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Abbrev. / symbol Description Unit

Machine learning

AI Artificial intelligence

ANN Artificial neural network

CV Cross-validation

DNN Deep neural network

FNN Feedforward neural network

GBM Gradient boosting model

GLM Generalised linear model

kNN k-nearest neighbour

MAE Mean absolute error

MARS Multivariate adaptive regression splines

ML Machine learning

MLR Multiple linear regression

MRA Multiple regression analysis

MSE Mean squared error

RBF Radial basis function

RBFNN Radial basis function neural network

ReLU Rectified linear units

RF Random forest

R2 R-squared

SM Surrogate model

Std Standard deviation

SVM Support vector machine
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Abbrev. / symbol Description Unit

Optimisation

avg f(x) Average of function x

CMA-ES Covariance matrix adaptation with evolution strategy

CPU Computation time

DV Decision variable

EC Evolutionary computation

FES Function evaluations

FES/CPU The number of completed function evaluations [1 s]

Fsph Sphere function

Fros Rosenbrock’s function

Fack Ackley’s function

Fgrw Griewank’s function

Fras Rastrigin’s function

Fsch Generalised schwefel’s problem 2.26

Fsal Salomon’s function

Fwht Whitely’s function

Fpn1 Generalised penalised function 1

Fpn2 Generalised penalised function 2

F1 Shifted sphere function

F2 Shifted schwefel’s problem 1.2

F3 Shifted rotated high conditioned elliptic function

F4 Shifted schwefel’s problem 1.2 with noise in fitness

F5 Schwefel’s problem 2.6 with global optimum on bounds

F6 Shifted rosenbrock’s function

F7 Shifted rotated griewank’s function without bounds

F8 Shifted rotated ackley’s function with global optimum on bounds

F9 Shifted rastrigin’s function

F10 Shifted rotated rastrigin’s function

GA Genetic algorithm

GD Gradient descent

HypE Hypervolume-based many-objective optimisation

HGPSPSO Hybrid generalised pattern search particle swarm optimisation

jEDE Self-adaptive differential evolution with the ensemble of mutation strategies

MACO Multi-objective ant colony optimisation

max f(x) Maximum of function x

min f(x) Minimum of function x

MOEA/D Multi-objective evolutionary algorithm based on decomposition

NSGA-II Non-dominated sorting genetic algorithm II

NSPSO Non-dominated sorting particle swarm optimisation

P&S Population and swarm

PSO Particle swarm optimisation
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Abbrev. / symbol Description Unit

Optimisation

RBFopt Radial basis function optimisation

RBFMopt Multi-objective radial basis function optimisation

SGD Stochastic gradient descent

SPEA-2 Strength pareto evolutionary algorithm 2

std f(x) Standard deviation of function x

NFL No free lunch

NFT Near feasibility threshold

Performance assessment

ASE Annual sunlight exposure [%]

BIPV Building-integrated photovoltaic

DA Daylight autonomy [%]

DF Daylight factor [%]

DGP Daylight glare probability

Ec Cooling consumption [MWh]

Eeq Equipment consumption [MWh]

EF Farming energy consumption [MWh]

Eg Energy generation [MWh]

Eh Heating consumption [MWh]

EL Lighting consumption [MWh]

ER Residential energy consumption [MWh]

Etot Total energy consumption [MWh]

Fp Food production [ton]

g&s Germination and seeding

g-val. Solar transmittance of the materials used in simulation models

IL Illumination level [lux]

PV Photovoltaic

sDA Spatial daylight autonomy [%]

Tvis Visible transmittance of the materials used in simulation models

UDI Useful daylight illuminance [%]

U-val. Thermal transmittance of the materials used in simulation models [W/
m2 K]

Others

CTBUH Council on Tall Buildings and Urban Habitat

GH Grasshopper 3D algorithmic modelling environment

IEA International Energy Agency

IES Illuminating Engineering Society

LEED Leadership in energy and environmental design

MUZO Multi-zone optimisation

PCA Performative computational architecture

USGBC United States Green Building Council
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Propositions
accompanying the dissertation

Towards Self‑Sufficient High‑Rises
Performance Optimisation using Artificial Intelligence

By Berk Ekici

1 The next generation high-rises should provide essential resources in addition to 
dense habitation in metropoles for a sustainable future.

[This proposition pertains to this dissertation]

2 Performance optimisation of self-sufficient high-rises is complex due to large 
numbers of design parameters and their interactions (interrelations) besides 
extensive simulations.

[This proposition pertains to this dissertation]

3 Different floor levels of a high-rise in dense urban areas require various design 
decisions to achieve well-performing alternatives.

[This proposition pertains to this dissertation]

4 The role of AI in designing self-sufficient high-rises is creating and 
assessing a considerable number of design alternatives during the conceptual 
design phase.

[This proposition pertains to this dissertation]

5 Intelligent systems cannot be created without intelligent humans who are 
inspired by nature. 
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6 Next-generation architects will have to learn the fundamentals of artificial 
intelligence and the use of computation power by coding to cope with the 
design complexity.  

7 PhD candidates should be frequently involved in the bachelor’s and master’s courses 
to share their findings with students. 

8 Lifelong learning through social interaction is faster than reading the literature. 

9 “Imagination is more important than knowledge” (Albert Einstein). The increase of 
knowledge can stimulate the imagination. 

10 Borders exist only on the map, not on the land. 

 
 
These propositions are regarded as opposable and defendable, and have been 
approved as such by the promotors Prof.dr.ir. I.S. Sariyildiz, Prof.dr. M.F. Tasgetiren, 
and copromotor Dr. M. Turrin.
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Stellingen
bij de dissertatie

Naar zelfvoorzienende hoogbouw
Prestatie-optimalisatie met behulp van kunstmatige intelligentie

Door Berk Ekici

1 De volgende generatie hoogbouw moet voorzien in essentiële hulpbronnen naast 
dichte bewoning in metropolen voor een duurzame toekomst.

[Deze stelling heeft betrekking op dit proefschrift]

2 Prestatieoptimalisatie van zelfvoorzienende hoogbouw is complex door grote 
aantallen ontwerpparameters en hun interacties (onderlinge verbanden) naast 
uitgebreide simulaties.

[Deze stelling heeft betrekking op dit proefschrift]

3 Verschillende vloerniveaus van een hoogbouw in dichtbevolkte stedelijke gebieden 
vereisen verschillende ontwerpbeslissingen om tot goed presterende alternatieven 
te komen.

[Deze stelling heeft betrekking op dit proefschrift]

4 De rol van AI bij het ontwerpen van zelfvoorzienende hoogbouw is het creëren 
en beoordelen van een aanzienlijk aantal ontwerpalternatieven tijdens de 
conceptuele ontwerpfase.

[Deze stelling heeft betrekking op dit proefschrift]

5 Intelligente systemen kunnen niet worden gecreëerd zonder intelligente mensen 
die zich laten inspireren door de natuur. 
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6 De volgende generatie architecten zal de grondbeginselen van kunstmatige 
intelligentie en het gebruik van rekenkracht door codering moeten leren om de 
ontwerpcomplexiteit aan te kunnen.  

7 Promovendi moeten veelvuldig betrokken worden bij de bachelor- en 
masteropleidingen om hun bevindingen met studenten te delen. 

8 Een leven lang leren door sociale interactie gaat sneller dan het lezen van 
de literatuur. 

9 “Verbeelding is belangrijker dan kennis” (Albert Einstein). De toename van 
kennis kan de verbeelding stimuleren. 

10 Grenzen bestaan alleen op de kaart, niet op het land. 

 
 
Deze stellingen worden als tegenstelbaar en verdedigbaar beschouwd, en zijn 
als zodanig goedgekeurd door de promotoren Prof.dr.ir. I.S. Sariyildiz,  
Prof.dr. M.F. Tasgetiren, en copromotor Dr. M. Turrin.
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Summary
Population growth and urbanisation trends bring many consequences related to the 
increase in global energy consumption and CO2 emissions and decrease in arable 
land per person. Alternative design proposals for sustainable living are on the agenda 
of researchers and professionals to respond to the needs of the 21st century for a 
sustainable future. Since the early examples in the 19th century, the high-rises have 
been one of the inevitable buildings of metropolises to provide extra floor space in 
compact cities. Based on the facts of the 21st century, high-rise buildings should fulfil 
more than provide extra floor space in the limited urban plot. This research suggests 
“self-sufficient high-rise buildings” that can generate and efficiently consume vital 
resources in addition to dense habitation for sustainable living. Optimisation of high-
rise buildings has been the focus of researchers because of significant performance 
enhancement, mainly in energy consumption and generation. However, optimisation 
of self-sufficient high-rise buildings requires the integration of multiple performance 
aspects related to the vital resources of human beings (e.g., energy, food, and 
water) and consideration of large numbers of design parameters related to these 
multiple performance aspects. Hence, the complexity of self-sufficient high-rise 
buildings is more challenging than optimising regular high-rises that have not been 
addressed in the literature. The purpose of this dissertation is to present a framework 
for performance optimisation of self-sufficient high-rise buildings using artificial 
intelligence focusing on the conceptual phase of the design process.

Chapter 1 is the introduction to the dissertation. The necessity and the definition of 
the self-sufficient high-rise buildings are explained after presenting recent proposals 
of scholars and professionals related to sustainable living alternatives. Additionally, 
the complexity level of self-sufficiency, which consists of four categories as scale, 
period, parameters, and performance, is described by indicating the focus in the 
overall chart. Until now, high-rise buildings have been optimised to improve the 
energy performance that reflects self-sufficiency only in energy consumption. The 
contribution of this study, which focuses on optimising high-rise buildings for multiple 
resources (e.g., energy, food, and water) to decrease their environmental impact, is 
described. The research method consists of four main steps: literature review, tool 
development and pilot study, computational method development, and case study. 
After presenting the research problem, questions, aim, objectives, and output of the 
dissertation, the research method explains the abovementioned steps. Finally, the 
chapter is concluded by discussing the social and scientific relevance of the research.
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Chapter 2 presents the literature review on optimising form-finding parameters in 
performative computational architecture that entails form generation, performance 
evaluation, and optimisation. A systematic review is conducted based on multiple 
databases to elaborate the trends for investigating well-performing design 
alternatives using optimisation algorithms in the architectural design domain. 
Therefore, the review focuses on studies involving form-finding parameters. One 
hundred studies are systematically reviewed, focusing on swarm and evolutionary 
optimisation algorithms frequently used in architectural design. The chapter 
concludes by presenting the gaps and needs considered while developing the 
optimisation tool and computational framework, focusing on form-finding 
parameters, performance evaluation, and optimisation applications.

Chapter 3 presents the development of the optimisation tool called Optimus 
and the pilot study to test the efficiency of the multi-zone optimisation approach 
in high-rises. Part A of Chapter 3 presents the Optimus tool, which considers a 
self-adaptive ensemble evolutionary algorithm that can cope with large numbers 
of design parameters. Tests 1 and 2 are presented to indicate the relevance 
of the developed tool based on 30-dimensional Congress on Evolutionary 
Computation 2005 benchmark problems and a 70-dimensional design problem. Part 
B explains Test 3 to utilise the efficiency of the multi-zone optimisation approach. 
The main idea of this method is to divide the building into several subdivisions 
(zones) to be considered different optimisation problems. The pilot high-rise model 
considers one of the most used façade parameters reported in Chapter 2 (overhang 
length) and glazing type for two conflicting daylight metrics predicted by the basic 
version of artificial neural network models and optimised by the initial version of 
Optimus tool.

Chapter 4 presents the multi-zone optimisation (MUZO) methodology that 
entails the parametric high-rise model, machine learning for surrogate models, 
computational optimisation, and decision-making. Part A of this chapter presents 
the entire methodology and two design scenarios indicated as Tests 4 and 5 to 
demonstrate the relevance of the MUZO. Both scenarios, focusing on quad-grid 
and diagrid façade designs, integrate frequently used form-finding parameters 
for building shape and façade design reported in Chapter 2. Additionally, Part 
A conducts the machine learning results using the parametric high-rise models 
to cope with the computationally expensive simulation time while assessing the 
performance of the entire building. Afterwards, Part B presents the optimisation 
problems and results of both design scenarios using the predictive models developed 
in Part A and the released version of the Optimus tool presented in Chapter 3. 
Since the study focuses on optimising the entire design of the high-rise scenarios 
are considered 260 and 220 design parameters, respectively, for quad-grid and 
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diagrid scenarios. Consequently, Part B presents the relevance of the MUZO 
methodology by comparing the results with the regular high-rise scenarios, which 
use the same design parameters in the entire building.

Chapter 5 investigates utilising the MUZO methodology and Optimus tool to 
optimise the Europoint complex in Rotterdam, the Netherlands, for self-sufficiency 
in terms of energy consumption and food production. The sufficiency in food 
production is demonstrated for lettuce crops grown in vertical farms. Building-
integrated photovoltaic panels are used in several building parts regarding 
sufficiency in energy. The optimisation problem, which involves 117 decision 
variables related to the façade design, and the thermal properties of the glazing, 
addresses the self-sufficiency at the building scale in detail. Moreover, another 
optimisation problem reports the potentials at the neighbourhood scale using the 
same self-sufficiency aspects and design parameters. Among 13 algorithms used 
to optimise both problems, the Optimus tool presented the most favourable self-
sufficiency performance.

Chapter 6 concludes the dissertation by summarising the contribution of the 
research, addressing the answers to research questions, presenting the limitations 
of the research, and highlighting future recommendations. After completing the 
development of the optimisation tool and conducting preliminary results of the pilot 
high-rise model, the research results are conducted in weeks instead of years during 
the development of the MUZO methodology and case study. Thanks to artificial 
intelligence, decision-makers can utilise the proposed computational framework 
for optimising self-sufficient high-rise buildings. In this way, consequences of the 
decisions on performance aspects of self-sufficiency become possible for such a 
complex design task with high awareness of the alternatives in search space within a 
reasonable timeframe.
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Samenvatting
Bevolkingsgroei en verstedelijkingstrends hebben veel gevolgen voor de toename van 
het wereldwijde energieverbruik, de CO2-uitstoot en de afname van het bouwland 
per persoon. Alternatieve ontwerpvoorstellen voor duurzaam wonen staan op de 
agenda van onderzoekers en professionals om in te spelen op de behoeften van 
de 21e eeuw voor een duurzame toekomst. Sinds de vroege voorbeelden in de 19e 
eeuw is hoogbouw een van de onvermijdelijke typologieën van metropolen om extra 
vloeroppervlak te bieden in compacte steden. Gebaseerd op de feiten van de 21e 
eeuw, zou hoogbouw meer moeten vervullen dan extra vloeroppervlak bieden 
op het beperkte stedelijke perceel. Dit onderzoek suggereert “zelfvoorzienende 
hoogbouw” die naast dichte bewoning voor duurzaam leven, essentiële hulpbronnen 
kan genereren en efficiënt verbruiken. Optimalisatie van hoogbouw is de focus van 
onderzoekers geweest vanwege aanzienlijke prestatieverbetering, voornamelijk 
in energieverbruik en opwekking. Optimalisatie van zelfvoorzienende hoogbouw 
vereist echter de integratie van meerdere prestatie-aspecten die verband houden 
met de vitale hulpbronnen van de mens (bijv. energie, voedsel en water) en het in 
overweging nemen van een groot aantal ontwerpparameters met betrekking tot 
deze meerdere prestatie-aspecten. Daarom is de complexiteit van zelfvoorzienende 
hoogbouw een grotere uitdaging dan het optimaliseren van reguliere hoogbouw die 
niet in de literatuur is behandeld. Het doel van dit proefschrift is om een raamwerk te 
presenteren voor prestatie-optimalisatie van zelfvoorzienende hoogbouw met behulp 
van kunstmatige intelligentie, gericht op de conceptuele fase van het ontwerpproces.

Hoofdstuk 1 is de inleiding tot het proefschrift. De noodzaak en de definitie van 
de zelfvoorzienende hoogbouw worden uitgelegd na presentatie van recente 
voorstellen van wetenschappers en professionals met betrekking tot duurzame 
woonalternatieven. Bovendien wordt het complexiteitsniveau van zelfvoorziening, 
dat uit vier categorieën bestaat als schaal, periode, parameters en prestatie, 
beschreven door de focus in de algemene grafiek aan te geven. Tot nu toe is 
hoogbouw geoptimaliseerd om de energieprestaties te verbeteren, die alleen op 
het gebied van energieverbruik een weerspiegeling zijn van zelfvoorziening. De 
bijdrage van deze studie, die zich richt op het optimaliseren van hoogbouw voor 
meerdere bronnen (bijvoorbeeld energie, voedsel en water) om hun impact op het 
milieu te verminderen, wordt beschreven. De onderzoeksmethode bestaat uit vier 
hoofdstappen: literatuuronderzoek, tool ontwikkeling en pilotstudie, ontwikkeling 
van computationele methoden en case study. Na het presenteren van het 
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onderzoeksprobleem, de vragen, het doel, de doelstellingen en de output van het 
proefschrift, legt de onderzoeksmethode de bovengenoemde stappen uit. Ten slotte 
wordt het hoofdstuk afgesloten met een bespreking van de maatschappelijke en 
wetenschappelijke relevantie van het onderzoek.

Hoofdstuk 2 presenteert de literatuurstudie over het optimaliseren van parameters 
voor het vinden van formulieren in performatieve computationele architectuur, 
waarbij vormen worden gegenereerd, prestatie-evaluatie en optimalisatie worden 
uitgevoerd. Er wordt een systematische review uitgevoerd op basis van meerdere 
databases om de trends uit te werken voor het onderzoeken van goed presterende 
ontwerpalternatieven met behulp van optimalisatie-algoritmen in het architectonisch 
ontwerpdomein. Daarom richt de review zich op studies met parameters voor 
het vinden van vormen. Honderd onderzoeken worden systematisch beoordeeld, 
gericht op zwerm- en evolutionaire optimalisatie-algoritmen die vaak worden 
gebruikt in architectonisch ontwerp. Het hoofdstuk besluit met een presentatie van 
de hiaten en behoeften waarmee rekening is gehouden bij het ontwikkelen van de 
optimalisatietool en het rekenraamwerk, waarbij de nadruk ligt op parameters voor 
het vinden van vormen, prestatie-evaluatie en optimalisatie toepassingen.

Hoofdstuk 3 presenteert de ontwikkeling van de optimalisatietool Optimus 
en de pilotstudie om de efficiëntie van de multi-zone optimalisatiebenadering 
in hoogbouw te testen. Deel A van hoofdstuk 3 presenteert de Optimus-
tool, die een zelf-aanpassend evolutionair ensemble-algoritme beschouwt 
dat een groot aantal ontwerpparameters aan kan. Tests 1 en 2 worden 
gepresenteerd om de relevantie van de ontwikkelde tool aan te geven op basis 
van de benchmark problemen van het 30-dimensional Congress on Evolutionary 
Computation 2005 (CEC2005 benchmark problemen) en een 70-dimensionaal 
ontwerpprobleem. Deel B legt Test 3 uit om de efficiëntie van de multi-zone 
optimalisatiebenadering te benutten. Het belangrijkste idee van deze methode 
is om het gebouw op te delen in verschillende onderverdelingen (zones) om als 
verschillende optimalisatieproblemen te worden beschouwd. Het pilootmodel voor 
hoogbouw houdt rekening met een van de meest gebruikte gevel parameters zoals 
gerapporteerd in hoofdstuk 2 (overhanglengte) en het type beglazing voor twee 
tegenstrijdige daglichtstatistieken, voorspeld door de basisversie van kunstmatige 
neurale netwerkmodellen en geoptimaliseerd door de initiële versie van de Optimus-
tool.

Hoofdstuk 4 presenteert de Multi-Zone Optimalisatie (MUZO) methodologie die 
het parametrische hoogbouwmodel, Machine Learning voor Surrogate modellen, 
Computationele optimalisatie en besluitvorming omvat. Deel A van dit hoofdstuk 
presenteert de gehele methodologie en twee ontwerpscenario’s aangeduid als 

TOC



 35 Samenvatting

Tests 4 en 5 om de relevantie van de MUZO aan te tonen. Beide scenario’s, gericht 
op quad-grid- en diagrid-gevel ontwerpen, integreren veelgebruikte parameters 
voor het vinden van vormen voor de vorm van gebouwen en het gevelontwerp zoals 
beschreven in hoofdstuk 2. Bovendien voert deel A de machine learning-resultaten 
uit, met behulp van de parametrische hoogbouw modellen, om het hoofd te bieden 
aan de rekenkundig dure simulatietijd bij het beoordelen van de prestaties van het 
hele gebouw. Daarna presenteert deel B de optimalisatie problemen en resultaten 
van beide ontwerpscenario’s met behulp van de voorspellende modellen die zijn 
ontwikkeld in deel A en de vrijgegeven versie van de Optimus-tool gepresenteerd 
in hoofdstuk 3. Aangezien de studie zich richt op het optimaliseren van het gehele 
ontwerp van de hoogbouwscenario’s, worden 260 en 220 ontwerp parameters voor 
respectievelijk quad-grid- en diagrid-scenario’s. Deel B presenteert daarom de 
relevantie van de MUZO-methodiek door de resultaten te vergelijken met de reguliere 
hoogbouwscenario’s, die dezelfde ontwerpparameters in het hele gebouw gebruiken.

Hoofdstuk 5 onderzoekt het gebruik van de MUZO-methodologie en Optimus-tool om 
het Europoint-complex in Rotterdam-Nederland te optimaliseren voor zelfvoorziening 
in termen van energieverbruik en voedselproductie. De toereikendheid van de 
voedselproductie is aangetoond voor slagewassen die worden geteeld in verticale 
boerderijen. Gebouw geïntegreerde fotovoltaïsche panelen worden gebruikt 
in verschillende delen van gebouwen met betrekking tot voldoende energie. 
Het optimalisatieprobleem, dat betrekking heeft op 117 beslissingsvariabelen 
met betrekking tot het gevelontwerp en de thermische eigenschappen van de 
beglazingen, gaat in detail in op de zelfvoorziening op gebouwschaal. Bovendien 
rapporteert een ander optimalisatie probleem de potentiëlen op buurtschaal met 
dezelfde zelfvoorzieningsaspecten en ontwerpparameters. Van de 13 algoritmen die 
werden gebruikt om beide problemen te optimaliseren, vertoonde de Optimus-tool de 
meest gunstige zelfvoorzieningsprestaties.

Hoofdstuk 6 besluit het proefschrift door de  bijdrage van het onderzoek 
samen te vatten, de antwoorden op onderzoeksvragen te behandelen, de 
beperkingen van het onderzoek te presenteren en toekomstige aanbevelingen te 
benadrukken. Na afronding van de ontwikkeling van de optimalisatietool en het 
uitvoeren van voorlopige resultaten van het pilot-hoogbouwmodel, worden de 
onderzoeksresultaten in weken in plaats van jaren uitgevoerd tijdens de ontwikkeling 
van de MUZO-methodiek en de case study. Dankzij kunstmatige intelligentie kunnen 
besluitvormers het voorgestelde rekenraamwerk gebruiken om zelfvoorzienende 
hoogbouw te optimaliseren. Op deze manier worden consequenties van de 
beslissingen over prestatieaspecten van zelfvoorziening mogelijk voor zo’n complexe 
ontwerptaak, met een hoog bewustzijn van de alternatieven in de zoekruimte binnen 
een redelijk tijdsbestek.
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1 General 
 introduction

 1.1 Background

The world deals with population growth and urbanisation trends. According to a 
recent report [1], United Nations foresees that by 2050, 2.5 billion more people 
will be living in the world. In three decades, 68% of the global population is 
expected to live in urban areas instead of 55% in 2018 and 30% in 1950. The 
report also projects an increase in megacities, which inhabit more than 10 million 
people, from 33 to 43 in a decade. One of the main consequences of population 
growth and urbanisation trends is an increasing demand for high-rise buildings in 
metropolises [2]. The researchers have focussed on performance optimisation of 
high-rises because of significant energy consumption compared to low rise buildings. 
Therefore, one may argue that the ultimate purpose of recent high-rise optimisation 
studies is to decrease the total energy consumption. However, the consequences of 
population growth and urbanisation trends are not limited to energy usage.

The United Nations Food and Agriculture Organisation foresees that only one-third of 
the arable land per person in 1970 will be available in 2050 [3]. Therefore, scholars 
and professionals focus on alternative living proposals for a sustainable future. 
Kirimtat et al. [4-8] investigated smart floating cities and floating neighbourhoods 
to provide extra floor space for habitation and agriculture considering renewable 
resources. Even though floating settlements are potentially sustainable alternatives 
to cope with population growth, they do not address the challenges in metropolises. 
Therefore, the next generation of high-rise buildings must provide more than extra 
floor space in the limited urban plot. Within the Paris Smart City 2050 concept, 
Vincent Callebaut Architectures proposed eight prototypes of positive energy towers 
[9]. The projects aim to deal with CO2 emissions and the urban heat island effect 
while providing renewable and recyclable energy for the buildings and surroundings. 

TOC



 38 Towards  Self‑ Sufficient High‑Rises

On the other hand, Singapore is one of the leading cities with many examples of 
green architecture since the layers of plants can temper the heat, filter pollutants, 
and absorb rainwater [10]. Additionally, a recent example called Vertical Forest in 
Milan, designed by Boeri Studio, suggests an alternative living for human beings 
with other species considering layers of plants in various floor levels [11]. These 
projects present promising sustainable alternatives in metropoles. Nevertheless, 
the performance optimisation of the self-sufficient high-rise buildings has not been 
addressed during the conceptual design phase.

As the next generation of high-rises, the definition of self-sufficient high-rise 
buildings is identified as those that combine dense habitation, generation, and 
efficient use of resources (e.g., energy, food, water) in one building. Therefore, 
self-sufficient high-rise buildings are different from the studies related to only self-
sufficiency in energy (e.g., net-zero energy buildings, energy-autonomous buildings 
[12]). Additionally, the current technology limits constructing self-sufficient high-rise 
buildings as off-grid systems, e.g. small-scaled autonomous houses [13]. Therefore, 
the contribution of self-sufficient high-rises can be generating and efficiently using 
multiple resources (such as energy, food, water), decreasing their environmental 
impact, and providing dense habitation with mixed-used building programs in 
metropolitan areas. This suggests a new design problem in architecture that has 
multiple challenges to cope with in the conceptual phase of the architectural 
design process.

High-rise buildings are one of the most complex tasks in the architecture discipline. 
Because various design parameters (e.g., building form, façade design), which 
affect the performance of the building, are involved in the design process. Since the 
decisions given in the conceptual phase affect the buildings’ overall performance, 
optimisation methods have been widely used to investigate well-performing high-
rise design alternatives. However, the complexity of the self-sufficient high-rise 
design problem is more challenging than optimising high-rise buildings only for 
energy or daylight. The main reason is that optimising high-rises for self-sufficiency 
necessitates providing sufficient resources for residents in addition to efficient 
usage. Instead of focusing on a specific floor or part of the building, high-rises in 
dense urban areas also require optimising the entire design of the building because 
of performance variances between ground and sky floor levels. Therefore, the overall 
design of the high-rise building should be addressed to achieve high performance in 
self-sufficiency. Briefly, the complexity of the self-sufficient high-rise design problem 
is related to 1) providing sufficient resources; 2) coping with the parameters of the 
building; 3) integrating multiple performance aspects.
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Providing sufficient resources is related to the sufficiency scale and period. The 
larger scale to provide resources, such as providing lettuce crops for the residents of 
the high-rise building and the people who live in the neighbourhood, suggests a more 
challenging task than providing resources only for the high-rise residents. Regarding 
the period of self-sufficiency, focusing on an annually self-sufficient building is 
less challenging than monthly or weekly self-sufficient building. Optimisation of 
the annual self-sufficiency in a high-rise design reflects the consideration of the 
overall performance of the building in one year. On the other hand, designing 
a high-rise building that is expected to be monthly self-sufficient brings along 
providing self-sufficiency in each month. As a result, the monthly performance of 
the building, which suggests an additional challenge, should be involved during the 
optimisation process.

Coping with the parameters of the self-sufficient building is another reason for the 
complexity. During the conceptual phase of the design, decisions on parameters 
usually affect the buildings’ functioning and performance. Decision making for the 
entire design while considering the specific part of the high-rise building suggests 
a limited approach in metropolises owing to the built environment’s density. 
Therefore, self-sufficient high-rises should consider the suitable decisions for various 
building parts to achieve high performance in the focussed criteria. The design of 
the high-rise building, as many other buildings, are related to the shape, façade, 
and layout parameters. Different decisions for various building parts multiply the 
design complexity due to each part’s unique parameter selection. Finally, decisions 
on additional parameters are necessary while realising the project during the 
construction phase and operating the building.

Integrating multiple performance aspects also increase the complexity of the 
problem. Even though optimising a performance aspect to maximise the advantages 
and minimise the disadvantages of the design solution is already a challenging task, 
considering multiple aspects suggests an additional complexity. The first reason 
is that the design decision should simultaneously reflect desirable performance 
results for all the aspects. In most cases, performance aspects conflict with each 
other (such as optimising energy consumption and daylight), that increase the 
complexity of the design problem for finding an optimal solution for both aspects. 
Secondly, simulation time of the performance aspects suggests an additional 
challenge because the aspects related to the self-sufficient high-rises mainly involve 
the simulations. Optimising a design problem considering a simulation-based 
performance evaluation takes a significant time. Optimisation of the entire high-rise 
design for multiple simulation-based performance aspects requires an enormous 
computation time, in most cases years, to complete the optimisation process.
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Four main categories, which presents the overall framework of the self-sufficient 
high-rise buildings, are defined as in Fig. 1.1. The first two categories indicate the 
scale and the period of providing sufficient resources. The third category presents 
the parameters of different phases starting from conception until the operation of 
the building. The final category suggests the performance aspects to be considered 
for generation and efficient usage in the self-sufficient high-rise design. In addition 
to the resources (energy, food, water), the function of the high-rise building is 
involved as another performance aspect. Because a mixed-use building program can 
reduce CO2 emissions and improve the life quality of the building’s residents as most 
of the demands can be fulfilled in the same living environment.

This research focuses on annually self-sufficient high-rise buildings on a building 
scale while dealing with the decisions in the conceptual phase considering energy, 
food, and multiple building functions. The development of an optimisation tool 
(Optimus) and proposal of an optimisation method (multi-zone optimisation) is in the 
scope of this dissertation to cope with the complexity of the design problem. Artificial 
intelligence, which involves machine learning and optimisation in this research, 
supports the decision making to predict and optimise the performance of the entire 
building while considering large numbers of parameters. The research output 
addresses architects and engineers who specialise in sustainable design solutions, 
high-rise buildings, building performance simulation, and artificial intelligence in 
architectural design problems.
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 1.2 Problem statement

The current state of the art focuses on optimising high-rise buildings for efficient 
usage of resources, such as natural ventilation potential [14], efficient energy usage 
with façade design [15], optimising building operation scenarios [16], and layout plan 
for energy-efficiency [17]. Regarding the generation of resources, limited studies can 
be found related to optimising high-rise buildings in the conceptual design phase 
[18-21]. Although related works present promising contributions to decrease the 
energy consumption of high-rises, these are only limited to the energy aspect. None 
of the challenges mentioned in the complexity of self-sufficient high-rise buildings 
is dealt with in the literature. Therefore, the development of a computational 
framework, which can cope with the optimisation of the entire high-rise design for 
self-sufficiency in multiple resources, is required.

 1.3 Research questions, aim, and objectives

Research questions

In the light of the general background and the statement of the problem explained in 
previous sections, this research addresses the main research question as follows:

How can we optimise the performance of self‑sufficient high‑rise buildings using 
artificial intelligence in the conceptual design phase?

To answer the main research question, six sub-questions, which are addressed in 
different chapters of the dissertation, are defined as follows:

 – What is the state-of-the-art for optimising form-finding parameters using swarm and 
evolutionary algorithms in performative computational architecture (Chapter 2)?
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 – What kind of algorithms can discover promising performance results for design 
problems with large numbers of form-finding parameters in the architecture domain 
(Chapter 3A)?

 – Can the multi-zone optimisation approach provide better performance results for 
high-rise buildings in dense urban environments (Chapter 3B)?

 – How can we reach swift and accurate predictions for computationally expensive 
performance aspects of sustainable buildings in the entire design of high-rises 
(Chapter 4A)?

 – How can we optimise large numbers of design parameters while investigating 
multiple performance aspects of sustainable high-rise alternatives (Chapter 4B)?

 – What is the potential of the developed computational method for self-sufficiency in 
energy consumption and food production at the building and neighbourhood scales 
(Chapter 5)?

 
Research Aim

The research aims to develop a computational framework to optimise self-sufficient 
high-rise buildings during the conceptual design phase. The goal is to allow 
architects and engineers to make design decisions in a reasonable timeframe with 
high awareness of the building performance considering multiple self-sufficiency 
aspects while coping with large numbers of design parameters.

Research Objectives

Concerning the aim of the research, the following objectives are defined:

 – Investigating the state-of-the-art on optimising form-finding parameters in the 
domain of performative computational architecture. (Chapter 2)

 – Developing an optimisation tool for design problems having large numbers of 
parameters in the architecture domain. (Chapter 3A)

 – Conducting preliminary results of multi-zone optimisation approach in a highly dense 
built environment. (Chapter 3B)
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 – Developing a computational framework for optimising multiple floor levels while 
coping with computationally expensive simulations and optimising large numbers of 
design parameters. (Chapter 4)

 – Demonstrating the developed computational framework for potential self-sufficiency 
at the building and neighbourhood scales. (Chapter 5)

 1.4 Research output

This research produces a computational framework to optimise high-rise buildings 
for self-sufficiency performance aspects in the conceptual phase of the design 
process. The developed method, called multi-zone optimisation (MUZO), consists of 
three phases: parametric high-rise model, machine learning for surrogate models, 
computational optimisation and decision-making. Each phase of the MUZO consists 
of several computational workflows that allow swift performance evaluation of 
self-sufficient high-rise buildings with high awareness of the search space. Since 
optimising large numbers of design parameters remains a challenge, the research 
also produces an optimisation tool, based on collaborative work, called Optimus, to 
be used in the optimisation phase of MUZO. Consequently, self-sufficiency in energy 
consumption and food production (for lettuce crops) are demonstrated for Europoint 
complex in Rotterdam, the Netherlands, using MUZO methodology with Optimus tool.
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 1.5 Research method

The research considers mixed methods based on quantitative analyses, consisting 
of four main steps to answer the research questions addressed in the previous 
section (Fig. 1.2). In the first step – Chapter 2, the literature review presents the 
concept called performative computational architecture and relevant information 
in form-finding parameters, performance aspects, and optimisation algorithms. In 
the second step – Chapter 3, Part A develops the optimisation tool by validating its 
efficiency using benchmark problems (Test 1) and a design problem (Test 2). Part 
B presents the preliminary results of the MUZO methodology using the developed 
optimisation tool (Test 3). In the third step – Chapter 4, Part A presents all the 
phases of the MUZO methodology in detail and develops advanced machine learning 
models for two high-rise scenarios (Tests 4 and 5). Part B of the third step uses the 
developed machine learning models in Part A to validate the relevance of the MUZO 
methodology by optimising two high-rise scenarios using the developed optimisation 
tool (Tests 4 and 5). The last step focuses on the Europoint complex as a case study 
to utilise the MUZO methodology and the developed optimisation tool. Actions taken 
in each step are explained below.
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Step 1 (Ch. 2): Literature Review

Studies focusing on optimising form-finding parameters are systematically 
investigated within the scope of performative computational architecture. The scope 
is limited to swarm and evolutionary optimisation algorithms since they are mostly 
used in this domain. Findings on parameter usage and application of optimisation 
algorithm are used in the next steps of the research method. The chapter is 
published as:

 [22] Ekici, B.; Cubukcuoglu, C.; Turrin, M.; Sariyildiz, I. S., Performative computational 
architecture using swarm and evolutionary optimisation: A review. Building and 
environment 2019, 147, 356-371.

Step 2 (Ch. 3): Tool Development and Pilot Study (Tests 1, 2, and 3)

Part A of step two focuses on developing an optimisation tool called Optimus, which 
works as a plug-in in Grasshopper 3d algorithmic modelling environment. The 
developed tool is tested with 20 benchmark problems (CEC 2005 problems), which 
are frequently used in the domain of evolutionary computation, with 30 decision 
variables (Test 1); and a 70-dimensional design problem (Test 2). The results of 
three other algorithms are compared with the results of Optimus.

Part B of this chapter investigates the performance enhancement of the MUZO 
approach with 100 decision variables in five building subdivisions considering two 
daylight metrics, basic predictive models, overhang length (one of the most used 
parameters in the reviewed papers) and glazing type. The results, conducted by the 
initial version of the Optimus tool, are compared with the initial and regular design 
scenarios (Test 3). The chapter is published as:

 [23] Cubukcuoglu, C.; Ekici, B.; Tasgetiren, M. F.; Sariyildiz, S., OPTIMUS: self-adaptive 
differential evolution with ensemble of mutation strategies for grasshopper 
algorithmic modeling. Algorithms 2019, 12, (7), 141.

 [24] Ekici, B.; Kazanasmaz, T.; Turrin, M.; Tasgetiren, M. F.; Sariyildiz, I. S. A Methodology 
for daylight optimisation of high-rise buildings in the dense urban district using 
overhang length and glazing type variables with surrogate modelling, Journal of 
Physics: Conference Series, 2019; IOP Publishing: 2019; p 012133.
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Step 3 (Ch. 4): Methodological Framework (Tests 4 and 5)

Part A of step three introduces the phases of MUZO, which are parametric high-rise 
model, machine learning for surrogate models, computational optimisation and 
decision-making. Two high-rise scenarios, which consider form-finding parameters 
and thermal properties of the glazing, are investigated. The first scenario has a 
quad-grid façade design with 260 design parameters (Test 4). The other scenario 
has a diagrid façade with 220 dimensions (Test 5). The form-finding parameters 
are selected among the most used building shape and façade design parameters 
reported in the literature review. Additionally, thermal properties of the glazing 
materials are involved after promising performance improvement was observed 
in the pilot study. Results of 40 predictive models are conducted using advanced 
machine learning applications developed in Python, and prediction accuracies are 
compared with similar studies in the same domain.

Part B of step three validates the relevance of the MUZO methodology by comparing 
the optimised design alternatives with regular high-rise scenarios. During the 
optimisation process, predictive models developed for quad-grid and diagrid 
scenarios (Tests 4 and 5) are also used in this part. The optimisation process 
involves the released version of the Optimus tool in addition to two other well-known 
algorithms in Grasshopper 3d. The chapter is published as:

 [25] Ekici, B.; Kazanasmaz, Z. T.; Turrin, M.; Taşgetiren, M. F.; Sariyildiz, I. S., Multi-
zone optimisation of high-rise buildings using artificial intelligence for sustainable 
metropolises. Part 1: Background, methodology, setup, and machine learning results. 
Solar Energy 2021, 224, 373-389.

 [26] Ekici, B.; Kazanasmaz, Z. T.; Turrin, M.; Taşgetiren, M. F.; Sariyildiz, I. S., Multi-
zone optimisation of high-rise buildings using artificial intelligence for sustainable 
metropolises. Part 2: Optimisation problems, algorithms, results, and method 
validation. Solar Energy 2021, 224, 309-326.
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Step 4 (Ch. 5): Case Study

The last step of the research method focuses on optimising the Europoint complex 
in Rotterdam, the Netherlands, for self-sufficiency in energy consumption and food 
production using the MUZO methodology. As the first phase of MUZO, a parametric 
high-rise model is developed for three towers of the complex involving vertical 
farms for lettuce crops and building integrated photovoltaic panels for energy 
generation. The second phase of MUZO predicts the performance of self-sufficiency 
using 45 surrogate models. In the final phase, an optimisation problem that consists 
of 117 decision variables, two objective functions for self-sufficiency in energy and 
food, and one constraint function for daylight availability is introduced. Thirteen 
optimisation algorithms, including the Optimus, are employed to investigate the self-
sufficiency using two problem formulations. While the first formulation considers a 
single-objective constrained problem for the building scale, the second formulation 
focuses on a multi-objective constrained problem for the neighbourhood scale. 
A deep investigation is conducted at the building scale, which provides a high 
awareness of the search space using the entire optimisation framework of MUZO 
(algorithm comparison and replication). Finally, potential self-sufficiency at the 
neighbourhood scale is presented. The chapter is published as:

 [27] Ekici, B.; Turkcan, O. F. S. F.; Turrin, M.; Sariyildiz, I. S.; Tasgetiren, M. F., Optimising 
High-Rise Buildings for Self-Sufficiency in Energy Consumption and Food 
Production Using Artificial Intelligence: Case of Europoint Complex in Rotterdam. 
Energies 2022, 15, (2), 660.
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 1.6 Social and scientific relevance

Optimisation of high-rise buildings is a complex task. In the case of high-rise 
optimisation for self-sufficiency performance aspects, the complexity increases due 
to the additional challenges explained in the background section. Therefore, the 
method to cope with this complex problem should provide well-performing design 
alternatives with respect to large numbers of design parameters and complete the 
design investigation involving multiple performance aspects in a reasonable time. 
Accordingly, the relevance of this research has two folds as scientific and societal.

The scientific relevance of the thesis is expanding the knowledge on optimising 
complex high-rise design problems. The proposed novel computational framework 
can optimise multiple performance aspects and cope with large numbers of design 
parameters. Moreover, the multi-zone optimisation approach allows optimising the 
entire high-rise design considering the impact of the surrounding in dense urban 
environments. The research also proves that the performance of optimisation 
algorithms differs according to the nature of the design problems. Therefore, the 
thesis also contributes to approaching optimisation problems in the architectural 
design domain, considering comparisons of different algorithms. Finally, the 
relevance of the developed optimisation tool for the architectural design domain, 
regarding the ability to optimise large numbers of parameters, is validated during the 
different steps of the research.

The societal relevance of the thesis is to support designers, architects, and engineers 
by providing self-sufficient high-rise alternatives in a reasonable time during the 
conceptual phase of the design process. Because most of the performance aspects 
of self-sufficiency require simulation, investigating well-performing alternatives with 
high awareness of the search space requires significant time. Thanks to artificial 
intelligence involved in the proposed computational framework, decision-makers can 
identify self-sufficient design solutions with high awareness of the consequences 
of design alternatives in the search space in weeks instead of decades. Therefore, 
the research also supports professionals for designing self-sufficient high-rise 
buildings as alternative sustainable living proposals. In this way, high-rises’ 
environmental impact can be decreased while fulfilling vital resources of human 
beings in metropolises.
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2 Literature review
Optimising form-finding 
 parameters in performative 
computational architecture

Chapter 2 has been published as: Ekici, B.; Cubukcuoglu, C.; Turrin, M.; Sariyildiz, I. S., Performative 
computational architecture using swarm and evolutionary optimisation: A review. Building and 
environment 2019, 147, 356-371. For consistency of the dissertation, the layout is adapted to fit the 
template, some typos are adjusted, and phrases are reworded without changing the content.

https://doi.org/10.1016/j.buildenv.2018.10.023

This chapter presents the literature review on optimising form-finding parameters in 
performative computational architecture that entails form generation, performance 
evaluation, and optimisation. A systematic review is conducted based on multiple 
databases to elaborate the trends for investigating well-performing design 
alternatives using optimisation algorithms in the architectural design domain. 
Therefore, the review focuses on studies involving form-finding parameters. One 
hundred studies are systematically reviewed, focusing on swarm and evolutionary 
optimisation algorithms frequently used in architectural design. The chapter 
concludes by presenting the gaps and needs considered while developing the 
optimisation tool and computational framework, focusing on form-finding 
parameters, performance evaluation, and optimisation applications. The outputs 
of this chapter are the inputs of the developed optimisation tool, form-finding 
parameters to be considered in parametric modelling in other tests and case study, 
and the utilisation of optimisation algorithms with comparison and replication.
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Performative Computational 
Architecture using Swarm and 
Evolutionary Optimisation 
A Review

ABSTRACT This study presents a systematic review and summary of performative computational 
architecture using swarm and evolutionary optimisation. The taxonomy for one 
hundred types of studies is presented herein that includes different sub-categories of 
performative computational architecture, such as sustainability, cost, functionality, 
and structure. Specifically, energy, daylight, solar radiation, environmental impact, 
thermal comfort, life-cycle cost, initial and global costs, energy use cost, space 
allocation, logistics, structural assessment, and holistic design approaches, are 
investigated by considering their corresponding performance aspects. The main 
findings, including optimisation and all the types of parameters, are presented 
by focussing on different aspects of buildings. In addition, usage of form-finding 
parameters of all reviewed studies and the distributions for each performance 
objectives are also presented. Moreover, usage of swarm and evolutionary 
optimisation algorithms in reviewed studies is summarised. Trends in publications, 
published years, problem scales, and building functions, are examined. Finally, 
future prospects are highlighted by focussing on different aspects of performative 
computational architecture in accordance to the evidence collected based on the 
review process.

KEYWORDS Performance-based design, building design, architectural design, computational 
optimisation, swarm intelligence, evolutionary algorithm
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 2.1 Introduction

Architectural design is a complex task. One of the most important reasons for its 
complexity is that multiple objectives affect the overall performance of the designed 
object [1]. In many cases, these objectives conflict with each other. In addition, 
each design is a unique task based on the problem, objectives, building program, 
constraints, client expectations, and the surrounding impacts owing to the built 
environment. For this reason, there are many “design-related parameters” to 
cope with the design process. Moreover, architectural design is a critical mission. 
Architects are responsible for creating living environments not only for human beings 
but also for all living creatures. Therefore, in the design process, the decisions 
require increased awareness for the anticipated consequences.

Conversely, design is an iterative process [2]. During this phase, the architect 
employs many design methods, such as sketching and physical as well as digital 
modelling, in order to feature the invention and revision cycles simultaneously. 
During this process, many criteria are considered, which correspond to the many 
requirements the final design is expected to satisfy. Such criteria regard several 
fields, from structural safety to climatic comfort, from energy efficiency to real estate 
values, etc. The ultimate goal is the identification of a design solution that satisfies at 
best many different (and sometime conflicting) objectives. Most of these objectives 
are highly affected by the decisions taken during the early design phase.

Performance-based design (PBD) has become a vital approach to satisfy many 
objectives. Kolarevic [3] underlined the importance of PBD as a guiding design 
principle. Among several possible approaches, this study focuses on a specific 
framework, which was presented by Sariyildiz [4] in order to support the design 
process. The presented framework is called performative computational architecture 
(PCA). This framework consists of three main phases as illustrated in Fig. 2.1. These 
are form generation, performance evaluation, and optimisation. Therefore, the 
main purpose of PCA is to investigate the most desirable geometry that satisfies 
performance-related goals in the conceptual design stage. In this study, journal 
articles associated with PCA are reviewed. Section 2.1.1 highlights the focus based 
on the relevant search of journal articles in the literature. Section 2.1.2 presents 
review articles that have similar focus, and underlines the differences with this study.
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FIG. 2.1 PCA framework

 2.1.1 Focus of this review

This review focuses on studies that match the PCA framework. Dealing with different 
geometric configurations as design alternatives (obtained from computational 
processes for form generation) is crucial to this focus. Optimising the designs by 
means of geometric variations in the early design stages is essential in architectural 
design. This clearly differentiates the use of optimisation in architectural design 
from the use of optimisation in engineering. In this sense, the architectural shape 
is mostly used as a set of specific boundaries within which a search for good 
engineering solutions is conducted. The shape is not typically modified as is done 
during the architectural explorations in PCA. As such, this review considers only the 
studies in which architectural geometric variations are (also) included (and it is not 
concerned with purely engineering optimisation).
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Moreover, this review is concerned only with specific optimisation methods. It 
focuses on swarm and evolutionary computation (SEC). There are two reasons for 
this choice. First of all, direct search methods require expensive computational 
time to handle many parameters in the optimisation problem [5,6]. Secondly, 
metaheuristics can suggest near-optimal solutions with many design parameters 
within a reasonable time [7]. Swarm intelligence (SI) and evolutionary computation 
(EC) are two powerful optimisation methods in metaheuristics. SI uses intelligent 
multi-agent systems inspired by the behaviour of social swarms [8]. Conversely, EC 
uses procedures inspired by the biological evolution of the Darwinian theory [9].

Numerous publications were analysed within a broad spectrum of thematic areas by 
considering the PCA framework and SEC. To identify relevant studies, keywords such 
as “building design”, “architectural design”, “evolutionary algorithm”, “evolutionary 
computation”, “swarm intelligence”, and “swarm optimisation” were used. During this 
search, Science Direct, Scopus, and Thomson Reuters, were employed as databases. 
To investigate the field in-depth, there was no time limitation. The final cut-off date 
for published studies was 26 August 2018. This broad search led to the collection of 
a relevant number of publications. From this collection, a subset of journal articles 
was selected according to the defined criteria. These studies

 – Include all three phases of PCA (form generation, performance evaluation, 
and optimisation)

 – Explicitly deal with architectural form-finding (on real and/or hypothetical 
architectural designs)

 – Include optimisation processes based on swarm and/or evolutionary computation

 – Must be published as journal (not conference) articles (because most conference 
studies lack fundamental information)

 – Could consider any performance criteria (there was no selection based on specific 
performance criteria)

An initial analysis of the selected sub-set, led to the identification of additional 
criteria that were followed to review the selected papers, as follows,

 – Most building design problems could be analysed by categorising them in 
accordance to the layout, skin, and overall building shape

 – Most holistic approaches obviously integrate several design decision steps that have 
to be analysed by taking this integration into account
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 2.1.2 Focus of previous review articles

Several reviews have been published by other authors during the past few decades. 
Some of them share a similar approach with this review, but in their searches/
evaluations they have not included the recent decades and/or have focussed only 
on some of the three phases of PCA. Some of them focussed on the categorisation 
and performance of optimisation algorithms. Most of them focus only on specific 
building performance criteria. All of them include relevant information and different 
perspectives.

In an early study in 1980, Radford and Gero [10] discussed simulation, generation, 
and optimisation methods for supporting architectural design decisions. Touloupaki 
and Theodosiou [11] presented a recent review on the combined use of parametric 
modelling, performance simulations, and optimisation algorithms. Based on several 
examples, their review provides valuable highlights on the potentials and limitations 
of the current state-of-art. However, it does not include a systematic analysis of 
trends, nor of used design variables and objectives. Negendahl [12] focussed on 
building performance simulations. In turn, Machairas, Tsangrassoulis and Axarli [6], 
reviewed optimisation algorithms for building design by considering tools, objectives, 
and performance assessments. In another study, Nguyen, et al. [13], overviewed 
simulation-based optimisation methods for building performance analyses based 
on the discussion of the major challenges. Concerning the building envelope, 
Huang and Niu [5] reviewed numerous studies to compare popular optimisation 
algorithms. When the focus is on specific performance domains, subjects such as 
the efficient spatial planning, energy efficiency, daylight, etc. may constitute relevant 
examples. Concerning the layout configuration, Dutta and Sarthak [14] compared 
applications of EC for architectural space planning. For sustainable building design, 
Evins [15] reviewed the application of computational optimisation by considering 
different research branches. In another study, Attia, et al. [16], investigated 
potential challenges and opportunities for the integration of optimisation tools 
in net-zero energy buildings (NZEBs). Shi, et al. [17], reviewed simulation-based 
design generation and optimisation in order to discuss their applications on energy-
driven urban design at the district scale. Cui, et al. [18], reviewed multi-objective 
optimisation applications for environmental protection fields (such as optimisation 
for energy saving and for emission, and cost reductions).

Based on users surveys and literature reviews, Tian, et al. [19], focussed on the 
application of building energy simulations and optimisations for passive building 
designs. Kheiri [20] highlighted the potentials of different optimisation methods to 
shape energy-efficient architectural building geometries and envelopes. Shi, et al. 
[21], focussed on energy performance by analysing several optimisation methods, 
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including the types of algorithms, the design objectives and variables, and the energy 
simulation engines. Eltaweel and Yuehong [22] focussed on the parametric design 
for daylight and solar radiation. In contrast to prior reviews, the review presented 
herein focuses on form generation and on performance evaluation and optimisation 
by offering a systematic analysis and categorisation of design variables and design 
objectives, without being confined to specific performance criteria.

 2.2 Performative computational architecture 
and review taxonomy

This section presents the three phases of PCA in depth. As previously mentioned, the 
first phase is form-finding, which corresponds to the form generation in this iterative 
process. The second phase is performance evaluation, which focuses on objectives 
that are desired to be satisfied in form-finding. The final phase is optimisation, which 
uses search method to identify satisfactory design alternatives in a systematic way. 
The three phases are iteratively looped. Section 2.2.1 introduces the form-finding 
phase of PCA. Section 2.2.2 explains the role of performance evaluation in this 
framework. Section 2.2.3 focuses on SI and EC as part of the optimisation phase of 
PCA. Finally, Section 2.2.4 introduces PCA taxonomy.

 2.2.1 Form‑finding

Early examples of form-finding studies have focussed on structure, especially for 
shell designs. Antoni Gaudi is accepted as one of the pioneer architects of this field, 
based on his work on hanging-chain models [23]. Therefore, form-finding is defined 
as a forward process controlled by parameters to discover an optimal geometry of a 
structure that is in static equilibrium subject to a specific design loading scheme [24]. 
From the standpoint of structural form-finding, several definitions can be found in 
addition to those described in [25,26].

In this study, the notion of form-finding is beyond the structural performances 
alone, and is defined as the architectural design exploration aiming to satisfy 
predetermined building performance aspects via computational optimisation in order 
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to provide sufficient information to the decision-makers. This includes performance 
aspects other than structural performance. For the sake of clarity, the shape of the 
building affects many performances, such as energy consumption, daylight usage, 
layout configuration, functional accessibility, shading performance, solar gain, 
acoustics, and others. In this context, form-finding corresponds to one of the most 
crucial steps in the conceptual design process. The reason is attributed to the fact 
that this step comprises the decisions on the determination of the mass and shape 
of the overall form of the design. Therefore, form-finding outputs are inputs for all 
subsequent steps in the design process, in the subsequent construction phase, and 
throughout the building’s life-cycle.

 2.2.2 Performance evaluation

With the recent developments in digital technology, the predictions and numeric 
assessments of performance aspects can be integrated into the architectural 
design process in order to investigate how well the design eventually meets the 
requirements. This regards all the design phases, and it is especially important in the 
conceptual stage. Despite the importance of the decisions taken in the early phase, 
current practice lacks numeric assessments in the conceptual design phase.

Broadbent [27] pointed out that the amount of a priori knowledge available at the 
beginning of each design process highly depends on the design case, and is quite 
limited when innovation is involved in the process. Hubka and Eder [28] emphasised 
that the design has traditionally been conducted using intuition, know-how, and 
judgment. This highlights the need for measuring and numerically assessing 
the capacity of the design in satisfying the various requirements and supporting 
the exploration of design alternatives by means of multidisciplinary measurable 
performance values as guiding criteria.

Turrin [29] emphasised that geometry has an enormous impact on the realisation 
of performance-related goals. Owing to the number of parameters, many design 
alternatives exist in the search space [30]. For this reason, discovering feasible and 
desirable design solutions is a complicated task during the performance evaluation 
phase. To support this process, computational optimisation techniques have 
proven to be relevant. In fact, owing to the size of the solution space, a systematic 
performance assessment by the designer for each desirable design solution is 
generally impossible owing to time and other restrictions. Furthermore, a systematic 
exploration of the solution space that aimed at selecting a subset of solutions is 
challenging when is simply left to the intuition of the designer.
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 2.2.3 Swarm and evolutionary computation for optimisation

In the domain of architectural design, metaheuristics constitute one of the most 
extensively used optimisation methods, and corresponds to the third phase of PCA 
[6,15,31]. These search algorithms are capable of dealing with continuous and discrete 
parameters in large parameter spaces, and they also avoid local minima and maxima. 
Moreover, when compared to other direct search methods, metaheuristics are 
capable in presenting near-optimal results in a reasonable time [7].

SI and EC are based on different search strategies inspired by nature. In the 
EC procedure, individuals with decision variables in D  dimensions are encoded 
into chromosomes to obtain an initial population. At each generation, pair(s) of 
individuals from the population are chosen and mated. These individuals are then 
crossed over to generate new solutions referred to as offspring or children. Some 
individuals are mutated to escape from local minima and maxima. Ultimately, the 
offspring population is combined with the parent population to select new individuals 
for the next generation. The genetic algorithm (GA) proposed by Holland and 
Goldberg [32], and the differential evolution (DE) presented by Storn and Price [33], 
can be used in EC.

On the other hand, SI focuses on the interactions of individuals with each other 
and their environment. For this reason, SI uses societies, such as ants, wasps, 
termites, bees, schools of fish, flocks of birds, and herds of land animals. An SI 
algorithm typically consists of many individuals. Simple behavioural rules direct 
the interactions among the individuals in D  dimensions. As a result of the overall 
behaviour of the swarm system, there are consequences to the self-organising group 
behaviour. Particle swarm optimisation (PSO) founded by Eberhart and Kennedy [34], 
ant colony optimisation (ACO) suggested by Dorigo, et al. [35], can also be used in SI. 
As an example, procedures of generic EC and SI are illustrated in Fig. 2.2.

 2.2.4 Review taxonomy

One hundred journal articles relevant to the focus of this review were identified. In 
order to investigate these papers systematically, a PCA taxonomy was defined as 
shown in Fig. 2.3. The main categories of this taxonomy were sustainability, cost, 
functionality, and structure. In addition, several sub-categories were also determined 
according to performance objectives as shown in Fig. 2.3. In the following chapters, 
each sub-category is explained in detail.
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 2.3 Sustainability

 2.3.1 Energy

As an early example that focussed on the skin of the building, Caldas and Norford [36] 
minimised the annual energy consumption for office buildings using GA-based design 
tools. Afterwards, Caldas, et al. [37] minimised the annual energy consumption with 
GA for a school building. Wetter and Wright [38] used the discrete armijo gradient 
(DAG), GA, coordinate search (CS), Hooke-Jeeves (HJ), Nelder-Mead (NM), PSO 
with HJ, and other variants of PSO, to minimise the annual energy consumption for 
an office building. Lee [39] combined GA and computational fluid dynamics (CFD) 
to minimise energy supplied by HVAC for heating and cooling in office buildings. 
More recently, Bucking, et al.[40], minimised the net annual energy consumption for 
a net-zero energy house design using modified EA and PSO. Ramallo-González and 
Coley [41] minimised the heating and cooling demands of residential building a using 
covariance matrix adaptation (CMA), evolution strategy (ES), sequential assessment 
(SA), and the canonical form of the GA.

As one of the early examples of multi-objective optimisation, Naboni, et al. [42], 
used the non-dominated sorting genetic algorithm II (NSGA-II) to minimise heating, 
cooling, and lighting demands for a residential building. Méndez Echenagucia, et 
al. [43], also used NSGA-II to minimise the energy need for heating, cooling, and 
lighting in office buildings. Xu, et al. [44] examined the trade-offs between cooling 
and heating loads using NSGA-II for envelope design of an office building. Wright 
and Alajmi [45] minimised the building’s energy consumption using the GA for the 
building envelope design of an office building. Delgarm, et al. [46], minimised the 
annual cooling, heating, and lighting electricity consumptions using single and multi-
objective approaches using PSO. In turn, Delgarm, et al. [47], minimised the annual 
cooling and lighting electricity consumptions considering two different optimisations 
using single-objective GA and NSGA-II. Si, et al. [48] minimised the annual energy 
consumption using the HJ, multi-objective genetic algorithm II (MOGA-II), and the 
multi-objective PSO (MOPSO) for an office building envelope. Li, et al. [49], used 
MOPSO and artificial neural networks (ANN) to minimise the energy consumption 
for residential buildings. Bre and Fachinotti [50] used NSGA-II to examine trade-offs 
between heating and cooling demands for residential buildings, as well.
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Bamdad, et al. [51], minimised the annual energy consumption of commercial 
buildings using several optimisation algorithms, such as ACO, NM, and hybrid PSO 
variants. Chen and Yang [52] minimised the heating, cooling, and lighting energy 
demands of high-rise residential buildings using NSGA-II for formulating the bi-
objective and three objective optimisation problems. Recently, Bamdad, et al. [53], 
minimised the energy use by considering low, base, and high simulation scenarios 
for office buildings using ant colony optimisation algorithm for mixed variables 
(ACOMV), and proposed a modified ACOMV.

By focusing on building shapes, Caldas [54] optimised the energy consumption, 
energy use intensity, thermal, and daylight performances, and the initial cost of 
materials using GA and Pareto GA in office and school buildings. Lin and Gerber [55] 
presented evolutionary energy performance feedback for a design (EEPFD) approach 
using multi-disciplinary design optimisation (MDDO). Related to this work, Lin and 
Gerber [56] minimised the energy use and maximised the spatial programming 
compliance score with the net present value for several building cases using MOGA. 
Another recent work of Gerber and Lin [57] included additional qualitative data-driven 
by human designers, and discussed the importance of EEPFD in the conceptual 
phase. Recently, Li, et al. [58], minimised the total energy consumption by focusing 
on the heating, cooling, and lighting demands of a school building that employed GA. 
Moreover, Bizjak, et al. [59], first minimised the heating and cooling loads, and then 
maximised the heat gain using single-objective DE for residential building.

Apart from these, several other studies also included the energy aspects, but these 
studies are discussed in other sections. Futrell, et al. [60], Negendahl and Nielsen [61], 
Chen, et al. [62], and Chatzikonstantinou and Sariyildiz [63] evaluated and explained 
the effects of daylight. Yi [64] presented the impacts of solar radiation. Azari, et al. 
[65], stated the environmental impact. Magnier and Haghighat [66], Kasinalis, et al. 
[67], Yu, et al. [68], Zhang, et al. [69], Lin, et al. [70], and Gou, et al. [71], investigated 
thermal comfort. Dhariwal and Banerjee [72], and Harkouss, et al. [73], analysed the 
life-cycle cost. Znouda, et al. [74], Talbourdet, et al. [75], Wright, et al. [76], Brownlee 
and Wright [77], Yang, et al. [78], Rafiq and Rustell [79], and Chang and Shih [80], 
presented evaluations on the initial and global costs. Michalek, et al. [81], and Baušys 
and Pankrašovaité [82] studied energy use cost. Finally, Menges [83] and Yang, et al. 
[84] discussed structure.
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 2.3.2 Daylight

In an early study that focussed on the skin of the building during daylight, Turrin, 
et al. [85] maximised the daylight factor and minimised the solar incidence and 
structural weight of a parametric long-span roof using GA. Rakha and Nassar [86] 
minimised the daylight uniformity ratio for gallery building using GA. Gagne and 
Andersen [87] also utilised GA for maximising non-conflicting illuminance goals. 
Conversely, authors also applied multi-objective micro-GA for maximising illuminance 
and minimising glare objectives. Futrell, Ozelkan and Brentrup [60], employed PSO 
using the construction coefficient and the HJ algorithm, while they maximised the pi 
scores from hourly illuminance outcomes, and minimised the thermal performance 
based on the sum of annual hourly energy consumption for envelope design.

Negendahl and Nielsen [61] optimised daylight performance, capital cost, building 
energy use, and thermal requirements for a folding façade design using the 
strength Pareto evolutionary algorithm 2 (SPEA-2). Futrell, et al. [88], utilised 
several algorithms, such as NM, HJ, and variants of PSO to maximise the daylight 
performance for a classroom. Chen, et al. [89], used NSGA-II to minimise the 
daylight and thermal discomfort times. Recently, Chatzikonstantinou and Sariyildiz 
[63] minimised the trade-off between the energy consumption and artificial 
light dependence for an office building using NSGA-II. In order to characterise 
alternatives with good performance, authors presented an auto-associative machine 
learning framework.

From the viewpoint of building shape, Chen, Janssen and Schlueter [62], maximised 
daylight and minimised the cooling energy consumption using NSGA-II of a 
parametric building. In addition to these, several studies considered daylight as a 
performance aspect as well. Caldas [54] presented details on energy considerations. 
Zhang, Bokel, van den Dobbelsteen, Sun, Huang and Zhang [69], explained aspects of 
thermal comfort. Chang and Shih [80] discussed initial and global costs. Su and Yan 
[90] stated and evaluated logistics. Finally, Yang, Ren, Turrin, Sariyildiz and Sun [84], 
considered and analysed the structure.

 2.3.3 Solar radiation

Based on the skin of the building, Bizjak, et al. [91], used a self-adaptive differential 
evolution (DE) algorithm to maximise solar irradiation. For the sake of the shape of 
the building, Liu, et al. [92], performed PSO to minimise the solar gain and maximise 
the area of the residential buildings in an urban setting. Oliveira Panão, et al. [93], 

TOC



 69 Literature review

also used GA for maximising the absorption of solar radiation in the winter season 
and minimise it during the summer in urban forms. Kämpf and Robinson [94] 
maximised the solar energy potential using two different algorithms, namely CMA-ES, 
and the hybrid differential evolution (HDE), by focussing on three different cases. In 
comparison, Kämpf, et al. [95], minimised irradiation offset by thermal losses, while 
they maximised building volumes using MOEA. Yi [64] used MOEA for solar radiation 
and energy consumption in high-rise office buildings. Zhang, et al. [96], used GA to 
maximise the total radiation as a function of the shape efficiency, and to minimise 
the shape coefficient for a community centre. More recently, Vermeulen, et al. [97], 
maximised solar radiation in an urban context using EA for winter, equinox, and 
summer times.

From the viewpoint of the layout, António, et al. [98], also maximised energy received 
per building in an urban context by considering different building amounts using GA. 
Yi and Kim [99] minimised the solar radiation of a set of residential blocks using GA. 
In another study, Vermeulen, et al. [100], maximised the solar energy received by 
each building using an evolutionary algorithm (EA) for high-rise buildings.

In addition to these, several studies were associated with solar radiation but 
are explained in other sections. Turrin, Von Buelow and Stouffs [85], considered 
daylight. Menges [83] explained the environmental impact, whereas other cases 
considered structure.

 2.3.4 Environmental impact

Wang, et al. [101], focussed on the building’s skin to minimise life-cycle costs and 
life-cycle environmental impacts using MOGA. Rapone and Saro [102] minimised 
carbon emissions for a single office zone using PSO considering different cities. More 
recently, Azari, Garshasbi, Amini, Rashed-Ali and Mohammadi [65], utilised NSGA-II 
for minimising the environmental life-cycle impact and operational energy use for set 
objectives. Additionally, authors also utilised GA for a single objective environmental 
life-cycle impact optimisation problem with ANN.

With regard to the shape of the building, Wang, et al. [103], used MOGA to examine 
the trade-offs between the life-cycle cost and life-cycle environmental impact for a 
green building design. Following this, Wang, et al. [104], addressed a similar problem 
using MOGA to minimise the life-cycle environmental impact and life-cycle cost. 
Menges [83] optimised environmental criteria, such as block ventilation, covered 
outside space, outer solar radiation, unit ventilation, solar radiation per unit, 
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circulation, and unit count. More recently, Huang, et al. [105], minimised the building 
shadow area in an urban setting as an environmental impact form, and maximised 
the building floor area to reach a satisfactory building mass using GA. McKinstray, 
et al. [106], minimised the carbon impact and embodied carbon of a frame portal 
building using MOEA.

There are other publications that considered environmental impact objectives, as 
well. Li, Pan, Xue, Jiang and Mao [49], referred to in Section 2.3.5 considered on 
thermal comfort. Karatas and El-Rayes [107], Liu, et al. [108], and Hester, et al. [109], 
discussed life-cycle cost, as outlined in Section 2.4.1.

 2.3.5 Thermal comfort

All the reviewed publications in this section focussed on the building’s skin. As an 
early example, Magnier and Haghighat [66] used simulation-based ANN with NSGA-II 
to minimise the average absolute thermal comfort and annual energy consumption. 
Kasinalis, Loonen, Cóstola and Hensen [67], also used NSGA-II to examine the 
trade-offs between the thermal discomfort and annual primary energy consumption 
for seasonally adaptable façade designs in office buildings. Yu, Li, Jia, Zhang and 
Wang [68], optimised the annual energy consumption and the percentage of thermal 
discomfort hours with the use of NSGA-II in residential cases. Furthermore, Li, 
Pan, Xue, Jiang and Mao [49], used NSGA-II, MOPSO, MOGA, and multi-objective DE 
(MODE), to optimise the total percentage of cumulative time with discomfort, life-
cycle cost and carbon dioxide equivalence for residential cases.

Zhang, Bokel, van den Dobbelsteen, Sun, Huang and Zhang [69], optimised a school 
model using SPEA-2 in order to minimise the energy use and summer discomfort 
time, while maximising useful daylight illuminance (UDI). Lin, Zhou, Yang and Li 
[70], also maximised thermal comfort and minimised energy consumption using 
MOGA with multi-linear regression (MLR) and ANN. Sghiouri, et al. [110], minimised 
discomfort hours using NSGA-II in residential buildings. Gou, Nik, Scartezzini, Zhao 
and Li [71] maximised the annual indoor thermal comfort and minimised building 
energy demand using NSGA-II and ANN for residential buildings. Chen, Yang and Sun 
[89], also considered the thermal comfort performance objective, but their findings 
are presented in the daylight section.
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 2.3.6 Holistic sustainability

Finally, holistic approaches are discussed which considered several steps to reach a 
sustainable design. In an early study on the building’s skin, Ercan and Elias-Ozkan 
[111] focussed on the atrium design. In the first stage, authors minimised solar 
irradiation of the building using GA. In the second stage, they focussed on the façade 
shading device to minimise the standard deviation of the daylight factor and annual 
solar irradiation. Recently, Ferrara, et al. [112], optimised a single-zone classroom 
model using PSO and focussed on different cities with various orientations. In the 
first step, authors minimised the total energy demand. Thereafter, they maximised 
thermal and visual comfort.

Based on the building shape, Youssef, et al. [113], optimised the energy consumption 
of office buildings using GA in two steps. First, authors optimised the shape of the 
building using shape grammar design rules. Secondly, they optimised the façade 
design for the integration of photovoltaic panels.

For the sake of the building layout, Sleiman, et al. [114], firstly focussed on the 
layout configuration aspects using EA. Subsequently, authors considered two major 
performance objectives, namely, the energy performance and life-cycle cost for a 
healthcare facility. Similarly, Dino and Üçoluk [115] synthesised the building’s space 
layout performance with energy and daylight aspects. In the first step, authors 
optimised the unique fitness function by considering several layout aspects using EA. 
Thereafter, they used NSGA-II for daylight autonomy and total energy.

 2.4 Cost

 2.4.1 Life‑cycle cost

By focussing on the building’s skin, Tuhus-Dubrow and Krarti [116] minimised the 
life-cycle cost using GA, PSO, and sequential search (SS) algorithms for five different 
climates. Conversely, Bichiou and Krarti [117] minimised life-cycle cost using GA, 
PSO, and SS. Using a different approach, Gengembre, et al. [118], used PSO with 
Kriging metamodeling for the minimisation of the life-cycle cost. In comparison to 
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previous studies, Karatas and El-Rayes [107] considered the minimisation of both the 
life-cycle cost and operational environmental cost, and the maximisation of social 
quality of life using MOGA for a single-family house. Afterwards, Karatas and El-
Rayes [119] used MOGA to minimise the life-cycle cost and maximise social quality. In 
another multi-objective optimisation approach, Liu, Meng and Tam [108], minimised 
the life-cycle cost and life-cycle carbon emissions using MOPSO. Ferrara, et al. [120], 
minimised the global cost over the life-cycle using PSO for a single-family house.

Dhariwal and Banerjee [72] proposed an approach using fractional factorial design 
and response surface methods to optimise the life-cycle cost. To validate the 
proposed approach, authors minimised the incremental life-cycle cost using GA and 
minimised the both life-cycle cost and energy use intensity using NSGA-II. More 
recently, Hester, Gregory, Ulm and Kirchain [109], minimised the life-cycle cost and 
life-cycle impact in order to explore the building’s design space by comparing GA 
results, sequential specifications, and unguided specification algorithms. Harkouss, 
Fardoun and Biwole [73] minimised an auxiliary electric heater with a pump, thermal 
demands for cooling and heating, exports, and life-cycle costs using NSGA-II 
for NZEBs.

In addition to these studies, several publications included the life-cycle cost as well. 
However, these studies are mentioned in other sections. Lin and Gerber [55], Lin and 
Gerber [56], and Gerber and Lin [57], explained and discussed energy considerations. 
Wang, Zmeureanu and Rivard [101], Wang, Rivard and Zmeureanu [103], and Wang, 
Rivard and Zmeureanu [104], are referred to in the environmental impact section. 
Finally, Li, Pan, Xue, Jiang and Mao [49], are cited in the thermal comfort section.

 2.4.2 Initial and global costs

In consideration of the skin of the building, Znouda, Ghrab-Morcos and Hadj-Alouane 
[74] used GA to minimise the global monetary cost for four different economic 
scenarios based on gas and electricity. For the investigation of trade-offs between 
the minimisation of the construction cost and energy need objectives, Talbourdet, 
Michel, Andrieux, Millet, Mankibi and Vinot [75], used NSGA-II for an office building. 
Wright, Brownlee, Mourshed and Wang [76], also optimised a commercial building 
in order to minimise the energy use and capital cost objectives using NSGA-II by 
considering several optimisation experiments. For the same trade-off, Brownlee 
and Wright [77] also used NSGA-II but with surrogate models based on radial basis 
functions (RBFs). More recently, Yang, Lin, Lin and Tsai [78], used NSGA-II in three 
different analyses approaches. The first approach minimised both the envelope 
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construction cost and energy performance. The second approach minimised the 
objectives that were considered in the first analysis and maximised the window 
opening rate. The third analysis focussed on the same objective functions used in the 
second analysis scheme but for different climatic zones in Taiwan.

For the sake of the building shape, Chang and Shih [80] integrated dynamic 
programming and GA to minimise the construction cost with the energy cost, 
and maximised the area of visual view with daylight illumination, for a residential 
building. Rafiq and Rustell [79] minimised the structural cost, energy loss, and 
area loss objectives, using interactive visualisation clustering GA in the case of a 
commercial building.

In an early study that focussed on building’s layout, Gero and Kazakov [121] 
minimised the layout cost based on travel distances and space relations using GA 
for office and hospital building cases. Apart from these, Caldas [54] and Negendahl 
and Nielsen [61] considered the initial and global costs, respectively, but they are 
mentioned and referred to in the energy and daylight sections.

 2.4.3 Energy use cost

In this part, there are only two studies that focussed on the building layout. Michalek, 
Choudhary and Papalambros [81], minimised the heating cost, cooling cost, lighting 
cost, wasted space, hall size, and access way size, using GA and simulated annealing 
(SA) for residential buildings. Baušys and Pankrašovaité [82] minimised the heating 
cost, lighting cost, wasted space, doorways, and hallways using improved GA in the 
case of a residential building.

 2.4.4 Holistic cost

In consideration of the building skin, Evins [122] proposed a multi-level optimisation 
framework by dividing the design and operation of a building into three phases: 
building, plant, and operational levels. For the building and plant levels, the author 
used NSGA-II to minimise the annual carbon emissions and initial capital cost. At the 
operational level, a mixed-integer programming approach was used to minimise the 
annual running costs.
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For the sake of the building shape, Khajehpour and Grierson [123] integrated EC and 
colour filtering in a high-rise office building. In particular, the first step of the study 
applied optimisation techniques to minimise the capital, and operating costs, and 
to maximise the income revenue using a multi-criteria genetic algorithm (MCGA). 
The second step focussed on the determination of profit and safety potentials using 
colour filtering.

 2.5 Functionality

 2.5.1 Space allocation

As an early example for a building layout, Rodrigues, et al. [124], presented an 
optimisation framework. Authors considered adjacency, space overlap, opening 
overlap, and orientation, floor dimensions, compactness, and overflow using a hybrid 
evolutionary technique and ES with a stochastic hill climbing (SHC). To validate the 
proposed method, the authors applied the framework used to a residential layout 
problem [125]. As another example of residential layout, Song, et al. [126], used 
implicit redundant representation GA and simple GA for maximising symmetry, 
structural safety, stair connectivity, and façade exposure. More recently, Yazici 
[127] minimised the total built area in urban layouts using the EA and parametric 
design environment.

 2.5.2 Logistics

As a manifestation of early work conducted in this area, Jo and Gero [128] optimised 
the interactions between interrelated spaces and the travel cost between the 
space elements with GA in an office layout case. More recently, Wong and Chan 
[129] optimised the adjacency preference matrix, adjacency limitations caused 
by physical and budget constraints, range of relative ratios between spaces, 
and the number of functions that can contribute acceptable designs using EA 
for a residential building. Focussing on health campuses, Güleç Özer and Şener 
[130] used GA to find an optimal route of users in functionally complex buildings. 
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Related to the healthcare facility, Su and Yan [90] optimised a nursing unit layout by 
maximising daylight illuminance and by minimising travel distances of nurses using 
GA. Dino [131] used EA to optimise unique fitness functions based on size, absolute 
dimension, compactness, jaggedness, convexity of space, as well as the façade, 
floor, neighbourhood, and separation criteria. The author focussed on a three-
dimensional library building layout problem to implement the developed method. 
Cubukcuoglu, et al. [132], maximised accessibility, visibility, and wind protection 
objectives by proposing a multi-objective harmony search (MOHS) algorithm for an 
urban context. Authors also compared the results of MOHS with the self-adaptive 
differential evolution multi-objective (jDEMO) algorithm. More recently, Bahrehmand, 
et al. [133] optimised the overflow quality, topological quality, spatial quality, and 
user rating, with the use of an interactive EA in the case of a museum building. Gero 
and Kazakov [121] was also related to the logistics aspect but was mentioned in initial 
and global costs.

 2.6 Structure

By focussing on the building’s skin, Turrin, Von Buelow and Stouffs [85], used GA 
to minimise the weight of the dome design with an acceptable deformation for a 
semi-spherical structure. Authors combined the structural performance with the 
architectural form-finding process. In another study, Li [134] minimised discontinuous 
edges on the façade of a museum design using a GA-based split edge algorithm 
and an SS-based split edge algorithm. More recently, Yang, Ren, Turrin, Sariyildiz 
and Sun [84] optimised the roof of the sports building in order to maximise UDI, and 
minimise energy use and structural mass using NSGA-II.

For the sake of the building shape, Menges [83] used EA to optimise the morphologic 
criteria, such as the floor area, envelope heights, envelope slope, unobstructed view 
axes, incident solar radiation, and interior thermal loading. More recently, Elshaer, 
et al. [135], used ANN to minimise the mean drag coefficient for the first case and 
minimised the standard deviation of the lift coefficient for the second case using GA 
in high-rise buildings.
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 2.7 Review results

To highlight the correspondence between architectural geometry and performance, 
the form-finding parameters, and their corresponding performance objective(s) with 
respect to the building were presented in Table 2.1. To sum up, the distribution of 
each sub-category within the total number of performance objectives presented 
in the one hundred reviewed papers considered herein are shown in Fig.  2.4. 
All decision variables (both related and non-related with form-finding), and SEC 
methods used for each performance objective, are presented in Table 2.2. In 
relation to Table 2.1, the relationship between form-finding parameters used for 
each performance objectives in reviewed papers are listed in Fig. 2.5, and the total 
usage amount of form-finding parameters, such as window-to-wall ratio (WWR), and 
orientation, are shown in Fig. 2.6. The total usage of building topics are also listed 
in Fig. 2.7. All trade-offs between each performance objective used in bi-objective, 
three objective, and many-objective optimisation problems are illustrated in Fig. 2.8. 
Finally, other relevant information, which is not mentioned above, is summarised 
in Fig. 2.9. Since different methods are used in some papers, some graphs are 
presented as pie charts. This also includes the distribution of objectivity (where the 
term “many objectives” indicates a minimum of four objectives [136]).
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TabLe 2.1 Overview of form-finding parameters, performance objectives and topic for each reviewed paper
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Ref. Author(s) Year x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 z1 z2 z3

[121] Gero and Kazakov 1998 x ● ● □

[128] Jo and Gero 1998 x ● □

[36] Caldas and Norford 2002 x ● □

[81] Michalek et al. 2002 x x x x ● ● □

[37] Caldas et al. 2003 x x x ● □

[123] Khajehpour and Grierson 2003 x x ● □

[38] Wetter and Wright 2004 x x x ● □

[82] Baušys and Pankrašovaité 2005 x ● ● □

[101] Wang et al. 2005 x x ● ● □

[103] Wang et al. 2005 x x x x ● ● □

[104] Wang et al. 2006 x x x ● ● □

[39] Lee 2007 x ● □

[92] Liu et al. 2007 x x x x ● □

[74] Znouda et al. 2007 x x x ● ● □

[54] Caldas 2008 x x x x x x ● ● ● □

[93] Oliveira Panão et al. 2008 x x x ● □

[129] Wong and Chan 2009 x ● □

[94] Kampf and Robinson 2010 x x x ● □

[95] Kampf et al. 2010 x x ● □

[66] Magnier and Haghighat 2010 x ● ● □

[116] Tuhus-Dubrow and Krarti 2010 x x ● □

[117] Bichiou and Krarti 2011 x x x x ● □

[86] Rakha and Nassar 2011 x ● □

[85] Turrin et al. 2011 x x x ● ● ● □

[87] Gagne and Andersen 2012 x x x x ● □

[118] Gengembre et al. 2012 x x ● □

[134] Li 2012 x ● □

[83] Menges 2012 x x ● ● ● ● □

[102] Rapone and Saro 2012 x x ● □

[40] Bucking et al. 2013 x x x x x ● □

[130] Güleç Özer and Şener 2013 x x x ● □

[107] Karatas and El-Rayes 2013 x x x ● ● □

[124] Rodrigues et al. 2013 x x x x ● □

>>>
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TabLe 2.1 Overview of form-finding parameters, performance objectives and topic for each reviewed paper
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Ref. Author(s) Year x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 z1 z2 z3

[121] Gero and Kazakov 1998 x ● ● □

[128] Jo and Gero 1998 x ● □

[36] Caldas and Norford 2002 x ● □

[81] Michalek et al. 2002 x x x x ● ● □

[37] Caldas et al. 2003 x x x ● □

[123] Khajehpour and Grierson 2003 x x ● □

[38] Wetter and Wright 2004 x x x ● □

[82] Baušys and Pankrašovaité 2005 x ● ● □

[101] Wang et al. 2005 x x ● ● □

[103] Wang et al. 2005 x x x x ● ● □

[104] Wang et al. 2006 x x x ● ● □

[39] Lee 2007 x ● □

[92] Liu et al. 2007 x x x x ● □

[74] Znouda et al. 2007 x x x ● ● □

[54] Caldas 2008 x x x x x x ● ● ● □

[93] Oliveira Panão et al. 2008 x x x ● □

[129] Wong and Chan 2009 x ● □

[94] Kampf and Robinson 2010 x x x ● □

[95] Kampf et al. 2010 x x ● □

[66] Magnier and Haghighat 2010 x ● ● □

[116] Tuhus-Dubrow and Krarti 2010 x x ● □

[117] Bichiou and Krarti 2011 x x x x ● □

[86] Rakha and Nassar 2011 x ● □

[85] Turrin et al. 2011 x x x ● ● ● □

[87] Gagne and Andersen 2012 x x x x ● □

[118] Gengembre et al. 2012 x x ● □

[134] Li 2012 x ● □

[83] Menges 2012 x x ● ● ● ● □

[102] Rapone and Saro 2012 x x ● □

[40] Bucking et al. 2013 x x x x x ● □

[130] Güleç Özer and Şener 2013 x x x ● □

[107] Karatas and El-Rayes 2013 x x x ● ● □

[124] Rodrigues et al. 2013 x x x x ● □
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Ref. Author(s) Year x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 z1 z2 z3

[125] Rodrigues et al. 2013 x x x x ● □

[75] Talbourdet et al. 2013 x x x ● ● □

[98] Antonio et al. 2014 x x x x ● □

[57] Gerber and Lin 2014 x ● ● □

[119] Karatas and El-Rayes 2014 x x x ● □

[67] Kasinalis et al. 2014 x ● ● □

[56] Lin and Gerber 2014 x ● ● □

[55] Lin and Gerber 2014 x ● ● □

[79] Rafiq and Rustell 2014 x x ● ● □

[41] R-González and Coley 2014 x x x ● □

[76] Wright et al. 2014 x ● ● □

[64] Yi 2014 x x ● ● □

[91] Bizjak et al. 2015 x x ● □

[77] Brownlee and Wright 2015 x x ● ● □

[80] Chang and Shih 2015 x x x ● ● ● □

[111] Ercan and Elias-Ozkan 2015 x x ● □

[122] Evins 2015 x x ● □

[60] Futrell et al. 2015 x x x x ● ● □

[88] Futrell et al. 2015 x x x ● □

[105] Huang et al. 2015 x x ● □

[108] Liu et al. 2015 x x x ● ● □

[106] McKinstray et al. 2015 x x ● □

[43] Méndez Echenagucia et al. 2015 x ● □

[42] Naboni et al. 2015 x x x ● □

[61] Negendahl and Nielsen 2015 x ● ● ● □

[90] Su and Yan 2015 x x x x ● ● □

[100] Vermeulen et al. 2015 x ● □

[44] Xu et al. 2015 x x x ● □

[99] Yi and Kim 2015 x ● □

[68] Yu et al. 2015 x x ● ● □

[65] Azari et al. 2016 x ● ● □

[89] Chen et al. 2016 x x ● ● □

[132] Cubukcuoglu et al. 2016 x x ● □
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Ref. Author(s) Year x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 z1 z2 z3

[125] Rodrigues et al. 2013 x x x x ● □

[75] Talbourdet et al. 2013 x x x ● ● □

[98] Antonio et al. 2014 x x x x ● □

[57] Gerber and Lin 2014 x ● ● □

[119] Karatas and El-Rayes 2014 x x x ● □

[67] Kasinalis et al. 2014 x ● ● □

[56] Lin and Gerber 2014 x ● ● □

[55] Lin and Gerber 2014 x ● ● □

[79] Rafiq and Rustell 2014 x x ● ● □

[41] R-González and Coley 2014 x x x ● □

[76] Wright et al. 2014 x ● ● □

[64] Yi 2014 x x ● ● □

[91] Bizjak et al. 2015 x x ● □

[77] Brownlee and Wright 2015 x x ● ● □

[80] Chang and Shih 2015 x x x ● ● ● □

[111] Ercan and Elias-Ozkan 2015 x x ● □

[122] Evins 2015 x x ● □

[60] Futrell et al. 2015 x x x x ● ● □

[88] Futrell et al. 2015 x x x ● □

[105] Huang et al. 2015 x x ● □

[108] Liu et al. 2015 x x x ● ● □

[106] McKinstray et al. 2015 x x ● □

[43] Méndez Echenagucia et al. 2015 x ● □

[42] Naboni et al. 2015 x x x ● □

[61] Negendahl and Nielsen 2015 x ● ● ● □

[90] Su and Yan 2015 x x x x ● ● □

[100] Vermeulen et al. 2015 x ● □

[44] Xu et al. 2015 x x x ● □

[99] Yi and Kim 2015 x ● □

[68] Yu et al. 2015 x x ● ● □

[65] Azari et al. 2016 x ● ● □

[89] Chen et al. 2016 x x ● ● □

[132] Cubukcuoglu et al. 2016 x x ● □
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Ref. Author(s) Year x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 z1 z2 z3

[46] Delgarm et al. 2016 x x x ● □

[47] Delgarm et al. 2016 x x x ● □

[131] Dino 2016 x ● □

[120] Ferrara et al. 2016 x ● □

[48] Si et al. 2016 x x ● □

[126] Song et al. 2016 x x x ● □

[45] Wright and Alajmi 2016 x ● □

[127] Yazici 2016 x ● □

[96] Zhang et al. 2016 x ● □

[133] Bahrehmand et al. 2017 x x ● □

[51] Bamdad et al. 2017 x x x ● □

[50] Bre and Fachinotti 2017 x x x ● □

[63] Chatzikonstantinou et al. 2017 x x ● ● □

[52] Chen and Yang 2017 x x ● □

[72] Dhariwal and Banerjee 2017 x ● ● □

[115] Dino and Üçoluk 2017 x x ● □ □

[135] Elshaer et al. 2017 x ● □

[49] Li et al. 2017 x x x ● ● ● ● □

[114] Sleiman et al. 2017 x x ● □ □

[78] Yang et al. 2017 x x ● ● □

[69] Zhang et al. 2017 x x x x ● ● ● □

[53] Bamdad et al. 2018 x ● □

[59] Bizjak et al. 2018 x x x ● □

[62] Chen et al. 2018 x x ● ● □

[112] Ferrara et al. 2018 x x ● □

[71] Gou et al. 2018 x x x ● ● □

[73] Harkouss et al. 2018 x ● ● □

[109] Hester et al. 2018 x ● ● □

[58] Li et al. 2018 x x x ● □

[70] Lin et al. 2018 x ● ● □

[110] Sghiouri et al. 2018 x ● □

[97] Vermeulen et al. 2018 x x ● □

[84] Yang et al. 2018 x x x ● ● ● □

[113] Youssef et al. 2018 x x ● □ □
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Ref. Author(s) Year x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 z1 z2 z3

[46] Delgarm et al. 2016 x x x ● □

[47] Delgarm et al. 2016 x x x ● □

[131] Dino 2016 x ● □

[120] Ferrara et al. 2016 x ● □

[48] Si et al. 2016 x x ● □

[126] Song et al. 2016 x x x ● □

[45] Wright and Alajmi 2016 x ● □

[127] Yazici 2016 x ● □

[96] Zhang et al. 2016 x ● □

[133] Bahrehmand et al. 2017 x x ● □

[51] Bamdad et al. 2017 x x x ● □

[50] Bre and Fachinotti 2017 x x x ● □

[63] Chatzikonstantinou et al. 2017 x x ● ● □

[52] Chen and Yang 2017 x x ● □

[72] Dhariwal and Banerjee 2017 x ● ● □

[115] Dino and Üçoluk 2017 x x ● □ □

[135] Elshaer et al. 2017 x ● □

[49] Li et al. 2017 x x x ● ● ● ● □

[114] Sleiman et al. 2017 x x ● □ □

[78] Yang et al. 2017 x x ● ● □

[69] Zhang et al. 2017 x x x x ● ● ● □

[53] Bamdad et al. 2018 x ● □

[59] Bizjak et al. 2018 x x x ● □

[62] Chen et al. 2018 x x ● ● □

[112] Ferrara et al. 2018 x x ● □

[71] Gou et al. 2018 x x x ● ● □

[73] Harkouss et al. 2018 x ● ● □

[109] Hester et al. 2018 x ● ● □

[58] Li et al. 2018 x x x ● □

[70] Lin et al. 2018 x ● ● □

[110] Sghiouri et al. 2018 x ● □

[97] Vermeulen et al. 2018 x x ● □

[84] Yang et al. 2018 x x x ● ● ● □

[113] Youssef et al. 2018 x x ● □ □
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FIG. 2.5 Relationship between form-finding parameters and performance objectives
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TabLe 2.2 Overview of optimisation methods and list of all parameters

Performance 
objectives

SEC methods used in PCA 
problems

All used parameters

Layout Skin Shape ■ Related with form‑finding parameters
■ Non‑related with form‑finding parameters

Energy EC EC&SI EC Window dimension, WWR, shading and ceiling design, building and 
roof shape, orientation, space dimension and location, light shelf, floor 
height, setpoints, temperature, construction and glazing properties, 
photovoltaic system, infiltration rate, solar absorptance, HVAC system 
and control variables

Daylight EC EC&SI EC Window dimension, WWR, shading and ceiling design, façade‑roof‑
building shape, orientation, space dimension and location, light shelf, 
floor height, roof structure, window locations, construction and glazing 
properties, infiltration rate, HVAC system and control variables

Solar
radiation

EC EC EC&SI WWR, shading design, façade‑roof‑building shape, orientation, 
space dimension and location, roof structure, building urban layout, 
floor height

Environmental
impact

EC&SI EC&SI Window dimension, WWR, shading design, building shape, orientation, 
setpoints, construction and glazing properties, building structure, air 
leakage, heat generator

Thermal
comfort

EC&SI Window dimension, WWR, shading design, building shape, orientation, 
setpoints, temperature, construction and glazing properties, solar 
absorptance, start‑stop delays, relative humidity, airflow rate

Holistic 
sustainability

EC&SI EC WWR, shading design, façade and building shape, construction and 
glazing properties, space location, photovoltaic design, 2D/3D grid 
matrix for layout

Life-cycle
cost

EC&SI EC&SI Window dimension, WWR, shading design, building shape, orientation, 
setpoints, construction and glazing properties, infiltration rate, HVAC 
system and control variables, humidity, ventilation, photovoltaic 
design, air leakage, heat generator

Initial and
global cost

EC EC EC Window dimension, WWR, façade and shading design, building and 
roof shapes, orientation, space dimension and location, floor count and 
height, construction and glazing properties, HVAC system

Energy
use cost

EC Window dimension, space dimension and location

Holistic
cost

EC EC WWR, shading design, structural and floor system, construction and 
glazing properties, renewables, plant and storage

Space
allocation

EC Building shape, space dimension and location, geometric 
transformation, grid subdivision

Logistics EC Window dimension, orientation, space dimension and location, facility 
assignment, adjacency matrix and preference, space properties, voxel 
matrix, window‑door‑entrance placement

Structure EC EC Building and façade shape, roof structure, geometric transformation
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FIG. 2.8 Matrix showing the use of conflicting objectives

Evaluating of these results allows the extraction of some information as follows:

 – From the viewpoint of the main categories, Fig. 2.4 shows that sustainability was the 
most studied topic. The least studied category was structure

 – From the viewpoint sub-categories, energy was the most dominant performance 
objective among all reviewed papers as it can be observed in Fig. 2.4, while little 
attention was attributed to holistic and energy use costs. The efforts on other sub-
categories were almost equally distributed

 – As in Table 2.2, EC was the major optimisation method used in reviewed papers
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 – As shown in Table 2.2, energy and daylight related papers considered a broader 
range of parameters than other performance topics. In addition to form-finding 
related parameters, non-related form-finding parameters played a crucial role in 
energy, daylight, environmental impact, thermal comfort, life-cycle cost, initial and 
global costs, and holistic cost considerations

 – From the viewpoint of form-finding parameters illustrated in Fig. 2.6, WWR (x17), 
shading (x11), orientation (x8), window dimensions (x15), and building’s shape (x3), 
were mostly used. Conversely, number of buildings (x2), ceiling design (x4), floor 
height (x6), light shelf (x7), roof’s structure (x10), and window location (x16), were 
the least used form-finding parameters

 – By matching the information of Fig. 2.6 and Table 2.1, the relationship between 
mostly used form-finding parameters and the corresponding building topic was 
investigated in detail. The window-to-wall ratio (x17) was used 28 times in relation 
to the building’s skin from a total of 37 cases. The remaining cases were related to 
building’s shape. The window dimensions (x15) was used 17 times (out of 22 cases 
in total) in relation to building’s skin. Moreover, in one occasion (from a total 
of 22 times) it was used in relation to the building’s shape, whereas in four occasions 
(out of 22 total cases) it was used in the building’s layout. Shading (x11) was 
used 33 times (out of 36 cases in total) in relation to the building’s skin. In addition, 
shading was studied in relation to the building’s shape in the remaining cases. 
Orientation (x8) was used 22 times (out of 28 in total) in relation to the building’s 
skin whereas in a building layout it was used in one case (out of 22 times). The rest 
of the times it was studied in relation to the building’s shape. Finally, building’s 
shape (x3) was used two times (from a total of 25 cases) in relation to the use of the 
building’s skin. Furthermore, in 20 out of 25 times it was used in the building’s shape 
whereas in three cases (out of 25 times) it was used in a building layout

 – As shown in Fig. 2.7, the major building topic was the building’s skin. Studies on the 
building layout and building shape were almost equally distributed

 – As shown in Fig. 2.8, combinations of objectives in regard to sustainability were 
dominant. In contrast, the second most dominant combination was between 
sustainability and cost. Among the sub-categories, combinations of these objectives 
that related to either energy or energy and daylight were the most common trade-
offs. Trade-offs between functionality and sustainability were obviously neglected 
in multi-objective approaches, though they were only considered in weighted sum 
approaches, e.g. in [90]. Furthermore, the trade-offs between functionality and cost 
were neglected both in the multi-objective and in weighted sum approaches
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 – As shown in Fig. 2.9, the number of published papers increased significantly in the 
last five years. Most of the reviewed papers were published in “Energy and Buildings”, 
“Building and Environment”, and “Automation in Construction”. The most studied 
problem scale was the building and the functions that received maximum attention 
were offices and residences

 – Single-objective and bi-objective optimisation problems were mostly considered, 
second to weighted summation (WS) and three objective optimisation problems. 
Many objective optimisation problems have rarely been considered. Most of the 
reviewed studies used constraints in the formulation of the optimisation problem

 – In approximately one-third of the published studies, optimisation replications were 
considered (e.g. different initial populations were used for each of the runs described 
within one publication). In addition, comparisons of the optimisation results using 
several SEC algorithms were also very limited

 – GA was mostly used for single-objective optimisation, whereas NSGA-II was mostly 
used for multi-objective optimisation problems

 2.8 Conclusion

This study provides a systematic review of PCA using SEC. The topic has been on 
the agenda of architects and engineers during the past few decades. Based on the 
evidence presented in the results, conclusions were drawn in relation to form-finding 
parameters, performance objectives, and optimisation, as summarised below.

Conclusions on form‑finding parameters

 – All reviewed publications dealt with the architectural design (this is because they all 
included form-finding as explained in the introduction of this study). Nevertheless, 
some of these publications placed more emphasis on architectural concerns (and 
therefore include parameters that have great impact on architectural design, such 
building’s shape (x3)). These publications are also the ones that focussed their 
conclusions on the building design. Other reviewed publications placed more 
emphasis on engineering concerns (such as the window-to-wall ratio (x17)). Several 
of these publications are also the ones that focus their conclusions on aspects 
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related to computer science (such as algorithmic comparisons). A better integration 
of investigations related to computer science within the architectural domain is 
missing despite its expected benefits

 – Form-finding parameters, such as window-to-wall ratio (x17) and shading (x11) can 
enhance sustainability performances. However, these parameters should be more 
representative compared to the window ratio or shading dimensions by including 
more design concerns

 – Based on the sustainability objective in building layout problems [81,90], authors 
tended to use window dimensions (x15) instead of the window-to-wall ratio (x17). 
One reason is the fact that the window dimension parameters are more controllable 
in relation to variations in the layout

 – Aspects that are usually delegated to shading (x11) (such as the control of solar 
gain for thermal comfort, control of the amount of daylight for visual comfort and 
prevention of glare) can also be improved by layout optimisation. Currently, this 
potential is not exploited given the lack of works that use shading parameters (x11) 
in the layout topic

 – Orientation (x8) is one of the most crucial parameters used to improve the 
sustainability and functionality performances of the building. From this point of view, 
it is remarkable that the orientation (x8) parameter has been rarely investigated 
in relation to the building layout. Currently, potentials are not exploited when the 
orientation parameter (x8) is incorporated in layout problems

 – There is no doubt that the façade design affects the sustainability-related 
performance objectives. In the reviewed publications, orientation parameters 
(x8) are mostly used in building skin problems. However, orientation can also be 
controlled by the variations of the building shape (e.g. twisted building)

 – Among the least used parameters, the light shelf (x7) has only been used in only one 
study thus far [60]. In order to improve the sustainability performance of existing 
buildings, the light shelf related parameters can play an important role

Conclusions on performance objectives

 – Only three studies [61,73,84] solved many-objective optimisation problems that 
involved all four objectives. Considering the necessity of satisfying many aspects 
of the design process, many-objective optimisation algorithms could be used. 
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When doing so, the selection of the optimisation algorithm is crucial since some of 
these are not convenient for use in many-objective optimisation problems. In the 
literature, there are some novel and recent techniques, which can be found in [136]

 – There were only three holistic approaches [113-115] that focussed on different 
building topics as part of the same optimisation problem, such as the skin and 
layout. These approaches presented promising potentials, while they integrated 
different performance objectives and minimised the design complexity. These 
approaches can be considered, especially in research studies that are focussed on 
integrated design approaches for high-performance buildings

 – Owing to the expensive computation time, the number of large-scale building studies, 
such as tall buildings and hospitals, was limited. Objective functions based on ANN 
can be an effective solution

Conclusions on optimisation

 – There are several methods to handle more than one objective in the multi-objective 
optimisation problem. One of them is the weighted summation approach which 
appears to be relevant and used in many of the reviewed documents. It combines 
different objectives by assigning some weights to each objective in order to convert 
the problem to a single-objective optimisation problem. However, defining these 
weights is a very difficult task (especially if this needs to be done at the beginning 
of the process, such as the case of weighted summation). Conversely, Pareto-
optimality approaches in multi-objective problems (e.g. bi-objective or three 
objective problems) allow the identification of the final decision at the end of the 
optimisation process

 – Owing to the formulation of optimisation problem, the final design decision can 
consider and eventually incorporate the results of the optimisation in different ways. 
From the standpoint of the single-objective problem, the result of the optimisation 
process can be used as the final design decision. The reason is that in this approach, 
there is only one fitness function to be either minimised or maximised. From the 
standpoint of the weighted summation problem, the final design decision depends on 
the weights that are defined for each fitness function. Even if there is only one result 
at the end of this optimisation process, the weights (defined by the decision-maker) 
may affect the result. From the standpoint of multi-objective problems, further 
investigation is required after the optimisation. The reason is that the Pareto-front 
suggests many alternatives as result. Owing to the non-domination, each alternative 
has either an advantage or disadvantage for each objective function based on 
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where the alternative is selected from the Pareto-front. Considering multi-objective 
optimisation may support the investigation of the relationship among objectives 
and decision variables. In reviewed documents, there are several methods explicitly 
used to support the decision-making process in the multi-objective domain (e.g. 
weighted summation approach to pick the closest solution to the utopic point in 
[46,47], clustering to categorise solutions in Pareto-front using self-organising 
maps in [84], and auto-associative connectionist model for treating preferences in 
[63]). A further consideration is valid for all types of optimisations and relates to 
the complexity of the architectural design. Regardless of how many objectives it 
can include, the optimisation tackles only a limited range of design requirements. 
Many other requirements and qualities expected from the design are not included 
in the optimisation. The optimisation results may have to be assessed and further 
elaborated also based on these additional criteria

 – According to the “No Free Lunch (NFL)” theorem [137], there is no global metaheuristics 
optimisation algorithm that is capable of discovering the best results for all real-
world or benchmark problems. In other words, one algorithm can outperform 
another algorithm only in terms of the solution to a specific problem. Architectural 
designs are unique problems owing to objectives, building programs, constraints, 
client expectations, and the surrounding impacts of the built environment. 
Therefore, one must explore and compare different algorithms for solving the same 
architectural design problem in order to eventually provide more adequate design 
decisions. However, in the literature, it is observed that very few studies have 
compared different SEC algorithms for the same architectural design problem

 – Only one study [97] explicitly considered equality constraints, which are very 
important in architecture (e.g. in order to match the design with strict municipality 
regulations). The use of equality constraint causes is associated with a more 
challenging optimisation process while searching for feasible design solutions. For 
this reason, only specialised constraint handling methods can cope with equality 
constraint problems [138]

 – Many objective optimisation problems are challenging in terms of observing the 
final set of solutions in the search space since they integrate at least four objectives 
at the same time. Different visualisation methods should be considered in order to 
facilitate the design choice

Given the tremendous effort expended on research on this topic, the relevance of 
the PCA framework is confirmed by the conducted review of the one hundred articles 
considered and referenced in this study. Nevertheless, the itemised points listed 
above clearly indicate the directions in which further efforts are needed.
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3 Optimus tool and 
pilot high‑rise 
model
Part A of Chapter 3 has been published as: Cubukcuoglu, C.; Ekici, B.; Tasgetiren, M. F.; Sariyildiz, S., 
OPTIMUS: self-adaptive differential evolution with ensemble of mutation strategies for grasshopper 
algorithmic modeling. Algorithms 2019, 12, (7), 141. Part B of Chapter 3 has been published as: Ekici, B.; 
Kazanasmaz, T.; Turrin, M.; Tasgetiren, M. F.; Sariyildiz, I. S. A Methodology for daylight optimisation of high-
rise buildings in the dense urban district using overhang length and glazing type variables with surrogate 
modelling, Journal of Physics: Conference Series, 2019; IOP Publishing: 2019; p 012133. For consistency 
of the dissertation, the layout is adapted to fit the template, some typos are adjusted, phrases are reworded 
without changing the content, and the spelling of Part A is converted to British English.

Part A: https://doi.org/10.3390/a12070141 
Part B: https://doi.org/10.1088/1742‑6596/1343/1/012133

This chapter presents the development of the optimisation tool called Optimus and 
the pilot study to test the efficiency of the multi-zone optimisation approach in high-
rises. Part A presents the Optimus tool, which considers a self-adaptive ensemble 
evolutionary algorithm that can cope with large numbers of design parameters. 
Tests 1 and 2 are presented to indicate the relevance of the developed tool based 
on 30-dimensional Congress on Evolutionary Computation 2005 benchmark 
problems and a 70-dimensional design problem. Part B explains Test 3 to utilise the 
efficiency of the multi-zone optimisation approach. The main idea of this method is 
to divide the building into several subdivisions (zones) to be considered different 
optimisation problems. The pilot high-rise model considers one of the most used 
façade parameters reported in Chapter 2 (overhang length) and glazing type for two 
conflicting daylight metrics predicted by the basic version of artificial neural network 
models and optimised by the initial version of Optimus tool.
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PART A
OPTIMUS: Self‑Adaptive Differential 
Evolution with Ensemble of Mutation 
Strategies for Grasshopper Algorithmic 
Modelling

ABSTRACT Most of the architectural design problems are basically real-parameter optimisation 
problems. So, any type of evolutionary and swarm algorithms can be used in 
this field. However, there is little attention on using optimisation methods within 
computer-aided design (CAD) programs. In this paper, we present Optimus, which 
is a new optimisation tool for grasshopper algorithmic modelling in Rhinoceros CAD 
software. Optimus implements a self-adaptive differential evolution algorithm with an 
ensemble of mutation strategies (jEDE). We made an experiment using standard test 
problems in the literature and some of the test problems proposed in IEEE CEC 2005. 
We reported minimum, maximum, average, standard deviations and number of 
function evaluations of five replications for each function. Experimental results on the 
benchmark suite showed that Optimus (jEDE) outperformed other optimisation tools, 
namely Galapagos (genetic algorithm), SilverEye (particle swarm optimisation), 
and Opossum (RbfOpt), by finding better results for 19 out of 20 problems. For 
only one function, Galapagos presented a slightly better result than Optimus. 
Ultimately, we presented an architectural design problem and compared the tools 
for testing Optimus in the design domain. We reported minimum, maximum, average 
and number of function evaluations of one replication for each tool. Galapagos and 
Silvereye presented infeasible results, whereas Optimus and Opossum found feasible 
solutions. However, Optimus discovered a much better fitness result than Opossum. 
In conclusion, we discuss the advantages and limitations of Optimus in comparison 
to other tools. The target audience of this paper is frequent users of parametric 
design modelling, e.g., architects, engineers, designers. The main contribution of 
this paper is summarised as follows. Optimus showed that near-optimal solutions 
of architectural design problems could be improved by testing different types of 
algorithms with respect to the no-free lunch theorem. Moreover, Optimus facilitates 
the implementation of different types of algorithms due to its modular system.

KEYWORDS Grasshopper, optimisation, differential evolution, architectural design, computational 
design, performance-based design, building performance optimisation, single-
objective optimisation, architectural design optimisation, parametric design
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 3.1 Introduction: Optimus tool

 3.1.1 The necessity of optimisation in architecture

Architectural design problems have an excessive number of design parameters. 
All possible combinations of design parameters correspond to thousands (in 
some cases billions) of different design alternatives. Choosing a desirable design 
alternative within such a big search space is a difficult task. In addition, architectural 
design requires different performance aspects to be satisfied as design objectives 
considering the integration of various topics (e.g., social, economic, physiological, 
health, safety, structural, cultural, sustainability, etc.) [1]. Some of the performance 
aspects (e.g., energy and daylight) require non-linear equations, which increase 
the level of complexity. Therefore, decision-making is highly important in the 
early stages of the design process. Because the decisions that are taken in the 
early design phases have a great impact on the following design stages. As a 
result, decision-making in the conceptual phase can be defined as a process that 
influences the overall performance and the appearance of the constructed building. 
At this point, computational optimisation techniques have become a necessity in 
architectural design.

Regarding the computational optimisation techniques, metaheuristic algorithms 
can play a vital role in not only presenting promising design alternatives but also in 
dealing with complexity [2]. On the other hand, these algorithms do not guarantee 
to find globally optimal solutions [3]. However, they can present near-optimal results 
within a reasonable time. For a decision-maker, providing a near-optimal solution in 
a reasonable time can be more advantageous than presenting the optimal solution 
within an extremely long time. Metaheuristics are usually inspired by the natural 
processes (such as interactions within swarms and evolution over the generations) 
to discover desirable solutions. Some of these algorithms are harmony search 
(HS) [4], particle swarm optimisation (PSO) [5], differential evolution (DE) [6,7], 
genetic algorithm (GA) [8], ant colony optimisation (ACO) [9], simulated annealing 
(SA) [10], and evolutionary algorithm (EA) [11]. According to the current state of 
the art, evolutionary computation and swarm optimisation algorithms are the most 
popular metaheuristics in the architectural domain [2].
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 3.1.2 Performative computational architecture framework

In order to investigate how the desirable solution can be found in the early phase 
of the design process, a general framework called performative computational 
architecture (PCA) [1,2] is considered in this paper. PCA proposes an iterative method 
based on form-finding, performance evaluation, and optimisation, as illustrated in 
Fig. 3.1. The form-finding stage includes the geometric generation using parameters 
in algorithmic modelling environments. The performance evaluation stage comprises 
the numeric assessments of performance aspects to evaluate how well the form 
meets the objectives. The optimisation stage corresponds to the metaheuristic 
algorithms for discovering desirable design solutions within a systematic 
search process.

Performance evaluationOptimisation

f(x)

g(x)

iteration

iteration

Form finding

Performative
Computational

Architecture

FIG. 3.1 Performative computational architecture (PCA) framework
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 3.1.3 Current optimisation tools in grasshopper

In this section, existing single-objective optimisation tools for Grasshopper 3d 
(GH) (available in www.food4rhino.com) are reviewed. Algorithm applications for 
specific optimisation problems (such as topology optimisation for structure) are not 
considered. In this context, Galapagos, Goat, Silvereye, Opossum, Dodo, and Nelder–
Mead optimisation plug-ins, shown in Fig. 3.2, are explained. Some of these plug-ins 
have been compared in building optimisation problems in the literature, which can be 
found in [12–15].

Galapagos Goat Silvereye Opossum

Dodo
(gradient free)

Nelder-MeadDodo
(stochastic gradient descent)

Dodo
(swarm)

FIG. 3.2 Existing single-objective optimisation plug-ins in grasshopper (GH)

 3.1.3.1 Galapagos

Galapagos [16] is one of the first released optimisation plug-ins for GH. The tool 
provides two heuristic optimisation algorithms, which are GA [8] and SA [10]. 
The developer of the tool suggests SA for rough landscape navigation, whereas 
evolutionary solver for finding reliable intermediate solutions. The majority of the 
design optimisation papers in the literature utilised the Galapagos tool in dealing with 
energy [17–19], daylight [20,21], both energy and daylight [22,23] and structure [24–26].
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 3.1.3.2 Goat

Goat [27] uses the NLopt library [28] in the graphical user interface of Galapagos. 
The tool considers a mathematically-rigorous approach (gradient-free optimisation 
algorithm) to reach fast and deterministic results. The Goat provides several 
optimisation algorithms that are constrained optimisation by linear approximation 
(COBYLA), bound optimisation by quadratic approximation (BOBYQA), subplex 
algorithm (Sbplx), the dividing rectangles algorithm (DIRECT), and controlled 
random search 2 (CRS2). Very recently, Goat has been used for building energy 
optimisation [14] and structure optimisation [29,30].

 3.1.3.3 Silvereye

Despite the gradient-free optimisation and evolutionary computation, Silvereye 
[15] is one of the swarm intelligence optimisation plug-ins released for GH. The tool 
considers ParticleSwarmOptimization.dll, which is a shared library containing an 
implementation of the core version of the PSO. In the literature, Silvereye is used in 
the design optimisation problems that focus on energy [14], microclimate [31] and 
structural [29].

 3.1.3.4 Opossum

Opossum [32] is the first model-based optimisation tool for GH. The solver is based 
on an open-source library for black-box optimisation with costly function evaluations 
(RBFOpt) [33], such as energy and daylight simulations. RBFOpt library uses the 
radial basis function with the local search while discovering satisfactory solutions 
with a small number of function evaluations. The Opossum is used in several design 
problems to deal with daylight [34], structure [29,30] and energy [14].

 3.1.3.5 Dodo

Dodo [35] is another plug-in based on the various implementations of optimisation 
algorithms that are non-linear gradient-free optimisation based on NLopt library [28], 
stochastic gradient descent algorithm, and swarm optimisation. In addition, Dodo 
also provides several supervised and unsupervised neural network algorithms.
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 3.1.3.6 Nelder-Mead optimisation

Nelder–Mead Optimisation [36] is the first tool based on the Nelder–Mead method [37], 
a local search-based optimisation algorithm in GH. Compared to heuristics, Nelder–
Mead typically has fewer function evaluations for computationally expensive models. 
In addition, the implementation of Nelder–Mead Optimisation also allows considering 
multiple constraints using the Kreisselmeier-Steinhauser function [38].

 3.1.4 This study: Optimus

In the field of computer science, different types of metaheuristic algorithms have 
been suggested to solve real-parameter optimisation problems by researchers 
and engineers for many years. As a common approach, the performance of each 
developed algorithm is tested by using a set of the standard benchmark problems 
such as Sphere, Schwefel’s, Rosenbrock’s, Rastrigin’s, etc. For real-world problems, 
this test is done by considering benchmark instances. Moreover, performances of 
proposed algorithms are frequently compared with existing algorithms because of 
the no free lunch (NFL) theorem [39]. According to the NFL theorem, the performance 
of an optimisation algorithm depends on the nature of the problem. In other words, 
one algorithm can outperform another algorithm in a specific problem. Thus, the NFL 
theorem argues that there is no global optimisation algorithm that can present the 
best result for all real-world and benchmark problems.

In the field of architecture, testing different types of algorithms for the same 
architectural design problem is not a common approach. One of the most important 
reasons for this fact is that computer-aided design (CAD) tools of architects do not 
include optimisation algorithms in a wide range. According to the current state of the art 
[40], only 3% of total users of optimisation tools are architects in the domain of building 
performance optimisation. Therefore, one may argue that there is little attention on 
using optimisation methods within the CAD programs. This paper introduces a new 
optimisation solver, called Optimus, with significant features listed below:

 – Compatible with parametric design models created in GH [16] algorithmic modelling 
for Rhinoceros [41] CAD software.

 – Supports PCA framework as outlined in the previous section.

 – Implements a self-adaptive [42] differential evolution algorithm with an ensemble of 
mutation strategies [43] (jEDE), explained in Section 3.3.

 – Achieves the highest performance when compared to other optimisation algorithms 
available in GH reviewed in Section 3.1.3.
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The performance of the Optimus is tested by benchmark suite, which consists of 
standard single-objective unconstrained problems and some of the test problems 
proposed in IEEE Congress on Evolutionary Computation 2005 (CEC 2005) [44], and 
a design problem having large numbers of parameters. The proposed algorithm is 
explained in Section 3.2, the implementation for GH is presented in Section 3.3, and 
experimental results are given in Section 3.4. Problem formulations and optimisation 
results of the benchmarks are given in Section 3.4.1, whereas Section 3.4.2. 
presents the formulation and optimisation results of the design problem. The 
development process of the Optimus is illustrated in Fig. 3.3.

Determining 
algorithm: jEDE

C# scripting in 
Rhino+GH

Preparing
user objects

Internal feedback

Testing with 
benchmark suite

Testing with design 
optimisation 

problem

PTIMUSO

FIG. 3.3 Optimus development process

 3.2 Self‑adaptive differential evolution 
algorithm with ensemble of mutation 
strategies

Metaheuristics are one of the most used optimisation methods in the domain of 
architectural design [2]. These algorithms can avoid local minima and maxima while 
coping with real parameters in large search spaces. In addition, metaheuristics can 
present near-optimal results when compared to other direct search methods in a 
reasonable time [3].

Swarm intelligence (SI) and evolutionary algorithms (EAs) are the most common 
sub-categories of metaheuristics that are inspired by nature using different search 
strategies. SI is based on interactions of swarms such as flocks of birds, schools of 
fish, ants and bees. Some examples of SI can be shown as Ant Colony Optimisation 
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(ACO) [9] and Particle Swarm Optimisation (PSO) [45,46]. On the other hand, EAs 
are in the class of population-based metaheuristic optimisation algorithms that are 
inspired by the mechanisms of biological evolution that mimic the selection and 
reproduction processes of living organisms. EAs are very effective to deal with NP-
hard problems. Some examples of EAs are Genetic Algorithms (GAs) [8,47]. Genetic 
Programming (GP) [48], Evolution Strategy (ES) [49], and DE [7].

In the EA category, DE, which is introduced by Storn and Price [7], is potentially 
one of the most powerful stochastic real-parameter optimisation algorithms in the 
literature. The algorithm can converge very fast in solving real-world problems such 
as in the domain of scheduling [50], optics [51], communication [6], power systems 
[52], pattern recognition [53] and recently in architectural design [54,55]which is a rural 
touristic region located on the west coast of Turkey, near the metropolis of Izmir. 
The problem at hand includes both engineering and architectural aspects that need 
to be addressed in a comprehensive manner. We thus adapt the view as a multi-
objective constrained real-parameter optimization problem. Specifically, we consider 
three objectives, which are conflicting. The first one aims at maximizing accessibility 
of urban functions such as housing and public spaces, as well as special functions, 
such as a marina for yachts and a yacht club. The second one aims at ensuring the 
wind protection of the general areas of the settlement, by adequately placing them 
in between neighboring land masses. The third one aims at maximizing visibility of 
the settlement from external observation points, so as to maximize the exposure of 
the settlement. To address this complex multi-objective optimization problem and 
identify lucrative alternative design solutions, a multi-objective harmony search 
algorithm (MOHS).

A recent survey by Das and Suganthan [56,57] clearly explains the history of DE and 
its success. One of the advantages of the DE algorithm is the simple code structure 
that facilitates its implementation. Another advantage is that the number of control 
parameters in DE is few, which are crossover rate (CR ), mutation rate (MR ), and 
population size ( NP ), when compared to other metaheuristic algorithms. In classical 
DE, these control parameters are constant during the whole optimisation process. 
However, a simple change in MR  or CR  generation strategies can significantly 
improve the performance of the algorithm. Therefore, some variants of DE in the 
literature focus on parameter settings as presented in [42,58]. Moreover, DE can 
tackle the large scale and computationally expensive optimisation problems as the 
space complexity of DE is low as mentioned in [59].
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 3.2.1 The basic differential evolution

The classical DE has four main stages. There are recursive processes among the 
second, third and fourth steps as follows:

 – Initialisation for generating the initial target population once at the beginning.

 – Reproduction with mutation for generating the mutant population by using the 
target population.

 – Reproduction with crossover for generating the trial population by using the 
mutant population.

 – Selection to choose the next generation among trial and target populations using 
one-to-one comparison. In each generation, individuals of the current population 
become the target population.

 3.2.1.1 Initialisation

In the basic DE algorithm, the initial target population has NP  individuals with 
a D -dimensional real-parameter vectors. Each vector is obtained randomly and 
uniformly within the search space restricted by the given minimum and maximum 
bounds: x xij ij

min max,  . Thus, the initialisation of jth component of ith vector can be 
defined as:

x x x x rij ij ij ij
0 = + −( )×min max min , (3.1)

where xij
0  is the ith target population at generation g = 0 ; and r  is a uniform random 

number in the range 0 1,[ ] .

 3.2.1.2 Mutation

The difference vector in the mutation operator is one of the main strengths of DEs [7]. 
Hence, DE differs from other EAs since it relies on a difference vector with a scale factor 
MR . The mutation process is the first step to generate new solutions. In order to obtain 
mutant population, two individuals are randomly chosen from the target population. 
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The weighted difference of these individuals is added to a third individual from the 
target population as in Equation (3.2).

v x MR x xij
g

kj
g

lj
g

mj
g= + × −( )− − −1 1 1 , (3.2)

where k l m, ,  are three randomly chosen individuals from the target population such 
that k l m i NP≠ ≠ ≠ ∈( )( )1,...,  and j D=1,..., . MR > 0  is a mutation scale factor 
influencing the differential variation between two individuals. vij

g  is the mutant 
population in generation g .

 3.2.1.3 Crossover

To obtain the trial population, a binomial crossover is applied to each variable. 
If a randomly and uniformly generated number r [ , ]0 1  is less than or equal to 
the crossover rate (CR ), the individuals from the mutant population are chosen; 
otherwise, target individuals are selected. Simply, the trial population is generated 
by recombining mutant individuals with their corresponding target individuals 
as follows:

u
v if r CR or j D
x otherwiseij

g ij
g

ij
g

j

ij
g=

≤ =




−1 , (3.3)

where the index Dj  is a randomly chosen dimension from j D=( )1,..., . It makes sure 
that at least one parameter of the trial population uij

g  will be different from the target 
population xij

g−1 . CR  is a user-defined crossover constant in the range 0 1,[ ] , and rij
g  

is a uniform random number in the interval 0 1,[ ]  whereas uij
g  is the trial population 

at generation g .

When the trial population is obtained, parameter values might violate search 
boundaries. Therefore, the solution can be restricted. For this reason, parameter 
values that violate the search range are randomly and uniformly re-generated as in 
Equation (3.4).
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x x x x rij
g

ij ij ij= + −( )×min max min . (3.4)

 3.2.1.4 Selection

For the next generation, the selection process is realised, which is based on the 
survival of the fittest among the trial and target populations. The population that has 
the lower fitness value is chosen according to one-to-one comparison, as in Equation 
(3.5).

x
u if f u f x

x otherwise
i
g i

g
i
g

i
g

i
g

=
( ) ≤ ( )






−

−

1

1
. (3.5)

 3.2.2 Self‑adaptive approach

In this paper, self-adaptive DE [42], so-called jDE, is employed. The jDE is very 
simple, effective and converges much faster than the basic DE, especially when the 
dimensionality of the problem is high or the problem is complex. However, in the jDE, 
each individual has their own MRi  and CRi  values. In this paper, these values are 
initially taken as CRi = 0 5.  and MRi = 0 9.  and they are updated as follows:

MR
MR r MR if r t

MR otherwisei
g l u

i
g=

+ × <



−
1 2 1

1 , (3.6)

CR
r if r t

CR otherwisei
g

i
g=

<



−
3 4 2
1 , (3.7)

where rj ∈{ }1 2 3 4, , ,  are uniform random numbers in the range 0 1,[ ] . t1  and t2  
represent the probabilities to adjust the MR  and CR . They are taken as t t1 2 0 1= = .  
and MRl = 0 1.  and MRu = 0 9. .
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 3.2.3 Ensemble approach

In addition to the self-adaptive approach, an ensemble approach [43] is employed 
in the jDE, so-called jEDE. This means that instead of using one type of mutation 
strategy with a fixed parameter setting as in the basic DE, each mutant individual 
is generated according to different mutation strategies with different parameter 
settings. In this approach, each dimension has a value pool for a competition of 
producing better future offspring according to their success in the past generations. 
In this study, the following mutation strategies (Mi ) are considered as in Equations 
(3.8)–(3.10). In M1 , the individuals that formed the mutant population are randomly 
selected. In M 2  and M 3 , strategies are benefitted from the information of the best 
solution (xbest) so far.

if STR M v x MR x xi i
j t

k
j t

i l
j t

m
j t= = + × −( )+0 1

1: , , , , , (3.8)

if STR M v x MR x xi i
j t

best
j t

i l
j t

m
j t= = + × −( )+1 2

1: , , , , , (3.9)

if STR M v x MR x x F x xi i
j t

i
j t

i best
j t

i
j t

k
j t

l
j= = + × −( ) + × −+2 3

1: , , , , , ,tt( ) , (3.10)

where k l m, ,  are three randomly selected individuals from the target population 
such that k l m i NP≠ ≠ ≠ ∈( )( )1,...,  and j D=1,..., . MRi > 0  is a mutation scale 
factor; in jEDE of this study, it is generated by using a self-adaptive procedure. STRi  
is the strategy used in each population to choose different mutation strategies. The 
pseudo-code of the final jEDE algorithm is given in Algorithm 1.

Algorithm 1. The self-adaptive differential evolution algorithm with ensemble 
of mutation strategies.

1 Set parameters g = 0 , NP =100 , Mmax = 4

2 Establish initial population randomly

3 P x x with x x xg g
NP
g

i
g

i
g

iD
g= { } = { }1 1,..., ,...,

4 Assign a mutation strategy to each individual randomly

5 M rand M for i NPi = ( ) =% ,...,max 1
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6 Evaluate population and find xbest
g

7 f P f x f xg g
NP
g( ) = ( ) ( ){ }1 ,...,

8 Assign CR i[ ] = 0 5.  and CR i[ ] = 0 9.  to each individual

9 Repeat the following for each individual xi
g

10 Obtain v M xi
g

i i
g= ( )

11 Obtain u CR x vi
g

i i
g

i
g= ( ),

12 Obtain x
u if f u f x

x otherwise
i
g i

g
i
g

i
g

i
g

=
( ) ≤ ( )






−

−

1

1

13 If f u f x M rand Mi
g

i
g

i( ) > ( ) = ( )−1 , % max

14 If f x f x x xi
g

best
g

best
g

i
g( ) ≤ ( ) =,

15 Update Fi
g  and CRi

g

16 If the stopping criterion is not met, go to Lines 9–15

17 Else stop and return best

 3.3 Optimus

Optimus is a new optimisation plug-in (https://www.food4rhino.com/app/optimus) 
developed for GH. The beta version (1.0.0) of the plug-in implements the self-
adaptive [42] differential evolution algorithm with an ensemble of mutation strategies 
[43] (jEDE) explained in the previous section. The algorithm is coded in C#, which is 
one of the available programming languages for custom scripting components in the 
GH. Optimus is based on a modular approach with many C# items. Every step of the 
optimisation process can be observed within these items. Fig. 3.4 shows the eight 
components of Optimus, which are categorised under three main titles, as follows:
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1 Optimus consists of
a ReadMe (giving details about Optimus),
b jEDE (using jEDE algorithm, generating mutant and trial populations)
c One-to-one (enabling selection process for next generation)

2 Initialise consists of
a GetBound (taking the boundaries of design variables in D  dimensions)
b InitPop (generating initial population for NP  population size in 

D  dimensions)

3 Utilities consist of
a xBest (finding chromosomes that have the lowest fitness value in 

the population)
b Merge (collecting the fitness, population, xBest and optimisation parameters)
c Unmerge (separating the fitness, population, xBest and 

optimisation parameters)

To manage the main loop of the Optimus, the HoopSnake component [60] is used for 
enabling feedback loops (recursive executions) within the GH.

In the Optimus, each of the eight components is transferred to GH clusters by 
defining collections of inputs and outputs, as shown in Fig. 3.5. This gives flexibility 
to the user for improving the C# code according to the user’s implementation 
purposes. As the next step, each cluster is converted to GH user object files, which 
are provided in the supplementary materials to be used as a plug-in for the GH.
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Build: 2019-Apr-15
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PhD Candidates: Berk Ekici, M.Sc., Cemre Cubukcuoglu, M.Sc.
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///  <summary>
///  T h i s  c l a s s  w i l l  b e  i n s t a n t i a t e d  o n  d e m a n d  b y  t h e  S c r i p t  c o m p o n e n t .
///  </summary>
p u b l i c  c l a s s  S c r i p t _ I n s t a n c e  :  G H _ S c r i p t I n s t a n c e
{
U t i l i t y  f u n c t i o n s

Members

     /**/
     p r i v a t e  v o i d  R u n S c r i p t  ( L i s t < d o u b l e >   i n _ I N I T P O P ,   L i s t < d o u b l e >  i n _ O L D P O P ,  i n t  I t e r a t i o n s ,
     {
        i n t  P S i z e  =  P o p S i z e ;
        i n t  L B i t  =  D i m S i z e ;
        i n t  i , j ;
        R a n d o m  r n d  =  n e w  R a n d o m ( ) ;
        d o u b l e  [ ]  F i t n e s s  =  n e w  d o u b l e  [ P S i z e ] ;
        d o u b l e  [ ]  T F i t n e s s  =  n e w  d o u b l e  [ P S i z e ] ;
        d o u b l e  [ , ]  O l d P o p  =  n e w  d o u b l e  [ P S i z e ,  L B i t ] ;
        d o u b l e  [ , ]  M u t a n t P o p  =  n e w  d o u b l e  [ P S i z e ,  L B i t ] ;
        d o u b l e  [ , ]  T r i a l P o p  =  n e w  d o u b l e  [ P S i z e ,  L B i t ] ;
        d o u b l e  [ ]  x b e s t  =  n e w  d o u b l e  [ L B i t ] ;
        d o u b l e  M R m i n  =  0 . 1 ;
        d o u b l e  M R m a x  =  0 . 9 ;
        d o u b l e  t 1  =  0 . 1 ;
        d o u b l e  t 2  =  0 . 1 ;

        d o u b l e  [ ]  C R  =  n e w  d o u b l e  [ P S i z e ] ;
        d o u b l e  [ ]  M R  =  n e w  d o u b l e  [ P S i z e ] ;
        d o u b l e  [ ]  S T R  =  n e w  d o u b l e  [ P S i z e ] ;
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FIG. 3.5 Example cluster implementation for self-adaptive differential evolution algorithm with ensemble of mutation strategies 
(jEDE) component

The user needs to follow several steps for using Optimus:

1 Place GetBound on the GH canvas and connect with number sliders.
2 Define the population size.
3 Get InitPop for initialisation using population size and output of GetBound.
4 Evaluate initial fitness using the output of InitPop.
5 Internalise the initial fitness.
6 Place xBest on the GH canvas.
7 Get Merge and connect with internalised initial fitness and outputs of 

InitPop and xBest.
8 Connect Merge with starting input (S) of HoopSnake.
9 Place UnMerge on the GH canvas and connect with feedback output (F) 

of HoopSnake.
10 Get jEDE and connect outputs of UnMerge, InitPop, GetBound.
11 Evaluate trial fitness using the output of jEDE.
12 Get One-to-One and connect with initial fitness, trial fitness and outputs of jEDE.
13 Place xBest and connect outputs of One-to-one for updating the new 

best chromosome.
14 Get Merge and connect outputs of jEDE, One-to-one, and xBest.
15 Complete the loop by connecting the output of Merge to the data input (D) of 

the HoopSnake.
16 These steps are visualised in Fig. 3.6, and an example file is shared in 

supplementary materials.
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FIG. 3.6 Visualisation of the Optimus loop

To save some computation time, Optimus does not update number sliders in the GH. 
During the optimisation process of the design problem, the geometry is generated 
with initial and trial populations. For this reason, NP  size of geometries is observed 
in each iteration. During the initial stage, various types of design alternatives 
are generated. However, when the Optimus is converged, similar geometries are 
observed, as shown in Fig. 3.7.
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 3.4 Experiments

This section explains how the experiments were performed to test the performance 
of the Optimus in comparison to the other chosen plug-ins. As mentioned before, the 
evaluations were completed by using standard benchmark problems in the literature 
and one architectural design problem proposed by the authors of this paper.

 3.4.1 Benchmark suite

The performance of the Optimus (jEDE algorithm) was firstly tested by using 
the following benchmark suite, which consists of 20 test functions. The first ten 
functions in the benchmark suite were classical test problems that have been 
commonly used in the literature. The remaining ten functions were taken from the 
benchmark suite presented in the CEC 2005 Special Session on Real-Parameter 
Optimisation that has been modified from the classical test problems in order to 
locate their global optimum under some circumstances (e.g., shifted and/or rotated 
landscape, optimum placed on bounds, Gaussian noise and/or bias added etc.) [44]. 
This modification makes these functions more difficult to solve than the classical 
test functions. In the test suite of this study, F1  to F5  are unimodal, F6  to F10  
are multimodal functions, whereas all the benchmark functions are minimisation 
problems. The benchmark suite is presented in Table 3.1, while these functions are 
summarised in Appendix 3A.

 3.4.1.1 Experimental setup and evaluation criteria

All the benchmark functions were coded in C# as individual components in the GH 
environment. These components are also available in supplementary materials as GH 
files to contribute evaluations of further developed architectural design optimisation 
tools. Furthermore, all the benchmark functions ran on a computer that has Intel 
Core I7-6500U CPU @ 2.50 GHz with 16 GB RAM. Both the number of dimension 
D  and the population size NP  were taken as 30 to limit the search space. For a 
fair comparison, termination criteria were defined as 30 min for each benchmark 
component. Additionally, five replications were carried out for each function and for 
each tool (thus, the total run time is 12,000 min).

TOC



 120 Towards  Self‑ Sufficient High‑Rises

TabLe 3.1 Benchmark suite

Notation Function

Fsph Sphere Function

Fros Rosenbrock’s Function

Fack Ackley’s Function

Fgrw Griewank’s Function

Fras Rastrigin’s Function

Fsch Generalised Schwefel’s Problem 2.26

Fsal Salomon’s Function

Fwht Whitely’s Function

Fpn1 Generalised Penalised Function 1

Fpn2 Generalised Penalised Function 2

F1 Shifted Sphere Function

F2 Shifted Schwefel’s Problem 1.2

F3 Shifted Rotated High Conditioned Elliptic Function

F4 Shifted Schwefel’s Problem 1.2 with Noise in Fitness

F5 Schwefel’s Problem 2.6 With Global Optimum on Bounds

F6 Shifted Rosenbrock’s Function

F7 Shifted Rotated Griewank’s Function without Bounds

F8 Shifted Rotated Ackley’s Function with Global Optimum on Bounds

F9 Shifted Rastrigin’s Function

F10 Shifted Rotated Rastrigin’s Function

For evaluating the performance of the algorithms (of the components), we basically 
reported min f(x), max f(x), avg f(x), and std f(x) that are the minimum, maximum, 
average, and standard deviation values of the function x  in completed replications. 
The maximum number of fitness evaluations (FES) within 30 min for each tool were 
also recorded, which means how many times the fitness was tested during each 30-
min optimisation process.
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 3.4.1.2 Experimental results

As mentioned before, Galapagos employs GA, SilverEye (v1.1.0) uses PSO and 
Opossum (v1.5.0) considers RBFOpt for enabling architectural design optimisation 
in the GH environment. We compared the results of Optimus, which uses jEDE, with 
those three optimisation tools to present its performance. In addition, all the runs for 
each component and for each function were taken by the authors. Table 3.2 shows 
the fitness results of Optimus, Opossum, SilverEye, and Galapagos, together with 
optimal fitness values of each function. Results clearly indicated the superiority of 
the Optimus over other optimisation tools such that it yielded the lowest min f(x) 
in nineteen functions out of twenty significantly. On the other hand, Galapagos 
outperformed Optimus in only one function ( F8 ) with a very small fitness difference. 
max f(x) and avg f(x) values in Table 3.2 further justify the better performance 
of the Optimus in such a way that the maximum and average function values of 
Optimus were closer to optimal fitness values. Furthermore, the FES within thirty 
minutes in each problem were the highest in Optimus. This clearly showed high 
margins between Optimus and other components, where Optimus was tremendously 
faster in each iteration. For example, when solving Fsph , the Optimus (jEDE) 
approximately realised 5844 FES/minute, whereas GA made 1643 FES/minute, 
PSO completed 1205 FES/minute, RBFOpt made 85 FES/minute. These results 
explicitly implied the superiority of Optimus over other components in solving the 
benchmark suite.
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TabLe 3.2 Comparison of Optimus, Opossum, Silvereye, Galapagos (D = 30, NP = 30, termination: 30 min)

Optimus_jEDE Opossum_RBFOpt SilverEye_PSO Galapagos_GA Optimal

Fsph
min f(x) 0.0000000 × 100 1.4000000 × 10-5 5.9000000 × 10-5 1.1709730 × 100 0

max f(x) 0.0000000 × 100 5.8000000 × 10-5 2.7057298 × 101 4.4052130 × 100

avg f(x) 0.0000000 × 100 3.6400000 × 10-5 5.4171618 × 100 2.7928586 × 100

std f(x) 0.0000000 × 100 1.8039956 × 10-5 1.0820072 × 10-1 1.1492298 × 100

FES 194,520 3225 31,560 34,260

Fros
min f(x) 0.0000000 × 100 2.7485056 × 101 1.6689612 × 101 6.0863438 × 103 0

max f(x) 3.9866240 × 100 2.1030328 × 102 5.8965910 × 104 2.2859534 × 104

avg f(x) 2.3919744 × 100 9.0892522 × 101 1.3859753 × 104 1.3060872 × 104

std f(x) 1.9530389 × 100 7.1919037 × 101 2.2886020 × 104 6.7095472 × 104

FES 149,460 882 26,700 35,070

Fack
min f(x) 0.0000000 × 100 3.3550000 × 10-3 1.3404210 × 100 5.7470000 × 10-2 0

max f(x) 1.3404210 × 100 2.4098540 × 100 3.7340120 × 100 1.0270860 × 100

avg f(x) 2.6808420 × 10-1 1.3795174 × 100 2.2482728 × 100 4.8037520 × 10-1

std f(x) 5.3616840 × 10-1 8.5713298 × 10-1 9.1850828 × 10-1 4.0392221 × 10-1

FES 206,370 1447 38,490 28,710

Fgrw
min f(x) 0.0000000 × 100 1.5840000 × 10-3 3.2081000 × 10-2 3.4407200 × 10-1 0

max f(x) 0.0000000 × 100 1.7086000 × 10-2 2.6292800 × 10-1 1.0657060 × 100

avg f(x) 0.0000000 × 100 7.6638000 × 10-3 1.2049020 × 10-1 8.2474220 × 10-1

std f(x) 0.0000000 × 100 5.6121253 × 10-3 8.1064770 × 10-2 2.6131521 × 10-1

FES 151,110 1089 26,610 37,410

Fras
min f(x) 4.9747950 × 100 2.5870757 × 101 3.3829188 × 101 7.0535550 × 100 0

max f(x) 2.3879007 × 101 4.1789542 × 101 6.1687356 × 101 2.9072445 × 101

avg f(x) 1.3332448 × 101 3.6218407 × 101 4.8355074 × 101 1.5404780 × 101

std f(x) 6.7363920 × 100 5.4349940 × 100 1.1424086 × 101 9.1077975 × 100

FES 206,520 4149 37,650 51,480

Fsch
min f(x) 2.3687705 × 102 1.2877414 × 103 4.1089621 × 103 1.9550066 × 103 0

max f(x) 4.7375372 × 102 4.0111803 × 103 6.1589437 × 103 2.7977670 × 103

avg f(x) 4.0269072 × 102 2.7169368 × 103 5.2658793 × 103 2.3201102 × 103

std f(x) 9.4750668 × 101 8.8809862 × 102 6.6677783 × 102 2.8681876 × 102

FES 148,140 1487 27,210 35,940

Fsal
min f(x) 1.9987300 × 10-1 2.8070190 × 100 2.9987300 × 10-1 1.4998750 × 100 0

max f(x) 4.9987300 × 10-1 4.3000810 × 100 4.9987300 × 10-1 2.8375760 × 100

avg f(x) 3.1987300 × 10-1 3.4413810 × 100 3.7987300 × 10-1 2.0682340 × 100

std f(x) 1.1661904 × 10-1 5.6623101 × 10-1 7.4833148 × 10-2 6.1557512 × 10-1

FES 201,720 4769 38,640 51,360

>>>
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TabLe 3.2 Comparison of Optimus, Opossum, Silvereye, Galapagos (D = 30, NP = 30, termination: 30 min)

Optimus_jEDE Opossum_RBFOpt SilverEye_PSO Galapagos_GA Optimal

Fwht
min f(x) 2.3704633 × 101 9.6592754 × 102 1.8455490 × 102 2.3632742 × 105 0

max f(x) 2.4040716 × 102 1.6904059 × 103 6.2776811 × 102 5.5055000 × 108

avg f(x) 1.0789137 × 102 1.2610498 × 103 4.0698894 × 102 2.7440867 × 108

std f(x) 7.4951993 × 101 2.6984398 × 102 1.6923390 × 102 2.2575944 × 108

FES 146,640 728 23,250 29,730

Fpn1
min f(x) 0.0000000 × 100 2.9057000 × 10-2 3.1283800 × 10-1 1.4510000 × 10-3 0

max f(x) 0.0000000 × 100 9.0392970 × 100 1.3487570 × 100 1.7632000 × 10-2

avg f(x) 0.0000000 × 100 2.8243854 × 100 6.7680180 × 10-1 6.0638000 × 10-3

std f(x) 0.0000000 × 100 3.1774566 × 100 4.2868737 × 10-1 6.0403379 × 10-3

FES 203,880 1394 39,420 57,720

Fpn2
min f(x) 0.0000000 × 100 2.0400434 × 101 1.0000000 × 10-11 1.8037300 × 10-1 0

max f(x) 1.0987000 × 10-2 2.8693232 × 101 9.3079800 × 10-1 2.7208440 × 100

avg f(x) 2.1974000 × 10-3 2.5384324 × 101 2.2552480 × 10-1 1.0041520 × 100

std f(x) 4.3948000 × 10-3 3.4851206 × 100 3.5679494 × 10-1 9.4298611 × 10-1

FES 148,380 639 29,040 41,520

F1
min f(x) −4.5000000 × 102 −4.4999898 × 102 2.6232595 × 102 −4.4995998 × 102 -450

max f(x) −4.5000000 × 102 −4.4999478 × 102 8.0377273 × 103 −4.4988406 × 102

avg f(x) −4.5000000 × 102 −4.4999680 × 102 4.0824562 × 103 −4.4992015 × 102

std f(x) 0.0000000 × 100 1.4829922 × 10-3 2.9460423 × 103 3.0428108 × 10-2

FES 198,060 6156 45,580 66,180

F2
min f(x) −4.5000000 × 102 3.4590652 × 104 −3.8035693 × 102 6.8476195 × 103 -450

max f(x) −4.5000000 × 102 4.7978174 × 104 5.2590674 × 102 1.2302281 × 104

avg f(x) −4.5000000 × 102 4.3226072 × 104 −1.2838464 × 102 1.0174618 × 104

std f(x) 0.0000000 × 100 4.9030645 × 103 3.3183646 × 102 1.8557926 × 103

FES 146,010 1061 33,840 50,160

F3
min f(x) 6.0045376 × 104 1.5561000 × 107 1.9264000 × 106 1.1250000 × 107 -450

max f(x) 2.4850013 × 105 7.5084000 × 107 8.0820000 × 106 2.7772000 × 107

avg f(x) 1.2857393 × 105 3.7380600 × 107 4.5525000 × 106 1.7212200 × 107

std f(x) 6.4175884 × 104 2.0647812 × 107 2.0206526 × 106 5.6281541 × 106

FES 205,260 1293 48,030 66,000

F4
min f(x) −4.5000000 × 102 2.8373782 × 104 −4.2715712 × 102 7.8877685 × 103 -450

max f(x) −4.5000000 × 102 3.9404224 × 104 4.0484178 × 103 1.1191542 × 104

avg f(x) −4.5000000 × 102 3.2359668 × 104 5.1724092 × 102 9.4535270 × 103

std f(x) 0.0000000 × 100 4.0412734 × 103 1.7663033 × 103 1.2966977 × 103

FES 147,240 1055 35,610 53,520

>>>
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TabLe 3.2 Comparison of Optimus, Opossum, Silvereye, Galapagos (D = 30, NP = 30, termination: 30 min)

Optimus_jEDE Opossum_RBFOpt SilverEye_PSO Galapagos_GA Optimal

F5
min f(x) 9.3362001 × 102 4.7527012 × 103 7.5856684 × 103 1.8506721 × 104 -310

max f(x) 2.5603668 × 103 5.8813877 × 103 1.2910221 × 104 2.4057172 × 104

avg f(x) 2.0333032 × 103 5.3824799 × 103 9.4390617 × 103 2.0151105 × 104

std f(x) 570.1512256 438.2070353 2031.289127 2004.100331

FES 195,720 1891 47,550 67,560

F6
min f(x) 3.9000000 × 102 1.4168473 × 103 5.0073093 × 102 9.7856127 × 102 390

max f(x) 3.9398662 × 102 1.3904779 × 104 4.1540000 × 109 9.6995775 × 103

avg f(x) 3.9159465 × 102 8.7212119 × 103 9.8402870 × 108 5.6395846 × 103

std f(x) 1.9530389 × 100 4.6035484 × 103 1.5972516 × 108 3.5378379 × 103

FES 148,260 687 33,540 48,810

F7
min f(x) 4.5162886 × 103 4.5162896 × 103 5.8669417 × 103 4.5172240 × 103 -180

max f(x) 4.5162886 × 103 4.5162985 × 103 7.2432580 × 103 4.5290168 × 103

avg f(x) 4.5162886 × 103 4.5162936 × 103 6.5251090 × 103 4.5222540 × 103

std f(x) 0.0000000 × 100 3.1911420 × 10-3 5.4380701 × 102 4.7496031 × 100

FES 200,820 10,108 42,060 58,290

F8
min f(x) −1.1905178 × 102 −1.1910166 × 102 −1.1901775 × 102 −1.1940297 × 102 -140

max f(x) −1.1902135 × 102 −1.1876717 × 102 −1.1892500 × 102 −1.1906700 × 102

avg f(x) −1.1903319 × 102 −1.1889866 × 102 −1.1899553 × 102 −1.1919711 × 102

std f(x) 1.0538581 × 10-2 1.1070562 × 10-1 3.5483336 × 10-2 1.4127484 × 10-2

FES 149,670 2018 35,580 52,020

F9
min f(x) −3.1706554 × 102 −2.5827181 × 102 −2.3690804 × 102 −3.1677970 × 102 -330

max f(x) −3.1209075 × 102 −2.3567358 × 102 −1.6682751 × 102 −3.1164785 × 102

avg f(x) −3.1527462 × 102 −2.4625749 × 102 −1.8917798 × 102 −3.1499413 × 102

std f(x) 1.7117897 × 100 8.0334497 × 100 2.5285354 × 101 1.8617799 × 100

FES 212,160 5577 47,610 67,560

F10
min f(x) −2.7030257 × 102 −2.3528777 × 102 −1.3299956 × 102 4.0215414 × 101 -330

max f(x) −2.2751946 × 102 −1.3298172 × 102 −8.1262211 × 101 1.8543670 × 102

avg f(x) −2.5139841 × 102 −1.8578676 × 102 −1.0572303 × 102 1.1181316 × 102

std f(x) 1.4307998 × 101 3.9394042 × 101 1.8528544 × 101 5.7458318 × 101

FES 146,820 1192 35,220 53,070

Results presented in Table 3.2 are provided in supplementary materials containing 
minimum fitness values of each replication, as well as their corresponding 
chromosomes. Considering min f(x), the convergence of standard benchmarks and 
CEC 2005 benchmarks are presented in Figs. 3.8, 3.9, and 3.10.
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FIG. 3.8 Convergence graphs of standard benchmark functions
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FIG. 3.9 Convergence graphs of standard and CEC2005 benchmark functions
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FIG. 3.10 Convergence graphs of CEC2005 benchmark functions

 3.4.2 Design optimisation problem

This section presents a design problem for a frame structure, which has a span 
of 30 m by 25 m. Before generating the frame structure, we executed a base 
surface, which controls the shape of the design, having 7.5 m height, five axes, 
and 25 controlling points. Afterwards, 65 parameters are defined for five axes to 
change the shape of the base surface, so the shape of the frame structure. Points 
on ground level have two parameters for x and y directions, whereas other points 
have three parameters for changing the positions in all directions. In the next step, 
using the base surface, we generated the frame structure with the truss structure 
component provided by LunchBox [61] plug-in. In this component, the structure 
on the base surface is controlled by three parameters, which are division amounts 
on u and v directions and the depth of the truss system. Finally, the generated 
frame structure is combined with the Karamba 3D plug-in [62], which provides the 
evaluation of parametric structural models in GH. The structural evaluation process 
is mentioned in the following lines. The development of the parametric model is 
illustrated in Fig. 3.11.
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FIG. 3.11 Process of the parametric frame structure

Regarding the performance evaluation of each generated design alternative, each 
line in the structural model is defined as a beam, whereas each point located on 
the ground level is defined as a support point. In addition, cross-section and its 
parameters are also defined by Karamba just before the evaluation process. For 
the design problem on hand, the rectangular cross-section is defined using three 
parameters that are the height, upper, and lower widths of the section. Finally, 
gravity and lateral loads are defined as the last step of the structural evaluation. 
As a gravity load, the distribution of the total mass for each intersecting point is 
considered. For the lateral load, 2 kN on each intersecting point is utilised, whereas 
the material type of the model is assigned as steel. An example of the evaluated 
model is shown in Fig. 3.12.

FIG. 3.12 Evaluation of the structure model
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To sum up, 70 parameters are used to define the design optimisation problem. This 
corresponds to approximately 1.333 x 10177 alternatives in the search space. When 
compared to mathematical benchmark problems, design problems may require larger 
numbers of parameters owing to multiple optimisation tasks that could be involved 
in the conceptual design phase (e.g., optimising the layout scheme and the façade 
design of a building to find the most desirable plan scheme with the lowest energy 
consumption). Therefore, such a large search space with 70 parameters is defined 
to investigate the performance of the algorithms as a demonstration of a complex 
design task having large numbers of parameters. Properties of design parameters 
are given in Table 3.3. Alternatives of the frame structures, as well as the divergence 
of the design alternatives, are illustrated in Fig. 3.13.

TabLe 3.3 Properties of design parameters

Notation Design Parameter Min Max Type

x1–x13 Coordinates of control points in axis 1 −2.00 2.00 Continues

x14–x26 Coordinates of control points in axis 2 −2.00 2.00 Continues

x27–x39 Coordinates of control points in axis 3 −2.00 2.00 Continues

x40–x52 Coordinates of control points in axis 4 −2.00 2.00 Continues

x53–x65 Coordinates of control points in axis 5 −2.00 2.00 Continues

x66 Division amount on u direction 3 10 Discrete

x67 Division amount on v direction 3 10 Discrete

x68 Depth of the truss 0.50 1.00 Continues

x69 Height of the cross-section 10.00 30.00 Continues

x70 Upper and lower width of the cross-section 10.00 30.00 Continues

The objective function, which is minimising the mass m( )  subject to displacement v , 
is formulated as follows:

Min m( )  where m  is given by

m Wi
i

j

=
=
∑

1
, (3.11)

where Wi  is the weight of ith element of the frame structure, and j is the total number 
of the elements in frame structure.
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FIG. 3.13 Various alternatives of the design problem

Subject to:

v m 0 1. , (3.12)

v F
K

= , (3.13)

where F  is the loading force, and K  is the bending stiffness of the frame structure. 
To compare the optimisation results of Optimus with others, we defined a penalty 
function by combining m  and v  as follows:

m
m if v
m otherwise

=
≤

×




0 1
100

.
. (3.14)
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For safety reasons, the final design should have a minimum of 0.1m displacement 
that corresponds to a feasible solution. In addition, for minimising construction 
cost, the objective is defined as the minimisation of the mass. Hence, the final design 
should present the smallest amount of steel usage subject to an acceptable value 
of displacement.

 3.4.2.1 Experimental setup and evaluation criteria

The design optimisation problem ran on a computer that had Intel Core I7-6500U 
CPU @ 2.50 GHz with 16 GB RAM. The number of dimensions D  was taken as 70, 
whereas the population size NP  was 50. As such the CEC 2005 benchmark 
problems, the termination criteria was determined as 30 min for each run. For the 
design instance on hand, only one replication was carried out for each optimisation 
tool. To evaluate the performance of different optimisation algorithms, we reported 
min f(x), which is the minimum fitness value of the design problem, and g(x), which 
is the constraint value of the minimum fitness. The maximum number of fitness 
evaluations (FES) within 30 min for each tool were also recorded. The problem 
definition is available in supplementary materials as GH file to contribute evaluations 
of further developed architectural design optimisation tools.

 3.4.2.2 Design results

After 30 min run for each tool in GH, an overview of optimisation results is given 
in Table 3.4. The convergence graph for Optimus, Opossum, SilverEye and 
Galapagos are presented in Fig. 3.14, whereas the final designs proposed by 
each algorithm are illustrated in Fig. 3.15. The results indicated that Optimus and 
Opossum found feasible solutions, whereas SilverEye and Galapagos discovered 
infeasible alternatives. Regarding the feasible results, there was a significant 
difference between jEDE and RbfOpt as the Optimus found a significantly smaller 
mass amount than Opossum. During the optimisation process, we also observed 
that Optimus evaluated more fitness functions than other tools. From the point 
of proposed (best) design alternatives, Galapagos and SilverEye presented larger 
frame structures than other algorithms because of smaller profile dimensions. 
This caused an infeasibility in displacement, thus, undesirable results in mass. 
On the other hand, Opossum discovered a similar frame size with Galapagos and 
Silvereye but bigger dimension sizes for the profile parameters. This suggested 
an acceptable amount of displacement with the usage of 22 tons of steel. 
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However, the Optimus discovered the smallest mass considering the smallest 
frame structure and profile size that was the most desirable design alternative for 
both constraint and fitness functions. Considering a 70-dimensional challenging 
design problem clearly presented the performance difference when using self-
adaptive parameter updates and the ensemble of mutation strategies. Hence, 
evidence was conducted to employ advanced optimisation algorithms instead of 
their basic implementations in the architectural design domain. Results presented 
in Table 3.4 are provided in supplementary materials containing minimum fitness 
values and their corresponding chromosomes. The best result discovered by Optimus 
is illustrated in Fig. 3.16.

TabLe 3.4 Comparison of Optimus, Opossum, Silvereye, Galapagos (D = 70, NP = 50, termination: 30 min)

Optimus_jEDE Opossum_RBFOpt SilverEye_PSO Galapagos_GA

Design
problem

min f(x) 6.21637 x 103 2.25410 x 104 6.89062 x 105 6.74560 x 105

g(x) 0.0994 0.0996 0.6674 0.9273

FES 31,800 5102 17,100 19,000

GA      (Galapagos)
PSO     (SilverEye)
RbfOpt (Opossum)
jEDE    (Optimus)

Algorithms7,000,000

3,000,000

1,250,000

500,000

200,000

90,000

45,000

20,000

10,000

5000

M
as

s (
kg

)

FES in 30 Minutes

FIG. 3.14 Convergence graph of the architectural design problem
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Galapagos
f(x): 6.74560×105

g(x): 0.9273

SiverEye
f(x): 6.89062×105

g(x): 0.6674

Opossum
f(x): 2.25410×104

g(x): 0.0996

Optimus
f(x): 6.21637×103

g(x): 0.0994

FIG. 3.15 Optimised results of the design problem

FIG. 3.16 Illustration of the best alternative (Optimus) result for the design optimisation problem
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 3.5 Discussion

The performance of the Optimus tool is evaluated using 20 benchmark problems and 
a design optimisation problem to be compared with GA, PSO, RBFOpt. Experimental 
results showed that jEDE outperforms other algorithms by finding better fitness 
values. Several reasons can be mentioned to explain this outcome. First, Optimus 
uses a self-adaptive approach for producing control parameters. This gives the 
advantage to adapt the search behaviour of the algorithm according to the nature 
of the problem. Secondly, the developed tool considers the ensemble of mutation 
strategies, while the other algorithms are based on a single mutation operator. As 
a result, using more than one mutation strategy enlarged the search space that 
supports the algorithm for finding better solutions; thus, increasing the ability 
to search for near-optimal results. Thirdly, Optimus does not update the number 
sliders of GH, which corresponds to decision variables for each iteration. Instead, 
generated populations are directly connected to the geometry. Therefore, the 
required computation time for one generation was less than the other algorithms. 
Finally, optimal values of some problems are outside of the initialisation range 
(e.g., F7 ). One may argue that this situation can also be the situation in architectural 
design problems. Generating chromosome values outside of the initialisation range 
is possible in the Optimus, whereas the other tools have no access to control 
such procedures.

RBFOpt algorithm is recently compared with metaheuristics using several building 
optimisation problems in [12–14,32]. According to the results, RBFOpt found better 
solutions than metaheuristics. In these studies, termination criterion is defined as 
the number of iterations during the evaluation of different algorithms. This gives 
an advantage for RBFOpt, due to the ability to discover desirable solutions with a 
small number of function evaluations. However, metaheuristics require an excessive 
number of function evaluations to find the optimal solutions. In this study, we defined 
the termination criterion as run time for 30 min to make a fair comparison. Results 
indicated that RBFOpt requires more computation time to execute one function than 
metaheuristics. For this reason, while comparing model-based and metaheuristic 
algorithms, rather than iterations and/or function evaluations, run time should be 
considered as a termination criterion.

Fitness functions based on simulations (e.g., energy and daylight) may require an 
enormous amount of time for convergence during the optimisation. From the point of 
metaheuristics, the usage of surrogate models [63] can be a solution to overcome this 
drawback since surrogate models require less amount of function evaluation while 

TOC



 135 Optimus tool and pilot high-rise model

approximating the fitness. In this way, researchers can consider many replications in 
a short run time during the optimisation process.

Furthermore, handling constraints is another important topic for architectural design 
optimisation. Most of the real-world problems require design constraints that may 
restrict the design alternatives during the optimisation process. There are many 
constraint handling methods that can be practically integrated into the optimisation 
algorithms [64]. In the reviewed literature, only Nelder–Mead optimisation tool 
provides a constraint handling method for the design optimisation problems in 
the GH. To make a fair comparison with Galapagos, SilverEye, and Opossum, we 
considered the constant penalty function as a constraint to find a feasible solution in 
the design optimisation problem. However, there are extremely hard constraints that 
can be tackled in real-world problems, e.g., equality constraints. Currently, this is not 
available in GH.

In addition to the advantages of Optimus mentioned above, there are some 
limitations, as well. Even though the modular approach provides flexibility for using 
different algorithms, this approach requires more plug-in items to handle in each 
step of the optimisation process. Another limitation is the evaluation strategy of the 
fitness function. Optimus creates NP  size of the list, where each element in the list 
has a D  size of dimensions. All these parameters (with NP D×  size) are sent to the 
objective function for fitness evaluation. Afterwards, NP  size of fitness results is 
obtained simultaneously. This procedure gives an advantage for Optimus in terms 
of computation time, but it may not be suitable for some of the architectural design 
problems owing to the more actions to be taken during the function evaluation.
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 3.6 Conclusion

In conclusion, this paper presented a new optimisation plug-in called Optimus for 
GH algorithmic modelling environment in the Rhinoceros CAD program. A self-
adaptive differential evolution algorithm with an ensemble of mutation strategies 
was implemented in Optimus for coping with the complex architectural design 
problems. An experimental design was introduced by using standard test problems 
in the literature, some of the test problems proposed in IEEE CEC 2005 and an 
architectural design problem to evaluate the proposed algorithm’s performance. 
In general, Optimus outperformed other optimisation algorithms available in GH. 
The paper also showed that an algorithm that presents a promising performance in 
solving real-parameter benchmark functions could also find desirable alternatives 
in solving architectural design problems. Therefore, the paper aims to support 
decision-makers while coping with large numbers of design parameters in the 
domain of architectural design optimisation through the presented tool.

As future work, Optimus will be further improved by implementing different types 
of metaheuristic algorithms due to the NFL theorem. These algorithms can be 
variants of PSO, GA, HS, and DE. Moreover, Optimus can be updated for constrained 
optimisation problems using near-feasibility threshold [65,66], Superior of Feasibility 
[67], and Epsilon constraint [68]. An ensemble of constraint handling techniques 
[69] can also be used in Optimus that may play a crucial role in constrained design 
problems. Finally, Optimus can be extended for the multi-objective optimisation 
domain owing to its modular system.
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Appendix 3A. Benchmark functions

Fsph : Sphere Function F x xsph i
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F4 : Shifted Schwefel’s Problem 1.2 with Noise in Fitness 
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PART B
A Methodology for daylight optimisation 
of high‑rise buildings in the dense 
urban district using overhang length 
and glazing type variables with 
surrogate modelling

ABSTRACT Urbanisation and population growth lead to the construction of higher buildings in 
the 21st century. This causes an increment in energy consumption as the amount 
of constructed floor areas is rising steadily. Integrating daylight performance in 
building design supports reducing energy consumption and satisfying occupants’ 
comfort. This study presents a methodology to optimise the daylight performance 
of a high-rise building located in a dense urban district. The purpose is to deal with 
optimisation problems by dividing the high-rise building into five zones from the 
ground level to the sky level, to achieve better daylight performance. Therefore, 
the study covers five optimisation problems. Overhang length and glazing type 
are considered to optimise spatial Daylight Autonomy (sDA) and Annual Sunlight 
Exposure (ASE). A total of 500 samples in each zone are collected to develop 
surrogate models. A self-adaptive differential evolution algorithm is used to 
obtain near-optimal results for each zone. The developed surrogate models can 
estimate the metrics with a minimum of 98.25% R2, which is calculated from 
neural network prediction and Diva simulations. In the case study, the proposed 
methodology improves daylight performance of the high-rise building, decreasing 
ASE by approx. 27.6% and increasing the sDA values by around 88.2% in the dense 
urban district.
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 3.7 Introduction: Pilot model

High-rise buildings have been designed to gain additional floor area in the limited 
urban plot since the early examples [1]. In the 21st century, population growth and 
a trend towards urbanisation lead construction of higher buildings increasingly. 
Owing to a rise in constructed spaces, this suggests an increment in the energy 
consumption to meet the requirements for thermal and visual comfort [2]. In 
this respect, daylight becomes an important performance aspect for high-rises 
because designing spaces with good daylight performance helps reducing energy 
consumption and satisfy occupants’ comfort requirements. However, this is a 
complex task owing to design decisions given in the conceptual phase. First, many 
design parameters such as the shape of the building, design of the shading devices, 
and material properties suggest an enormous number of design alternatives affecting 
the building performance. Thus, finding a desirable set of parameters during the 
decision is very challenging in the early phases. Secondly, daylight requirements 
can vary relevantly depending on the indoor functions, which are often mixed in 
high-rises. Thirdly, in several climates, the need for daylight conflicts with the need 
of reducing indoor solar loads. Finally, a possible design solution cannot be applied 
at all heights of the high-rise. In fact, due to the surrounding buildings in the dense 
districts, optimal design parameters for good daylight performance can be different, 
starting from the ground level to the sky level.

Very limited studies can be found for daylight optimisation of high-rises. One 
study [3] focuses on proposing modifications to extend the daylight deeper into the 
space using extra interior height, alternative glazing and an external light shelf for 
a commercial high-rise building. In another study [4], authors presented a holistic 
passive design approach to evaluate a typical high-rise residential building focusing 
on daylight, natural ventilation and thermal comfort. Recently, researchers [5] 
considered a simulation-based multi-objective optimisation to minimise energy 
loads, reduce CO2 emissions, and improve occupants’ health and comfort for 
high-rise and low-rise buildings. All these studies present promising results and 
conclusions. However, none of these studies considered different design parameter 
sets for different parts of the high-rises that can further improve the daylight 
performance. This study presents a methodology to optimise daylight performance 
of a whole high-rise building located in a dense urban district, considering a variety 
of parameter sets at different subdivisions (zones) of the building.
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 3.8 Methodology

Daylight availability in the upper zones of the high-rise building, which are close 
to the sky, is different from daylight availability in the lower zones near the ground 
level since the surrounding buildings cause obstruction on the façade in dense 
urban environments. Such a situation may result in specific requirements on 
daylight performances at each floor/zone level in the building. For instance, an 
optimised parameter set near the sky level may not perform desirable performance 
solutions for the ground level and the other way around. Thus, the idea of the 
proposed methodology is based on a holistic approach, which aims to consider 
each corresponding zone of high-rise buildings as an optimisation problem. In this 
respect, desirable parameter sets for each zone/level can be tested and evaluated. 
There are four steps which are proposed in methodology (Fig. 3.17). These are:

 – Form finding: A parametric model of a high-rise building is generated defining 
design parameters. Five equally divided zones are defined (zone 1-5) for the 
performance assessment.

 – Performance evaluation: Corresponding floors are selected for daylight simulation in 
all zones.

 – Surrogate modelling: Uniformly generated samples are collected for each part to 
define fitness function and constraint using surrogate modelling based on artificial 
neural networks (ANN).

 – Optimisation: The most desirable parameter sets in each zone are discovered using a 
computational optimisation algorithm.

Form finding Performance evaluation Surrogate modelling Optimisation

Zone 5

Zone 4

Zone 3

Zone 2

Zone 1

1

2

3

Input             Hidden          Output
f(x)

g(x)Module 1 (Shading)
Module 2 (Glazing)
Module 3 (Glazing)
Module 4 (Glazing)
Module 5 (Glazing)

FIG. 3.17 Schematic explanation of proposed methodology
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 3.8.1 Form‑finding

A hypothetical urban district with 25 plots is generated in Grasshopper 3d 
(GH) [6]. Each plot has 1800 m2 with randomly generated heights from 50 m 
to 150 m. The central plot is defined as the case area having 40 floors, 200 m 
height, 72000 m2 area, and 36 to 50 m façade length. The generated building is 
divided into five zones named Zone-1 (Z1), Zone-2 (Z2), Zone-3 (Z3), Zone-4 (Z4), 
and Zone-5 (Z5). The floors in the middle part of each zone are selected for the 
simulation. The façade is divided into five vertical modules. The first four modules are 
defined as glazing. The last module is defined as an overhang. It is possible to assign 
four types of glazing material to every four modules of each orientation, whereas the 
length of each overhang can vary from 0 m to 2 m. Parameters with boundaries are 
given in Table 3.5. The design alternatives of 20 variables are 47.223665e+20.

TabLe 3.5 Design parameters

Parameters Explanation Type Boundary

x1,…,x4 Glazing type for North (N) orientation Discrete [1,4]

x5,…,x8 Glazing type for South (S) orientation [1,4]

x9,…,x12 Glazing type for East (E) orientation [1,4]

x13,…,x16 Glazing type for West (W) orientation [1,4]

x17,…,x20 Overhang length for N-S-E-W orientations Continues [0.0, 2.0]

 3.8.2 Performance evaluation

Spatial Daylight Autonomy (sDA) and Annual Sunlight Exposure (ASE) are considered 
to assess the daylight performance in each zone. According to the Illumination 
Engineering Society (IES) [7], sDA is a metric for sufficient daylight illuminance, 
whereas ASE is a metric for the potential visual discomfort owing to direct sunlight. 
More specifically, sDA calculates the percentage of an analysis area that meets 
with the minimum illuminance level for a specified operating hour per year. ASE 
calculates the percentage of an analysis area that exceeds a specified direct sunlight 
illuminance level more than a specified number of hours per year. Diva plug-in [8] 
in GH is used to simulate these metrics. An analysis plane, which is 0.8m above 
the finished floor with 184 sensors, is generated. sDA300,50%, which achieves the 
illumination threshold of 300 lux for 50% of the analysis period, is considered. 
ASE1000,250h, which exposes the illumination threshold of 1000 lux for 250 hours of 
the analysis period, is used. For both metrics, 10 hours (8 am-6 pm) is specified. 
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Glazing types (Table 3.6) are assigned to all orientations in sequence. Radiance 
parameters of the daylight simulation are given in Table 3.7. One simulation is 
recorded as 103.9 seconds with the given radiance parameters.

TabLe 3.6 Material characterisation of glazing types

Material Explanation Tvis. U‑val. g‑val.

Glazing 1 (G1) Tinted Float 8mm Blue – 12 mm Air –
Temperable Low-E 8mm Blue

0.22 1.6 28%

Glazing 2 (G2) Temperable Low-E 8mm Neutral – 12 mm Air – 
Clear Float 8 mm – 12 mm Air – Temperable 
Low-E 8 mm Green

0.45 0.9 40%

Glazing 3 (G3) Tinted Float 8 mm Green 0.68 5.6 51%

Glazing 4 (G4) Ultra-clear Float 8 mm – 12 mm Cavity Air –  
Ultra-clear Float 8 mm

0.82 2.8 81%

TabLe 3.7 Radiance parameters

‑aa ‑ab ‑ad ‑ar ‑as

0.15 2 512 256 128

 3.8.3 Surrogate modelling

Five hundred samples are collected for each zone to develop the surrogate 
models. A uniform distribution function, coded in C#, is used to generate random 
values. Every recorded data contains 20 design parameters and simulation results 
for sDA and ASE. In total, 2500 samples are collected for five different zones 
in 72.1 hours. Implementing simulation results of these 500 design samples, 
ANN models are developed using a Backpropagation neural network algorithm 
with bipolar sigmoid activation function using Dodo plug-in [9]. After several 
experiments, 20 input, 1 hidden, and 1 output layer are considered. To sum up, five 
ANN models for sDA and five models for ASE are developed. sDA and ASE values of 
collected samples are given in Table 3.8. These predicted values (outputs) obtained 
from ANN are compared to outputs from Diva simulations with similar design 
parameters, calculating the R2 values of each model (Table 3.9). This procedure 
shows us the applicability of the ANN model.
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TabLe 3.8 sDA (%) and ASE (%) distributions for each zone

Z1‑sDA Z1‑ASE Z2‑sDA Z2‑ASE Z3‑sDA Z3‑ASE Z4‑sDA Z4‑ASE Z5‑sDA Z5‑ASE

Min 80.6 25.7 85.8 31.5 87.2 33.3 84.2 33.8 88.5 32.1

Max 100.0 49.6 100.0 58.4 100.0 58.4 100.0 66.5 100.0 66.5

Avg 95.9 42.6 98.2 47.0 98.8 47.2 99.0 49.2 99.1 49.6

TabLe 3.9 Parameters and R-squares of ANN models

Neurons
per layer

Number
of layers

Learning
rate

Sigmoid
alpha

Max
iter

R2‑Z1 R2‑Z2 R2‑Z3 R2‑Z4 R2‑Z5

sDA 20 1 0.1 2.0 10,000 98.25% 99.43% 99.26% 99.43% 99.85%

ASE 0.5 99.95% 99.74% 99.82% 99.94% 98.95%

 3.8.4 Optimisation

Subsequently, the optimisation problem is formulated as follows:

max( ), %sDA300 50 , (3.15)

subject to

ASE h1000 250 20, % . (3.16)

The single-objective self-adaptive differential evolution (jDE) algorithm [10], coded in 
C#, is used for optimisation. The implementation is based on DE/rand/1/bin scheme, 
which uses three individuals to generate the mutant population, and employs one-
to-one comparison for the next generation. Rather than constant mutation MR( )  
and crossover CR( )  rates, in jDE, these values are updated for each individual in 
D  dimensions during the optimisation. In addition, to cope with the constraint, 
the superior-of-feasibility SF( )  procedure [11] is implemented. SF  considers 
three cases, which are: Pick the solution with better fitness value, pick the feasible 
solution, or pick the solution with smaller violation.
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 3.9 Results

Average values of initial and 500th generation with a population size of 30 are 
conducted for each zone. Simulation results for regular building cases using only 
one glazing material without overhang were conducted to prove the relevance 
of the proposed methodology (Table 3.10). The convergence of the optimisation 
process is presented in Fig. 3.18. Until the 250th generation, ASE values decreased, 
whereas, during the last 100 generations, sDA values did not present a significant 
alteration. From the point of comparison between initial and optimised populations, 
the average of optimised results reached a minimum value of 27.6% smaller ASE 
than initial results. However, this caused a maximum value of 10.3% decrement on 
sDA. When we compare the optimised and regular (G1 to G4) results, the proposed 
methodology found significantly smaller ASE values than each case.

In general, most of the optimised values presented a maximum value of 11.8% 
decrement on sDA. Finally, optimised parameters were applied to corresponding 
zones to finalise the design of the high-rise (Fig. 3.19). Since the optimised ASE 
range was very narrow for all zones, results having the highest sDA values were 
picked. The colours of materials were defined as blue for G1, light green for G2, 
dark green for G3, white for G4, and grey for overhangs. In the optimised high-rise 
building, the total usage amount of glazing material was 47.5% for G1, 17.5% for 
G2, G3, and G4. Average overhang distances were reported as 1.4m in Z1, 1.5m in 
Z2, 2.0m in Z3, 1.2m in Z4, and 1.1m in Z5. It was observed that overhang distances 
and material selections were differentiated in all zones and orientations to find the 
best near-optimal solution.

TabLe 3.10 Results for initial, optimised, and regular building cases

Init. sDA Init. ASE Opt. sDA Opt. ASE G1 (0.22) G2 (0.45) G3 (0.68) G4 (0.82)

min max avg min max avg min max avg min max avg sDA ASE sDA ASE sDA ASE sDA ASE

Z1 84.5 100 95.1 26.1 47.7 36.8 87.6 89.2 88.2 23.6 23.6 23.6 63.0 37.9 95.3 49.0 100 49.0 100 49.6

Z2 93.4 100 98.4 36.1 49.2 44.2 88.0 88.6 88.3 29.2 29.2 29.2 64.8 46.7 98.8 49.0 100 50.2 100 58.4

Z3 95.6 100 99.2 35.6 48.4 43.0 88.6 94.3 90.0 32.2 31.2 31.2 65.4 46.7 100 49.0 100 51.4 100 58.4

Z4 94.2 100 98.9 37.3 54.3 44.1 96.6 97.4 97.0 31.1 31.1 31.1 66.0 49.0 99.4 49.6 100 58.4 100 67.7

Z5 89.9 100 98.4 35.9 52.5 44.3 88.1 100 97.6 29.1 29.5 29.3 66.6 49.0 99.4 49.6 100 58.4 100 67.7
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FIG. 3.18 Average sDA and ASE values during the optimisation

FIG. 3.19 Schematic distribution of optimised parameters

TOC



 153 Optimus tool and pilot high-rise model

 3.10 Discussions and conclusion

This paper presents a methodology to optimise sDA and ASE for high-rise 
buildings in dense urban districts. Surrogate models successfully approximated 
metrics with a minimum value of 98.25% R2 when predicted ANN outputs are 
compared to simulation outputs. In the case of simulation-based optimisation, 
the required time for metaheuristics would correspond to one simulation time 
for 15,000 function evaluations. Using ANN with 500 samples for each zone, we 
saved approximately 90 days to conduct the presented results. The number of 
samples can exceed thousands with more design parameters. In this case, an 
additional optimisation process would be necessary to find the best architecture and 
parameters for ANN. Here, the results of the initial population and regular building 
cases were compared with the optimised solution. The proposed methodology clearly 
showed that the daylight performance of the high-rise building was improved in all 
zones. The minimum enhancement for ASE was 27.6% in Z3, whereas the maximum 
advancement was 35.9% in Z1. sDA was reported in the acceptable margins 
between 88.2% and 97.6%, indicating spaces successfully benefiting from daylight. 
Although optimised solutions were not checked against thermal performance, higher 
ASE values (23-31%) than required draw our attention to a potential of overheating 
in these cases. So, this study can be an initial step to suggest further research for 
testing decrements on thermal energy consumption of such high-rise buildings 
in temperate-humid climates. Thus, zones at varying levels of high-rise buildings 
require combinations of parameter sets to perform the best solution in this sense. 
Specifically, infeasible ASE values remind us of the necessity of a shading approach 
once again.
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4  Multi‑zone 
 optimisation 
(MUZO) 
 methodology
Part A of Chapter 4 has been published as: Ekici, B.; Kazanasmaz, Z. T.; Turrin, M.; Taşgetiren, M. F.; Sariyildiz, 
I. S., Multi-zone optimisation of high-rise buildings using artificial intelligence for sustainable metropolises. 
Part 1: Background, methodology, setup, and machine learning results. Solar Energy 2021, 224, 373-389. 
Part B of Chapter 4 has been published as: Ekici, B.; Kazanasmaz, Z. T.; Turrin, M.; Taşgetiren, M. F.; Sariyildiz, 
I. S., Multi-zone optimisation of high-rise buildings using artificial intelligence for sustainable metropolises. 
Part 2: Optimisation problems, algorithms, results, and method validation. Solar Energy 2021, 224, 309-326. 
For consistency of the dissertation, the layout is adapted to fit the template, some typos are adjusted, and 
phrases are reworded without changing the content.

Part A: https://doi.org/10.1016/j.solener.2021.05.083 
Part B: https://doi.org/10.1016/j.solener.2021.05.082

This chapter presents the multi-zone optimisation (MUZO) methodology that entails 
the parametric high-rise model, machine learning for surrogate models, computational 
optimisation, and decision-making. Part A of this chapter presents the entire 
methodology and two design scenarios indicated as Tests 4 and 5 to demonstrate 
the relevance of the MUZO. Both scenarios, focusing on quad-grid and diagrid façade 
designs, integrate frequently used form-finding parameters for building shape and 
façade design reported in Chapter 2. Additionally, Part A conducts the machine 
learning results using the parametric high-rise models to cope with the computationally 
expensive simulation time while assessing the performance of the entire building. 
Afterwards, Part B presents the optimisation problems and results of both design 
scenarios using the predictive models developed in Part A and the released version of 
the Optimus tool presented in Chapter 3. Since the study focuses on optimising the 
entire design of the high-rise scenarios are considered 260 and 220 design parameters, 
respectively, for quad-grid and diagrid scenarios. Consequently, Part B presents the 
relevance of the MUZO methodology by comparing the results with the regular high-rise 
scenarios, which use the same design parameters in the entire building.
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PART A
Multi‑zone optimisation of high‑rise 
buildings using artificial intelligence 
for sustainable metropolises
PART 1 – Background, methodology, setup, 
and machine learning results

ABSTRACT Designing high-rise buildings is one of the complex tasks of architecture because 
it involves interdisciplinary performance aspects in the conceptual phase. The 
necessity for sustainable high-rise buildings has increased owing to the demand 
for metropolises based on population growth and urbanisation trends. Although 
artificial intelligence (AI) techniques support swift decision-making when addressing 
multiple performance aspects related to sustainable buildings, previous studies 
only examined single floors because modelling and optimising the entire building 
requires extensive computational time. However, different floor levels require various 
design decisions because of the performance variances between the ground and 
sky levels of high-rises in dense urban districts. This paper presents a multi-zone 
optimisation (MUZO) methodology to support decision-making for an entire high-rise 
building considering multiple floor levels and performance aspects. The proposed 
methodology includes parametric modelling and simulations of high-rise buildings, 
as well as machine learning and optimisation as AI methods. The specific setup 
focuses on the quad-grid and diagrid shading devices using two daylight metrics 
of LEED: spatial daylight autonomy and annual sunlight exposure. The parametric 
model generated samples to develop surrogate models using an artificial neural 
network. The results of 40 surrogate models indicated that the machine learning part 
of the MUZO methodology can report very high prediction accuracies for 31 models 
and high accuracies for six quad-grid and three diagrid models. The findings indicate 
that the MUZO can be an important part of designing high-rises in metropolises while 
predicting multiple performance aspects related to sustainable buildings during the 
conceptual design phase.

KEYWORDS Performance-based design, building simulation, sustainability, high-rise building, 
machine learning, optimisation
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 4.1 Introduction: Part A

High-rise buildings began to emerge at the end of the 19th century to provide extra 
floor space in limited urban plots [1]. In the 20th century, population growth and 
urbanisation trends increased in the world [2]. According to a United Nations report 
[3], 30% of the world’s population lived in urban areas in 1950. This percentage 
increased to 55% in 2018, and the projection by 2050 was 68%. An increase in 
population and the percentage of those living in urban areas will add 2.5 billion 
people to the world’s urban population by 2050. Moreover, there were 33 megacities 
with more than 10 million inhabitants in 2018. The projection indicates that this 
number will increase to 43 by 2030. Because of population growth and urbanisation 
trends, the number and height of completed high-rise buildings have also increased 
over time [4].

Owing to a rapid and global increase in floor areas, the final energy use of buildings 
reached approximately 128 exajoules (EJ) in 2019, while it was 118 EJ in 2010 [5]. 
An increasing number of high-rise buildings contribute significantly to energy use as 
they consume more energy with an additional effect of CO2 emissions compared with 
low-rise buildings [6]. Another consequence of constructing more and taller high-rise 
buildings is the increase in building density in urban areas [7]. To achieve the targets 
of the International Energy Agency for sustainable development scenarios, architects 
and engineers should consider the following challenges while designing high-rise 
buildings for metropolises:

 – Dense urban areas cause performance variations between ground and sky levels in 
high-rise buildings [8].

 – Sustainable buildings require the integration of multiple performance aspects, such 
as natural daylight, energy consumption, and comfort [9].

During the design process, the conceptual phase requires a high awareness of 
decisions because it affects the overall performance of the buildings [10]. Owing 
to the complexity of design problems, optimisation algorithms are widely used to 
investigate sustainable design alternatives during the conceptual design phase [11]. 
Because the performance aspects of sustainable buildings require simulations, the 
optimisation process entails a significant amount of time. The common approach 
is to integrate machine learning (ML) techniques to predict performance aspects 
to support swift decision-making with optimisation algorithms in computationally 
expensive design problems [12]. Optimising high-rise buildings in dense urban 
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districts is more challenging because various floor levels require different design 
decisions owing to performance variations in ground and sky levels. In addition, 
these decisions are based on simulations, which require expensive computational 
time, and optimisation processes that need to cope with an enormous number of 
design parameters. Therefore, new methods are required to optimise the multiple 
floor levels of high-rise buildings when proposing sustainable alternatives within a 
limited time.

This paper introduces a novel multi-zone optimisation (MUZO) methodology of 
optimising high-rises by considering multiple floor levels as different optimisation 
problems to investigate sustainable alternatives during the conceptual phase. The 
proposed methodology includes parametric modelling and simulations of high-rise 
buildings, an artificial neural network (ANN) (an ML technique based on a network 
of neurones) for performance prediction, and computational optimisation with a 
decision framework. Part 1 of the MUZO study focuses on solving computationally 
expensive simulations while presenting the background, methodology, and setup 
for case studies that contain two types of shading devices: quad-grid and diagrid. 
The building performance model focuses on the daylight metrics of Leadership in 
Energy and Environmental Design (LEED) v4.1, namely, spatial daylight autonomy 
(sDA) and annual sunlight exposure (ASE), for each scenario. The results present 
the learning scores of 40 surrogate models developed for each performance 
aspect using advanced ANN techniques. Part 2 of the MUZO study deals with the 
optimisation challenge while explaining the problem formulations to optimise the 
sDA and ASE using the 40 predictive models presented in this paper. Considering 
the near feasibility threshold adaptive penalty function, the optimisation process 
employs three algorithms, namely, self-adaptive differential evolution with the 
ensemble of mutation strategies using the Optimus plug-in [13], covariance matrix 
adaptation with evolution strategy, and radial basis function optimisation using 
the Opossum plug-in [14]. After validating the method by comparing the MUZO 
results with the regular high-rise scenarios, the paper discusses the advantages 
and disadvantages and underlines the potential and future research directions. In 
this paper, Section 4.2 presents state of the art, Section 4.3 introduces the MUZO 
methodology, Section 4.4 explains the setup, Section 4.5 reports the ANN results, 
and Section 4.6 concludes the paper.
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 4.2 State of the art for AI in the design of 
sustainable high‑rises

This section presents previous studies focusing on performance aspects related to 
sustainable high-rise buildings in three subsections: ML, computational optimisation, 
and ML with optimisation applications. Subsequently, the original contribution of the 
MUZO methodology is summarised.

 4.2.1 Machine learning applications

Over the last two decades, ML techniques have been used to address the 
computational burden of simulations of high-rise buildings. An early study discussed 
regression models to predict energy performance [15]. After a decade, Ko, et al. 
[16] focussed on the daylight factor as part of the LEED v2.2 for building shape, 
layout, and façade parameters. In the following years, Li and Li [17] examined 
the annual ventilation rate, in addition to energy performance. Tian, et al. [18] 
developed models for energy-efficient heating design in office buildings considering 
conventional modelling processes and an innovative two-step method. Recently, 
researchers began to use sensitivity analyses with ML techniques to decrease the 
design complexity [19,20]. Since the early years, various aspects have been used to 
predict the performance of high-rises. However, none of these studies focussed on 
predicting the performance of an entire building. The general approach focussed on 
a single-floor level (or part) of the high-rise model.

 4.2.2 Computational optimisation applications

High-rise buildings are one of the complex design tasks of architecture because 
various decisions are required for the shape, layout, and façade parameters 
considering multiple performance aspects. Therefore, different methods have 
been examined to address the complexity of these buildings. Considering resource 
production systems, Imam and Kolarevic [21] proposed a concept to optimise energy, 
food, water, and land in high-rises. In addition to producing energy, two studies 
focussed on energy performance [22,23], one study examined the energy demand with 
adaptive thermal comfort [24], and another considered techno-economic aspects [25]. 
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In addition to façade parameters, Gan, et al. [26] investigated the geometric, position, 
and functional attributes to optimise energy efficiency. Despite the promising results 
and design alternatives, two studies [17,23] considered the surroundings of the plots 
being studied, one study compared various optimisation algorithms [22], and none 
of them replicated the heuristic optimisation process. Consequently, the general 
approach, as in ML applications, focuses on a single floor level (or part) of the high-
rise model.

 4.2.3 Machine learning and computational optimisation 
applications

In the high-rise domain, early examples of predictive models focussed on evaluating 
the design performances. Some of the recent studies considered predictive 
models with optimisation algorithms because of the potential to determine optimal 
solutions in a short time. Early examples used regression models, support vector 
machines (SVMs), and multi-objective optimisation [27,28]. In addition, Chen, et al. 
[29] conducted a sensitivity analysis to decrease the design complexity. Despite the 
fast evaluation potential of using ML with optimisation, the aforementioned studies 
considered specific floor levels of high-rise models.

 4.2.4 Original contribution of the research

The MUZO methodology is proposed to optimise the entire shape of a high-
rise building to investigate sustainable design alternatives while addressing the 
computational burden. Because dense urban areas result in performance variations 
between the ground and sky levels, a unique optimisation strategy is required. 
Therefore, the MUZO methodology suggests dividing the high-rise building into 
equal subdivisions (or zones), which can be considered as different design problems. 
In addition, this paper suggests an advanced model selection to provide high 
prediction accuracies, as well as a decision framework by comparing the algorithms 
and replicating the optimisation process. Thus, the MUZO methodology aims to 
determine the optimal design solution by achieving sustainable high-rise alternatives 
for dense urban districts.
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 4.3 Multi‑zone optimisation methodology

Previous studies demonstrated that the optimisation of high-rise buildings can 
focus on multiple performance aspects that may require various digital platforms. 
Considering the flexibility of integrating different software, Fig. 4.1 shows the phases 
of the MUZO methodology. The parametric high-rise model focuses on generating 
design alternatives with performance evaluations in phase 1. ML for surrogate 
models addresses the computational burden of multiple performance aspects related 
to sustainable buildings in phase 2. Finally, the computational optimisation and 
decision-making phase investigates the desirable performance for the entire high-
rise building.

 4.3.1 Parametric high‑rise model

The first phase of the methodology considers the parametric model, which involves 
generating configurations of the high-rise building using design variables. Preparing 
the model requires three steps: developing the parametric high-rise model to 
generate design alternatives, identifying zones according to the surroundings of the 
plot being studied, and integrating performance aspects.

Step 1 (Generating high‑rise alternatives)

Initially, creating the context around the plot area is the first step during the 
development of the parametric high-rise model. This is because surroundings with 
different densities may require various design strategies and parameters in the 
conceptual phase. When the built environment is modelled, a parametric high-rise 
model that involves decision variables related to the building shape, façade design, 
layout, and operation is generated. Few tools are available for use in this step, i.e. 
Generative Components [30,31], Dynamo [32,33], and Grasshopper 3D (GH) [34]. The 
MUZO methodology can include all of these parameter types and available tools 
during form generation.
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FIG. 4.1 MUZO methodology
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Step 2 (Identifying zones) 

As mentioned previously, dense urban districts result in performance variances 
between the ground and sky levels. Therefore, the second step of parametric 
modelling identifies the zones, which involves subdividing the entire building into 
smaller pieces to focus on various floor levels as different optimisation problems. 
The number of zones is a predefined variable that depends on the density of the plot 
under study. For instance, in urban areas with low-density, high-rise buildings can 
be divided into three zones, whereas this amount may increase to five in the mid-
density scenarios. For high-density scenarios, more than five zones can be used for 
an extensive investigation of the effects of the surrounding at various levels. After 
determining the number of zones, the next step is to identify floor levels in each 
zone because performance aspects, such as daylight and solar radiation, require 
floor surfaces for the simulation to be conducted. While a large number of selected 
floor levels requires extensive simulation time, fewer selected floor levels may result 
in decision-making with limited awareness of the entire building’s performance. 
Fig. 4.2 shows zoning scenarios for low-density, mid-density, high-density urban 
areas and different selections of floor levels.

Step 3 (Integrating performance aspects) 

The final step of the first phase in MUZO methodology involves evaluating the high-
rise model using the performance aspects of sustainable buildings. State of the art 
considers a limited number of performance criteria because of two reasons. First, 
considering multiple aspects requires extensive computational time for simulation-
based evaluation. Second, the complexity of the design task increases owing to 
multiple performance aspects. In addition, conflicting performances introduce 
an additional challenge during the conceptual phase [35]. The proposed MUZO 
methodology can integrate any performance criteria to determine sustainable high-
rise alternatives. Challenges on computational burden and complexity are addressed 
in the subsequent phases.

 4.3.2 Machine learning for surrogate models

When the parametric model and simulations are set, various design alternatives can 
present the simulation results to gain awareness of the performance for different 
design scenarios. ANN models, which can swiftly evaluate the building performance, 
are used in the second phase of MUZO, which requires three steps:
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FIG. 4.2 Zoning examples for various urban densities and floor selections
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Step 1 (Collection of samples) 

Sampling, which is the first step of ML in MUZO, is an essential process of surrogate 
modelling. With a specific distribution in the data, ML algorithms can learn and 
predict data with high accuracy. Recently, Westermann and Evins [12] presented 
two types of sampling: static sampling (e.g. Latin hypercube sampling [36]) and 
adaptive sampling (i.e. sequential space-filling [37]). The selection of the sampling 
method depends on the category of surrogate models that can be either global or 
local models. All sampling methods using a global modelling approach can be used 
in the MUZO methodology. On the effect of the sample size, Chatzikonstantinou and 
Sariyildiz [38] discussed that the extension of the dataset is frequently beneficial. In 
addition, Roman, et al. [39] presented the most commonly used sampling methods in 
building-performance simulations. Among these sampling methods, one of the most 
common approaches is

 n ns i= 22 5. , (4.1)

where ns is the sample size and ni is the number of independent variables. Because 
each subdivided part corresponds to a different optimisation model, the MUZO 
methodology proposes a unique sample collection framework (Fig. 4.3). After 
subdividing the high-rise building into zones, each subdivision is used to generate 
its own samples. When the process is complete, each generated sampling file, which 
belongs to one zone, can be used in different surrogate models.
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FIG. 4.3 Sample collection framework
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Step 2 (Developing ANN models) 

ANNs, which correspond to the second step of the ML phase, are widely used 
methods in ML domains to predict various aspects of building performance. This is 
because ANNs can manage large sample sizes for many variables and predict the 
performance with high accuracies [12]. Various ANN types, such as feedforward 
neural networks (FNNs) and radial basis function neural networks (RBFNNs), have 
been used to estimate building performance [39]. In this paper, the development of 
ANN models consists of two stages:

Stage 1 (Neural net with dropout): The development of ANNs begins with reading 
and scaling the data, which frequently contain different parameters with units and 
metrics. After the reading process, scaling is performed to obtain all inputs and 
outputs within the same boundaries using several scaling methods [40]. For min–max 
scaling, the data is normalised as

 ′ = ( ) − ( )( ) + ( )x x x xσ max min min , (4.2)

where ′x  is the scaled value, x  is the original value and σ  is its standard deviation. 
Before selecting the scaling method, the problem type must be identified, which 
can be either classification or regression. While classification problems focus on 
predicting a class label, regression problems consider predicting a quantity. In 
addition, splitting data is crucial for identifying training and test sets using a rate, 
e.g. 0.2. or 0.25, according to Westermann and Evins [12]. When the ANN model is 
finalised, the architecture contains various layers (Fig. 4.4).
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FIG. 4.4 ANN architecture
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Each neurone in the hidden layers receives the weighted sum of inputs to pass the 
result through an activation function. In the output layer, the ANN predicts the final 
solution considering this procedure for all neurones. The network also involves bias 
layers that can shift the result of each layer. The activation ( )a of each ith layer is

 a f b w xi i ij i
j

m

= +










=
∑

1
, (4.3)

where f is the activation function, b is the bias, wij is the ith layer of the jth weight, 
and xi  is the input vector of the ith layer. When using rectified linear units (ReLU), 
each neurone is activated as follows:

 f x
for x

x for x
( ) =

≤
>





0 0
0

. (4.4)

Different functions, e.g. sigmoid, softplus, and tanh, activate the neurones with 
various equations that may affect learning performance. The forward process of 
ANNs can predict the solution using Equation (4.3). To achieve high accuracy, a 
backward process is necessary to determine the best values for the weights and 
biases. Hence, backpropagation [41] involves a loss function and an optimisation 
algorithm. Researchers have widely used gradient descent (GD) [42], stochastic 
gradient descent (SGD) [43], Adam [44], and RMSProp [45] algorithms for 
optimisation. For the loss functions of classification problems, cross-entropy [46] 
and Kullback–Leibler divergence [47] can be considered. In regression problems, 
researchers use the mean squared error (MSE) in Equation (4.5) [48], mean absolute 
error (MAE) in Equation (4.6) [49], and R-squared (R2) value in Equation (4.7) [50]:
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where yi  is the predicted data, xi  is the observed data, x  is the mean of the 
observed data, and n  is the sample size. Various loss functions can be used to 
validate the accuracy of the trained model [38]. In addition, the dropout technique 
[51], which randomly drops units from the neural network with their connections, 
avoids overfitting. The MUZO methodology can involve multiple loss functions and 
dropouts at a rate between 0 and 1.

Stage 2 (Grid search with k-fold cross-validation (CV)): Developing a surrogate 
model is a black-box process. One of the reasons is that multiple hyperparameters, 
which are the parameters of the ANN (e.g. neurone size and batch size), are involved 
in the learning process. Various combinations of these factors affect learning 
and prediction accuracies. Therefore, a model validation technique is required to 
evaluate the accuracy of predictions. K-fold CV [52] is a well-known method for 
accurate estimations that randomly divides the original sample into k  equal-sized 
subsamples. While one subsample is maintained as the test set, the remaining 
k −1  subsamples are the training sets. The standard deviation (Std) indicates the 
difference for each error for the k-fold CV:

 Std
N

x xi
i

N

=
−

−
=
∑1
1 1

2

( ) , (4.8)

where N is the number of observations, x xN1,...,{ }  are the observed values, and x is 
the mean value of these observations. The aim is to determine satisfactory results for 
the MAE, MSE, and R2, and achieve small Std values for each accuracy metric.

Step 3 (Selecting the best model) 

The final step of the ML phase involves the selection of the best model using the 
results of the grid search. In each zone, the criteria are the highest R2 with low MAE, 
MSE, and Std for this process. Using the weights and biases of the final ANN, the 
predictive models are ready for use in the optimisation process.

 4.3.3 Computational optimisation and decision‑making

The final phase of the MUZO methodology, which consists of three steps, involves 
determining the design parameters for sustainable high-rise alternatives. The 
first step considers the development of predictive models using ML outputs. The 
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second step is selecting the problem formulation. Finally, the proposed decision-
making framework reveals the optimised design solution by completing the 
MUZO methodology.

Step 1 (Defining predictive models) 

The development of predictive models requires weight and bias results collected from 
each ANN model. Subsequently, the collected results are transformed into matrices 
considering the input vector and neurone sizes for each layer to initiate the first step 
of the optimisation phase. The definition of activation with n  layers is as follows.

 y f f f f x w b w b w b wn n n n n n n n n n n                ( ( ( ( ) ) )1 2 3 3 3 2 2 1 1 bbn ) , (4.9)

where y  is the performance criterion to be predicted, x  is the input vector, wn  is the 
nth weight, bn  is the nth bias, and fn  is the nth activation function. For any given x , 
the model estimates the performance results. Having weights and biases as recorded 
data suggests the possibility of using predictive models in various platforms, such as 
C#, C++, Python, and GH, during the optimisation process.

Step 2 (Selecting formulation) 

When the predictive models are ready, the next step is selecting the problem 
formulation for the optimisation process. Previous studies on building optimisation 
used single objective, weighted summation, multi-objective, many objectives, and 
constrained optimisation problems [53]. For n  parameters, the definition of the 
generalised problem formulation is

min : ( ),..., ( ), ( , ,..., )
: ( )
f X f X X x x x and X S

subject to g x
k n

i

1 1 2= ∈

≤ 00 1

0 1

, ,...,
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i p

h X j p mj

=

= = +

, (4.10)

where an integer k > 0  is the number of objective functions, S is the entire search 
space, p  is the number of inequality constraints and m p−  is the number of equality 
constraints. For the maximisation problem, the transformation of the function can be

 max f x f x( ) = − ( ) . (4.11)
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The trade-off between building performance affects the selection of the formulation. 
For one aspect, e.g. maximising daylight [54], the single-objective formulation is 
convenient for the optimisation process. Another scenario may have two conflicting 
objectives, such as maximising the sDA and minimising the ASE. If one of these 
aspects requires a threshold according to the building standards, the formulation 
can be a single-objective constrained optimisation [55]. Otherwise, the multi-
objective [56] or weighted summation [57] approaches can be alternatives. For more 
than three objectives, the options are multi-objective constrained or many-objective 
formulations [58].

Step 3 (Optimisation)

The final step of phase 3 involves exploring the optimal alternative for each zone. 
In the optimisation domain, heuristic algorithms are employed to solve complex 
problems by mimicking behavioural patterns and social phenomena observed in 
nature [59]. Additionally, in the domain of sustainable building design, heuristics 
are widely used because promising alternatives are discovered in a reasonable time 
frame [9]. Despite their advantages, these algorithms do not guarantee an optimal 
solution. According to the no free lunch (NFL) theorem [60], a global algorithm that 
can determine the optimal result for all problems does not exist. In architectural 
design, the subject is more dynamic than the benchmark problems. Each design 
scenario is a specific problem owing to the variances in the surroundings. In 
addition, the surroundings of the different cities have diverse climate types 
(e.g. Mediterranean climate in Izmir, Oceanic climate in Amsterdam). Therefore, 
architects can propose various alternatives for the same design problem (i.e. high-
rise buildings) because concerns and the required strategies are different. Thus, 
we may conclude that “the global optimal of each design problem is unexplored”. 
Therefore, the optimisation process of the MUZO methodology involves comparing 
various algorithms with replications for decision-making (Fig. 4.5). Single-objective 
optimisation algorithms report the best solution that can be used as the final design 
alternative. In multi-objective or many-objective optimisation problems, various 
post-optimisation analysis methods can be used to evaluate the quality of the single 
best solution during the decision-making process [61], e.g. weighted summation 
approach [62], TOPSIS [63], analytic hierarchy process [64], minimum distance to the 
utopic point [65], auto-associative models [66].
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FIG. 4.5 MUZO optimisation process and decision framework

 4.4 Setup of the case study

This section explains the setup for evaluating the MUZO methodology considering a 
hypothetical dense urban district. The first subsection describes a parametric high-
rise building with variables for the two façade types. The subsequent subsection 
presents the selected performance aspects of the simulation setup. Finally, surrogate 
modelling introduces the details of the sample collection and the development of 
ANN models.

 4.4.1 Parametric high‑rise model and the built environment

The hypothetical district had 25 plots in GH, each with a 2500 m2 footprint with 
building heights between 50 and 150 m, which were generated randomly. The 
focus of the study was the central plot with 60 floors, 2100 m2 net one-floor 
area, 150,000 m2 gross floor area, and 50 × 50 m façade length. Fig. 4.6 shows the 
subdivisions (zones) of the building beginning from ground-level zone 1 (Z1) to sky-
level zone 10 (Z10), as well as selected floor levels (second and fifth) of every zone 
for simulations. Table 4.1 presents the façade, shape, and glazing parameters used 
in the parametric models for both scenarios.
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The first façade design focussed on horizontal and vertical shading devices using 
the number, length, and rotation of the devices with four glazing types. The second 
design considered diagonal shading devices involving the number, length, and 
rotation of first and second-order diagonals with the same glazing types. The design 
setups in Figs. 4.7 and 4.8 were used for each orientation, i.e. north (N), south (S), 
east (E), and west (W). Including floor-to-floor height and rotation parameters, the 
search space for the quad-grid scenario in one zone had 2.893399115e+28 design 
alternatives with 26 parameters, whereas this number was 3.054543465e+23 for 
the diagrid scenario with 22 parameters. Floor-to-floor height and rotation 
parameters of the lower zones affected the height and rotation of the higher zones. 
Therefore, the total amount of the design parameters in one zone increased from 
Z1 to Z10 (Fig. 4.9). Consequently, the quad-grid design had 26 parameters 
in Z1 and 44 variables in Z10, while the diagrid design had 22 parameters in 
Z1 and 40 variables in Z10.

FIG. 4.6 Plot under study, zones (subdivisions) and selected floors of the high-rise for simulation
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TabLe 4.1 Parameters of the quad-grid and diagrid scenarios

Parameters Explanation Location Type Unit Boundary
Qu

ad
‑g

rid
fa

ça
de

x x x xQ Q Q Q1 6 11 16, , , Number of vertical devices N-S-E-W Discrete - [0,8]

x x x xQ Q Q Q2 7 12 17, , , Length of vertical devices Continues m [0.0, 1.5]

x x x xQ Q Q Q3 8 13 18, , , Rotation of vertical devices Discrete ° [-60, 60]

x x x xQ Q Q Q4 9 14 19, , , Number of horizontal 
devices

Discrete - [0,2]

x x x xQ Q Q Q5 10 15 20, , , Length of horizontal devices Continues m [0.0, 1.5]

x x x xQ Q Q Q21 22 23 24, , , Glazing type Discrete - [1,4]

Di
ag

rid
fa

ça
de

x x x xD D D D1 5 9 13, , , Length of 1st order diagonal N-S-E-W Continues m [0.0, 1.5]

x x x xD D D D2 6 10 14, , , Length of 2nd order diagonal Continues m [0.0, 1.5]

x x x xD D D D3 7 11 15, , , Rotation of diagonal devices Discrete ° [-60, 60]

x x x xD D D D4 8 12 16, , , Number of diagonal devices Discrete - [0,5]

x x x xD D D D17 18 19 20, , , Glazing type Discrete - [1,4]

Bu
ild

in
g

sh
ap

e x x1 10,..., Floor-to-floor height of 
zones -

Continues m [4.0, 5.0]

x x11 20,..., Rotation of zones Discrete ° [-10, 10]

Type Explanation Tvis U‑val. g‑val.

G
la

zi
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3 Tinted float 8 mm green 0.68 5.6 0.51
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0.82 2.8 0.81
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4 9 14 19, , ,Q Q Q Qx x x x

21 22 23 24, , ,Q Q Q Qx x x x

5 10 15 20, , ,Q Q Q Qx x x x

1 10,...,x x

11 20,...,x x

●
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●

●

●

● ● ● ●

FIG. 4.7 Quad-grid façade design
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FIG. 4.8 Diagrid façade design
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Zone
-Case

Floor-to-floor height parameters Rotation parameters Façade parameters Number of 
parameters
(Q) (D)

Z1-Q ● ● ● 26
Z1-D ● ● ● 22
Z2-Q ● ● ● ● ● 28
Z2-D ● ● ● ● ● 24
Z3-Q ● ● ● ● ● ● ● 30
Z3-D ● ● ● ● ● ● ● 26
Z4-Q ● ● ● ● ● ● ● ● ● 32
Z4-D ● ● ● ● ● ● ● ● ● 28
Z5-Q ● ● ● ● ● ● ● ● ● ● ● 34
Z5-D ● ● ● ● ● ● ● ● ● ● ● 30
Z6-Q ● ● ● ● ● ● ● ● ● ● ● ● ● 36
Z6-D ● ● ● ● ● ● ● ● ● ● ● ● ● 32
Z7-Q ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 38
Z7-D ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 34
Z8-Q ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 40
Z8-D ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 36
Z9-Q ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 42
Z9-D ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 38

Z10-Q ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 44
Z10-D ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● 40

● (Q) Quad-grid parameters ● (D) Diagrid parameters

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 xQ1,…, xQ24 xD1,…, xD20

FIG. 4.9 Complexity matrix for quad-grid and diagrid scenarios

 4.4.2 Performance metrics and simulation setup

We investigated two of the LEED v4.1 metrics for the case buildings, namely, the 
sDA and ASE, introduced for the green building certification program [67]. Both 
metrics are commonly used for various building functions to achieve sustainable 
design solutions [68-73]. Recently, Illuminating Engineering Society (IES) presented 
definitions for sDA and ASE metrics [74]. The sDA evaluates the annual efficiency 
of ambient daylight levels in interior spaces. The calculation method results in the 
percentage of an analysis area with a minimum daylight illuminance level for specific 
hours. In contrast, the ASE indicates the potential visual discomfort in interior work 
environments. The method results in the percentage of direct sunlight that exceeds a 
defined illuminance for the specified number of hours for the analysis area.
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The simulation setup focussed on the second and fifth floors of each zone 
(Fig. 4.10). The parametric model used the Diva plug-in v4.0.3.1 [75] developed 
for GH to simulate sDA and ASE metrics with an EnergyPlus weather data file for 
Izmir City with a dry summer Mediterranean climate, latitude: 38.423733 and 
longitude 27.142826. Each zone was simulated using two analyses of planes 
with 180 sensor points each and was 0.8 m above the finished floor. Four glazing 
types, listed in Table 4.1, were separately used as decision variables for each 
orientation. As suggested by [74], the setup simulated sDA300/50% and ASE1000,250h 
for 10 h of occupation between 8 am and 6 pm. A single simulation task of one 
zone involved 360 sensors. For the radiance parameters listed in Table 4.2, the 
simulation process used values similar to those in previous studies because of the 
high computational cost. The setup was used to simulate the daylight performance 
of 7200 sensor points for the overall building evaluation of two scenarios.

FIG. 4.10 Simulation setup for both scenarios

TabLe 4.2 Radiance parameters

‑aa ‑ab ‑ad ‑ar ‑as

This paper 0.15 2 512 256 128

[76] 0.15 2 512 256 128

[77] 0.15 2 1000 300 20

[56] 0.15 2 512 256 128

[78] 0.15 2 512 256 128
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 4.4.3 Surrogate modelling

The surrogate modelling began with sampling collection, which 
considered 1000 samples for each zone using Latin hypercube sampling [36] and 
Equation (4.1). One simulation required 4 min for two floors with the radiance 
parameters provided in Table 4.2. A computer with an Intel I7 4 core processor 
at 2.7 GHz and 16 GB DDR3 memory was used to calculate the computational burden 
as more than 55 days were required to collect 20,000 samples. In the next step, 
Python 3 [79] was used with the additional libraries listed in Table 4.3 to develop 
ANN models with FNNs. After scaling the data for each zone with min-max scaling in 
Equation (4.2), the SGD algorithm optimised weights and biases using Equation (4.3) 
for all models considering 10-fold CV, three hidden layers, dropout rate with 0.1, 
and the ReLU activation function in Equation (4.4). The automated Python program 
fit the model 324 times for all hyperparameter combinations for every zone. In total, 
the program ran 6,480 different ANN models with various complexities.

TabLe 4.3 Python libraries

Library name Explanation Reference

Scikit-learn ML library [80]

Keras Deep learning library [81]

TensorFlow Open source ML platform [82]

Pandas Data analysis library [83]

Joypy Plot library [84]

Plotly The interactive graphing library [85]

Matplotlib Static, animated, and interactive visualisation library [86]
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 4.5 Results

This section presents the sampling, grid search with CV, and tuned ANN results. 
The supplementary material provides statistics of collected samples, selected ANN 
models with learning scores, weights, biases, and computation time spent on the 
model selection for each zone.

 4.5.1 Sampling results

The collected samples, which were published as an open-access dataset in [87], 
contain the simulation results for the quad-grid and diagrid. Each zone had ASE 
and sDA results indicated as ASE_1 and sDA_1 on the second floor and ASE_2 and 
sDA_2 on the fifth floor. ASE_avg and sDA_avg, which represent the average values 
of these floors (Fig. 4.11), were used to develop the surrogate models.

FIG. 4.11 Distributions of collected samples
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The sDA results of the quad-grid application were between 41.9% and 100%, 
whereas ASE results were in the range of 9.4% and 50.7%. In the diagrid scenario, 
these results were 33.1% and 93.75% for sDA and 16.75% and 46.2% for ASE. 
For the mean values, natural daylight availability increased from Z1 to Z10 for both 
scenarios. However, this caused an increment in ASE results. In addition, the means 
of the sDA results for the quad-grid were higher than those for the diagrid.

 4.5.2 Grid search with cross‑validation results

ANN models were trained using the developed Python program, considering 
grid search and 10-fold CV using the collected dataset. The average results and 
deviations of MSE, MAE, and R2 were recorded for each parameter combination 
during the search process. The best hyperparameters with their statistical results are 
shown in Fig. 4.12.

The results indicated that 37 out of 40 ANN models had the best accuracy 
using 200 neurones. In the three models, the number of neurones was 100. For the 
momentum parameter, 33 models had the best score with 0.9, five models had 0.6, 
and two models had 0.3. Additionally, 25 models had the highest score using 0.1 for 
the learning rate, while twelve models using 0.05, and three models using 0.01. 
For epochs, eighteen models had the highest accuracy with 500, fourteen models 
had 750, six models using 1000, and two models had 250. Finally, the best selection 
for the batch size was 50 in twenty-one models, whereas it was 100 in nine models 
and 10 in ten models. The deviations of MAE, MSE, and R2 indicated that all CV folds 
had similar results for all metrics with high accuracies. The R2 values of 33 models 
were higher than 0.9, whereas in seven models they were higher than 0.8. All MAE, 
MSE, and Std results were less than 0.05. Consequently, the grid search results 
indicated promising accuracies to develop predictive models with the selected 
hyperparameters in the next step.

TOC



 183 ­ulti--one  optimisation  ­MUOO)  methodology

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

1000
750
500
250

Ba
tc

h 
 si

ze

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

100
50
10

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10Ep
oc

hs

0.1
0.05
0.01

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

Le
ar

ni
ng

  r
at

e

0.9
0.6
0.3

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

M
om

en
tu

m

200

100
50

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

N
eu

ro
ne

  s
iz

e

0.06
0.03
0.00

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

0.006
0.003
0.000

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

1.00
0.90
0.80

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

CV
  m

ea
n

0.008
0.004
0.000

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

0.004
0.002
0.000

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10CV
 s

td

0.004
0.002
0.000

Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10

ASE Quad-grid ASE Diagrid sDA Quad-grid sDA Diagrid

M
A

E
M

SE
R2

M
A

E
M

SE
R2

H
yp

er
pa

ra
m

et
er

s

FIG. 4.12 Grid search results of the best ANN models
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 4.5.3 Tuned ANN results

Using the best hyperparameter sets shown in Fig. 4.12, ANN models were fit 
considering 0.2 for splitting data to demonstrate the learning behaviour and 
convergence by separating the dataset as training and test sets. Fig. 4.13 shows the 
R2 results of these models, and appendices 4A and 4B provide the convergence of 
MSE and MAE while fitting the ANN models.
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FIG. 4.13 R2 results of training and test sets

The R2 values for all training sets were higher than 0.9. For the test sets, R2 of 
fourteen quad-grid models out of twenty were higher than 0.9 and higher 
than 0.8 for five models. R2 was slightly lower than 0.8 for only one model. In the 
diagrid application, R2 for seventeen models was higher than 0.9, while it was higher 
than 0.8 for three models. The accuracy of the predictive models through the MSE 
and MAE results are also provided in appendices 4A and 4B. All reported MSE 
results were lower than 0.05. For the MAE, results of the ASE and sDA were lower 
than 0.05 in Z1, Z2, Z3, Z4, Z6, Z9, and Z10 for the quad-grid scenario. However, 
in other zones, the MAE of the ASE was slightly larger than 0.05, and it was lower 
than 0.05 for the sDA. In the diagrid scenario, the ASE and sDA models had MAE 
results lower than 0.05 in Z1, Z2, Z3, Z4, Z5, Z6, Z7, and Z9. In other zones, the 
MAE of the ASE was slightly higher than 0.05, whereas it was smaller than 0.05 for 
the sDA.
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To compare the accuracy results reported for different design complexities, 
Fig. 4.14 shows the R2 of similar studies focusing on ML applications in daylight. 
Papers in this domain have promising results for DA, sDA, illumination level (IL), 
and useful daylight illuminance (UDI). However, visual comfort metrics, such 
as daylight glare probability (DGP), have moderate accuracies for various ML 
applications. In this study, a similar result was achieved for the ASE metric because 
of the challenges in predicting comfort metrics. In addition, most of the previous 
studies considered design variables between 5 and 15, which provided less design 
complexity compared with this study. Only Kirimtat, Krejcar, Ekici and Tasgetiren 
[77] considered 25 variables with R2 values between 0.9 and 0.3. Consequently, 
the ML part of the MUZO methodology could address more complex designs while 
presenting high accuracies for all 40 models.
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FIG. 4.14 Summary of the previous studies for ML applications in daylight
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 4.6 Conclusion

This paper presents the first part of the MUZO study, focusing on the background, 
methodology, setup, and ML results. The proposed methodology managed sampling 
and ANN development for 40 different models using a parametric high-rise model 
in a dense urban district. In addition, the developed Python program was used to 
investigate the best models for all zones of the two scenarios in 403 h. Based on the 
reported accuracies, building zones close to the sky levels were more challenging 
than the ground levels because of the increasing number of design variables. The 
study also proved that dense urban surroundings affect the performance of high-rise 
buildings at various floor levels by determining different simulation results during the 
sampling process. Therefore, architects and engineers should consider various zones 
as different problems while designing sustainable high-rises in metropolises.

The ML part of the MUZO methodology indicated prediction scores with high 
accuracies using different hyperparameters for batch size, epoch, neurone size, 
momentum, and learning rate in each model despite various design complexities 
considering multiple performance aspects. Future research can integrate more 
hyperparameters, such as activation function, dropout rate, various optimisation 
algorithms, different numbers of hidden layers, and sample sizes. Thus, the 
ANN models can provide higher accuracies with an exponential increment in 
computational time. Hence, having all these parameters can be more applicable to 
real-world high-rise scenarios.

In conclusion, the parametric high-rise model and ML for surrogate model phases of 
the MUZO methodology could automate form generation, performance evaluation, 
sampling, data processing, ANN development, and reporting the predictive 
models for all zones in both high-rise scenarios. Using the ML part of the MUZO 
methodology, architects and engineers can address the computational burden while 
optimising the entirety of a high-rise building to propose sustainable alternatives 
in metropolises. Nevertheless, optimisation of the high-rise building, which is 
addressed in part 2 of this study, remains challenging owing to the high number of 
parameters involved in the design process.

Data availability

Datasets related to this article can be found at (an open-source online data 
repository hosted at 4TU Research Data [87]): https://doi.org/10.4121/
uuid:8538ac2f-3a78-4923-8fca-5beb50017299
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Appendix 4A. Quad‑grid MAE and MSE results for training and test sets

Z9 ASE                                           Z9 sDA                                        Z10 ASE                                         Z10 sDA

Z7 ASE                                           Z7 sDA                                          Z8 ASE                                           Z8 sDA

Z5 ASE                                           Z5 sDA                                          Z6 ASE                                           Z6 sDA

Z3 ASE                                           Z3 sDA                                          Z4 ASE                                           Z4 sDA

Z1 ASE                                           Z1 sDA                                          Z2 ASE                                           Z2 sDA
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Appendix 4B. Diagrid MAE and MSE results for training and test sets

Z9 ASE                                             Z9 sDA                                      Z10 ASE                                           Z10 sDA

Z7 ASE                                             Z7 sDA                                        Z8 ASE                                             Z8 sDA

Z5 ASE                                             Z5 sDA                                        Z6 ASE                                             Z6 sDA

Z3 ASE                                             Z3 sDA                                        Z4 ASE                                             Z4 sDA

Z1 ASE                                             Z1 sDA                                        Z2 ASE                                             Z2 sDA
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PART B
Multi‑zone optimisation of high‑rise 
buildings using artificial intelligence 
for sustainable metropolises
PART 2 – Optimisation problems, algorithms, 
results, and method validation

ABSTRACT High-rise building optimisation is becoming increasingly relevant owing to global 
population growth and urbanisation trends. Previous studies have demonstrated 
the potential of high-rise optimisation but have been focussed on the use of the 
parameters of single floors for the entire design; thus, the differences related 
to the impact of the dense surroundings are not taken into consideration. 
Part 1 of this study presents a multi-zone optimisation (MUZO) methodology and 
surrogate models (SMs), which provide a swift and accurate prediction for the 
entire building design; hence, the SMs can be used for optimisation processes. 
Owing to the high number of parameters involved in the design process, the 
optimisation task remains challenging. This paper presents how MUZO can cope 
with an enormous number of parameters to optimise the entire design of high-rise 
buildings using three algorithms with an adaptive penalty function. Two design 
scenarios are considered for quad-grid and diagrid shading devices, glazing type, 
and building-shape parameters using the setup, and the SMs developed in part 1. 
The optimisation part of the MUZO methodology reported satisfactory results for 
spatial daylight autonomy and annual sunlight exposure by meeting the Leadership 
in Energy and Environmental Design standards in 19 of 20 optimisation problems. 
To validate the impact of the methodology, optimised designs were compared 
with 8748 and 5832 typical quad-grid and diagrid scenarios, respectively, using 
the same design parameters for all floor levels. The findings indicate that the MUZO 
methodology provides significant improvements in the optimisation of high-rise 
buildings in dense urban areas.

KEYWORDS Performance-based design, building simulation, sustainability, high-rise building, 
machine learning, optimisation
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 4.7 Introduction : Part B

The demand for high-rise buildings is increasing in metropolises owing to population 
growth and urbanisation trends [1]. For realising sustainable urban areas, 
sustainable high-rise buildings should be one of the topics under investigation 
because they consume a significant amount of energy owing to their excessively 
large size [2]. Designing a sustainable high-rise building is a complex task because 
the process involves various types of design parameters that affect multiple 
performance aspects. Rafiei and Adeli [3] presented robust optimisation algorithms 
and neural dynamic models for investigating sustainable high-rise alternatives to 
cope with this complexity. The previous works mentioned in part 1 showed that 
optimisation algorithms and machine learning techniques have been widely used 
for designing sustainable high-rise buildings over the last two decades. However, 
in none of these studies, were the various floor levels considered as separate 
design problems, which is crucial for improving the overall performance of high-rise 
buildings [4]. Using the same design parameters for the entire high-rise design is a 
limited approach because the performance of the building varies between the ground 
and sky floor levels in dense urban areas. Optimising the design of an entire high-
rise building is challenging as the simulations require expensive computational time, 
and the optimisation process needs to cope with an enormous number of design 
parameters. The use of multi-zone optimisation (MUZO) methodology is proposed 
to divide high-rise buildings into subdivisions (zones) to be considered as separate 
problems using artificial intelligence methods to address both aspects. Part 1 of the 
study is focussed on solving computationally expensive simulations of each zone 
using surrogate models (SMs). Part 2 deals with the optimisation challenge, wherein 
each zone is considered as a design problem using algorithms belonging to different 
optimisation domains. In parts 1 and 2 of the MUZO study, quad-grid and diagrid 
scenarios with the shading device, glazing type, and building-shape parameters were 
used to demonstrate the proposed methodology.

This study is focussed on optimising the entire design of high-rise buildings for quad-
grid and diagrid scenarios using the 40 SMs developed in part 1. The performance 
aspects of the study take into consideration the two daylight metrics of Leadership 
in Energy and Environmental Design (LEED) v4.1., namely, the spatial daylight 
autonomy (sDA) and annual sunlight exposure (ASE). The optimisation process uses 
phase 3 of the MUZO methodology for single-objective constrained formulation 
with three algorithms: self-adaptive differential evolution with an ensemble 
of mutation strategies (jEDE) in the Optimus plug-in [5], radial basis function 
optimisation (RbfOpt), and covariance matrix adaptation with evolution strategy 
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(CMA-ES) in the Opossum plug-in [6]. In addition, an adaptive penalty function, 
called the near-feasibility threshold (NFT) [7,8], is used for each optimisation 
algorithm in the Grasshopper 3D algorithmic modelling environment (GH) [9]. The 
paper reports the optimisation results of 20 problems for two scenarios, which 
comprise 260 and 220 design parameters, respectively, with the aforementioned 
algorithms for five replications. Part 2 of the study also validates the significance 
of the proposed methodology by presenting a comparison of the performances 
of the optimised high-rise designs and typical high-rise scenarios generated by 
the same design parameters for all the floor levels. The optimisation results and 
validation of the method show that the MUZO methodology can play a significant 
role in investigating sustainable high-rise alternatives in metropolises. The rest of 
this paper is structured as follows: Section 4.8 presents state of the art for sDA and 
ASE optimisation, Section 4.9 introduces the optimisation problems and algorithms 
of this paper, Section 4.10 reports the optimisation results, Section 4.11 presents 
the validation of the MUZO methodology, Section 4.12 discusses the importance 
and potential of MUZO with surrogate-based design optimisation, and 
Section 4.13 presents the conclusions of this paper.

 4.8 State of the art for sDA and ASE 
optimisation

This section presents the previous optimisation studies for the sDA and ASE 
daylight metrics of LEED within the performative computational architecture (PCA) 
framework in two subsections: one presenting conventional optimisation and the 
other computational optimisation. Conventional methods comprise an analysis of the 
predefined design parameters, whereas computational methods involve the use of 
optimisation algorithms while automating the PCA framework to investigate the best 
design performance. Subsequently, the novelty of this study is summarised.
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 4.8.1 Conventional optimisation

Over the last decade, sDA and ASE metrics have been used to investigate daylight 
performance and visual comfort for various building functions. An early study 
was focussed on a classroom case with the use of three optimisation approaches 
while using the optical properties and size of a south-facing window [10]. Owing 
to the classroom requirements, the authors maximised sDA500/50% to evaluate an 
illuminance level of 500 lx with respect to ASE1000,250h. In the case of a hospital-
patient room, in two studies, the window blinds were optimised by shaping the 
slats and the configuration of external sun-breakers on south-oriented windows to 
maximise sDA300/50% subject to ASE1000,250h [11,12]. In the case of office spaces, in 
three studies, sDA300/50% was maximised subject to an ASE1000,250h less than 10% 
as a preferable result, and between 10% and 20% as an acceptable limit for various 
design parameters, i.e., solar screens, 3D tessellation, fixed/dynamic shading 
devices, and surface reflectance [13-15]. The general approach of these studies was 
to maximise sDA300/50%, with the exception of one study, owing to the educational 
requirements [10]. The ASE1000,250h was generally considered as less than 10% 
as a comfort limit, while two studies considered the results of less than 20% as 
acceptable solutions [14,15]. In addition, in the aforementioned studies, a limited 
number of design alternatives that might be related to conventional optimisation 
techniques were examined. Consequently, none of these studies were focussed on 
optimising the daylight performance for the design of entire buildings, such as high-
rise buildings.

 4.8.2 Computational optimisation

Optimisation algorithms have been widely used to cope with the complexity of 
the design problem while investigating desirable sDA and ASE results for various 
building functions. An early example was focussed on office space to maximise 
sDA300/50% subject to an ASE1000,250h of less than 10% using a genetic algorithm 
(GA) in the Galapagos plug-in of GH while considering a single-objective formulation 
for kaleidocycle typology [16]. In addition to daylight, Vera, et al. [17] addressed 
single-objective constrained optimisation to minimise the total energy usage subject 
to a sDA300/50% greater than 50% and ASE2000,400h less than 20% for exterior 
fenestration systems of office spaces using particle swarm optimisation with the 
Hooke–Jeeves algorithm in GenOpt. Another example of combining performance 
aspects into one fitness function was examined by Yi, et al. [18] to maximise 
sDA300/50% and minimise ASE1000,250h and daylight glare probability (DGP) for auxetic 
structures with advanced daylight control systems in an office space using a GA 
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in the Galapagos. As an alternative to single-objective constrained formulation, 
Tabadkani, et al. [19] and Mangkuto, et al. [20] maximised sDA ASE−  subject to a 
sDA300/50% greater than 50% and 75%, and ASE1000,250h less than 10% for sun-
responsive skin and light shelf design in office and hospital spaces using a GA in 
the Galapagos and Octopus plug-ins. In the case of multi-objective optimisation, 
Yi [21] maximised the sDA300/50% and minimised ASE1000,250h with an aesthetic 
perception objective function using non-dominated sorting genetic algorithm II 
for a hotel building. Pilechiha, et al. [22] also considered the quality of the view 
from office windows in the optimisation of the sDA300/50%, ASE1000,250h, and energy 
usage intensity while considering weighted summation and the HypE algorithm in 
the Octopus plug-in. As an alternative to multi-objective optimisation, Mangkuto, 
et al. [23] identified the simulation results for an office space with full factorial 
analysis of the internal shading devices to explore the non-dominated solutions 
while maximising sDA300/50% and minimising ASE1000,250h and DGP>0.21 subject to an 
sDA greater than 55%, ASE less than 10%, and DGP less than 50%. Five of these 
studies comprised the consideration of a single objective, whereas others used multi-
objective and weighted summation formulations. Three studies utilised static penalty 
functions that might limit the search ability during the optimisation process. Finally, 
none of the reviewed studies consisted of a comparison of the results of different 
optimisation algorithms using various initial populations (replications) for the entire 
design of the building.

 4.8.3 Novelty of this paper

This study is focussed on the optimisation of an entire high-rise building for the 
quad-grid and diagrid scenarios through phase 3 of the MUZO methodology, 
which is based on the use of multiple algorithms with replications for each 
optimisation task owing to the no free lunch (NFL) theorem [24]. Because of the 
computational burden of optimising the entire design, the high-rise building is 
divided into 10 subdivisions (zones), which correspond to 10 design problems 
starting from the first zone (Z1) at the ground level until the tenth zone (Z10) 
at the sky level (Fig. 4.15). Forty SMs, and the high-rise setup, which were 
developed in part 1 of this study, were used to optimise the sDA and ASE metrics 
based on the simulation results obtained for the second and fifth floors in each 
zone. The quad-grid scenario comprises 2.893399115e+28 design alternatives 
with 26 parameters, whereas this number is 3.054543465e+23 for the diagrid 
scenario with 22 parameters in one zone. For each optimisation task, phase 3 of 
the MUZO methodology is considered by employing the jEDE, RbfOpt, CMA-ES 
algorithms, and NFT adaptive penalty function with five replications, which suggests 
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a decision-making process using 15 optimisation results. Consequently, this paper 
reports on the optimised high-rise buildings after a total of 300 optimisation runs 
is complete, using 260 parameters for the quad-grid, and 220 parameters for 
diagrid, and it validates the impact of the proposed methodology by comparing the 
optimised scenarios with the typical high-rise scenarios. Thus, part 2 of the study 
not only deals with the optimisation of the entire design of high-rise buildings for the 
performance metrics under study, but also addresses 20 complex design problems, 
each having an enormous number of design alternatives in the optimisation search 
space, owing to the involvement of multiple design parameters.

Z1
SM 2    (ASE Z1)

SM 1    (sDA Z1)

Z2
SM 4    (ASE Z2)

SM 3    (sDA Z2)

Z3
SM 6    (ASE Z3)

SM 5    (sDA Z3)

Z4
SM 8    (ASE Z4)

SM 7    (sDA Z4)

Z5
SM 10  (ASE Z5)

SM 9    (sDA Z5)

Z6
SM 12   (ASE Z6)

SM 11   (sDA Z6)

Z7
SM 14   (ASE Z7)

SM 13   (sDA Z7)

Z8
SM 16   (ASE Z8)

SM 15   (sDA Z8)

Z9
SM 18   (ASE Z9)

SM 17   (sDA Z9)

Z10
SM 20   (ASE Z10)

SM 19   (sDA Z10)

Z1
SM 22   (ASE Z1)

SM 21   (sDA Z1)

Z2
SM 24   (ASE Z2)

SM 23   (sDA Z2)

Z3
SM 26   (ASE Z3)

SM 25   (sDA Z3)

Z4
SM 28   (ASE Z4)

SM 27   (sDA Z4)

Z5
SM 30   (ASE Z5)

SM 29   (sDA Z5)

Z6
SM 32   (ASE Z6)

SM 31   (sDA Z6)

Z7
SM 34   (ASE Z7)

SM 33   (sDA Z7)

Z8
SM 36   (ASE Z8)

SM 35   (sDA Z8)

Z9
SM 38   (ASE Z9)

SM 37   (sDA Z9)

Z10
SM 40   (ASE Z10)

SM 39   (sDA Z10)

Quad-grid scenario                                                      Diagrid scenario

Selected floor levels in each zone for developing the surrogate models

Floors Zones                             Floors Zones

59

56

53

50

47

44

41

38

35

32

29

26

23

20

17

14

11

8

5

2

59

56

53

50

47

44

41

38

35

32

29

26

23

20

17

14

11

8

5

2

FIG. 4.15 Subdivisions (zones) of high-rise scenarios and their surrogate models
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 4.9 Optimisation problems and algorithms

This section explains the problem formulation and algorithms used in each 
optimisation process. The first subsection explains the single-objective constrained 
formulation, whereas the subsequent subsections present the RbfOpt, CMA-ES, 
and jEDE algorithms with applications in the architecture domain. Finally, the NFT 
describes the adaptive penalty function for constraint handling.

 4.9.1 Problem formulation

The Illuminating Engineering Society (IES) recommends a minimum sDA300/50% 
of 55% with a maximum ASE1000,250h of 10% as desirable daylight with acceptable 
comfort [25]. However, the LEED standards acknowledge design proposals with 
two points, i.e., while the sDA300/50% is greater than 55% and ASE1000,250h is less 
than 10% for regularly occupied floor areas. When reaching a minimum of 75% of 
sDA300/50% with 10% of ASE1000,250h, the design is acknowledged with three points. 
Considering the formulations of previous studies and the recommendation of the IES 
and the LEED standards, in this study, a single-objective constrained optimisation is 
considered for each design problem as

 
max : ( , ,..., )

:
/ %

/

sDA X x x x and X S
subject to ASE

n

h

300 50 1 2

1000 250

= ∈

≤≤ ASEbound
, (4.12)

where n is the number of design parameters in each zone for both quad-grid and 
diagrid scenarios, S is the entire search space of one zone, and ASEbound  is the 
maximum limit for direct sunlight. State of the art shows that the ASE results can 
be related by more than 10% to the design of the shading devices. Because the 
sufficiency of shading devices is unexplored at the beginning of the optimisation 
processes, an adaptive ASE boundary is considered in each zone as
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where ASEbound  increases by 10% when the sDA result is less than 55%. This 
approach is considered in both quad-grid and diagrid scenarios to optimise the 
sDA and ASE metrics using the SMs. The optimisation task starts from Z1 and ends 
at Z10. After the best parameter set is determined in one zone for each algorithm, 
the optimisation process of the next zone is started. The parameters presented 
in part 1 of the MUZO study are also used herein (Table 4.1). The supplementary 
material presents the predictive models with learning scores of 40 SMs that were 
used during the optimisation process.

 4.9.2 Radial basis function optimisation

RbfOpt is a model-based algorithm used for solving computationally expensive 
problems and was recently presented by Costa and Nannicini [26]. For the unknown 
cost function, the algorithm constructs and iteratively refines an approximation 
model with sampled points. Compared to the existing open-source model-based 
algorithms available, RbfOpt provides two main contributions: an efficient method 
for automatic model selection using a cross-validation scheme, and an approach to 
exploit noisy but faster function evaluations. Opossum provides the RbfOpt algorithm 
to be used in architectural design optimisation as an open-source plug-in developed 
for GH [6]. RbfOpt in Opossum has been widely used for various design problems, 
i.e., daylight and glare problems [27], optimal viewing angle in stadium design [28], 
structural optimisation [29], urban design [30], and optimisation problems focussed 
on building energy [31]. In this study, the optimisation process uses the default 
RbfOpt parameters while running the algorithm through Opossum v2.0.0.

 4.9.3 Covariance matrix adaptation with evolution strategy

CMA-ES is a well-known optimisation algorithm in the evolutionary computation 
(EC) domain proposed by [32-34]. One of its most powerful features is that the search 
space can be increased or decreased in the next iteration based on the results 
of every solution. The algorithm uses this procedure for the multivariate normal 
distribution parameters (mean and sigma) and for the entire covariance matrix 
that belongs to the decision variable space. Opossum v1.7.0 provides a CMA-ES 
algorithm for design optimisation in the architecture domain as an open-source 
plug-in for GH. Recently, this algorithm has been used for various design problems, 
e.g., Waibel, Wortmann, Evins and Carmeliet [31] optimised building energy problems 
while reporting promising results with a large evaluation budget, Zhang, et al. [35] 
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focussed on aerodynamic shape optimisation problems, and Fortich Mora [36] used 
CMA-ES for the design problem of sustainable high-rise buildings. The optimisation 
process in this study comprises the use of Opossum v2.0.0, while considering the 
default features of the CMA-ES algorithm.

 4.9.4 Self‑adaptive differential evolution with ensemble of 
mutation strategies

jEDE is a hybrid algorithm that belongs to the EC domain using differential evolution 
[37], self-adaptive strategy [38], and an ensemble of mutation strategies [39]. The 
purpose of the algorithm is to cope with high-dimensional problems in the domain of 
architectural design optimisation. The algorithm comprises a self-adaptive approach 
that converges to different directions with various rates of mutation and crossover 
operators. Moreover, with the ensemble idea, jEDE also selects the best mutation 
strategy for every dimension among predefined operators during the optimisation 
process. Therefore, the algorithm can adapt its search behaviour to different 
problems. The first application of jEDE, which is provided by Optimus v1.0.0 as an 
open-source plug-in for GH, was used for 30D CEC 2005 benchmark problems and 
a 70D structural design problem [5]. The algorithm presented promising results 
as compared with particle swarm optimisation, genetic algorithm, and RbfOpt. In 
addition, recent publications have demonstrated the potential of jEDE in solving 
a 20D problem of daylight [40] and the optimisation of sustainable high-rise building 
design focussed on daylight, comfort, and energy use intensity aspects with SMs [36]. 
The optimisation process in this study comprises the use of the default parameters 
of Optimus v1.0.2 for the jEDE algorithm.

 4.9.5 Near feasibility threshold constraint handling

In previous studies mentioned in section 4.8, single-objective constrained 
optimisation is considered as a problem formulation for the ASE and sDA metrics 
according to the LEED and IES standards. The general approach of these studies was 
to consider the ASE as a constant penalty function to be embedded in the sDA fitness 
function. In this method, the result of the fitness function (sDA) is multiplied with 
a constant value if the solution of the constraint function (ASE) is in the infeasible 
region. Previous studies have also discussed that the ASE results could be related 
to the sufficiency of the shading devices by more than 10%. Another reason for 
this outcome may be related to the limited searchability of the constant penalty 
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functions. In the case of challenging constraint problems, Mallipeddi and Suganthan 
[41] emphasised the importance of using advanced constraint-handling approaches. 
Therefore, in this study, the NFT adaptive penalty function is taken into consideration 
[7], which is an advanced version of the constant penalty function. The approach of 
the NFT is to define a threshold distance from a feasible region and to encourage the 
search within this region and the NFT neighbourhood while discouraging the search 
beyond that threshold. Equation (4.14) and Equation (4.15) explain the penalised 
fitness function f xp ( )  using the NFT as

 f x f x v x
NFTp ( ) ( ) ( )

= + 






α

, (4.14)

 NFT NFT
g

=
+ ⋅

0

1 λ
, (4.15)

where f x( )  is the fitness function; v x( )  is the violation; α and λ are user-defined 
positive parameters taken as 2 and 0.04, respectively, NFT0  is the upper bound of 
the NFT taken as 0.1; and g  is the generation or iteration number. The optimisation 
process of RbfOpt, CMA-ES, and jEDE takes into consideration the NFT approach to 
obtain a reasonable comparison between algorithms for each problem. The Optimus 
plug-in v1.0.2 provides an open-source NFT module that can work with other 
optimisation plug-ins in GH.

 4.10 Results

The optimisation results were obtained using a computer with an Intel Xeon E5-
1620 v3 core processor at 3.50 GHz, 16-GB DDR3 memory, and a 512-GB solid-
state drive (Fig. 4.16). As the termination criterion, 10,000 was considered as 
the maximum number of function evaluations (FES). In the implementation of 
CMA-ES and RbfOpt, non-populated approaches were considered in the Opossum 
plug-in. Therefore, 10,000 was set as the maximum FES for CMA-ES and RbfOpt, 
while 40 population sizes and 250 generations were considered for the population-
based jEDE algorithm. During the optimisation process, Opossum automatically 
stopped the iteration if there was no alteration in the fitness function. Therefore, 
the computation times of all the algorithms were also recorded. To evaluate the 

TOC



 205 ­ulti--one  optimisation  ­MUOO)  methodology

optimisation performance of RbfOpt, CMA-ES, and jEDE, the following five criteria 
were considered: max f(x), and std f(x), respectively, are the maximum, and standard 
deviation of the function x  for five replications; CPU is the average time in seconds 
to complete one replication; FES is the total number of function evaluations, and 
FES/CPU is the number of completed function evaluations in 1 s (Fig. 4.17). 
The convergence graphs for the best results among the five replications of each 
algorithm are presented in Figs. 4.18 and 4.19. In addition, appendices 4C, 4D, 4E 
and 4F present the convergence graphs of all the replications.
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FIG. 4.16 Boxplots of the optimisation results
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In the quad-grid results, jEDE outperformed the other algorithms in six zones, 
whereas jEDE and CMA-ES yielded the same results in three zones, and CMA-ES 
outperformed jEDE in one zone. In the case of the LEED scores, jEDE and CMA-ES 
reached three points in nine zones, while both algorithms reached two points only 
in Z10.

In contrast, RbfOpt reported three points for Z1, two points for Z3, Z4, Z5, and 
Z7, and sDA results less than 55% in other zones. Hence, the jEDE and CMA-
ES could cope with the quad-grid scenario and provided satisfactory results for 
LEED standards, while the RbfOpt could not achieve the same result owing to the 
insufficient sDA levels reported for Z2, Z6, Z8, Z9, and Z10. In the diagrid results, 
the constraint of ASEbound 10  resulted in undesirable sDA solutions in Z10 for all 
the algorithms. Thus, the boundary was increased by 10% to consider the new 
constraint function as ASEbound  20 . As a result, the jEDE outperformed the other 
algorithms in seven zones. In two zones, jEDE and CMA-ES yielded the same results, 
whereas only in one zone, the CMA-ES outperformed the jEDE.

In the case of the LEED scores, the jEDE and CMA-ES presented three points in six 
zones and two points in three zones, whereas the RbfOpt found three points in three 
zones, two points in three zones, and insufficient results in four zones. Therefore, the 
jEDE and CMA-ES could cope with the diagrid scenario, while providing satisfactory 
results for the LEED standards in nine zones and acceptable results ( ASEbound  20 ) 
in Z10, while the RbfOpt could not present a desirable performance for the entire 
building owing to the insufficient sDA results reported for Z7, Z8, Z9, and Z10. 
With respect to the computation time, the RbfOpt and CMA-ES were automatically 
terminated at a smaller FES than the jEDE. Based on the CPU results, the CMA-ES 
converged faster than the other algorithms in Z1 of the quad-grid, and Z2 and Z5 of 
the diagrid scenarios. In all the other problems, the jEDE converged faster than the 
CMA-ES and RbfOpt with less deviation in computation time despite the higher FES. 
In contrast, the FES/CPU results suggested that the jEDE could evaluate a single 
function much faster than the other algorithms.

In the optimised solutions, the results showed that the sDA values diversified in 
all zones for both scenarios. For instance, optimised solutions of the lower zones 
presented a high percentage of sDA because the dense areas in the built environment 
significantly blocked direct sunlight. Thus, the daylight was controlled using shading 
devices and considering high-transmittance glazing materials between Z1 and Z3. 
In the middle zones, it was observed that the sDA values started to vary between 
Z4 and Z7 owing to the different shading densities and glazing types used. 
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In the higher zones (Z8–Z10), the sDA results were lower than those in the other 
zones because direct sunlight met with the corresponding floors from all directions 
(north, south, east, and west). Therefore, either dense use of shading devices or 
low-transmittance glazing materials were selected, especially in the south and 
east orientations, to cope with this challenge. In addition, it was observed that a 
significant building twist would be desirable in the zones between Z8 to Z10 to 
decrease the impact of direct sunlight as compared with the other zones. The 
described design differences in the various zones were based on several reasons. 
Firstly, the density of the surroundings caused various design challenges, i.e., high 
building density at the ground levels and low density at the sky levels. Therefore, 
the optimisation algorithms found different design parameters owing to the different 
surrounding conditions. Secondly, higher zones were dependent on the lower 
zones because of the rotation and floor-to-floor height parameters. The optimised 
parameters in the lower zones could negatively affect the higher zones. Nevertheless, 
desirable solutions were obtained from the results reported after the MUZO 
optimisation process because the independent rotation and floor-to-floor height 
parameters could control the performance of each zone.

With a focus on the overall building performance based on the average results of 
all the zones, Table 4.4 presents the sDA results for the entire high-rise building. 
The overall results of the algorithms demonstrated that the jEDE and CMA-ES found 
a higher sDA in the quad-grid than in the diagrid. However, the RbfOpt presented 
a superior sDA performance in the diagrid scenario. Consequently, the jEDE 
presented the best sDA performance, while the CMA-ES presented the second-best 
performance, and the RbfOpt presented the third best design options. Moreover, 
based on the results in Figs. 4.16 to 4.19, we can also conclude that the quad-grid 
shading devices provided better daylight performance within acceptable comfort 
conditions as compared with the diagrid devices. Fig. 4.20 presents the best 
parameters reported after the optimisation process for both scenarios, whereas 
Figs. 4.21 and 4.22 illustrate these parameters in the form of high-rise buildings. 
The supplementary material presents the results of the optimised building designs.

TabLe 4.4 sDA performance of the entire high-rise building design for quad-grid and diagrid scenarios

Algorithm Quad‑grid Diagrid

jEDE 88.7 82.0

RbfOpt 56.2 66.5

CMA-ES 85.8 80.2
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Quad-grid Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10
x1,…,x10 4.9 4.7 4.9 5.0 4.8 4.8 4.8 4.3 4.0 4.4 4.9 4.2 4.4 4.0 4.1 4.2 4.2 4.0 4.1 4.0 4.9 4.1 5.0 4.5 4.8 4.6 4.7 4.0 4.0 4.3
x11,…,x20 -10 -10 -3 2 10 -10 -10 -10 -10 -10 -10 -10 -5 0 -10 -10 -10 -5 -9 -10 -8 -10 -6 3 10 -10 -10 -10 -10 -10
Q1 4 7 7 0 0 0 0 8 0 8 3 4 3 0 8 0 1 8 0 1 8 7 6 0 1 0 0 5 0 4
Q2 1.0 1.5 0.0 0.0 0.0 0.0 0.3 1.5 0.6 0.0 0.4 1.5 0.7 1.0 0.1 0.0 0.5 1.5 0.0 0.2 0.1 1.5 0.0 0.1 0.2 0.0 0.0 1.3 0.5 0.0
Q3 -60 -60 -59 -60 57 60 60 60 -53 -60 -57 23 -40 -32 19 56 52 -6 -57 -25 -60 -60 -60 -60 60 16 59 59 -25 -60
Q4 0 0 0 0 0 2 0 0 0 0 1 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 0 0 0
Q5 0.0 0.1 1.5 1.5 1.5 0.0 1.4 1.5 0.0 1.5 0.1 0.0 1.0 0.8 1.5 0.9 0.9 0.0 0.6 1.1 0.9 0.0 1.5 1.5 1.5 0.0 1.5 1.5 0.2 1.5
Q6 0 7 0 6 0 2 7 3 0 0 0 0 0 5 3 0 4 8 4 0 0 8 0 0 0 3 8 0 0 0
Q7 1.5 0.2 0.0 1.5 0.0 0.0 1.5 0.0 0.0 0.0 1.5 0.0 0.0 0.3 0.3 0.1 0.4 1.1 1.2 0.0 1.4 0.0 0.0 1.5 0.1 0.0 1.5 0.0 0.0 0.0
Q8 60 -57 60 -60 60 60 -60 60 -60 -58 59 -56 54 19 56 59 -21 -59 58 15 48 -49 50 -60 58 60 -48 60 -60 -58
Q9 2 0 2 0 2 2 2 0 2 2 2 0 2 0 1 2 2 2 2 2 2 0 2 0 2 2 2 0 2 2
Q10 1.1 1.5 1.5 0.0 1.5 1.5 0.0 0.0 0.0 0.0 1.5 0.7 1.4 0.0 0.0 1.3 1.2 1.1 0.4 1.4 0.9 1.5 1.5 0.0 1.5 1.5 0.1 0.0 0.0 0.0
Q11 0 8 0 8 0 8 1 8 2 8 0 8 0 8 4 8 3 7 5 8 0 8 0 7 6 8 0 8 0 8
Q12 0.0 0.0 0.3 1.0 0.0 0.0 0.0 0.0 0.0 0.0 1.2 0.2 0.8 0.0 0.0 0.4 0.2 1.0 0.1 0.9 0.9 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0
Q13 60 58 -57 -58 53 60 59 -55 -60 54 -5 -29 -47 -7 43 -41 57 -36 -20 59 40 -60 -60 -5 58 -22 51 -57 -60 12
Q14 2 2 0 2 2 2 2 2 2 1 2 2 0 2 2 2 2 2 0 2 2 2 0 2 2 2 2 2 2 2
Q15 1.3 1.9 0.3 1.5 1.5 1.5 1.5 1.5 1.5 0.0 1.5 1.5 0.1 1.5 1.5 1.5 1.5 1.5 0.0 0.7 1.5 1.5 0.0 1.5 1.5 1.5 1.5 1.5 1.5 0.0
Q16 8 0 8 0 8 8 3 8 8 8 8 6 4 0 8 8 3 8 6 8 0 0 8 0 8 8 5 8 8 8
Q17 0.0 1.4 1.5 0.0 0.0 1.5 1.5 0.0 1.1 0.0 0.6 1.4 1.2 0.0 0.1 1.2 0.3 0.5 1.5 1.1 0.9 1.5 1.0 0.0 0.0 1.5 1.3 0.0 1.2 0.0
Q18 37 -60 58 -60 -51 -60 60 -59 -59 -55 -20 -56 46 -59 48 -59 40 40 -8 -60 41 -60 58 -60 -14 -60 60 -31 -12 -30
Q19 2 2 2 0 2 2 2 0 0 2 2 2 2 0 2 2 2 2 2 2 2 2 2 0 2 2 2 0 0 2
Q20 1.4 1.5 1.5 0.0 1.5 1.5 1.5 0.0 1.5 1.5 0.2 1.5 1.5 0.1 1.5 1.5 1.5 0.1 1.3 0.0 1.0 1.5 1.5 0.0 1.5 1.5 1.5 0.4 1.5 1.5
Q21 4 4 4 4 4 4 4 4 4 4 4 2 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4
Q22 4 4 4 1 2 4 4 4 4 4 4 4 1 3 1 2 3 2 1 4 3 4 1 2 3 4 4 4 4 4
Q23 3 2 4 1 4 4 4 4 4 1 2 2 4 2 4 2 4 1 1 1 4 4 4 1 4 4 4 4 4 1
Q24 4 4 4 4 4 4 3 2 3 4 4 3 4 4 4 3 2 1 4 4 4 4 4 4 4 4 3 2 3 4
Diagrid Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10
x1,…,x10 4.4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.1 4.0 4.0 4.2 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.4 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0
x11,…,x20 -10 9 -10 -10 7 10 -10 -9 -8 -9 -6 5 -10 -9 6 0 -5 7 -10 -7 -10 8 -7 -10 6 10 -10 10 -9 -8
D1 0.0 0.2 0.5 0.0 1.5 1.5 0.0 0.3 1.5 1.5 0.0 0.6 1.5 0.9 1.4 1.0 0.0 1.3 1.3 1.4 0.0 0.1 0.3 0.0 1.4 1.5 0.0 0.5 1.4 0.4
D2 0.0 0.1 0.0 1.5 0.0 0.0 1.5 0.0 0.0 0.0 0.1 0.0 0.0 1.4 0.0 1.0 0.9 0.0 0.2 0.0 0.0 0.4 0.0 1.5 0.0 0.4 0.0 0.3 0.0 0.0
D3 -60 -60 57 -60 -59 -60 -46 -60 -60 -60 -9 16 40 59 -53 -58 -26 -7 59 18 -60 0 -8 -60 -41 -60 -60 -60 -60 55
D4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D5 0.0 0.0 0.0 1.5 1.5 0.0 1.3 0.0 0.0 0.0 0.4 1.3 0.2 1.3 0.8 0.5 1.1 0.2 0.1 1.0 0.0 0.4 0.0 1.5 1.5 0.0 0.5 0.0 0.0 0.1
D6 1.5 0.1 1.5 0.0 0.4 1.5 0.8 0.0 0.0 0.0 1.4 0.0 1.1 0.0 0.5 1.5 1.4 0.0 1.4 0.2 1.2 1.4 1.3 0.0 0.0 1.3 0.7 0.0 0.0 0.0
D7 -60 -60 -42 -60 -60 -60 54 -58 -60 -60 -33 -50 -59 -42 45 -41 36 54 48 -59 -60 -56 -59 -60 -51 -60 20 -47 -60 -59
D8 5 2 2 2 5 5 5 5 5 0 5 5 5 0 5 4 5 5 4 3 5 2 4 2 4 5 5 3 5 0
D9 0.0 1.4 0.0 1.5 1.5 1.5 1.5 1.5 0.2 1.5 0.0 0.8 0.0 1.0 1.4 0.0 1.4 0.1 1.5 1.3 0.0 1.5 0.0 1.5 1.5 1.5 1.5 1.1 1.5 0.6
D10 0.0 1.5 0.0 0.7 0.0 1.5 1.5 0.7 0.0 0.3 0.0 1.5 1.2 1.2 0.5 0.3 1.5 0.1 0.0 0.1 0.0 1.0 0.0 0.7 0.0 1.5 1.5 0.0 1.3 0.3
D11 -60 -57 -60 -13 -60 57 -60 -34 -60 -59 -6 -38 -60 21 -60 9 32 -12 -59 -49 57 -20 -60 -13 9 60 -60 -37 -60 -60
D12 3 0 5 0 1 2 5 2 5 5 0 0 3 4 3 5 5 4 3 5 5 0 5 0 2 3 5 3 5 5
D13 1.5 1.5 1.5 0.0 1.5 1.5 1.5 0.0 1.5 0.0 1.5 1.5 1.3 0.4 1.5 1.5 1.4 0.4 1.4 0.2 1.5 1.5 1.5 0.0 1.5 1.5 1.5 0.0 1.5 0.0
D14 0.3 0.0 1.4 0.0 0.8 0.2 0.0 0.0 0.0 0.7 1.3 0.0 1.3 0.1 1.0 1.2 0.5 0.1 0.7 0.0 0.0 0.0 1.1 0.0 1.0 0.1 0.0 0.9 0.0 0.8
D15 2 16 -60 -60 -59 -44 -60 -60 59 -60 -39 23 -60 -41 17 15 -40 -59 59 -40 -57 40 -60 -60 -51 -5 -58 -60 -50 -60
D16 5 5 5 0 5 5 0 0 5 0 5 4 5 0 5 5 0 0 5 0 5 4 5 0 5 5 0 0 5 0
D17 4 4 4 4 4 4 4 4 4 4 4 4 4 3 4 4 4 4 4 3 4 4 4 4 4 4 4 4 4 4
D18 4 4 4 4 4 4 1 2 4 4 4 4 4 4 4 4 2 1 2 4 4 4 4 4 4 4 3 1 4 4
D19 4 4 4 1 3 4 4 1 1 1 4 4 4 1 4 4 4 1 1 1 4 4 4 1 3 4 4 1 1 1
D20 4 4 4 3 4 4 4 4 4 4 4 4 4 3 4 4 1 4 4 4 4 4 4 3 4 4 1 4 4 4

Legend

RbfOpt CMA-ESjEDE

Maximum valueMinimum value Minimum value Maximum value Maximum valueMinimum value

FIG. 4.20 Parameter maps of the optimised building designs
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FIG. 4.21 jEDE (a), RbfOpt (b), and CMA-ES (c) optimised designs for the quad-grid scenario
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FIG. 4.22 jEDE (a), RbfOpt (b), and CMA-ES (c) optimised designs for the diagrid scenario
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 4.11 Validation of the method

The design of high-rise buildings has changed owing to technological improvements, 
design concerns with environmental impacts, and regulation changes over time [42]. 
Few buildings appear to be examples of such design concerns in the 21st century, as 
they comprise various building shapes and façade configurations and a combination 
of transparent and opaque surfaces. However, the design of high-rises using various 
design parameters could provide solutions for realising better building performance 
in dense urban districts, as discussed in this paper. This section presents the 
potential performance improvement that can be realised in sustainable high-rise 
buildings in metropolises by comparing the optimised scenarios obtained using the 
MUZO methodology with typical high-rise scenarios. In the majority of the existing 
high-rise buildings, the same parameter values are applied to the entire high-rise 
design (e.g., singular floor-to-floor height, same façade configuration, and a single 
glazing type). For profound comparisons, various combinations of parameters are 
defined to develop typical scenarios using the same parameters in the optimisation 
process. In total, 8748 typical quad-grid and 5832 typical diagrid scenarios were 
generated using the values listed in Table 4.5, and Figs. 4.23 and 4.24 illustrate 
several examples of these scenarios.

The performance of each typical scenario was calculated for every zone using the 
same SMs in a short time. The average performance results obtained for all the zones

TabLe 4.5 Parameter values used for generating typical scenarios
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were considered to evaluate the overall building performance for the typical 
scenarios. In the case of the optimised scenarios, the jEDE results were 
used for comparison, as they were the best-proposed design solutions. 
Figs. 4.25 and 4.26 present comparisons of the quad-grid and diagrid scenarios, 
respectively. As a result, the MUZO designs exhibited the best performances with an 
ASE of 9.8% and sDA of 88.7% in the quad-grid scenario and an ASE of 10.5% and 
sDA of 82.0% in the diagrid scenario. As mentioned in the results section, owing to 
the insufficient shading performance of diagrid Z10, ASEbound  20  was considered, 
which resulted in a slightly higher ASE performance than 10%. Ultimately, the 
overall performances of the typical high-rise scenarios could not provide satisfactory 
LEED scores, which demonstrates the importance of using the MUZO methodology in 
dense urban districts.

 4.12 Discussion

This section presents the discussion based on the optimisation results, and the 
validation of the method explained in the previous sections. Firstly, two discussion 
topics are addressed: the importance of the MUZO methodology for metropolises 
and its potential. Secondly, the ongoing discussion in architectural design 
optimisation based on surrogate-based algorithms versus optimisation with SMs is 
focussed upon.

1 The importance of the MUZO methodology for future metropolises 

The results obtained in this study indicated that the MUZO methodology could 
present desirable performance outcomes for 20 complex design problems while 
considering multiple parameters related to the architecture of high-rise buildings. 
Recent reviews have shown that not only performance aspects related to sustainable 
buildings but also parameters related to architectural design may present additional 
complexity during the optimisation process [43-46]. Therefore, the use of the MUZO 
methodology may support architects and engineers as they investigate sustainable 
high-rise scenarios by taking into consideration parameters related to design 
concerns in the conceptual phase. The results also proved that the performance 
outcomes on different floor levels of high-rise buildings may be affected in 
dense urban areas.
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FIG. 4.23 Typical quad-grid high-rise examples

FIG. 4.24 Typical diagrid high-rise examples
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FIG. 4.25 Validation for quad-grid scenario (MUZO design versus 8748 scenarios)
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FIG. 4.26 Validation for diagrid scenario (MUZO design versus 5832 scenarios)
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The main reason for the superior results obtained in the optimised designs proposed 
by the MUZO methodology was the division of one large design problem into sub-
problems (zones). Hence, the optimisation algorithms could determine the best 
design alternatives for each zone while considering the performances of the various 
floor levels.

2 Potential of the MUZO methodology

This study focussed on optimising the sDA and ASE daylight metrics of LEED standards 
to evaluate the sustainability score of high-rise buildings. The MUZO methodology 
may integrate more performance aspects related to sustainable buildings (e.g., 
energy consumption, building-integrated photovoltaics, and adaptive comfort). In 
such a case, the formulation of the problem could comprise multi-objective or many-
objective optimisation to handle more than two conflicting performance aspects. In 
addition, the complexity of the problem can be controlled by varying the number of 
zones. In this study, ten zones were considered, which is a predefined parameter that 
can be changed by the decision-maker based on the density of the surroundings. 
The consideration of fewer zones would limit the number of design decisions for 
the entire high-rise design, while the use of a larger number of zones may increase 
the complexity and computational burden exponentially. During the optimisation 
process, 1,095,395 and 1,139,785 FES were considered for the quad-grid and diagrid 
scenarios, respectively, in order to determine which presents the best performance, 
and 14,580 FES were considered to evaluate the performance generated in typical 
high-rise scenarios. If these tasks were based on simulations, which required 4 min to 
calculate the performance of one design, 17.12 years would be required to complete 
all these computations. The MUZO methodology provided near-optimal alternatives 
for 4 days using SMs. Moreover, the aforementioned optimisation tasks were completed 
in GH using the Optimus and Opossum plug-ins. The flexibility of the proposed 
methodology allows the use of other digital platforms for optimisation, e.g., Python, 
C++, and C#, because the predictive models can be defined in another software.

3 Surrogate‑based optimisation algorithms 
versus optimisation with SMs 

An ongoing discussion in the literature is focussed on the use of either surrogate-
based optimisation (e.g., RbfOpt) or SMs with heuristic optimisation algorithms 
(e.g., this study). While the user can optimise the design task using surrogate-based 
algorithms when considering a small amount of FES, the overall process still requires 
a significant amount of time owing to the replication of the optimisation process 
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using simulations. However, decision-makers can investigate the design problem 
extensively in a reasonable amount of time using SMs, various algorithms, and 
replications, but with a prediction error. The accuracy of the SMs can be improved 
for each design problem, as explained in part 1 of this study; however, achieving 
zero error is almost impossible. Therefore, we can conclude that surrogate-based 
optimisation is convenient for small-scale design problems (e.g., office spaces), 
whereas optimisation with SMs is useful for large-scale design problems (e.g., 
high-rise buildings).

 4.13 Conclusion

This paper presents the second part of the MUZO study and is focussed on the 
optimisation problems and algorithms, results, and validation of the method. 
The results of this study showed that the performance of the entire high-rise 
building in dense urban districts can be improved by focusing on each zone as a 
separate design problem, and the optimisation process is explained in this paper. 
The combination of these approaches with the SMs presented in part 1 allowed 
us to complete the optimisations of entire high-rise buildings in a short time. The 
obtained results indicated satisfactory sDA and ASE performances that met the LEED 
criteria in 19 out of 20 design problems comprising various complexities. Although 
the jEDE slightly outperformed the CMA-ES algorithm, the RbfOpt presented a 
lower sDA performance as compared to the other algorithms. This underscores 
the importance of employing various optimisation algorithms with replications in 
architectural design optimisation because the global optimal of each design problem 
is unexplored. In addition, the validation of the method also demonstrated that the 
building performance achieved using the MUZO methodology exhibited a remarkable 
improvement as compared to that of typical high-rise scenarios in dense urban 
districts. Therefore, the consideration of different parameters for various floor levels 
may provide significant performance improvements in the design of sustainable high-
rise buildings in metropolises.

In conclusion, the relevance of this study is confirmed by the obtained optimisation 
results and the validation of the presented method. Thus, this study underscores 
the effect of the use of the MUZO approach for metropolises while dividing high-rise 
buildings into zones to be considered as separate design problems. The importance 
of artificial intelligence methods for swift optimisation for determining sustainable 
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high-rise alternatives with the use of a large number of parameters was also 
demonstrated. In real-world applications, there is a possibility of combining 10 zones 
into one objective function instead of dealing with 10 separate problems. 
However, the design process may involve a large number of parameters, such 
as 260 parameters in the quad-grid and 220 parameters in the diagrid scenarios of 
this study. Therefore, the domain of architectural design optimisation requires tools 
and algorithms that can simultaneously cope with more than 200 parameters for 
high-dimensional constrained problems [47,48]. A sensitivity analysis could decrease 
the total number of design parameters; however, the final design may not reflect all 
the architectural concerns owing to some variables having been discarded. Another 
alternative to decrease the overall complexity of the design process could be the 
consideration of two algorithms that belong to different optimisation domains (e.g., 
surrogate-based and EC). Finally, in real-world applications, fewer zones may be 
considered, which would also decrease the computational complexity, based on the 
density of the urban plot under study.
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Appendix 4C. Quad‑grid convergence graphs for all replications from Z1 to Z5

jEDE RbfOpt CMA-ES Infeasible region
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Appendix 4D. Quad‑grid convergence graphs for all replications from Z6 to Z10
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Appendix 4E. Diagrid convergence graphs for all replications from Z1 to Z5

jEDE RbfOpt CMA-ES Infeasible region
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Appendix 4F. Diagrid convergence graphs for all replications from Z6 to Z10
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5 Case study
Optimising Europoint complex 
for  self-sufficiency in energy 
consumption and food production 
in Rotterdam

Chapter 5 has been published as: Ekici, B.; Turkcan, O. F. S. F.; Turrin, M.; Sariyildiz, I. S.; Tasgetiren, M. 
F., Optimising High-Rise Buildings for Self-Sufficiency in Energy Consumption and Food Production Using 
Artificial Intelligence: Case of Europoint Complex in Rotterdam. Energies 2022, 15, (2), 660. For consistency 
of the dissertation, the layout is adapted to fit the template, some typos are adjusted, and phrases are 
reworded without changing the content.

https://doi.org/10.3390/en15020660

This chapter investigates utilising the MUZO methodology and Optimus tool to 
optimise the Europoint complex in Rotterdam, the Netherlands, for self-sufficiency 
in terms of energy consumption and food production. The sufficiency in food 
production is demonstrated for lettuce crops grown in vertical farms. Building-
integrated photovoltaic panels are used in several building parts regarding 
sufficiency in energy. The optimisation problem, which involves 117 decision 
variables related to the façade design, and the thermal properties of the glazing, 
addresses the self-sufficiency at the building scale in detail. Moreover, another 
optimisation problem reports the potentials at the neighbourhood scale using the 
same self-sufficiency aspects and design parameters. Among 13 algorithms used 
to optimise both problems, the Optimus tool presented the most favourable self-
sufficiency performance.
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Optimising High‑Rise Buildings 
for Self‑Sufficiency in Energy 
Consumption and Food Production 
Using Artificial Intelligence 
Case of Europoint Complex in Rotterdam

ABSTRACT The increase in global population, which negatively affects energy consumption, 
CO2 emissions, and arable land, necessitates designing sustainable habitation 
alternatives. Self-sufficient high-rise buildings, which integrate (electricity) 
generation and efficient usage of resources with dense habitation, can be a 
sustainable solution for future urbanisation. This paper focuses on transforming 
Europoint Towers in Rotterdam into self-sufficient buildings considering energy 
consumption and food production (lettuce crops) using artificial intelligence. 
Design parameters consist of the number of farming floors, shape, and the 
properties of the proposed façade skin that includes shading devices. Nine thousand 
samples are collected from various floor levels to predict self-sufficiency criteria 
using artificial neural networks (ANN). Optimisation problems with 117 decision 
variables are formulated using 45 ANN models that have very high prediction 
accuracies. 13 optimisation algorithms are used for an in-detail investigation of 
self-sufficiency at the building scale, and potential sufficiency at the neighbourhood 
scale. Results indicate that 100% and 43.7% self-sufficiencies could be reached for 
lettuce crops and electricity, respectively, for three buildings with 1800 residents. At 
the neighbourhood scale, lettuce production could be sufficient for 27,000 people, 
with a decrease of self-sufficiency in terms of energy use of up to 11.6%. 
Consequently, this paper discusses the potentials and the improvements for self-
sufficient high-rise buildings.

KEYWORDS Self-sufficiency, vertical farming, energy consumption, BIPV, building performance 
simulation, metropolis, artificial intelligence, machine learning, computational 
optimisation
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 5.1 Introduction

There is an increasing demand for the construction of high-rise buildings in 
metropolises [1], which requires the integration of various self-sufficiency aspects 
(such as food, energy, and water), owing to population growth and urbanisation 
trends. Compared with low-rise buildings, high-rises require more energy while 
causing significant CO2 emissions [2]. For this reason, optimisation algorithms 
and machine learning (ML) techniques have been widely used for investigating 
sustainable high-rise alternatives. However, population growth does not only affect 
the increase in final energy consumption. Another global problem is the decreasing 
stock of arable land in the world [3]. The United Nations Food and Agriculture 
Organisation (FAO) foresees that only one-third of the arable land per person 
in 1970 will be available in 2050 [4]. Vertical farms, which are multi-storey plant 
factories [5], are designed to provide rapid and uniform product growth of high 
quality [6]. Recent work shows that various types of crops, e.g., leafy greens, lettuce, 
vine crops, and tomatoes [7], can be grown in closed farming systems. Therefore, 
integrating vertical farms in high-rise buildings can be one of the sustainable 
solutions for providing food in highly dense urban areas that can increase the 
amount of agricultural land while decreasing CO2 emissions from the transportation 
of agricultural products.

Considering dense habitation, food production and energy generation in one 
building suggests a new optimisation problem in the architectural design called 
“self-sufficient high-rise buildings” (also defined as generative high-rises [8]). In this 
definition, self-sufficiency, which aims to provide a sufficient amount of resources 
in multiple aspects for the residents and for the neighbourhood in metropolitan 
areas, is different from self-sufficiency in terms of only energy (e.g., net-zero 
energy buildings (nZEB), energy-autonomous buildings [9]). Additionally, it is 
unlikely that high-rise buildings will be designed as off-grid systems with existing 
technology, such as small-scaled autonomous houses [10], because of their extreme 
sizes. Therefore, the contribution of self-sufficient high-rises is to generate and 
efficiently use multiple resources (such as energy, food, and water) to decrease their 
environmental impact while providing dense habitation in metropolitan areas. The 
complexity of this design problem is higher than the ones focusing on optimising 
high-rise buildings for various performance aspects of sustainability because of the 
existing and proposed challenges listed below:
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 – Providing a sufficient amount of food for at least the residents of high-rises and for 
as much of the neighbourhood as possible (proposed).

 – Generating energy via solar power for food production and for the annual usage of 
the residents of the building (proposed).

 – Integrating multiple performance aspects such as energy consumption, comfort and 
daylight (existing) [11].

 – Considering performance variations between the ground and sky levels because of 
the dense urban areas in metropolises (existing) [12].

 – Discovering well-performing high-rise alternatives in a reasonable amount of time 
during the conceptual design phase (existing) [13].

 – Coping with the enormous number of decision variables to optimise the entire shape 
of high-rise buildings (existing) [14]. 

This paper investigates the optimisation of high-rise buildings for self-sufficiency in 
food production and energy consumption subject to daylight availability. The food 
production system involves stacked lettuce crops, which is only one of the possible 
agricultural products among the other alternatives mentioned before. Energy 
consumption considers the farming and residential energy usage and the generated 
energy via solar panels. While investigating high-rise alternatives, sufficient natural 
lighting is also taken into account. Europoint complex in Rotterdam (also known as 
Marconi Towers), designed by SOM architecture firm and constructed in 1975, is 
the focus of the work. The studied model initially focuses on the building scale, and 
further investigation addresses the potential self-sufficiency at the neighbourhood 
scale for sustainable future cities.

 5.1.1 Problem statement

Optimising high-rise buildings for various design and performance aspects have 
been focussed on for two decades. Because of the existing challenges mentioned 
in the previous section, most of the published studies focus on the efficient usage 
of resources in high-rises, i.e. energy-efficient layout plans [15], natural ventilation 
potentials [16], energy-saving solutions for the envelope design [17], optimum 
solar access in high-density urban areas [18], double-skin façades for efficient 
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energy usage [19], optimisation processes for improving thermal and power 
performances [20], multiple building operation scenarios [21], and passive design 
strategies [22]. Considering the existing and proposed challenges together can 
result in a conflict between self-sufficiency aspects that increases the complexity 
of the high-rise design problem. For instance, closed farming systems consume 
significantly more energy in comparison to residential or office buildings, reaching 
more than 1000 kWh m−2 y−1 depending on the climate zone [23]. They do this 
while causing an increase in energy consumption with less habitation in the high-
rise buildings; the higher number of farming floors provides more food with low 
CO2 emissions when compared to regular farming. On the other hand, fewer farming 
floors provide less cultivation area with reduced energy consumption, but this causes 
higher CO2 emissions owing to the transportation of the crops to respond to the food 
demand in metropolises. Therefore, an optimal solution for self-sufficiency in energy 
and food should be investigated. The multi-zone optimisation (MUZO) methodology, 
which uses artificial intelligence (AI) methods, is adopted in this research to cope 
with existing and proposed challenges [13,14]. Similar works, which focus on self-
sufficiency in high-rises, are mentioned in Section 5.1.2, and the novelty of this 
paper is explained in Section 5.1.3.

 5.1.2 Overview of previous works

Previous works were found using the keywords related to “high-rise building”, 
“self-sufficiency”, “energy consumption”, “photovoltaic panel”, “vertical farming”, 
“daylight”, and “artificial intelligence”. Although a remarkable number of papers 
are published on high-rise optimisation for performance aspects related to 
sustainability, studies optimising self-sufficiency aspects are limited (Table 5.1). 
An early study focussed on optimising various floor plan configurations using the 
HGPSPSO algorithm to minimise the overall energy consumption considering building 
integrated photovoltaic (BIPV) panels [24]. Another work utilised single-objective 
and multi-objective optimisation algorithms for a two-step optimisation process 
using NSGA-II and HGPSPSO to minimise energy consumption while maximising 
energy production through opaque photovoltaic (PV) panels on the façade and semi-
transparent PV panels as glazing [25]. A similar problem formulation was used to 
minimise energy demand and maximise the percentage of total comfortable time for 
achieving zero-energy high-rise buildings with NSGA-II [26]. In addition to producing 
energy through BIPV panels, a recent study considered the economic aspects of 
various hybrid renewable energy generation systems in high-rises collecting the 
results from four different applications [27]. Four of the previous studies presented 
promising results but only considered self-sufficiency in energy. The complexity 
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of the studied design problems was limited because of the low size of decision 
variables (DV). Only one study focussed on the impact of the urban context [24], 
while the other papers only examined the high-rise building itself. Moreover, none 
of the previous studies investigated the results conducted by different optimisation 
algorithms that can lead to a representation of the solutions in local minima owing 
to the No Free Lunch (NFL) theorem [28]. Finally, ML algorithms were not involved 
in the previous studies. Hence, a limited number of function evaluations (FES) were 
considered because of the simulation-based optimisation processes.

TabLe 5.1 Overview of previous works

Study Location Aspects Building 
Sufficiency

Neighbourhood 
Sufficiency

System Optimisation Method(s) DV 
Size

This paper Rotterdam Food

Energy

100% 
for 1800 people
43.7%

100% up 
to 27000 people
Between 
47.8%–11.6%

Stacked lettuce

BIPV

given in Table 5.2 117

[24] Hong Kong Energy up to 48.77% - BIPV HGPSPSO 11

[25] Hong Kong Energy up to 71.36% - BIPV HGPSPSO
NSGA-II

11

[26] Athens Energy 33% - BIPV NSGA-II 8

[27] Hong Kong Energy 16.02%
53.65%
69.26%

81.29%

-
-
-

-

BIPV
BIPV-wind
BIPV-wind-
battery
Optimum BIPV-
wind-battery

-
-
NSGA-II

NSGA-II

-
-
1

2

 5.1.3 Novelty of this paper

This study considers multiple self-sufficiency aspects (i.e., food production and 
energy consumption) instead of considering a singular criterion (e.g., energy 
sufficient only as in previous works). Additionally, an enormous number of design 
parameters related to the number of farming floors, shape, and the property of the 
proposed façade skin with shading devices are extensively investigated using AI 
methods for self-sufficiency in building and the neighbourhood scales. For these 
reasons, the paper is focussed on optimising three towers of the Europoint complex 
in Rotterdam for self-sufficiency in total energy consumption Etot( )  and food 
production FP( ) .
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Since the developed model can consider the abovementioned crops by changing 
the simulation parameters to provide the required indoor environments, self-
sufficiency for food production is demonstrated for stacked lettuce crops. The 
study aims to provide sufficient lettuce crops for the habitants with low energy 
consumption subject to acceptable daylight performance. As the urban context 
may affect the design decisions [12], the impact of two towers on another is 
considered by dividing each building into three subdivisions, as suggested in MUZO. 
Therefore, design decisions for various floor levels, which can provide better high-
rise performance [29], are also investigated considering dense surroundings. A new 
façade skin is proposed in each tower for integrating PV panels and generating 
shading devices. 39-variables are used to parametrise the studied complex for 
the abovementioned design parameters. One optimisation problem is formulated 
for the three towers to use the advantage of each building’s location for power 
generation so that the assignment of farming floors achieves the highest self-
sufficiency performance possible. This formulation suggests a design problem, 
which corresponds to more than 4.5e + 91 design alternatives in the search space, 
with 117-variables.

A parametric high-rise model is integrated into the simulation engines to evaluate the 
self-sufficiency of the complex. Because the simulation models take significant time 
during the optimisation process, 45 surrogate models are developed for performance 
prediction based on feed-forward neural networks (FNN). Ten-fold cross-validation 
(CV) and hyperparameter tuning in each model are considered to investigate the 
highest prediction accuracies. Developed surrogate models are optimised for self-
sufficiency in building and the neighbourhood scales using five single-objective 
and eight multi-objective optimisation algorithms. Near feasibility threshold (NFT) 
constraint handling [30,31] is used to cope with 37 and 36 constraints in both 
optimisation problems. Considering different search strategies suggests a need for a 
deep investigation of the search space since the global optimal of the design problem 
is unexplored owing to the NFL theorem in architecture [14]. Employed algorithms, 
based on the swarm, evolutionary and model-based search strategies that are 
frequently used in the architectural design domain [32], are given in Table 5.2.
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TabLe 5.2 Overview of the optimisation algorithms used in this study

Scale Objective Constraints Plug‑Ins Algorithms

Building Minimise Etot( ) FP( )
36 DF

Optimus (v1.0.2) [33]
Silvereye (v1.1.0) [34]
Galapagos (Rhino 6) [35]
Opossum (v2.2.4) [36]
“

jEDE [33]
PSO [37]
GA [38]
CMA-ES [39]
RBFopt [40]

Neighbourhood Minimise Etot( )
Maximise FP( )

36 DF Optimus (v1.0.2) [33]
Wallacei (v2.65) [41]
Octopus (v0.4) [42]
“
Opossum (v2.2.4) [36]
“
“
“

jEDE (stepwise) [33]
NSGA-II [43]
HypE [44]
SPEA-2 (Alt Pm/Pm) [45]
RBFMopt [40,46]
NSPSO [47],
MACO [48]
MOEA/D [49]

 5.2 Methodology

The MUZO methodology [13,14], which consists of three main phases to optimise 
high-rise buildings for performance aspects related to sustainability, is considered to 
be the core of the methodology. The parametric high-rise model, alongside machine 
learning for surrogate models, computational optimisation and decision-making 
phases are followed to utilise the MUZO methodology to optimise the Europoint 
complex for self-sufficiency in food and energy as illustrated in Fig. 5.1. The following 
subsections explain the case-building and utilisation of the MUZO methodology 
in detail.
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Phase 1
Parametric 

high-rise model

Europoint complex
(3 towers)

Phase 2 
Machine learning for 

surrogate models

Phase 3 
Computational 

optimisation and 
decision-making

Self-sufficiency at 
building scale

Sufficiency potential 
for neighbourhood

MUZO methodology

Generate alternatives
Identify zones
Integrate performances

Validated energy model?
Automated sampling?
Collect samples
Develop ANN
Select best models

Input

Outputs

High accuracy?

Define predictive models
Problem formulation
Optimisation

FIG. 5.1 Utilisation of MUZO methodology for the self-sufficient Europoint complex

 5.2.1 Case building description

The Europoint complex, which was designed by the SOM architecture firm and 
constructed in 1975, is in the Merwe-Vierhavens (M4H) area of Rotterdam. The 
complex consists of three towers with 22 storeys, 3.75 m floor heights and a 95 m 
overall height. It has a rectangular plan scheme measuring 47.6 m by 33.2 m and 
a central core plan with 1580 m2 gross and 1033 m2 net floor areas; the Europoint 
Towers are some of the buildings that represent the international façade style of 
the 1970s (Fig. 5.2). Recently, the MOR team of TU Delft [50] proposed a prototype 
for the Europoint complex considering net-positivity in energy, air, water, material, 
and biomass for the Solar Decathlon competition in 2019 [51]. One of the main 
reasons to focus on these towers was the undesirable energy performance of the 
existing buildings, which corresponds to 75% of the building stock [52]. The Europoint 
complex is one of the many examples available in Europe of building complexes that 
have a significantly higher energy usage when compared to buildings that incorporate 
the sustainable solutions of the 21st century. In addition to the great potential for 
improving the energy performance of the Europoint complex, another aspect we 
consider in this study is to cope with the dense surrounding that will be a challenge 
in many metropolises based on population growth and urbanisation trends in the 
future. Besides the built environment, the distances between the Europoint Towers 
(31 m and 24 m, respectively) cause a large degree of shading on one another. 

TOC



 237 Case study

Therefore, each tower should be focussed on as a design problem that uses different 
parameter sets. Related to the self-sufficient high-rise concept, we also propose a 
different building program that provides farming and residential floors, in addition to 
public and commercial usage with semiprivate gardens, as illustrated in Fig. 5.3.

11.2m
30.55m

5.85m

7.65m

Residential: 1033 m2

Core: 547 m2

7.65m17.9m

FIG. 5.2 Europoint complex in Rotterdam, the Netherlands

Tower 1            Tower 2           Tower 3            Vertical farming
Semi public garden                   Public and retail 

FIG. 5.3 Proposed building program
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 5.2.2 Parametric high‑rise model

The studied buildings are parametrised considering the most commonly used design 
parameters for optimisation problems in architecture [32], as well as by following 
the steps of the first phase of MUZO methodology, which suggests dividing the 
buildings into several zones (subdivisions) to evaluate their performances separately. 
Hence, the performance variances in different floor levels can be considered during 
the optimisation process. The existing complex with surroundings is modelled in 
the Rhino3d computer-aided design program [53]. The parametrisation process 
is completed in the Grasshopper3d (GH) algorithmic modelling environment 
[54] that works as a plug-in for Rhino3d. The following subsections explain the 
parametrisation process and the simulation setups.

 5.2.2.1 Parametrisation process

Public and commercial activities are placed on the ground level. Floor levels 
between 1 to 10, which are also decision variables, are associated with farming 
floors. The rest of the floor levels are defined as residential floors. The zoning 
process of the MUZO methodology is considered for dividing the residential part into 
three zones (subdivisions) in each building. The proposed façade covers the south 
(S), east (E), and west (W) orientations since the north (N) part of the buildings 
has insufficient solar potential and creates unnecessary shading. The shape of the 
skin also follows the zones, farming floors, and other parameters related to the 
BIPV. The proposed skin can have different distances from the building to create 
box-shaped shading devices in each zone. Reflectance values of these devices are 
defined as another parameter for extensive daylight control. In addition, 13 different 
glazing types, which are based on various visible transmittances (Tvis), thermal 
transmittances (U-val.) and solar transmittances (g-val.), are also investigated 
during the optimisation process. Finally, another parameter, which is used to 
control the existing size (2.7 m) of the windows, affects the daylight performance, 
energy consumption, and façade area that can be used for placing additional BIPV 
panels. Hence, the energy performance of the entire complex can be optimised for 
finding the most desirable self-sufficiency score under various circumstances (such 
as considering different design preferences for shaded or unshaded parts of the 
towers). All the mentioned variables, which are given in Table 5.3, correspond to 
a 39-dimensional design problem in each tower that suggests a 117-dimensional 
design problem for the entire complex. The proposed façade skin with three zones is 
illustrated in Fig. 5.4.
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TabLe 5.3 Decision variables and glazing properties

Parameters Explanation Tower # Zone # Location Type Unit Boundary

1 2 3 1 2 3

x1
Number of 
farming floors

✓ ✓ ✓ - - Discrete - [0,10]

x x2 3, Extrusion of 
farming BIPV

✓ - - Discrete m [0,25]

x x2 3, “ ✓ - - Discrete m [0,10]

x x2 3, “ ✓ - - Discrete m [0,20]

x x4 5, Extrusion of roof 
BIPV

✓ ✓ ✓ - - Discrete m [0,5]

x x6 9,..., Glazing type ✓ ✓ ✓ ✓ ✓ ✓ N-S-E-W Discrete - [1,13]

x x10 12,..., Shading 
reflectance

✓ ✓ ✓ ✓ S-E-W Discrete - [0.3, 0.6, 0.9]

x x20 22,..., “ ✓ ✓ ✓ ✓ S-E-W Discrete - [0.3, 0.6, 0.9]

x x30 32,..., “ ✓ ✓ ✓ ✓ S-E-W Discrete - [0.3, 0.6, 0.9]

x x13 15,..., Shading 
distance

✓ ✓ ✓ ✓ S-E-W Discrete m [0.25, 1.50]

x x23 25,..., “ ✓ ✓ ✓ ✓ S-E-W Discrete m [0.25, 1.50]

x x33 35,..., “ ✓ ✓ ✓ ✓ S-E-W Discrete m [0.25, 1.50]

x x16 19,..., Window 
reduction size

✓ ✓ ✓ ✓ N-S-E-W Continues m [0.0, 1.0]

x x26 29,..., “ ✓ ✓ ✓ ✓ N-S-E-W Continues m [0.0, 1.0]

x x36 39,..., “ ✓ ✓ ✓ ✓ N-S-E-W Continues m [0.0, 1.0]

Glazing Types Configuration Argon Air Krypton Type Tvis g‑val. U‑val.

1 4–16–4 ✓ Double 0.8 0.75 2.6

2 4–12–4 ✓ Double 0.79 0.55 1.6

3 4–16–4 ✓ Double 0.79 0.55 1.3

4 4–16–4 ✓ Double 0.71 0.44 1.1

5 5–15–12 ✓ Double 0.78 0.63 1.1

6 5–10–4 ✓ Double 0.7 0.49 0.8

7 4–12–4–12–4 ✓ Triple 0.7 0.6 0.7

8 9–10–4–10–13 ✓ Triple 0.64 0.35 0.5

9 4–16–4–16–4 ✓ Triple 0.69 0.48 0.6

10 4–12–4–12–4 ✓ Triple 0.63 0.39 0.9

11 6–12–5–12–12 ✓ Triple 0.62 0.42 0.4

12 6–12–4–12–8 ✓ Triple 0.72 0.51 0.7

13 4–15–4–15–4 ✓ Triple 0.7 0.74 0.6
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Residential 
Zone (division) 1

Residential 
Zone (division) 2

Residential 
Zone (division) 3

Selected floor levels 
for energy and 
daylight assessments

Roof skin 
(PV panels)

Z3 skin (PV panels 
and shading devices)

Z2 skin (PV panels 
and shading devices)

Z1 skin (PV panels 
and shading devices)

Farming skin 
(PV panels)

FIG. 5.4 Proposed façade design and building zones (subdivisions)

 5.2.2.2 Simulation setups

The Etot  simulated for self-sufficiency of residential and farming floor levels consists 
of heating ( Eh ), cooling ( Ec ), lighting ( EL ) and equipment ( Eeq ) consumption, the 
DF  of residential levels and energy generation ( Eg ) via BIPV panels. Honeybee (HB) 
and Ladybug (LB) plug-ins in GH [55], which use Open Studio for energy analysis 
[54], simulating the energy consumption and generation. Regarding the daylight 
assessment, HB and LB also evaluate the design alternatives using the Radiance 
simulation engine [56]. Having an oceanic climate, winters in Rotterdam are mild, 
humid, and windy, whereas summer days are cool. Therefore, the focus of residential 
energy consumption is primarily to minimise the heating, lighting and equipment 
loads. In the farming system, significant energy usage is necessary for the growing 
process of the plants that require cyclically consistent temperatures, a certain level 
of humidity with mechanical ventilation, artificial lighting, and other mechanical 
equipment. Therefore, heating and cooling loads are both considered, as well as 
lighting and equipment loads. The simulation model of the residential floors is 
simplified to five thermal zones as N, S, E, W, and core, whereas four thermal zones 
are utilised in the farming floors, which are farming, germination and seed (g&s), 
and core, as illustrated in Fig. 5.5. Inputs of the farming energy model are based on 
recently published closed systems [7,23]. Schedules are based on a 16/8 occupancy 
period, and 1000 ppm CO2 is considered, which results in an estimated 80 kg 
m2 y−1 lettuce yield in an 833 m2 floor area, for three stacked hydroponics crop 
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systems covering 50% of the floor plan. In residential floors, various schedules 
are considered for occupancy, lighting, equipment, and HVAC, considering the 
preferences of the MOR team [50] as defined in Fig. 5.6. All the other inputs of the 
energy models are given in Table 5.4.

Residential floors Farming floors

Thermal zone North

Thermal zone South

Thermal zone Core

Thermal zone East

Thermal zone West

Thermal zone
Farming

Thermal zone 
Germination and 
seeding (g&s)

Thermal zone 
Core

FIG. 5.5 Thermal zones of energy model in residential and farming floors

0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20

1.00
0.75
0.50
0.25
0.00

Weekdays_R    Weekends_R  Holidays_R   Weekdays_C   Weekends_C   Holidays_C

HVAC for Residential (R) and Core (C)

0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20

0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20 0 4 8 12 16 20

Lighting (L) and Equipment (E) for Residential (R) and Core (C)
1.00
0.75
0.50
0.25
0.00

L_Alldays_R              L_Weekdays_C  L_Weekends_C       E_All Days_R  E_Weekdays_C   E_Weekends_C

Occupancy for Residential (R) and Core (C)

Weekdays_R               Weekends_R              Holidays_R     Weekdays_C    Weekends_C    Holidays_C

1.00
0.75
0.50
0.25
0.00

FIG. 5.6 Schedules used in the residential energy model
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Regarding BIPVs, the rooftop and façade of residential floors are used to place 
solar panels. Additionally, external surfaces of the farming floors are used to locate 
BIPVs since the exterior surfaces of the considered farming system consist of 
opaque wall material. On the southern elevation of farming, and on the rooftop, four 
different parameters are defined to optimise the alignment of the panels to achieve 
the highest Eg .

The boundaries of these parameters on the street level x x2 3,( )  are defined according 
to site conditions. Therefore, different maximum extrusions are considered for each 
building (Table 5.3). The radiation analysis to calculate the energy potential of BIPV 
surfaces is conducted on a 0.5 m by 0.5 m grid to calculate the energy potential 
through radiation analysis. Sensor points with a minimum of 175 kWh m−2 of energy 
falling on the surface are used to locate the PV panels for maximum energy/cost 
profit. This selection also suggests different BIPV patterns in each tower because 
the way each building is shaded differs from one another. Hence, the total Eg  can 
be enhanced in the entire complex because of the larger available PV surface area in 
different subdivisions (zones) of the towers. As a result, an optimum configuration 
for window sizes, glazing types, and shading extrusion is expected for energy 
consumption, alongside generation, and daylight availability. Fig. 5.7 illustrates an 
example of BIPV allocation in the Europoint complex, whereas parameters used in 
the calculation of Eg  are given in Table 5.5.
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TabLe 5.4 Inputs of the energy models

Type Simulation 
Parameter

Unit Validation 
(Simulation)

Sampling (Simulation) Residential 
Model

Farming 
Model

Loads Equipment W/m2 Residential: 5.5 Residential: 5.5 ✓

“ Core: 2.5 Core: 2.5/2.0 ✓ ✓

“ - Farming: 0 ✓

“ - g&s: 0 ✓

Lighting “ Residential: 1.5 Residential: 1.5 ✓

“ Core: 7.5 Core: 7.5 ✓ ✓

“ - Farming: 100 ✓

“ - g&s: 0/1.5 ✓

Mech. Vent. l/s-m2 0.9 0.9 ✓ ✓

Natural vent. - Off On ✓

Air-tightness ac/h 0.1 0.1 ✓

- 1.0 ✓

People ppl/m2 Residential: 0.04 Residential: 0.04 ✓

“ Core: 0.08 Core: 0.08 ✓ ✓

“ - Farming: 0 ✓

“ - g&s: 0.02 ✓

Setpoints Heating °C 20/18 20/18 ✓

“ - 24 ✓

Cooling “ - - ✓

“ - 30 ✓

Ventilation “ - 21/24 ✓

Humidity % Residential: 10/90 Residential: 10/90 ✓

“ - Farming: 75/85 ✓

Daylight lx Core: 300 Core: 300 ✓

“ Residential: 250 Residential: 250 ✓

HVAC Template - Ideal air loads Ideal air loads ✓ ✓

Economiser - None Differential Dry Bulb ✓ ✓

Heat recovery - Off Off ✓ ✓

CoP - 1.0 1.0/5.0 ✓ ✓

Construction
type

Floor - Adiabatic Adiabatic ✓ ✓

Ceiling - Adiabatic Adiabatic ✓ ✓

Exterior wall - Generic Metallic 
cladding/60 mm, wood 
framing/180 mm, cast 
concrete/560 mm

✓ ✓

Interior wall - Generic Cast concrete/300 mm ✓ ✓

Glazing - #7 in Table 5.3 All types in Table 5.3 ✓

>>>
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TabLe 5.4 Inputs of the energy models

Type Simulation 
Parameter

Unit Validation 
(Simulation)

Sampling (Simulation) Residential 
Model

Farming 
Model

Construction
U-val.

Floor W/m2 K 0.1538 0.22 ✓ ✓

Ceiling “ 0.1538 0.22 ✓ ✓

Exterior wall “ 0.1538 0.1538 ✓ ✓

Interior wall “ 0.1538 0.40 ✓ ✓

Glazing “ #7 in Table 5.3 All types in Table 5.3 ✓

Tower 1 East Tower 1 South Tower 1 West 

BIPV 
(residential) 

Shaded area 
(insufficient)

BIPV 
(roof top) 

BIPV 
(farming)

FIG. 5.7 BIPV allocation of Europoint complex

TabLe 5.5 Parameters of BIPV simulation

Location PV Type PV Efficiency Coverage Inverter Efficiency

Farming/roof façade Opaque monocrystalline PV cells 20% 85% 90%

Rooftop “ 20% 85% 90%

Residential façade Colorblast monocrystalline PV cells 14% 85% 90%
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Finally, daylight models are developed to simulate DF , which is one of the most 
commonly used daylight metrics to identify the lighting performance in the early 
phase of the design process [57,58]. According to Dutch standard NEN-EN 17037, a 
minimum of 2% of DF  should be provided in residential places. While evaluating the 
DF , performances of each orientation in each zone, which correspond to 36  DF  
results, are considered under an overcast sky. For each model, a 0.5 m by 0.5 m grid 
size, which is 0.8 m above the finished floor, is used. In total, 7263 sensor points 
are used to evaluate one design alternative for the entire complex that corresponds 
to 807 sensor points on one floor. An example simulation result with the sensor 
points is illustrated in Fig. 5.8.

DF North
132 sensor points

DF South
279 sensor points

DF East and West
198 sensor points

Shading devices
1. East
2. South
3. West

1

2

3
Daylight factor (DF) %

18.0 % 0.6 %

FIG. 5.8 Simulation result of DF for one design alternative in a floor level

Radiance parameters, which are similar to those used in the studies published in 
the same domain, and the material properties of the developed daylight models, are 
given in Table 5.6. Based on the simulation results in three zones for three towers, 
the following equations calculate the energy consumption of the entire complex:
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where ER  and EF  are the total energy consumption of residential and farming 
floor levels, i i1 3,...,{ }  are the three towers in the complex, j j1 3,...,{ }  are the 
three subdivisions (zones) of each tower, and zi j,  is the number of each zone in 
each tower that changes with the number of the farming floors x1( ) . Since the 
parameters related to the closed farming system are not considered in this study, 
simulation results of the farming model explained above are multiplied with x1  
to calculate the farming energy consumption in each tower. All the simulation 
models use the Amsterdam weather data file provided by LB tools [64]. Integrating 
simulation engines to the parametric model completes the first phase of the MUZO 
methodology. After validating the results of the energy model with simulations, the 
parametric high-rise model becomes ready for the second phase of MUZO.

 5.2.3 Machine learning for surrogate models

The surrogate modelling in phase two of the MUZO methodology starts with the 
sampling process. In this paper, Latin Hypercube Sampling (LHS) [65] generates the 
design alternatives to be used in the ANN development. As a common approach, 
Equation (5.5) identifies the sample size as [66]:

n ns i= 22 5. , (5.5)

where ns  is the size of the samples and ni  is the number of decision variables. In this 
case, at least 877 samples should be collected for a 39-dimensional design problem. 
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TabLe 5.6 Radiance parameters and material properties of the daylight simulations

Study Ambient 
Accuracy 
(‑aa)

Ambient 
Bounces 
(‑ab)

Ambient 
Division 
(‑ad)

Ambient 
Resolution 
(‑ar)

Ambient 
Super‑
Samples 
(‑as)

This paper 0.1 4 1000 300 20

[59] 0.15 2 1000 300 20

[60] 0.15 2 512 256 128

[61] 0.1 5 1500 300 20

[62] 0.15 2 512 256 128

[63] 0.15 2 512 256 128

Category Type Reflectance or Tvis Tower # Zone #

1 2 3 1 2 3

Exterior wall Concrete 0.4 ✓ ✓ ✓ ✓ ✓ ✓

Interior wall Painted white wall 0.7 ✓ ✓ ✓ ✓ ✓ ✓

Ceiling Painted white ceiling 0.7 ✓ ✓ ✓ ✓ ✓ ✓

Floor Wood 0.4 ✓ ✓ ✓ ✓ ✓ ✓

Shading device White/grey/dark (see Table 5.3) (see Table 5.3) ✓ ✓ ✓ ✓ ✓ ✓

Glazing (see Table 5.3) (see Table 5.3) ✓ ✓ ✓ ✓ ✓ ✓

Surrounding (city) Concrete blocks 0.3 ✓ ✓ ✓ ✓ ✓ ✓

Surrounding (towers) - 0.5 ✓ ✓ ✓ ✓ ✓ ✓

Ground - 0.2 ✓ ✓ ✓ ✓ ✓ ✓

Since the extension of the sample size is beneficial [67], the size of the collection is 
extended to 1000; thus, the sampling process covers 9000 design alternatives to 
be collected from the entire complex for ER , Eg , and DF . The normalisation of the 
collected samples initiates the development of the ANN models using the min–max 
scale as:

′ = ( ) − ( )( ) + ( )x x x xσ max min min , (5.6)

where ′x  is the scaled value, σ  is the standard deviation, and x  is the original 
value. After identifying a ratio of 0.2 to define training and test sets, the Stochastic 
Gradient Descent (SGD) algorithm [68] optimises the weights and biases for an ANN 
architecture that has 39 input, 3 hidden, and 1 output layers. The α of each ith layer 
is activated as in Equation (5.7), whereas each neuron is activated by the rectified 
linear units (ReLU) as in Equation (5.8):
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where f  is the activation function, b  is the bias, wij  is the ith layer of the jth weight, 
and xi  is the input vector of the ith layer. To avoid overfitting, ANN models also 
consider the dropout technique [69] with a rate of 0.1. Based on this setup, the 
grid search process initiates parameter tuning with a 10-fold CV to identify the 
best prediction accuracy in each ANN model using the five hyperparameters given 
in Table 5.7. The R-squared (R2) term in Equation (5.9), the mean squared error 
(MSE) in Equation (5.10), the mean absolute error (MAE) in Equation (5.11), and the 
standard deviation (Std) in Equation (5.12) are used for model selection:
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where n  is the size of the samples, x xn1,...,{ }  are the observed values, x  is the mean 
of the collected data, xi  is the observed data, and yi  is the predicted value. The 
purpose is to select the models which present a high mean for R2, and a low mean 
for MSE, and MAE while presenting low Std values for R2, MSE, and MAE at the end 
of the grid search. Hyperparameters with the best accuracies are once again fit to 
record the weights and biases for developing the predictive models in the last phase 
of the MUZO methodology. The abovementioned steps are developed in the Python 
programming language [70], which also uses the additional Python libraries given in 
Table 5.7 to automate the entire ML process.
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TabLe 5.7 Python libraries and grid search setup

Python Libraries Grid Search Setup

Library Explanation Hyperparameters Values

Pandas [71] Data analysis library Batch size [25, 50, 75]

Keras [72] Deep learning library Epochs [250, 500, 750]

TensorFlow [73] Open-source ML platform Neuron size [50, 100, 150]

Scikit-learn [74] ML library Learning rate [0.01, 0.05, 0.1]

Joypy [75] Plot library Momentum [0.3, 0.6, 0.9]

 5.2.4 Computational optimisation for decision‑making

The final phase of the MUZO methodology initiates the optimisation process in GH, 
which reads the weights and biases that are recorded in phase two, by defining each 
predictive model with the following equation:

y f f f f x w b w b w b wn n n n n n n n n n n                ( ( ( ( ) ) )1 2 3 3 3 2 2 1 1 bbn ) , (5.13)

where fn  is the nth activation function, wn  and bn  are the nth weight and bias, 
respectively, and x  and y  are the input vector and the predicted performance 
aspect. The first optimisation problem focuses on the analysis of self-sufficiency in 
building scale in detail. Equation (5.14) presents the single-objective constrained 
problem formulation that is subject to 37 constraints for the first optimisation round:

min :
: ,...,

E
subject to DF

F

tot

p

1 36 2
60
≥

≥
,

(5.14)

where Etot  is the total energy consumption of the three towers, DF1 36,...,  are the 
values of 36 DFs  in four orientations (N, S, E, W) for the three zones of the three 
towers. The minimum Fp  is defined as 60 tons for 1800 residents living in the 
Europoint complex, assuming 100 g of lettuce is consumed per person in one day. 
Therefore, at least two farming floors should be placed in the complex, while optimal 

TOC



 250 Towards  Self‑ Sufficient High‑Rises

energy production can also be achieved with the alignment of two farming floors 
in three buildings. The second optimisation round investigates the potential self-
sufficiency of the Europoint complex at the neighbourhood scale with multi-objective 
constrained problem formulation subject to 36 constraints as:

min :
max :

: ,...,

E
F

subject to DF

tot

p

1 36 2≥
,

(5.15)

Equation (5.15) considers Fp  as another objective function that corresponds 
to 30 non-dominated solutions in the Pareto front. Instead of limited searchability for 
constant penalty functions, both optimisation problems handle the constraints with 
NFT by penalising the fitness function f x( )  as:

f x f x
v x
NFTp ( ) = ( ) + ( )









α

, (5.16)

NFT NFT
g

=
+

0

1 λ.
, (5.17)

where f xp ( )  is the penalised fitness function, v x( )  is the total violation, NFT0  
is the upper bound of the NFT taken as 0.1, λ  and α  are defined as 0.04 and 2, 
respectively, and g  is the iteration or generation number. The optimisation phase of 
the MUZO methodology suggests a need for replication of the optimisation runs and 
algorithm comparisons owing to the NFL theorem in architecture. Thus, the decision-
making step considers various replications using different optimisation algorithms 
for extensively investigating the unexplored search space of the design problem.
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 5.3 Results and discussion

This section presents the results of the validation and sampling processes using 
simulation models, statistical results of the grid search and tuned models of ML, and 
the optimisation results for two scales of self-sufficiency problems, i.e., the building 
and neighbourhood scales. Finally, results are discussed for both problem scales 
focusing on the potentials and limitations of the study.

 5.3.1 Model validation and sampling results

Energy results collected from HB were validated using another simulation model 
in DesignBuilder (DB) before initiating the sampling phase for the entire complex. 
Therefore, a simplified version of the residential energy model was used in HB and 
DB with the values given in Table 5.4. As illustrated in Fig. 5.9, monthly air, radiant, 
and operative temperatures suggested an observable correlation between the 
results of HB and DB. For further investigation, a regression analysis was performed 
considering weekly temperatures. The results in Fig. 5.10 indicated that R2 for all 
the temperature results was higher than 0.96. Afterwards, EF  was calculated for 
the validated HB environment. When CoP was equal to 1, annual farming energy 
consumption was calculated as 1123.2 MWh y−1, whereas it was 629.3 MWh y−1 for 
CoP 5. The Fp  of the farming system for lettuce crops was calculated as 33 tons on a 
single floor with the temperatures given in Fig. 5.11.

The collected samples, which include the simulation results of ER  (for CoP 1 and 5), 
Eg  and average DF  for all orientations in all zones of the three towers, were 
published as an open-access dataset [76]. The completion time for this task 
was recorded as 15 d 6 h 40 m using a computer with an Intel I7 5820K core 
processor at 3.30 GHz, with 16-GB DDR4 of memory, and a 256-GB solid-state 
drive. Distributions of the simulation results (Fig. 5.12) indicated that the three 
towers presented similar ER  values between 1066 MWh and 1951 MWh (when 
CoP was equal to 5), and a wider range between 1652 MWh and 3246 MWh (while 
CoP was 1). Regarding Eg , tower one had the highest solar power potential with 
a range of between 592 MWh and 1040 MWh. While tower two presented a solar 
power potential range of between 580 MWh and 901 MWh, tower 3 demonstrated 
a range from 556 MWh to 923 MWh. Although ranges of towers two and three were 
similar, the minimum Eg  of tower two was higher than that of tower three because 
of its location. 
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FIG. 5.9 Monthly temperature comparisons between DB and HB
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FIG. 5.10 Weekly temperature comparisons between DB and HB
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FIG. 5.11 Weekly (W) temperatures of the farming system
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FIG. 5.12 Distributions of collected samples

Nevertheless, the maximum Eg  of tower three indicated that its solar potential 
could be improved with the x2  and x3  parameters by controlling the positions of the 
BIPV panels. Regarding DF , N and S orientations presented similar distributions, 
while higher values were observed in the north when compared to the south. The 
reason for this was that the places located on the southern elevation of the towers 
were much deeper than in the north. On the other hand, various distributions 
were observed in the E and W orientations in different zones and towers, which 
could be due to the effect of the towers shading one another. Finding DF  values 
higher than 2% in the E and W orientations was more challenging than for N and S 
orientations during the sampling process. Therefore, different design decisions were 
expected for various zones of each tower in the optimisation process.
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 5.3.2 Machine learning results

The data collection, which had 1000 samples in each zone, was trained using 
FNN (as an ANN method) and is explained in Section 5.2.3. In total, 9000 samples 
were used to develop 45 surrogate models, which predict DF , ER , and Eg  
using 39 design parameters that are given in Table 5.3. Additionally, 36 DF  models 
were developed separately for each zone in each orientation, since the daylight 
standard should be achieved for the entire complex. During the prediction of Etot , 
the summation of consumed ER( )  and produced Eg( )  energy for each tower was 
considered. Grid search setup, which investigates the five hyperparameters given 
in Table 5.7, was considered with a 10-fold CV. The total number of the models to 
fit using the FNNs was calculated as 109,350, based on the results of 2430 models 
for completing the grid search process in every fold of the 45 surrogate models. 
The average completion time for one grid search task was recorded as 2 h 17 m 
using a computer with an Intel Xeon E5-2640 v4 core processor at 2.40 GHz, 
with 64-GB DDR4 of memory, and a 1024-GB solid-state drive. A self-developed 
Python program automatically read the data, developed ANN models, selected the 
best hyperparameters for 45 models according to mean and Std of the MAE, MSE, 
and R2 values, fitted the final ANN models for training alongside test sets using the 
selected hyperparameters, and reported the statistical results as well as weights and 
biases for the 45 surrogate models. The best hyperparameters with corresponding 
means and Stds of the MAE, MSE, and R2 values for three zones of the three towers 
are given in Fig. 5.13.

During the batch size selection, 21 models had the best accuracy using a value of 25, 
while for ten models it was 50, and for 14 models it was 75. For epochs, 31 models 
had the best score with values of 750, for nine models it was 500, and for five 
models it was 250. For the momentum parameter, four models had the best score 
using values of 0.3, for seven models it was 0.6, and for 34 models it was 0.9. 
Regarding the learning rate parameter, nine models had the best accuracy using 
values of 0.01, fifteen models yielded the best results using 0.05, and 21 models 
using 0.1. As final the hyperparameter, 6 out of 45 ANN models had the best 
accuracy using 50 neurones, 23 models had the best results using 100 neurons, and 
for 16 models the best value was 150 neurones. Results of the best hyperparameters 
indicated that the mean of all MAE values was less than 0.05 while having Std values 
of less than 0.005. The mean of the MSE values was less than 0.003 with Std values 
smaller than 0.0005. The mean of all R2 values was higher than 0.94, whereas the 
Std values were less than 0.0015.
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Reported statistical results in the grid search process presented promising 
prediction accuracies. Therefore, tuned ANN models were developed using the 
selected hyperparameters in the next step. Initially, the data was split into training 
and test sets considering a ratio of 0.2 to demonstrate accurate prediction. 
Results in Fig. 5.14 indicated that MAE and MSE values of both sets were less 
than 0.05 and 0.003, respectively. Additionally, all R2 values were higher than 0.94. 
Finally, tuned ANN models were used to predict the parameter values generated by 
LHS with the weights and biases provided as the supplementary material. R2 values 
indicated that there was a very high correlation between the simulation and the 
prediction results for ER , Eg  and mean DF  as shown in Fig. 5.15. All of the results 
of the second phase of the MUZO methodology suggested that the predictive models 
could be used for the optimisation process in the next phase.
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FIG. 5.15 Simulated results versus predicted results

 5.3.3 Computational optimisation results

During the last phase of the MUZO methodology, two design problems were 
considered focusing on different scales. First, a single-objective problem was 
investigated in detail employing the single-objective optimisation algorithms given 
in Table 5.2, using the Optimus, Opossum, Galapagos, and Silvereye plug-ins in GH. 
Since jEDE, GA, and PSO are populated algorithms, 50 and 100 population & swarm 
(P&S) sizes were considered in this optimisation round. Secondly, the multi-objective 
optimisation problem was investigated considering single replication to present 
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the potential self-sufficiency of the Europoint complex at the neighbourhood scale 
by employing the stepwise and multi-objective optimisation algorithms given in 
Table 5.2, using the Optimus, Wallacei, Octopus, and Opossum plug-ins in GH. Except 
for RBFMOpt, 50 P&S was considered for populated algorithms. The mutation rate 
of jEDE was set between −1 and 1, while the other algorithms were used with the 
default parameters. The NFT module in the Optimus plug-in was considered to cope 
with the constraint functions of both problems for all optimisation algorithms. All the 
runs were completed when CoP was equal to 5. Since the ML models for CoP 1 were 
also developed, their results were also reported. The following subsections present 
the gathered results for both problems at the building and neighbourhood scales.

 5.3.3.1 Building scale

Results at the building scale were conducted for 7500 FES using a computer with an 
Intel I7 5820 K core processor at 3.30 GHz, with 16-GB DDR4 of memory, and a 256-
GB solid-state drive. Because the non-populated algorithms were used in the Opossum 
plug-in, 7500 FES was defined as a maximum iteration count for CMA-ES and RBFOpt, 
whereas 50 and 100 P&S sizes were considered with 150 and 75 generation/iteration 
counts for the populated algorithms. The criteria for comparing the optimisation 
results of this problem were defined as finding feasible solutions for 37 constraints, 
the lowest Etot  needed to have zero violation, Std was calculated for five replications, 
and computation time (CPU) needed to have been recorded. Fig. 5.16 illustrates 
the boxplots of the optimisation results for feasible solutions only, whereas 
Table 5.8 presents the number of feasible solutions v x( ) =( )0 , the minimum (Min), 
maximum (Max), average (Avg), and Stds of Etot  for five replications. For constraint 
handling, jEDE, CMA-ES, and GA reported feasible results in all the replications, 
whereas RBFOpt found two, and PSO reported one feasible solution. For the algorithms 
which reported infeasible solutions, Max, Avg, and Std values were also higher than the 
ones which reported feasible results in all replications because the penalised fitness 
function remained until the end of the optimisation. Regarding feasible alternatives, 
jEDE presented promising results with the lowest Etot  and Std values. The CMA-ES 
algorithm also suggested promising searchability for discovering feasible solutions, 
while finding slightly higher values of Etot  and Std than jEDE. Despite the feasible 
solutions, GA had higher Etot  when compared to jEDE and CMA-ES. During the 
optimisation process, the CPU of the algorithms was recorded as 82, 269, 819, 124, 
and 334 min for jEDE, CMA-ES, RBFOpt, GA, and PSO, respectively. This suggested 
that the jEDE was the most robust algorithm because its lower CPU, Etot , and Std 
values than the other algorithms. The convergence graphs of all algorithms for this 
optimisation round are given in Fig. 5.17.
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TabLe 5.8 Overview of the optimisation results for 5 replications at the building scale

Algorithm v x( ) = 0 Min Etot Max Etot Avg Etot Std

jEDE (Pop size: 50) 5 out of 5 3072.8 3240.8 3163.5 61.1

jEDE (Pop size: 100) 5 out of 5 3182.5 3403.2 3296.1 71.0

CMA-ES 5 out of 5 3217.9 3404.0 3338.6 66.9

RBFOpt 2 out of 5 5165.1 74,456.9 41,559.0 29,261.3

GA (Pop size: 50) 5 out of 5 3934.1 4241.4 4134.6 109.3

GA (Pop size: 100) 5 out of 5 4011.8 4401.5 4253.1 129.7

PSO (Swarm size: 50) 1 out of 5 3384.6 42,463.4 29,392.7 13,939.7

PSO (Swarm size: 100) 1 out of 5 3330.3 41,652.1 23,312.7 14,979.3
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FIG. 5.16 Boxplots of the feasible solutions

The results of the jEDE with a population size of 50 was selected for further analysis 
of self-sufficiency at the building scale. When the design of the optimised complex 
was investigated in detail, weekly averages of air temperatures were observed 
as being between 19.5 °C and 25.1 °C in all zones. Since the violation was 0 at 
the end of the optimisation process, all the 36  DF  values were higher than 2%, 
while 66 tons of lettuce was provided in one year. For energy performance, the Etot  
of the optimised design was reported as 3072.8 MWh y−1, while the values of ER , 
EF , and Eg  were 4206.3 MWh y−1, 1258.6 MWh y−1, 2392.1 MWh y−1, respectively. 
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FIG. 5.17 Convergence of the algorithms in time to complete 7500 FES

Therefore, 43.7% self-sufficiency was achieved in energy, while 100% self-
sufficiency was reached in lettuce production. Considering CoP as 1, ER , EF , 
and Eg  were reported as 6854.9 MWh y−1, 2246.4 MWh y−1, 2392.1 MWh y−1, 
respectively. Average air temperatures of three zones for each tower are given in 
Fig. 5.18.
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FIG. 5.18 Average air temperatures of the optimised Europoint complex
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Finally, the efficiency of the MUZO methodology was tested by generating typical 
high-rise scenarios, which had the same set of design parameters for the complex 
instead of differentiating them as in the optimised solution. 7776 typical design 
scenarios were generated using the combinations of the parameters given in 
Table 5.9 for each tower. Design scenarios having more than two farming floors in 
the complex were discarded to have the same lettuce production for 1800 residents. 
Fig. 5.19 presents the comparison between the optimised design and typical 
scenarios, whereas Fig. 5.20 illustrates the parameter values of the optimised design 
and the best typical scenario.
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FIG. 5.19 MUZO design versus 7776 typical scenarios

TabLe 5.9 Parameter values used to generate typical scenarios

Tower # Number of 
Farming 
Floors

Extrusion of 
Farming 
BIPV

Extrusion of 
Roof BIPV

Glazing
Type

Shading 
Reflectance

Shading
Distance

Window 
Reduction 
Size

1 [0, 1, 2] [0, 12, 24] [0, 3, 5] [1, 4, 8, 12] [0.3, 0.6, 0.9] [0.25, 0.75, 1.50] [0.0, 0.3, 0.6, 0.9]

2 “ [0, 5, 10] “ “ “ “ “

3 “ [0, 10, 20] “ “ “ “ “
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MUZO Tower 1 Typical Tower 1

MUZO Tower 2 Typical Tower 2

MUZO Tower 3 Typical Tower 3 Min

Max

Min

Max

Min

Max

FIG. 5.20 Parameters of MUZO design and the best typical scenario

Results indicated that the studied problem was extremely challenging because of 
finding feasible solutions for DF in each orientation of nine zones while minimising 
Etot . When the distribution of the typical scenarios was examined in Fig. 5.19, it 
was observed that there were 1202 feasible solutions out of 7776. Although some 
infeasible alternatives had similar Etot  values with the optimised solution, their 
DF  values were less than 2%, which was lower than the Dutch building standards. 
Additionally, the lowest energy consumption in the typical scenarios was observed 
as 3922.9 MWh y−1. When the optimised solution was compared to a typical design, 
the performance improvement was noted as 21%, corresponding to 850.1 MWh 
y−1 less energy consumption for the entire complex. The final design achieved at the 
end of the MUZO methodology is illustrated in Fig. 5.21 using the parameter values 
of the jEDE algorithm with a population size of 50.
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MUZO Tower 1
MUZO Tower 2
MUZO Tower 3

FIG. 5.21 Illustration of the optimised design for self-sufficiency at the building scale

 5.3.3.2 Neighbourhood scale

Results for the neighbourhood scale were also conducted for 7500 FES using a 
computer with an Intel I7 5820 K core processor at 3.30 GHz, with 16-GB DDR4 of 
memory, and a 256-GB solid-state drive. The 7500 FES was defined as the maximum 
iteration count for the RBFMopt algorithm in the Opossum plug-in because of its 
non-populated application. In other algorithms, 50 population sizes were considered 
for jEDE, NSGA-II, HypE, SPEA-2, and MOEA/D with 150 generations, and 50 swarm 
sizes for NSPSO, and MACO with 150 iterations. The criteria for comparing the 
optimisation results of this problem were defined as finding feasible solutions 
for 36 constraints, having a large number of non-dominated solutions, and having 
a small CPU. Results of the jEDE algorithm were based on the stepwise run using 
incremental violation for Fp . Table 5.10 presents the overview of the optimisation 
results at the neighbourhood scale. Fig. 5.22 illustrates the search space and the 
lowest Etot  (non-dominated) results of jEDE, whereas Fig. 5.23 presents the same 
results for the rest of the other multi-objective algorithms.
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TabLe 5.10 Overview of the optimisation results for 1 replication at the neighbourhood scale

Algorithm Number of Non‑Dominated 
Solutions in  v x( ) =( )0

Number of Non‑Dominated 
Solutions Outperformed 
Other Algorithms

CPU

jEDE (stepwise) 30 out of 30 24 out of 30 1 d 21 h 14 m (for 30  Fp )

NSGA-II 20 out of 30 0 out of 30 1 h 58 m (for 1 run)

HypE 20 out of 30 6 out of 30 1 h 41 m (for 1 run)

SPEA-2 (Alt Pm) 30 out of 30 0 out of 30 2 h 36 m (for 1 run)

SPEA-2 (Pm) 28 out of 30 0 out of 30 2 h 36 m (for 1 run)

MACO 0 out of 30 0 out of 30 5 h 34 m (for 1 run)

NSPSO 5 out of 30 0 out of 30 5 h 35 m (for 1 run)

RBFMopt 0 out of 30 0 out of 30 2 d 10 h 10 m (for 1 run)

MOEA/D 0 out of 30 0 out of 30 5 h 32 m (for 1 run)
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FIG. 5.22 Search space and optimisation results of jEDE for stepwise run

During the stepwise optimisation, jEDE discovered feasible solutions in all problems 
that corresponded to 30 non-dominated solutions. Because of the single-objective 
design of jEDE, the total run time was higher than other multi-objective optimisation 
algorithms owing to the 30 runs completed in each step. Contrarily, results of 
jEDE were used as a benchmark, because of its promising searchability. Results 
indicated that jEDE found 24 lower Etot  values than other algorithms. In other 
words, 24 results dominated the other non-dominated solutions discovered by multi-
objective optimisation algorithms. On the other hand, HypE dominated six of the jEDE 
solutions, slightly.
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FIG. 5.23 Search space and optimisation results of multi-objective algorithms

TOC



 266 Towards  Self‑ Sufficient High‑Rises

Despite promising results in Etot , NSGA-II and HypE could find 20 non-
dominated solutions out of 30. However, the non-dominated solutions of NSGA-
II were dominated by jEDE and HypE. SPEA-2 Alt. Pm. and Pm. applications 
discovered 30 and 28 non-dominated solutions, which were also dominated by jEDE 
and HypE, respectively. Additionally, NSPSO presented a limited number of feasible 
non-dominated solutions, whereas the MACO, RBFMopt, and MOEA/D algorithms 
discovered only infeasible alternatives. Therefore, jEDE, NSGA-II, HypE, and versions 
of the SPEA-2 algorithms were selected to investigate the potential of the Europoint 
complex in detail. 
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FIG. 5.24 Self-sufficiency potential of Europoint complex for neighbourhood scale
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Fig. 5.24 illustrates the combined version of the non-dominated solutions, 
which have an Etot  between 2575.4 MWh y−1 and 19,639.6 MWh y−1 and an 
Fp  between 33 tons and 1000 tons, as a result of the selected algorithms. The 
developed model indicated potential annual self-sufficiency in lettuce production 
starting from 900 people up to 27,000 people, whereas potential self-sufficiency in 
energy was observed for between 47.8% and 11.6% starting from the building scale 
to the neighbourhood scale.

Despite the increasing surface area of BIPV panels at higher values of Fp , self-
sufficiency in energy was decreased because of the significant energy use of the 
closed farming systems. Regarding the energy results, variances of Etot  were higher 
at the building scale when compared to the neighbourhood scale. The reason was 
that the lower values of Fp  increased the significance of the design parameters 
related to the energy consumption of the residential floors. In solutions with higher 
Fp  values at the neighbourhood scale, the energy consumption of the closed farming 
systems dominated the impact of those parameters. Therefore, jEDE significantly 
improved upon other algorithms at the building scale, whereas jEDE and HypE 
slightly improved upon NSGA-II and SPEA-2 at the neighbourhood scale.

From a broad perspective of the search space, a linear correlation was observed 
between Etot  and Fp  that was expected as the constant energy consumption and 
production results of the farming systems were associated with the number of the 
farming floors x1( ) . To evaluate the potential impact of the developed model in 
Rotterdam city, the density of the habitation was considered at 3043 residents per 
km2 [77]. 

A self-sufficiency map is illustrated in Fig. 5.25 using Stamen Maps [78]. 
For the highest value of Fp , the Europoint complex could provide lettuce 
for 27,000 residents in a 1.67 km radius that corresponded to 2.66% of the 
population of Rotterdam (assuming the city has 1,012,017 residents [77]). 
To become a self-sufficient city after achievement of self-sufficiency at the 
neighbourhood scale, approximately 940,000 m2 of vertical farming area would 
be needed to respond to the lettuce demand of the citizens of Rotterdam. In other 
words, 38 complexes like the Europoint complex, which involves 30  Fp  levels that 
have 833 m2 floor area each, would make Rotterdam self-sufficient in lettuce crop.
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FIG. 5.25 Sufficiency diameter of Europoint complex in Rotterdam, the Netherlands

 5.3.4 Discussion

This section presents the discussion based on the results of the sampling, ML, and 
optimisation experiments conducted for the Europoint complex. Five topics are 
discussed, which are defined as: the parametric high-rise model; ML for performance 
prediction; computational optimisation; self-sufficiency in energy and food; and the 
MUZO methodology for self-sufficient high-rise buildings in future cities.

1 Parametric high‑rise model 

Samples of Europoint complex were collected separately for each subdivision (zone) 
using a computer with an Intel I7 5820 K core processor at 3.30 GHz, with 16-GB 
DDR4 of memory, and a 256-GB solid-state drive. During the sampling process, the 
computer terminated the calculation process because of a memory shortage when 
the entire complex was simulated using 21 models. The same test was replicated 
using a computer with an Intel Xeon E5-2640 v4 core processor at 2.40 GHz, that 
had 64-GB DDR4 of memory, and a 1024-GB solid-state drive. The completion time 
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was recorded as more than 1 h when it was expected to be approximately 22 m 
for the hourly simulation period. After the examination, the reason was defined 
as the data transfer between the simulation plug-ins and engines. Although less 
effort was required to conduct the results using all the simulation models of the 
complex, each sampling process was completed separately, which was three times 
more efficient than considering a sampling process for the entire complex. Lower 
simulation periods, i.e., 15 min, can cause an exponential increase in the efficiency 
of conducting the sampling results. In this paper, self-sufficiency in energy and food 
was examined subject to daylight performance. In the case of integrating other 
performance aspects related to self-sufficiency or comfort, the MUZO methodology 
would still be a feasible solution because of how it deals with different parts of the 
buildings as different design problems. Moreover, there was no error reported during 
the simulations because the studied building had an orthogonal floor plan and façade 
configuration. In the case of convex or nonconvex surfaces involved in any part of 
the building, errors or exponential increases in simulation time could be observed.

2 ML for performance prediction

45 surrogate models were developed to predict the performance aspects. While 
nine of these models were used to predict energy-related criteria, 36 of them were 
considered for daylight evaluation. Instead of using a high number of surrogate 
models to predict the daylight in detail, average values for each tower were 
considered during the initial phase of the ANN development. Despite the promising 
prediction accuracies, which had R2 values higher than 0.8, it was observed that 
the minimum daylight requirement could not be achieved in all orientations of the 
three zones. Therefore, different surrogate models were considered that caused 
a slight increase in function evaluation during optimisation, but also a higher 
accuracy in terms of correct prediction. One may argue that a possible alternative 
could be to develop daylight models for average and deviatory values, which were 
not investigated owing to the limitations of the study. On the other hand, because 
of the full automation between the developed Python program and the predictive 
models developed in GH, extra effort was not needed to cope with a high number 
of surrogate models. Results of the grid search process indicated that different 
hyperparameter sets were required to predict performance with a high level of 
accuracy. This once again underlines the importance of grid search investigations 
for predicting performance aspects in the building simulation domain. When large 
numbers of ANN models are required for fitting during the grid search process, GPU 
usage can be considered not only for the studied problem scale in this paper but also 
for the problems focusing on larger scales in the built environment.
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3 Computational optimisation 

For the building scale, jEDE with the Optimus plug-in presented the most robust 
search behaviour because of it having the lowest fitness, CPU, and Std values. One 
reason could be that updating the number sliders in the GH environment requires 
additional time for each function evaluation. Another reason could be related to the 
procedures considered in optimisation algorithms, i.e., covariance matrix adaptation 
and the radial basis function. Despite updating the number sliders, GA in the 
Galapagos plug-in discovered near-optimal alternatives in less time when compared 
to other algorithms. On the other hand, CMA-ES presented promising solutions in 
terms of fitness and Std but required an expensive computation budget. Despite 
using the radial basis function, RBFopt could not perform desirable solutions that 
might be related to the high number of decision variables. This underlines once 
again an ongoing discussion for using either model-based algorithms (e.g., RBFopt) 
or optimisation procedures with predictive models (i.e., this paper) in architectural 
design [14]. The results of this paper indicated that surrogate-based optimisation 
algorithms are convenient to utilise in small-scale architectural design problems, 
whereas optimisation with surrogate models should be considered for design 
problems having an enormous number of design parameters. Therefore, an extensive 
investigation could be possible for large-scale design problems as attempted in this 
study. Since 7500 FES were sufficient for jEDE and CMA-ES, an investigation of a 
higher number of FES, which might slightly improve the results of other algorithms, 
was not considered. For the neighbourhood scale, the same number of FES was also 
considered for all algorithms. A higher number of FES with additional runs could 
also result in an increase in the number of conducted Pareto-front solutions. Since 
the purpose of the multi-objective formulation was to present the potentials of the 
developed model, this investigation remains limited. Additionally, the HypE and 
NSGA-II algorithms and variants of the SPEA-2 algorithm presented non-dominated 
results in an acceptable amount of time, whereas the MACO, NSPSO, RBFMopt, and 
MOEA/D algorithms could not provide promising results and required an expensive 
computational budget. Moreover, stepwise jEDE results indicated that results of 
the multi-objective optimisation algorithms could be dominated in 24 solutions 
out of 30. This highlights a gap in the development of multi-objective optimisation 
algorithms, which are capable of coping with high-dimensional constrained design 
problems in the architecture domain. Using predictive models, 577,500 FES are 
completed during the optimisation processes in 3 weeks. This task would take 
more than 19 years if simulation-based optimisation was considered for the same 
number of FES. This reminds us once again of the importance of selecting convenient 
optimisation methods during the conceptual phase of the design process.
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4 Self‑sufficiency in energy and food 

Considering the assumption concerning lettuce consumption, that 1800 people 
live in the three towers of Europoint complex, the Etot  of the optimised design at 
the building scale was reported as 3072.8 MWh y−1 (for CoP 5) while ER , EF , 
and Eg  were 4206.3 MWh y−1, 1258.6 MWh y−1, 2392.1 MWh y−1, respectively. 
Despite the detailed parameter investigations of glazing types, window sizes, the 
shapes of the BIPV surfaces, and the shading devices used for each orientation in 
each tower, 43.7% sufficiency could be reached in terms of electricity usage at the 
building scale. Moreover, the required energy consumption for self-sufficiency at 
the neighbourhood scale reached up to 19,639.6 MWh y−1 because of the providing 
of lettuce crops for 27,000 people using 30 floors for vertical farming. Considering 
that one floor of farming requires 629.3 MWh y−1, 96.1% of the energy demand 
was from food production for providing 1000 tons of lettuce for the 27,000 people. 
Although the energy demand of vertical farming was decreased when fewer farming 
floors were considered in the entire complex, more than 10 times the energy use 
intensity was required when compared to the residential floors. Even though the 
benefits of closed farming systems for food production in the centre of the city with 
low CO2 emissions, high energy consumption remains one of the big challenges. This 
highlights the necessity of integral designs that use the potential solar and wind 
power of the building environment, as well as the importance of combining vertical 
farming with urban farming on roof-tops and in unused parts of the city to achieve 
self-sufficiency with lower energy consumption at the neighbourhood scale.

5 MUZO methodology for self‑sufficient high‑rise buildings 
in future cities 

The MUZO methodology was utilised to conduct the self-sufficient design alternatives 
for energy consumption and food production (demonstrating sufficiency for lettuce 
crops), focusing on the Europoint complex in Rotterdam. Various advantages of 
considering this methodology were observed (e.g., coping with complex simulation 
models for sampling, investigation ability of the best prediction accuracy for multiple 
performance aspects, and the extensive investigation of the search space that leads 
to comprehensive decision-making in the design process because of employing 
multiple optimisation algorithms with replications). When compared to typical 
scenarios using the same parameter sets for the entire high-rise design, the energy 
consumption discovered by the MUZO methodology was improved by 21%. For 
self-sufficiency in food production, results suggested various floor selections on 
which to place the closed farming system, considering the total energy consumption 
as well as the total energy generation. Because of efficient agricultural production 
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in closed farming systems, residents of the Europoint complex and habitants in the 
neighbourhood (up to 27,000) people could exploit the lettuce production in the 
Europoint complex. The self-sufficiency of lettuce crops for food production was 
demonstrated in this study. The variety in agricultural products could be increased 
by considering different simulation parameters to provide necessary indoor 
conditions for different crops using the same computational model. However, self-
sufficiency in energy was not as achievable as food production. The results indicated 
that 100% self-sufficiency in energy could not be achieved at the building scale 
using existing BIPV technology. Therefore, combined systems for BIPV, battery, 
wind [27], and combined heat and power systems can be considered to improve the 
self-sufficiency at the building scale. Moreover, considering the potential of other 
buildings in the surrounding area (e.g., using their roofs for PV panels) appears to 
be a vital approach for future cities. The involvement of the surrounding buildings in 
addition to the buildings under study increases the complexity of the design problem. 
Considering the MUZO methodology can be a feasible approach, as it was able to 
present promising results for the three high-rise buildings in this paper.
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 5.4 Conclusion

This paper presents the results of an optimisation investigation of high-rise 
buildings for self-sufficiency in terms of energy consumption and food production 
for lettuce crops using AI techniques. The utilisation of MUZO for the Europoint 
complex located in Rotterdam managed the sampling process for 9000 design 
alternatives and the development of 45 ANN models, which considered grid 
searches for five hyperparameters in the first two phases of the methodology. 
The final phase focussed on optimisation of the three towers by employing the 
developed surrogate models with 117 decision variables, using 13 optimisation 
algorithms with single-objective and multi-objective problem formulations, which 
were subject to 37 and 36 constraints for the building and neighbourhood scales. 
The results showed that 100% self-sufficiency in food production for lettuce crops, 
and 43.7% self-sufficiency in energy consumption can be reached at the building 
scale, including 1800 residents. At the neighbourhood scale, sufficient lettuce 
production can be provided for up to 27,000 people living in a radius of 1.67 km 
by decreasing self-sufficiency in energy up to 11.6%. The relevance of the MUZO 
methodology is also shown by its discovery of self-sufficient high-rise alternatives 
at the building scale with an improvement of 21% in the considered performance 
aspects when compared to typical design scenarios. Self-sufficiency scores achieved 
at the building and neighbourhood scales highlight the necessity of integrating 
the potentials of the surrounding buildings in addition to the high-rise buildings 
in question. Hence, self-sufficient cities can be achieved by developing self-
sufficient neighbourhoods.

 – Limitations of the study: The importance of this study for future cities is presented 
in the digital (virtual) environment by the obtained ML scores, optimisation results, 
and the validation of the utilised MUZO methodology. Validation between the results 
obtained from the digital environment and the monitored data from the indoor 
environment of the real applications is one of the limitations of this study. Regarding 
the HVAC system, the default setup of the HB and LB plugins is considered during 
the energy simulations. A detailed HVAC setup (e.g., condenser or VRF loops) may 
improve the optimisation results using other plug-ins of LB tools. Additionally, only 
lettuce crops are integrated into the closed farming system, as they are one of the 
most well-documented agricultural products for vertical farming. Nevertheless, the 
developed computational model has the potential to consider other agricultural 
products by changing the parameters of the energy model to provide the necessary 
indoor conditions for the growing process of other plants. Although plant 
factories use water resources effectively when compared to traditional farming, 
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self-sufficiency in water may require additional design and operational parameters 
to be considered in the optimisation process. Finally, the urban heat island impact 
of the proposals, which may be the primary focus of future works, is not taken 
into consideration.

 – Future works: Higher self-sufficiency scores at the neighbourhood scale may 
require the use of random forests [79] and convolutional neural networks [80] for 
detecting the potential of roof spaces for PV panels. Considering self-sufficiency 
in different time frames (i.e., monthly or weekly) can provide an overview of 
the sufficiency performance in different weather conditions. Since the climate 
region has an inevitable impact on self-sufficiency aspects, hypothetical models 
developed for various climate zones may guide the necessary actions to be taken 
while transforming our cities for a sustainable future. In this respect, providing a 
potential reduction in CO2 emissions, in addition to energy consumption and food 
production, may help policymakers to develop self-sufficient, carbon-neutral, 
energy-positive lives in metropolises. Energy models can also consider different set 
points as variables and various occupancy scenarios to decrease consumption. The 
impact of creating separate farming buildings instead of considering farming and 
residential levels in a single building may also provide a better operation in different 
scenarios. Integrating daylight simulation into the energy model may also decrease 
the total energy demand, with an additional computation budget owing to the hourly 
illuminance data. In addition to daylight, optimising the view of the residential spaces 
can be an added value that may increase the demand for self-sufficient high-rise 
buildings owing to the promising city view. Using the same model, the diversity of 
the agricultural products can be increased to include leafy greens, vine crops, and 
tomatoes [7], in addition to integrating other self-sufficiency aspects (e.g., harvesting 
water or adding ducted openings for wind energy [81]). Involving parameters of the 
façade design of the closed farming systems [23], and semi-transparent PV panels 
can reduce the energy demand while increasing the complexity of the optimisation 
problem. At the neighbourhood scale, different types of food production systems 
can find a place in various locations that allow for the provision of a large amount 
of various crops. Hence, the potential of the neighbourhood scale can be involved 
in providing vital food products to achieve self-sufficient cities in the future. Finally, 
economic aspects considering the fundamentals of the circular built environment 
may present an additional long-term strategy for decreasing the life-cycle cost and 
CO2 emissions of future cities.
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Data availability

Datasets related to this article can be found at (an open-source online data repository 
hosted at 4TU Research Data [76]): https://doi.org/10.4121/17129420.v1
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6 Conclusions

 6.1 Introduction

This thesis introduced a computational framework to optimise the self-sufficiency 
aspects of high-rise buildings during the conceptual phase of the design process. 
After conducting a systematic review on optimising form-finding parameters in the 
domain of performative computational architecture (Chapter 2), the Optimus tool 
to optimise large numbers of decision variables in the architectural design domain 
(Chapter 3A), and a pilot study having a fundamental machine learning application to 
test the efficiency of multi-zone approach (Chapter 3B) are presented. Satisfactory 
results conducted from Chapter 3 led to developing MUZO in Chapter 4. The 
proposed methodology was tested with two high-rise scenarios with large numbers 
of design parameters and multiple performance aspects using advanced machine 
learning techniques with Optimus. Once the proposed methodology was validated, 
MUZO was utilised to optimise three towers of the Europoint complex in Rotterdam 
for self-sufficiency in energy consumption and food production. In addition to other 
optimisation algorithms, the Optimus tool was employed to conduct the results 
at the building scale in detail and the potential sufficiency at the neighbourhood 
scale. Despite large numbers of parameters and multiple performance aspects, the 
proposed MUZO methodology could report well-performing high-rise alternatives in 
weeks instead of decades. Throughout the research, the relevance of the Optimus 
tool was proven by outperforming other algorithms owing to self-adaptive strategy 
and the ensemble of mutation strategies. The architects and engineers can use the 
output of this research to make design decisions on self-sufficient high-rise buildings 
during the conceptual design phase in a reasonable timeframe. The thesis is 
concluded by summarising the contribution of the research, answering the research 
questions, discussing the limitations with future recommendations.
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 6.2 Contribution of the research

In architecture and engineering disciplines, there are limitations related to optimising 
large-scale building design problems considering the performance aspects (with 
regards to engineering) and form-finding parameters (with regards to architecture) 
in an integrated design approach. The main contribution of this research is to 
provide a computational method for dealing with the complexity of integrating 
architectural and engineering concerns during the conceptual design phase taking 
into consideration of the self-sufficiency aspects. As one of the inevitable buildings 
in metropoles, high-rises are a complex type of buildings to design and construct. 
Based on the review and test results, as well as the results of the case study, the 
contributions of this research can be summarised as follows:

 – A methodological framework for optimising the performance of self-sufficient high-
rise buildings considering multiple resources vital for human beings (i.e., energy, 
food, water).

 – Dealing with large-scale high-rise form-finding parameters and self-sufficiency 
performance aspects that integrates architectural and engineering concerns.

 – Predicting computationally expensive performance aspects of self-sufficiency 
for high-rise buildings with high accuracy regardless of the number of decision 
variables.

 – Providing a decision-making process for designing "especially" in the dense urban 
environment due to the impact on the performance of the high-rise building in a 
reasonable timeframe.

 – Substantiating the relevance of employing "advanced" optimisation algorithms (such 
as considering self-adaptive and ensemble of mutation strategies) to cope with the 
complexity of the design problems.

 – Architectural design deals with "tacit knowledge". Comparing different swarm and 
evolutionary algorithms in architectural design makes the decisions more "explicit" 
and, therefore, "transparent".
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 6.3 Answer to the research questions

 6.3.1 Sub‑research questions

 – What is the state‑of‑the‑art for optimising form‑finding parameters using 
swarm and evolutionary algorithms in performative computational architecture 
(Chapter 2)?

The first sub-question aimed to identify the gaps and needs within the scope 
of performative computational architecture, which entails form generation, 
performance evaluation, and optimisation. The review focussed on papers that 
considered the optimisation of form-finding parameters, which was the fundamental 
input of form generation, due to their importance in building performance. The 
results of 100 papers were reported in three categories concerning the performative 
computational architecture as follows:

The reviewed studies emphasised form-finding parameters related to engineering 
concerns more than architectural concerns. The reason was that parameters 
like window-to-wall ratio significantly improved the buildings’ energy or daylight 
performance. However, parameters reflecting engineering concerns were limited 
in reflecting the architectural concerns. Therefore, an integrated design approach 
(e.g., as part of the façade design), which could investigate form-finding parameters 
considering the concerns of both disciplines, was scarce.

For performance aspects, assessment of large-scale design problems, such as high-
rise buildings, was limited owing to expensive computation time. Nevertheless, few 
studies considered a holistic design approach by differentiating the layout and the 
façade design to decrease the overall complexity. Therefore, holistic approaches in 
optimising large-scale design problems could be an alternative solution.

The use of optimisation algorithms indicated fundamental versions of the swarm, and 
evolutionary optimisation algorithms were utilised in most of the reviewed studies. 
Advanced versions of these algorithms, which consider additional procedures 
(e.g., self-adaptive parameters, ensembles of mutation strategies), could improve 
the optimisation performance, thus the performance of the building. Finally, the 
comparison of different optimisation algorithms with replication of the optimisation 
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process was limited in the reviewed papers. Because of the no free lunch theorem 
in architecture discussed in the review, the convenient optimisation approach in the 
swarm and evolutionary optimisation would compare different types of algorithms 
with replication of the optimisation process.

 – What kind of algorithms can discover promising performance results for design 
problems having large numbers of parameters in the architecture domain 
(Chapter 3A)?

The second sub-question investigated the performance of available optimisation 
algorithms and the proposed optimisation algorithm for design problems having 
large numbers of parameters in the architecture domain. The Optimus tool 
was introduced that uses the fundamental version of the differential evolution 
algorithm with self-adaptive and ensemble procedures. The algorithm in Optimus 
was compared with a genetic algorithm, particle swarm optimisation, and radial 
basis function optimisation. Test 1, which considered 30-dimensional benchmark 
problems developed for the optimisation competitions in Congress on Evolutionary 
Computation 2005, indicated that Optimus outperformed other algorithms 
in 19 problems out of 20. Afterwards, Test 2 was focussed on further investigation 
of the employed algorithms in Test 1, considering a 70-dimensional form-finding 
design problem. Once again, Optimus outperformed other algorithms by reporting 
better fitness results at the end of the optimisation process. Based on the evidence 
conducted from Tests 1 and 2, it was concluded that algorithms with self-adaptive 
and ensemble procedures could find better performance results when optimising 
large numbers of design parameters. The reason was that Optimus could adapt 
the searchability according to the nature of the design problem. In other words, 
the Optimus tool was able to consider the best rates for crossover and mutation 
parameters and select the best mutation strategy among different alternatives. 
On the other hand, other algorithms could not adapt the search strategy since 
they were using constant values in hyperparameters and singular mutation 
strategies. Statistical results, optimal solutions, and computation time to complete 
optimisation processes also supported the arguments regarding the relevance of 
Optimus to use in design problems having large numbers of parameters, not only in 
Tests 1 and 2 but also in Tests 4 and 5 (Chapter 4) and the case study (Chapter 5).
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 – Can the multi‑zone optimisation approach provide better performance results for 
high‑rise buildings in dense urban environments (Chapter 3B)?

The third sub-question aimed to investigate the impact of the dense surrounding on 
the performance variances between the ground and sky floor levels of the high-
rise buildings. Therefore, Test 3 was formulated in a hypothetical dense urban 
environment to optimise two conflicting daylight metrics. As one of the most used 
parameters in the reviewed literature in Chapter 2, overhang length was selected as 
the form-finding parameter. Additionally, as the visible transmittance of the glazing 
might have a significant performance enhancement, the glazing type was also 
considered. The parametric high-rise model was divided into five equal subdivisions 
(zones) to be considered different design problems to investigate the impact of 
the dense urban area. Basic application of artificial neural network was utilised to 
optimise the performance of each separated building subdivision. Results indicated 
that differentiating overhang length and glazing type for each subdivision could 
significantly improve the performance of the entire high-rise. The reason was that 
different parameter values were selected in each subdivision that corresponded to 
design variations.

 – How can we reach swift and accurate predictions for computationally expensive 
performance aspects of sustainable buildings in the entire design of high‑rises 
(Chapter 4A)?

The fourth sub-question focussed on the performance prediction of the entire 
design of the high-rise building while coping with the computationally expensive 
simulations. The relevance of the multi-zone approach was addressed in the previous 
research question. The entire framework of the MUZO methodology was initially 
introduced, considering the outputs of Chapters 2 and 3. The methodology focussed 
on developing surrogate models using the dataset collected from the parametric 
high-rise model in the first two phases. Therefore, swift performance evaluations 
could be provided to investigate the design problem in the optimisation process, 
which was the last phase of the MUZO. Two high-rise scenarios with quad-grid and 
diagrid façade designs were formulated to examine the developed methodology 
(Tests 4 and 5). The high-rise models were subdivided into ten zones, each to be 
considered as different design problems. The quad-grid scenario had 26 parameters 
in each zone corresponding to 260 decision variables in the entire building. The 
diagrid scenario had 22 parameters in one zone corresponding to 220 decision 
variables in the entire high-rise model. Form-finding parameters of the models 
were selected from the ones presented in the literature review (Chapter 2). The 
thermal property of the glazing was also considered after the potential enhancement 

TOC



 286 Towards  Self‑ Sufficient High‑Rises

observed in Chapter 3B. An advanced artificial neural network application was 
considered to investigate the parameters of surrogate modelling with 10-fold 
cross-validation. Results indicated that each prediction of each performance aspect 
in every zone required to use of a different set of hyperparameters to provide the 
highest prediction accuracy. The relevance of the results was also validated by 
comparing the prediction accuracies of similar works in the same domain. Although 
each predictive model had different numbers of design parameters (that suggested 
various design complexities), the surrogate modelling phase of MUZO could find 
promising prediction accuracies.

 – How can we optimise large numbers of design parameters while investigating 
multiple performance aspects of sustainable high‑rise alternatives (Chapter 4B)?

The fifth sub-question aimed to investigate the optimisation of high-rise buildings 
considering large numbers of design parameters and multiple performance aspects. 
Although the previous sub-question answered how to achieve swift and accurate 
performance predictions using artificial neural networks for the entire high-rise 
design, optimising the large numbers of design parameters remained a challenge. 
The third phase of the MUZO methodology focussed on optimisation and decision-
making using the predictive models developed in the second phase. As indicated 
in the literature review (Chapter 2), high awareness of the search space could be 
achieved only by employing several optimisation algorithms and replicating the 
optimisation processes. Therefore, the optimisation phase of the MUZO methodology 
entails the use of multiple optimisation algorithms with replications. Optimisation 
results conducted from Tests 4 and 5 indicated that search behaviours and results of 
the optimisation algorithms presented variances for both high-rise scenarios. Even 
though the Optimus tool found the best performance score in most optimisation 
problems, other algorithms could find slightly better results in several optimisation 
models. In this competitive comparison, the performance of the Optimus emerged 
as the most promising algorithm, not only because of finding better results but also 
discovering optimal solutions with fewer deviations and less computation time. 
The relevance of the MUZO in optimising large numbers of design parameters was 
also proven by comparing the high-rise buildings having the same set of parameter 
values for the entire building instead of differentiating them as in the proposed 
methodology. Although optimising large numbers of design parameters with a self-
adaptive ensemble algorithm caused promising design solutions, this was possible 
because of the predictive models. Otherwise, more than 17 years were required to 
complete the computations to gain the same awareness of the search space using 
simulation models instead of predictions.
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 – What is the potential of the developed computational method for self‑sufficiency 
in energy consumption and food production at the building and neighbourhood 
scales (Chapter 5)?

The final sub-question focussed on investigating the potentials of an existing 
high-rise building as a case study, using the MUZO methodology and Optimus tool. 
The Europoint complex in Rotterdam, the Netherlands, consists of three high-
rise buildings, was focussed on optimising two self-sufficiency aspects: energy 
consumption and food production. A building skin was proposed to optimise the 
façade design, separately for each tower. Form-finding parameters related to 
the building’s façade in Chapter 2 and thermal and transmittance properties of 
the glazing were considered as design parameters. The buildings were examined 
in detail for self-sufficiency at the building scale. The developed model was also 
investigated to address the potential at the neighbourhood scale. In addition to 
self-sufficiency aspects, daylight availability was considered in the optimisation as 
a constraint. The design problem was optimised with 13 algorithms, including the 
Optimus tool. Results indicated that 100% food sufficiency for lettuce crops could 
be reached at the building scale for 1800 residents and the neighbourhood scale 
up to 27,000 people. On the other hand, 43.7% energy sufficiency was reached 
using building integrated photovoltaic panels at the building scale. Self-sufficiency 
in energy varied between 47.8% and 11.6% at the neighbourhood scale because 
of the energy demand of the vertical farms. Optimisation results suggested different 
design decisions for each tower. Once more, the MUZO methodology enhanced the 
building performance up to 21% compared to regular high-rise scenarios using the 
same set of parameters for the entire design of the buildings. Ultimately, the Optimus 
tool successfully coped with 117-dimensional design problems in both scales by 
discovering the promising self-sufficiency scores in the least computation time.

 6.3.2 Main research question

 – How can we optimise the performance of self‑sufficient high‑rise buildings using 
artificial intelligence in the conceptual design phase?

The main question was addressed to investigate achieving well-performing high-
rise alternatives while integrating performance aspects of self-sufficiency in the 
conceptual design phase. The literature review showed that the simulation-based 
optimisation processes would limit the investigation of well-performing alternatives 
because of the expensive computational time. The literature review also indicated 
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that using a single optimisation algorithm might lead to discovering nonoptimal 
solutions because of the no free lunch theorem. Therefore, a novel computational 
framework (MUZO) was proposed in this research.

The MUZO aimed to use artificial intelligence methods to make design decisions on 
self-sufficient performance aspects with high awareness of the search space in the 
conceptual phase. However, considering several computational steps was insufficient 
because the optimisation problem was also challenging due to the large number 
of parameters involved in the decision-making. Therefore, the Optimus tool was 
introduced by validating its efficiency with Tests 1 and 2.

The relevance of the MUZO using the Optimus tool was validated with Tests 3, 4, 
and 5. Finally, the self-sufficiency results of the case study were conducted at the 
building and neighbourhood scales. The tests and the case study suggested that the 
MUZO methodology with the Optimus tool could achieve remarkable performance 
solutions while optimising high-rise buildings for self-sufficiency. In this way, the 
use of the MUZO with Optimus tool can support optimising the performance of self-
sufficient high-rise buildings by providing:

 – Swift and accurate performance predictions in multiple self-sufficiency criteria,

 – High awareness of the search space with large numbers of design parameters,

 – Conceptual design decisions for well-performing self-sufficient high-rises in a 
reasonable timeframe.
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 6.4 Limitation of the research

This dissertation proposed an innovative computational framework to optimise the 
performance of self-sufficient high-rise buildings using artificial intelligence. Despite 
the examples focusing on only energy-related performance aspects, the novelty 
of this study was to cope with multiple performance aspects for self-sufficiency 
in multiple resources through the power of computational tools and methods. 
Additionally, artificial intelligence methods in the computational framework made it 
possible to investigate such complex design tasks in an acceptable amount of time 
during the conceptual design phase. Nevertheless, the proposed framework has 
computational limits if the study is extended to larger self-sufficiency scales, periods, 
parameters, and performance criteria.

The research dealt with considerable data for investigating self-sufficiency in 
building scale. A computational challenge remains to cope with the neighbourhood 
and city-scale data. Investigating self-sufficiency on bigger scales may require 
involving other artificial intelligence methods. The case study of the research in 
Chapter 5 addressed the potential sufficiency results at the neighbourhood scale. 
Nevertheless, investigation of this scale had a limitation owing to considering only 
the case buildings to allocate renewable resources instead of involving the other 
buildings in the surrounding. The climate conditions might not provide the same 
efficiency of resource usage, such as the variance of solar radiation between the 
summer and winter periods. The proposed computational framework can deliver 
various self-sufficiency scores for different periods. The extension of the models to 
predict self-sufficiency for smaller periods, such as monthly or daily self-sufficient 
instead of annual predictions, also remained the research’s limitation.

Specifically, the research dealt with the challenges during the conceptual design 
owing to the importance of decisions given in the early phases of the self-sufficient 
high-rise buildings. Most of the form-finding variables reported in the literature 
review were used in Tests 3, 4, and 5 that were based on hypothetical scenarios. 
However, the same flexibility could not be considered in the case study because of 
focusing on a real-world scenario. Finally, the developed computational framework 
demonstrated self-sufficiency only for energy and food via photovoltaic panels and 
plant factories. Although daylight availability was defined as a constraint in the 
optimisation problem of the case study, the involvement of additional resources to 
achieve higher self-sufficiency scores remained a research limitation.
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 6.5 Future recommendations

Although the relevance of the proposed computational framework and the 
optimisation tool was proven with various tests and a case study, extension of the 
research into the experimental study will be beneficial to validate the collected 
simulation results from the digital environment with the monitored data. Additionally, 
several recommendations can be mentioned for each category of the self-sufficiency 
framework, explained in Chapter 1, as follows:

Scale of the self-sufficiency

Although the potential of self-sufficiency at the neighbourhood scale was addressed 
in the case study, a deep investigation, which considers the other buildings in the 
surrounding, is necessary. In this way, not only placing the photovoltaic panels 
on the rooftops but also other potentials of the surrounding (e.g., locating wind 
miles, distributing the various crops of the vertical farms in different locations, 
considering unused parts of the neighbourhood for urban farming) could be used 
to achieve higher self-sufficiency scores in the neighbourhood scale. Despite the 
increase in complexity because of the scale, MUZO methodology can be applicable 
since collecting data from various locations is possible. Achieving promising self-
sufficiency scores at the neighbourhood scale can assist in focusing on the city scale 
as the next challenge.

Period of the self-sufficiency

The data collected in this research was based on annual results of the performance 
aspects. The extension of the research in smaller periods such as monthly self-
sufficient or weekly self-sufficient can be beneficial to optimise the insufficient 
periods of the model. However, the smaller period to be considered in the simulations 
will increase the size of the data; thus, the required computation time to complete 
the evaluation. Therefore, the usage of the GPU of the computer or a computer 
having very high computation power can be necessary for data preparation and the 
development of surrogate modelling.
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Parameters of the self-sufficiency

Hypothetical scenarios considered most of the form-finding parameters related to 
the shape and façade of the building reported in Chapter 2. However, the case study 
could only use the form-finding parameters related to façade design due to the high-
rise buildings’ existing layout. Hence, building shape-related form-finding parameters 
can improve the self-sufficiency scores in a real-world high-rise scenario. Focusing 
on other parameters of self-sufficiency (i.e., related to the building construction and 
building operation) may increase the complexity of the design problem. Therefore, 
considering separate optimisation problems for conceptual, construction, and 
operation phases can be beneficial to cope with the large numbers of parameters 
belonging to various phases of the building.

Performance aspects of the self-sufficiency

Promising self-sufficiency results at the building scale was achieved in energy 
considering the façade skin and rooftop to place photovoltaic panels. There is still 
room to integrate various systems for energy that may enhance the self-sufficiency 
score, such as wind miles and ducts, thermal storage, battery systems. In the 
neighbourhood scale, the potentials can be identified using convolutional neural 
networks to find the optimal place for renewable resources. Additionally, a detailed 
setup of the HVAC system (using other plug-ins in Grasshopper 3d for condenser 
or the VRF loops) may also improve energy efficiency in future works. Regarding the 
food, only the sufficiency of lettuce crops was demonstrated using a closed farming 
system. The simulation models can be used to evaluate the energy demand of the 
other crops and integrate the design parameters of the closed farming systems 
to optimise the energy consumption. In the neighbourhood, instead of growing 
agricultural products in one location, distributions of the various crops in multiple 
locations using closed and urban farming setups can be investigated to find the best 
food supply with the least energy demand and CO2 emissions. The impact of the 
occupancy schedules of various building programs can be studied that may suggest 
a more complex simulation model resulting in higher computation time. Even though 
closed farming systems provide significant efficiency in water consumption, systems 
and design parameters related to self-sufficiency in water can be addressed in terms 
of harvesting and recycling. Finally, the economic assessment of the proposed self-
sufficient high-rise can take place to provide profitable alternatives.
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Towards  Self- Sufficient High-Rises
Performance Optimisation using Artificial Intelligence

Berk Ekici

Population growth and urbanisation trends bring many consequences related to the increase in 
global energy consumption, CO2 emissions and a decrease in arable land per person. High‑rises 
have been one of the inevitable buildings of metropoles to provide extra floor space since the 
early examples in the 19th century. Therefore, optimisation of high‑rise buildings has been 
the focus of researchers because of significant performance enhancement, mainly in energy 
consumption and generation. Based on the facts of the 21st century, optimising high‑rise buildings 
for multiple vital resources (such as energy, food, and water) is necessary for a sustainable future.

This research suggests “self‑sufficient high‑rise buildings” that can generate and efficiently 
consume vital resources in addition to dense habitation for sustainable living in metropoles. 
The complexity of self‑sufficient high‑rise building optimisation is more challenging than 
optimising regular high‑rises that have not been addressed in the literature. The main challenge 
behind the research is the integration of multiple performance aspects of self‑sufficiency related 
to the vital resources of human beings (energy, food, and water) and consideration of large 
numbers of design parameters related to these multiple performance aspects. Therefore, the 
dissertation presents a framework for performance optimisation of self‑sufficient high‑rise 
buildings using artificial intelligence focusing on the conceptual phase of the design process. 
The output of this dissertation supports decision‑makers to suggest well‑performing high‑rise 
buildings involving the aspects of self‑sufficiency in a reasonable timeframe. 
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