indicate that the dis-
tributions are not the same using tukey

Answer: Yes, exactly. When reject == True in the
Tukey HSD test results, it means: There is a statis-
tically significant difference between the two group
means at the specified significance level (usually al-
pha = 0.05).

• Question: ”np.where(mask[:, None], pos1, pos2)”
what does [:, None] mean
Answer: The expression [:, None] (or equivalently
[:, np.newaxis]) in NumPy is used to add a new axis
to an array, effectively reshaping it.

• Question: can you itemize this in overleaf ”The
Baseline Genetic Algorithm section outlines a stan-
dard algorithm used in this study, detailing the
methods implemented and any modifications ap-
plied.
The Strategies section describes the crossover and
initialization strategies evaluated in the experi-
ments, which are compared against the baseline and
each other.
In the Experimental Setup and Results section, the
experimental design is presented, along with visu-
alized results and performance data.
The Discussion section interprets the results, pro-
viding reasoning, comparisons to the baseline, and
analysis of observed trends.
The Responsible Research section addresses the re-
producibility of the research and discusses its ethi-
cal considerations.
Finally, the Conclusion summarizes the key find-
ings and offers recommendations for future re-
search.”
Answer:

\begin{itemize}
\item \textbf{Baseline Genetic Algorithm:}
Outlines the standard algorithm used
in this study, detailing the
implemented methods and any
modifications applied.

\item \textbf{Strategies:}
Describes the crossover and
initialization strategies
evaluated in the experiments,
which are compared against the
baseline and each other.

\item \textbf{Experimental Setup
and Results:} Presents the
experimental design, along
with visualized results
and performance data.

\item \textbf{Discussion:}
Interprets the results,
providing reasoning, comparisons
to the baseline, and analysis
of observed trends.

\item \textbf{Responsible Research:}

Addresses the reproducibility of the
research and discusses its ethical
considerations.

\item \textbf{Conclusion:}
Summarizes the key findings
and offers recommendations
for future research.

\end{itemize}

• Question: how to rewrite this sentence ”Algorithm
does not choose only one mutation per cluster, all
of the mutations can happen on a single cluster if
probability generation deems it .”
Answer: ”The algorithm does not limit each cluster
to a single mutation; multiple mutations can be ap-
plied to the same cluster if determined by the prob-
ability generation.”

• Question: can you rewrite this sentence ”However,
this stopping criterion was not ideal for benchmark-
ing purposes, as it did not mean it had found the
global minimum, because it was possible to get
stuck in a local minimum for 10 iterations.”
Answer: ”However, this stopping criterion was not
ideal for benchmarking, as reaching it did not guar-
antee that the global minimum had been found—it
was possible for the algorithm to remain trapped in
a local minimum for 10 iterations.”

• Question: how to make figures on top of the next
page
Answer: To force a figure to appear at the top of
the next page in LaTeX, you’ll want to:
Use the clearpage or newpage command before the
figure to ensure it moves to a new page.
Use the [t] placement specifier (top of page).
Avoid [H] (from the float package)

• Question: i get this error ”Process finished with
exit code -1073741819 (0xC0000005)”
Answer: The error code -1073741819
(0xC0000005) is a Windows access violation,
meaning your Python process tried to access
restricted memory and crashed. This is not a typical
Python error — it usually suggests:
A C-extension module (like matplotlib, numpy,
etc.) crashed.
A corrupted .json file or data issue triggered a crash
in a compiled library.
Running out of memory or corrupted Python/IDE
environment.

• Question: how to make y axis log scale

plt.errorbar(x_axis, y_axis,
yerr=stds, fmt=’-o’, capsize=5, label=name)

Labels and title
plt.xlabel(’Cluster Size (atoms)’)
plt.ylabel(’Average Runtime (s)’)

plt.title(’GA Runtime vs Lennard-Jones
Cluster Size’)
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()"

Answer: To make the Y-axis logarithmic in your
Matplotlib plot, you can simply add:

plt.yscale(’log’)

• Question: can you create overleaf cite for
this ”Journal of Physics Condensed MatterVol-
ume 29, Issue 277 June 2017 Article number
273002” ”ISSN 09538984 DOI 10.1088/1361-
648X/aa680e” ”The atomic simulation environ-
ment—a Python library for working with atoms To
cite this article: Ask Hjorth Larsen et al 2017 J.
Phys.: Condens. Matter 29 273002”
Answer:
@article{larsen2017ase,
author = {Hjorth Larsen},
title = {The atomic simulation environment|a
Python library for working with atoms},
journal = {Journal of Physics: Condensed Matter},
volume = {29},
number = {27},
year = {2017},
pages = {273002},
doi = {10.1088/1361-648X/aa680e},
issn = {0953-8984}

}

• Question: how to generate num atoms amount of
positions given that positions has more than num
atoms of coordinates
Answer:

indices = np.random.choice(
len(all_positions), size=num_atoms,
replace=False)

• Question: can you create overleaf reference for
this ”Lecture Notes in Computer Science (includ-
ing subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics)Volume
1993, Pages 67 - 812001 1st International Confer-
ence on Evolutionary Multi-Criterion Optimization,
EMO 2001Zurich7 March 2001through 9 March
2001Code 118929”
Answer:

@inproceedings{EMO2001,
author = {Unknown}, % Replace with
actual author(s) if known
title = {Proceedings of the 1st
International Conference on Evolutionary
Multi-Criterion Optimization (EMO 2001)},
booktitle = {Lecture Notes in Computer
Science},

series = {LNCS},
volume = {1993},
pages = {67--81},
year = {2001},
publisher = {Springer},
address = {Zurich, Switzerland},
month = mar,
note = {Includes subseries:
Lecture Notes in Artificial Intelligence
and Bioinformatics},
isbn = {978-3-540-41747-3},
% Replace or remove if not needed
doi = {}, % Add DOI if available
eventtitle = {1st International
Conference on Evolutionary
Multi-Criterion Optimization (EMO 2001)},
eventdate = {2001-03-07/2001-03-09},
eventlocation= {Zurich, Switzerland}

}

• Question: how to include another tex file in latex
Answer:

\input{chapter1} % This includes
chapter1.tex

• Question: Im benchmarking genetic algorithm on
lennard jones clusters. I am running ga on different
cluster size. I want to plot cluster size on x axis and
on y axis average run time and I want to include
variance.
Answer:

plt.xlabel(’Cluster Size (atoms)’)
plt.ylabel(’Average Runtime (s)’)
plt.title(’GA Runtime vs Lennard-Jones
Cluster Size’)
plt.grid(True)
plt.legend()
plt.tight_layout()
plt.show()

• Question: how to append lists with 3d coordinates
in python
Answer:

coords = [] # empty list
point = [1.0, 2.0, 3.0]
coords.append(point)

• Question:

can you write this in latex "Rather
than generating atoms uniformly
in a box, sphere initialization
generates atoms uniformly in a sphere
with a radius R.
R = re * (0.5 + ((3 * num_atoms) /
(4 * np.pi * np.sqrt(2))) ** (1 / 3))"

Answer:

Rather than generating atoms uniformly
within a box, the
\textit{sphere initialization} method
places atoms uniformly within a
sphere of radius R. The radius
is defined as:

\[
R = r_e \times \left(0.5 +
\left(\frac{3 \times \text{num_atoms}
}{4 \pi \sqrt{2}} \right)ˆ{1/3} \right)
\]

• Question: create cite for this in overleaf ”Evolv-
ing better nanoparticles: Genetic algorithms for op-
timising cluster geometries Roy L. Johnston School
of Chemistry, University of Birmingham, Edgbas-
ton, Birmingham, UK B15 2TT Received 21st May
2003, Accepted 15th August 2003 First published
as an Advance Article on the web 1st September
2003”
Answer:

@article{johnston2003evolving,
title = {Evolving better nanoparticles:
Genetic algorithms for optimising
cluster geometries},
author = {Roy L. Johnston},
journal = {Nanoscale},
year = {2003},
note = {Received 21st May 2003,
Accepted 15th August 2003, First published
online 1st September 2003},
institution = {School of Chemistry,
University of Birmingham, Edgbaston,
Birmingham, UK B15 2TT}

}

• Question: how to make sure the figure is with the
text and not on other page
Answer: Use [H] from the float package
The standard [h] placement is a suggestion, so La-
TeX might still move your figure elsewhere to opti-
mize layout. The [H] placement from the float pack-
age forces the figure exactly at that location.

• Question: how to cite this website in overleaf

"https://chem.libretexts.org/Bookshelves/
Physical_and_Theoretical_
Chemistry_Textbook_Maps/
Supplemental_Modules_(Physical_and_
Theoretical_Chemistry)
/Physical_Properties_of_Matter
/Atomic_and_Molecular_Properties
/Intermolecular_Forces/
Specific_Interactions/
Lennard-Jones_Potential"

Answer:
@online{libretextsLJ,
author = {{LibreTexts}},

title = {Lennard-Jones Potential},
year = {2023},
url = {https://chem.libretexts.org
/Bookshelves/

Physical_and_Theoretical_
Chemistry_Textbook_Maps/

Supplemental_Modules_
(Physical_and_Theoretical_Chemistry)
/Physical_Properties_of_Matter/
Atomic_and_Molecular_Properties/
Intermolecular_Forces/
Specific_Interactions/
Lennard-Jones_Potential},
note = {Accessed: 2025-05-22}

}

• Question: how to write what each value is in latex

"\[
V(r) = 4\varepsilon \left[\left(
\frac{\sigma}{r} \right)ˆ{12}
- \left(\frac{\sigma}{r} \right)ˆ6 \right]
\]"

Answer:
\[
V(r) = 4\varepsilon \left[
\left(\frac{\sigma}{r} \right)ˆ{12}
- \left(\frac{\sigma}{r} \right)ˆ6 \right]
\]

\begin{align*}
V(r) & : \text{Potential energy as
a function of distance } r \\
\varepsilon & : \text{Depth of
the potential well} \\
\sigma & : \text{Finite distance
at which the inter-particle potential is zero} \\
r & : \text{Distance between
the particles}
\end{align*}

• Question: python how to check for nan
Answer:
x = float(’nan’)
print(math.isnan(x))

• Question: how to make the scatter plot and x axis
as integers

"

plt.plot(x_axis, y_axis, label=name)
plt.xlabel("Time (s)")
plt.ylabel("Potential Energy")
plt.title("Comparison of Energy
Convergence LJ" + str(lj))
plt.legend()
plt.grid(True)
plt.tight_layout()

plt.show()"

Answer:
plt.scatter(x_axis, y_axis,
label=name) # scatter instead of plot

Optional: force x-ticks
to show as integers
plt.xticks(x_axis)

plt.xlabel("LJ cluster size (lj)")
plt.ylabel("Success Ratio
(found_min / total)")
plt.title("Comparison of
Success Ratio Across LJ Sizes")
plt.legend()
plt.grid(True)
plt.tight_layout()
plt.show()

• Question: How to shuffle numpy 2d array for clus-
ter1.positions
Answer:
a = np.array(cluster1.positions)
np.random.shuffle(a)

• Question: python how to speed up this function

"def uniform(cluster1, cluster2):
align_cluster(cluster1)
align_cluster(cluster2)

pos1 = np.array(cluster1.positions)
pos2 = np.array(cluster2.positions)

while True:
np.random.shuffle(pos1)
np.random.shuffle(pos2)

g = []
for i in range(len(pos1)):

if random.random() < 0.5:
g.append(pos1[i])

else:
g.append(pos2[i])

if configuration_validity(g):
return np.array(g)"

Answer:
def uniform(cluster1, cluster2):

align_cluster(cluster1)
align_cluster(cluster2)

pos1 = np.array(cluster1.positions)
pos2 = np.array(cluster2.positions)

size = len(pos1)

while True:
Shuffle indices once, not full arrays
idx1 = np.random.permutation(size)

idx2 = np.random.permutation(size)

Vectorized 50/50 mask
mask = np.random.rand(size) < 0.5

Vectorized choice based on mask
g = np.where(mask[:, None],
pos1[idx1], pos2[idx2])

if configuration_validity(g):
return g

• Question: how to fix this

" def __init__(
self,
mutation=None,
num_clusters=8,
displacement_length=0.2,
num_selection=0,
preserve=True,
local_optimizer=BFGS,
calculator=LennardJones,
crossover=(cluster1, cluster2,
box_length, num_atoms) =>
plane_cut_splice(cluster1,
cluster2, box_length, num_atoms)

)"

Answer:
def __init__(

self,
mutation=None,
num_clusters=8,
displacement_length=0.2,
num_selection=0,
preserve=True,
local_optimizer=BFGS,
calculator=LennardJones,
crossover=lambda cluster1,
cluster2, box_length, num_atoms:
plane_cut_splice(cluster1,
cluster2, box_length, num_atoms)

):

C Crossover comparison full table

Cluster Method p ∆Mean (s) 95% CI (s)

10 Arith. vs SCS 0.0226 -7.80 (-14.87, -0.73)

11 Arith. vs PCS 0.0481 -8.98 (-17.92, -0.05)

12 Arith. vs OP 0.0013 -18.55 (-31.71, -5.39)
Arith. vs PCS 0.0004 -19.98 (-33.14, -6.81)
Arith. vs SCS 0.0002 -21.06 (-34.23, -7.90)
Arith. vs TP 0.0006 -19.56 (-32.72, -6.39)
Arith. vs UN 0.0004 -20.18 (-33.34, -7.01)

13 Arith. vs OP 0.0000 -15.09 (-23.62, -6.56)
Arith. vs PCS 0.0001 -14.63 (-23.16, -6.10)
Arith. vs SCS 0.0000 -16.32 (-24.85, -7.79)
Arith. vs TP 0.0000 -15.33 (-23.86, -6.80)
Arith. vs UN 0.0000 -15.29 (-23.82, -6.76)

14 Arith. vs OP 0.0034 -16.49 (-28.95, -4.04)
Arith. vs PCS 0.0029 -16.69 (-29.15, -4.24)
Arith. vs SCS 0.0010 -18.11 (-30.57, -5.66)
Arith. vs TP 0.0101 -14.95 (-27.40, -2.50)
Arith. vs UN 0.0025 -16.90 (-29.36, -4.45)

15 Arith. vs OP 0.0001 -17.64 (-28.25, -7.03)
Arith. vs PCS 0.0001 -17.71 (-28.32, -7.10)
Arith. vs SCS 0.0001 -17.91 (-28.52, -7.29)
Arith. vs TP 0.0000 -19.07 (-29.69, -8.46)
Arith. vs UN 0.0009 -15.58 (-26.20, -4.97)

19 Arith. vs OP 0.0346 -175.08 (-342.02, -8.15)
Arith. vs PCS 0.0214 -185.25 (-352.19, -18.31)
Arith. vs SCS 0.0255 -181.58 (-348.52, -14.64)
Arith. vs UN 0.0382 -172.92 (-339.85, -5.98)

Table 3: All pairwise crossover comparisons with p value be-
low 0.05 for clusters 10-19. Arith. = Arithmetical, PCS = Plane
Cut Splice, SCS = Sphere Cut Splice, TP = Two Point, UN =
Uniform, OP = One Point.

Cluster Method p ∆Mean (s) 95% CI (s)

20 Arith. vs PCS 0.0146 -75.44 (-140.67, -10.22)
Arith. vs SCS 0.0064 -81.74 (-146.96, -16.51)
Arith. vs TP 0.0399 -67.19 (-132.42, -1.97)
Arith. vs UN 0.0332 -68.76 (-133.98, -3.53)

21 Arith. vs OP 0.0028 -230.49 (-401.90, -59.07)
Arith. vs PCS 0.0000 -307.68 (-479.10, -136.27)
Arith. vs SCS 0.0000 -327.71 (-499.13, -156.30)
Arith. vs TP 0.0002 -276.53 (-447.94, -105.12)
Arith. vs UN 0.0345 -179.86 (-351.27, -8.45)

22 Arith. vs OP 0.0256 -154.69 (-296.98, -12.40)
Arith. vs PCS 0.0006 -214.54 (-356.83, -72.25)
Arith. vs SCS 0.0010 -206.84 (-349.13, -64.56)
Arith. vs TP 0.0082 -174.23 (-316.52, -31.94)
Arith. vs UN 0.0156 -163.38 (-305.67, -21.10)

24 Arith. vs OP 0.0069 -252.48 (-455.51, -49.45)
Arith. vs PCS 0.0005 -309.53 (-512.56, -106.50)
Arith. vs SCS 0.0003 -318.33 (-521.36, -115.30)
Arith. vs TP 0.0021 -279.49 (-482.52, -76.46)

25 Arith. vs OP 0.0000 -494.97 (-768.69, -221.25)
Arith. vs PCS 0.0000 -617.74 (-891.46, -344.02)
Arith. vs SCS 0.0000 -601.61 (-875.33, -327.89)
Arith. vs TP 0.0000 -552.41 (-826.13, -278.70)
Arith. vs UN 0.0000 -512.38 (-786.09, -238.66)

26 Arith. vs OP 0.0000 -2671.56 (-4042.07, -1301.04)
Arith. vs PCS 0.0000 -3163.70 (-4534.22, -1793.18)
Arith. vs SCS 0.0000 -3116.92 (-4487.44, -1746.40)
Arith. vs TP 0.0000 -2959.40 (-4329.92, -1588.89)
Arith. vs UN 0.0000 -2906.73 (-4277.25, -1536.21)

27 Arith. vs OP 0.0316 -1202.73 (-2336.92, -68.55)
Arith. vs PCS 0.0005 -1717.31 (-2851.50, -583.13)
Arith. vs SCS 0.0008 -1677.65 (-2811.84, -543.47)
Arith. vs TP 0.0149 -1309.06 (-2443.25, -174.88)
Arith. vs UN 0.0340 -1192.07 (-2326.25, -57.88)

28 Arith. vs OP 0.0292 -1209.82 (-2339.73, -79.91)
Arith. vs PCS 0.0018 -1569.35 (-2699.26, -439.44)
Arith. vs SCS 0.0017 -1578.68 (-2708.58, -448.77)
Arith. vs TP 0.0137 -1314.91 (-2444.82, -185.00)

29 Arith. vs OP 0.0012 -6011.28 (-10183.29, -1839.28)
Arith. vs PCS 0.0004 -6504.31 (-10676.31, -2332.31)
Arith. vs SCS 0.0004 -6464.67 (-10636.67, -2292.67)
Arith. vs TP 0.0004 -6446.13 (-10618.13, -2274.13)
Arith. vs UN 0.0006 -6295.06 (-10467.06, -2123.06)

30 Arith. vs OP 0.0212 -7631.49 (-14495.36, -767.62)
Arith. vs PCS 0.0039 -8999.02 (-15862.89, -2135.15)
Arith. vs SCS 0.0036 -9059.11 (-15922.98, -2195.24)

31 Arith. vs OP 0.0025 -6251.30 (-10870.76, -1631.84)
Arith. vs PCS 0.0000 -8481.85 (-13101.31, -3862.38)
Arith. vs SCS 0.0001 -7883.80 (-12503.26, -3264.33)
Arith. vs TP 0.0004 -7159.16 (-11778.62, -2539.69)
Arith. vs UN 0.0005 -7041.07 (-11660.54, -2421.61)

36 Arith. vs OP 0.0000 -19744.10 (-27500.35, -11987.86)
Arith. vs PCS 0.0000 -21242.92 (-28999.17, -13486.68)
Arith. vs SCS 0.0000 -21376.37 (-29132.61, -13620.12)
Arith. vs TP 0.0000 -20183.73 (-27939.97, -12427.48)
Arith. vs UN 0.0000 -18483.57 (-26239.81, -10727.33)

40 Arith. vs OP 0.0061 -15994.63 (-28618.50, -3370.76)
Arith. vs PCS 0.0010 -19122.67 (-32127.24, -6118.09)
Arith. vs SCS 0.0003 -19553.45 (-31873.09, -7233.82)
Arith. vs TP 0.0081 -15186.48 (-27506.11, -2866.84)
Arith. vs UN 0.0127 -14518.80 (-26838.44, -2199.17)

Table 4: All pairwise crossover comparisons with p value be-
low 0.05 for clusters 20-40. Arith. = Arithmetical, PCS = Plane
Cut Splice, SCS = Sphere Cut Splice, TP = Two Point, UN =
Uniform, OP = One Point.

	Introduction
	Baseline Genetic Algorithm
	Strategies
	Crossovers
	Initialization

	Experimental Setup and Results
	Discussion
	Conclusion
	Responsible Research
	Computer specifications
	Questions and answers from chatGPT
	Crossover comparison full table

