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Abstract This manuscript investigates the problem of optimal placement of con-
trol valves in water supply networks, where the objective is to minimize average
zone pressure (AZP). The problem formulation results in a nonconvex mixed integer
nonlinear program (MINLP). Due to its complex mathematical structure, previous
literature has solved this nonconvex MINLP using heuristics or local optimization
methods, which do not provide guarantees on the global optimality of the computed
valve configurations. In our approach, we implement a branch and bound method to
obtain certified bounds on the optimality gap of the solutions. The algorithm relies on
the solution of mixed integer linear programs, whose formulations include linear re-
laxations of the nonconvex hydraulic constraints. We investigate the implementation
and performance of different linear relaxation schemes. In addition, a tailored domain
reduction procedure is implemented to tighten the relaxations. The developed meth-
ods are evaluated using two benchmark water supply networks and an operational
water supply network from the UK. The proposed approaches are shown to outper-
form state-of-the-art global optimization solvers for the considered benchmark water
supply networks. The branch and bound algorithm converges to good quality feasible
solutions in most instances, with bounds on the optimality gap that are comparable
to the level of parameter uncertainty usually experienced in water supply network
models.
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1 Introduction

The efficient management of hydraulic pressure in pipes results in reduction of
leakage (Lambert, 2000; Wright et al, 2015) and risk of pipe failure (Lambert and
Thornton, 2011), and it is therefore one of the main operational challenges in wa-
ter supply networks (WSNs). Here we consider pressure management using pressure
control valves, which regulate pressure at their outlet. We investigate the problem of
simultaneously optimizing the placement and operational settings of control valves in
WSNs, where the objective is to minimize average zone pressure (AZP). AZP is used
as a surrogate measure for leakage. The problem formulation includes flows across
network links and hydraulic heads at nodes as continuous decision variables. In ad-
dition, binary variables are introduced to model the placement of valves. Mass and
energy conservation laws are enforced as optimization constraints, resulting in a non-
convex mixed integer nonlinear program (MINLP). The solution of process network
optimization problems frequently relies on the solution of MINLPs. Some exam-
ples include synthesis of heat exchanger networks (Zamora and Grossmann, 1998),
multi-period blending (Kolodziej et al, 2013), optimal design and operation of gas
networks (Pfetsch et al, 2015; Humpola and Fügenschuh, 2015), and water supply
networks (DAmbrosio et al, 2015). In the framework of WSNs, MINLP formulations
are ubiquitous and employed in a variety of applications, ranging from optimal net-
work design (Bragalli et al, 2012; Sherali et al, 1999) to pump scheduling (Menke
et al, 2015; Gleixner et al, 2012).

Both heuristic and mathematical optimization methods were applied in previous
work to solve the problem of optimal valve placement in water networks. Heuristic
approaches based on genetic algorithms (GAs) have been widely used for solving the
considered problem - see Reis et al (1997); Araujo et al (2006); Nicolini and Zovatto
(2009); Liberatore and Sechi (2009); Ali (2015); De Paola et al (2017). However, they
present some limitations. Firstly, they can not guarantee optimality of the computed
solutions, not even local optimality. Moreover, the number of objective function eval-
uations and hydraulic simulations required by these approaches grows rapidly with
the size of the network, precluding the application of GAs when large operational
water network are considered. Previous work has also investigated the application of
mathematical optimization methods for the solution of the problem of optimal valve
placement in WSNs - see Hindi and Hamam (1991); Eck and Mevissen (2012); Dai
and Li (2014); Pecci et al (2017a,b). Since the considered problem is nonconvex, ap-
proaches implemented in previous literature do not provide theoretical guarantees on
the global optimality of the computed valve configuration.

This paper investigates mathematical optimization methods to generate a certi-
fied bound on the optimality gap of the computed solutions for the problem of opti-
mal valve placement in WSNs, guaranteeing ε-sub-optimality. We formulate a branch
and bound method, which is a common approach in global optimization. To the best
of the authors knowledge, global optimization methods have not been previously ap-
plied to the problem of optimal valve placement in WSNs. Previous literature has in-
vestigated global optimization techniques for optimal design of WSNs (Sherali et al,
1999; Raghunathan, 2013). However, when pipe diameters are fixed, hydraulic heads
and flow rates are uniquely determined and can be found by solving a strictly convex
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optimization problem (Raghunathan, 2013). As a result, in the case of optimal WSN
design, it is sufficient to focus the branch and bound on integer decision variables.
On the contrary, when optimal operation of water supply networks is considered,
spatial branch and bound is needed (Gleixner et al, 2012). In the present manuscript,
we consider the problem of optimal valve placement in WSNs, where locations and
operational settings of the control valves need to be simultaneously optimized. There-
fore, branching is required on both continuous and integer variables.

The implemented branch and bound algorithm relies on a sequence of lower and
upper bounds to the optimal value of the nonconvex MINLP in study - for a general
review see Tawarmalani and Sahinidis (2002). Since all convex constraints within the
problem formulation for optimal valve placement are linear, it is particularly conve-
nient to generate lower bounds using linear relaxations of the nonconvex constraints
(Tawarmalani and Sahinidis, 2002, Chapter 4). The nonconvexity of MINLPs arising
in the framework of water networks is due to the absolute power functions repre-
senting friction energy losses within the system’s conservation laws - see Equation
(2a). Analogous nonconvex expressions have previously been studied in other engi-
neering frameworks, where linear relaxations were formulated - see Humpola and
Fügenschuh (2015); Gleixner et al (2012); Liberti and Pantelides (2003); Tawar-
malani and Sahinidis (2002); Udell and Boyd (2015); Vigerske (2012). We define
linear relaxations of the nonconvex equality constraints considered here by extending
the formulation proposed in Liberti and Pantelides (2003) for monomials of odd de-
gree. Such linear relaxations define an outer approximation of the convex envelopes
of the nonconvex equality constraints. We investigate the use of different number
of linearizations for the outer approximation. The strength of the linear relaxations
depends on the diameter of the decision variables’ domain (Puranik and Sahinidis,
2017). Therefore, we implement a domain reduction procedure, based on the solu-
tion of a series of linear programs (LPs). The proposed approach takes advantage of
the underlying network structure to reduce the number of linear programming solves.
Benefits and limitations of the developed methods are evaluated using two benchmark
water networks, and a large-scale operational network from the UK. Moreover, the
numerical results show that the proposed approach outperforms state-of-the-art global
optimization solvers for the considered benchmark water networks. The branch and
bound framework has enabled the convergence to ε-sub-optimal solutions for the
problem of optimal valve placement, with bounds on the optimality gap compara-
ble to the order of parameter and data uncertainties inherent in operational network
models.

2 Problem formulation

A water supply network with n0 water sources, nn demand nodes and np pipes,
is modelled as a directed graph with nn + n0 nodes and np edges. The operation of
a network is considered under nl different demand conditions during the diurnal cy-
cle. The nodal demands are denoted by dt ∈ Rnn , while known hydraulic heads at
water sources are indicated by ht

0 ∈ Rn0 , for each t = 1, . . . ,nl . Furthermore, the vec-
tor of node elevations is represented by ζ ∈ Rnn . Given t ∈ {1, . . . ,nl}, we consider
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hydraulic heads ht ∈ Rnn and flow rates qt ∈ Rnp as continuous decision variables.
Moreover, vector η t ∈ Rnp is included to model the unknown head loss introduced
by the action of pressure control valves. We introduce auxiliary variables θ t ∈ Rnp

to isolate the nonconvex terms representing the friction head losses occurring within
the pipes of a network. These can be expressed by either the Hazen-Williams (HW)
or Darcy-Weisbach (DW) formulae. Since both friction head loss formulae involve
non-smooth nonconvex terms, it is convenient to use smooth quadratic approxima-
tions, computed over a range of flow (Pecci et al, 2017c). When a suitable quadratic
approximation has been determined, it can be written as φ j(qt

j) = qt
j(a j|qt

j|+ b j),
with a j ≥ 0 and b j ≥ 0, for all j = 1, . . . ,np and t = 1, . . . ,nl - see also equation (28)
in Appendix I.

In this work, we investigate the optimal placement and operation of pressure con-
trol valves to minimize average zone pressure (AZP), defined as:

1
nlW

nl

∑
t=1

wT (ht −ζ ) (1)

where wi := ∑ j∈I(i)
L j
2 and I(i) is the set of indices for links incident at node i, L j is

the length of pipe j and W = ∑
nn
i=1 wi is a normalisation factor.

The optimization of valve placement and operation to minimize AZP is primarily
subject to conservation energy (2b) and mass (2c) laws:

θ
t = Φ(qt), t = 1, . . .nl , (2a)

A12ht +A10ht
0 +η

t +θ
t = 0, t = 1, . . . ,nl (2b)

AT
12qt −dt = 0, t = 1, . . . ,nl , (2c)

where matrices A12 ∈ Rnp×nn and A10 ∈ Rnp×n0 are edge-node incidence matrices
for unknown and known head nodes, respectively. Moreover, we define the vector of
friction head losses as Φ(qt) := [φ1(qt

1) . . .φnp(q
t
np)]

T .
We consider vectors of binary variables z+,z− ∈ {0,1}np with the following prop-

erties:

– z+j = 1⇔ there is a valve on link j in the assigned positive flow direction
– z−j = 1⇔ there is a valve on link j in the assigned negative flow direction
– z+j = z−j = 0⇔ there is no valve on link j
– z+j + z−j ≤ 1 prevents the placement of two valves on the same link.

The placement of control valves in a WSN is modelled by big-M constraints, ensuring
that additional head losses have the same direction as flows and friction head losses
across the valves. The following constant vectors and matrices are used to formulate
the big-M constraints. Given a vector of maximum allowed velocities across network
pipes vmax ∈Rnp , let qt

L =−Svmax, and qt
U = Svmax, where S :=diag(πD2

1/4, . . . ,πD2
np/4),

with D ∈ Rnp vector of pipe diameters. Let Qt
L := diag(qt

L), and Qt
U := diag(qt

U ).
Moreover, set θ t

L := Φ(qt
L), θ t

U := Φ(qt
U ), Θ t

L := diag(θ t
L), and Θ t

U := diag(θ t
U ).
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Minimum and maximum allowed hydraulic heads at nodes are specified by ht
min,h

t
max ∈

Rnn , respectively. Define η t
L ∈ Rnp ad η t

U ∈ Rnp as follows:

(η t
L)k := (ht

min)i− (ht
max) j, ∀i k−→ j

(η t
U )k := (ht

max)i− (ht
min) j, ∀i k−→ j

(3)

and set Nt
L := diag(η t

L), Nt
U := diag(η t

U ). We formulate the following constraints:

η
t −Nt

U z+ ≤ 0, t = 1, . . . ,nl (4a)

−η
t +Nt

Lz− ≤ 0, t = 1, . . . ,nl (4b)

−qt −Qt
Lz+ ≤−qt

L, t = 1, . . . ,nl (4c)

qt +Qt
U z− ≤ qt

U , t = 1, . . . ,nl (4d)

−θ
t −Θ

t
Lz+ ≤−θ

t
L, t = 1, . . . ,nl (4e)

θ
t +Θ

t
U z− ≤ θ

t
U , t = 1, . . . ,nl . (4f)

Let nv be the number of valves to be installed. The desired properties of the binary
variables are enforced by the linear constraints:

z++ z− ≤ 1np×1 (5a)
np

∑
j=1

(z+j + z−j ) = nv (5b)

z+,z− ∈ {0,1}np . (5c)

Finally, physical and operational bounds on all continuous variables are enforced by
the following constraints:

qt
L ≤ qt ≤ qt

U , t = 1, . . . ,nl (6a)
θ

t
L ≤ θ

t ≤ θ
t
U , t = 1, . . . ,nl (6b)

η
t
L ≤ η

t ≤ η
t
U , t = 1, . . . ,nl (6c)

ht
min ≤ ht ≤ ht

max, t = 1, . . . ,nl . (6d)

The valve placement optimization problem can be written in a compact form as:

minimize
1

nlW

nl

∑
t=1

wT (ht −ζ )

subject to θ
t −Φ(qt) = 0, ∀t ∈ {1, . . . ,nl} (2a)

(q,h,η ,θ ,z+,z−) ∈ F(Q),

(MINLP(Q))

where q := (qt)t=1,...,nl , h := (ht)t=1,...,nl , η := (η t)t=1,...,nl , θ := (θ t)t=1,...,nl . Further-
more, F(Q)⊂Rnlnp×Rnlnn×Rnlnp×Rnlnp×{0,1}np×{0,1}np is the set defined by
(2b)-(6d), which depends on Q := {qt

L,q
t
U}t=1,...,nl . Problem MINLP(Q) is a mixed

integer nonlinear program (MINLP). Furthermore, the equality constraints (2a) are
nonconvex, hence the problem formulation results in a nonconvex MINLP.
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3 Solution method

The nonconvexity of MINLP(Q) is due to the presence of functions (φ j(·)) j=1,...,np

within equality constraints (2a). Since the other constraints (2b)-(6d) are linear, it is
convenient to consider linear relaxations of constraints (2a). Polyhedral relaxations
for similar nonconvex expressions have been previously studied by Humpola and
Fügenschuh (2015); Gleixner et al (2012); Liberti and Pantelides (2003); Tawar-
malani and Sahinidis (2002); Udell and Boyd (2015); Vigerske (2012). In this pa-
per, linear relaxations developed in Liberti and Pantelides (2003) for monomials of
odd degree are extended to the nonconvex equality constraints within the problem
formulation for optimal valve placement in WSNs.

We implement a branch and bound method that relies on the generation of a se-
quence of lower and upper bounds to the optimal value. The present work takes a
similar approach to Misener and Floudas (2013, 2014) and compute lower bounds
solving Mixed Integer Linear Programming (MILP) relaxations of MINLP(Q). As
discussed in Smith and Pantelides (1999), MILP relaxations result in tighter lower
bounds then relaxed linear programs (LPs) and the algorithm is expected to converge
in less iterations. However, they also require an higher computational effort for each
branch and bound iteration. Nonetheless, as shown in the numerical results reported
in Section 4, the implementation of state-of-the-art MILP solvers (e.g Gurobi Op-
timization (2017)) have enabled the application of the considered method to large
problem instances.

3.1 Lower bounding MILP

Let Q′ = {(qt
L)
′,(qt

U )
′}t=1,...,nl such that qt

L ≤ (qt
L)
′ ≤ (qt

U )
′ ≤ qt

U , for all t ∈
{1, . . . ,nl}. We consider the following restriction of MINLP(Q):

minimize
1

nlW

nl

∑
t=1

wT (ht −ζ )

subject to θ
t −Φ(qt) = 0, ∀t ∈ {1, . . . ,nl}

(q,h,η ,θ ,z+,z−) ∈ F(Q′),

(MINLP(Q′))

where F(Q′)⊂Rnlnp×Rnlnn×Rnlnp×Rnlnp×{0,1}np×{0,1}np is the set defined by
(2b)-(6d) using the bounds in Q′. Let y∗(Q′) be the optimal value of MINLP(Q′). In
the following, we formulate a MILP relaxation of MINLP(Q′), which yields a lower
bound L(Q′)≤ y∗(Q′).

A detailed derivation of linear relaxations of (2a) is presented in Appendix I,
where the formulation for monomials of odd degree proposed by Liberti and Pan-
telides (2003) is extended to functions (φ j(·)) j∈{1,...,np}. Such linear relaxations can
be written as

Rtqt +Et
θ

t ≤ rt , t = 1, . . . ,nl (7)

for suitable matrices Rt and Et , and vectors rt , which depend on (qt
L)
′, (qt

U )
′, and a

parameter Nc ≥ 0 used to control the number of linearizations for the outer approxi-
mation of the convex envelopes of constraints (2a)- see Appendix I. In Section 4, we
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investigate the effect of different number of linearizations on the convergence prop-
erties of the branch and bound algorithm. Using the above linear relaxations, it is
possible to define the following MILP relaxation of MINLP(Q′):

minimize
1

nlW

nl

∑
t=1

wT (ht −ζ )

subject to Rtqt +Et
θ

t ≤ rt , ∀t ∈ {1, . . . ,nl}
(q,h,η ,θ ,z+,z−) ∈ F(Q′),

(MILP(Q′))

Let L(Q′) be the optimal value of MILP(Q′). If MILP(Q′) is infeasible, then MINLP(Q′)
is infeasible and we have L(Q′) = y∗(Q′) =+∞. Otherwise, the solution of MILP(Q′)
yields a lower bound L(Q′) ≤ y∗(Q′). Moreover, if the current best lower bound LB
is available, set L(Q′)←max(L(Q′),LB).

3.2 Generation of upper bounds

Let Q′ = {(qt
L)
′,(qt

U )
′}t=1,...,nl a set of bounds on flow variables as in Section 3.1.

Recall that y∗(Q′) denotes the optimal value of MINLP(Q′). If MILP(Q′) is infeasi-
ble, then set U(Q′) :=+∞. Otherwise, let ẑ+, ẑ− ∈ {0,1}np be solution of MILP(Q′).
We compute an upper bound to y∗(Q′) by fixing z+ = ẑ+ and z− = ẑ− in MINLP(Q′).
The resulting optimization problem is a nonconvex nonlinear program (NLP):

minimize
1

nlW

nl

∑
t=1

wT (ht −ζ )

subject to θ
t −Φ(qt) = 0, ∀t ∈ {1, . . . ,nl}

(q,h,η ,θ , ẑ+, ẑ−) ∈ F(Q′).

(NLP(Q′))

If NLP(Q′) is infeasible, set U(Q′) :=+∞. On the contrary, any (local) solution yields
an upper bound U(Q′)≥ y∗(Q′).

The generation of a valid upper bound via the (local) solution of a nonlinear pro-
gram is often computationally expensive, particularly when large problem instances
are considered. However, NLP(Q′) presents a high level of sparsity, that is retained
by constraints (2b) and (2c) from the sparse structure of water supply networks. As
a consequence, sparse NLP solvers offer scalable solution approaches for NLP(Q′) -
see the interior point method introduced in Waechter and Biegler (2006).

3.3 Domain reduction

The strength of the MILP relaxations is expected to have a significant impact on
the convergence properties of branch and bound schemes (Belotti et al, 2009). This is
confirmed by the numerical results reported in Section 4. As discussed in Appendix
I, in the case considered here, smaller ranges of flows lead to tighter relaxations.
Therefore, we investigate pre-processing strategies to reduce the domains of the flow
variables, focusing on Optimization Based Bound Tightening (OBBT), which relies
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on the solution of a series of optimization problems to tighten upper and lower bounds
on selected variables - for a recent review on variable bound tightening approaches
see Puranik and Sahinidis (2017).

In order to highlight the separable structure of the feasible set of MINLP(Q) with
respect to the time indices, we introduce the time indexed sets {Gt(Q)}t=1,...,nl such
that Gt(Q) ∈ Rnp ×Rnn ×Rnp ×Rnp ×{0,1}np ×{0,1}np is defined by

(qt ,ht ,η t ,θ t ,ut
1,u

t
2) ∈ Gt(Q)∀t ∈ {1, . . . ,nl} ⇔ (q,h,η ,θ ,z+,z−) ∈ F(Q) (8)

where z+= ut
1 and z−= ut

2, for all t ∈{1, . . . ,nl}, and q=(qt)t=1,...,nl , h=(ht)t=1,...,nl ,
η = (η t)t=1,...,nl , θ = (θ t)t=1,...,nl . By definition of {Gt(Q)}t=1,...,nl , the feasible set
of MINLP(Q) is equivalent to the feasible set of the following problem:

minimize
1

nlW

nl

∑
t=1

wT (ht −ζ )

subject to θ
t −Φ(qt) = 0, ∀t ∈ {1, . . . ,nl}

(qt ,ht ,η t ,θ t ,ut
1,u

t
2) ∈ Gt(Q), ∀t ∈ {1, . . . ,nl}

ut
1− z+ = 0np×1, ∀t ∈ {1, . . . ,nl}

ut
2− z− = 0np×1, ∀t ∈ {1, . . . ,nl}.

(9)

Let σ ∈ {−1,1}, t ∈ {1, . . . ,nl}, and j ∈ {1, . . . ,np}. Consider the mixed integer lin-
ear program:

minimize σqt
j

subject to Rlql +E l
θ

l ≤ rl , ∀l ∈ {1, . . . ,nl}
(ql ,hl ,η l ,θ l ,ul

1,u
l
2) ∈ Gl(Q), ∀l ∈ {1, . . . ,nl}

ul
1− z+ = 0np×1, ∀l ∈ {1, . . . ,nl}

ul
2− z− = 0np×1, ∀l ∈ {1, . . . ,nl}.

(10)

where Rl , E l and rl represent the linear relaxations of (2a) computed using the flow
bounds in Q as described in Appendix I. The feasible set of Problem (10) is a re-
laxation of the set of feasible solutions of Problem (9). Tightening upper and lower
bounds on the flow variables would require the solution of 2nlnP mixed integer lin-
ear programs analogous to (10). Mixed integer linear programs can be solved by
state-of-the-art MILP solvers (Gurobi Optimization, 2017). However, the dimension
of Problem (10) and the number of problems to be solved can pose significant com-
putational challenges when considering large-scale water networks. Therefore, the
remainder of this section investigates tailored strategies to reduce the computational
effort required by the considered domain reduction procedure.

Firstly, Problem (10) is converted into a linear program (LP) by replacing Gt(Q)

with a valid polyhedral relaxation Ĝt(Q). Furthermore, the resulting LP can be de-
coupled with respect to the time indices l ∈ {1, . . . ,nl}, omitting the consistency con-
straints in Problem (10). For each t ∈ {1, . . . ,nl} and j ∈ {1, . . . ,np}, we consider the
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following relaxation of Problem (10):

minimize σqt
j

subject to Rtqt +Et
θ

t ≤ rt

(qt ,ht ,η t ,θ t ,ut
1,u

t
2) ∈ Ĝt(Q)

(LPσ ,t, j
Q )

The OBBT method solves LP1,t, j
Q to compute a new lower bound (qt

L)
′
j ≥ qt

L j, and

LP−1,t, j
Q to obtain (qt

U )
′
j ≤ qt

U j. If Q′ is the resulting set of bounds, then MINLP(Q′)
and MINLP(Q) have the same optimal solution. Further domain reductions are achieved
by iteratively applying the described process. In order to reduce the number of flow
variables whose bounds are tightened through the solution of linear programs, we ex-
ploit the underlying network (graph) structure of LPσ ,t, j

Q . In what follows, few graph-
theoretical definitions for WSNs are reviewed. The degree of an unknown head node
in a WSN graph is defined as the number of links connected to the node. We define
a tree in a WSN graph as an acyclic connected subgraph such that at least one of
its unknown head nodes has degree one, and only one of its nodes is connected to
either a looped part of the network or to a fixed head node (Deuerlein, 2008). Such a
unique node of a given tree is called its root node. The forest of a water network is
defined as the disjoint union of all trees in the network (Deuerlein, 2008). The part of
the network which is not contained in the forest but includes the roots of all the trees
is called core. If a link belongs to the forest of a network graph, its flow is uniquely
determined by the demand assigned to the adjacent forest nodes (Elhay et al, 2014).
As a consequence, flows across forest links do not depend from the optimization pro-
cess and their values are fixed. The forest-core decomposition of a WSN graph can
be implemented using the algorithm presented in Elhay et al (2014).

In the bound tightening approach proposed here, upper and lower bounds on flow
variables corresponding to forest links are set a priori. Then, let core links j1 and j2
be connected in series through a node i. For each t ∈ {1, . . . ,nl}, flow variables in
LPσ ,t, j

Q are subject to the following mass conservation laws:

A12( j1, i)qt
j1 +A12( j2, i)qt

j2 = dt
i , ∀t ∈ {1, . . . ,nl}. (11)

Hence:

qt
j2 = A12( j2, i)dt

i −A12( j2, i)A12( j1, i)qt
j1 , ∀t ∈ {1, . . . ,nl}. (12)

Given a sequence of core links connected in series, it is possible to select one link
as representative and derive relations analogous to (12) for all other links in the se-
quence, proceeding by substitution. Let C ⊂ {1, . . . ,np} be a subset of indices corre-
sponding to network’s links belonging to the core, where a unique representative for
each sequence of links have been selected. An illustrative example of the definition
of C for a simple network model is included in Appendix II.

The proposed strategy is to perform OBBT only for those flow variables whose
indices are in C and then propagate the bounds to the remaining core links using
relations analogous to (12). Algorithm 1 is implemented for iterative domain reduc-
tion on the flow variables in MINLP(Q). Such iterative method can fail to converge
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to a fixed point in finite time (Puranik and Sahinidis, 2017). Therefore, Algorithm 1
is terminated when the progress in the domain reduction is not significant or when
the maximum number of iterations is reached. Given a possible choice of lower and
upper bounds Q′ = {(qt

L)
′,(qt

U )
′}, define:

diam(Q′) := max
t=1,...,nl
j=1,...,np

((qt
U )
′
j− (qt

L)
′
j). (13)

The analytical study of the number of iterations required to generate tight variable
bounds represents an open research problem (Puranik and Sahinidis, 2017). There-
fore, the maximum number of iterations in Algorithm 1 is set to 10 based on empir-
ical experience. The number of linear programming solves at each iteration of Al-
gorithm 1 is 2nl |C |, where |C | is expected to be significantly smaller than np when
operational water networks with a relatively low number of loops are considered.
Furthermore, the for-loops within Algorithm 1 can be executed in parallel, as each
iteration does not depend from the others.

Algorithm 1 Domain reduction on flow variables.
1: Initialisation:

k = 0, ρ = 0, tol = 0.95, Kmax = 10;
Define Q0 as Q where known flow values across forest links have been fixed;

2: while ρ ≤ tol and k ≤ Kmax do
3: for j = 1 : |C | do
4: for t = 1 : nl do
5: solve LP1,t,C ( j)

Qk and obtain (qt
L)
′
C ( j);

6: solve LP−1,t,C ( j)
Qk and obtain (qt

U )′C ( j);
7: end for
8: end for
9: propagate the new upper and lower bounds to links involved in pipe sequences;

10: complete the vectors (qt
L)
′ ∈ Rnp and (qt

U )′ ∈ Rnp with fixed flow rates across forest links;
11: Qk+1 := {((qt

L)
′,(qt

U )′}t=1,...,nl ;

12: ρ ← diam(Qk+1)

diam(Qk)
;

13: k← k+1;
14: end while

3.4 Branch and bound algorithm

Let Qinit be the set of initial lower and upper bounds on flow variables. It can
either be Qinit = Q or Qinit = Qtight, where Qtight represents tightened lower and upper
bounds on flow variables resulting from Algorithm 1. We denote by y∗ = y∗(Q) the
optimal value of MINLP(Q). Then, by definition, y∗ = y∗(Qinit). The branch and
bound method iteratively generates a hierarchy of optimization problems, starting
from MINLP(Qinit), represented by a binary tree named branch and bound tree. In
particular, the algorithm creates a partition of F(Qinit) given by {F(Q′) | Q′ ∈ Q}
such that

min
Q′∈Q

L(Q′)≤ y∗ ≤ min
Q′∈Q

U(Q′) (14)



Global optimality bounds for the placement of control valves in WSNs 11

As standard in branch and bound methods, the proposed algorithm starts by com-
puting lower and upper bounds to y∗ - this is iteration 0. Then, the root problem
MINLP(Qinit) is branched into two optimization problems - see Section 3.5. After
branching, the algorithm computes lower and upper bounds on the two descendant
problems as outlined in Sections 3.1 and 3.2, respectively. The best upper and lower
bounds are updated as necessary. Finally, a new problem from the branch and bound
tree is selected for branching and the iteration is repeated. The method stops when a
termination criterion is met and its implementation is described in Algorithm 2. The
output of the algorithm is either an ε-sub-optimal solution to MINLP(Q) or a feasible
solution with a certified bound on the optimality gap greater than ε .

The computed optimality gaps should be considered within the range of uncer-
tainties that are inherent in modelling of operational water networks. As discussed
in Wright et al (2015), pressure control in operational water networks is subject to
multiple sources of data and modelling errors. These include the stochastic nature of
customer demand, uncertainty in the hydraulic model parameters, network connec-
tivity, measurements accuracy, and factors affecting the physical operation of control
and isolation valves.

Algorithm 2 Branch and bound.
1: input: initial bounds on flow variables Qinit;
2: Initialisation:

Q := {Qinit}, j = 0, MaxIter, Tmax
3: compute L(Qinit) and U(Qinit); // Sections 3.1 and 3.2
4: LB← L(Qinit);
5: UB← U(Qinit);
6: j← j+1;
7: while UB−LB > ε and (j≤MaxIter or Time< Tmax) do
8: select Qb ∈Q such that L(Qb) = LB;
9: split F(Qb) into F(Qleft) and F(Qright); //Sections 3.5

10: compute L(Qleft) and U(Qleft); // Sections 3.1 and 3.2
11: compute L(Qright) and U(Qright); // Sections 3.1 and 3.2
12: Q←Q \{Qb}∪{Qleft,Qright};
13: LB←minQ′∈Q L(Q′);
14: UB←min(UB,U(Qleft),U(Qright));
15: j← j+1;
16: end while

Remark 1 If Q′ ∈Q is such that L(Q′)>UB, then the global optimum cannot belong
to F(Q′) and MINLP(Q′) can be pruned from the branch and bound tree. However,
the selection strategy implemented in Algorithm 2 implies that the branch and bound
iterations will terminate before Q′ is selected for branching. Therefore, the method
does not explicitly implement a pruning procedure.
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3.5 Branching strategy

Let MINLP(Qb) be a problem in the branch and bound tree such that

L(Qb) = min
Q′∈Q

L(Q′) (15)

Branching MINLP(Qb) into two descendant problems MINLP(Qleft) and MINLP(Qright)
is equivalent to partitioning F(Qb) into two sets F(Qleft) and F(Qright). A good branch-
ing strategy should aim to improve the lower bound (i.e. L(Qleft)≥L(Qb) and L(Qright)≥
L(Qb)), and maintain a balanced branch and bound tree (Belotti, 2013, Section 5.3.1).
A branch and bound tree is said balanced if all problems in the tree are similarly dif-
ficult to solve. In this work, the following branching rule is implemented.

Branching rule Let Qb := {(qt
L)

b,(qt
U )

b}t=1,...,nl and (q̂, ĥ, η̂ , θ̂ , ẑ+, ẑ−) ∈ F(Qb) be
a solution of MILP(Qb). Define indices (l,k) ∈ {1, . . . ,nl}×{1, . . . ,np} such that

θ̂
l
k−φk(q̂l

k) = max
t=1,...,nl
j=1,...,np

|θ̂ t
j−φ j(q̂t

j)|. (16)

Let Qleft := {(qt
L)

left,(qt
U )

left}t=1,...,nl and Qright := {(qt
L)

right,(qt
U )

right}t=1,...,nl be as
follows:

(qt
L)

left
j := (qt

L)
b
j , ∀(t, j) ∈ {1, . . . ,nl}×{1, . . . ,np} (17)

(qt
U )

left
j := (qt

U )
b
j , ∀(t, j) ∈ {1, . . . ,nl}×{1, . . . ,np}\ (l,k) (18)

(qt
L)

right
j := (qt

L)
b
j , ∀(t, j) ∈ {1, . . . ,nl}×{1, . . . ,np}\ (l,k) (19)

(qt
U )

right
j := (qt

U )
b
j , ∀(t, j) ∈ {1, . . . ,nl}×{1, . . . ,np} (20)

(ql
U )

left
k := q̂l

k (21)

(ql
L)

right
k := q̂l

k (22)

Then, define of F(Qleft) and F(Qright) using the bounds on flow variables contained
in Qleft and Qright.

The above branching strategy improves the lower bound, by definition of the lin-
ear relaxations given in Appendix I. In fact, the formulation of MILP(Qleft) and
MILP(Qright) requires the inclusion of linear inequalities corresponding to the poly-
hedral relaxations computed with the new bounds on variable ql

k. Such refined linear
relaxations are exact at q̂l

k resulting in tighter MILP relaxations. If q̂l
k is too close

to either (ql
L)

b
k or (ql

U )
b
k , the implemented branching strategy can result in an unbal-

anced branch and bound tree. However, the relaxation error |θ̂ t
j−φ j(q̂t

j)| is larger the
more distant q̂t

j is from (qt
L)

b
j and (qt

U )
b
j , see Figure 11. As a result, in most cases, q̂l

k
is expected to be closer to the middle point of the interval [(qt

L)
b
k ,(q

t
U )

b
k ] than to its

extremes.
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4 Results and discussion

In this section, the developed methods are evaluated using two benchmark net-
work models, and a large operational water supply network from the UK. The cor-
responding problem sizes are reported in Table 1. All experiments presented be-
low were conducted within MATLAB 2016b-64 bit for Windows 7, installed on a
2.50GHz Intel Xeon(R) CPU E5-2640 0 with 12 Cores and 12 GB of RAM. The
MILPs and LPs involved in Algorithms 1 and 2 are solved using GUROBI (v7.5)
(Gurobi Optimization, 2017), which is accessed via its MATLAB interface. In addi-
tion, all iterations in Algorithm 1 were executed in series, and GUROBI was forced
to operate on a single-thread; all other parameters in GUROBI are set to their default
values. Local solutions to the upper bounding NLPs considered in Section 3.2 are
computed using IPOPT (v.3.12.6) (Waechter and Biegler, 2006), accessed in MAT-
LAB via an interface of the OPTI Toolbox (Currie and Wilson, 2012). In the im-
plementation of IPOPT, sparse gradients and Jacobians are directly supplied to the
solver, in order to take advantage of the very sparse structure of our problem. The
global optimization solvers BARON (v18.8.23)(Klnç and Sahinidis, 2018) and SCIP
(v3.2.1)(Gamrath et al, 2016) were implemented for the direct solution of the consid-
ered nonconvex MINLPs. The solver SCIP is accessed in MATLAB via an interface
provided by OPTI Toolbox and relies on SoPLEX (v221) as linear solver and IPOPT
(v3.12.6) as nonlinear solver. In our implementation, we accessed BARON via its
MATLAB interface, and used IBM ILOG CPLEX (v12.8) as linear solver, while
BARON was allowed to select the nonlinear solver according to its dynamic strat-
egy (Sahinidis, 2018). Finally, we set ε = 10−6, MaxIter = +∞, and define Gap :=
100 · UB−LB

LB .

Table 1: Problem size of the 3 case studies. The number of binary variables for
BWFLnet reflects the restriction of candidate valve locations to those links with di-
ameter greater or equal to 0.1(m).

Name # Cont. var. # Bin. var. # Lin. Constr. # Nonconvex terms
PescaraNet 365 198 1591 99

Net25 3192 74 9762 888
BWFLnet 28251 2620 96599 7107

Firstly, we consider PescaraNet, a reduced model of the water supply network
for the city of Pescara (Bragalli et al, 2012). The network’s layout is presented in
Figure 1a. This network model has 68 demand nodes, 99 pipes and 3 water sources.
Moreover, friction head losses are modelled using the HW formula. In this case,
the formulation of MINLP(Q) includes a single demand condition and results in a
relatively small size nonconvex MINLP whose characteristics are reported in Table 1.
This water network has been already considered in Eck and Mevissen (2013) where
a local optimization method was applied for computing optimal valve locations in
PescaraNet. However, Eck and Mevissen (2013) did not include details on upper
and lower bounds of flow variables, which precludes a direct comparison with the
solutions obtained here. In the present implementation, maximum allowed velocity
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in each pipe is set to 2(m
s ) and minimum required pressure at each node to 19(m).

For every link j ∈ {1 . . . ,np}, a quadratic head loss approximation φ j(·) is defined as
in Pecci et al (2017c).

(a) Layout of PescaraNet
;

(b) Layout of Net25

Fig. 1: Benchmark network models

The second case study is named Net25. This benchmark network model has been
used to evaluate solution approaches for optimal valve placement problems in pre-
vious literature using heuristics (Reis et al, 1997; Araujo et al, 2006; Liberatore and
Sechi, 2009; Nicolini and Zovatto, 2009; Ali, 2015; De Paola et al, 2017) and math-
ematical optimization methods (Eck and Mevissen, 2012; Dai and Li, 2014; Pecci
et al, 2017a,b). The results presented in this section allow the quantification of the
level of sub-optimality of valve configurations for Net25 previously computed us-
ing heuristics and local optimization methods. The network has 22 nodes, 37 pipes
and 3 reservoirs - see Figure1b. Details on pipes’ characteristics, nodal demands and
reservoirs’ levels are presented in Jowitt and Xu (1990) and Dai and Li (2014). The
hydraulic model of Net25 uses the HW formula to model friction head losses. We
observe that Net25 has a smaller dimension with respect to PescaraNet; nonethe-
less, it results in a larger nonconvex MINLP as the problem formulation considers
24 demand conditions, one for each hour of the day - see Table 1. Moreover, we set
the maximum allowed velocity in each pipe to 1(m

s ) and the minimum pressure at
each node to 30(m). Analogously to what done for PescaraNet, for each link j, a
quadratic approximation of the friction losses φ j(·) is computed as proposed in Pecci
et al (2017c).

The developed methods are tested for optimizing the placement of 1 to 5 control
valves in both PescaraNet and Net25, where the objective to be minimized is AZP.
In these experiments, we set a time limit of 7200(s). Given δ > 0, let ρ(δ ) be the
percentage of problems with remaining Gap smaller or equal than δ , defined as

ρ(δ ) := 100

{
# instances with Gap≤ δ at termination

}
# test problems

. (23)
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(a) Performance of the branch and bound algorithm
for different values of Nc ∈ {0,1,3,5}
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(b) Performance of the branch and bound algorithm
with the application of domain reduction for differ-
ent values of Nc ∈ {0,1,3,5}.

Fig. 2: Comparison of different number of linearizations for the outer approximation
of the convex envelopes of (2a), with and without the application of domain reduction

For the purpose of this numerical study, we consider a uniform distribution of values
of δ between 0 and 100, spaced by 10−4. Let Nc ≥ 0 be the parameter controlling
the number of linearizations for the outer approximation of the convex envelopes of
constraints (2a) - see Appendix I. In the following, the symbol BBNc indicates the
implementation of Algorithm 2 where the polyhedral relaxations (7) are computed as
detailed in Appendix I. When Algorithm 1 is implemented as pre-processing routine
to reduce the domain of the flow variables, the combination of Algorithms 1 and 2
is denoted by dBBNc . Moreover, in order to ensure a total maximum computational
time of 7200(s), the value of Tmax in Algorithm 2 is adjusted to account for the time
spent in Algorithm 1.

Initially, we evaluate the performance of BBNc with Nc ∈ {0,1,3,5}. The com-
plete numerical results are reported in Tables 3 - 10 of Appendix III. When no domain
reduction is applied, the solutions computed after 7200(s) by BBNc are within 10% of
optimality, for all Nc ∈ {0,1,3,5}. However, in the case of Net25, the obtained valve
placements for nv ∈ {3,4,5} differ from the best-known solutions for the case study,
with respect to those reported in Eck and Mevissen (2012); Dai and Li (2014); Pecci
et al (2017a,b). As shown in Figure 2a, the inclusion of more linearizations for the
outer approximation of the convex envelope of (2a) improves the convergence prop-
erties of the branch and bound algorithm with respect to BB0. In addition, we observe
that algorithms BB1, BB3, and BB5 had similar performances. However, only BB1
terminated in all instances with a Gap smaller than 7%.

We investigate the implementation of algorithms dBBNc , with Nc ∈{0,1,3,5}, for
solving the considered optimal valve placement problems in PescaraNet and Net25.
Firstly, Algorithm 1 was applied to tighten the flow variable bounds, for each Nc ∈
{0,1,3,5}. When considering PescaraNet, the implementation of Algorithm 1 re-
quired the solution of 656 LPs in the case of nv = 1 and Nc = 0. In comparison,
the domain reduction procedure required the solution of 492 LPs in all the other
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Fig. 3: Comparisons between implementations of the branch and bound algorithm
with and without the application domain reduction as pre-solving routine.

cases. The average computational time required to run Algorithm 1 in PescaraNet is
18(s) - see Tables 11, 13, 15, 17 for more details. The application of Algorithm 1
as domain reduction procedure for Net25 required the solution of 5568 LPs for each
nv ∈ {1, . . . ,5} and Nc ∈ {0,1,3,5}, and an average computational time of 58(s) -
see Tables 12, 14, 16, 18. Algorithm 2 was then applied to the problem formulations
with tightened bounds on the flow variables. The results are summarised in Tables 11
- 18. As shown in Figure 2b, in most instances, the solutions computed by dBBNc are
within 5% of optimality, for all Nc ∈ {0,1,3,5}. Moreover, all the computed feasible
solutions for Net25 equal the best-known valve locations obtained for the considered
case study with respect to those reported in Eck and Mevissen (2012); Dai and Li
(2014); Pecci et al (2017a,b). According to these numerical results, the implementa-
tions of dBBNc with Nc > 0 have better computational performance than dBB0.

In order to further investigate the effect of the domain reduction procedure on the
convergence properties of Algorithm 2, we compare the implementation of the branch
and bound algorithm with and without tightening the bounds on flow variables. As
shown in Figures 3, the domain reduction procedure significantly improved the per-
formance of the branch and bound method for the considered problems of optimal
valve placement in PescaraNet and Net25, irrespectively of the number of lineariza-
tions used. Furthermore, as shown in Figure 4, the implementation of dBB0 achieves
better performance than the direct applications of branch and bound algorithm with
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Fig. 4: Comparison between the combination of Algorithms 1 and 2 with Nc = 0, and
the direct implementation of Algorithm 2 with Nc ∈ {1,3,5}.

Nc ∈ {1,3,5}. These results suggest that, for these benchmark water networks, in-
creasing the number of linearizations improves the branch and bound ability to reduce
the optimality gap, but not as much as the implementation of the developed domain
reduction procedure. Furthermore, all the numerical experiments show rapid conver-
gence of the algorithms to the final feasible solution and the associated optimality
gap. As examples, Figure 5 reports the progress of dBB0 and dBB1 when solving the
problems of optimal placement of 3 valves on PescaraNet and Net25, respectively. In
particular, it shows that good quality (if not optimal) solutions are computed early in
the algorithm, while the remaining iterations are mostly used to improve the lower
bounds.

In conclusion, we compare the performance of dBB5 with state-of-the-art global
optimization solvers SCIP and BARON for the solution of the considered nonconvex
MINLPs. A time limit of 7200(s) was set for all solvers. All other options in BARON
and SCIP are set to their default values. As reported in Tables 19 and 20, BARON
failed to produce a feasible solution in all instances except one. These results are in
line with the numerical experiments reported in Misener and Floudas (2014), where
both SCIP (v3.0) and BARON (v12.7.2) failed to generate feasible solutions for the
majority of test problems related to optimal design of WSNs - see Tables 40 and 41
in the supplementary material to Misener and Floudas (2014). Tables 21 and 22 show
that SCIP has failed to find a feasible solution only for the problem of optimal place-
ment of 5 valves in Net25. However, in most instances, SCIP resulted in a Gap larger
than 5%. Furthermore, the majority of the feasible solutions computed by SCIP differ
from the best-known solutions for Net25, which are reported in Pecci et al (2017a)
and were computed by the convex MINLP solver BONMIN (Bonami et al, 2008).
Results reported in Tables 17-22 show that the lower bounds computed by dBB5 are
tighter than those obtained by BARON and SCIP, in all instances. As illustrated in
Figure 6, after two hours of computations, the developed branch and bound method
consistently results in smaller optimality gaps than the two state-of-the-art solvers.



18 Filippo Pecci et al.

0 2000 4000
23

24

25

26

(a) Progress of dBB0 on
PescaraNet for nv = 3

0 2000 4000
23

24

25

26

(b) Progress of dBB1 on
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Fig. 5: Progress of dBB0 and dBB1 when applied to the problems of optimal place-
ment of 3 valves in PescaraNet and Net25.
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Fig. 6: Comparison between the combination of Algorithms 1, and 2 with Nc = 5 and
two state-of-the-art global optimization solvers.

.

4.1 Case study 3: BWFLnet

Finally, the proposed global optimization method for optimal valve placement has
been applied to BWFLnet, the network model of the Smart Water Network Demon-
strator (Field Lab) operated by Bristol Water, InfraSense Labs at Imperial College
London and Cla-Val (Wright et al, 2014). This water supply network consists of
2310 nodes, 2369 pipes and 2 inlets (with fixed known hydraulic heads); its graph
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is presented in Figure 7. The HW formula is used to model friction losses within
BWFLnet.

Table 2: BWFLnet network
characteristics

# pipes 2369
# demand nodes 2310

# inlets 2
Inlet 2

Inlet 1

Fig. 7: Layout of BWFLnet.
The size of BWFLnet is two orders of magnitude larger than the other consid-

ered benchmark WSNs. In BWFLnet, the network’s operator has already installed
three automatic pressure control valves and two boundary control valves, which are
optimally controlled in order to minimize AZP (Wright et al, 2015). In the problem
formulation for optimal valve placement in BWFLnet, we model the three pressure
control valves as open smooth pipes. Moreover, details on the operation of the two
boundary valves have been provided by the valves’ manufacturer. The daily demand
profiles in BWFLnet include 96 different demand conditions, one every 15 minutes.
However, the problem of optimal valve placement and operation in BWFLnet under
96 different demand conditions would result in a large MINLP with 227,424 non-
convex constraints. In order to limit the problem size, MINLP(Q) is formulated on
BWFLnet using only three most relevant demand conditions, which were selected
to capture network’s typical daily operational conditions at low night time demand,
morning peak demand, and afternoon dip - see Figure 8a. The AZP values computed
using a problem formulation restricted to these 3 demand conditions are expected to
be close to those obtained for a full set of 96 different demand conditions - this is
confirmed to be the case for BWFLnet, as shown in Tables 25 and 27.

Note that the highest impact in terms of AZP reduction will be achieved by con-
trolling pressure through pipes carrying large quantity of water, hence links with
small diameters are not likely to be good candidates for control valve placement.
As a consequence, links in BWFLnet whose diameter is smaller than 100(mm) are
discarded from the set of candidate valve locations. The minimum allowed pressure
at all demand nodes is set to 18(m), while this value is relaxed to zero for nodes with
no demand. A quadratic approximation of friction losses is computed as discussed in
Pecci et al (2017c). The size of the resulting MINLP is shown in Table 1.

Multiple simulations of BWFLnet, with no installed valves, under different de-
mand conditions, show that the maximum velocities achieved across network pipes
do not exceed 3(m

s ) - see Figure 8b. In view of Figure 8b, for most pipes, feasi-
ble velocities are expected to be significantly smaller than 3(m

s ). As a consequence,
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Fig. 8: Total network demand pattern and maximum velocities achieved in simulation
in BWFLnet.

when upper and lower bounds on the flow variables are based on a maximum al-
lowed velocity of 3(m

s ) for all pipes, the polyhedral relaxations (7) are not expected
to be tight, leading to loose MILP relaxations - see also the discussion in Appendix I.
In order to tighten the polyhedral relaxations (7) and avoid unnecessarily large flow
bounds, we define a tailored maximum allowed velocity for each link. It is known
that the placement of control valves can result in velocity changes across network
links (Abraham et al, 2018). In order to limit the possibility of discarding optimal
solutions from the feasible set, we implement the following heuristic. Given a link
j ∈ {1, . . . ,np}, let νsim

j be the maximum velocity achieved in simulation under mul-
tiple demand conditions. If νsim

j ≤ 1(m
s ), then the optimized velocities across link j

are allowed to exceed νsim
j by at least a factor of two. In comparison, for links where

the simulated velocities achieved higher rates, the allowed increment is more limited.
The implemented strategy is detailed in the following:

vmax
j :=


1 if 0≤ νsim

j < 0.5
2 if 0.5≤ νsim

j < 1.0
2.5 if 1.0≤ νsim

j < 2.0
3 if 2.0≤ νsim

j < 3.0,

(24)

Then, MINLP(Q) was formulated on BWFLnet using tailored maximum velocities
to define upper and lower bounds on flow variables Q. We consider the optimal place-
ment of 1 to 5 control valves in BWFLnet. In the numerical experiments reported in
this Section, we set a time limit Tmax = 86400(s) (one day). We investigate the di-
rect application of Algorithm 2 with Nc ∈ {0,3}, without implementing the domain
reduction procedure. The results are summarised in Tables 23 and 24. In the case of
Nc = 0, the relative optimality gap obtained for nv ∈ {1,2,3} are larger than 30%.
No feasible solution was found after a day of computations for nv ∈ {4,5}. Includ-
ing more linearizations for the outer approximation of the convex envelopes of (2a)
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results in small improvements for the cases of nv ∈ {1,2}, while no feasible solution
was obtained when nv ∈ {3,4,5} - see Table 24.

Then, the domain reduction procedure described in Algorithm 1 was applied as
pre-processing reoutine to tighten the flow variable bounds within the formulation
of MINLP(Q) on BWFLnet. In this case, the fraction of links involved in LP solves
corresponds to less than the 10% of the whole set of network links. Such reduction is
due to the structure of BWFLnet, a typical water network from the United Kingdom,
where a considerable portion of links belongs to the forest. Moreover, hydraulic mod-
els of operational networks often present sequences of links connected in series, used
to model the existence of different customer connections along network pipes. As a
result, the proposed graph-theory based decomposition has significantly reduced the
computational cost associated with Algorithm 1, which required the solution of 2532
LPs for each case of nv = 1, . . . ,5. In the numerical experiments reported here, such
LPs were solved sequentially. As a result, Algorithm 1 required roughly one hour of
CPU time, in all instance - see Tables 25 and 26. However, as previously observed, the
LPs solved at each iteration of Algorithm 1 do not depend on each other. Therefore,
in a practical implementation, they can be solved in parallel, exploiting the existence
of multiple computational cores.

Algorithm 1 was then applied to MINLP(Qtight), with Nc ∈ {0,3} - see Tables 25
and 26. When Nc = 0, the bounds on the absolute optimality gaps obtained for nv ∈
{1,2,3} are between 3(m) and 5(m) - see also Figures 9. Optimality bounds of such
magnitude are comparable to the order of uncertainty affecting pressure control in
BWFLnet (Wright et al, 2015). Hence, the quality of the computed feasible solutions
is considered to be acceptable. Again, in the cases of nv ∈ {4,5}, no feasible solution
was found before reaching the time limit. Similar optimality gaps were obtained when
Nc = 3, but the algorithm failed to compute a feasible solution for nv ∈{3,4,5}. These
results suggest that the inclusion of different number of linearizations for the outer
approximation of the convex envelopes of (2a) did not improve the performance of
the branch and bound algorithm for solving the problem of optimal valve placement
in BWFLnet.

We observe that the feasible solutions computed with and without domain reduc-
tion are the same. However, as shown in Figure 9, the application of Algorithm 1
has significantly improved the quality of the lower bounds computed by the branch
and bound algorithm. Nonetheless, the optimality gaps reported in Table 25 are too
wide to be reduced within the prescribed time limit, even if the domain reduction
routine is applied. The numerical results show that, in all problem instances, most
pipes in BWFLnet experience low velocities, which are significantly smaller than
their expected maximum velocities, despite the implemented heuristic to tailor max-
imum allowed velocities. As a consequence, the polyhedral relaxations of equations
(2a) corresponding to these pipes are not sufficiently tight - see also the discussion in
Appendix I.

Next, given optimal valve locations for nv ∈ {1,2,3}, computed with Algorithm
2, we have formulated a nonconvex nonlinear program to optimize valve operation
under the complete set of 96 demand conditions. Such NLP is obtained from the for-
mulation of MINLP(Q) by fixing the values of the binary variables corresponding to
optimized valve locations, and it is equivalent to the problem of optimizing the actu-
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(a) Upper and lower bounds computed by
Algorithm 2, with Nc = 0
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(b) Upper and lower bounds computed by
the combination of Algorithm 1 and 2,
with Nc = 0

Fig. 9: Upper and lower bounds for the solution of MINLP(Q) on BWFLnet.

ators operation. Algorithm 1 is applied to tighten the bounds on flow variables, and
Algorithm 2 is subsequently implemented to solve the nonconvex NLP with tight-
ened variable bounds. Lower and upper bounds computed at the root of the branch
and bound tree are reported in Table 27, for nv ∈ {1,2,3}. As expected, the upper
bounds to the AZP values computed considering the full set of multiple demand con-
ditions are close to those obtained for the restriction to three demand conditions.
Moreover, in this case, the domain reduction procedure has resulted in considerably
tighter lower bounds, without performing any branching operation. In contrast, the re-
sults reported in Table 25 indicate that that inclusion of valve locations as unknowns
significantly reduces the ability of Algorithm 1 to compute tight estimates of flow
variable domains. This situation has an interpretation from the hydraulic application
perspective. In fact, appropriate changes in network topology induced by valves clo-
sures can result in increased flow velocities across some pipes (Abraham et al, 2018).

In conclusion, we observe that the average computational cost associated with
the solution of a single MILP relaxation for BWFLnet is considerably higher than
for Net25 and PescaraNet. In fact, solving the MILP relaxation at the root of the
branch and bound tree for BWFLnet required 2 to 6 orders of magnitude more com-
putational time than what experienced for Net25 and PescaraNet. This behaviour is
predictable, as the problem of optimal valve placement and operation in BWFLnet
results in a MINLP whose size is one to two orders of magnitude larger than the size
of the problem formulation on Net25 and PescaraNet - see Table 1. It is known that
computational effort required to solve a mixed-integer program grows combinatori-
ally with the size of the problem. These numerical experiments were conducted on a
single computational thread of a desktop machine, using a standard implementation
of GUROBI for the solution of the MILP relaxations. The availability of additional
computational capability and the use of a tailored MILP solver could speed-up the
optimization process.

All three case studies show that good quality solutions are often computed at the
root node of the branch and bound tree (i.e. iteration 0). This is in accordance with the
work by Diamond et al (2018), presenting a number of examples where good quality
solutions to nonconvex optimization problems are recovered from the solution of suit-
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able convex relaxations. The results suggest that Algorithm 2 can be early terminated
to generate good quality solutions of MINLP(Q), by opportunely setting time limit or
maximum number of iterations. Moreover, observe that Algorithm 2 provides more
information than local optimization methods for optimal valve placement in WSNs
studied in previous work. In fact, the algorithm always generates a certified bound
on the optimality gap of the computed solution. Local optimization methods can be
implemented before starting Algorithm 2, in order to rapidly generate good quality
feasible solutions.

5 Conclusions and future work

In this manuscript, we have investigated the application of branch and bound
strategies to compute ε-sub-optimal solutions for the problem of optimal valve place-
ment and operation in water supply networks. The implemented algorithm relies on
the solution of MILP relaxations of the original nonconvex MINLP. Furthermore, a
tailored domain reduction procedure was implemented to tighten the MILP relax-
ations. In contrast to previously published solution methods for optimal valve place-
ment in water networks, the presented algorithm terminates with a certified bound on
the optimality gap of the computed solution, thus providing additional information to
support the design and operation of water supply networks.

The proposed branch and bound method has successfully generated good quality
feasible solutions in two benchmark water networks and a large water supply net-
work, after few iterations, with bounds on the optimality gap comparable to the order
of uncertainty usually experienced in pressure control of water supply networks. Fur-
thermore, the results suggest that the proposed domain reduction strategy is more ef-
fective in improving the convergence properties of the algorithm, than simply increas-
ing the number of linearizations used to define the polyhedral relaxations. Moreover,
the results reported in this manuscript show that, for the considered benchmark wa-
ter networks, the proposed branch and bound algorithms outperform state-of-the-art
global optimization solvers SCIP and BARON. These results highlight the challenges
of applying off-the-shelf global solvers to the problem in study.

However, the lower bounds generated by the algorithm experience slow progress,
as shown in Figure 5. They can be improved by performing Algorithm 1 on Qleft and
Qright, so that the new bounds on the branching variable can be propagated to the
remaining flow variables. Recall that, at each iteration of Algorithm 1, the required
solutions of the 2nl |C | linear programs can be computed in parallel. As a conse-
quence, if enough computational cores are available, the outlined bound propagation
strategy can be applied at each branch and bound iteration, without dramatically in-
creasing the overall computational time. Furthermore, future work should investigate
the inclusion of additional valid linear inequalities in the formulation of MILP(Q′). A
possible strategy is to use the locally optimal solutions generated at each stage of the
branch and bound method, following an approach similar to Humpola et al (2016). In
addition, when large operational water networks are considered, tailored solvers for
the relaxed MILPs can be designed using suitable decomposition strategies, follow-
ing ideas discussed in (Vigerske, 2012, Chapters 3 and 4).
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Although the present work has focused on the minimization of AZP, other con-
vex objective functions can be minimized within the same framework, with little
modifications to the discussed formulation. In particular, if the objective function
is nonlinear, the generation of lower bounds requires the solution convex MINLPs.
Furthermore, optimal design (Bragalli et al, 2012), optimal valve control (Wright
et al, 2015), and optimal pump scheduling (Menke et al, 2015) problems result in
optimization problems involving nonconvex constraints like (2a). As a consequence,
using suitable linear relaxations and NLP sub-problems, Algorithms 1 and 2 can be
applied to guarantee the optimality of the solution found, or a bound on the optimality
gap, for such nonconvex optimization problems.

Appendix I. Polyhedral relaxations of nonconvex head loss constraints

We look for polyhedral relaxations of constraints

θ
t
j−φ j(qt

j) = 0, t = 1, . . . ,nl , j = 1, . . .np

These will be written as

Rtqt +Et
θ

t ≤ rt , t = 1, . . . ,nl (25)

for suitable matrices Rt and Et and constant vectors rt that depend on qt
L and qt

U .
Moreover, the present appendix demonstrates that the strength of the relaxations de-
pends on the tightness of the bounds on the flow variables.

In the following, the indices t and j are omitted as the mathematical derivation
does not depend on them. Consider the set{

(q,θ)
∣∣∣ θ = φ(q), ∀q ∈ [qL,qU ]

}
(26)

A convex relaxation is given by{
(q,θ)

∣∣∣ φ(q)≤ θ ≤ φ̄(q), ∀q ∈ [qL,qU ]
}

(27)

where φ(·) and φ̄(·) are suitable convex and concave functions, respectively. Analyt-
ical expressions for φ(·) and φ̄(·) can be derived following a similar procedure to the
one illustrated in Liberti and Pantelides (2003) for monomials of odd degree. Recall
that φ(·) is defined as

φ(q) := q(a|q|+b) q ∈ [qL,qU ], a≥ 0, b≥ 0. (28)

We can assume that a > 0, otherwise φ(·) is a linear function and relaxations are not
needed. Let qL≤ 0≤ qU be upper and lower bounds on flow q. We look for q̄≤ 0 such
that the line from (q̄,φ(q̄)) to (qU ,φ(qU )) is tangent to the curve φ(·) at (q̄,φ(q̄)).
This is represented by the equation:

φ(q̄)−φ(qU )

q̄−qU
= φ

′(q̄). (29)
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(a) qL < q̄ < 0 < q < qU . (b) q̄≤ qL < 0 < q < qU . (c) qL < q̄ < 0 < qU ≤ q.

(d) 0≤ qL < qU . (e) qL < qU ≤ 0.

Fig. 10: Convex envelopes of nonconvex constraints θ = φ(q).

Multiplying by (q̄−qU ) on both sides of the previous equation yields:

q̄(a|q̄|+b)−qU(a|qU |+b)− (2a|q̄|+b)(q̄−qU ) = 0. (30)

Since a > 0, q̄≤ 0 and qU ≥ 0, we finally obtain

−q̄2 +q2
U +2q̄qU = 0. (31)

Thus q̄ := (1−
√

2)qU . Analogously, the unique point q ≥ 0 such that the line from
(q,φ(q)) to (qL,φ(qL)) is tangent to φ(·) in (q,φ(q)) is defined as q := (1−

√
2)qL.

If qL < q̄ < 0 < q < qU , we have the following convex over and under estimators (see
Figure 10a):

φ(q) =

{
φ(q), qL ≤ q≤ q̄
φ(qU )+

φ(q̄)−φ(qU )
q̄−qU

(q−qU ), q̄≤ q≤ qU
(32)

φ(q) =

{
φ(qL)+

φ(q)−φ(qL)
q−qL

(q−qL) qL ≤ q≤ q

φ(q) q≤ q≤ qU
(33)

When q̄ ≤ qL, it is necessary to modify the definition of φ(·) as follows (see Figure
10b):

φ(q) = φ(qL)+
φ(qU )−φ(qL)

qU −qL
(q−qL),∀q ∈ [qL,qU ]. (34)

Analogously, if q≥ qU set (see Figure 10c)

φ(q) = φ(qL)+
φ(qU )−φ(qL)

qU −qL
(q−qL),∀q ∈ [qL,qU ]. (35)
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Now, assume that 0≤ qL < qU . In this case, the convex envelope (see Figure 10d) is
given by

φ(q) = φ(q) (36)

φ(q) = φ(qL)+
φ(qU )−φ(qL)

qU −qL
(q−qL) (37)

Analogously, if qL < qU ≤ 0, set (see Figure 10e)

φ(q) = φ(qL)+
φ(qU )−φ(qL)

qU −qL
(q−qL) (38)

φ(q) = φ(q) (39)

In this manuscript, our aim is to apply a branch and bound method to the non-
convex problem MINLP(Q). At each step of the algorithm, a solution of a convex
MINLP relaxation of MINLP(Q) will yield a lower bound on the optimal objec-
tive function value. Observe that, with the exception of (2a), all the other constraints
in MINLP(Q) are linear. Therefore, it is convenient to study polyhedral relaxations
of the nonconvex set in (26), which will result in a Mixed Integer Linear Program-
ming (MILP) relaxation of MINLP(Q) - for a general review, see (Tawarmalani and
Sahinidis, 2002, Chapter 4). Let Nc ≥ 0 be a parameter used to control the number of
linearizations for the outer approximation of the convex envelopes in Figure 10.

Assume qL < q̄ < 0 < q < qU . Let Nc > 0, and qL < qM
1 < .. . < qM

Nc
< q̄ and

q < qS
1 < .. . < qS

Nc
< qU be sequences of equidistant points, where q̄ and q are the

tangential points defined above. A polyhedral relaxation is given by the following
linear inequalities (see Figures 11a and 12a) :

φ(qL)+
φ(q)−φ(qL)

q−qL
(q−qL)≤ θ (40)

φ(qU )+
φ(q̄)−φ(qU )

q̄−qU
(q−qU )≥ θ (41)

φ(qU )+φ
′(qU )(q−qU )≤ θ (42)

φ(qL)+φ
′(qL)(q−qL)≥ θ (43)

φ(qS
i )+φ

′(qS
i )(q−qS

i )≤ θ , ∀i ∈ {1, . . .Nc} (44)

φ(qM
i )+φ

′(qM
i )(q−qM

i )≥ θ , ∀i ∈ {1, . . .Nc} (45)

If Nc = 0, the polyhedral relaxation is defined only by constraints (40)-(43).
Now, let q̄≤ qL < 0 < q < qU . Assume that Nc > 0, and let q < qS

1 < .. . < qS
Nc

<
qU be sequence of equidistant points. In this case, we consider the linear relaxation
given by (see Figures 11b and 12b) :

φ(qL)+
φ(q)−φ(qL)

q−qL
(q−qL)≤ θ (46)

φ(qL)+
φ(qU )−φ(qL)

qU −qL
(q−qL)≥ θ (47)

φ(qU )+φ
′(qU )(q−qU )≤ θ (48)

φ(qS
i )+φ

′(qS
i )(q−qS

i )≤ θ , ∀i ∈ {1, . . . ,Nc} (49)
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If Nc = 0, the corresponding polyhedral relaxation is defined only by constraints (46)-
(48).

Analogously, if qL < q̄ < 0 < qU ≤ q and Nc > 0, let qL < qM
1 < .. . < qM

Nc
< q̄ be

a sequence of equidistant points. We have (see Figures 11c and 12c) :

φ(qL)+
φ(qU )−φ(qL)

qU −qL
(q−qL)≤ θ (50)

φ(qU )+
φ(q̄)−φ(qU )

q̄−qU
(q−qU )≥ θ (51)

φ(qL)+φ
′(qL)(q−qL)≥ θ (52)

φ(qM
i )+φ

′(qM
i )(q−qM

i )≥ θ , ∀i ∈ {1, . . . ,Nc} (53)

When Nc = 0, the polyhedral relaxation is defined by constraints (50)-(52).
Assume 0 ≤ qL < qU . Let Nc > 0 and consider a sequence of equidistant points

qL < qS
1 < qS

Nc
< qU . We define (see Figure 11d and 12d) :

φ(qL)+
φ(qU )−φ(qL)

qU −qL
(q−qL)≥ θ (54)

φ(qL)+φ
′(qL)(q−qL)≤ θθ (55)

φ(qU )+φ
′(qU )(q−qU )≤ θθ (56)

φ(qS
i )+φ

′(qS
i )(q−qS

i )≤ θ , ∀i ∈ {1, . . . ,Nc}θ (57)

If Nc = 0, the polyhedral relaxation is defined only by constraints (54)-(56).
Finally, if qL < qU ≤ 0 and Nc > 0, let qL < qM

1 < .. . < qM
Nc

< qU be a sequence
of equidistant points. A linear relaxation is given by (see Figure 11e and 12e) :

φ(qL)+
φ(qU )−φ(qL)

qU −qL
(q−qL)≤ θ (58)

φ(qU )+φ
′(qU )(q−qU )≥ θ (59)

φ(qL)+φ
′(qL)(q−qL)≥ θ (60)

φ(qM
i )+φ

′(qM
i )(q−qM

i )≥ θ , ∀i ∈ {1, . . . ,Nc} (61)

When Nc = 0, the polyhedral relaxation is defined only by constraints (58)-(60).
The polyhedral relaxations of (26) defined above are illustrated in Figures 11 and

12. Observe that their strength depends on qL and qU . Smaller ranges for qU − qL
lead to tighter linear relaxations. In conclusion, it is possible to write polyhedral
relaxations of constraints (2a) as

Rtqt +Et
θ

t ≤ rt , ∀t = 1, . . . ,nl (62)

for suitable matrices Rt and Et and vectors rt that depend on qt
L and qt

U .
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(a) qL < q̄ < 0 < q < qU . (b) q̄≤ qL < 0 < q < qU . (c) qL < q̄ < 0 < qU ≤ q.

(d) 0≤ qL < qU . (e) qL < qU ≤ 0.

Fig. 11: Polyhedral relaxations of nonconvex constraints θ = φ(q), with Nc = 0.

(a) qL < q̄ < 0 < q < qU . (b) q̄≤ qL < 0 < q < qU . (c) qL < q̄ < 0 < qU ≤ q.

(d) 0≤ qL < qU . (e) qL < qU ≤ 0.

Fig. 12: Polyhedral relaxations of nonconvex constraints θ = φ(q), with Nc = 3.

Appendix II. An illustrative example

In this appendix, we illustrate the graph decomposition routine outlined in Section
3.3 to compute the index set C corresponding to links considered by the domain
reduction procedure in Algorithm 1.
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Consider the network ToyNet, whose layout is presented in Figure 13. This net-
work includes one fixed-head node H0, and six unknown-head nodes. Moreover, node
V6 is the only node in the network with degree one. In this case, there is a unique tree,
which is composed by links P6 and P7, and nodes V3, V5, and V6. Node V3 is the root
of the tree. Following the notation introduced in Section 2, the operation of ToyNet
is considered under nl different demand conditions.

Fig. 13: ToyNet

Let t ∈ {1, . . . ,nl}. Equations (2c) at V6 implies that qt
P7
= dt

V6
, where dt

V6
denotes

the demand at node V6 and time t. Therefore, flow across link P7 is known a priori,
and upper and lower bounds on flow variables corresponding to link P7 are equal. Fur-
thermore, equations (2c) imply that qt

P6
= dV5 +dV6 . Hence, also the flow across link

P6 is known a priori. Furthermore, we observe that links P2, P4 and P5 are connected
in series. Equations (2c) yield that

qt
P2
= qt

P4
+dt

V2
(63)

qt
P5
= qt

P4
−dt

V4
(64)

As a result, it is possible to select link P4 as representative and derive bounds on vari-
ables qP2 and qP5 using (63). In conclusion, the optimization based bound tightening
described in Algorithm 1 is performed only for flow variables corresponding to links
in C := {P1,P4,P3}.

Appendix III. Supplementary material: tables with numerical results

Table 3: Results obtained by Algorithm 2 with Nc = 0 for PescaraNet.
nv Time (s) No. Iter. LB (m) UB (m) Gap(%)
1 7200 7684 25.24 26.87 6.46
2 7200 5720 24.44 26.65 9.04
3 7200 4938 24.14 25.55 5.84
4 7200 4200 23.96 25.07 4.60
5 7200 3756 23.81 24.97 4.85
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Table 4: Results obtained by Algorithm 2 with Nc = 0 for Net25.
nv Time (s) No. Iter. LB (m) UB (m) Gap(%)
1 7200 1933 31.64 33.63 6.28
2 7200 1515 30.874 32.68 5.87
3 7200 1194 30.76 32.20 4.69
4 7200 1060 30.64 32.40 5.77
5 7200 1165 30.57 32.41 6.01

Table 5: Results obtained by Algorithm 2 with Nc = 1 for PescaraNet.
nv Time (s) No. Iter. LB (m) UB (m) Gap(%)
1 7200 7232 25.32 26.87 6.11
2 7200 4368 24.62 26.32 6.90
3 7200 3117 24.32 25.30 4.01
4 7200 1824 24.12 25.07 3.92
5 7200 1461 23.96 24.85 3.70

Table 6: Results obtained by Algorithm 2 with Nc = 1 for Net25.
nv Time (s) No. Iter. LB (m) UB (m) Gap(%)
1 7200 2032 31.65 33.63 6.25
2 7200 1525 30.87 32.67 5.86
3 7200 1189 30.76 32.20 4.67
4 7200 1007 30.64 32.40 5.76
5 7200 1356 30.57 32.41 6.02

Table 7: Results obtained by Algorithm 2 with Nc = 3 for PescaraNet.
nv Time (s) No. Iter. LB (m) UB (m) Gap(%)
1 7200 7894 25.38 26.87 5.89
2 7200 4746 24.72 26.65 7.83
3 7200 3098 24.39 25.30 3.71
4 7200 1726 24.16 25.07 3.76
5 7200 1309 24.00 24.89 3.68

Table 8: Results obtained by Algorithm 2 with Nc = 3 for Net25.
nv Time (s) No. Iter. LB (m) UB (m) Gap(%)
1 7200 1583 31.65 33.63 6.25
2 7200 1098 30.87 32.67 5.86
3 7200 918 30.76 32.20 4.66
4 7200 796 30.65 32.40 5.75
5 7200 1165 30.57 32.41 6.01

Table 9: Results obtained by Algorithm 2 with Nc = 5 for PescaraNet.
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nv Time (s) No. Iter. LB (m) UB (m) Gap(%)
1 7200 7055 25.38 26.87 5.86
2 7200 4274 24.72 26.64 7.78
3 7200 2762 24.41 25.30 3.64
4 7200 1551 24.17 25.07 3.73
5 7200 1194 24.01 24.89 3.64

Table 10: Results obtained by Algorithm 2 with Nc = 5 for Net25.
nv Time (s) No. Iter. LB (m) UB (m) Gap(%)
1 7200 1449 31.64 33.63 6.23
2 7200 1024 30.87 32.67 5.86
3 7200 852 30.76 32.20 4.67
4 7200 752 30.63 32.68 6.68
5 7200 905 30.57 32.41 6.01

Table 11: Results obtained by Algorithms 1 and 2 with Nc = 0 for PescaraNet.
nv Time (s) Time in Alg. 1 (s) No. Iter. LB (m) UB (m) Gap(%)
1 7200 16 6923 26.34 26.87 2.02
2 7200 13 4417 25.10 26.65 6.16
3 7200 13 3832 24.43 25.30 3.50
4 7200 13 2119 24.08 25.09 4.19
5 7200 12 1424 23.86 24.81 3.94

Table 12: Results obtained by Algorithms 1 and 2 with Nc = 0 for Net25.
nv Time (s) Time in Alg.1 (s) No. Iter. LB (m) UB (m) Gap(%)
1 7200 47 3088 32.46 33.63 3.61
2 7200 47 1750 31.27 32.67 4.51
3 7200 44 914 31.02 32.16 3.69
4 7200 44 662 30.92 31.75 2.72
5 7200 43 374 30.84 31.47 2.05

Table 13: Results obtained by Algorithms 1 and 2 with Nc = 1 for PescaraNet.
nv Time (s) Time in Alg. 1 (s) No. Iter. LB (m) UB (m) Gap(%)
1 7200 14 8486 26.49 26.87 1.42
2 7200 15 4650 25.61 26.06 1.78
3 7200 16 3886 24.82 25.30 1.94
4 7200 15 1531 24.47 25.06 2.41
5 7200 15 1405 23.24 24.89 2.67

Table 14: Results obtained by Algorithms 1 and 2 with Nc = 1 for Net25.
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nv Time (s) Time in Alg.1 (s) No. Iter. LB (m) UB (m) Gap(%)
1 7200 54 2591 32.68 33.63 2.92
2 7200 52 1570 31.45 32.67 3.89
3 7200 52 786 31.16 32.16 3.21
4 7200 51 534 31.03 31.75 2.32
5 7200 50 275 30.96 31.47 1.66

Table 15: Results obtained by Algorithms 1 and 2 with Nc = 3 for PescaraNet.
nv Time (s) Time in Alg. 1 (s) No. Iter. LB (m) UB (m) Gap(%)
1 7200 18 8218 26.57 26.87 1.12
2 7200 20 4650 25.69 26.06 1.45
3 7200 20 3886 24.85 25.30 1.80
4 7200 19 1531 24.55 25.06 2.04
5 7200 19 1405 23.34 24.85 2.08

Table 16: Results obtained by Algorithms 1 and 2 with Nc = 3 for Net25.
nv Time (s) Time in Alg.1 (s) No. Iter. LB (m) UB (m) Gap(%)
1 7200 66 2218 32.69 33.63 2.88
2 7200 65 846 31.47 32.67 3.86
3 7200 63 547 31.17 32.16 3.20
4 7200 61 386 31.04 31.75 2.30
5 7200 59 200 30.95 31.47 1.70

Table 17: Results obtained by Algorithms 1 and 2 with Nc = 5 for PescaraNet.
nv Time (s) Time in Alg. 1 (s) No. Iter. LB (m) UB (m) Gap(%)
1 7200 22 8295 26.59 26.87 1.07
2 7200 24 4329 25.70 26.06 1.43
3 7200 24 1541 24.87 25.30 1.71
4 7200 24 2700 24.61 25.06 1.82
5 7200 23 1201 24.35 24.85 2.03

Table 18: Results obtained by Algorithms 1 and 2 with Nc = 5 for Net25.
nv Time (s) Time in Alg.1 (s) No. Iter. LB (m) UB (m) Gap(%)
1 7200 80 937 32.68 33.63 2.92
2 7200 77 709 31.46 32.67 3.89
3 7200 74 465 31.17 32.16 3.19
4 7200 73 337 31.04 31.75 2.30
5 7200 71 188 30.95 31.47 1.67

Table 19: Results obtained by BARON (v18.8.23) for PescaraNet.



Global optimality bounds for the placement of control valves in WSNs 33

nv Time (s) LB (m) UB (m) Gap(%)
1 7200 23.92 − −
2 7200 23.32 − −
3 7200 22.84 − −
4 7200 22.47 − −
5 7200 22.21 − −

Table 20: Results obtained by BARON (v18.8.23) for Net25.
nv Time (s) LB (m) UB (m) Gap(%)
1 7200 31.22 − −
2 7200 30.37 32.67 7.58
3 7200 30.28 − −
4 7200 30.25 − −
5 7200 30.15 − −

Table 21: Results obtained by SCIP (v3.2.1) for PescaraNet.
nv Time (s) LB (m) UB (m) Gap(%)
1 7200 25.95 26.87 3.54
2 7200 24.50 26.38 7.67
3 7200 23.39 25.61 9.46
4 7200 23.14 25.30 9.34
5 7200 22.62 25.16 11.23

Table 22: Results obtained by SCIP (v3.2.1) for Net25.
nv Time (s) LB (m) UB (m) Gap(%)
1 7200 31.50 33.63 6.75
2 7200 31.37 33.36 6.34
3 7200 30.39 32.39 6.56
4 7200 30.47 32.22 5.72
5 33 − − −

Table 23: Results obtained by Algorithm 2 with Nc = 0 for BWFLnet.
nv Time (s) No. Iter. LB (m) UB (m) Gap(%)
1 86400 580 35.36 47.41 34.09
2 86400 36 29.98 39.31 31.14
3 86400 1 27.14 36.23 33.49
4 > 86400 − − − −
5 > 86400 − − − −

Table 24: Results obtained by Algorithm 2 with Nc = 3 for BWFLnet.
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nv Time (s) No. Iter. LB (m) UB (m) Gap(%)
1 86400 517 35.42 47.41 33.87
2 86400 25 30.03 39.31 30.89
3 > 86400 − − − −
4 > 86400 − − − −
5 > 86400 − − − −

Table 25: Results obtained by Algorithms 1 and 2 with Nc = 0 for BWFLnet.
nv Time (s) Time in Alg.1 (s) No. Iter. LB (m) UB (m) Gap(%)
1 86400 3707 783 42.48 47.41 11.61
2 86400 3293 29 35.54 39.31 10.62
3 86400 2885 1 32.44 36.20 11.58
4 > 86400 − − − − −
5 > 86400 − − − − −

Table 26: Results obtained by Algorithms 1 and 2 with Nc = 3 for BWFLnet.
nv Time (s) Time in Alg.1 (s) No. Iter. LB (m) UB (m) Gap(%)
1 86400 4304 596 42.52 47.41 11.50
2 86400 3720 20 35.61 39.31 10.41
3 > 86400 3360 − − − −
4 > 86400 − − − − −
5 > 86400 − − − − −

Table 27: Lower and upper bounds at the root of the branch and bound tree obtained
by Algorithm 2 with Nc = 0 for BWFLnet, with fixed valve locations, considering 96
different demand conditions. Algorithm 1 was applied as pre-solving routine.

nv No.Iter LB (m) UB (m) Gap(%)
1 1 47.05 47.79 1.60
2 1 39.21 39.36 0.40
3 1 36.06 36.21 0.40
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