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ABSTRACT: In this paper we develop a Bayesian network (BN) that relates offshore storm conditions to
their accompagnying flood characteristics and damages to residential buildings, following on the trend of
integrated flood impact modeling. It is based on data from hydrodynamic storm simulations, information
on land use and a depth-damage curve. The approach can easily be applied to any site. We have chosen
the Belgian village Zeebrugge as a case study, although we use a simplified storm climate. The BN
can predict spatially varying inundation depths and building damages for specific storm scenarios and
diagnose under which storm conditions and where on the site the highest impacts occur.

Coastal zones are very attractive to develop so-
cial, industrial and recreational infrastructure. They
have rich natural resources, impressive landscapes
and excellent navigation possibilities. In 2003 an
estimated 23% of the world population lived in low-
lying1 coastal areas (Small and Nicholls, 2003).
The ongoing trend is a disproportionately rapid
expansion of economic activity, urban areas and
tourist resorts. At the same time coasts are affected
by various hydro-meteorological phenomena, such
as wind, waves, tides and precipitation which
can reach extraordinary magnitudes during storm
surges, hurricanes, typhoons or tsunamis. Result-
ing floods threaten people, cause land loss, damage
property, infrastructure and ecological habitats, and
destabilize economic activities.

While coastal zone managers cannot influence

1By low-lying coastal areas we mean areas both within
100km of the shoreline and less than 100m above sea level.

the occurrence of extreme events, they can apply
measures to reduce the accompanying risks in the
short, middle and long term.

Researchers across many disciplines are dedi-
cated to developing methodologies that identify
risks and to helping decision makers design effec-
tive risk reduction plans. They apply numerical
hydrodynamic process models to assess the natu-
ral coastal response and the extent of flooding due
to storms, e.g. XBeach (Roelvink et al., 2009),
TELEMAC (Hervouet, 2000) or MIKE21 (Warren
and Bach, 1992), and use separate models to esti-
mate economic, political, social, cultural, environ-
mental and health-related impacts. Comprehensive
reviews have been written on assessment methods
for economic damage (Merz et al., 2010), on flood-
related health impacts (Ahern et al., 2005; Hajat
et al., 2005), and on estimation methods for loss
of life (Jonkman et al., 2008b).
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Ongoing research is on the one hand directed to-
wards improving the various consequence models
and comparing them with each other (e.g. Schröter
et al., 2014). On the other hand there is a trend to-
wards integrating the separate modeling approaches
into a homogeneous framework. A GIS-based ap-
proach to describe a spatially varying flood hazard
and associated estimates of direct physical dam-
ages to various objects, indirect economic damage
and the loss of life has been proposed by (Jonkman
et al., 2008a).

We continue on the trend of model integration.
While Jonkman’s model presents the results of one
typical low probability-high impact flood scenario
with the help of maps, we attempt to compile im-
pact estimates of many different storm scenarios in
a discrete Bayesian network (BN). BNs are graphi-
cal models that describe system relations in prob-
abilistic terms. They can handle various sources
and types of data enabling us to combine informa-
tion on the topography and assets of the potentially
affected area with simulation data of flood scenar-
ios and damage estimations from single discipline
models.

More precisely, we relate flood impacts not only
to flood characteristics, but also to offshore storm
conditions, such as peak water level and maximum
significant wave height. This has two advantages.
First, the BN can make spatially varying conse-
quence predictions for an impending storm in real-
time and it can thus support emergency managers
in urgent decision making. In contrast a new sim-
ulation with a hydrodynamic process model would
be computationally expensive and time consuming.
Second, the BN can facilitate round table discus-
sions of e.g. planners. It enables them to instantly
compare the effect of risk reduction measures for a
variety of storm scenarios, as long as these measure
have been included in the model set up.

In this article we develop and describe a proto-
type of this BN and apply it to a case study site.
We use the implementation of the software Netica
(Norsys, 2014).

Our study site is the old town of Zeebrugge, lo-
cated on the North Sea coast of Belgium, which is
mainly residential. The storm scenarios, however,

are synthetic due to data limitations. While the net-
work structure can be applied to any site, the quan-
titative component is site specific. It implicitly con-
tains site topology or other unique features, such as
flood defenses, which determine if flooding occurs
and, if so, the spatial extent of the flooding.

As a first step, we focus on the prediction of
physical damage to residential buildings that have
been in direct contact with floodwater. We plan to
add other damages to the network later on in the
same manner.

1. BASIC CONCEPTS OF DISCRETE BAYESIAN

NETWORKS
BNs have been applied numerous times as tools
for decision-making under uncertainty. Henrik-
sen et al. (2007) conclude that they are very valu-
able for negotiations and discussions between man-
agers, experts, stakeholders and representatives of
the general public, among others, because they are
transparent and flexible models. In the context of
floods, Garrote et al. (2007) combine BNs and de-
terministic rain run-off models to forecast flooding,
and Vogel et al. (2012, 2013) use BNs to estimate
damages resulting from river floods. In coastal
environments they have been applied to predict
erosion and shoreline retreat (Den Heijer, 2013;
Gutierrez et al., 2011; Hapke and Plant, 2010). At
the moment of writing we are not aware of applica-
tions to coastal flooding.

Discrete BNs are probabilistic graphical mod-
els that represent a high-dimensional probability
distribution over a finite set of discrete variables
X1,X2, ...,Xn (Pearl, 1988; Jensen, 1996). The core
of the representation is a directed acyclic graph
(DAG) whose nodes represent random variables
and whose arcs indicate a direct influence from
"parent node" to "child node". Because the graph
structure stipulates that each variable is condition-
ally independent of all predecessors given its par-
ents, the joint distribution can be economically fac-
torized using the chain rule:

P(X1,X2, ...,Xn) =
n

∏
i=1

P(Xi | Pa(Xi)), (1)

where Pa(Xi) denotes the set of parent nodes of Xi
in the graph. Together, the DAG and a specification
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Figure 1: BN structure

of P(Xi | Pa(Xi)), for i = 1, ..,n, or P(Xi) in case
of no parents, uniquely specify a joint distribution
over X1,X2, ...,Xn.

A main use of BNs is updating: Once new evi-
dence on one or more variables is obtained, the ef-
fect can be propagated through the network using
Bayes’ theorem. Evidence can be propagated both
forward and backward, which enables predictive as
well as diagnostic reasoning.

2. DESIGN OF THE COASTAL STORM IMPACT

MODEL

This section motivates and describes the design of
the BN, i.e. the definition of random variables
and the structure as shown in Figure 1. The par-
ent nodes of the network characterize the hydro-
dynamic forcing, i.e. peak water level and maxi-
mum significant wave height, and the location of
buildings in terms of areas. They influence spa-
tially varying inundation depths, which in turn are
translated into relative and absolute building dam-
age with a simple depth-damage-curve and by as-
suming an average building value.

2.1. Storm Scenarios
Extreme hydraulic conditions are commonly char-
acterized in terms of peak water level, maximum
significant wave height and period, predominant
wave angle, and storm duration. Naturally, data
on these hydraulic variables is rare. Since recently,
copulas are being used to represent their multivari-
ate distributions at offshore locations (e.g. De Waal
and van Gelder, 2005; Corbella and Stretch, 2013;
Li et al., 2014). However, the hydrodynamic pro-
cess model requires near-shore conditions as in-
put. The transformation of the joint distribution
of hydraulic variables from offshore to near-shore
is complex and has, to our knowledge, been rarely
described in the literature up to now (Bolle et al.,
2014; Leyssen et al., 2013). Also for our case study
site this information is not yet available. Therefore,

we assume a simplistic synthetic storm climate with
the intention to extend the model in the future.

This storm climate consists of 25 realistic storm
scenarios. They are combinations of five water
level time series with different peak water lev-
els, z, varying between 6.35m and 7.9m and five
wave time series with different maximum signif-
icant wave heights, h, varying between 5.2m and
6.2m. This choice covers a range of storms with
return periods from about 100 years to more than
10000 years. For each combination a 46 hours
storm is simulated, which corresponds to three high
tides.

For simplicity we assume Z and H to be inde-
pendent random variables (see the two left nodes
in Figure 5) with discrete uniform probabilities of
occurrence in 100 years, i.e. 20%, where the time
frame is chosen arbitrarily. Hence, each storm cli-
mate scenario occurs within the next 100 years with
a probability of 4%. This is a strong assumption and
does not reflect the storm climate at Zeebrugge re-
alistically. However, this assumption is unproblem-
atic for applications in real-time decision making,
because Z and H will be fixed to the (forecasted)
values of the impending or occurring storm.

2.2. Residential Buildings on the Site
The case study site is divided into four areas, as il-
lustrated by Figure 2. The parcels correspond to ad-
ministrative districts, but other division criteria are
possible as well, e.g. based on topography. How
many residential houses lie within each area can
be extracted from a cadastral map and is listed in
Table 1. We introduce a node A to the network
to represent the location of an arbitrary residential
building. If we randomly select a house, just like
drawing a ball from an urn, the probability that it
is within area a is proportional to the number of
houses in a. This defines the probability distribu-
tion A. Note that it is independent of the storm sce-
nario.
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Figure 2: Residential buildings and areas at case study
site

Table 1: Number of residential buildings per area

Area 1 2 3 4

Number of buildings 283 759 383 273

2.3. Maximum Inundation Depth and Damage
We obtain maximum inundation patterns through
numeric simulation of storm scenarios. The simu-
lations focus on overtopping North of the old town
and do not take into account flooding from the basin
in the West. Because NNW is the most critical wave
direction for this effect, it is used in all scenarios.
The overtopping discharge time series is input for
a TELEMAC 2D model, which calculates the dy-
namic behavior of the flooding on land and from
which the maximum inundation depth can be in-
ferred for each grip point, and by interpolation for
each house. An example is given in Figure 3.

We introduce a node maximum inundation depth
(of an arbitrary house under an arbitrary storm
scenario, more details in section 3), I, to the
BN which is Z, H and A’s child, and discretize
its distribution into four intervals {i1, i2, i3, i4} =
{[0m] ,(0m,0.5m] ,(0.5m,1m] ,(1m,2m]}. Then the
conditional probabilities can be specified as

P(I = i j | A = a,Z = z,H = h) (2)

=
ni j,a,z,h

na

for j = 1...4, where na is the number of houses in
area a and na,i j,z,h is the number of houses in area
a with maximum inundation depth i j under storm
scenario {z,h}.

Figure 3: Example of an Inundation map for Zeebrugge
and surroundings. The North Sea is to the North.

Figure 4: Depth-damage curve for Flanders, Belgium

The relative damage per house (in terms of max-
imum possible damage), d, is calculated with the
depth-damage curve for residential houses in Flan-
ders, Belgium, by Vanneuville et al. (2006). This
curve is depicted in Figure 4 and provides a func-
tional relationship between I and D. Assuming an
average value per house, v, an indication can be
given for the absolute damage per house in AC, dAC.
As an example, the BN here has v = 100000 AC and
is represented as a constant node in the figures.2

3. INTERPRETATION OF THE COASTAL STORM

IMPACT MODEL

The resulting BN is shown in Figure 5. At its heart
is node I. This node can be interpreted in two ways,
which are described in separate sections below. The
same applies to the two damage nodes, which are
merely translations from the maximum inundation

2Note that constant nodes do not have arcs in Netica
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Figure 5: BN with prior distributions

Figure 6: Updated BN for Z = 7.1m and H = 5.7m

depth to units of impact and will therefore not be
discussed individually.

3.1. In General: (Conditional) Probabilities
One possibility, the conventional one, is to inter-
pret node I as the maximum inundation depth of
a single house. The prior probability distribution
of this node (Figure 5) represents the uncertainty
about the true maximum inundation value for an ar-
bitrary house whose location at the site is unknown
as well as the storm scenario by which they are af-
fected. We can reduce this uncertainty by condi-
tioning, for example, on Z = 7.1m and H = 5.7m.
Now the distribution represents the uncertainty in
the inundation for a house at an unknown location
due to the storm with peak water level 7.1m and
maximum significant wave height 5.7m. This is
shown in Figure 6. By conditioning on A = 2 (Fig-
ure 7) we obtain the distribution for a house under
this storm that is located in area 2. It is important
to realize that the uncertainty does not stem from
the physical modeling. It arises, because the vari-
ous houses in area 2 experience different inundation

depths. In that sense it reflects the unknown exact
location.

Alternatively, we can reason backward, e.g. by
conditioning on DAC = [5000AC,11000AC) (Figure 8)
to understand the conditions due to which topmost
damage occurs. A house is most likely to suffer
maximum damage if it is located in area 1 and the
more severe the storm climate is, foremost the peak
water level. Moreover, no house in area 4 will incur
maximum damage and no house at all will incur
maximum damage, if peak water level is 6.35m.

3.2. In the Special Case of Forward Reasoning:
(Conditional) Expectations

Unless we reason backward, we can interpret node
I in an alternative manner. Besides representing one
random variable with four possible states, it repre-
sents four random variables associated with (condi-
tional) expectations.

Looking back at equation (2), we notice that the
right hand side is not just a conditional probabil-
ity. It is also simply the fractions of houses in area
a with maximum inundation depth i j under storm
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Figure 7: Updated BN for B = 2, Z = 7.1m and H = 5.7m

Figure 8: Updated BN for DAC = [5000AC,11000AC)

scenario {z,h}. If we define four new random vari-
ables, the fractions of houses that are inundated by
i j, Fj, j = 1...4, then

{Fj | A = a,Z = z,H = h}=
ni j,a,z,h

na
. (3)

Figure 7 indicates that area 2 has 759 houses, of
which 18.7% are not flooded, 78.3% are inundated
up to 0.5m, and 3.03% are inundated between 0.5m
and 1m.

If we remove evidence for node A, as in Figure
6, Netica uses the law of total probability and com-
putes the distribution of I with its conditional prob-
ability table and the marginal distribution of A:

P(I = i j | Z = z,H = h) (4)

=
4

∑
a=1

P(I = i j | A = a,Z = z,H = h) ·P(A = a) .

This equals

4

∑
a=1

na,i j,z,h

na
·P(A = a) (5)

and, using that (3) is a constant,

4

∑
a=1

E
[
Fj | A = a,Z = z,H = h

]
·P(A = a) . (6)

This can be rewritten, using the law of total expec-
tation, as

E
[
Fj | Z = z,H = h

]
. (7)

Hence, each bin j in Node I also represents the con-
ditional expectation of the fraction of houses with
maximum inundation depth i j over all areas given
storm scenario {z,h}. Note that because P(A = a)
is proportional to the number of houses in area a,
this coincides with

{Fj | Z = z,H = h}= ni j,z,h, (8)

where ni j,z,h is the total number of houses with
maximum inundation depth i j under storm scenario
{z,h}. This reasoning with conditional expecta-
tions can easily be extended to different condition-
ing sets. For example, for the network in Figure 5
we have

E
[
Fj
]
. (9)

6



12th International Conference on Applications of Statistics and Probability in Civil Engineering, ICASP12
Vancouver, Canada, July 12-15, 2015

Thus, the bins j = 1...4 of node I in the BN with
prior probabilities provide a summary of the distri-
bution of each Fj in terms of the expected value.

We can explore Fj’s distribution by conditioning
on storm scenarios {z,h}: we find the values f j that
correspond to the probability P(Z = z,H = h) =
P(Z = z) · P(H = h). Admittedly, the usefulness
of this information depends on how realistically the
storm climate is quantified. In our case it is com-
pletely synthetic. Moreover, we can zoom in and
out in space: we can obtain information per area or
for the entire case study site by conditioning node
A, or not.

4. CONCLUSION
In this article we proposed a BN approach to coastal
flood impact modeling. The BN links various off-
shore storm conditions to flood depths and building
damages.

To understand the implications of a specific
storm scenario it seems very useful to interpret the
bins of nodes I, D and DAC as the (conditional)
expectation of the fraction of houses that are in-
undated by i j, have relative damage d j or abso-
lute damage dAC j

, respectively. Conditioned on a
scenario the BN indicates corresponding spatially
varying inundation depths and building damages.

Because we distinguish just four areas, the spa-
tial detail is significantly less than the one of an in-
undation or damage map: We can predict how many
houses within an area have a specific flood depth,
but we do not know which ones. If desired, the res-
olution can be increased by adding bins to node A,
the area in which a house is located.

Nevertheless this BN approach has a couple of
advantages over map-based approaches. The vari-
ables of interest can be seen simultaneously, while
one map per variable is needed. They can eas-
ily be compared across storms, by conditioning on
different water and wave heights, or across areas,
by conditioning on areas. Admittedly, as yet, we
have treated only maximum inundation depth, rel-
ative damage and absolute damage, but this qual-
ity grows when more flood consequences are inte-
grated. Additionally, the BN presents the exact per-
centage of inundated and damaged houses, an infor-
mation which is not apparent after a quick glance on

a map.
We can also interpret the BN results in the con-

ventional way: I, D and DAC are the maximum inun-
dation depth, relative damage and absolute damage
for a single house. Then we can diagnose under
which conditions the highest flood depth and dam-
age occur, which may help decision makers to de-
sign risk reduction measures.

Finally, we would like to point out that the BN
can be built gradually and improved continuously,
according to data availabilities and simulation ca-
pacities. Naturally its prediction and diagnosis
value depends on the quality of underlying mod-
els. Here it has to be noted that many consequence
models, including damage curves, are "simple ap-
proaches [...] to complex processes [...]" (Merz
et al., 2010) and are associated with large, and often
unkown, model uncertainties.

In the future, we aim to use a realistic joint proba-
bility distribution of hydraulic storm conditions, be-
ing represented by continuous nodes3 and possibly
including storm duration and wave period or angle
as additional variables. Then, the BN could give
an indication of the flood risk to residential build-
ings, as it links the damage extend to its probability
of occurrence. And again, we have the ambition
to extend the approach to a wider range of damage
categories. Another step could be to take model un-
certainties into account, for both the damage model
as well as the hydraulic model.
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