<]
TUDelft

Delft University of Technology

Safe Exploration Algorithms for Reinforcement Learning Controllers

Mannucci, Tommaso; Van Kampen, Erik Jan; De Visser, Cornelis; Chu, Qiping

DOI
10.1109/TNNLS.2017.2654539

Publication date
2018

Document Version
Accepted author manuscript

Published in
IEEE Transactions on Neural Networks and Learning Systems

Citation (APA)

Mannucci, T., Van Kampen, E. J., De Visser, C., & Chu, Q. (2018). Safe Exploration Algorithms for
Reinforcement Learning Controllers. IEEE Transactions on Neural Networks and Learning Systems, 29(4),
1069-1081. https://doi.org/10.1109/TNNLS.2017.2654539

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1109/TNNLS.2017.2654539
https://doi.org/10.1109/TNNLS.2017.2654539

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Safe Exploration Algorithms for Reinforcement
Learning Controllers

Abstract—Self-learning approaches, such as Reinforcement
Learning, offer new possibilities for autonomous control of un-
certain or time-varying systems. However, exploring an unknown
environment under limited prediction capabilities is a challenge
for a learning agent. If the environment is dangerous, free
exploration can result in physical damage or in an otherwise
unacceptable behavior. With respect to existing methods, the
main contribution of this work is the definition of a new
approach that does not require global safety functions, nor
specific formulations of the dynamics or of the environment, but
relies on interval estimation of the dynamics of the agent during
the exploration phase, assuming a limited capability of the agent
to perceive the presence of incoming fatal states. Two algorithms
are presented with this approach. The first is the Safety Handling
Exploration with Risk Perception Algorithm (SHERPA), which
provides safety by individuating temporary safety functions,
called backups. SHERPA is shown in a simulated, simplified
quadrotor task, for which dangerous states are avoided. The
second algorithm, denominated OptiSHERPA, can safely handle
more dynamically complex systems for which SHERPA is not
sufficient through the use of safety metrics. An application of
OptiSHERPA is simulated on an aircraft altitude control task.

Index Terms—Reinforcement Learning, Safe Exploration,
Adaptive Controllers, Model-free Control

[. INTRODUCTION

N engineering, classic control schemes such as PID still

enjoy widespread use. This can be partially explained by
the amount of effort needed to provide affordable yet efficient
dynamic models of complex platforms. In the wake of this
consideration, special attention in the control community has
been dedicated to control schemes which require less precise
knowledge of a model to achieve satisfactory performances.
Robust control [1] constitutes an example of controller design
developed to tolerate modeling error while guaranteeing a
lower bound on performance. Adaptive control represents a
promising field in developing new controllers with increased
performance and reduced model dependency [2], [3]. A model-
free option amidst adaptive control is Reinforcement Learning
(RL).

Reinforcement learning is a knowledge based control
scheme that mimics animal development [4]. At any given
moment, an animal receives an array of internal and external
stimuli that form its situation, with the behavior dictating the
reaction to each of them. Correct reactions generate a posi-
tive chemical discharge that reinforces the behavior whereas
unsuccessful ones lead to anguish that disproves it. This has
an equivalent in Reinforcement Learning: stimuli constitute
the plant or system; the animal is the agent following a
temporary behavior, i.e. a policy. Lastly, the chemical reaction
is represented by a numerical feedback called the reward.

From a theoretical point of view, RL has evolved in time to
guarantee minimal level of performance. Selected algorithms

were proven to be Probably Approximately Correct (PAC)
[5], and proofs of near-optimality and optimality for both
discrete and continuous [6] applications were found. RL has
also proved its worth in combination with Neural Networks
(NN) in the development of Neuro-Dynamic Programming
[7], [8], where the approximation power of NNs is utilized
to efficiently represent both the value and the policy, thus
reducing the “curse of dimensionality” [9]. In recent years,
multiple successful applications [10]-[13], utilize RL as a
framework for learning, in particular model-free RL [14]-[16].

In model-free RL there is no need of a model of the plant:
learning starts with an exploratory phase, during which, rather
than following the best policy based on current knowledge,
new actions are tried in order to find the most rewarding ac-
tions and iteratively correcting its policy. The agent transitions
gradually from exploring to exploiting, i.e. performing actions
suggested by its best policy. The transition must be handled
with care. Transitioning before the best policy is converged
results in sub-optimal behavior due to lack of knowledge
of the environment, but transitioning long after convergence
unnecessarily delays the application of the best policy, thus
affecting performance. This conflict between gathering and use
of knowledge is called exploration-exploitation dilemma.

Whenever an agent attempts an inappropriate action, the
consequent penalty acts as a negative reinforcement, and
the wrong behavior is progressively discouraged, until it is
no longer adopted. This permits to accommodate unwanted,
unsafe actions within the canonical RL framework. However,
consider an hostile environment where the consequences of
wrong actions are not limited to “bad” performance, but
include long term effects that can’t be compensated by more
profitable exploitation later on. As one wrong action can result
in unrecoverable effects, such an environment poses a safety-
exploration dilemma, especially for a model-free approach.
The goal of this work is to avoid such occurrences during
learning, thus achieving safe exploration [17].

In the literature, a widely adopted approach to safety
consists of assigning negative reward for undesired transitions,
such that the most reliable policy maximises the minimal sum
of reward in the presence of uncertainties and stochasticity.
Safety is therefore embedded into policy performance. This
worst-case or minimax [18] approach belongs to the optimisa-
tion criterion of safety [19]. Under this criterion, assuming a
sufficiently large penalty for unsafe transitions, the optimal
policy is also the safest. Methods for policy improvement
with this approach have also been designed [20]. Alternatively,
by assigning negative reward, the variance of the return can
be taken into account by adopting risk-sensitivity approaches
[21]-[24]. Several techniques exist to implement both minimax
and risk-sensitive methods (see e.g. [25]); however, there

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

are limitations as far as exploration is considered. Including
safety as part of the reward can gencrate a conflict between
purely performance-based reward and safety-based reward if
the penalty for unsafe transitions is not correctly assigned.
Also, the optimisation criterion can be effective in preventing
harmful situations, but requires previous knowledge of the
probability of risk for the state-action space, which is in
general the result of exploration itself. A different solution
is to include safety in the exploration process itself. Garcia
[19] differentiates three different approaches: “providing initial
knowledge”, directing the learning in its initial stage towards
more profitable and safer regions of the state space [26];
“deriving a policy from demonstrations” by means of Learn-
ing from Demonstration [27]; “providing teacher advice” by
including an external teacher that can interrupt exploration and
provide expert knowledge, or that the agent can consult when
confronted with unexpected situations [28]. An alternative
implementation of this solution is risk-directed exploration.
With this approach, the agent’s choice of actions is aided by
an appropriate risk metric [29] acting as an exploration bonus
towards the safer regions of the environment.

Among algorithms that directly avoid unsafe transitions,
[30] relies on an a-priori known safety function (acting as
a go/no-go decision maker over feasible actions) and a fixed
backup policy valid in all workspace. A similar approach is
taken in [31], with the difference that the safety function is
obtained through a “cautious simulator”. The simulator must
correctly label unsafe states, but is allowed to mislabel safe
states as unsafe: it is assumed that an experienced human
operator can force the system into a mislabeled safe state.
In [32] variable amount of perturbation is introduced in a
given safe but inefficient baseline controller, so that discovery
of new trajectories for task completion is possible, taking a
certain amount of risk. These techniques share the need of
a guaranteed safe controller, simulators or backup policy in
order to prevent catastrophic exploration when facing critical
decisions. Moldovan and Abbeel [33] define safety in terms
of ergodicity of the exploration, and introduce an algorithm
that relies on believes of the system, but not on a predefined
baseline policy or safe controller.

This paper adopts a different strategy for safe exploration
that does not rely on a-priori known safety functions, cautious
simulators, or in an explicit ergodicity of the system. Instead, a
temporary safety function is generated at each time in the form
of backups. A backup is essentially an escape route: a control
sequence that can bring the system in a close neighbourhood of
a state that the agent already visited in the past. By resorting
to backups, this strategy eliminates the need for the above
prerequisites. This is particularly apt for RL tasks where
the agent’s knowledge is very limited, which makes these
prerequisites more demanding.

Two algorithms implementing the strategy are presented
in this paper, and compared to similar preexisting ones.
The first algorithm is the Safety Handling Exploration with
Risk Perception Algorithm (SHERPA). Given a user-defined
exploratory policy and an uncertain model of the system,
SHERPA searches backups satisfying a closeness condition.
If the search fails, SHERPA replaces the policy action with

a safer alternative, effectively acting as a “filter” with respect
to the exploratory policy. SHERPA is effective in all those
cases where backups can be found with reasonable ease. For
more challenging tasks, a second version called OptiSHERPA
is proposed which uses metrics to assess the safety of all
available actions. Additionally, OptiSHERPA includes a ded-
icated evasion strategy, that relies on the current belief on
the state space to minimize risks while at the same time
avoiding impending dangers. While the “filtering” effect of
both algorithms could be applied in diverse contexts, it is
in RL that they prove more useful, due to the usual lack of
information about the task being performed.

For the most general scenario, coverage of the state space,
and convergence to the optimal policy cannot be guaranteed
when using the proposed algorithms, which promote safety of
exploration more than its efficiency (e.g. does not follow the
“optimism in the face of uncertainty” [34] criteria). However,
the formulation of the proposed algorithms is flexible enough
to address these drawbacks without major modifications, e.g.
by relaxing the constraints for the individuation of a backup.

Two applications of the algorithms are shown in the form
of simulations. SHERPA is applied to a simulated quadrotor
UAV exploring an indoor environment. OptiSHERPA is used
to control the elevator deflection of a fighter aircraft exploring
its flight envelope. Both agents have a stochastic exploratory
policy: the goal of the algorithms is then to enforce safety
during exploration.

II. FUNDAMENTALS

This section will expand the problem of safe exploration.
First, a brief overview of the fundamentals of RL will be
provided. The motivation will be presented and the problem
statement will be formalized. Finally, the assumptions of this
method will be summarized.

A. Problem statement

Classic RL is defined on the Markov Decision Process
(MDP) framework. An MDP schematically represents a task
for an agent in an environment, and consists of a tuple of
five elements: state, action, transition, reward and discount.
Set S contains the states of the environment. Set 4 is the
set of actions w that the agent can select. D is a mapping
SxAxS — [0,1] that Ve, ' € S and YVu € A
assigns to triplet (a, u, ') the probability of the environment
transitioning from state « to state &’ given action u. Function
R :S xS — R maps all transitions to a scalar r, the reward,
which indicates the immediate benefit of the transition with
respect to accomplishing the task. A policy 7 : S x A — [0, 1]
is a mapping that Va assigns a probability of selecting action
u, describing the behavior of the agent. The goal of the agent
is to learn an optimal policy 7«* that maximizes the sum
of expected reward J™(x) subjected to a discount v which
privileges short term reward. .J is the value of x with 7.

Various algorithms [35] exist to solve this problem, all
of which rely on the concept of exploration. Exploration
consists in performing different actions in different states,
observing the consequent reward, and using this knowledge

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

to progressively define a policy m which maximizes the total
expected reward. Under certain conditions, exploration can
eventually yield policy 7* or its approximation [6].

A fatal occurrence is defined as an unacceptable condition
for the agent; for example if the agent is harmed, e.g. a crash
or a failure, or if it cannot proceed further in its task.Safe
exploration consists in preventing fatal occurrences.

B. Definitions and assumptions

In order to define the approach to safe exploration, this
section will introduce multiple assumptions: a framework
on how to represent fatal occurrences in physical agents;
a limited prediction capability, denominated risk perception;
and a model for the computation of uncertain dynamics.
The dynamics represented by D define the set T of feasible
transitions 7 = (x,u, x’), z,x’ € S, u € A. Let T, represent
the subset of those transitions generating fatal occurrences.
The following will be assumed:

Assumption 1: If 37 = (Z,@,x’) € Trat, and Iz € S, Ju €
A, 37" = (x,u,x’) € T, then 7" € Tgat
This assumption is not new to the literature (e.g. [36]) and
can be considered an extension of the Markov property to fatal
occurrences: these are inherently related to fatal states and not
to actions. Any action leading to the same state or condition
would result in the same fatal occurrence. This allows to define
the fatal state space (FSS) as

Definition 1 (Fatal state space):

FSS ={a'|Vx e S, Vue A, 7 = (x,u,&') € Tras }
and analogously the safe state space (SSS)) as

Definition 2 (Safe state space):

SSS = S\ FSS.

Complex systems may present multiple modalities of fatal
occurrences; these will be informally defined as risks. It is
reasonable to assume that only a subset of state components
will be involved for each risk. Given the state space S < R",
define as the restricted state space (RSS) of a risk the space
defined by those components involved in the risk. Consider
for example an aircraft for which two risks are defined: hitting
the ground and getting damaged by the aerodynamic forces.
The ground risk can be related to the position of the agent
with respect to the ground, whereas the aerodynamic risk can
be related to wind speed, deflections, and attitudes. Different
features of the state vector are involved for each risk. The
first RSS is the space of all possible positions. The second
RSS is the space of all possible combinations of wind speed,
deflections, and attitudes. It will be assumed that the possible
modes of fatal occurrence are known:

Assumption 2: For each risk, the agent has a-priori knowl-
edge of the relative RSS.

Such a formulation arguably comes natural to a designer,
since it expresses the risks involved in the exploration, and
is also very high-level, so that the designer is not required to
consider dangerous conditions but only those that are certainly
fatal. Those elements of an RSS that are also fatal form the a-
priori unknown restricted fatal state space (RFSS) (see Fig.1).
Now that a structure for the fatal occurrences is defined,
assumption 3 will introduce a mean of prevention of risks,
providing closure to the problem definition.

P

RFSS 1

T

Fig. 1: An agent exploring a state space (bold dotted rectangle) with
two different RFSS. The first cause of fatality is independent from
the value of component z1, and an Euclidean distance d; is provided
for the risk perception. A second cause of fatality is dependent on
both components of the state so that an Euclidean distance d2 in the
whole state space is given. In (a), RFSS1 is in reach; in (b), RFSS2
is in reach; in (c) both RF'SSs are in reach. In all three cases the
agent receives an identical warning.

Assumption 3 (Risk perception): Let RSSy, be the restricted

state space of the k" risk, k € {1, --- ,m}. Let &} be the
projection of state € S to RSS;, and f;, € RFSS; the
nearest fatal state to xj. Then Vk € {1, --- ,m}, 3¢, € R such

that at each time-step, the value of the boolean function

ol <em (D)

is known, where | | is the canonical 2-norm.

The risk perception can be represented by a unknown
mapping W : § — {0,1}, W(x) equal to 1 if (1) is true
and 0 otherwise. Risk perception is a strong assumption; how-
ever, the following should be considered. When performing
exploration in a dangerous environment, the agent cannot
predict if the next state will be fatal or not without any
form of knowledge of the F'SS. Risk perception constitutes
a plausible source of knowledge, arguably more valid than a-
priori assumptions on fatal states distributions. Being a form of
local, sensor based knowledge, risk perception allows to react
to the insurgence of risks while retaining a sufficient level of
abstraction and generality.

Consider the continuous-time version of an MDP. Indicating
by o (x(t), u(t),t) the state of the system at time ¢ > t, when
applying generic action history w(x(to),t):

lz1 = fil sev v o v fem -

t

o (w(to), u(t), 1) = z(to) + f (@ u(n)dr, Q)

to
the set L of the lead-to-fatal (LTF) states is
Definition 3 (Lead-to-fatal states):

L = {& Vu(z(to), 1), 3t : o(x(to), u(t),t) e FSS). (3)

LTF states are those that do not belong to the F'SS, but evolve
in the FSS with probability one. They can be seen as an
equivalent in the generalized states space of the inevitable
collision states introduced in [37], and as the supercritical
states defined in [30] for a deterministic MDP.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

In model-based RL, the controller has an adaptive model of
the environment that allows off-line training and on-line sys-
tem identification. Instead, in model-free RL (e.g. Q-learning
[38]) there is no off-line (raining - the policy refinement
is based on on-line training and no model is generated.
An intermediate position between this two instances will be
adopted in this work by introducing the following definition:

Definition 4 (Bounding model): Given dynamics D yielding
transition set 7, model A(x, u) is bounding for D if and only
if:

Vr ={z,u,z'} € T; 2’ € Az, u) “4)

i.e. a model is bounding if it predicts at least all feasible
transitions. Such a model is not used to perform off-line
policy improvements but only to predict the boundaries of the
dynamical evolution of the agent. It will be assumed that both
real and bounding models are continuous, deterministic, and
time-invariant.

ITII. SHERPA

This section presents SHERPA. In order to properly explain
the algorithm, Interval Analysis (1A) will be briefly introduced
as a mean of obtaining bounding models [39]. The mathemat-
ical framework will then be expanded and refined as well. The
algorithm will then be discussed in detail. Finally, the section
will present an application.

A. Interval analysis

An interval [z]=[z, T] is the set {x|z; < z; <T;, i < n},
z=(z, - .2,) T=@1, - ,Tu)T, x;, T € RIf
x = —T, [x] is symmetric. In IA, the generic operator
applied to intervals yields all feasible solutions of the same
operation applied to elements of the intervals: V& € [x], y €
[y], © =y € [x] # [y]. Consider a parametric formulation
of D as D(xz,u,p1,...,pr), with parameters p; € [p;]
and [p;] known confidence intervals. Following the above
definition, [D(x, u)] = {D(x, u, p1,. .., px)|pi € [pi]} is the
bounding model of D. For each @ and wu, [D(x,u)] is also an
interval. This makes bounding models relatively simple and
very economic in terms of data representation. However, it
has the disadvantage of overestimating the reachable set of
the states, due to an effect known as dependency problem,
which propagates uncertainty in states and parameters.

B. Background and algorithm description

The final goal of the agent is to select at each time ¢ a
control u that will keep the system safe,i.e. will avoid the
FSS. Safety of a control can be defined as follows:

Definition 5: Control u(t), t € [¢1 t2] is safe in state x (1)
if

a'(w(tl)/u, t) € SSS , Vit e [tl tg].

Safe control u(t) is feasible if Vt, u < u(t) < w, where
u and w represent boundaries on control, e.g. saturation. If
this condition is strictly satisfied, u(t) is said to be strictly
feasible. However, multiple limitations such as inertia, control
saturation and holonomic constraints give rise to LTF states,
which must also be avoided during exploration, but are not

perceivable. For a generic trajectory o (x(tp),u, t), the condi-
ton of (3) cannot be verified in practice since it would require
an infinite time horizon. However, an exception occurs when a
trajectory o visits a state (%) multiple times. Formally, given
a safe and feasible control w(t) with associated trajectory
O'(Cl)(t()), u, t), te [to tl] if

W t" e [tots],t # t":0(x(to),u,t) = ou(z(ty),u,t’) (5)

then there exists a safe and feasible control w*(t) for ¢ €
[to o0). It can be seen from (2) that (5) can be rewritten as
o(x(t),u(t — (' —10)),t) = a(x(t'),u(t — (t' —ty)),t").
Then, YAt < (t"—t'), o(x(t"),u(t— (" —t")— (t' —to)), t" +
At) = o(z(t'),u(t — (t' — to)),t’ + At). Since trajectory
o(x(t'),u(t),t’ + At) € SSS, a safe and feasible control
exists at least for t € [ty t” + (¢ — t)]. The above can be
repeated by replacing ¢’ with ¢” and #” with ¢" + (¢ — t'),
guaranteeing a safe control for ¢ € [ty t” + 2(¢” — t')]. The
procedure can be repeated indefinitely, thus demonstrating the
above. A particular occurrence of (5) consists in those cases
where the system is in equilibrium, i.e. © = 0. Then, define
an ideal backup from xy = x(to) to x (%) as follows:

Definition 6: A feasible, safe control action uy(t) , t € [to?]
is an ideal backup from xg to x(f) if

Jt<t:z() =z(). (6)

An ideal backup guarantees safety; however, (6) cannot be
verified when taking into account the uncertainties of the
bounding model, since it is not possible to exactly predict
the next state. The following assumption will be made:
Assumption 4: Let u(t) be a strictly feasible safe control
for ¢y = x(ty) and t € [to t]. Then Ve > 0, 3M € R and
u*(t) a safe control for @: |z —xo| < € and ¢ € [tot] such that

max [w(t) —u*(t)| < M, li_r}(l)M =0
i.e. in a neighborhood of a state with a strictly feasible safe
control, a safe control for any state of the neighborhood can
be found by altering the safe control by a finite amount that
tends to zero as the neighborhood reduces in size'. A weaker
definition of a backup can then be introduced:

Definition 7: A feasible, safe control action uy(t) , ¢ € [to?]
is a backup from x(to =(f) with reach e if

Jt<t:|zl)—=x) <e @)

which in turn allows for the following theorem:

Theorem 1: Let 1 = x(t1) € SSS, let ug(t) be a strictly
feasible safe control for ¢ € [tg ¢1], and let w;(t) be a strictly
feasible ideal backup from x; to @3 = o(x1,us,t2). Then
Juy, a backup from x; to x5 with reach € > 0 and a control
u*(t) for t = to such that

wy(t) if t <t

u(t) =
®) u*(t) otherwise
is a feasible safe control for ¢ € [t o).

Untuitively, local Lipschitz continuity of % (2, u) is required for Assump-
tion 4 to hold. However, the remainder of the paper will consider Assumption
4 as given.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Proof: the existence of the ideal backup w;(¢) means that the
iterative control action w;ter(t) = (ur(t), ug(t), wr(t), ---)
is a strictly feasible safe control. The existence of u;(t) means
that Ve there exists a backup. Assumption 4 guarantees that
there exists a safe control w(t) such that Vt|u(t) —wizer (t)| <
M after the application of the backup. Since wtr(t) is strictly
feasible, and since, for € — 0, M — 0 then Je s.t. u(t) is
also feasible. []

Theorem 1 is of limited practical use - since it relies on the
existence of uy(¢) and does not specify the actual value of € -
but formalizes the observation contained in (5) in the presence
of uncertainty. The equilibrium condition can be formalized as
follows:

Definition 8: State xg € SSS is an equilibrium point for the
system if Jup = u(tg) s.t. de/dt(xg,ug) = 0.

The definition of backup can be revised as

Definition 9: A feasible, safe control action up(t) , t € [to?]
is a backup from x¢ to x(f) with reach e if 3¢ <t : |z(¥) —
x(t)|| < €, in which case is said to have reach e, or if there
exists an equilibrium point g s.t. |z(t2) — x| < 6.

C. Closeness condition

The goal of SHERPA is to find a feasible backup with a
sufficiently small reach, i.e. for which the system reaches a
“close” neighborhood of a previously visited state; therefore,
a closeness condition must heuristically be introduced to
implement the method. Once again, IA offers a simple way of
interpreting closeness between two points. Before proceding
further, it is convenient to slightly alter the definition of backup
to accommodate the use of intervals. Let the bounding model
A of D be its IA extension [D] with time-discrete formulation,
so that [xr+1] = A([zk], ur), and let [€] and [d] be two
n-dimensional symmetric intervals. Then, a backup can be
reformulated as follows:

Definition 10: Let then {xy, -+, Tr+m} be the trajectory
generated by control u, = {ug, -+, Ugstm}. Then uy is a
backup in interval form for [x] if and only if:

Vie{l, 2,---, m}, [®g+i] = SSS 8)

and :

V&pim € [Trem], I <k (@pym —xp) €[€] (9)
in which case the backup has reaching interval [e], or if it
exists an equilibrium point g s.t. :

V&g im € [Thim], (Thrm — xE) € [0] (10)

in which case the backup has reaching interval [4].

This definition replaces the reach with intervals [€] and [d].
Given two symmetric threshold intervals [€]¢p, and [0]¢nyr, @
backup is effective if either [€] < [€]¢n, or [0] < [8]inr. Fig.
2 shows an example of backup evaluation. Length m should
be chosen so that the size of intervals [@,,] is comparable
to risk perception ranges €.

The choice of the threshold intervals is empirical in nature;
however [€]¢, should depend on the magnitude of the control.

Fig. 2: An example of backup evaluation. Starting from position
x(0) = x(to), the agent has followed its trajectory to current state
x. The three dashed lines represent the means of three proposed
interval backups from a. The proposed backup generated by control
w; is discarded since it violates the known safe state space SSS. The
proposed backup generated by ws is also discarded since [a:k+m]2
does not satisfy the closeness condition with nearest explored state
x,,. Control usz generates a feasible backup, since the associated
trajectory lies entirely in the SSS, and since [@r1m |3 respects the
closeness condition.

Given assumption 4, lir%m]?xﬂu(tk) —u*(t;)|| = 0, so that the
€E—>

smaller the threshold [€]¢s,-, the more likely the feasibility of

control u(tx). To account for this, an initial threshold interval

[€]max is assigned to each new state xj. At each successive

time step, all the threshold intervals are shrunk by a factor 7:

m . — Ll (u +7 A
n=<Hm>%;m=<1—'“l“‘“j : (ul.+uz>|) an

i=1

with positive exponent A < 1. The more the control action
nears the boundaries u and w, the smaller the 7, and the more
the shrinkage of [€]:x,. Exponent A also regulates shrinkage:
the smaller), the less previous explored states are penalized
with respect to recent ones. Values of A and of [€]q, are
closely related; e.g. a small A should be paired with a small
[€]mae and a high A with an increased [€],nqz-

D. SHERPA

In this section, the SHERPA algorithm (Fig. 3) will be
discussed in detail. At the start of the exploration, the agent
is in state xo. It is assumed that W (x) = 0. For each
proposed action u,, generated by policy m, SHERPA computes
the predicted interval [z,] = A(xo, up). If [x,] ¢ SSS(to),
a different action is proposed, or the agent might encounter
a fatal state. Otherwise, SHERPA checks the existence of
a backup for [x,]: a random finite control sequence wu; is
generated, and for each step, its reach is checked as per
Definition 10. If no backup is found after a set number of

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Start

Ejpdate backupHObserve stateHUPdate baCkupj

Take backup @

N

Update 555
Policy action
m

Perform action

Backup found?
Y

Fig. 3: Flowchart summarizing the procedure of SHERPA. The policy
action is checked for safety and for backups; if the checks succeed,
the action is taken and the new backup is stored in place of the
previous. If the iteration limit is reached without success, SHERPA
recollects the previously stored backup.

iterations, the current action is discarded, and a different action
is proposed. In the new state xq, if W(x;) = 0, then the
SSS is augmented with all the states currently in reach of the
risk perception. The procedure is iterated during the whole
exploration. In theory, the agent has always a feasible control
at its disposal, eventually resorting to a backup, i.e. an iterative
control, or a dynamical equilibrium. If all proposed actions
fail the previous checks, SHERPA will force the agent to
adopt the current backup. During backup execution, it will
proceed to individuate a safe control and a backup for the
expected arrival interval. The complexity of the algorithm
depends on the number of visited states k, the number of
available actions n,, the maximum amount of iterations for
action selections a4, and for backup checking b,,,4,, and is
equal to O(amaz - max(min(byqa., n™), kn*)).

Other methods have proven their worth in preventing a
controlled system from reaching a set of unsafe states or
configurations. Potential fields [40] were successfully adapted
for robotic navigation and path planning with lack of envi-
ronmental knowledge, e.g uncertainty in observed obstacles
[41], in the number of obstacles [42] and even in the entire
environment [43]. However, these methods are not equally
adaptable when the uncertainty extends to the model dynamics,
and when holonomic and control constraints are considered,
as in this paper. An application of this is provided in the
following as comparison with SHERPA. Lyapunov Barrier
Functions [44], Control Barrier Functions [45] and Control

Lyapunov-Barrier Functions [46] can provide control that is
guaranteed to be safe. However, the underlying assumptions
on system structure, or on the barrier functions, can limit their
applicability, especially when considering model uncertainty.

E. Quadrotor task

In this section, a task is simulated for a two-dimensional
quadrotor flying in a room. The underlying RL agent adopts
a fully random policy to explore. The goal is for SHERPA to
prevent collision and thus enable safe state exploration. The
state vector is (z, @, z, 2, 6)T, where x, z and 0 are the
horizontal and vertical coordinate of the quadrotor, and the
pitch angle. The bounding model?® is

. [c] | . . T . .
T =——=|sinb||z|z+ —=sinb; 0 = [k][,
L sino old+ o [k
2=—ﬂ|0059\\73|2+10059—g (12)

[m] [m]
where ¢ and [c] is a damping coefficient; m and [m] is the
mass of the quadrotor ; T is the total thrust generated by the
rotors; k and [k] is an efficiency factor for torque impulse I;
g is the gravitational acceleration. Intervals [c], [m] and [k]
are

[m] = [0.344, 0.516]kg; [c] = [0.72, 1.08] x 10>k,
[k] = [0.8, 1.2]

with control action bounded as 7" € [0, 12.7] N and I, €
[—300° , 300°] s—!. The model of the quadrotor used for
the computation of the real dynamics is obtained from the
bounding model by randomly selecting ¢, m and k from their
intervals.

The quadrotor initially hovers at the middle of a
room three meters wide and two meters high. Collid-
ing with the walls or with the floor/ceiling is a fatal
occurrence, and the quadrotor perceives risk half a me-
ter from the ceiling or floor, or at one meter from a
wall. The reach of the backup depends on [€™**] =
([-3, 3]m; [=3, 3125 [=5. 5lm; [=5, 512 [, §D)
During exploration, control is bounded between 10% and
90% of the original intervals: T' € [1.3, 10.3] N and I, €
[—270°, 270°] s~!: this prevents factor 1 of (11) to van-
ish. Coefficient A is chosen as 0.5. As for [d], taking into
consideration the dynamics in (12), it is evident that the
position (x,y) of the quadrotor itself does not influence
the value of the derivatives. Therefore the interval [d,] =
([_007 OO]; [_15 1]%; [—OO, OO]; [_15 1]%; [_457 45]0)
with equilibrium point z = 0, 2 = 0, § = 0 is selected.
SHERPA evaluates up to 10 actions per time step, proposed
by the random policy. A maximum of 40 backup evaluations
are performed, for a maximum of 400 iterations per time
step. Initially, since the agent does not perceive any risk, the
SSS(t) coincides with

([_15 l]m; [—OO, OO]; [_%7 %]mv [—OO, OO]; [—OO, OO])

2It can be shown that, due to local Lipschitz continuity of (12), Assumption
4 is valid for any realization of the dynamics.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

and it is updated whenever W = 0 as
SSS U {S(#, 2, &,%,0)| |a(t) — 2| <1 v]z(t) — 2| < 1}.

A series of 4 runs of SHERPA is shown in Fig. 4. The values
of ¢, m and k are indicated in the captions. The dots indicate
the position of the quadrotor at different time steps, starting in
position (0,4). The solid rectangle represents the fatal states.
The dash-dotted line represents the contour of the region where
no risk is individuated (W (x, y) = 0) and the SSS is therefore
updated. The dashed line represents the known SSS at the
end of the run. In 3 out of 4 cases, the quadrotor reaches
the boundaries of the SSS, but manages to safely divert its
trajectory (Fig. 4.a and 4.b) or to wait in position until another
path has been found (Fig. 4.c).

In general, the agent chooses actions that result in safe
trajectories, even with a significant excursion in the value of
parameters. Nonetheless, the random nature of the underlying
policy is still noticeable. If a different task were to be proposed
(e.g. waypoint navigation), SHERPA could still be utilized to
evaluate actions suggested by a non exploratory, goal-oriented
policy.

In order to highlight the novelty of the proposed approach,
Fig. 5 and 6 show an application of a different method, specifi-
cally the Basic Potential Field (BPF) method [47] for collision
avoidance. The BPF differs from other potential field methods
such as [40] in that it generates a finite potential accounting for
velocities and maximum decelerations. In this application, the
BPF repels the quadrotor from exiting the known SSS. The rate
at which the field reaches its maximum intensity is given by its
gain G and by the worst-case maximum deceleration as given
by the uncertain model. The quadrotor in Fig.5 is in an almost
nominal condition of mass and torque effectiveness (as in Fig.
4d). It can be seen how a BPF with gain G = 0.5 prevents
collisions. The trajectory is centered around the middle of
the known SSS, where the combined repulsive field, averaged
between the different velocities, has a minimum. This differs
from the proposed approach, in which the outer region of
the SSS is not penalized with respect to its interior (see e.g.
Fig.4a). Fig.6 shows the resulting trajectory when applying
the previous BPF to a quadrotor with increased mass and
torque effectiveness, as in Fig.4b. The figure shows how the
quadrotor flies predominantly in the lower half of the room, as
a result of the increased mass of the quadrotor. The trajectory
violates the SSS, and even ends with a collision. This is due
to the following. First, the quadrotor is forced to continuously
change its attitude so that resultant of the forces complies with
the direction indicated by the BPF. This essentially turns the
BPF into a reactive collision avoidance method. As a result of
this, the effectiveness of the method depends on the gain G,
whose value determines the reactivity of the field, as shown
by the two different conditions of Fig.5 and 6. If G is too low,
the BPF is not sufficiently reactive; however, too high a gain
can cause instability and unwanted oscillations. This selection
of G is especially critical when considering systems with
model uncertainties. This constitutes another difference with
SHERPA, which takes into account all possible realizations of
the model due to its interval formulation.

m=0.345 c=1.063107* k=0.9214

>
» o
T T

vertical position z (m)
3

-15 -1 -0.5 0 05 1 15
horizontal position x (m)

(a) Run with m = 345g, ¢ = 1.06 x 10_4%, k = 0.92
m =0.505 ¢ =9.602107° k=1.171

Fl
IS o
T T

vertical position z (m)
&

-15 -1 -05 0 05 1 15
horizontal position x (m)

(b) Run with m = 505g, ¢ = 9.60 x 10*5%, k=117
m=0.465 ¢ =9.645107° k =1.179

>
IS o
T T

vertical position z (m)
3

-0.5 0 0.5 1 15
horizontal position x (m)

(c) Run with m = 465g, ¢ = 9.64 x 10_5%, k=1.18
m =0.4273 ¢=1.022107* k=0.9758

IS
o
T

IS
T

vertical position z (m)

w
o
T

i
-15 -1 -0.5 0 05 1 15
horizontal position x (m)

(d) Run with m = 427g, ¢ = 1.02 x 10X k = 0.98

Fig. 4: The dots represent the quadrotor position in time. The solid
rectangle represents the fatal states that the agent must avoid. The dot-
and-dashed line delimits the states where the agent does not perceive
risk. The dashed line represents the known SSS at the end of each
run.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

m=0.427 c=1.02210" k=0975 G=0.5

vertical position z (m)

—1‘,5 —1‘ —0‘,5 6 015 1‘ 115
horizontal position x (m)
Fig. 5: The trajectory obtained when using the BPF to control
a quadrotor in an almost nominal condition of mass and torque
efficiency.

m=0.505 c=9.60210"° k=1.171 G=0.5

vertical position z (m)

*1‘.5 *1‘ *0‘.5 6 015 “1 1‘.5
horizontal position x (m)

Fig. 6: The trajectory obtained when using the BPF to control a

quadrotor with increased mass and torque efficiency. The quadrotor

flies predominantly in the lower half of the room before colliding

with the floor.

IV. OPTISHERPA
A. Motivation and algorithm description

The previous section introduced SHERPA, which relies on
an a-priori defined interval to define closeness. This approach
was shown to succeed in the quadrotor application. However,
this approach has two drawbacks. First, if the system is
not easily controllable, predicted arrival intervals might fail
in satisfying the closeness condition. For these systems a
safe backup could involve a complex trajectory which would
require a considerable amount of time to be followed. The
trajectory might also reach a portion of the state space outside
of the risk-perception range of SHERPA, thus requiring a
certain degree of “global” knowledge to be ensured as safe.
The confidence in state prediction and the current knowledge
of the SSS (provided by the risk-perception) might not be
sufficient to identify such a trajectory as a backup. This would
lead to situations where SHERPA is either unable to find a
suitable control, thus exhausting its backup and then rejecting
all further actions, or is forced to keep the system on hold in
an equilibrium point.

A second drawback of the closeness condition is that,
acting as a yes-or-no filter, it does not distinguish between
control actions that are almost satisfactory and those that are
completely unacceptable. After resorting to a backup, and
while trying to find a new one from the arrival condition,
SHERPA has only a limited amount of iterations to find a new
backup. In the event that this search is unsuccessful, SHERPA
is forced to take a possibly unsafe action.

For the above reasons, a second version of SHERPA named
OptiSHERPA is presented. It differs from SHERPA in two
ways. First, OptiSHERPA introduces metrics for the selection
of actions. A finite set of actions is evaluated at each time-
step together with a feasible backup, and the best action is
performed. The introduction of metrics reduces the burden of
on-line application by allowing OptiSHERPA to rank its op-
tions and to take an informed decision if the available amount
of on-line iterations is depleted. A second difference lies in
the strategy itself. With SHERPA, the generation of backups
would keep the system safe, providing a possible escape route
at every time-step. With OptiSHERPA, when the agent does
not perceive danger, a distance metric is implemented with the
goal of preventing potentially unsafe behavior of the system,
effectively constraining the dynamics similar to SHERPA.
When danger is detected, the agent examines its current belief
in the state space and actively avoids the regions of the state
space that are least safe. This is done via an evasion metric.

The remainder of this section is as follows. First, the metrics
will be discussed in detail. Second, the algorithm will be
illustrated. Third, a simulated application to an elevator control
task will be shown.

B. Metrics

1) Distance metric: This metric allows to classify intervals
based on distance so that, during the evaluation of backups,
the one with “closest” reach can be selected. Indicating by ©
the Schur product,

A1) = (@~ o) Ov +p- |(Fg D) 0w (3)

is a “distance™ between x and the center of the interval,
rescaled by v, € R"", plus a term proportional to the interval
width weighted by a positive parameter p < 1. This term
allows to include the uncertainty in the interval as a penalizing
factor. A lower value of p privileges intervals whose center
are nearer regardless of their width; conversely a higher value
penalizes intervals whose center is nearer but whose elements
are more dispersed. Fig. 7 shows this transition. Vector v,
should be chosen so that, for any two excursions in state
Azl and Az, it is HAazI ® vr“ > ||A:1:H ® er iff excursion
Ax! affects safety and controllability of the system more
than excursion Az'!. Thus, to components x; related to risks
should correspond an adequately big vector component v;. A
second function of v, is to normalize distances in S, since
components x; might have different units of measure. The
magnitude of the control can also be accounted for by a
similar method as the one illustrated in (11). At each time
step compute 7 so that the metric distance between x and
interval I(t;) at time at time ¢; is:

J

dy(@, I(t:), 1) = d(z, 1(t:)/] [n(tx)

k=1

(14)

3Eq. (13) is not rigorously a distance, as it is not defined on R™ x R™ but
on R™ x I, where I" is the set of n-dimensional intervals. However, if (13)
is restricted to the subset of “crisp” intervals, it is analogue to the Euclidean
distance in R", hence the denomination.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

I//I

o

Fig. 7: The choice of p affects the outcome of the metric when
comparing different intervals. For lower values of p, interval I" is the
nearest since its center I/ is the nearest to x. By gradually increasing
p, 13 will select interval I”. Finally, for p approaching 1, I’ will be
the nearest.

In conclusion, when risk perception and trajectory pre-
diction are suboptimal, the distance metric selects an action
whose predicted arrival states differ the least from a known
visited state.

2) Evasion metric: The evasion metric evaluates trajecto-
ries based on the current belief in the composition of the state
space. Consider for example a state space partitioned in a safe
region R, fe, a fatal region Ryqs, and an uncertain region
Ryne. More regions could be defined as long as they can be or-
dered from the safest to the most fatal. Each control action se-
quence generates bounding trajectories 7, which OptiSHERPA
computes as a succession of intervals in time. First, among all
bounding trajectories, discard those that at any given time will
entirely be comprised in a fatal region: for OptiSHERPA this
is equivalent to generating one interval entirely composed of
fatal states. Second, discard those trajectories that do not end
up in the safe region at the end of the trajectory, unless no
such trajectory exists. The remaining trajectories are those that
have the most probability of both avoiding fatal occurrences
and of restoring safety. Third, consider how the trajectories
overlap the regions, e.g. Rsqfe, Rfat, func. Assuming that
all trajectories in the bounding trajectory are equally likely to
occur, the bigger volume of the intersection with a fatal region,
the higher the chance of a fatal occurrence when following
the trajectory. Consider then two trajectories with similarly
sized intersection with the fatal region, but one of which has
a higher intersection with the uncertain region than the other.
Since part of the uncertain states could actually be fatal, it
is preferable to follow the second trajectory, reducing such a
risk. This procedure can be summarized as follows:

1) Define a hierarchy of regions R; where R; has a higher
probability of containing fatal states than R, i < j;

2) assign a weight w; > 0 to each region, so that if 7 < j,
Wi > Wi,

3) remove from the set of feasible bounding trajectories 7
those 7 that intersect a fatal region entirely;

Fig. 8: & comprises fatal region R;, unknown region R», and safe
region R3. All 7 have a non-empty intersection with R;. However,
T1 crosses Ry in its entirety and is therefore the least safe; 7 and 73
also cross the region, but 73 has the minimal overlap with both R;
and R», and the biggest overlap with R3: it is therefore the safest.

4) remove from 7 those 7 that do not end up in the SSS,
unless this depletes 7;
5) for each 7; € 7 compute the volume of the intersection
pij with region R;;
6) the optimal control sequence u* is the one generating
TF = argmin) p;; - w; ;
Tje‘l' Rz
7) apply the first element of u*;
8) if W =1, go to 1; otherwise exit.
Fig. 8 provides an example of the above procedure. The
result of applying the evasion metric is that the agent will reach
for a safe region where danger is no longer perceived, while

minimizing the probability of encountering a fatal occurrence.

C. OptiSHERPA

Fig. 9 shows schematically the implementation of OptiSH-
ERPA. At the start of the exploration, the agent is in state x. It
will be assumed that W (xg) = 0. OptiSHERPA generates an
array of control sequences, including u™ given by the policy.
For each sequence, the algorithm checks if the corresponding
trajectory 7 is included in the SSS. Those 7 for which this is
not true are removed from the array; the rest are evaluated with
the distance metric. The control u corresponding to the optimal
T is selected, and the first action of u™* is then applied. In the
new state x1, if W(x1) = 0, the SSS is augmented with all the
states currently in reach of the risk perception, and the process
is repeated. If W(x1) # 0, the SSS is not modified, and
the evasion metric is implemented. OptiSHERPA generates
an array of control sequences and corresponding 7 as before.
According to the procedure of IV.B.2, an optimal control
sequence u* is found, and its first action is implemented. The
evasion metric is used until W (xz(t)) = 0, after which the
distance metric is reimplemented. This procedure is followed
until the end of exploration.

D. Elevator control task

1) Model: The goal of the application is to simulate on-line
training for a RL agent on-board of a fighter aircraft, which is

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

X
Risk perception

Y

OptiSHERPA

evasion distance
metric, metrig

> Physical system

Bounding model

Fig. 9: The architecture of OptiSHERPA. At each time-step, the
algorithm receives information in the form of current risk perception
and suggested policy control u,. The bounding model is used to
predicted trajectories, which in turn are evaluated by implementing
either the distance or the evasion metric depending on current risk
perception. Then the first action of u* is taken, which generates a
new state.

constrained to fly in a range of +40 ft from starting height. It is
assumed that a stall occurs if the angle of attack o < —15° or
a > 12°. Violating this envelope causes a fatal occurrence in
this environment. A bounding model of the aircraft is available
as in (15) and (16):

h =V - sin(f — «) (15)
9 0o 0 1 0
= 0 caa Cag «
q 0 ¢ Cqq q
0 0
+ | cas (e + Ade) + 0 (16)
Cq5e Aq
with
Ve [450 550]L 5 caq € [-0.70 —0.58] ;

Caq €[0.76 0.95] ; cyo € [-1.72 —1.41] ;
Cqq € [-0.97 —0.79] ; Ad. € [-0.15° 0.15°] ;
AG € [-0.50.5] cas, = —1.4-1073;¢45, = —0.1137

where V[ft/s]is the constant flight speed, height [ft] is
the change in height, 6 [rad], a[rad] are changes of pitch
angle and angle of attack, and ¢ [md/s] is the pitch rate.
Vector (h, 6, a, q)T is the state of the system and &, [deg] is
the elevator deflection.

The intervals of (15) and (16) are obtained as follows. First,
the nonlinear dynamics are linearised at 15 000 ft of height
and 500f—st of speed. Then, resulting coefficients cqq, Cqo and
Cqq> as well as speed V, are altered by +10%, whereas Caq
is reduced between 80% and 100% of the original value. Ag
represents uncertainty in pitch dynamics, and Ad, represents
an error in effective deflection. Finally, terms cqs, and ¢, are
crisp elevator coefficients. Among all possible representations
of the dynamics, the one with coefficients:

V =550 ; chq = —0.58 5 coq =0.83 ;
= —1.586 ; cqq = —0.97 ;A¢g = —0.5

Cqo

PD response to perturbation in q
25 T T -

altitude h (ft)

0.5

0.5 1 1.5 2 25 3
horizontal distance (ft) x 10°

Fig. 10: The change in flight height of the system equipped with the
PD controller after a perturbation in q. The final error in height is
brought to zero.

is selected: cross terms ¢, and c,q as the mean of their
interval, and remaining terms as one of their extrema. The
deflection error Ad, is treated as noise.

A PD controller provides a baseline policy for the RL agent.
Deflection dpp is the sum of a proportional and derivative term
in «, of a proportional term in height h, and a proportional
damping term in pitch rate:

OPD = a5 h+ qa5 A +10-(0—a)+4-(0—a)+3 ¢

Spp = max(min(dpp, 1°), —1°)
The controller is hand tuned to achieve a satisfactory per-
formance in nominal conditions. Fig. 10 shows a stable and
well damped response to a perturbation in ¢ of 0.5°/s. The
proportional term in & brings the final error in altitude to zero.

The RL agent follows an e-greedy policy by selecting
random actions 0 € [—1 ; 1] with probability e = 0.2, and
d = dpp otherwise.

With the system differing from nominal conditions, and with
the addition of random deflections, the agent is not always able
to abide to the constraints in height and angle of attack. A dedi-
cated SHERPA could facilitate the task. However, with respect
to the simple quadrotor model of the previous section, the
aircraft model represents an increased challenge for SHERPA.
In particular, consider the height dynamics represented by
(15). Change in height is achieved via the flight path angle
7=0-a,andin turn ¥ = 6 —& = 0.062- ¢+ 0.56 - @, so that
+ and h are influenced by the angle of attack. This represents
the direct correlation between lift and flight path angle: «
must increase (decrease) in order to increase (decrease) . The
dynamic in vy is considerably slower than the one in 6, o and
q, and the evolution in h for two different control sequences
can be appreciated only after a certain amount of time-steps.
Meaningful variations in the flight height can be observed only
in further-time estimates, which are also the most uncertain.
This motivates the use of OptiSHERPA.

The algorithm is initialized with the knowledge of the two
risks in h and «, and two corresponding risk perception ranges

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

of 15ft and 5° respectively. Whenever OptiSHERPA finds a
range of height or angle of attack to be safe, it immediately
adds this range to its internal SSS. The SSS is then an interval
bounded in i and « by the highest and lowest values obtained
from risk-perception, and unbounded in 6 and ¢, which have
no risk.

The agent generates one command sequence: either a full
PD predicted sequence, or a random action plus the command
predicted by the PD at later steps. Each sequence has a dura-
tion of 6 time-steps of 0.2s. Then, if danger is perceived, or
if || > 0.5°, the agent enables OptiSHERPA. When enabled,
the algorithm generates multiple command sequences, each
lasting 6 time-steps, in the form w = (ug, up, ..., Up),
uo,up € {—0.75°, —0.25°, 0°, 0.25°, 0.75°}. Command
ug is the OptiSHERPA proposed action, and the constant wuy
acts as a backup. This formulation of w reduces the total
number of metric evaluations from 5% to 25. The distance
(14) is computed for all the above sequences, with v, =
[0.2(f6) 7", 38, 36 247 5= 0.5, A\ =0.1.

If danger is perceived, the evasion metric is implemented,
and the state space is partitioned into distinct regions, depend-
ing on the risk perception and the knowledge of the SSS. If
only one of either RE'SS;, or RF'SS,, is detected, the following
are defined:

o a “black” region Ryy comprising all states with fatal

values of h (or «);

o a “white” region Ry, comprising all states within risk

perception of the nearest fatal value;

o a “green” region Rg, equal to the SSS\Ryn;

« a “grey” region R,y equal to the remainder of S.

The white region is introduced in order to encourage the metric
to move away from those regions where risk is still perceived,
thus exiting the evasion cycle. If both A and « are perceived,
then two regions are added: a “red” region R, comprising
the states that are fatal for one feature, but not for the other,
and a “blue region” Ry comprising those states within risk
perception of the nearest fatal value of one feature, but not of
the other. Finally, to each region is assigned a weight

Wwpk = 2, Wy = 0, wgy =-0.1, wy =-0.2, wp = -1, Wen = -2.

A total of 500 trials is performed from the starting perturbed
condition h = o = 6 = 0, ¢ = 0.5°. Each trial has a duration
of 600 timesteps, equivalent to 120s. In each trial, both the
“original” RL agent and the one augmented with SHERPA
are run at the same time. The added noise on the elevator
deflection and the random action were the same at all time for
both the original and the augmented agent, albeit SHERPA is
allowed to dismiss the random action as previously exposed.

Fig. 11 shows a typical result for the task. The upper plot
shows the two trajectories with the application of OptiSH-
ERPA and with the original agent. At the start of the task,
the original agent manages to keep deviations of v, «, and ¢
within reasonable limits, thus satisfying the requirements for
OptiSHERPA. However, the effect of OptiSHERPA becomes
noticeable when a risk in h is perceived. In all those instances,
the algorithm finds a reactive solution in the first iterations,
increasing the pitch rate and the angle of attack. Then, in later
iterations when recovery is incipient, OptiSHERPA applies a

OptiSHERPA deflection task

40

<€
cc20
8.0
==y S
LW b :
0 0.5 1 1.5 2 25 3
Horizontal distance [ft] x 10°

control deflection
3.0)

N

path angle v
gle of attack o (°)
o

U
N

o N b
T

0
N
T

i

pitch rate g (°/s) gp,

|
EN

10 20 30 40 50 60 70 80 90 100
time [s]

110 120

Fig. 11: The top plot represents the trajectory with the original
RL agent and with the addition of OptiSHERPA. The 2" plot
represents deflection J. for the two different agents; OptiSHERPA
selects constant maximal deflections during recovery by optimising
the evasion metric. The 3"¢ shows the variations of v and « during
flight with OptiSHERPA. The bottom plot shows pitch rate q.

deflection of opposite sign. The reason for this is as follows.
Both the flight path angle and the angle of attack have
changed sign, so that the bounding model predicts a recovery
in flight height in near time. However, the positive pitch
angle could increase further the angle of attack. Since such
levels have not been experimented before, the evasion metric
considers this a potentially threatening situation. Thus, the
best course of action for OptiSHERPA is to achieve negative
pitch rate to reduce «. Therefore, lift increases during the first
iterations, and reduces it after recovery is in progress. As for
q, rapid changes are performed during recoveries; when not in
recovery, the agent keeps g within acceptable limits. By means
of following the evasion metric, OptiSHERPA consistently
recovers in a more incisive and fast way than the equivalent
PD action, and prevents violations in height during the whole
flight. Without this additional recovery capability, the original
RL agent violates the constraint in flight height in 53% of the
trials. It is necessary to consider, however, that the original
controller is always adopting an exploratory e-greedy policy.
A direct comparison between the two should therefore be
avoided.

The angle of attack plays a crucial role in determining
whether a recovery can be achieved with the limited distance
in feet allowed by the risk perception. Fig. 12 shows one
such case. Prior to the violation, a series of positive random
deflections reduce considerably the flight path angle, while at
the same time decreasing the angle of attack and generating
negative pitch rate. As soon as the risk is perceived, and
OptiSHERPA is engaged with the evasion metric, the agent
increases the pitch rate and starts generating additional lift
through «, but the violation still occurs. Nonetheless, it can
be seen how OptiSHERPA suggest the correct maximum

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Failed recovery in deflection task OptiSHERPA
401 - - . . + Original
20

g

<

(]

°

2

E .

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

- Horizontal distance [ft] x10°
k) 1r
B
D
BT
Eoo“'
<}
z -1 | i i i i i i
8 10 20 30 40 50 60 70

©)

path angle v,
angle of attack o

pitch rate q (°/s)

0 10 20 30 40 50 60 70
time (s)

Fig. 12: A typical violation of the flight height constraints.

deflection, and how the residual negative 7 is reduced in
the instants prior to violation. Approximately 10% of the
simulations incurred in such a violation for the agent with
OptiSHERPA. However, two considerations must be added.
First, all violations occurred following cumulative random
deflections, giving rise to conditions from which recovery
was very difficult even with maximum deflection, and resulted
in minor violations (as in Fig. 12). Second, all cases where
violation occurred for OptiSHERPA were either concurrent or
preceded by a violation for the original RL agent.

OptiSHERPA showed the correct behavior in case of immi-
nent flight height violation, selecting strong deflections in the
first iterations and subsequently reducing the variation of angle
of attack introduced. This resulted in quick and safe recoveries.
For a fraction of the runs, the stochasticity in the agent action
gave rise to small flight height violations, although without any
reduction in performance when compared to the alternative
original RL agent, which was equally affected.

V. CONCLUSIONS

This work presents a new approach for autonomous agents
in dangerous environments. The presence of fatal and lead-to-
fatal states constitutes the motivation for the approach, with
risk perception as its main assumption. The notions of safe
control and backup are introduced to present an algorithm for
safe exploration: SHERPA. By relying on a bounding model
of the dynamics, SHERPA allows those policy actions for
which the system can be brought near a previously known state
by satisfying a closeness condition, thus promoting safety.
SHERPA is tested in one simulated quadrotor application,
achieving safety. Subsequently, OptiSHERPA is introduced in
order to handle tasks for which either the risk perception or the
bounding model were insufficient for the original SHERPA.
These limitations are addressed by adding metrics, which
provide the agent with informed options, and by explicitly
including an evasion strategy in those cases where danger is

imminent. OptiSHERPA is tested on a second simulated task:
maintaining straight flight for a fighter aircraft exploring a
strict envelope, with the addition of noise, uncertain dynamics
and random exploratory actions. The application shows how
the resulting RL agent with OptiSHERPA manages reliable
control, adopting a very reasonable behavior during recoveries.
The proposed approach constitutes a significant effort into
tackling the exploration problem for RL agents on a general
level, while not focusing on a particular category of tasks. This
is reflected in the absence, within the algorithm, of a high-
fidelity model for exploration. This strategy is therefore in
line with the model-free approach of Reinforcement Learning
and of adaptive controllers in general. Future development will
include an investigation of: risk perception for real-life scenar-
ios by using sensor-information, methods for the autonomous
and possibly adaptive selection of the open parameters of the
algorithms (such as m and wv,)and representations of uncer-
tainty not based on interval methods to reduce computational
complexity.

REFERENCES

[1] H. Kwakernaak, “Robust control and hoo-optimization - tutorial paper,”
Automatica, vol. 29, no. 2, pp. 255-273, 1993. [Online]. Available:
http://doc.utwente.nl/29962/

[2] E. van Kampen, “Continuous adaptive critic flight control aided with

approximated plant dynamics.” Reston, Va: American Institute of

Aeronautics and Astronautics, 2006 2006.

S. Ferrari and R. F. Stengel, “Online adaptive critic flight control,” J.

Guid. Control Dyn., vol. 27, no. 5, pp. 777-786, 2004.

R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,

1st ed. Cambridge, MA, USA: MIT Press, 1998.

[5] D. Haussler, “Probably approximately correct learning,” in Proc. of the

8th Nat. Conf. Artif. Intell. - Vol. 2, ser. AAAI’90. AAAI Press, 1990,

pp. 1101-1108.

D. Zhao and Y. Zhu, “Meca near-optimal online reinforcement learning

algorithm for continuous deterministic systems,” IEEE Trans. Neural

Netw. Learn. Syst., vol. 26, no. 2, pp. 346-356, Feb 2015.

[71 D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming,

Ist ed. Athena Scientific, 1996.

J. Si and Y.-T. Wang, “Online learning control by association and

reinforcement,” IEEE Trans. Neural Netw., vol. 12, no. 2, pp. 264-276,

Mar 2001.

[9] R. Bellman, Dynamic Programming, 1st ed.

Princeton University Press, 1957.

M. C. Choy, D. Srinivasan, and R. L. Cheu, “Neural networks for

continuous online learning and control,” IEEE Trans. Neural Netw.,

vol. 17, no. 6, pp. 1511-1531, Nov 2006.

Y. J. Liu, L. Tang, S. Tong, C. L. P. Chen, and D. J. Li, “Reinforcement

learning design-based adaptive tracking control with less learning pa-

rameters for nonlinear discrete-time mimo systems,” IEEE Trans. Neural

Netw. Learn. Syst., vol. 26, no. 1, pp. 165-176, Jan 2015.

Y.-J. Liu, Y. Gao, S. Tong, and Y. Li, “Fuzzy approximation-based

adaptive backstepping optimal control for a class of nonlinear discrete-

time systems with dead-zone,” IEEE Trans. Fuzzy Syst., vol. 24, no. 1,

pp. 16-28, 2016.

D. Liu, X. Yang, D. Wang, and Q. Wei, “Reinforcement-learning-based

robust controller design for continuous-time uncertain nonlinear systems

subject to input constraints,” IEEE Trans. Cybern., vol. 45, no. 7, pp.

1372-1385, 2015.

A. Arleo, F. Smeraldi, and W. Gerstner, “Cognitive navigation based on

nonuniform gabor space sampling, unsupervised growing networks, and

reinforcement learning,” IEEE Trans. Neural Netw., vol. 15, no. 3, pp.

639-652, May 2004.

C. Wang, Y. Li, S. S. Ge, and T. H. Lee, “Optimal critic learning for

robot control in time-varying environments,” IEEE Trans. Neural Netw.

Learn. Syst., vol. 26, no. 10, pp. 2301-2310, Oct 2015.

[16] T. Shimizu, R. Saegusa, S. Ikemoto, H. Ishiguro, and G. Metta, “Robust
sensorimotor representation to physical interaction changes in humanoid
motion learning,” IEEE Trans. Neural Netw. Learn. Syst., vol. 26, no. 5,
pp. 1035-1047, May 2015.

3

—_

[4

=

[6

—_

[8

—

Princeton, NJ, USA:

[10]

[11]

[12]

[13]

[14]

[15]

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]
[35]
[36]
[37]
[38]
[39]
[40]

[41]

[42]

[43]

M. Pecka and T. Svoboda, Modelling and Simulation for Autonomous
Systems: First International Workshop, MESAS 2014, Rome, Italy, May
5-6, 2014, Revised Selected Papers. ~ Cham: Springer International
Publishing, 2014, ch. Safe Exploration Techniques for Reinforcement
Learning — An Overview, pp. 357-375.

M. Heger, “Consideration of risk in reinforcement learning,” in Proc. of
the 11th Int. Conf. Mach. Learn., 1994, pp. 105-111.

J. Garcia and F. Ferndndez, “A comprehensive survey on safe reinforce-
ment learning,” J. Mach. Learn. Res., vol. 16, pp. 14371480, 2015.

P. Thomas, G. Theocharous, and M. Ghavamzadeh, “High confidence
policy improvement,” in Proc. of the 32nd Int. Conf. Mach. Learn.
(ICML-15), D. Blei and F. Bach, Eds. JMLR Workshop and Conference
Proceedings, 2015, pp. 2380-2388.

R. Neuneier and O. Mihatsch, “Risk sensitive reinforcement learning,”
in Advances in Neural Information Processing Systems, 1999, pp. 1031—
1037.

O. Mihatsch and R. Neuneier, “Risk-sensitive reinforcement learning,”
Machine Learning, vol. 49, no. 2, pp. 267-290.

Y. Shen, M. J. Tobia, T. Sommer, and K. Obermayer, “Risk-sensitive
reinforcement learning,” Neural Computation, vol. 26, no. 7, pp. 1298—
1328, 2014.

P. Geibel and F. Wysotzki, “Risk-sensitive reinforcement learning ap-
plied to control under constraints,” J. Artif. Intell. Res., vol. 24, pp.
81-108, 2005.

S. P. Coraluppi and S. I. Marcus, “Risk-sensitive and minimax
control of discrete-time, finite-state markov decision processes,”
Automatica, vol. 35, no. 2, pp. 301 — 309, 1999. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0005109898001538

K. Driessens and S. Dzeroski, “Integrating guidance into relational
reinforcement learning,” Machine Learning, vol. 57, no. 3, pp. 271-304,
2004.

B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of
robot learning from demonstration,” Robotics and Autonomous Systems,
vol. 57, no. 5, pp. 469483, 2009.

D. Martinez, G. Alenya, and C. Torras, “Safe robot execution in model-
based reinforcement learning,” in 2015 IEEE/RSJ Int. Conf. Intell.
Robots Syst. (IROS), Sept 2015, pp. 6422-6427.

C. Gehring and D. Precup, “Smart exploration in reinforcement learning
using absolute temporal difference errors,” in Proc. 2013 Int. Conf.
Autonomous Agents Multi-agent Syst. International Foundation for
Autonomous Agents and Multiagent Systems, 2013, pp. 1037-1044.
A. Hans, D. Schneegal3, A. M. Schifer, and S. Udluft, “Safe exploration
for reinforcement learning.” in ESANN, 2008, pp. 143-148.

M. Pecka, K. Zimmermann, and T. Svoboda, “Safe exploration for
reinforcement learning in real unstructured environments.”

F. J. G. Polo and F. F. Rebollo, “Safe reinforcement learning in high-risk
tasks through policy improvement,” in Adaptive Dynamic Programming
And Reinforcement Learning (ADPRL), 2011 IEEE Symposium on, April
2011, pp. 76-83.

T. M. Moldovan and P. Abbeel, “Safe Exploration in Markov Decision
Processes ,” in Proc. 29th Int. Conf. Mach. Learn. icml.cc / Omnipress,
2012, p. 188.

L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” J. Artif. Intell. Res., vol. 4, pp. 237-285, 1996.

C. Szepesviri, “Algorithms for reinforcement learning,” Synthesis Lec-
tures Artif. Intell. Mach. Learn., vol. 4, no. 1, pp. 1-103, 2010.

P. Geibel, “Reinforcement learning with bounded risk,” in /CML, 2001,
pp. 162-169.

T. Fraichard and H. Asama, “Inevitable collision states a step towards
safer robots?”” Advanced Robotics, vol. 18, no. 10, pp. 1001-1024, 2004.
C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8,
no. 3, pp. 279-292, 1992.

R. E. Moore, Interval analysis.
vol. 4.

O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. Robot. Res., vol. 5, no. 1, pp. 90-98, 1986.

K. Ok, S. Ansari, B. Gallagher, W. Sica, F. Dellaert, and M. Stilman,
“Path planning with uncertainty: Voronoi uncertainty fields,” in 2013
IEEE Int. Conf. Robot. Autom. (ICRA). IEEE, 2013, pp. 4596-4601.
S. G. Loizou, H. G. Tanner, V. Kumar, and K. J. Kyriakopoulos,
“Closed loop motion planning and control for mobile robots in uncertain
environments,” in Proc. 42nd IEEE Conf. Decision Control, 2003.,
vol. 3. IEEE, 2003, pp. 2926-2931.

V. J. Lumelsky and A. A. Stepanov, “Path-planning strategies for a point
mobile automaton moving amidst unknown obstacles of arbitrary shape,”
Algorithmica, vol. 2, no. 1-4, pp. 403430, 1987.

Prentice-Hall Englewood Cliffs, 1966,

[44]

[45]

[46]

[47]

K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier lyapunov functions for the
control of output-constrained nonlinear systems,” Automatica, vol. 45,
no. 4, pp. 918-927, 2009.

P. Wieland and F. Allgower, “Constructive safety using control barrier
functions,” IFAC Proceedings Volumes, vol. 40, no. 12, pp. 462-467,
2007.

M. Z. Romdlony and B. Jayawardhana, “Uniting control lyapunov and
control barrier functions,” in 53rd IEEE Conf. Decision Control. 1EEE,
2014, pp. 2293-2298.

T. M. Lam, H. W. Boschloo, M. Mulder, and M. M. Van Paassen,
“Artificial force field for haptic feedback in uav teleoperation,” IEEE
Trans. Syst., Man, Cybern.A, Syst.,Humans, vol. 39, no. 6, pp. 1316—
1330, 2009.

Tommaso Mannucci obtained his BSc-degree in
Aerospace Engineering at University of Pisa in 2009
and his MSc-degree in Aerospace Engineering and
Flight Dynamics in 2012 with a thesis on numerical
optimization for attitude recovery. Since 2013 he
is a PhD candidate at the Control and Simulation
division of the Aerospace Faculty at Delft University
of Technology. His main research interests are Adap-
tive Control, Machine Learning and Reinforcement
Learning for UAVs.

Dr. Erik-Jan van Kampen obtained his BSc-degree
in Aerospace Engineering at Delft University of
Technology in 2004, his MSc-degree in Control and
Simulation in 2006, and a PhD-degree in Aerospace
Engineering in 2010. He is currently an assistant
professor at the Control and Simulation division at
Delft University of Technology. His research inter-
ests are Intelligent Flight Control, adaptive control,
and interval optimization.

Dr. Cornelis de Visser received the M.Sc. degree
from the Delft University of Technology in 2007. In
2011 he received his Ph.D degree from the faculty
of Aerospace Engineering at the Delft University
of Technology in The Netherlands. Currently, he is
an assistant professor at the Control and Simulation
section of the Delft University of Technology. His
research interests include aircraft system identifica-
tion, flight envelope prediction, fault tolerant control,
and multivariate spline theory.

Dr. Q.P. (Qiping) Chu received his Ph.D. degree
from the Faculty of Aerospace Engineering, Delft
University of Technology, The Netherlands, in 1987.
Currently, he is an Associate Professor at the Fac-
ulty of Aerospace Engineering, Delft University of
Technology and the head of aerospace guidance,
navigation and control cluster within the section of
control and simulation. He has (co)authored more
than 200 journal and conference papers ranged from
adaptive control, nonlinear control, robust control
and intelligent control to nonlinear state estimation,

system identification and nonlinear optimization for aerospace vehicles.

