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SUMMARY

As one of the most widely employed types of chemical reactors within the chemical en-
gineering industry, heterogeneous catalytic reactors have the versatility and efficiency to
facilitate crucial chemical processes. For heterogeneous catalytic reactors, catalysts exist
in a different phase than the reactants. Linking the macro-scale transport phenomena and
the micro-scale reaction kinetics in the mesoscale is crucial to reactor design, optimiza-
tion, and scale-up. Mesoscale simulations can assist in the study of heterogeneous catalytic
reactors, understanding of the empirical knowledge and lowering the cost of reactor devel-
opment. For this purpose, this dissertation presents 3 new tools developed for Stochastic
Rotation Dynamics (SRD), a mesoscale method particularly well suited for problems in-
volving both microscale effects on surfaces and transport phenomena in fluids: real-time
temperature measurement and simulation, surface reactions and interactions simulation
and surface reactions simulation in complex random geometry.

Many physical and chemical processes involve energy change with rates that depend
sensitively on local temperature. Because of the multi-scale nature of heterogeneous cat-
alytic reactors, it is desirable to connect the macroscopic world of continuous hydrody-
namic and temperature fields to mesoscopic particle-based simulations with discrete par-
ticle events. The real-time measurement of the local temperature in dynamically changing
environments is achieved in SRD method in Chapter 3, by employing ensembles averag-
ing. After validation by heat diffusion between two isothermal plates, heating of walls by
a hot strip, and by temperature programmed desorption, The method is applied to a case
of a model flow reactor with temperature-sensitive heterogeneously catalysed reactions
on solid spherical catalysts. In this model, adsorption, chemical reactions and desorption
are explicitly tracked on the catalyst surface. This work opens the door for future projects
where SRD is used to couple hydrodynamic flows and thermal fluctuations to solids with
complex temperature-dependent surface mechanisms.

In heterogeneous catalysis, reactivity and selectivity are not only influenced by chemi-
cal processes occurring on catalytic surfaces but also by physical transport phenomena in
the bulk fluid and fluid near the reactive surfaces. In Chapter 4, it is demonstrated how
to simulate heterogeneous catalytic reactors by coupling an SRD fluid with a catalytic sur-
face on which complex surface reactions are explicitly modelled. Chapter 4 provides a
theoretical background for modelling different stages of heterogeneous surface reactions.
After validating the simulation method for surface reactions with mean-field assumptions,
Chapter 4 applies the method to non-mean-field reactions in which surface species in-
teract with each other through a Monte Carlo scheme, leading to island formation on the

ix



Contents

catalytic surface. The potential of the SRD method is shown by simulating a more complex
three-step reaction mechanism with reactant dissociation.

The structure and geometry of a catalyst have a significant impact on its performance
and efficiency. The fluid dynamics, as well as the resulting mass and energy transfer, are
influenced by these factors. Chapter S gives an approach of simulating randomly gener-
ated catalyst geometry in SRD, by voxelization of representing the geometry. Two random
generating methods are provided for simulating different types of catalyst structure. The
adsorption, reaction and desorption functions are prepared for coupling with the installa-
tion of complex geometry and are validated. The method is applied to randomly generate
a 3D catalyst geometry with irregular connected pores, exhibiting the geometry influence
to the product concentration distribution, as the result of mass transfer in porous media.
This work suggests that the methodological advancements of SRD could contribute to
the understanding and study of catalytic reactors, and become a tool for their design and
optimization in chemical processes.



SAMENVATTING

Heterogene katalytische reactoren zijn een van de meest gebruikte types chemische re-
actoren in de chemische industrie. Ze zijn veelzijdig en efficiént genoeg om cruciale
chemische processen te vergemakkelijken. Bij heterogene katalytische reactoren bevin-
den katalysatoren zich in een andere fase dan de reactanten. Het koppelen van de trans-
portverschijnselen op macroschaal en de reactiekinetiek op microschaal in de mesoschaal
is cruciaal voor reactorontwerp, optimalisatie en opschaling. Mesoschaalsimulaties kun-
nen helpen bij het bestuderen van heterogene katalytische reactoren, het begrijpen van
empirische kennis en het verlagen van de kosten van reactorontwikkeling. Voor dit doel
presenteert dit proefschrift 3 nieuwe tools ontwikkeld voor Stochastic Rotation Dynamics
(SRD), een mesoschaalmethode die bijzonder geschikt is voor problemen waarbij zowel
microschaaleffecten op oppervlakken als transportverschijnselen in vloeistoffen betrokken
zijn: real-time temperatuurmeting en simulatie, simulatie van oppervlaktereacties en in-
teracties en simulatie van oppervlaktereacties in complexe willekeurige geometrie.

Veel fysische en chemische processen gaan gepaard met energieverandering met snel-
heden die gevoelig athangen van de lokale temperatuur. Vanwege het multi-schaalkarakter
van heterogene katalytische reactoren is het wenselijk om de macroscopische wereld van
continue hydrodynamische en temperatuurvelden te verbinden met mesoscopische deelt-
jesgebaseerde simulaties met discrete deeltjesgebeurtenissen. De real-time meting van de
lokale temperatuur in dynamisch veranderende omgevingen wordt bereikt met de SRD-
methode in Chapter 3, door ensembles te middelen. Na validatie door warmtediffusie
tussen twee isotherme platen, verhitting van wanden door een hete strip en door tem-
peratuurgeprogrammeerde desorptie, wordt de methode toegepast op een modelstroomre-
actor met temperatuurgevoelige heterogene gekatalyseerde reacties op vaste bolvormige
katalysatoren. In dit model worden adsorptie, chemische reacties en desorptie expliciet
gevolgd op het katalysatoroppervlak. Dit werk opent de deur voor toekomstige projecten
waarbij SRD wordt gebruikt om hydrodynamische stromingen en thermische fluctuaties
te koppelen aan vaste stoffen met complexe temperatuurathankelijke oppervlaktemecha-
nismen.

In heterogene katalyse worden reactiviteit en selectiviteit niet alleen beinvloed door
chemische processen die plaatsvinden op katalytische oppervlakken, maar ook door fysis-
che transportverschijnselen in de bulkvloeistof en vloeistof in de buurt van de reactieve
oppervlakken. In Chapter 4 wordt aangetoond hoe heterogene katalytische reactoren ges-
imuleerd kunnen worden door een SRD-vloeistof te koppelen aan een katalytisch opper-
vlak waarop complexe oppervlaktereacties expliciet gemodelleerd worden. Na validatie
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van de simulatiemethode voor oppervlaktereacties met gemiddelde-veldaannames, past
Chapter 4 de methode toe op niet-gemiddelde-veldreacties waarbij oppervlaktespecies
met elkaar interageren via een Monte Carlo-schema, wat leidt tot eilandvorming op het
katalytische oppervlak. Het potentieel van de SRD-methode wordt aangetoond door een
complexer drietrapsreactiemechanisme met reactordissociatie te simuleren.

De structuur en geometrie van een katalysator hebben een aanzienlijke invloed op zijn
prestaties en efficiéntie. De vloeistofdynamica en de resulterende massa en energieover-
dracht worden beinvloed door deze factoren. Chapter 5 geeft een benadering voor het
simuleren van willekeurig gegenereerde katalysatorgeometrie in SRD, door voxelisatie
van de geometrie. Twee willekeurig gegenereerde methoden worden gegeven voor het
simuleren van verschillende soorten katalysatorstructuur. De adsorptie-, reactie- en des-
orptiefuncties worden voorbereid voor koppeling met de installatie van complexe geome-
trie en worden gevalideerd. De methode wordt toegepast om willekeurig een 3D katalysator-
geometrie met onregelmatig verbonden porién te genereren, waarbij de invloed van de
geometrie op de productconcentratieverdeling als gevolg van massaoverdracht in poreuze
media wordt getoond. Dit werk suggereert dat de methodologische vooruitgang van SRD
kan bijdragen aan het begrijpen en bestuderen van katalytische reactoren en een hulpmid-
del kan worden voor hun ontwerp en optimalisatie in chemische processen.
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INTRODUCTION

1.1 HETEROGENEOUS CATALYTIC REACTORS: A PROBLEM OF SCALES

In the world of physics, many large-scale phenomena are closely connected to small scale
phenomena. An important example is given by industrial-sized heterogeneous catalytic
reactors, the operation of which depends on the flow of a mixture of reactants and products
at macroscale, mass and heat transfer, often through porous spaces, at mesoscale, and
detailed surface chemistry at microscale, as shown in Fig. S1. This example is important
because heterogeneous catalysis has played a dominant role in industrial production of
chemicals and fuels for over a hundred years [1].

In most industrial applications, heterogeneous catalysts are solids or mixtures of solids,
such as metals, transition metal oxides, zeolites, alumina, higher-order oxides, and graphitic
carbon. Reactions occur on the active sites on the catalyst surface, which can bind with
the reactant molecules. Often, catalysts are dispersed and supported by porous materials.
The porous support does not only provide a large surface area, but can also influence the
reaction rates, the conversion, the diffusivities of components, and the lifetime of the cat-
alyst [2—4]. Moreover, defects on the surface of the catalyst material have an important
influence on catalytic activity. This attracts frequent attention from researchers. Defects

Adsorptlon Dissociation Desorptlon
0 XS =%/
Q Reactlon

Figure 1.1: Examples of different scales in heterogeneous catalysis.



INTRODUCTION

are caused by various factors in the process of catalyst preparation and can be randomly
distributed on the catalyst surface. Due to these features, the chemical industry has to of-
ten face uncontrolled local catalytic reactions. This results in a series of problems such as
the formation of hotspots, undesired products, and deactivation of catalysts.

The rate of chemical phenomena occurring in heterogeneous catalytic reactors is often
controlled by mass transfer limitations. Moreover, as in many physical and chemical pro-
cesses, heterogeneous reactions involve an exchange of energy with the surroundings as a
consequence of the change in enthalpy between reactants and products. Understanding of
heat transfer at different scales is required when studying heterogeneous catalysis, since
one of the most common forms of energy exchanged in chemical reacion is thermal en-
ergy. A change in thermal energy is macroscopically perceived as a change in temperature,
i.e. the “hotness” or “coldness” of matter [5]. More precisely, from statistical mechanics
we know that temperature can be expressed in terms of the average kinetic energy of the
velocity fluctuations of the constituent atoms relative to the average macroscopic flow [6].

To understand these effects, there is a great need for numerical tools that can model the
interplay between mass transport of reactants and products, adsorption rates of reactants
to catalytic surfaces, rates of different surface reactions, which are possibly influenced by
the distribution of reaction intermediates and defects, and desorption rates of the prod-
ucts. Such detailed information and understanding of local properties within a reactor are
hard to obtain from experiments, whereas they can be obtained by modeling. The inter-
play determines the overall reaction rate and selectivity toward a desired product. It also
makes the modeling of heterogeneous catalysts a challenging multiscale and multiphysics
problem.

1.2 MULTISCALE SIMULATION CHOICES AND MESOSCALE METHODS

To systematically study the link between macroscopic physical phenomena and the micro-
scopic world, models and simulation methods are needed that can build bridges between
different scales. A number of computational methods have been used to predict the mass
transport of reactants and products in heterogeneous catalysis. At the macroscale, direct
numerical simulations (DNS), which resolve the fluid flow around catalyst particles, have
many applications for fluidized bed and packed bed reactors [7-9]. On an even larger scale,
the discrete element method (DEM) can be used if correlations are known for the effective
hydrodynamic forces and mass transfer rates between the unresolved fluid and catalyst par-
ticles [10-13]. Both DNS and DEM methods usually treat the transport of reactants and
products inside the catalytic pellets through continuum (partial differential) equations, typ-
ically assuming some effective pore diffusion. In some cases, partial differential equations
are also used on the level of pore networks [14, 15]. As popular methods for solving nu-
merical equations, the finite element method (FEM) and finite volume method are widely



1.2 MULTISCALE SIMULATION CHOICES AND MESOSCALE METHODS

applied in simulating multiple types of physical and fluid problems, including the physics
of chemical and thermal deconstruction processes in anisotropic macroporous particles
[16].

A disadvantage of continuum methods is that, although they may describe the macroscale
mass transport well, coupling between the continuous concentration fields and catalytic
surfaces is typically achieved through source and sink terms (if pores are unresolved) or
at best through simplified boundary conditions (if pore surfaces are resolved) for instance
based on Langmuir adsorption kinetics and first-order reactions. With such a continuum
approach it is difficult to properly include microscale finite size (Knudsen and thermal
fluctuation) effects [17]. Moreover, it is practically impossible to include changes in reac-
tion rates caused by microscale interactions between the different adsorbed species on the
catalytic surface.

In such cases, microscale techniques, such as molecular dynamics (MD) simulations are
preferred. Many computational studies of heterogeneous reactions focus on the prediction
of individual elementary steps of the energy barriers, intrinsic elementary processes, in-
formation on supporting nanoparticles, and dynamic behavior of alloy clusters, which em-
ploy the density functional theory (DFT) and kinetic Monte Carlo simulations (kMC) [18,
19]. However, while these methods provide a more in-depth understanding of electronic
structured reaction mechanisms, microscale techniques are usually too computationally
expensive to simulate larger volumes of continuum fluid phases.

To fulfill the desire of exploring the gap scale phenomena, many researchers utilize vari-
ous hybrid multiscale methods, combining microscale methods with macroscale methods,
in studying transport phenomena in fluid phase influenced by reaction details [20-23]. In
previous works, reactive systems have been modelled using direct simulation Monte Carlo
(DSMC) [24, 25], the Lattice-Boltzmann method (LB) [26-29] and dissipative particle dy-
namics (DPD) [30, 31]. Many applications with chemical reactions are simulated with the
LB method. However, LB is a pre-averaged method that does not exhibit thermal fluctu-
ations without modifications. In contrast, coarse-grained or particle-based methods are
better suited to include such microscale effects.

Stochastic rotation dynamics (SRD) [32, 33], which is the most widely used version
of multi-particle collision dynamics (MPCD or MPC) methods, is advantageous in such
cases. Most implementations of chemical reactions in SRD are homogeneous reactions
[34, 35] or surface reactions with neglect of some processes such as adsorption, surface
diffusion, or desorption through the use of mean-field rate expressions [36, 37]. Models
of colloidal particles propelled by chemical reactions with adsorption-desorption kinet-
ics such as diffusiophoretic Janus colloids and bi-particle catalytic reactions have been
described before [38—43]. However, these works do not describe the detailed kinetics of
changing catalyst sites. Sengar et al. were the first to incorporate Langmuir-Hinshelwood
reaction kinetics by introducing individual steps like adsorption, desorption, and surface
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reactions for a pseudo reaction A — B [44, 45]. It has been shown that SRD can simulate
heterogeneously catalyzed systems and interlink surface and bulk phenomena which occur
at different time and length scales. Particularly, SRD automatically accounts for thermal
fluctuations and hydrodynamics, and can easily be extended to include reactions on sur-
faces. In addition, the influence of the porous catalyst structure has also been investigated
through this method [46]. This makes SRD a promising tool to investigate the coupling of
convection-diffusion mechanisms to microkinetic (adsorption-reaction-desorption) phe-
nomena taking place on reactive surfaces and in porous media. For realistic catalytic re-
actions, more complex mechanisms exist, such as multiple elementary reaction steps or
‘island formation’ caused by interactions of surface particles, which lead to deviations
from mean-field predictions [47, 48].

1.3 AIM OF RESEARCH AND THESIS STRUCTURE

The aim of this thesis is to develop a mesoscale simulation method that enables us to study
the interplay of transport phenomena (convection, diffusion) with heterogeneous reactions
taking place on surfaces in structured reactors and porous media. To simulate heteroge-
neous reactions with SRD, more reaction details need to be considered in the simulation,
for example the dynamic surface composition and heat exchange resulting from the re-
actions, the molecular mass and number change, and the movement of coarse-grained
particles in a complex geometry. A method that allows the extraction of macrophysical
properties, such as temperature, should be developed. The precision of the method should
allow the observation of microscale interactions between different species and between
species and the catalyst surface. Furthermore, the method should be able to reflect the
transport of particles through a complex porous geometry.

Chapter 2 gives a theoretical background of SRD for modelling hydrodynamics. It
describes the technical details of this method, including the definition of simulation units.

Chapter 3 investigates a novel way to measure and simulate thermal dynamics in SRD,
by which we extend the field of possible applications for the SRD method. A newly de-
veloped technique for real-time local temperature measurement is presented. To validate
the method, different cases of heat conduction through a fluid phase and between a fluid
and a solid phase are studied, allowing us to model heat effects in systems with surface
reactions.

Chapter 4 describes how to model more complex heterogeneous catalytic reactions by
coupling an SRD fluid to a catalytic surface on which surface reactions are explicitly mod-
elled. Heterogeneous surface reactions with different mechanisms simulated in SRD are
presented, including adsorption, particle interaction, and desorption. For validation, the
simulations are applied to different cases of surface reactions with mean-field assumptions
and for cases with surface interactions of species. Then, a three-step reaction mechanism
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with reactant dissociation after adsorption is investigated to demonstrate the capability
of the method when simulating more complex reaction mechanisms where mean-field
assumptions fail.

Chapter 5 presents the development of a simulation methodology for heterogeneous
catalysts with complex porous geometries. Two generation methods for random catalyst
geometries are presented. An algorithm for updating the positions and velocities of SRD
particles in complex geometries and coupling them to multi-step surface reactions is de-
veloped and validated. The influence of complex geometry is presented in a reactor simu-
lation case and compared with a planar catalyst surface reactor simulation.
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STOCHASTIC ROTATION DYNAMICS

In SRD, a system consisting of point particles is evolved with a discrete streaming step
and a collision step in which all particles in a collision cell simultaneously exchange mo-
mentum. This general approach is often referred to as multi-particle collision dynamics
(MPCD or MPC)[1] and shares some features with the Direct Simulation Monte Carlo
approach. SRD refers to a particular implementation in which the collisions are executed
through a stochastic rotation of the relative velocities of the particles in the collision cell
[2]. Ihle and Kroll [3] pointed out that the introduction of a grid-shift procedure is nec-
essary to sustain Galilean invariance. The fact that SRD is particle-based and generates
Navier-Stokes hydrodynamics in an efficient way makes this method very suitable for sim-
ulations of complex systems such as equilibrium and nonequilibrium colloid and polymer
solutions [4—15], microswimmers [16-22], and viscoelastic fluids [23-25]. Applications
of SRD to biological systems have sprung up, such as for biological functional molecules,
bacteria and cell suspensions and their dynamic behaviors [26-31].

In MPC, coarse-grained particles are used to represent the fluid, which evolve in dis-
crete time steps, alternating between particle position updates and momentum exchange.
The collisions between multiple particles are accounted for simultaneously rather than
treating individual binary collisions of pairs of particles. This makes it computationally
more efficient than DSMC when applied to dense fluids. Stochastic Rotation Dynamics
is a widely used version of MPC in which the momentum exchanges via a rotation of the
particle relative velocities around a randomly oriented axis [1].

The hydrodynamics resulting from the SRD method shows Navier-Stokes behavior
on large length scales, while also automatically accounting for thermal fluctuations and
(coarse-grained) molecular diffusion [32, 33]. In this technique, the positions and veloci-
ties of ideal particles obeying Newton’s laws of motion are tracked through time.

There are two essential steps. In the streaming step, the position of every particle is
advanced in time using its respective velocities by an Euler scheme. N particles are placed
in the system to represent the fluid, with a total mass of Z}‘:] X;m;N. Here, Xj, m;j and k
are the mole fraction, mass of component j, and the number of components in the system,
respectively. In between two subsequent collisions, in the so-called streaming step, the
position of each particle i is updated by a first order Euler scheme. If v} and v} are the
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Table 2.1: Simulation parameters of SRD and derived units. In our simulations, the collision cell
size, majority species mass and thermal energy at the reference temperature are the units
of length, mass, and energy, respectively.

SRD fluid simulation parameters

ag =1 Collision cell size
mo =1 Solvent (majority species) mass

kgTo =1 Thermal energy (at reference temperature)

Y Average number of particles per collision cell
Aty Streaming integration timestep

At Collision time interval

o SRD rotation angle

Derived units

Density mo/a}
. _ mo
Time to = ap, /—kao
Diffusion 2
. 0= = agy/ ek
coefficient 0 ™o

position and velocity vectors of particle i at time t, and At is the timestep used during
streaming, then the new position vectors are given by:

rith =l pvlAtL (2.1

If there is a body force applied to the fluid, e.g. to drive a flow, the velocity of particle i is
updated in the streaming step according to

v‘{+1 =Vl + gAt, (2.2)

In this expression, g is the acceleration associated with the body force.

Then, in the collision step, a grid divides the volume into cubic cells. The grid is shifted
randomly before every collision step to ensure Galilean invariance [3] and ‘ghost particles’
are added in cells overlapping with walls to correct the fluid viscosity and velocity there.
Afterwards, the particle velocities relative to the center of mass velocity in each cell are
instantaneously rotated by a given angle around a randomly chosen axis, to mimic the ex-
change of fluid momentum. To increase the accuracy of handling wall collisions, multiple
streaming steps per collision step can be taken, i.e. the collision time interval can be an
integer multiple of the streaming integration time step.
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The transport properties of the SRD fluid can be analytically expressed in terms of
simulation parameters such as collision time step (At.), the number density of particles
(v), thermal energy ky T, cell size (ag) and the mass of the particle (my). In SRD, the
velocity vector of each particle is updated according to:

v =v+ Qv —V) (2.3)

The fact that these analytical expressions, shown in Table 2.2, exist simplifies the use
of SRD and reduces the need for trial and error simulations. The analytical expression
for the (kinematic) shear viscosity v has been derived and validated by Ihle and Tiizel
[34-36]. Fig. 2.1 shows how different contributions to the shear viscosity scale with the
dimensionless free path A. Unlike the shear viscosity, no analytical expression for the colli-
sional contribution to the self-diffusion coeflicient has been derived due to the difficulty of
theoretically including effects of hydrodynamic correlations on the self-diffusivity [1, 37].
The expression for the collisional contribution is derived from the assumption of molecu-
lar chaos. Therefore, the expression for the self-diffusion coefficient is most accurate when
the dimensionless mean free path (A = At./tp) is larger than 0.6.[38]

In SRD, the temperature is not set as a direct parameter but is inherent in the particles’
velocity fluctuations. The temperature can be controlled by modulating the velocity fluctu-
ations, which can be done through various thermostatting schemes. For example, the An-
dersen thermostat reassigns the fluctuating velocities in each time step stochastically based
on the Maxwell-Boltzmann distribution[2], and the Nosé-Hoover thermostat couples the
system with an external reservoir in a way that allows for fluctuations in temperature[39—
41]. In this work, a direct temperature scaling is used to maintain a strictly isothermal
system: in the collision step, we add for each cell ¢ containing n. > 2 SRD particles the
kinetic energy associated with velocity fluctuations, K = 3~ ;1. > %miéviz, and the
number of degrees of freedom, Nfree = ) .11 3(Me — 1). This allows us to calculate an
instantaneous global temperature Kg Teyrrent = 2K/M¢ree based on the velocity fluctua-
tions in the entire system, independent of any convective flow velocities. Subsequently, the
relative velocities in each cell are scaled by a factor \/ Ttarget/Teurrent, where Tyarget
is the target temperature. This ‘strong coupling’ scheme is simple to apply, however does
not allow for fluctuations in the instantaneous global temperature. Such a simplification is
only justified if one is dealing with a very large number of particles, for which statistical
mechanics predicts that the relative fluctuations in total energy (8K/K oc 1//Mfree) are
very small.

When dealing with multi-component mixtures, frictional forces between different com-
ponents may lead to some unexpected behavior that cannot be explained by Fickian dif-
fusion. A Maxwell-Stefan diffusion model is employed instead. In this framework, the
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Table 2.2: Kinetic (streaming) and collisional contributions to SRD transport coefficients for a
three-dimensional single-component SRD fluid, valid up to order 1/y2. Note that the
shear viscosity is expressed as a kinematic viscosity, i.e. with the same units as self-

diffusivity.
Kinetic contribution x kg TAt.:/(2m)
. 5
Shear viscosity V= (y—1+e*V)[2—Zos *cos 7o) —1
Thermal diffusivity Dt = 1_305 (1= %) + % —
. .. o 3y
Self-diffusivity Ds = G TTe N (T —cos ) —1
Collisional contribution X a(z) JAt:
Shear viscosity v = ﬁ (y=T1+e Y)[1—cosq

Thermal diffusivity Dt = (vy—"1)[1 —cos al

_1
15v2

driving force of transport, which is linked to the spatial derivative of the chemical po-
tential, can be balanced with the frictional forces. In SRD, multi-component diffusion is
imposed due to the collision step that treats molecules based on their particle mass. The
particle velocities are adjusted based on the center of mass velocity (mass weighted av-
erage velocity). For this reason, molecules with a large mass undergo smaller changes in
velocity in the collision step than a particle with a smaller mass [1]. The Maxwell-Stefan
diffusion coeflicients Di; cannot be calculated a priori but they can be estimated. In binary
dilute mixtures, the Darken equation can be used:

P12 =x1D2s + (1 —x1)D1s (2.4)

where D1 and x7 represent the self-diffusivity and mole fraction of species 1. This rela-
tion is used later when dealing with mixtures containing particles with varying masses.
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Figure 2.1: Kinetic and collisional contributions to the SRD kinematic viscosity as a function of
dimensionless mean free path, controlled by the SRD collision time step.
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TEMPERATURE MEASUREMENT AND HEAT TRANSFER

This chapter is based on the article:

Fan, R., Zachariah, G. T, Padding, J. T., Hartkamp, R. (2021). Real-time temperature
measurement in stochastic rotation dynamics. Physical Review E, 104(3), [034124].
https://doi.org/10.1103/PhysRevE.104.034124

3.1 INTRODUCTION

Many physical and chemical processes involve an exchange of energy with the surround-
ings or the conversion of one form of energy to another. One of these forms is thermal
energy. Temperature is commonly perceived as the “hotness” or “coldness” of matter [1].
More precisely, from statistical mechanics we know that temperature can be expressed in
terms of the average kinetic energy of the constituent atoms in the absence of macroscopic
flow [2].

Temperature is important for various physical and chemical processes, including ad-
sorption, desorption and chemical reactions, which often take place at interfaces, such as
the interface between a solid catalyst and a fluid containing the reactants and products. The
rates with which these processes take place are not only influenced by microscale kinetic
factors, but also by local macroscale properties such as pressure, hydrodynamic velocity
fields and, importantly, temperature. Applications of these processes often involve fluids
in complex geometries, for example adsorption in porous media or heterogeneously catal-
ysed reactions taking place in packed bed reactors. When modelling such systems, one
usually encounters the problem of having to tackle phenomena at different length scales
ranging from the microscale to the macroscale.

Macroscale computational techniques are based on the continuum assumption. These
techniques generally require solving conservation equations in the form of partial differ-
ential equations. As a results, the continuum methods model macroscopic effects of the
embedded microscopic behavior directly [3]. The continuum assumption breaks down for
systems where molecular effects such as Knudsen diffusion, and other effects that involve
finite numbers of particles, are prominent. In such a case, microscale techniques, such
as Molecular Dynamics (MD) simulations are preferred. However, microscale techniques
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are usually too computationally expensive to simulate larger volumes of continuum fluid
phases.

In such cases, it is advantageous to use mesoscale simulation methods, such as Lattice-
Boltzmann (LB), Direct simulation Monte Carlo (DSMC), dissipative particle dynamics
(DPD), or Stochastic Rotation Dynamics (SRD) [4]. The advantage of SRD in particular is
that it automatically accounts for thermal fluctuations and hydrodynamics, and can easily
be extended to include reactions on surfaces. This makes it a promising tool to investigate
the coupling of convection-diffusion mechanisms to microkinetic (adsorption-reaction-
desorption) phenomena taking place on reactive surfaces and in porous media.

In SRD, a system consisting of point particles is evolved with a discrete streaming step
and a collision step in which all particles in a collision cell simultaneously exchange mo-
mentum. This general approach is often referred to as multi-particle collision dynamics
(MPCD or MPC)[4] and shares some features with the Direct Simulation Monte Carlo
approach. SRD refers to a particular implementation in which the collisions are executed
through a stochastic rotation of the relative velocities of the particles in the collision cell
[5]. Ihle and Kroll [6] pointed out that the introduction of a grid-shift procedure is nec-
essary to sustain Galilean invariance. The fact that SRD is particle-based and generates
Navier-Stokes hydrodynamics in an efficient way makes this method very suitable for sim-
ulations of complex systems such as equilibrium and nonequilibrium colloid and polymer
solutions [7—18], microswimmers [19-25], and viscoelastic fluids [26-28]. Applications
of SRD to biological systems have sprung up, such as for biological functional molecules,
bacteria and cell suspensions and their dynamic behaviors [29-33]

Most of the implementation cases of SRD are assumed to be isothermal [34, 35]. How-
ever, recently researchers start to pay attention on the nonequilibrium simulations with
SRD. Lepri [36] studied nonequilibrium steady states of a one-dimensional fluid in a fi-
nite domain with thermal walls. Investigating temperature effects has not been the first
concern in this method, and is complicated by the feature of inherent thermal fluctua-
tions. More precisely, in MPC or SRD, the temperature is not set as a direct parameter
but is inherent in the particles’ velocity fluctuations. This feature brings difficulties for
measuring and simulating real-time local temperature change in the system, since the
temperature is not an explicitly accessible variable of the simulation. Usually when there
is viscous heating present in a non-equilibrium simulation, a thermostat is used to regu-
late temperature and establish a steady state. A thermostat rescales the relative velocities
of particles in a collision cell, without compromising the cell-averaged velocity, nor the
Maxwell-Boltzmann distribution in the collision step [5]. Thermostats are widely used
in MPC, for example, Anderson Thermostat (MPC-AT) [34]. Dynamic parameter values
remain constant in thermostatted systems, while the kinetic temperature relaxes to a fixed
temperature.



3.2 METHODOLOGY

If certain system properties are highly temperature dependent, local temperature varia-
tions can lead to strong feedback effects. An important example of this is heterogeneous
catalysis, where the rates of catalyzed chemical reactions can change orders of magnitude
due to a relatively small change of temperature. Because of the high sensitivity of reac-
tion rates to local temperature, the conversion and selectivity in structured or packed bed
reactors is intricately linked to variations in temperature that can change over relatively
small time and length scales. Modelling such reactors with proper temperature-dependent
local reaction rates thus requires measurement of the local temperature in real-time.

In this work, we investigate a novel way to measure and simulate thermal dynamics
in SRD, by which we extend the field of possible application of the SRD method. This
paper is arranged as follows. In section 3.2, we provide a theoretical background of SRD
for modelling hydrodynamics and a newly developed technique for real-time local tem-
perature measurement. In section 3.3, we validate the method for different cases of heat
conduction through a fluid phase and between a fluid and a solid phase and investigate heat
effects in systems with surface reactions. Finally, in section 3.4 we give our conclusions
and outlook.

3.2 METHODOLOGY

In SRD, similarly to molecular dynamics simulations, temperature can be calculated from
the average fluctuation velocities, i.e. particle velocities minus any contribution due to
convective motion, of a sample of particles [37]. According to statistical mechanics, the
instantaneous temperature of a collection of n particles may be determined from:

1 ¢ _
ka: mzmi(\)i—\))z (31)

i=1

where the number of degrees of freedom (per Cartesian direction) n is reduced by one
to account for the constraint that the average of the velocities vi must equal the center-
of-mass velocity v of all n particles. Based on Eq. (3.1), a local and instantaneous tem-
perature T (X, t) can be determined for each cell located at x.. However, the number of
particles per cell (typically in the range of 5 to 20) is usually too low to perform a sta-
tistically meaningful local and instantaneous measurement. For a system in steady state,
a proper solution to find the — possibly spatially dependent — temperature is to locally
average over many subsequent time instances, in other words to perform a long time av-
erage. Conversely, for systems with a certain symmetry in the geometry, this symmetry
may be exploited to average over multiple equivalent locations and find the — possibly
time dependent — average temperature. However, an unsteady state system with a complex
geometry, such as the start-up of reactive flow in structured or packed bed reactors, calls
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for an innovative way of averaging that preserves the local and instantaneous nature of the
temperature field.

In this work we propose to determine the local and instantaneous temperature by av-
eraging over sufficiently many independent realisations of the same system, i.e. replica
averaging.

There are two ways in which replica averaging can be implemented: serial and paral-
lel. In the serial implementation, each simulation is run to completion and saved, then
reinitialized and repeated. The accumulated solution is then averaged at the end of ng
iterations. In a parallel implementation, ng versions (replicas) of the simulation are per-
formed simultaneously, while exchanging data and averaging between the replicas at each
time step.

Both implementations have their advantages and disadvantages. Serial implementation
is simpler to realize. It is well-suited for problems in which the dynamics are indepen-
dent of on-the-fly information about the local temperature. For example, a study of heat
transfer through a fluid between boundaries at different temperature can be easily realized
with this technique since the influence of local temperature variations on the heat transfer
is emergent. Parallel implementation is more involved, but it allows us to solve problems
where on-the-fly information about the local temperature influences the dynamics of the
system. For example, determining the reaction rate of a heterogeneously catalysed reac-
tion requires access to a statistically meaningful measurement of the local instantaneous
temperature. By using the power of parallel computing we can implement an ensemble
of ng equivalent versions of the system, while exchanging data and averaging each time
step.

SRD or MPCD is naturally suitable for parallel computing, owing to the fact that the
system is discretised in independent particles, and no differential equations need to be
solved to simulate the fluid. Howard exploit the parallel computational capabilities of
GPUs in the implementation of MPCD algorithm [38]. One way to implement parallel
SRD is by using Compute Unified Device Architecture (CUDA), an extension to the C
language developed by Nvidia. The advantage of this technique is that it can accelerate
the simulation even if there is only one instance running. The implementation is suitable
to all potential applications of SRD. However, such GPU-based implementations are often
bottlenecked by hardware limitations. GPUs often possess smaller RAM capacities than
CPUs, which could be limiting for a memory-intensive method such as the one studied in
this work.

In this work, a new variation of SRD is developed that employs Open MPI. Parallel
replicas of the simulation are executed simultaneously. Communication between the par-
allel simulations is only needed when averaging macroscopic properties such as local
temperature. This can be handled efficiently in Open MPI. The parallel algorithm used
in this study is shown in Fig. 3.1. The simulation starts by initializing multiple instances
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(four instances in Fig. 3.1) of the simulation simultaneously. For each time step, every
instance undergoes, independently from other instances, the streaming, wall bounce-back,
and collision step, and any chemical or physical process implemented in the simulation
that possibly partially depends on the local macroscopic variables. Local macroscopic
variables are evaluated for each instance and then averaged between the instances and de-
livered back to each node. The overall mean values of macroscopic variables can then be
used in the next time step.

3.2.1 HEAT EXCHANGE BETWEEN BULK FLUID AND BULK SOLID PHASE

The temperature of the bulk of a solid phase is often neglected in SRD. Rather, the wall
temperature is usually accounted for via Boundary Conditions (BCs). In SRD, the most
commonly used BC at a wall is the bounce back BC, leading to an effective no-slip bound-
ary condition. In bounce back, all components of a particle’s velocity are inverted when
it collides with a solid surface or a hard wall of the domain, as in Eq. (3.2).

Vi — —V; (3.2)

However, the bounce back BC does not allow for energy exchange between the fluid and
the solid since the distribution of the post-collisional velocity exactly mirrors the distri-
bution of the pre-collisional velocity. In other words, from a thermal perspective bounce
back BCs are equivalent to adiabatic boundaries.

Any system with viscous fluid flow exhibits viscous dissipation: the kinetic energy as-
sociated with fluid flow is converted into thermal energy, which is observed as an increase
in velocity fluctuations. Previous SRD studies [39, 40] removed this excess heat by enforc-
ing a predetermined temperature. Such a thermostat is not utilizable here since the goal
of this work is to mimic systems in which reaction heat or viscous dissipation can cause
the temperature to evolve in time and space.

In many real systems, viscous heat generated in the fluid is removed via the confining
walls. To mimic this, an option is to use the stochastic BC suggested by Padding and Louis
[15]. In this BC, post-collision velocities at the surface are generated from the expected
velocity distribution of SRD particles, at the desired wall temperature. This method results
in a small slip velocity in systems with flow tangential to the wall, because of the non-
zero average tangential velocity before the collision with the wall. A correction to this
was proposed by Bolintineanu et al. [41]. Essentially, the Gaussian distribution in the
tangential direction is biased with the local mean velocity to counteract the slip. This leads
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Figure 3.1: Flowchart of the OpenMPI algorithm for parallel averaging of local macroscopic vari-
ables in SRD. In this example we show ng = 4 instances (replicas).



3.2 METHODOLOGY

to the following probabilities to generate new velocity components v,; and v normal
and tangential to the wall, respectively, for a particle 1 that bounced into the wall:

myv2.
P(Vni) = vniexp (—ka‘> O(vni) (3.3)
B Iw
kg Tw ( mi(vii + V)2 )
Pvii) = exp | — Tt Ve (3.4)
i) 2om; P g Tow

where T,, is the wall temperature, ©(v,,1) is a Heaviside function ensuring that only pos-
itive normal velocities are generated, and Vy; is the fluid flow mean particle velocity of
the cell in which particle i was located in the previous time step. Note that the + sign in
front of ¥¢; in Eq. (3.4) is not a typo, because the mean tangential post-collisional velocity
should be equal to —V¢;, which corrects the slip velocity by using a bounce-back scheme
on the mean local tangential velocity. No additional noise is introduced, since the mean
velocity profile is obtained by averaging. Even though the number of particles in a single
SRD cell is limited, the correction of the boundary condition is not affected. This method
will henceforth be called the biased stochastic boundary condition.

The biased stochastic bounce-back BC not only enables us to specify the temperature
of the wall boundary but also to describe the heat flux through the boundary between
the fluid and solid phase. To this end it is important to also consider thermal conduction
through the solid structure.

Temperature conduction in a solid is described by the governing energy equation:

oT
pscsa = KSVZT 3.5)

where ps is the density of the solid material, C; is the heat capacity (per unit mass) and
K is the thermal conductivity of the solid. Note that in practice we specify the thermal
diffusivity Ks/(psCs) (in units of D) and the heat capacity per unit volume psCs (in
units of kg Ty / ag) of the solid phase.

In this work the temperature field in a solid is evaluated on a Cartesian grid. Solids
with curved surfaces are therefore approximated into cuboidal volumes. However, the fluid
phase in coarse grained particle form is not influenced by this approximation. The spatial
derivatives on the right side of Eq. (3.5) can be discretized using a central difference
scheme.

For boundary cells, there are no more solid cells in one or more directions. Special
care has to be taken in the directions where the solid is contacting the fluid. Taking a
one-dimensional case, we can discretize the spatial derivative as:

°T _ Ks(%)X+Ax/2 B Ks(%)fox/z
S ox2 Ax
_Fx+ + FX—
= T Ay 3.6
Ax (3.6)
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where Fy and F_ denote the heat flux at the right and left interfaces of the cell. For inte-
rior cells, each of these terms can be further discretized with a general central difference
scheme. For boundary cells, the flux term on the interface contacting the wall is replaced
with the actual flux from the SRD fluid, which is determined as follows.

In the case of arbitrary geometries, a solid temperature mesh spans across the entire
simulation domain, indicating cells that contain solid with a flag. The solid cells in contact
with the fluid can be classified as a boundary cell, cells in the fluid as fluid cells, and solid
cells fully surrounded by other solid cells as interior cells. Each solid temperature mesh
cell contains the coefficients for itself and its six closest neighbors. In the preprocessing
step, the interior cells are identified and given their coefficients. Then, the boundary cells
are identified and given their coefficients according to Eq. (3.6), leaving out the external
flux terms. This allows us to simply calculate the total energy transfer due to all particle-
wall collisions in the cell without having to store in memory every location of surface
collision.

When a particle collides with a wall, the exact location of the contact is calculated and
the corresponding solid temperature mesh cell is identified. The flux due to the collision
is then added to the flux variable of the mesh cell. All interior wall cells are given a flux
value of 0 by default. The solid temperatures are then updated using the coefficient matrix
to determine the discretization and the flux variable to add the necessary flux from the
SRD fluid. This ensures that all wall cells can be updated with the same code, regardless
of its contact with the fluid. A drawback of this method is the additional memory required
to store the coefficient matrices. However, this memory requirement is small compared to
that required to save the large number of simultaneous simulations.

The wall temperature T,,, is determined from the solid cell temperature closest to the
interface, and the post-bounce-back velocity of the particle is calculated using Eqgs. (S3)
and (3.4). This essentially changes the temperature of the outgoing particles to that of the
local wall. The particle collisions with the interface of a specific solid cell during a time
step result in energy change

1
AE = Z Emi(AVii + A\)ﬁi + A\)ﬁi) (37)
i
that is quantifies the heat flux into the solid cell:
AE
Ft = —— 3.8
tTAX2AL ©G:8)

This heat flux is used in Eq. (3.6) to update the solid temperature !. This creates a two-way
exchange of energy between the solid and the fluid.

Note the subtlety involved through our definition of the energy scale as kg Tp: a unit change in local temper-
ature corresponds to a 0.5 unit change in (kinetic) energy.
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3.2.2 SURFACE HEAT SOURCES

In the previous part, we dealt with energy exchange between a fluid and a solid. We now
consider the case where thermal energy is generated on the interface, for example as a
result of adsorption or a (heterogeneous) surface reaction. Since the surface has no volume,
and therefore no heat capacity, the question is how this heat should be initially distributed
between the fluid phase and solid phase. For materials used in most common applications
(solids in the form of metals, fluids in the form of water, air or other gases), the thermal
diffusivity in the solid is larger than that in the fluid. In that case, surface heat tends to
first predominantly transfer to the solid phase and only then to the fluid phase. This is the
approach taken in this work.

When there is a surface heat source, the energy change in Eq. (3.7), which is used to
determine the heat flux into the solid, must be replaced by:

1
AE=)" Em(Avfd + AVE + AVZ) + AEgyurg (3.9)

i

where AEg, ;¢ is the amount of heat generated on the surface.

3.3 RESULTS

Before investigating a complex process involving heat and mass transport, we first validate
the method by computing the velocity profile under the modified boundary condition, the
heat diffusion between two isothermal plates, and between a hot strip and solid walls
that can be heated. We then present the temperature measurement during programmed
desorption and a chemical reaction involving both the fluid phase and the solid phase.

3.3.1 BIASED STOCHASTIC BOUNDARY CONDITION

We validate the boundary conditions by comparing the simulated flow profile and the the
analytical solution for a planar Poiseuille flow. The SRD fluid parameter values are chosen
as:y =7, At = 0.5 and o = 90°. The flow is induced by a body force g = 0.001 (in
SRD units) acting on the SRD particles. This yields a Reynolds number of approximately
10.

The velocity profiles in Fig. (3.2) show that the bounce-back BC yields the closest agree-
ment with the analytical solution. As expected, the stochastic BC shows some amount of
slip, which is mostly corrected by the biased stochastic BC in Eq. (3.4). In this work,
to demonstrate the significance of real-time temperature measurement and heat-transfer
between solid and fluid, the biased stochastic BC is chosen in further simulations.

31



32

TEMPERATURE MEASUREMENT AND HEAT TRANSFER

1.2

(=)
> 0000
N Oxx%%0O
> % ¥ ;2
‘_5 0.8f
)
>
A 06F
o
c
2 041 O Stochastic
S *  Stochastic biased
£ ool Bounce-back
o Analytical solution

-1 0.5 0 0.5 1
Dimensionless cross section h/H

Figure 3.2: Comparison of analytical and simulated velocity in Poiseuille flow. The walls are kept
at a constant temperature.

3.3.2 HEAT DIFFUSION BETWEEN ISOTHERMAL PLATES

Heat transfer is tested by simulating a fluid confined between two infinite plates (i.e., pe-
riodic boundary condition are applied in the x and z-direction). The plates are located at
y = 0andy = L, where L, is the distance between the plates. In this case, the geometry
of the simulation domain is setas Ly = 15, Ly =40 and L, = 5. The wallaty = L
is maintained at the initial temperature of 1, while the wall at L = 0 is instantaneously
heated to a temperature of 1.1 at time t = 0, and maintained at this temperature through-
out the simulation. The fluid number density was chosen to be y = 7, the rotation angle
o = 90°, and time step size At. = 0.5. Following the equations in Table 2.2, the thermal
diffusivity varies between 0.5806 and 0.6371 depending on temperature, if the average
fluid density of Y = 7 can be assumed fixed. 7500 simulations were conducted simultane-
ously for ensemble averaging. Analytically, one-dimensional heat transfer from a plate to
an infinite domain is described by the following expression:

oT ) oT

— = = (D7 1

ot ay< T6y> (3.102)
Ty, t=0) = To T(y=0,1t) =T, (3.10b)

where Ty and T,, are the initial system temperature and the heated wall temperature, re-
spectively. If the thermal diffusivity Dt is assumed to be constant, the solution to the
above differential equation can be readily found to be the complementary error function,
with a width growing in time as v/DTt.
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Figure 3.3: Time evolution of the temperature distribution between two isothermal plates; the an-
alytical solution is under the assumption of a constant thermal diffusivity evaluated at
the temperature of the hot plate.

In the simulation, the existence of the cold wall at y = L invalidates this solution
for an infinite domain, except for the initial times of the simulation when the effect of
the hot wall has not yet reached the opposite cold wall. Moreover, the thermal diffusivity
is not constant in the simulation, because it depends on the local temperature and local
number density. For relatively small temperature differences between the two walls we can
approximate the thermal diffusivity to be constant at the value of the hot wall (which is
most relevant for thermal diffusion of the hotter parts of the fluid). Following this approach,
Fig. (3.3) shows that the temperature evolution follows the expected analytical solution.

The thermal diffusivity can also be measured from the SRD simulation in various ways
[6, 42—46]. For example, Ihle et al. [47] used a discrete-time projection operator technique
to obtain the Green-Kubo relations for the transport coefficients. With the establishment
of real-time temperature measurement in the present study, the thermal diffusivity can be
measured more directly and computationally efficiently from the steady state heat flux to
the walls during conduction between flat plates, given by:

dT

Fio = Koo 3.11)
K

Df = — (3.12)
! pCp

where Fy x—o denotes the thermal flux at x = O (or any other plane in steady state), K
is the thermal conductivity of the fluid, p the mass density and Cp the heat capacity per
unit mass. We apply this method to to a system with fluid particle density p = my = 50.
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Figure 3.4: Comparison between the theoretical thermal diffusivity (Table 2.2) and the thermal
diffusivity obtained from the measured heat flux (equation 3.12).

The resulting thermal diffusivity is shown in Fig. (3.4) for various settings of the collision
time step At. and compared with the theoretical solution for thermal diffusivity derived
in the work of Ihle et al. [47]. The simulated results closely match the analytical solution.

3.3.3 FLUID CONFINED BETWEEN PLANAR WALLS

The exchange of heat between solid and fluid phases plays a key role in many processes.
For example, the reaction kinetics and the catalyst efficiency in a heterogeneous catalytic
reactor can be sensitive to temperature, and the formation of local hotspots due to the
inefficient thermal conductivity can cause severe problems. In simulating such problems,
a heat transfer model between solid and fluid is necessary.

The performance of the fluid-solid coupled model introduced in Sec. 3.2.1 is evaluated
by conducting a test case in which a heat flow is induced between two planar surface. A
rectangular strip of the wall at y = 0 is maintained at a temperature of 1.1 (see Fig. (3.5)),
whereas the temperature of the rest of the wall and the wall at y = L, can evolve freely
from an initial temperature of 1.0. A 10% maximum difference in temperature is chosen to
limit the effects of changes in temperature-dependent properties such as diffusivity, while
producing a relatively high signal-to-noise ratio. The latter reduces the needed number of
parallel simulations to be run for averaging.

Fig. 3.6 presents the evolution of the local wall surface temperatures with time. The
temperatures are averaged in the x-direction since the system does not vary along this
direction. It can be observed that the conduction through the fluid to the cold wall occurs
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Figure 3.5: Schematic of the heated wall. Blue represents the zone with variable temperature,
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as expected. Since the temperature of the heated strip is higher than the surroundings,
the temperature increase of the fluid starts near the hot strip. The opposite wall slowly
increases in temperature due to the thermal diffusion across the gap.

3.3.4 TEMPERATURE PROGRAMMED DESORPTION AND ISOTHERMAL SURFACE RE-
ACTIONS

By now, the foundation for the real-time temperature measurement has been laid. Next,
we will demonstrate that the model is suitable for simulating complex surface processes
like heterogeneous chemical reactions, which contains three steps: adsorption, reaction
and desorption at catalytic surface sites.

To implement heterogeneous chemical reactions, the Langmuir adsorption-reaction model
proposed by Sengar [48] is applied. Details of the model can be found in appendix a.l.

In the preprocessing step, the catalyst surface is assigned active sites. They can either
be distributed uniformly on the surface in a fixed grid pattern, or they can be randomly
distributed. In this work, we distribute the active sites randomly onto discretized surface
cells. For simplicity, these cells are taken to be the intersections between the solid and the
SRD grids. A particle is then adsorbed exactly where it collides with the wall if there are
any free active sites in the cell. This way, instead of fixing the locations of each active site,
we fix the number of active sites in each cell, which determines the capacity of the cell
to hold adsorbed particles. In this way, the catalyst sites can be easily implemented for
complex boundaries. It is notable that being coarse-grained particles, the SRD particles
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Figure 3.6: Temperature evolution of the surface of the unheated (a) and heated (b) wall with time.
Subsequent time steps are plotted above each other to illustrate the change in tempera-
ture profile with time.
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represent multiple molecules and similarly the catalyst sites are larger than the size of
molecular catalyst sites.

The grid shift procedure needs to be adjusted for the presence of catalytic spheres. Ghost
particles are added when the particle density in the SRD cell near a sphere is lower than
average number density of the fluid, which is similar to the treatment of the wall of the
domain described in Chapter 2. The velocities of these particles are taken from a Gaussian
distribution with mean velocity equal to that of the spherical particle (zero for the fixed
spheres in this work)and the same temperature as the fluid, as determined in the previous
step.

We first perform a virtual experiment of temperature programmed desorption (TPD)
from a slowly heated solid spherical catalyst in a bath of SRD particles. The geometry of
the test domainis setto Ly = Ly = L, = 20, and the sphere radius is 2 with in total 10000
catalytic sites on the surface. To load the sphere surface with particles, the adsorption
probability prefactor pg is set to 0.5 and desorption probability prefactor p?i to 0. The

simulation is then allowed to run until all N4+ catalytic sites per unit area are occupied.

The temperature of the solid is then lowered to 0.1 and subsequently slowly increased at a

rate of 3 = 0.001. The adsorption probability prefactor is set to O to avoid re-adsorption.

The desorption probability prefactor is set to 1 and the particles are allowed to desorb
from the surface as the temperature increases. Atg is the streaming time interval as the
timestep to update adsorption, reaction and desorption. The fractional surface coverage
of the sphere © = N4 /N¢qt, Where N is the number of adsorbed particles per unit areca
and N q¢ is the number of catalytic sites per unit area, will evolve according to the rate
of desorption:

de 0
&= _e—zf e Ea/ksT (3.13)
S

where Eq4 is the desorption activation energy, set to 0.5kg Ty in this example. The left
hand side can now be transformed as:

d6  dedT de

= = 3.14
dt dTrdt dT (3.14)
Therefore, the final expression for the TPD curve can be written as:
0
WO Pd goFa/keT (3.15)

dT ~ PBAts

Eq. (4.10) can be solved numerically to obtain the final solution. This resulting solution,
the desorption rate as the change of % with temperature is compared with the simulation
results in Fig. 3.7. It shows that the observed simulation results closely agree with the
theoretical prediction, which validates that the desorption model exhibits the expected
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Figure 3.7: Desorption rate versus temperature during a Temperature Programmed Desorption

(TPD) virtual experiment where the sphere temperature is increased at a rate of 3 =
0.001.

temperature kinetics. The fluctuations in the simulation results are a consequence of den-
sity fluctuations in the SRD fluid.

Next, we test the competition between adsorption, reaction and desorption for an isother-
mal case (in the next section we will investigate heat effects). At the catalyst surface, an
adsorbed reactant particle A reacts to form a product particle B. While both A and B are
set to have equal adsorption and desorption probability prefactors as well as activation
energies, the desorption probability prefactor is set to a low value of 0.05 to create a rate
limiting step when adsorption probability prefactor is 0.5. This also avoids unwanted hy-
drodynamic effects due to sudden changes in local density. The probability prefactor for
reaction is set to 0.005. The real-time fractional surface coverage is then measured. As
explained in Appendix a.l, the number of A and B particles adsorbing per unit area per
unit time can be written as:

2kgT N N
RA,ads = Ca m:Apﬁ <1 — A’ad]il+ B’ads>eEﬂ/kBT
cat
(3.16)
2kpT N N
RB,adas = Cs Ttn]iB P (1— A’ad]s\J+t B’ads>eE°/kBT
ca
3.17)

where Ca and Cg are the local concentrations (number densities) of A and B particles,
respectively, and the term between brackets is the explicit form of (1 — 0), expressed in
terms of the number of adsorbed A and B particles per unit area, Na qqs and N q4s.
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Figure 3.8: Time dependence of surface coverage of a catalytic sphere for isothermal adsorption-
reaction-desorption.

relative to the total number of catalytic sites per unit area, N¢q+. The number of A and B
particles desorbing per unit area per unit time can be written as:

0
RA,des = NA,adsX_tdeiEd/kBT (3.18)
S
PO Ea/ksT
RB,des = NB,adsﬁei a/kp (3.19)

S

Finally, the number of A reacting to B per unit area per unit time (assuming an irreversible
reaction) can be written as:

0
RA,react = NA,ads X_reiEr/kBT (3.20)
ts

These equations can now be combined to form a set of differential equations governing
the number of A and B on the surface:

dN
% = RA,ads - RA,des - RA,react (3-21)
dN
% = RB,ads - RB,des + RA,react (3-22)

These equations can be solved numerically to give the surface particle numbers with time.
In our numerical solution, we assume that the amount of B particles re-adsorbing onto the
surface is negligible, so we effectively set yg = 0.
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Fig. 3.8 compares the surface coverage in the numerical solution (blue line) and the
SRD model (red dots). It can be seen that the SRD solution closely resembles the numer-
ical solution. The equilibrium total surface coverage can be seen to match the theoretical
value, proving that the adsorption and desorption are working as expected.

3.3.5 SURFACE REACTIONS ON CATALYTIC PARTICLES WITH HEAT EFFECTS

To further demonstrate the real-time measurement of temperature in heterogeneous cat-
alytic reaction simulations, a model with multiple spherical catalyst particles is tested in
a flowing reactant medium. For heterogeneous catalytic reactions in densely packed beds,
dead-zones in the hydrodynamic fields, which can cause the formation of hot-spots in
the domain. These hot-spots could be catastrophic for the reactor. Simulations can aid in
understanding, controlling and preferably preventing the emergence of hot spots.

To replicate the conditions in a densely packed bed reactor where. hot-spots may form,
spherical catalyst particles are configured closely together. Fig. 3.9 shows a schematic of
the simulation geometry, which consists of a periodic fluid domain with a thermostatted
buffer region at x = L spanning a length of 5 units. 1, 2 or 3 spheres with a radius of 3 are
inserted at z = L, /2, each sufficiently far away from the buffer region. A flow is induced
by a uniform forcing term in the x-direction. The buffer region returns the outlet fluid
to a constant temperature of 1, while also converting B particles back into A, avoiding
accumulation of B in the system. Ly is chosen to be 20 (plus buffer region), Ly is 26, and
L, is 16.

The coordinates of spheres 1, 2, and 3 are (6,13,13), (12,8,13), (12,19,13), respectively.
In this configuration, when simulating more than one catalytic sphere, the distance be-
tween them is set to be slightly larger than 1 SRD cell. This procedure keeps the catalytic
spheres close enough to show effects of heat accumulation in the narrow area between the
spheres. Individual solid temperature meshes are created for each sphere in the domain.
The fluid collision time step is set to 0.5 and the local particle density to 7. The flow is
driven by a body force g = 0.001. The arrangement method of catalytic sites is the same
as for the temperature programmed desorption case and explained in Section 3.3.4 The
number of catalyst sites per catalytic sphere is 100. The complete simulation settings are
listed in Tab. (3.1). 250 simulations were conducted simultaneously to enable real-time
temperature measurement.

Fig. 3.10 presents the product density field in the simulation domain. Subfigures 3.10a,
3.10b and 3.10c show the steady state number density contour on the plane z = [, /2
for the three scenarios. It is clearly visible how in the buffer region the product particles
are reset to reactant particles. From the product density distribution in 3.10a, 3.10b and
3.10c, it can be seen that convection-diffusion of the product from the surface of the cat-
alyst occurs and varies for the 3 scenarios. The distribution of the product in the domain
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Table 3.1: Parameters for the simulations with surface reactions on catalytic particles (see also
Appendix a.l).

Property Value Property Value
At 0.5 D 0.6249
o 20° Dy 0.6653
Y 7 v 0.3503
S 0.5 Ea 0.5

po 0.5 E. 0.5

P 0.005 | Eq 0.5
Necat 100 At 0.0005
Ks 10 psCs 100
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Figure 3.10: Mean product number density distribution in a cross section of a domain. Subfigure
a, b and ¢ shows results for 1, 2 and 3 spheres. Subfigure d compares the total number
of B particles in each of the system with the results expected for multiple isolated
spheres.

is biased towards the right due to convection. In the case of multiple spheres, product ac-
cumulation happens in the narrow space between spheres, along with the occurrence of
hydrodynamic dead-spots. Since the reaction is highly desorption limited, the magnitude
of the product number density is smaller than that of the reactant.

Fig. 3.10d shows the evolution of the total number of B particles in the system with
time. The three solid lines represent the three different schemes investigated here. The
two dashed lines, named ‘2 sphere isolated’ and ‘3 sphere isolated’, are constructed by
simply scaling the results for ‘1 sphere’ by the number of spheres in the domain. It can be
seen that the qualitative behavior remains the same as the number of spheres is scaled up.
However, the relative placement of the 3 spheres can be seen to encourage the entrapment
of more product particles in the system, when compared with three independent spheres.
This effect can be attributed to the presence of the dead-zone in between the spheres. The
particles that reach these dead-zones would have a longer residence time than the rest of
the particles, which leads to non-uniformity in the reaction balance within a packed bed.

Each of the scenarios exhibit a quick initial increase, followed by a gradual decrease of
the total number of B particles. The initial rise takes place over the first 100 to 200 time
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steps, which coincides with the time for the development of the velocity field. At these
initial times, the effect of convective transport has not reached a significant value, leading
to a diffusion dominated transport of product. Once the convection picks up, the additional
particles away from the spheres are gradually forced to the buffer region and converted
back to reactant particles, thereby decreasing the total number of product particles.

Fig. 3.11a-c show the steady state fluid temperature distribution surrounding 1, 2 and
3 spheres, respectively, about the plane z = L, /2. Comparing Fig. 3.10 and 3.11, it is
seen that the temperature contour follows the same qualitative behavior as the product
density profile, while the temperature enhancement penetrates further into the fluid than
the product does. This is not caused by the diffusion, since both mass and temperature have
similar diffusivity in this case (Table 2.2). Instead, this behavior can be attributed to the
difference in flux of mass and energy. The energy generated due to the surface reaction
is used to increase the local wall temperature. This energy is then transferred to all the
particles hitting that location of the wall. In contrast, only 1 product particle is created
per reaction event. This results in a higher flux of heat to the fluid than that of product
particles.

Fig. 3.11b and 3.11c demonstrate the effect of dead-spots in the flow profile. The lo-
cation of the hot-spots coincides with that of the density field, which is as expected. Ad-
ditionally, a slightly lower temperature can be observed in Fig. 3.11c between spheres
1 and 3 compared to 1 and 2. This can once again be attributed to the effect of slightly
higher local velocity, refreshing the mixture with relatively cool fluid. It can also be seen
that there is an increase in the magnitude of temperature at the hot-spot with increase in
number of spheres. This can be attributed to the presence of more sources and a lower
heat transfer coefficient to the bulk fluid due to the restricted flow. Fig. 3.11d shows the
temporal variation of local temperature half-way between spheres 2 and 3 (at x = L /2).
It can be seen to follow the same behavior as the total product particle number density.
The initial sharp increase is attributed to the diffusion dominated start-up regime, which
is followed by a gradual decrease due to the increasing dominance of convection.

Fig. 3.12 shows the temporal evolution of density and temperature in a cross sectional
plane at z = L,/2. At t = 21, the density and temperature from each of the spheres
has started to affect each other. This gradually leads to the formation of a hot-spot, which
is seen from the series of figures from t = 0 to t = 97. This behavior is in line with
the observations made in the previous paragraphs. One major observation from this is the
difference in time scales for density change and temperature change. In the region between
the catalytic spheres, the temperature can reach up to 1.3. This will cause a change in
diffusivity, particle density and viscosity. This influence may induce a natural convection
effect. However, with a dominant flow driven by a body force g=0.001, we did not observe
obvious natural convection in this simulation.
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Figure 3.11: Steady state temperature profiles for a cross section of the domain (a-c). Subfigure

d gives the transient change in local temperature mid-way between sphere 2 and 3
(x=12andy = 14).
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A final observation from these two graphs is the persistence of noise in the simula-
tions. While 250 simulations are sufficient to observe the major transient behavior in this
case, a considerably higher number of ensemble averages is required to resolve smaller
temperature variations.

Based on all the above results, it can be concluded that the newly developed tech-
niques (real-time temperature measurement, surface reactions, wall coupling) are capable
of working together in synergy to simulate highly complex reactive systems.

3.4 CONCLUSION

In this study, a novel temperature measurement technique for Stochastic Rotation Dynam-
ics was developed, based on kinetic theory. This was then combined with a new form of
ensemble averaging to enable real-time measurement of temperature. A proper boundary
condition is applied to achieve an accurate constant-temperature no-slip boundary condi-
tion. The real-time temperature change due to chemical reaction and heat transfer in fluid
phase is achieved and measured.

The newly formulated non-isothermal model was coupled with a temperature conduc-
tion equation that can model the formation of complex surface temperature patterns. The
coupled method was applied to model surface reactions on catalytic particles. A SRD ap-
proach was adopted to model the adsorption, where the SRD particles have a temperature
dependent probability to adsorb onto the limited number of active sites on the surface.
The adsorbed particles then react with a rate that depends on the local wall temperature.
A wall temperature dependent desorption model was used to release the products into the
fluid. This reaction model was validated against theoretical predictions.

Finally, the combined model was applied to simulate a flow past catalytic spheres. The
obtained results highlight the capability of the model to simultaneously solve for the tran-
sient evolution of macroscopic properties such as mean velocity, temperature and density,
along with employing accurate wall reaction mechanisms. This expansion of the SRD
method to transient and non-isothermal simulations enables the use of this method for the
study of highly non-linear and transient mesoscale problems.
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SURFACE REACTION AND ISLAND FORMATION

This chapter is based on the article:

Fan, R., Habibi, P., Padding, J. T., Hartkamp, R. (2022). Coupling mesoscale transport
to catalytic surface reactions in a hybrid model. Journal of Chemical Physics, 156(8),
[084105]. https://doi.org/10.1063/5.0081829

4.1 INTRODUCTION

Most implementations of chemical reactions in SRD are homogeneous reactions [1, 2]
or surface reactions with neglect of some processes such as adsorption, surface diffu-
sion, or desorption through the use of mean-field rate expressions [3, 4]. Models of col-
loidal particles propelled by chemical reactions with adsorption-desorption kinetics such
as diffusiophoretic Janus colloids and bi-particle catalytic reactions have been described
before.[5—10] However, these works do not describe the detailed kinetics of changing cat-
alyst sites. Sengar et al. were the first to incorporate a Langmuir Hinshelwood reaction
kinetics by introducing individual steps like adsorption, desorption and surface reactions
for a pseudo reaction A — B.[11, 12] It has been shown that SRD can simulate hetero-
geneously catalyzed systems and interlink surface and bulk phenomena which can occur
at different time scales. In addition, the influence of the porous catalyst structure has also
been investigated through this method [13]. For realistic catalytic reactions, more complex
mechanisms exist, such as multiple elementary reaction steps or ‘island formation’ caused
by interactions of surface particles, which lead to deviations from mean-field predictions
[14, 15].

In this work, we show for the first time how to model more complex heterogeneous cat-
alytic reactions by coupling an SRD fluid to a catalytic surface on which surface reactions
are explicitly modelled. This paper is arranged as follows. In section 4.2, we provide a
theoretical background of SRD for modelling hydrodynamics and heterogeneous surface
reactions with different mechanism, including adsorption, particle interaction and des-
orption. In section 4.3, we validate the simulation method for different cases of surface
reactions with mean-field assumptions and for the surface interactions of species when
the mean-field assumptions break. Then, a three-step reaction mechanism with reactant
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Figure 4.1: Schematic of the simulation setup. Periodic boundary conditions are employed for the

sides whilst the top (inert) and bottom (reactive) surfaces are solid walls.

dissociation after adsorption is investigated to demonstrate the capability of the method

when simulating more complex reaction mechanisms where mean-field assumptions fail.
Finally, in section 4.4 we give our conclusions and outlook.

42 METHOD
4.2.1 FLUID MODEL AND SIMULATION SETUP

Fig. 4.1 shows the simulation setup. In this geometry, the top and bottom surfaces are solid
and the sides of the domain are periodic. The bottom wall is reactive (boundary condition
depends on the reaction that is simulated), whilst the top wall has a no flux boundary with
respect to concentration (inert wall). An adjusted stochastic boundary condition [16, 17]
is applied on the reactive surface in order to account for particle adsorption/desorption. In
this work, these events happen during the streaming step. Particles colliding with the wall
have a probability of adsorbing. Once adsorbed, the particle remains adsorbed, reacts or
desorbs based on a probability. The reactive wall is divided into lattice grids. Each grid
represents a catalyst site, which is occupied when a particle is absorbed.

The choice of basic units is shown in Table 2.1. The choice of simulation parameters
in this work are streaming time interval (Atg) as 0.1, collision time interval (At.) as 1,
collision angle () as 7t/2 and average particle density per cell () as 25. This high particle
density is chosen in consideration of obtaining smooth concentration profiles.
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4.2.2 REACTION SCHEME

A typical heterogeneous reaction involves the adsorption of the reactant on the catalyst
surface, breaking of one or more chemical bonds, formation of new bonds, and finally
the desorption of the product. Owing to the coarse grained nature of mesoscopic simula-
tions, heterogeneous chemical reactions can be simplified using random adsorption and
desorption events and reactions in steps, as explained in the following.

4.2.2.1 Adsorption, Reaction and Desorption

In this hybrid model, adsorption, reaction and desorption are taken into account explic-
itly and updated every streaming time-step (Atg). The implementation of the adsorption
and desorption method is discussed in detail in our previous work [17]. When a particle
collides with the wall, the adsorption site closest to the collision point is checked, if this
site is vacant, the particle may adsorb with probability P, 4s. Every Atg, the adsorbed
particles are also updated for reaction. For a simple A — B reaction, a probability test
(with a reaction probability P..) is carried out. If the probability test is successful, A will
convert to B. For simple first order reactions, the reaction rate does not depend on the sur-
rounding of the particle. However, bi-particle elementary particles are treated differently
for mean-field and non-mean-field reactions. For a mean-field A + B — C reaction, for
every adsorbed particle A, a random catalyst site is picked on the wall, if the random site
is of type B, a reaction may occur with a probability P... If the reaction occurs, one of the
reactants turns to a type C, while the other reactant site becomes vacant. Note that for re-
actions involving two different species, only one of the adsorbed species is checked for the
reaction. In case of non-mean-field reactions, a particle can only react with its (first and
second closest) neighboring particles, and surface diffusion (including possible surface
interactions) are modelled explicitly. The details for non-mean-field implementation can
be found in the next subsection on surface interactions. For the desorption of the species
from the wall, a test with desorption probability P45 is carried out. If the probability
test is successful, the particle is given a velocity based on a Maxwell-Boltzmann distribu-
tion and reintroduced into the bulk. For cases in which there is a bulk flow, the velocity
distribution would need to be adjusted to obtain correct flow profiles. The choice for the
distributions and their validation is described in detail in our previous work [17].

To validate the simulation results obtained from SRD, it is necessary to be able to
convert probabilities for adsorption, reaction and desorption into rate constants that can be
used in continuum numerical models. To relate the adsorption rate constant to simulation
parameters, first a relation needs to be found for the particle collision frequency (Z) with
the adsorbing wall.

TN
Z =5y (wl) “.D
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As shown in Eq. (4.1), the collision frequency can be expressed in terms of the particle
concentration (Cg = N/V) and the average velocity in the y-direction, which is perpen-
dicular to the wall, ([vy[) = \/2kp T/(7tm) [11].

Not every collision leads to adsorption and in order to calculate the rate of particle ad-
sorption R 45, the adsorption probability P, 45 and the fraction of unoccupied catalyst
sites 0,, needs to be considered. Therefore, based on SRD parameters, the rate of adsorp-
tion can be expressed as:

[ kpT
Rads = Padszev = CsPadsev ﬁ (4~2)

The rate of adsorption can also be calculated using a mean-field expression involving the
adsorption rate constant (kqqs):

N
Raas = KaasCeBy 5%, (43)
cat

where Aot represents the catalytic surface area and N+ is the number of catalyst sites.
An expression for kg g5 can be obtained by combining Egs. (4.2) and (4.3):

[ kp T PaasA
kads _ b ads cat. (4'4)
2mm Ncat

A similar approach can be used to relate the desorption and first-order reaction rate
constants to simulation parameters. Given an example of a first-order reaction A — B, the
rate constant is given by:

- 1].’1(] - Pre)
Kre = Aty (4.5)

in which P, represents the probability for reaction. Analogously, the desorption rate
constant of product particle B can be expressed as

In(1—-P
Kges = L Pdes) (4.6)
S

where P g5 is the probability for the desorption of a B particle in a time interval Ats.

4.2.2.2 Surface interactions

The reaction expression with mean-field assumption has been derived in the previous
section. Here, we discuss the case in which the mean-field assumption breaks down.
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The mean-field approximation is a commonly made assumption to turn a many-body
problem into a single-body problem [18], to reduce the complexity and computational
cost of solving a system. However, the mean-field assumption is not always reasonable,
for it is limited to cases in which no inter-species interactions exist and where the rate of
surface diffusion is large, such that all species instantaneously adopt an even distribution
over the surface. To simulate surface interactions of particles and their possible separation
into ‘islands’ of different species, we use mesoscopic Monte Carlo simulation. Interac-
tions between neighboring adsorbed particles are accounted for in an explicit manner by
changes to the potential energy of the adsorbed particles [19]. To fit the Monte Carlo step
in SRD time steps, surface mobilities are assumed to be large enough to maintain a local
equilibrium on the surface.

The catalytic surface is divided into a surface lattice grid. The size, shape and orienta-
tion of this surface lattice grid can be chosen depending on the specific problem at hand,
independently of the size and orientation of the cubic SRD grid. For convenience, in the
simulations presented here, the catalytic surface is divided into a square lattice aligned
with the SRD grid, in which each particle can interact with its first and second nearest
neighbors. The division of the surface into a square grid leads to fixed catalyst sites. Al-
though this simplified setting does not allow for the occurrence of complex kinetics such
as surface reconstruction, it can be extended to study a variety of reactions in which sur-
face interactions are prevalent. An example includes the adsorption and dissociation of
oxygen in Pt(111) which is influenced by nearby chemisorbed species.[20-23] The main
focus of this work is to give an example of coupling the fluid phase to the surface reaction
phenomena by implementation of non-mean field effects in SRD, something which is not
available with most kinetic Monte Carlo simulations. The distance between two neighbor-
ing surface sites is set to by = ao/4, with ag corresponding to one SRD cell, such that
there are 16 catalyst sites per a(z). In this mesoscopic Monte Carlo simulation, a similar
procedure as the metropolis algorithm is used. The Monte Carlo steps occur 5 times per
each adsorbed particle every streaming time-step (Ats). In each Monte Carlo step, a ran-
dom particle may move to one of its four closest neighboring lattice cells provided that
it meets certain requirements. A move is directly accepted if the particle in the new posi-
tion leads to a lower potential energy. Otherwise, the move may still be accepted with a
probability of Pqcc = exp(—(Eafter — Evefore)/(ksT)). To implement this, a uniform
random number between 0 and 1 is picked and the move is accepted if this number is
lower than Pqc. If only repulsive interactions between different species are considered,
then the following expression can be used to calculate the total energy:
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Figure 4.2: Straight (a) and slanted (b) boundaries that can form between two different species.
"bo" refers to the unit square lattice size, Ly is the boundary length (between the red
and white species) of configuration 1 and is equal to side length of the square lattice.
L, is equal to the boundary length of configuration 2.
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In this expression, Ey and E; are the first and second nearest neighbor repulsive pair
interactions between two adsorbed particles of different species. N 45 is the total number
of particles adsorbed on the wall while Z; 1 and Z; > refer to the first and second neighbor
list for particle i. 8(s; — s;) is the Dirac delta function, which is equal to 1 when the type
of the species on the wall (denoted with s; and s;) are equal to each other and 0 otherwise.
Another condition that is placed on the particle movement is that it can only enter a new
site if that site is unoccupied. This mimics the fact that particle movement becomes limited
when the catalyst sites are nearly all occupied.

The choice of which neighbor interactions to account for when calculating the potential
energy can be important in determining the shape of the boundaries formed between two
different species on the surface. Square lattices, taking into account only the four nearest
neighbors, lead to the formation of square boundaries, which does not adequately repre-
sent the shape of most real phase-separated domains. As shown in Fig. 4.2, if interspecies
interactions are assumed to be unfavorable (positive energetic contribution), then by only
counting the nearest neighbor interactions, the energy (E1) of a straight line boundary
(configuration 1) per boundary length (L7) is equal to E—: = E—g. In this expression, Eg
refers to the nearest neighbor interspecies interaction and by is the square lattice unit size.
Meanwhile, the energy for configuration 2 per unit length of the boundary is given by
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E2 _ 2B _ V2Es ) enable more isotropic growth of the boundaries, both configura-
L V2b, bo

tion 1 and 2 need to become equally favorable. This can be achieved by also taking into
account the second nearest neighbor interactions (denoted by Eq) [19]. In that case, the
energy of configuration 1 and 2 per unit length of the boundaries can be expressed by:

Eq Eo + 2E4

- - v'==1 4.8
L bo (4.8)
Ex _ M (4.9)
L, V2bo '

The two expressions (energy per unit length) are equal if the following ratio is chosen
between E; and Eg:

B vV2-1 1

= — 4.1
b 22 3 (4.10)

4.3 VALIDATION AND RESULTS

In our previous work [17], we validated the adjusted stochastic boundary condition leading
to thermostatting walls with a very small slip velocity in the case of convective flow. Since
the present work focuses on simulating surface reactions with SRD, here we validate the
method for Langmuir kinetic reactions and more complex reactions in a reactor without
flow.

4.3.1 FIRST-ORDER SURFACE REACTION

In this section, a simple Langmuir kinetic model will be investigated. In the simulation, a
particle of type A can adsorb on the wall with a probability P, 45 = 0.20 (corresponding
to Kaqds = 0.08a8t51) and can also react to become type B (P, = 0.01 leading to
Kre = O.1t5]) and desorb (Pges = 0.01, leading to kgqes = 0.1t5] ). Species B can also
adsorb and desorb from the wall with the same probabilities as species A. The reaction
kinetics is expressed by:

A+x<=>A*x—>Bx<=>B+x .11

where * refers to a vacant site on the surface and A* refers to a surface site on the wall
occupied by species A (the same nomenclature applies to species B and B*). This simula-
tion allows for the validation of the adsorption-reaction-desorption implementation in the
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SRD code. In terms of mean-field equations, the rate of change of surface coverage of A
and B can be expressed as:

doa

dt = kads,AeVY(t)XA(y =0, t) (4.12)
—KreOA —Kdes,A0A
dog
a Kadas,BOVY(t)xg(y =0,1) (4.13)

+kre eA - kdes,B eB,

where xa (y = 0, t) is the local mole fraction of species A in the fluid near the catalytic
surface located aty = 0 and y(t) is the number density of particles in the fluid. 6 5, 0 and
0y are the surface coverage of particle A, B and vacant sites, respectively. The adsorption
rate depends on the collision frequency of particle A, which is influenced by the mole
fraction of A (xa (y = 0, t)) in the fluid and the number density y(t) of particles in the
fluid. When the simulation starts (t = 0), at the surface, the initial condition of fraction
of particle A, B and vacant site are 64 = 0,0 = 0,0y = 1. A continuum numerical
model is used to validate the simulation by solving the unsteady diffusion equation for
each species 1 in the fluid:

dCi _ o @’C
dt b dy?

(4.14)

with boundary conditions taking into account the rates of adsorption and desorption as
shown in Egs. (S3) in Appendix b.1. Here C; represents the concentration of species i
in the fluid, which can be obtained by multiplying the particle number density y(t) by
the local mole fraction x4, and D; the diffusion coefficient of species i. In the numerical
code, y(t) is assumed to be independent of local variations and the number of particles
that adsorb to or desorb from the surface (or are reduced/added due to reaction) and are
spread homogeneously over the SRD cell. This assumption is justified by the low adsorp-
tion probabilities that are used (all below 0.20) coupled with the large number of particles
(100,000 particles in total) with respect to the number of catalyst sites (3200). For large ad-
sorption/desorption probabilities, and low particle number densities, the local variations
of local particle number densities may lead to advection effects. SRD may be capable of
including these effects, however the study of these systems is beyond the scope of this
work and is encouraged for further research. In the numerical model, the governing equa-
tion Eq. (4.14) is discretized using a finite volume scheme. The details of the numerical
model are given in Appendix b.1.

The numerical and simulation results for the concentration profile after 10t is depicted
in Fig. 4.3(a), along with the vacancy fraction as a function of time in Fig. 4.3(b). An excel-
lent agreement is observed between the SRD simulation results for both the concentration
profile in the bulk and for the vacancy fraction at the wall. Only small reaction rates are
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Figure 4.3: First-order mean-field surface reaction. (a) Concentration profile at a cross-section

of an infinite channel. (b) Vacancy fraction on the reactive wall shown as function of
time.
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considered in this section to ensure that the concentration gradients near the reactive wall
are small. Large concentration gradients will require a more elaborate expression for the
mean-field adsorption rate constant, which is beyond the scope of this work (see Appendix
b.1 for more explanation on the numerical scheme for validation).

4.3.2 BI-PARTICLE REACTIONS

Before simulating complex reaction mechanisms, it is necessary to be able to simulate
bi-particle elementary reaction steps on the catalytic surface. In this section, bi-particle
reactions A+ B — C and A + % <> 2B are simulated under the mean-field assump-
tion and validated using numerical models. In order to use numerical validations, the rate
constant of bi-particle reactions needs to be expressed in terms of simulation parameters
(such as the probability of reaction). This calculation is done for a A + B — C reaction
as a test case, but the results can be generalized for other bi-particle reactions.

Assuming that at a given time step there is no adsorption/desorption occurring concur-
rently, the rate of change of the number of catalyst sites occupied by species A and B over
time can be described by Egs. (4.15-4.16) using the mean-field assumption.

dps,A;

T = —K: ABPS,APS,B; (4.15)
t

dps,B;
m = —Kkr,ABPS,A;PS,B; (4.16)

In these expressions, S, A, ps g, and k. A refers to the total number of sites occupied
per area of catalyst by species A, B and the reaction rate constant in the mean-field model
respectively. A Taylor series expansion can be made to find an approximate expression for
Ps,A; and ps g, calculated with their number density in the previous time step (ps,aA

PS,B; ;):

i-1°

dps,a;

Ps,A; X PS,AL T it Ats, 4.17)
Ps,A;
AL 1 — Ky aPs,B, Ats. (4.18)
Ps,Ai4

In terms of simulation parameters and given the implementation of the bi-molecular

surface reactions, the fraction pSpZ’A

can be expressed as:

i

Na  psa;
NA1—1 Ps,A;_;

=1—"Pre,aB0B,_, (4.19)
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where P, aAp refers to the probability of the reaction and Op is the fraction of sites oc-
cupied by particle B (0 = AcatPs,B/Ncat). The reaction rate constant of A +B — C
can be inferred by combining Egs. (4.18) and Eqgs. (4.19) as follows:

Acatpre,AB

(4.20)
NcatAts

ke AB =

The expression of maximum error (Er) associated with Eq. (4.18) can be calculated

from the second derivative of pa with respect to time (see Appendix b.2). Using this

reaction rate constant, the mean-field expressions for the change of fraction occupied by
A, B, C can be calculated:

doe
= KaasaBvy(txaly =0,1)
K+ N
~Kdes, A04 — —50 50,05 4.21)
cat
do
ditB = KaasBOVvY(t)xA(y =0,1)
kr AN
~Kdes,50B — %GAGB (4.22)
cat
do
G = KadscOv(thxaly=0,1)

K, AgN
SrABTcaty g (4.23)
Ac at

—Kdes,cOc +
where y and x o represent the number density of the fluid and the mole fraction of species
A in the fluid. At time t = 0, the reaction is catalyzed on the wall at y = 0. The initial
mixture consists of reactants A and B in equal amounts. The masses of A and B particles
are set to 1 mo and the mass of C is set to 2 m(. Considering that the mass of the product
is different, it implies that it has a different self-diffusion coefficient than the reactants (see
Table 2.2). To simplify the validation test case, it is ensured that the production rate is low
(Paas,A = 0.05 corresponding to kqqs, A = 0.00125 and Pges o = 0.0001 correspond-
ingtoKges A = 0.007). This implies that the influence of the C species on the diffusivities
in the bulk can be ignored for the time-scales considered in this simulation. In this vali-
dation case, the same probability of desorption and adsorption is used for every species
involved. Therefore, in this case kges, A = Kdes,B = Kdes,c. As the mass of species C
is set as twice that of the reactants, Kqqs A = KadasB = \/ikads,C- Egs. (4.21-4.23) are
coupled to the numerical equations shown in Appendix b.1 to find the evolution of mole
fractions xa (y, t), xg (y, t), xc (y, t) and number density y(t). k; A is calculated with
Eq. (4.20) derived previously.

The very good agreement between the numerical and simulation results in Fig. 4.4 con-
firms the validity of the expression found for k, A g. Consistent with the error expression
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Figure 4.4: Simulation results (symbols) and continuum numerical results (lines) for a mean-field
bi-particle reaction A + B — C for different reaction probabilities (0.1, 0.2 and 0.5).

in Appendix b.2, the best agreement is found for the lowest reaction probabilities, 0.1 and
0.2. The error for the k, A expression is shown in Appendix b.2 to scale with the square
of the reaction probability (Pr. aAg). In order to simulate reactions with higher reaction
rate constants it is therefore advised to lower the time-step Atg. This means that the cata-
lyst sites on the wall are updated more frequently and thereby lower reaction probabilities
can be used to obtain the same reaction rates.

Another validation test is done with a reversible reaction: A + * <+ 2B. At the start of
the reaction, the solution only contains particles of type A (xa = 1). To conserve mass,
the mass of A is setto 2 (ma = 2) and the mass of B is set to 1 (mpg = 1). Three different
reaction probabilities of 0.1, 0.2 and 0.5 are used. The same probability of reaction is used
for the forward and backward reaction. This would correspond to a ky A «,2 of 0.0625,
0.125 and 0.3125, respectively. The same probability of adsorption (Pq4s = 0.05) and
desorption (Pges = 0.0001) were used as in the previous subsection for both species A
and B. This corresponds to kges, A = 0.001 and ﬁkads,A = Kaas,B = 0.00125. The
rate of change of the catalyst occupation of A and B (denoted by 64 and 0,4 ) are given
by:
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Figure 4.5: Simulation results (symbols) and numerical results (lines) for a mean-field reversible
reaction A + x — 2B for different reaction probabilities (0.1, 0.2 and 0.5).

do
T? = Kads,AOvY(t)xa(y =0,t) —KdesA0a (4.24)
k]”A(—)BNCCLt krA<—>BNC(1t 2
——TE S0y + 0
Acat ATV ACat 5
dog
e Kads,BOvY(t)xB(Yy = 0,t) —Kdes,508 (4.25)
+kr,A<—>BNcat eAeV - kr,A<—>BNcat 9213
Acat Acat

The numerical and simulation results are shown in Fig. 4.5. The reaction shows an
initial non-linearity which ceases at t > 7. The onset of this quasi-steady state originates
from the reversibility of the reaction. As it proceeds, the production and consumption
term of A and B equilibrate and mainly the linear growth due to adsorption is observed.
This equilibration of the non-linear reactive terms happens more rapidly when k. A5
becomes large compared to the other process rates (desorption and adsorption). At later
stages, it is expected that the fraction of A at the wall will equilibrate. This will occur
when the vacant surface sites become more occupied thereby making the adsorption and
desorption process reach the same rate. However, this is still not observed at the time scales
considered (0 < t < 10). Based on Fig. 4.5, the simulation seems capable in representing
both the non-linear change in the initial stage (t < 5) and the increase in the latter stage.
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4.3.3 SURFACE INTERACTION

After having validated the bi-particle mean-field reactions, it is now possible to simulate
more complex surface reactions in which the mean-field assumptions are no longer valid.
This applies to reactions in which the unfavorable interactions between different adsorbed
species leads to species separation and formation of ‘islands’. Examples of such reactions
include heterogeneously catalyzed nitrogen oxide reduction by ammonia [24] or hydrogen
[25] and the CO oxidation reaction [26]. In this section, the influence of island formation
on the reaction rate of a A + B — C reaction is evaluated by drawing comparisons with
mean-field reactions that were discussed previously. The method of simulating the surface
interactions of particles and the consequent separation of particles into islands is described
in Section 4.2.

Fig. 4.6 shows that boundaries are less isotropic when only nearest neighboring inter-
actions are considered than when second neighboring interactions are also included. This
finding indicates that the second neighboring interactions should be considered at the very
least for a realistic accounting of the surface interactions. Taking additional neighboring
interactions into account can lead to more isotropic boundaries, but will increase the com-
putational cost.

To demonstrate island-formation, only repulsive forces between two separate species
are considered in this study. However, separation between the particles can also occur if
the interactions of the species with themselves is more favorable than the inter-species
interactions. The magnitude and sign of interactions will depend on the species that are
simulated. The influence of having different magnitudes of interactions is considered here
to demonstrate its consequence for the coupling between the SRD simulation and the
mesoscopic Monte Carlo method.

To study the influence of island formation on bi-particle reaction rates,a A +B — C
reaction is considered. This reaction was also studied in Section 4.3.2 under mean-field
conditions at different reaction rates. A probability of reaction of 0.1 (corresponding to a
mean field rate constant of 1 a% /to) is studied. An Eg of 2.00kgT is considered (second
neighboring interactions are included as described Section 4.2), with 5 Monte-Carlo steps
per adsorbed particle at each Atg. This corresponds to islands formed on the scale of
around 5 ap (similar to the islands in Fig. 4.6 (b)).

Fig. 4.7 shows that surface interactions (i.e., the case of island formation) can have a
considerable influence on the reaction rate. As species A and B have unfavorable interac-
tions, the probability that they come into contact is lowered with respect to the mean-field
assumption. This lowers the reaction rate. This effect is prominent especially in the initial
stages when the reactants A and B can avoid being in contact (as most of the catalyst sites
are vacant). From Fig. 4.7, adsorption is the dominating mechanism up until the time of
t = 30, after which depletion of A occurs as the reaction rate becomes prominent. The
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Figure 4.6: Island formation between two species A and B with different energetic interaction (Eg)
between two adjacent inter-species and taking into account different neighbors. The
yellow, green and blue color represent A, B and vacant sites, respectively.
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Figure 4.7: Influence of island formation on bi-molecular reactions. The same probability of re-
action (Pre = 0.1) is used for both the mean-field and non-mean-field, island forming,
model. The initial mixture consist of 50% (molar) of species A and 50% of species B.

same transition between dominant mechanisms occurs already att = 10 for the mean-field
case. Consequently, the maximum fraction of A on the surface is approximately twice as
high when island formation is considered. This notable change signifies the importance
that surface interactions can have in reaction mechanisms.

4.3.4 ELEMENTARY REACTION

The methods developed so far are applied to simulate a gas-phase reaction involving three
different elementary steps to show the potential usage of SRD in heterogeneously cat-
alyzed reaction. An example of a typical industrially relevant reaction explained in terms
of this mechanism is CO oxidation. Since this reaction involves a mixture of components,
a multi-component diffusion model is needed to accurately predict the concentration pro-
files that form in the catalytic channel. For such surface reactions, catalysts are inherently
dynamic in nature. Dynamic surface behavior such as surface reconstruction has been
investigated in various experimental works and molecular simulations[27-31]. The ob-
jective of the current work is to mimic the mechanism, not to incorporate full atomistic
details of the surface kinetics for a certain reaction. Effects of surface reconstruction and
specific crystal structures are not considered in this work. There is a clear distinction be-
tween our test case and a real CO oxidation reaction in the sense that the surface ordering
of the species and locations of O(ads) and CO(ads) on the surface would need a more
thorough consideration (e.g. to consider short length O(ads)-O(ads) repulsion and sur-
face restructuring that can occur at higher O(ads) fractions). The simulation considered



4.3 VALIDATION AND RESULTS

in this section involves 3 species in the SRD domain, namely species A, B, (the nota-
tion B, is picked because this species will dissociate into 2B 45 on the surface) and the
product C. Species A has a unit mass mg, species B, is given a mass of 1.17 my and
species C is given a mass of 1.57 mg to mimic the mass ratio of CO, O, and CO,, re-
spectively. Due to the differences in mass, it can be seen that the species considered have
different self-diffusion coefficients (see Table 2.2). Specifically, the self-diffusion coeffi-
cient of species A is around 15% higher than that of B, and around 36% higher than that
of species C. This difference warrants the need for a multi-component diffusion model.
Based on the mechanism of CO oxidation, the change of these three species through the
surface catalyzed reaction is shown below.

A+*x & Agds (4.26)
By +2% — 2Bads (4.27)
Aads T Baas — C+2x (4.28)

In this reaction mechanism, species A and B, adsorb on the catalyst surface with an ad-
sorption probability of 0.05, while C does not undergo adsorption. To simulate catalyst
poisoning, species Ayqs is given a low desorption probability of 0.0001, while B g5
does not undergo desorption. Aqqs and Bg4s have unfavorable repulsive interactions
(Ep = 2k T) and can react together with a probability of 0.1 to form the product C. Upon
formation, C desorbs off the wall instantaneously. To test the mechanism and probe the
influence of the initial composition on the reaction rate and the fraction induced on the
wall, three different compositions are tested. These compositions consist initially only of
reactants at A to B, molar ratios of 1:1, 2:1 and 1:2, respectively. In Fig. 4.8a, the frac-
tion of Agqs and B g on the wall is shown over time for an equimolar initial mixture
of A and B. This composition is more optimal compared to the other two compositions
as none of the species is fully poisoning the catalyst by excessively occupying the cat-
alytic sites. Furthermore, as the fractions of A 445 and B, 45 are both high (at least until
time t = 100t(), the largest production rate is expected. The large fractions of A 445 and
Bags are especially important in this reaction mechanism as island formation of A and
B is considered (as the species will tend to avoid each other when the occupied fractions
are smaller).

The product concentration profile at time t = 100t for different initial compositions
is compared in Fig. 4.8b. This figure shows that at time t = 100t there are significant
spatial variations in the bulk fluid (especially in the equimolar reactant mixture test case).
The total production of C is obtained from the area under these curves. Comparing these
areas shows that a 1:1 initial ratio of A to B is preferred as it yields approximately 25%
more production of C than the least optimal composition, being the 2:1 ratio.

Notably, the profiles obtained in Fig. 4.8b are not easily obtainable numerically with-
out making simplifications since multi-component diffusion models would need to be
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Figure 4.8: Non-mean-field elementary reaction mechanism involving a three-step reaction mech-
anism with reactant dissociation (Egs. 5.7-5.9). (a) Evolution of the A 45 and Bggs
fraction at the wall for an initial 1:1 A to B, molar ratio. (b) Product concentration
profile at time t = 100t for initial A to B, molar ratios of 1:1, 2:1 and 1:2, with no
product initially.



4.4 CONCLUSION

applied with composition dependent Maxwell-Stefan diffusion coefficients. These then
need to be further coupled to the non-linear surface reaction kinetics. This simulation
therefore demonstrates the convenience and capability of SRD simulations when having
multi-component reactive mixtures with complex reactive boundary conditions.

4.4 CONCLUSION

We developed a mesoscopic framework to study heterogeneously catalyzed multi-particle
reactions both in the mean-field and non mean-field regime, connecting mass transport in
the fluid to elementary reaction steps on the catalytic surface. Multiple test cases were car-
ried out to demonstrate that the developed method produces the correct reaction behavior.
Mean-field elemental reactions can be simulated by neglecting particle-particle interac-
tions on the surface, ensuring that the adsorbed particles can react at any location on
the surface. Non-mean-field reactions can be simulated by applying a mesoscopic Monte
Carlo simulation on the surface, with the bulk fluid simulated by SRD.

Comparing an A + B — C reaction in the mean-field and non mean-field regime
demonstrated that the formation of islands for different species can lead to significant cov-
erage differences due to inhibition of reaction rates. These differences demonstrate the
importance that surface interactions may have on the total reactivity of a system. Surface
mechanisms, such as island formation, are intricately linked to spatial variations in com-
position, which are in turn related to imposed external forces and flow profiles. Although
convective effects were not studied in this work, they can easily be considered.

The method was applied to a heterogeneously catalyzed reaction mechanism in a multi-
component gas phase system with a three-step mechanism involving the initial adsorption
of a reactant, its dissociation on the catalyst surface, and a surface reaction. A catalyst
poisoning process was simulated by imposing a low desorption rate. This simulation al-
lowed for coupling between detailed surface information (such as surface interaction and
coverage results) to spatial concentration variations in the bulk of a multi-component gas
mixture. Allowing for such intricate combinations illustrates the strength of the method
developed.
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SIMULATING REACTIONS IN COMPLEX GEOMETRIES

5.1 INTRODUCTION

For heterogeneous catalysis, reactions happen on the catalyst surface. Therefore, max-
imising the contact surface area between the catalyst and the fluid phase is a key factor
in enhancing the reaction process. Zeolites or other porous media such as metal-organic
frameworks (MOFs) become the material of choice to support the catalytic active sites.
The structure of zeolites and MOFs can be found in databases [1] or obtained from crystal-
lographic data [2]. For amorphous catalyst supports, catalyst pellets have internal macro-
pores and micropores, with a distribution that is typically highly irregular. The stochastic
nature of the pore space distribution is complicating analytical prediction of the interplay
between reaction kinetics and mass transfer [3]. This is where simulations can help.

Various methods have been developed to simulate the irregular porous structures of
heterogeneous catalysts. Random pores [4] and Bethe lattices[5, 6] have been introduced
to simulate a catalyst network in two dimensions. The employment of Voronoi polyhedra
includes the connectivity and cycle loops of pores [7]. These ideas can be expanded to
3-D pore networks.

For mesoscale simulations, most works that involve complex geometries focus on the
influence of pore structure on material properties, such as those of concrete, sandstone
and membranes [8—10]. Reactions are studied in some coarse grained works, in particular
when they cause a geometry change. For instance, Tarabkhah et al. simulated fluid flow
and chemical reactions in different porous media for cases where the porous media volume
and structure changed during reaction [11].

In contrast to LBM or lattice gas cellular automata (LGCA), complex geometry gen-
eration in SRD is relatively easy because, as far as boundaries are concerned, SRD is a
lattice-free method; the only important thing is to have a mathematically convenient way
to detect the collision of an SRD particle with a solid boundary. It is possible to define
the geometry in multiple ways. For example, spheres with mathematically defined bound-
aries can be implemented in SRD, as shown in Chapter 3. Though it is possible to fully
define complex geometries using mathematical equations, the computing cost to resolve
the geometry could become prohibitively expensive. On the other hand, the pore structure
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Figure 5.1: Video game made with voxels [12].

of real catalyst materials could be obtained from multiple experimental measurements
such as microcomputed tomography (microCT), atomic force microscopy (AFM), trans-
mission electron microscope (TEM), and optical profilometers. It is convenient to build
the three-dimensional model based on volume elements with a certain shape. Voxels, as
popularly applied in video games as shown in Figure 5.1, can be an option for building a
complex geometry. This is the approach we will take in this chapter.

5.2 METHOD

5.2.1 GEOMETRY GENERATION

There are many methods to generate random porous media structures, for example through
a reconstruction process using deep learning of images, through a simulated annealing
method, or using multiple-point statistics [13—15]. The correct inclusion of spatial cor-
relations in the pore space distribution in the reconstruction method is crucial and com-
plicated. The simplest method is to randomly distribute obstacles or pores, ignoring any
other details of microstructure. Wang et al. [16] proposed the quartet structure generation
set (QSGS) approach, based on the idea of Coveney et al. [17] and cluster growth theo-
ries [18], growing the pores with time and controlling the structure by a set of parameters
such as initial probability of pore core distribution, neighboring growing probability and
volume fraction.

A similar approach could be used to generate a voxel-based catalyst porous structure for
SRD simulations. A flowchart containing the steps of the approach used in this research is
shown in 5.2. Four main steps are used. First, n voxels are randomly picked from a solid
block of voxels and converted to pore (fluid) voxels. These selected voxels will serve as
the starting point for creating pores. Then, a probability test is performed (meaning that a
uniform number between O and 1 is drawn) for all of the neighbors of the selected starting
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Figure 5.2: Flowchart of the pore geometry generation algorithm.

voxels. If the test is satisfied (meaning that the random number is smaller than the specified
probability), the neighboring voxel is converted to a pore voxel.
A pseudo-code of the probability test is as follows:

p=0.5; % probability of generating a fluid neighbouring voxel
void = C; %voidage of pre-existing pores

count=0;

loop=1;

while (void < desiredvoidage)

i = randi[1l,Lx] %pick a random voxel within the domain of [Lx,Ly,Lz]
j = randi[1,Ly]
k = randi[1,Lz]

if Voxel(i,j,k)==0 && rand()<p %add neighbouring fluid voxel

x=randi[-1,1]; %decide to add voxel in the x-, y-, or z-direction

delta = 2xrandi[0,1]-1; %negative or positive direction

if x==-1 && i+delta>0 && i+delta<Lx+1l && Voxel(i+delta,j,k)==1
Voxel(i+delta,j, k)=0;
count =count+1;

endif

if x==0 && j+delta>0 && j+delta<Ly+1l && Voxel(i, j+delta,k)==1
Voxel(i,j+delta,k)=0;
count =count+1;

endif

if x==1 & k+delta>0 && k+delta<Lz+1l && Voxel(i,j,k+delta)==
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Voxel(i,j,k+delta)=0;
count =count+1;
endif
endif
void = void + count/(LxxLyxLz); %update the total voidage
endwhile

At the end step of the geometry generation loop, a flooding test is done to ensure the
connectivity of the porous media catalyst region allowing the fluid to go through the region
from one side to the other. The flooding test is conducted by starting from one side of the
catalyst region, assuming the fluid comes from this side. In the test, the check will go along
with the fluid direction and check for each position whether the fluid can reach another
voxel. Each voxel that the fluid can reach will be remembered in a given condition index,
like being "colored".

A two-dimensional example of the method is shown in Figure 5.3. In this example, the
bulk of the catalyst region is located between x = 0 and x = 8. Some voxels are solid and
some are hollow. If the flow starts at x = 0, there are two hollow voxels in the first layer
(lowest x coordinate). When the two hollow voxels are detected, they will be "colored"
(given a special index in the program), as shown in red in the figure. Then, a check of their
neighbors will be done and the connected voxels will also be colored. At this moment, one
voxel in the second layer of x coordinates is colored. Then the loop goes to the second
layer of x coordinates, checking any colored voxels’ neighbors and coloring them. This
process repeats until the last layer in the x-direction. Then for a 2-D scenario, the same
coloring process needs to be done in the y-direction, which will allow for connectivity
with backflow, as shown in Figure 5.3. When all connected hollow voxels are colored,
the existence of at least one colored voxel in the last layer of the catalyst along the flow
direction shows the connectivity (i.e. the existence of a percolation path) throughout the
whole region. Unconnected pores, like shown in grey in the Figure, are not colored in the
flooding test and are not reachable by the fluid.

An example of a 3D pore geometry generated through the above methodology is shown
in Figure 5.4. Alternatively, a catalyst geometry could be generated starting with seeds of
channels instead of pores. This method uses a similar strategy as the previous one, however,
it gives very different results. Instead of generating random void seeds inside the solid part,
random void seeds are located on the surface. For each seed, there are 6 directions for the
pore to grow: one forward and five other directions to a neighboring cell. The probability
of growing forward is set to be larger than the probability of growing around, therefore
the channel will ultimately grow to the other side of the solid part. An example of this
generating method result is shown in Figure 5.5. The advantage of this method is that the
channels will naturally pass the flooding test.
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X

Figure 5.3: Illustration of the flooding test: Solid voxels are colored white, flow connected voxels
red, and unconnected voxels grey. See the main text for details.
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Figure 5.4: Example of a pore space generated through n = 15 seeds and probability p = 0.5 for
a porosity of € = 0.3 .
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Figure 5.5: Example of channels generated with 4 surface seeds, with a forward probability of 0.4
and probabilities for the other directions (including backward) equal to 0.12.

5.2.2 COMPLEX GEOMETRY BOUNCE-BACK IMPLEMENTATION FOR SRD

After having generated a complex voxel geometry, another problem must be solved: how
to bounce back SRD particles from the solid voxel walls efficiently. To solve this problem,
a proper solid mapping and bounce-back method is needed. The mapping algorithm used
in this research is described below.

After updating the position of a particle, the integer values of the old and new posi-
tions are taken and compared (where the voxel size is conveniently taken to be unity) in
each coordinate direction. The differences of these values in each direction are saved as
dix, diy, diz. These values could be negative, positive or zero, and contain information
about the possible intersection of the particle path with one of the solid voxel faces. In
consideration of the small mean-free-path chosen in our work, in general, the travelling
distance would not be more than one grid, so we can assume that the absolute value of
the difference integer would not be larger than 1. If the value equals 0, this means that
the particle has travelled within the same grid in this coordinate direction, which implies
there is no possibility of collision with a solid voxel in this direction. A value not equal
to zero means that the particle moved across a grid boundary in that coordinate direction,
and a collision could have happened depending on whether or not there is a solid surface
present in between. Therefore, it is necessary to check the precise collision situation.

Let us first determine the solid boundary that the particle hits first (if any) within the
last time step Ats. Since we have already taken the values of new and old positions, we
can easily calculate the coordinate of the (possible) crossing point in each direction: it is
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either on the left- or righthand side boundary of the cell of the old particle position, and
this information is already contained within the value of the integer difference value in
that direction. For example for a possible intersection in the x-direction, the intersection
x-coordinate x1 can be calculated by x1 = ixo + (dix + 1) /2, where ixo is the integer of
the particle’s old x-position. Based on this value, the value of the travelling time that the
particle needed to move to this boundary can be calculated through t1 = (x1 —xold)/Vx,
where Vx is the particle’s x-velocity component. This time is then used to calculate the
on-surface impact coordinates (y1, z1). Similarly the (possible) collisions in the y and
z directions lead to surface crossing coordinates y2 and z3, travelling times t2 and t3,
and on-surface impact coordinates (x2, z2) and (x3, y3), respectively. By finding the or-
der of traveling times in the three different directions, we can calculate the order of the
boundaries that the particle (potentially) hits.

Once we have the grid surface impact positions, we can find out if we are dealing with
a solid surface, in the order of the traveling times (as long as they are shorter than the time
step Aty). If a solid surface is hit, adsorption of the particle is attempted with a probability
test. If the particle is not adsorbed, it is bounced back into the fluid domain. In principle
the particle could hit another surface within the same time step, and should therefore be
adsorbed or bounced back at the next surface. However, in this work we assume that the
typical displacement of a particle within a time step At is small relative to the voxel size.
Therefore we can limit ourselves to an accurate adsorption/bounceback treatment for the
first surface that is hit, and a much simpler scheme that folds the particle position back
into the fluid (effectively bounce-forward) for any subsequent surface collisions within
the same time step. This simplification will only affect particles very close to the corners
of the voxelated geometry. To better explain this process, Figure 5.6 schematically shows
the calculation and changes of variables.

5.2.3 REACTION SCHEME

Similar to our previous work in Chapter 4, each elementary step (adsorption, reaction and
desorption) of the whole reaction with Langmuir-Hinshelwood kinetics is updated by the
streaming time-step (At;), as discussed in detailed in previous work [19]. However, the
setting of catalyst site distribution and local vacancy is different with previous works. In
this work, the catalyst surface is divided into unit surface areas (the voxel implementation
of the catalyst geometry makes it easy to define the unit surface as a voxel surface). The
number of catalyst sites can be set on each unit surface, allowing for a locally varying
occupancy of catalyst sites. When a particle collides with a catalyst surface, the location of
the particle is checked and a further probability test is applied to determine the next status
of the particle. The probability test is performed in the same manner as in our previous
work, as well as the reaction and desorption steps. For multi-particle reactions where the
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------------
- «-m—- Adsorption
Adsorption probability test

Surface[1][x1][y1][z1]
Surface[2][x2][y2][z2]
Surface[3][x3][y3][z3]

Figure 5.6: Flowchart of particle position mapping and collision detection with surfaces of a vox-
elated geometry. See main text for details.

particle number changes, the update is more complex and described in detail in 5.4.2.
The conversion of simulation parameters and probabilities for the elementary steps to
adsorption, reaction and desorption rates are shown in Table 5.1, in which the probability
of adsorption, reaction and desorption are P45, Pre, and P45 correspondingly.

5.3 VALIDATION

In this section, the adsorption, reaction and desorption processes are tested separately to
validate the algorithm. The tests are done with a planar surface, but using the voxelated
geometry algorithm.

5.3.1 SIMULATION DOMAIN

The simulation domain for validation is a cuboid space with the dimension of 80, 20 and
20 units in the x, y and z directions, respectively, as shown in Figure 5.7. There are two
solid plates with a thickness of 1 unit length on both sides of the domain confining the
fluid in the z direction. A part of the solid-fluid interface is made catalytically active. This
active area is chosen by randomly distributing the effective unit surface among the total
surface area.
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Table 5.1: Adsorption, reaction and desorption rates as a function of simulation parameters.

Particle concentration Cs =N/V
Particle collision frequency Z= %% (vyl)
Average velocity in i-direction {[vil) = +/2kp T/(7tm)

Rate constant of particle adsorption kggs = 4/ % P“f{f—At“‘“
ca

k're _ In(1—Pye)

Rate constant of reaction AT
S

Rate constant of particle desorption kges = an;—Zdes)

< Length 80 units >
| — Thickness 20 units
Width 20 units f
1
o Thickness 20units
1
1

Height 20 units
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Figure 5.7: Simulation domain.
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5.3.2 ADSORPTION

For adsorption, the change in the number of absorbed particles, N o, available catalyst
sites, N¢qt, and occupancy of particle A, 04, can be expressed as:

dNA Ncat_NA

= Z —A 5.1
dt Pads,A Ncat cat ( )
N — ACU.
Op = —2 =1—e “Patsant (5.2)
Ncat

where we assume that we start without any particles adsorbed and that only adsorption
(no reaction, no desorption) is taking place.

Fig. 5.8 shows a verification of the adsorption function. In this test, the probability of
adsorption is set to 0.1, and the effective surface area is set to 1200 unit cells. On average,
each unit surface has 1 available catalyst site and in total 1200 catalytic sites are randomly
distributed over the surface. A comparison of the analytical solution and simulation result
in Figure 5.8 shows good agreement.

pads=0.1 ,Ncat=1200,Acat=1200
1200 T T T

Analytical
Simulation

1000 b
z

= 800 b
-
=
<@
52

£ 600 i
©
[}
Q
(&)
£

£ 400 1
o

200 1
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Figure 5.8: Comparison of the simulation result for the adsorption test against analytical solution.
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5.3.3 REACTION

Next we turn to heterogeneously catalyzed reactions. Suppose the reactive surface is satu-
rated with reactant particles A, undergoing a second-order reaction. Without simultaneous
adsorption and desorption the occupancy of particle A should evolve as follows:

do
TtA = —KeOA2 (5.3)
1
0r = —— 5.4
A kret+ Co -4

The value of Cy can be calculated from initial conditions. In the validation of this section,
the initial condition is O (t = 0) = 0.5,1i.e. Co = 2.

Figure 5.8 shows a verification of the reaction function. In this test, the reaction proba-
bility is set to pre = 0.05, and the effective surface area is 100 unit cells. On average, each
unit surface has 1 available catalyst site and 4000 catalytic sites are randomly distributed
over the surface. A comparison of the analytical solution and simulation result in Figure
5.8 shows good agreement.
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Figure 5.9: Comparison of the simulation result for the reaction test against analytical solution.
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5.-3-4 DESORPTION

Finally, we test the desorption function. For this, the only process that is allowed to happen
is desorption itself. The initial condition is set to a surface saturated with a single species
particle A. The occupancy of particle A can then be expressed as:

do
TtA = —KdesOa (5.5)
0p = e Kdest (5.6)

where we used that 0 (t =0) = 1.

Figure 5.10 shows a verification of the desorption function. In this test, the probability
of desorption is set to 0.1, and the effective surface area is set to 1200 unit cells. On
average, each unit surface has 4 available catalyst sites, so that 4800 catalytic sites are
distributed over the solid surface. A comparison of the analytical solution and simulation
result in Figure 5.10 again shows good agreement.

Pyes=0-1:Ncat=4800,Acat=1200
5000 T i !

i j Analytical
500 Simulation

4000 ]

Surface particle number
N N w w
o (4] o a
o o = o
= = o o
T

1500 [

100 150 200
Simulation time

Figure 5.10: Comparison of the simulation result for the desoprtion test against analytical solution.

5.4 RESULTS
5.4.1 GEOMETRY GENERATION

Applying the random geometry generation method, a catalytic porous medium is gener-
ated and loaded in the simulation domain. The geometry has a void fraction of € = 0.3,
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using n = 15 initial seeds, and a probability of generating voids in neighboring cell equal
to p = 0.5. Slices of the catalyst at different y locations are shown in Figure 5.11. The to-
tal volume of the catalyst geometry is 13416 unit volume and the total surface area is 8505
unit area. For better observation of random effect and further contrast with another geom-
etry, the effective catalyst sites are defined on the whole surface area. In this simulation,
an area of 120 unit cells among the total of 8505 are randomly picked to be catalytically
active. In each effective catalyst unit surface, 4 available catalyst sites are defined.

5-4.2 COMPLICATED REACTIONS IN A COMPLEX GEOMETRY

We will now show that the algorithm can also simulate more complicated heterogeneous
surface reactions, in this case based on the Langmuir-Hinshelwood mechanism. Real reac-
tions can also be complicated by the fact that the number of molecules can change with the
reaction. The mass transfer and catalyst deactivation could be significantly influenced by
the complexity of the pores’ geometry. Therefore, it is particularly important to simulate
the reaction environment close to a real heterogeneous catalytic reactor.

In this section, we will demonstrate that the hybrid method developed in this chapter
can simulate a heterogeneous catalytic reaction in which the number of molecules changes
in a complex porous geometry. This gas-phase reaction contains 3 elementary steps:

1 Adsorption of particle A or B on the catalytic surface, each on one catalytic site.
2 Combination of particles A and B on the same surface cell to product particle C.

3 Desorption of the product particle C.

Similar to the study in Chapter 4, the process can be described as:

A+x < Agds (5.7)
B, +2% — 2Baas (5.8)
Aads + Bads — C+ 2« (59)

In contrast with Chapter 4, in this simulation, the interactions between species are ig-
nored since it is not under the same conditions and with the same method. The method
developed in this chapter allows particles to be adsorbed locally and react with particles
adsorbed on the same grid, therefore the influence of geometry could be highlighted and
shown in the results.

In this simulation, the collision interval value is taken as 0.1 unit simulation time. The
average particle density in each SRD grid is set as 5, to ensure a balance between enough
particles in the system to sustain the fluid phenomena and efficiency of the simulations.
For real molecules in a reactive gas, the molecular mass of different species is different,
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Figure 5.11: Slices of the random catalyst geometry in the the xz-plane for different y values. Solid
is yellow. Pore space is blue.
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resulting in different diffusivities. Therefore, the species A, B, C and inert (solvent) par-
ticles are given the particle mass 28, 32, 44 and 30, respectively. In this simulation, the
adsorption probability of both particles A and B is 0.1. The probability of product particle
desorption is set to 0.01. For more significant reaction changes, the desorption probability
of particles A and B, and the adsorption probability of the product particle C are set to 0
to force the reactant conversion to the product.

A fluid flow is generated by exerting an external force on the particles, mimicking the
effect of a pressure gradient across the porous medium. At the start of the simulation,
surface reactions, absorption and desorption of particles are all deactivated (by setting all
probabilities to zero) to allow for a steady flow to develop. After this, the surface reactions
are activated by setting the probabilities for adsorption, reaction and desorption to their
respective values.

A technical difficulty of updating reactions for such a multi-particle reaction mechanism
is updating the fraction of every species in real time during one time step, especially when
the changes in a single time step can be relatively large. When dealing with a certain
particle, it is necessary to let that particle know the change of the fractional occupancy
caused by other particles. This is not possible in principle when treating each particle
sequentially, although the approach will be slightly better when updating the particles
in a random order. The most realistic operation is to update all particles based on the
condition of the previous time step. However, this may lead to a situation in which the
reaction consumes more particles than is realistic. Therefore, a counting system should be
implemented for updating the real-time available particle number and the surface fraction
per catalytic surface grid cell. In our simulation, each surface grid was assigned memory
of its local particle fraction. To save on computing resources, only one array is used to
remember the number of B particles consumed in reactions when updating the number
of A particles consumed in reactions. Later, a separate function is run to update the real
number of B particles in each surface grid.

A porous medium typically provides a larger surface area for catalytic reactions to occur.
This means the surface area is very crucial to the total reaction rate. However, the porous
structure also influences transport phenomena such as diffusion and convection through
the reactor.

To disentangle effects due to increased catalytic area from effects due to the porous
structure, in the following we will compare two systems with different structure but the
same catalytically active area. Figure 5.12 shows the product C concentration in a planar
catalyst geometry (a) compared with that in a porous catalyst geometry (b). In both cases
a flow is driven from bottom to top through the reactor, and both reactors have the same
catalyst area. To ensure a steady state can be reached, the product particles C are contin-
ually reset to A and B particles (corresponding to a zero C concentration) in the top and
bottom regions.
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Figure 5.12: Product C concentration map between y = 10 and y = 11: (a) With planar catalyst
geometry; (b) With porous media catalyst geometry. Brighter colors correspond to
higher concentrations. The flow is from bottom to top and both reactors have the
same catalyst area. Note that the color maps are different for (a) and (b), with the
product concentration typically an order of magnitude higher in (b).
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Figure 5.13: Slices of the product C concentration map in the xz-plane for different y values in
the porous medium catalyst geometry. Brighter colors correspond to higher concen-
trations.
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Figure 5.12 shows that for the planar geometry, as expected, the largest product concen-
trations occur near the catalyst planes at the sides (minimum and maximum z). By contrast,
in the porous medium the local product concentration is strongly influenced by the porous
structure. Note that the color maps are different, with the concentration typically an order
of magnitude higher for the porous medium than for the planar catalyst.

To show the difference in product concentration more quantitatively, Figures 5.14 and
5.15 give the 1D-averaged product mole fraction along the x direction. Each 1D plot is
an average of 5 sets of sample results, each sample is obtained by averaging over a 200
unit simulation time. It can be observed that for the planar catalyst, the product mole
fraction increases until almost the end of the catalyst area at x = 70. However, the prod-
uct mole-fraction profile for the porous media catalyst geometry is more jagged, with a
peak concentration at around x = 50, showing the influence of the larger resistance of
the geometry, leading to a lower flow velocity and therefore relatively larger influence of
backdiffusion from the zero concentration boundary.

-3
2.5 10 . ; . .

Product particle mole fraction

05

Figure 5.14: Average product C mole fraction as a function of x coordinate for the planar catalyst
surface.

5.5 CONCLUSION

In this chapter, we showed how the SRD method can be modified to model heterogeneous
catalytic surface reactions and bulk flow in a complex random geometry. The presence
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Figure 5.15: Average product C mole fraction as a function of x coordinate for the porous media
catalyst geometry.

of porous media alters the fluid dynamics within the reactor. To further help with the
catalyst geometry design, information related to flow field analysis may be needed, such
as the velocity distribution and velocity fields. This was not addressed in this work, but
could be considered in future work.
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CONCLUSIONS & OUTLOOK

6.1 CONCLUSIONS

This thesis proposed an approach of simulating heterogeneous catalytic reactions in com-
plex catalyst geometries and reactor environments. The complexity of addressing this
problem has several aspects:

» Simulating macroscopic properties of the bulk fluid under the continuum assump-
tion while random behavior, especially for spontaneous random surface reactions,
is simultaneously relevant at the microscopic scale.

» Simulating microscopic stochastic properties such as molecular adsorption while
simultaneously simulating complex surface reaction mechanisms.

* Implementing real-time temperature measurement and heat transfer as a result of
the energy change caused by chemical reactions.

» Simulating microscopic stochastic properties in combination with complex catalyst
microstructures.

In Chapter 3, the Stochastic Rotation Dynamics (SRD) method was extended to enable
real-time measurement of properties, in particular temperature. Based on kinetic theory
and combining with a new form of ensemble averaging, the real-time temperature mea-
surement is tested on various standard cases for validation. Coupling with the conduction
equation, the influence of solid surface temperature patterns and to the catalyst and local
fluid is demonstrated. The method is tested in the case of temperature dependent prob-
ability to surface adsorption and temperature dependent desorption to show the match
with analytical solution. A catalyst sphere was used to test the combined model and high-
lighted the capability of the developed technique to simultaneously solve for the transient
evolution of macroscopic transport properties such as mean velocity, temperature and con-
centration, along with employing an accurate wall reaction mechanism.

The aim of Chapter 4 was to develop and apply stochastic rotation dynamics to explore
heterogeneously catalyzed multi-particle reactions. In this chapter, heterogeneously cat-
alyzed mean-field reaction mechanisms were developed by applying an infinite surface
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diffusion assumption. This model was numerically validated by linking the simulation
parameters and the mean-field rate constants. The accuracy of the results is negatively
influenced by applying too large reaction probabilities. Therefore, we concluded that to
simulate cases with higher reaction rates instead of increasing the reaction probability con-
stant, the frequency with which the catalyst sites are updated should be increased. The non
mean-field reactions in reactions in which surface interactions of the particles are consid-
ered were simulated by implementing a hybrid of stochastic rotation dynamic method and
mesoscopic Monte-Carlo simulation on the planner catalytic surface. Island formation was
observed by applying interactions between different particle species. Second-neighbor in-
teractions and other simulation parameters were tested to be necessary for smoother island
boundaries. An A+B — C reaction was compared between mean-field and non mean-field
regimes to show significant differences caused by the island formations. A three-step re-
action mechanism, which is widely employed for modeling realistic reaction mechanisms,
was simulated at the end of the chapter. Repulsive interactions and a low desorption rate
inducing catalyst poisoning effects were included in the simulation to show the capability
of the hybrid method to couple detailed surface information (such as surface interaction
and coverage results) to spatial concentration variations in the bulk of a multi-component
gas mixture.

The potential of the SRD method to simulate the complex geometry of a real catalyst
was explored in Chapter 5. The compatibility of SRD with different random or structured
geometry generating methods enables the study of various types of catalyst applications
in a very convenient way. The results reveal that the shape of catalyst affects the reaction
by influencing the balance between available reactive surface area and mass transport
(flow and diffusion). The porous media geometry could create barriers that slow down the
movement of the reactive flow when increasing the chance of particle collision with the
reactive surface, affecting the reaction rate. In a complex catalyst geometry, balancing and
optimization of mass transfer dominated reaction rates, conversion and productivity be-
come complicated. The complex nature of catalytic systems requires thorough approaches
to understand the process and collect important data and information for further design
and improvement work of the system. Direct simulation can play a key role in reactor con-
trol, for it could give a realistic prediction of the reaction condition, mass transfer, catalyst
activity and heat transfer. Chapter 5 provided an example, where such a complex catalyst
system could be simulated by application of SRD with its high computation efficiency and
intuitive and minimalist algorithms of mapping the catalyst geometry and tackling the par-
ticle movement in such complex geometry. However, when employing SRD to solve real
physics problems, it should be noted that the method has its limitations of representing
microscale phenomena with coarse grained simplifications. The details of molecular level
rely on the researcher’s assumptions. The value of this method is to provide a bridge of
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phenomena at different scales, but weighing the balance between the level of detail and
computational efficiency requires conscientious consideration.

6.2 OUTLOOK

The development of the SRD method in this work was aimed at extending the capability
of the method for simulating more complex physical and chemical phenomena. To further
enhance the feasibility of the method, several advanced developments are under consid-
eration, exploring ways to utilize the advantages of SRD in addressing more complex
multi-physical problems.

When using the replica approach (Chapter 3), the SRD method is highly paralleliz-
able since there is very limited interaction between individual instances of the simulation.
However, further optimization of each replica could drastically improve the computing
efficiency, making it more accessible to larger and more complex system for more appli-
cations.

Chemical poisoning of heterogeneous catalyst was briefly studied in Chapter 4. How-
ever, the influence of catalyst physical poisoning and geometrical change caused by the
blockage of microchannels and pores has not yet been touched by current SRD simula-
tions. These effects have far-reaching impact on effective reaction rates.

For simplicity, in this work, temperature measurement, surface interaction and complex
geometry were meshed with Cartesian grids. However, the voxelation used in Chapter 5
can result in surface errors. More precise meshing techniques can offer a more accurate
simulation of the real physical problem, especially for surfaces with curvature. This will
not only rectify the voxelization errors but also amplify the level of precision in both the
identification and adsorption of particles onto the surface, giving an overall improvement
in the accuracy and efficacy of the simulation.

A combination of complex geometry, complex non-mean-field surface reactions, and
temperature effects could be explored through simulations. Although all three features
were simulated separately in this work, their combination still needs to be developed to
simulate real complex heterogeneous chemical reactions in porous reactor environments.

Finally, although computational simulations could provide powerful predictions and
observations of complex phenomena, their accuracy and reliability depend on their sim-
plifications of real physics and assumptions. Meanwhile, by contrasting simulation results
with experimental results, potential discrepancies and limitations of the computational ap-
proach could be detected. To further improve the performance of the developed simulation
method and ensure the credibility of theoretical assumptions, experimental validation is
crucial.
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A.1 SIMULATING HETEROGENEOUS REACTIONS

In this work we use the reaction method suggested by Sengar [1]. When a SRD particle
bounces on a catalytic surface, the particle will be adsorbed with a certain probability
P In a single time step Atg, for adsorbed particles, further probabilities for reaction and
desorption can be applied. Based on this, the intrinsic rates in terms of the SRD simulation
parameters can be calculated. In the following, to simplify our notation, we will assume
that the probabilities per time step are sufficiently small. If large probabilities (0.1 < p <
1) are used, the conversion to rates should be done according to k = —In(1 —p)/Ats,
see [1] for a detailed explanation.

The kinetic model used by Pooley and Yeomans [2] is extended to derive an expression
for the particle collision rate at walls. The collision frequency, i.e. the number of collisions
occurring per unit area of the wall per unit time step, is:

L= Cs<|vy|> S

In this expression, Cg is the number density of the particle species of interest and |v| is the
average velocity of the particles perpendicular to the wall (in this example the wall normal
is chosen in the y-direction). The expectation value of |v,| from the Maxwell-Boltzmann
distribution is \/2ky, T/(7tm). The adsorption rate, i.e. the number of adsorption events
per unit area of catalytic surface per unit time, can therefore be expressed as

2k, T
Ra = cs\/ﬁpa (S2)

The adsorption probability per collision event p, depends on local temperature through
the activation energy for adsorption E, which arises from the Eyring-Polanyi equation
in Transition State theory, and depends on the fractional catalytic surface coverage 0 =
Na/Ncat, where Ng is the number of adsorbed particles per unit area and N q¢ is the
number of adsorption sites per unit area of catalytic surface. In this work, we use a first
order (Langmuir model) dependence on the fraction of empty sites (1 — 0), giving us the
following expression for adsorption probability:

Pa =po(l—0)e Fa/keT (S3)
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where pg is the adsorption probability pre-exponential factor.

If there are N, 4 reactant particles adsorbed per unit area catalytic surface (remember
that there may also be adsorbed product particles), we can write the reaction rate, i.e. the
number of reactant particles converted to product particles per unit area per unit time, as:

Ry = N'r,akr (54)
where k. is the reaction rate which in the simulations is controlled by setting the reaction
probability p+:

pr

k. =
T At

(S5)

Here p+ is the probability of an adsorbed reactant particle to react to an adsorbed product
particle during a single time step Ats. This probability can be written in the form of an
Arrhenius equation (similar to the adsorption probability):
pr =pYe tr/keT (S6)

where p? is the reaction probability pre-exponential factor and E is the activation energy
for the reaction.

A similar approach can be adopted to determine the desorption rate per unit area cat-
alytic surface. For example, focusing on desorption of product particles, we have:

Ra = Npaka (87
Pa

ka = S8

d At, (S8)

pa = pae T/l (59)

where N, o is the number of adsorbed product particles per unit area, k is the desorption
rate, pq is the probability of an adsorbed particle to desorb during a time step Atg, Eg
is the desorption activation energy and pg is the pre-exponential factor. Although in this
work they are chosen equal, different desorption activation energies and pre-exponential
factors may be chosen for the reactant particles.



B.1 NUMERICAL SOLUTION FOR FIRST-ORDER REACTION A — B

In this work, when validating the simulation with continuum numerical models, the un-
steady diffusion partial differential equation (4.14) valid inside the fluid is discretized
along the y-axis using a finite difference scheme:

DaAt
1 _ L A 1 1 1

Cai =Capt A2 (Caiv1 —2CA1+Caqi) (ST)
In this expression, C}L\ ; represents the particle concentration of species A on an interior
cell i at time step 1. A similar scheme can be built for the cells at the edge of the nonreactive
wall, at which a zero flux boundary condition is imposed. If n denotes the cell at this
nonreactive boundary, the cell at n + 1 is fictitious and only used to satisfy the no-flux

boundary condition:

dCa Con Chns1— Chnt
dy y=Ly ZAy ’
Chni1=Chn 1 (S2)

On the reactive wall, the boundary condition takes the form of:

N N
= _kads ﬁmevCA "‘kdesﬂe/h (83)

y=0 cat Acat

dCa
A dy

In the expression above, N+ is the total number of catalytic sites while A q¢ is the total
area of the reactive catalyst. The total number of catalyst sites remains constant throughout
the simulation. C 5 refers to the A concentration aty = 0. The boundary cell at the reactive
wall can be updated using F 4 to represent the flux at the right hand side of Eq. (S3):

1 1
CA,1 B CA,—]

D —F s4
A Ay A (S4)
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leading to
2AyF
Cho = “TA+Chy (S5)
A
DA At 2AyF
Cils = Cho+ A}LZ (2Ch1 —2Ch o+ gA)

(56)

Note that for the derivation of the expression for k45 in Sec.4.2.2, a constant concen-
tration profile was assumed in the bulk. If the difference of concentration between the
surface and bulk is small, the SRD and numerical model match very well. Large concen-
tration gradients will require a more elaborate expression for the mean-field adsorption
rate constant, which is beyond the scope of this work.

B.2 ERROR ESTIMATION

Using the Taylor series expansion, the maximum error (Er) associated with Egs. (4.18)
can be calculated as:

1 At d%pa
Er=— s 7
' pS,AmaX< 2 dt? > &7

Using Eqgs. (4.15-4.16), the second derivative of ps A is calculated as:

d’pa K dps K dpa
a2 - r,ABPAMF— r,ABWPBM
= KIABPA, ,PB; T KIABPAL PR, (S8)
Therefore,
At?
Er= 7 (kZABF’ZBH +k%,ABpAi—1pBi—l) (89)

To keep the accuracy of Egs. (4.20) as high as possible, we aim to keep the relative error
of psi/‘ to stay below 1%. The maximum numerical relative error can be guaranteed to

i—1

be lower than the following expression:

1
MaxErr < E(Pre Ap0%0 + Pre AB9A008B0) (S10)

The surface coverages 0po and ¢ are bounded between 0 and 1. When the desired
maximum relative error is 1%, the condition P, ap < 0.14 is deemed sufficient.



c.1 SUPPLEMENTARY INFORMATION

A pseudo-code of the channel generating method is shown as follows:

Lx = 50;
Ly = 40;
Lz = 40;

C = 5; %initial seeds
Voxel=zeros(Lx,Ly,Lz);
Sx=20; %starting x coordinate
Se=40; %end x coordinate
LS = Se-Sx;
ps = 0.4; %forward probability
pi = (1-ps)/4; %other direaction growth probability
for i=Sx:Se
for j=1:Ly
for k=1:Lz
Voxel(i,j, k) = 1;
end
end
end
listy
listz
for i=
y floor(rand*(Ly-1)+1);
z floor(randx(Lz-1)+1);
if(Voxel(Sx,y,z)>0)
Voxel(Sx,y,z)=0; end
listy(1l,i)=y;
listz(1,i)=z;
end
for j=1:C
i = Sx;
choice = 0;

zeros(1,C);
zeros(1,C);
:C

=1
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while i<=Se

y = listy(j);

z = listz(j);

i

choice = rand;

1 =i;

if choice<=ps

i = 1i+1;

if i<Se+l
Voxel(i,y,z)=0; end
end
if choice<=ps+pixl && choice>ps
y =y-1;

y = mod((y-1),Ly)+1
Voxel(i,y,z)=0;

end
if choice<=ps+pi*2 && choice>ps+pixl
y = y+1;

y = mod((y-1),Ly)+1
Voxel(i,y,z)=0;

end
if choice<=ps+pi*3 && choice>ps+pix2
z =12-1;

z =mod((z-1),Lz)+1
Voxel(i,y,z)=0;

end
if choice<=ps+pi*4 && choice>ps+pix3
z = z+1;

z = mod((z-1),Lz)+1
Voxel(i,y,z)=0;

end
listy(j)=y;
listz(j)= z;

end
end
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Figure S1: Product C concentration map between y = 10 and y = 11 with color bar of the nu-
merical count value of C particle in 2000 unit time: (a) With planar catalyst geometry;
(b) With porous media catalyst geometry. Brighter colors correspond to higher concen-
trations. The flow is from bottom to top and both reactors have the same catalyst area.
Note that the color maps are different for (a) and (b), with the product concentration
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typically an order of magnitude higher in (b).

30

109






PART III

111






ACKNOWLEDGMENTS

There are many people I must give great appreciation to, for the priceless help and com-
pany given to me during my journey of doing phD in Delft. The precious experience is
unforgotten and shinning.

First, I would like to convey my deepest appreciation and sincere gratitude to my Prof.dr.ir.
Johan Padding, for offering the opportunity and inspiring the idea of this research. Your
profound knowledge invaluable insights, unwavering motivation and patience always nav-
igated when I was lost.

I would like to extend my heartfelt appreciation to my co-promotor Dr. Remco Hartkamp.
I am incredible thankful for your valuable guidance, practical instruction and constructive
suggestions. You nourished my development as a resercher.

I would like to extend my heartfelt thanks to the members of my doctoral commit-
tee, Prof.dr.ir Wiebren de Jong, Prof.dr.ir. J(Hans).A.M. Kuipers, Prof.dr. Rene Pecnik,
Dr.ir Volkert van Steijn, and Dr. Tom Burdyny, for their valuable input, constructive crit-
icism, and suggestions that greatly enhanced the quality of this research. Their expertise
and scholarly contributions have enriched my understanding of the subject matter and
strengthened the academic rigor of this work.

I'would like to express my sincere appreciation to my master students, Githin T Zachariah
and Parsa Habibi, for their unwavering dedication to my PhD research. Their consistent
commitment, hard work, and enthusiasm have had a profound impact on the progress and
outcomes of my doctoral journey. I am truly grateful for their steadfast pursuit of excel-
lence, their valuable ideas, and their willingness to go the extra mile in their research
endeavors. Their unwavering presence and contributions have brought fresh perspectives
and invaluable insights that have greatly enriched the quality and depth of my work. I
will always cherish their exceptional contributions and consider myself fortunate to have
collaborated with such outstanding individuals. To those of you currently embarking on
your Ph.D. journey, I sincerely hope that you are fortunate enough, just as I have been, to
have the privilege of working with exceptional master students.

I would like to extend my deepest appreciation and gratitude to a group of exceptional
individuals who have played a pivotal role in the success of my research.Their support,
encouragement, and expertise have tremendous influence to the overall experience of my
phD life.

To Rumen and Velislava Georgiev, I am indebted to your hands on assisting and ac-
company when I am in trouble and frustration. You stood by me in the moment when
academic and life pressure seemed insurmountable. The listening ear and wise counsel

113



114

has been a lifeline during challenging times. Thank you both for being wonderful friends
and comforter and being the Great Summer’s parent.

In the journey of completing this thesis, I've been fortunate to be surrounded by an
exceptional group of peers and friends who have provided unwavering support and ca-
maraderie. To my fellow graduate students and colleagues, your shared experiences, in-
sightful discussions, and mutual encouragement have been invaluable throughout this
academic endeavor. Whether it was collaborating on research projects, exchanging ideas
during seminars, or simply lending a listening ear during challenging times, your pres-
ence has made this journey both enriching and enjoyable. Special thanks to To Arvind
Pari, Esaar Butt, Nagaraj Nagalingam, Ravi Ramesh, Elyas Mohammadzadeh Moghad-
dam, Stephan Sneijders, Suriya Senthil Kumar, Heng Li, Qi An, Pingping Cui, Meng-
meng Zhang, Peng Yan, Zhiyi Leong, Fatma Ibis-Ozdemir, Rishabh Ghotge, Vikram Ko-
rede, Nikhilesh Kodur Venkatesh, Wouter van der Does, Joe Blake, Marko Draski¢, Aviral
Rajora, Willem Haverkort, Sevgi PolatShilong Fu, Nandalal Girichandran, Asvin Sajeev
Kumar, Hengameh Farahmandazad, Boaz Izelaar, Katie Lawrence, Daniel van den Berg,
Simone Asperti, Wenze Guo, Pedro Costa, Luis Cutz, Willy Huang, An Zhao, Teng Dong,
Bin Fang, Liangyuan Wei, Xuan TaoJie RenMengmeng RenXu Huang, Ivan Mema, Vinay
V Mahajan, Sathish Krishnan P. Sanjeevi, Junaid Mehmood, whose friendship has been
a source of inspiration and motivation. Your belief in my abilities and willingness to cel-
ebrate both the triumphs and setbacks have made this journey all the more meaningful.
This thesis stands as a testament to the collective efforts of this remarkable community of
peers and friends, and for that, I am profoundly grateful.

To my dearest fellow Chinese friends: Mengmeng Zhang, Haoyu Li, Shilong Fu, Ping-
ping Cui, Qi An, Heng Li, An Zhao, Xuan Tao, Liangyuan Wei, Willy, Peng Yan, Meng
Wang, Bing Fang, Teng Dong, Wenze Guo, Zac Leong, Jie Ren, Mengmeng Ren, who
always help me find solace and comfort, your understanding and support provided a sense
of belonging and connection. The shared experiences were a balm to the soul. This thesis
bears witness to the enduring friendships forged in the crucible of academia, and I am
forever grateful for the sense of home you brought to this journey.

I would like to express my sincere appreciation to the dedicated individuals who provide
invaluable support behind the scenes in academia, to Linda Starrenburg- Hannewijk and
Leslie van Leeuwen.

Special thanks to the China Scholarship Council (CSC201707720026) for financial sup-
port of my whole phD study.

Rong Fan
June, 28th, 2024



CURRICULUM VITAE

PERSONAL INFORMATION

FULL NAME: Rong Fan
BIRTH DATE: 11-12-1990

NATIONALITY: Chinese

EDUCATION

2017-2024: PhD Research Scholar, Process & Energy Department, Delft University of
Technology, The Netherlands.

2014-2016: MSc in Chemical Engineering, Eindhoven University of Technology, The
Netherlands.

2009-2013: BScin Chemical Engineering, Xiamen University, China.

115






LIST OF PUBLICATIONS

[1] Fan, R., Zachariah, G. T., Padding, J. T., Hartkamp, R. (2021). Real-time tem-
perature measurement in stochastic rotation dynamics. Physical Review E, 104(3),
[034124]. https://doi.org/10.1103/PhysRevE.104.034124

[2] Fan, R., Habibi, P., Padding, J. T., Hartkamp, R. (2022). Coupling mesoscale trans-
port to catalytic surface reactions in a hybrid model. Journal of Chemical Physics,
156(8), [084105]. https://doi.org/10.1063/5.0081829

[3] Fan, R., Padding, J.T., Hartkamp, R. Simulating reactions in complex geometries
using Stochastic Rotation Dynamics. To be submitted (2024).

117



	Title page
	Dedication
	Summary
	Samenvatting
	Part I Main matter
	1 Introduction
	1.1 Heterogeneous catalytic reactors: a problem of scales
	1.2 Multiscale simulation choices and mesoscale methods
	1.3 Aim of research and thesis structure

	2 Stochastic rotation dynamics
	3 Temperature measurement and heat transfer
	3.1 Introduction
	3.2 Methodology
	3.2.1 Heat exchange between bulk fluid and bulk solid phase
	3.2.2 Surface heat sources

	3.3 Results
	3.3.1 Biased stochastic boundary condition
	3.3.2 Heat diffusion between isothermal plates
	3.3.3 Fluid confined between planar walls 
	3.3.4 Temperature programmed desorption and isothermal surface reactions
	3.3.5 Surface reactions on catalytic particles with heat effects

	3.4 Conclusion

	4 Surface reaction and island formation
	4.1 Introduction
	4.2 Method
	4.2.1 Fluid model and simulation setup
	4.2.2 Reaction scheme

	4.3 Validation and Results
	4.3.1 First-order surface reaction
	4.3.2 Bi-particle reactions
	4.3.3 Surface interaction
	4.3.4 Elementary reaction

	4.4 Conclusion

	5 Simulating reactions in complex geometries
	5.1 Introduction
	5.2 Method
	5.2.1 Geometry generation
	5.2.2 Complex geometry bounce-back implementation for SRD
	5.2.3 Reaction scheme

	5.3 Validation
	5.3.1 Simulation domain
	5.3.2 Adsorption
	5.3.3 Reaction
	5.3.4 Desorption

	5.4 Results
	5.4.1 Geometry generation
	5.4.2 Complicated reactions in a complex geometry

	5.5 Conclusion

	6 Conclusions & Outlook
	6.1 Conclusions
	6.2 Outlook


	Part II Appendixes
	a 
	a.1 Simulating heterogeneous reactions

	b 
	b.1 Numerical solution for first-order reaction A B
	b.2 Error estimation

	c 
	c.1 Supplementary information


	Part III
	Acknowledgments
	Curriculum vitæ
	List of publications


