

Cover illustration: Arjen van Lith

Tools and techniques
for satisfiability solvers

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.dr.ir. J.T. Fokkema,
voorzitter van het College van Promoties,

in het openbaar te verdedigen op dinsdag 25 maart 2008 om 15:00 uur
door Marienus Johannes Hendrikus HEULE

informatica ingenieur
geboren te Rijnsburg

Dit proefschrift is goedgekeurd door de promotor:
Prof.dr. C. Witteveen

Toegevoegd promotor:
Dr. H. van Maaren

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof.dr. C. Witteveen Technische Universiteit Delft, promotor
Dr. H. van Maaren Technische Universiteit Delft, toegevoegd

promotor
Prof.dr.ing R. Sebastiani Università di Trento, Italië
Prof.dr. A. Biere Johannes Kepler University, Oostenrijk
Prof.dr. H. Zantema Radboud Universiteit Nijmegen
Prof.dr.ir. A.J.C. van Gemund Technische Universiteit Delft
Prof.dr.ir. H.J. Sips Technische Universiteit Delft, reservelid
Dr. S. Prestwich University College Cork, Ierland

Published and distributed by: Marijn J.H. Heule
E-mail: marijn@heule.nl

ISBN: 978-90-9022877-8

Keywords: satisfiability, look-ahead solver architecture, adaptive heuristics

This research was supported by the Netherlands Organisation for Scientific
Research (NWO) under project number 617.023.306

Copyright c© 2008 by Marijn J.H. Heule

All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form or by any means, electronic or me-
chanical, including photocopying, recording or by any information storage and
retrieval system, without written permission of the author.

Printed in The Netherlands

Contents

1 Introduction 1

1.1 The satisfiability problem . 2

1.2 Motivation . 2

1.3 Thesis Overview . 4

2 State-of-the-Art SAT Solving 5

2.1 Preliminaries . 6

2.2 Complete Solvers . 8

2.3 Incomplete Solvers . 18

2.4 Representation . 21

2.5 Future progress and contributions 23

3 March eq 27

3.1 Introduction . 28

3.2 Translation to 3-SAT . 29

3.3 Time Stamps . 30

3.4 Constraint Resolvents . 30

3.5 Implication Arrays . 32

3.6 Equivalence Reasoning . 34

3.7 Pre-selection Heuristics . 37

3.8 Tree-based Look-ahead . 38

3.9 Removal of Inactive Clauses . 41

3.10 Conclusion . 42

4 March dl 43

4.1 Introduction . 44

4.2 Look-ahead architecture . 45

4.3 Pre-processor enhancements . 47

4.4 Adaptive heuristics . 49

4.5 Local branching . 53

4.6 Results and conclusions . 54

5 Adaptive Heuristics 55

5.1 Introduction . 56

5.2 Preliminaries . 57

5.3 Static Heuristics . 58

5.4 Adaptive DoubleLook . 61

5.5 Results . 64

5.6 Conclusions . 67

v

CONTENTS

6 Direction heuristics 71
6.1 Introduction . 72
6.2 Direction heuristics . 73
6.3 Observed bias on random k-SAT formulae 76
6.4 Distribution jumping . 83
6.5 Results . 91
6.6 Conclusions . 93
6.A Solution distribution histograms 94
6.B Psat / Bsat trees . 95

7 UnitMarch 99
7.1 Introduction . 100
7.2 Big Boolean Algebras . 100
7.3 Multi-Bit Unit Propagation . 104
7.4 Implementation UnitMarch . 107
7.5 Communication . 110
7.6 Results . 114
7.7 Conclusions and future work . 118

8 Conclusions 119
8.1 A relic with a future . 119
8.2 Marching on? . 120
8.3 Adaptation, adaptation, adaptation 120
8.4 Left or right, that is the question 121
8.5 Re-representation . 122

Bibliography 123

Summary 129

Samenvatting 131

Acknowledgements 133

Curriculum Vitae 135
cv.1 Awards . 135
cv.2 Publications . 136

vi

If you want to make God laugh,

tell him about your plans.

Woody Allen

1
Introduction

Imagine that you are in a huge mansion owned by a maniac that wants to kill
you. Luckily, the maniac is away and you know this is your chance to get out.
However, the only way to get out is through the front door which is locked. You
decide to search for the key, even though none might be around.

Trapped in this enormous house, with the maniac on his way home, one
crucial question arises: How to search? What is the best strategy to find the
key as fast as possible? One option is to start with the nearest room. But
that one appears to be dark and filled with dead bodies. One thing is sure: By
wondering how to search, the key will not be found. You have to decide. Now!

The above is not a script for a new horror B-movie, but a simplified version
of the classic video game Maniac Mansion1.. It will be used as a framework
to illustrate search strategies for the satisfiability (Sat) problem. Many other
problems2. can be translated into Sat and solved by software dedicated to this
problem, called a Sat solver. Thanks to the increased strength of Sat solvers,
the number of applications which can be effectively solved by them grows every
year: For instance class scheduling, hardware and software verification, bounded
model checking and many mathematical puzzles.

New techniques to solve the Sat problem – the main subject of this thesis
– therefore contribute to solving other problems as well. Due to the simplicity
of the Sat problem, these ideas may inspire improvements in other fields - such
as the Maniac Mansion example - as well. We will explain these new techniques
with some analogies: For example, the problem instance or formula (mansion),
a solution for the given problem (key), and the used Sat solver (the character
that searches). The story will continue at the beginning of succeeding chapters
to illustrate some special search strategies. For instance, what to do or how to
exploit the situation in case: You are a nerd (Chapter 3), you can time travel
(Chapter 4), you own gadgets (Chapter 5), you have intuition (Chapter 6), or
you are not alone (Chapter 7).

1.LucasArts, 1987
2.All problems in complexity class NP

1

CHAPTER 1. INTRODUCTION

1.1 The satisfiability problem

The satisfiability (Sat) problem deals with the question whether, given a for-

mula, there exists an assignment to the Boolean variables such that all clauses

are satisfied. A formula consists of a conjunction of clauses, e.g. F = C1∧C2∧C3

and clauses consist of a disjunction of literals. For instance, Cj = l1 ∨ l2 ∨ l3. A
literal refers either to a Boolean variable xi or to its complement ¬xi. Assigning
variable xi to true satisfies the literals xi, while assigning it to false satisfies the
literals ¬xi. A clause is satisfied if at least one of its literals is satisfied.

Example 1.1: Consider the example formula

F = (x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ ¬x3)

The formula above is easy to solve: For instance, assign variable x1 to true.
Now, the second clause can only be satisfied by assigning x3 to true. This in turn
forces x2 to be assigned to false. The resulting assignment x1 = 1, x2 = 0, and
x3 = 1, satisfied F , so the formula is satisfiable. The process of assigning forced
variables – called unit propagation – is widely used in solving Sat problems.
The other solution to this formula can be found by assigning x1 to false.

Although the Sat problem is easily defined and the example formula was
not difficult to solve, larger formulae can be very hard to solve in practice. Yet
software to solve Sat problems - called Sat solvers - have shown enormous
progress in recent years. Chapter 2 will present the state-of-the-art techniques
of Sat solving. The succeeding chapters offer our own contributions to the field.

1.2 Motivation

First and foremost, we aimed to develop Sat solving techniques to improve
the performance on a vast array of applications. The motivation to focus on
the “allround” performance instead of excellence on a specific problem arises
from the nature of Sat: The problem is easily defined and explained and it
is very suitable to solve other problems. This stems for the fact that Sat is
NP-complete [Coo71], so all problems in NP can be transformed into Sat in
polynomial time and afterwards solved with a Sat solver.

Yet the transformation of a problem into Sat always results in a loss of
problem-specific information. This information may harvest problem-specific
techniques that perform better than Sat solvers. Therefore, Sat solving will –
in theory – rarely be the fastest technique. In practice, however, Sat solving
is an effective method to solve problems like bounded model checking, equiva-
lence checking, combinatorial puzzles, scheduling, etc. Each year the number of
applications increases. So, Sat solving is a powerful general solving technique
that is competitive regardless its theoretical disadvantage to problem-specific
alternatives.

To advance the development of a Sat solver for general purposes, we concen-
trated on three topics: Efficiency, additional reasoning, and adaptive heuristics.

2

1.2. MOTIVATION

Efficiency

Efficient Sat solving means in practice efficient unit propagation. A fast im-
plementation of unit propagation is a necessity for a fast Sat solver. In the
dominant Sat solver architecture, the conflict-driven Sat solvers, unit prop-
agation accounts for about 80% of the total computational costs - despite all
the optimizations [ES03]. For alternative Sat solving architectures such as the
LookAhead and UnitWalk architectures these costs are even much higher.

The fast unit propagation in conflict-driven Sat solvers comes at a price: The
used (lazy) data-structures make it hard to extract various types of knowledge
from the formula efficiently (e.g. the number of satisfied clauses). Although
these data-structures resulted in a significant progress of the field, we predict
that they also may hinder future progress, because new reasoning techniques
may need this knowledge. Or to quote Donald Knuth3.: “Premature optimiza-
tion is the root of all evil.”

Therefore, we studied alternative techniques to reduce the burden of unit
propagation. Contributions - mostly implemented in our look-ahead Sat solver
march - include other efficient data-structures such as time stamping (Sec-
tion 3.3) and implication arrays (Section 3.5), but also eager data-structures
such as tree-based look-ahead (Section 3.8) and the removal of inactive clauses

(Section 3.9).
Also, we developed an algorithm to perform unit propagation in parallel:

Unit propagation can be viewed as Boolean operations and today’s 32/64 bit
computers can perform 32 or 64 of the familiar Boolean operations simultane-
ously (in one clock cycle). We capitalized on this by developing a parallel unit
propagation algorithm. We implemented it in a UnitWalk based Sat solver
called UnitMarch. This solver is the main subject of Chapter 7.

Additional reasoning

More and improved reasoning is probably the key to progress in many areas in
computer science. However, as stated above, due to the lazy data-structures
used in conflict-driven Sat solvers, various kinds of reasoning are hard to add
efficiently.

On the other had, look-ahead Sat solvers already use much heavy computa-
tional reasoning within each step of the search process. So, more reasoning can
be added cheaply and most knowledge about the formula can easily be obtained.
Hence, we focused on the LookAhead architecture to develop new reasoning
techniques.

This thesis presents some new reasoning techniques. Most of them have
been implemented in our look-ahead solver march, and have enhanced its per-
formance: Equivalence reasoning (Section 3.6), addition of constraint resolvents

(Section 3.4), local branching (Section 4.5), distribution jumping (Section 6.3.1),
and detection of autarkies (Section 7.5.2).

3.Structured Programming with go to Statements, ACM Journal Computing Surveys, Vol
6, No. 4, Dec. 1974. p.268.

3

CHAPTER 1. INTRODUCTION

Adaptive Heuristics

Although Sat solvers are used for a wide range of applications, parameter set-
tings that are optimal for one application may result in poor performance on
other applications. Since many users of Sat solvers are unaware of the optimal
parameter settings for their specific application, adaptive heuristics which set
the parameters such that they yield (near) optimal performance are a fruitful
technique. They could improve “allround” performance and make Sat solvers
more accessible to users.

This thesis offers two kinds of new adaptive heuristics. First, we discuss
an algorithm to determine the number of preselected variables on the fly (Sec-
tion 4.4.1). Second, Chapter 5 presents adaptive heuristics for the DoubleLook
procedure which is used in most look-ahead Sat solvers.

1.3 Thesis Overview

The annual Sat competitions4. are an important platform to boost the devel-
opment of Sat solvers, to measure the progress of the field, and to objectively
compare the relative strengths of the participating solvers. Chapter 2 provides
an overview of the state-of-the-art techniques used in modern Sat solvers. Also,
it offers an “educated guess” where future progress is expected.

Most contributions presented in this thesis are developed and implemented
in our own look-ahead Sat solver march. An early version, march eq (2004)
is presented in Chapter 3. This version contains several additional reasoning
techniques which have been implemented efficiently. Therefore these techniques
are also useful to solve larger structured problems.

An enhanced pre-processor, two kinds of adaptive heuristics and a new
branching strategy (a variable selection strategy) are the main improvements to
the march eq solver that resulted in the version march dl (2005). These features
are described in Chapter 4.

The most important new feature of march dl, an adaptive heuristic for the
DoubleLook procedure, is further improved on performance and elegance.
The improved heuristics are presented in Chapter 5. Details are provided to-
gether with a large-scale study of the proposed heuristics and alternatives.

The main upgrade of the current version, march ks (2007), is the addition of
a feature called distribution jumping. Chapter 6 presents this new technique.
Besides a description, it offers an extensive study to the effectiveness of direction
heuristics together with tools to measure and compare this effectiveness.

We also developed a local search Sat solver based on the UnitWalk archi-
tecture. We parallelized the underlying algorithm on a single processor. The
resulting solver called UnitMarch is the subject of Chapter 7.

Finally, in Chapter 8 some conclusions are drawn. It summarizes the con-
tributions and new techniques presented in this thesis and provides a short
overview for future work.

4.see http://www.satcompetition.org .

4

http://www.satcompetition.org

Even things that are true

can be proven.

Oscar Wilde

2
State-of-the-Art SAT Solving

In today’s bookstores, it is hard to find a book which is not labeled “The
#1 International Best-Seller”. Everything is superb, or is least presented as
such. Of course, this does not only hold for “literature”. Each new Sat solving
technique is also presented as “the next big thing”. Finding state-of-the-art Sat
solving techniques using their descriptive papers is as hard as finding excellent
books using their covers.

Yet, the annual Sat competitions [LS03, LS04, LS06] do objectively compare
the performances of a wide variety of Sat solvers. The strength of Sat solvers
is measured in three categories: Industrial (e.g. verification of hardware and
software benchmarks), crafted (e.g. factorization and Latin square problems),
and random instances. Each category is split in some divisions. Since these
competitions separate the goats from the sheep, they have become very valuable
to the Sat community. This chapter will focus on state-of-the-art techniques for
Sat solvers / solver architectures, which are dominant in “their” league. These
are presented in three sections:

• Complete Sat solving: Solvers that can prove both satisfiability and
unsatisfiability (the complete solvers) are the most successful product in
the field. Especially the ones based on lazy data-structures - the conflict-

driven solvers. These are superior on industrial benchmarks. Their coun-
terparts, the look-ahead solvers are strong on random and crafted in-
stances. See Section 2.2.

• Incomplete Sat solving: Some problems which cannot be solved by
complete solvers within weeks, can be solved by incomplete (or local
search) solvers instantly. Only satisfiable formulae can be solved by these
solvers. This type distinguishes three main architectures that are unbeat-
able on satisfiable random formulae in particular. See Section 2.3.

• Representation: For most users, Sat solving is a black-box technology.
Therefore, one requires additional techniques - such as an efficient trans-
formation of the original problem and pre-processing - in order to assure
that a possible application is encoded in CNF such that solvers will be
able to solve the transformed problem effectively. See Section 2.4.

5

CHAPTER 2. STATE-OF-THE-ART SAT SOLVING

2.1 Preliminaries

Before presenting the state-of-the-art Sat solving techniques, we will introduce,
inspired by [Kul08], the basic terminology of the Sat problem (Section 2.1.1)
followed by the fundamentals of (mostly complete) Sat solving (Section 2.1.2).

2.1.1 SAT basic terminology

In short, the satisfiability problem deals with the question whether there exists,
for a given formula, an assignment to the Boolean variables such that all clauses

are satisfied. A clause is satisfied if at least one of its literals is satisfied and a
literal is satisfied if the corresponding variable is assigned to its value. Below
we expand on the important terms:

• Boolean variables and literals: A Boolean variable xi (or just variable)
can be assigned to the Boolean values 0 or 1. A literal refers either to xi or
the complement ¬xi. If a variable is assigned to 0 all negative literals are
satisfied, while all positive literals are falsified. Otherwise, if assigned to
1 all positive literals are satisfied, while the negative literals are falsified.

• Clauses: A clause consists of a disjunction of literals, C = l1 ∨ l2 ∨ l3.
Each clause can only be falsified when all its literals get falsified. Clauses
with complementary literals (both xi and ¬xi) can be neglected since they
can never be falsified. A clause of size k can be satisfied by 2k−1 different
assignments to its literals. There exists one special clause, the empty
clause (denoted by ∅), which is always falsified.

• Formulae: Sat formulae are represented in Conjunctive Normal Form

(CNF): Each formula consists of a conjunction of clauses. For instance,
F = C1 ∧ C2 ∧ C3. A formula is satisfiable if there exists an assignment
satisfying all clauses. If no such assignment exists a formula is called
unsatisfiable. Sat formulae are not only represented in CNF, Sat solving
techniques use this representation, as well: Most data-structures store
the formula as a list of clauses. Learned information of various forms is
generally stored as clauses, thereby maintaining the CNF representation.

• Assignments: An assignment ϕ is a mapping of the Boolean values 0

and 1 to the variables. An assignment ϕ applied to a formula F (denoted
by ϕ ◦ F) results in a reduced formula F ′ where all satisfied clauses and
all falsified literals from F are removed.

A satisfying assignment - which satisfies all clauses - is a certificate that
a given formula is satisfiable. Extending a satisfying assignment always
yields a satisfying assignment. We refer to a falsifying assignment as an
assignments that results, when applied to the formula, in the empty clause.
A partial assignment is an assignment that assigns a Boolean value to a
subset of the variables in a formula. Complete Sat solvers mostly work
with partial assignments, while incomplete solvers use full assignments.

6

2.1. PRELIMINARIES

2.1.2 SAT solving terminology

• Unit propagation: The most applied technique in Sat solving is prob-
ably unit propagation. This technique follows directly from the property
that clauses can only falsified by one specific assignment to its literals:
Once all literals except one are assigned to their opposite value, a clause
is called a unit clause. Unit clauses can only be satisfied by assigning
the remaining literal to its truth value - thereby extending the current as-
signment. While propagating (assigning) unit clauses, other clauses may
become units which in turn must be assigned, too. Propagation stops
when either no unit clauses exist in the extended assignment applied to
the formula, or when the empty clause is detected. Unit propagation is a
confluent technique.

• DPLL: Most complete Sat solvers are based on the Davis-Putnam-Loge-
mann-Loveland (in short DPLL) method [DLL62]. This search method
starts each step by simplifying the current formula and checks whether it
is satisfied (meaning that the original formula is satisfiable), then it selects
a decision variable for splitting purposes: Recursively both formulae, the
decision variable assigned to 0 or 1, are examined for satisfiability.

In case a solution is hit, the algorithm stops. Only after all assignments are
refuted, the method shows that the formula does not contain a solution
and is therefore unsatisfiable. Details about an iterative and recursive
implementation are presented in the next section.

• Decision and implied variables: The variables that are selected for
splitting in the DPLL search-tree are called decision variables. Heuristics
that determine the decision variables play a crucial role in the performance
of Sat solvers.

Various techniques exist to extend the current assignment (such as unit
propagation). Variables that are assigned due to these techniques are
called implied variables. The main focus of look-ahead sat solvers is to
extend ϕ as much as possible (by assigning implied variables using addi-
tional reasoning techniques) in order to keep the search-tree as small as
possible.

• Relation between clauses and assignments: A clause C represents a
set of falsified assignments, i.e. those assignments that falsify all literals
in C. On the other hand, a falsifying assignment ϕ for a given formula
represents a set of clauses that follow from the formula - and thus can be
added. An example of such a clause is the one containing literals referring
to all the decision variables in ϕ with the sign such that they are falsified
by ϕ. Adding clauses to F based on emerging falsifying assignments is an
essential technique in conflict-driven Sat solvers.

7

CHAPTER 2. STATE-OF-THE-ART SAT SOLVING

2.2 Complete Solvers

Complete Sat solvers are based on the DPLL search method [DLL62] (see
above). The focus of complete Sat solvers is predominantly on the reduction
of the computational effort to search the whole search space - which is required
to prove unsatisfiability. Therefore, hitting a solution (satisfying assignment)
is mostly a side product of the search. The domain of complete Sat solvers
consists of two main types of approaches: The conflict-driven architecture and
the look-ahead architecture.

2.2.1 Conflict-Driven Architecture

Solvers based on the conflict-driven architecture (conflict-driven solvers), reason
before backtracking why a dead end situation has been reached and add this in-
formation as a clause to the formula. Not much computational effort is spent on
the selection of decision literals. This type of solvers is based on the assumption
that looking back to where mistakes have been made is more fruitful: Hindsight
is always 20/20.

Example 2.1: Consider the example formula below:

F := (x1 ∨ x4) ∧ (x3 ∨ ¬x4 ∨ ¬x5) ∧ (¬x3 ∨ ¬x2 ∨ ¬x4) ∧ Fextra

The formula consists of clauses with literals (¬)xi with i ∈ {1, ..., 5} and some
extra clauses (denoted by Fextra) which are not further specified in the example.
The example, shown as search-tree in Figure 2.1 (a), starts by selecting x5 = 1
as first decision. This reduces the second clause to a binary clause. Then x2 = 1
is selected as second decision. Now the third clause is reduced to a binary clause.
In step three to six, variables are assigned that occur in Fextra which have no
effect on xi with i ∈ {1, ..., 5}. In the seventh step x1 = 0 is selected as decision.
This forces x4 to be assigned to true (due to the first clause). Consequently, x3

is forced to true (due to the second clause) and to false (due to the third clause)
- which yields a contradiction.

Figure 2.1 (b) shows the conflict at depth seven in an implication graph.
White nodes represent the decisions and black nodes the conflict. At the far right
the conflict is shown. Each cut in the implication graph, having the decisions
nodes left from the cut and the conflict right from the cut, represents a conflict
clause - which can be added to the formula. In the figure the cut closest to the
conflict in shown, representing the conflict clause ¬x2 ∨ ¬x4 ∨ ¬x5.

Based on the conflict clause, the backtrack level is determined - which is
the depth at which the conflict clause becomes a unit clause. In this case the
backtrack level is 2 because at that depth, x2 = 0 and x5 = 0, which reduces the
conflict clause to ¬x4. The algorithm jumps back to depth 2 and then forces x4

to false (due to the conflict clause). This in turn forces x1 to true (due to the
first clause). Now the algorithm continues by selecting a new decision.

8

2.2. COMPLETE SOLVERS

0

1

2

6

7

2

x5 = 1

x2 = 1

x1 = 0
(x4 = 1)
(x3 = 1)
(x3 = 0)

(x4 = 0)
(x1 = 1)

7

1

2

7

7

7

x1 = 0 x4 = 1

x2 = 1

x5 = 1

x3 = 0

x3 = 1

(a) (b)

Figure 2.1 — Graphical representations of the running example. The numbers in
the nodes refer to the depth. In (a) the search-tree is visualized and
(b) shows the implication graph of the conflict emerged at depth 7.
White nodes represent the decisions and black nodes the conflict. The
cut shows conflict clause ¬x2 ∨ ¬x4 ∨ ¬x5.

The conflict-driven architecture - based on an iterative version of DPLL (see
Algorithm 2.1) - is clearly dominant within the field of complete Sat solvers.
Out of all Sat solvers based on this architecture, minisat [ES03] is clearly the
most important one5.. This section describes in chronological order the tech-
niques that contributed to the success of this architecture.

The first conflict-driven Sat solver, called grasp, was developed by Marques-
Silva and Sakallah [MSS96]. The implementation already included many fea-
tures which are now common in “modern” conflict-driven solvers:

• Iterative DPLL: Each iteration of the algorithm starts by selecting an
effective decision literal for further reduction. When no literal could be
selected, all clauses are satisfied - a solution has been found. Otherwise,
the procedure will eventually prove unsatisfiability.

• Global learning: If the current assignment results in a conflicting clause

(all literals are falsified) then the AnalyzeConflicts procedure com-
putes a conflict clause which is added to the formula. Conflict clauses
are constructed in such a way, that after backtracking to the last deci-
sion level (or even beyond), the conflict clause is reduced to a unit clause.
So checking the simplified formula with the decision literal assigned to
false is realized implicitly. If the empty clause is learned, the formula is
unsatisfiable.

5.based on the recent Sat competitions (see www.satcompetition.org)

9

www.satcompetition.org

CHAPTER 2. STATE-OF-THE-ART SAT SOLVING

• Backjumping: Here, the conflict clauses are used to guide backtracking.
The algorithm jumps back to the highest depth where the last conflict
clause becomes a unit clause. This may involve a jump of multiple levels.

Algorithm 2.1 ConflictDriven-Iterative-DPLL(F)

1: while TRUE do
2: ldecision := GetDecisionLiteral()
3: if no ldecision is selected then
4: return satisfiable

5: end if
6: F := Simplify(F(ldecision ← 1))
7: while F contains empty clause do
8: Cconflict := AnalyzeConflicts()
9: if Cconflict is the empty clause then

10: return unsatisfiable

11: end if
12: BackTrack(Cconflict)
13: F := Simplify(F ∪ Cconflict)
14: end while
15: end while

Although grasp uses most conflict-driven ingredients, it can hardly be com-
pared with today’s conflict-driven solvers in terms of performance: The addition
of conflict clauses significantly increases the costs of unit propagation.

zChaff [MMZ+01] tackled this problem and gave the conflict-driven archi-
tecture a real boost. Five main techniques contributed to the increased perfor-
mance:

• 2-literal watch pointers data-structure: This technique exploits the
fact that conflict-driven Sat solvers are not interested in the size of a
clause, but they only want to know when a clause becomes unit. As long
as there exist two unassigned literals or if one literal is satisfied then a
clause is not a unit clause. Instead of pointers to all literals in a clause,
only two pointers are stored. These avoid to stay on falsified literals. As
soon as one associated literal is assigned to false and the other pointer
is not associated with a satisfied literal, the pointer attempts to move
to a new not falsified literal. In case none exists, the clause is either a
unit clause or it is falsified in all literals. This technique is called a lazy

data-structure.

• Variable State Independent Decaying Sum (VSIDS): This decision
heuristic prefers literals that occur in the most recently used (during the
conflict analysis) conflict clauses. Notice that “old” heuristics as Most

Occurrences in clauses of Minimal Size (MOMS) [Fre95] cannot cheaply
be computed using the lazy data-structures.

10

2.2. COMPLETE SOLVERS

• First Unique Implication Point (1-UIP): Given a conflicting clause,
various conflict clauses could be added. In [ZMMM01], several strategies
have been examined, of which 1-UIP appeared the best learning scheme.

• Restarts: As observed in [KHR+02], restarting the DPLL procedure
while keeping the conflict clauses and using the VSIDS decision heuris-
tic values improves the performance. Restarts, for instance, increase the
chance to get lucky by hitting a solution fast. Also, they may yield more
effective decision literals by using the updated VSIDS heuristic values.

• Clause database management: Conflict clauses which are not used in
recent conflict analyses are removed from the clause database to speed-up
unit propagation.

Finally, minisat is a Sat solver by Eén and Sörensson [ES03] which features
all the above techniques. Most of them are slightly improved and implemented
efficiently, resulting in a solver of only 600 lines of code. One technique has been
added:

• Conflict minimization: This technique attempts to reduce the number
of literals in the conflict clause - computed during the conflict analysis -
using the existing clauses [ES05].

Future progress. Unit propagation consumes about 80% of the total solv-
ing time within minisat [ES03]. Regardless the use of lazy data-structures, the
costs of simplifying the formula is enormous for all solvers using this archi-
tecture. Therefore, conflict-driven Sat solvers can be considered brute-force
solvers: Most computational costs are not spent on reasoning. Other solver ar-
chitectures show that for some families much additional reasoning is required to
solve instances efficiently. This may also hold for benchmarks on which conflict-
driven Sat solvers are currently very strong.

Bringing the conflict-driven architecture more into balance might be hard
to accomplish because of the deadlock situation between lazy data-structures
and additional reasoning: New techniques designed to improve performance
may require statistical information about the formula (such as the size of the
remaining clauses) which is not available while using lazy data-structures. On
the other hand, without these data-structures, the costs of unit propagation will
increase substantially. Therefore, new reasoning techniques should compensate
for the loss in performance.

11

CHAPTER 2. STATE-OF-THE-ART SAT SOLVING

2.2.2 Look-ahead architecture

A look-ahead Sat solver’s primary focus is to solve a formula by constructing a
small and balanced DPLL search-tree through a substantial amount of reason-
ing and by branching on effective decision variables. Effective decision variables
are those variables that yield a relatively large reduction of the formula if they
are assigned to true and if they are assigned to false. This reduction can be
approximated using various kinds of heuristics. However, actually performing a
look-ahead - that is, to assign a variable to a truth value, simplify the formula,
and measure the reduction - takes more time, but outperforms these approxi-
mation heuristics.

Look-aheads can also be used to reduce the formula (by detecting and as-
signing forced variables) or to further constrain it (by adding resolvents). For
example, if look-ahead on literal x (assigning x to true) results in a conflict,
then x is a failed literal and therefore variable x is forced to be assigned to false.
Also, if look-ahead on x assigns y to true than this information can be stored
as a local learned binary clause ¬x∨ y (in case the clause is not in the formula).

The look-ahead architecture switches between the DPLL search procedure,
which does the global searching, and the LookAhead procedure, which se-
lects the decision variable in each node and searches for implied variables by
additional reasoning. A graphical representation of the architecture is shown in
Figure 2.2. In this figure, the variables in the nodes refer to the decision variables
(in the DPLL procedure) and to the look-ahead variables (in the LookAhead
procedure). In black nodes a conflict has been detected and therefore they refer
to leaf nodes.

Most look-ahead Sat solvers do not use backjumping. So, the DPLL search-
tree in the look-ahead architecture is a just a binary search-tree. The Look-
Ahead procedure first performs many look-aheads and measures the reduction
of the formula (caused by these look-aheads). This reduction is often expressed
by the sum of newly created (reduced, but not satisfied) clauses.

The look-ahead architecture is usually implemented using a recursion version
of the DPLL framework - see Algorithm 2.2. The selection of the decision vari-
able, reduction of the formula, and addition of learned clauses are performed
by the LookAhead procedure. Optionally, the architecture uses a GetDi-
rection procedure to determine which branch (reduced formula) should be
evaluated first. The preferred truth value (denoted by B) for the decision vari-
able influences the performance on satisfiable instances. Figure 2.2 also shows
this choice: In the node with decision variable xa, the negative branch (xa = 0)
is examined before the positive branch (xa = 1), while in the node with decision
variable xb the opposite is chosen.

12

2.2. COMPLETE SOLVERS

xa

xb xc

0 1

?

1 0 0

DPLL

x1 x2 x3 x4

FLA

0

3

1

1

0

2

1

2

0 1

1

0

2

1

1

LookAhead

#new binaries

Figure 2.2 — A graphical representation of the look-ahead architecture. Above, the
DPLL super-structure (a binary tree) is shown. In each node of the
DPLL-tree, the LookAhead procedure is called to select the decision
variable and to compute implied variables by additional reasoning.
Black nodes refer to leaf nodes and variables shown in the vertices
refer to the decision variables and look-ahead variables, respectively.

Example 2.2: Consider the following example formula below:

FLA = (¬x1∨x3)∧(x1∨x2∨x3)∧(x1∨¬x2∨x4)∧(x1∨¬x2∨¬x4)∧(x2∨¬x3∨x4)

Since the largest clauses in FLA have size three, only new binary clauses
can be created. For instance, during the look-ahead on ¬x1, three new binary
clauses are created (all clauses in which literal x1 occurs). The look-ahead on
x1 will force x3 to be assigned to true by unit propagation. This will reduce the
last clause to a binary clause, while all other clauses become satisfied. Similarly,
we can compute the number of new binary clauses (denoted by #new binaries)
for all look-aheads (see Figure 2.2).

Notice that the look-ahead on ¬x3 results in a conflict. So ¬x3 is a failed

literal and forces x3 to be assigned to true. Due to this forced assignment the
formula changes. To improve the accuracy of the look-ahead heuristics (in this
case the reduction measurement), the look-aheads should be performed again.
However, by assigning forced variables, more failed literals might be detected.
So, for accuracy, first iteratively perform the look-aheads until no new failed
literals are detected.

13

CHAPTER 2. STATE-OF-THE-ART SAT SOLVING

Algorithm 2.2 LookAhead-DPLL(F)

1: F := Simplify(F)
2: if F is empty then
3: return satisfiable

4: else if F contains empty clause then
5: return unsatisfiable

6: end if
7: 〈F , xdecision 〉 := LookAhead(F)
8: B := GetDirection(xdecision)
9: if DPLL(F(xdecision ← B)) = satisfiable then

10: return satisfiable

11: end if
12: return DPLL(F(xdecision ← ¬B))

Finally, the selection of the decision variable is based on the reduction mea-
surements of both the look-ahead on ¬xi and xi. Generally, the product is
used to combine the numbers. In this example, x2 would be selected as deci-
sion variable, because the product of the reduction measured while performing
look-ahead on ¬x2 and x2 is the greatest (i.e. 4).

Decision heuristics

Decision heuristics predict which free variable is the most effective. These
heuristics consist of two parts: A difference heuristic (Diff) that quantifies
the reduction of the formula by a look-ahead, and a MixDiff heuristic that
combines two Diff values of look-aheads on complementary literals.

Various Diff heuristics are used in look-ahead Sat solvers. All these heuris-
tics have three properties in common: (1) All parameters are optimized on
random k-Sat formulae; (2) reduction is measured by counting the number of
newly created (reduced, but not satisfied) clauses in a weighed manner; and (3)
newly created clauses of size i are regarded about 5 times as important as those
of size i + 1 [Kul02].

The most effective Diff heuristic on random k-Sat formulae is the backbone

search heuristic developed by Dubois and Dequen [DD03]. In addition to a
weight for the size of the new clauses, clauses are weighed based on the number
of resolution possibilities of each newly created clause. This heuristic is by
far the most costly one. Also, regardless of these costs, on many structured
instances cheaper heuristics yield a smaller DPLL search-tree.

In practice, all look-ahead Sat solvers use the same MixDiff heuristic. Let
L be the measured Diff of the left (first) branch, and R the one of the right
(second) branch. The product (LR) is generally considered to be an effective
MixDiff heuristic [Fre95]. It attempts to produce a balanced search-tree. Most
solvers use the sum (L + R) for tie-breaking purposes.

14

2.2. COMPLETE SOLVERS

Direction heuristics

Direction heuristics (used for the GetDirection procedure) are in theory very
powerful: Perfect direction heuristics will solve all satisfiable formulae in a linear
number of decisions. Moreover, existence of perfect direction heuristics (com-
putable in polynomial time) would prove that P = NP . Contrary to its theo-
retical potential, it proves hard to develop direction heuristics that significantly
reduce the number of decisions in practice.

Two examples: The strongest Sat solver on recent Sat competition, mini-

sat [ES03], always prefers the branch F(xdecision ← 0). This direction heuristic
appeared “optimal” on many industrial benchmarks. However, this result is
likely an artifact of the encoding of these benchmarks.

Second, two main strategies are common for direction heuristics: I) Elect
the branch which has the smallest estimated subtree; and II) elect the branch
with the highest probability of being satisfiable. In practice, these strategies are
complementary: The branch with the smallest estimated subtree is rarely most
likely of being the more satisfiable.

Most look-ahead Sat solvers use direction heuristics based on strategy II
which results in faster performances on satisfiable random formulae. Yet, on
many structured instances strategy I appears more helpful.

Additional Reasoning

Look-ahead on literals which will not result in a conflict appear only useful to
determine which variable has the highest decision heuristic value. However, by
applying additional reasoning, look-ahead on some literals can also be used to
reduce the formula (e.g. failed literals). Look-ahead on the remaining literals
can be used to add resolvents (learned clauses) to further constrain the formula.
For these purposes, three kinds of additional reasoning are used in look-ahead
Sat solvers:

• Local learning: During the look-ahead on x, other variables yi can be
assigned by unit propagation. Some are a result of the presence of binary
clauses ¬x ∨ (¬)yi, called direct implications. Variables assigned by other
clauses are called indirect implications. For those variables yi that are
assigned to true (or false) by a look-ahead on x through indirect impli-
cations, a local learned binary clause ¬x ∨ yi (or ¬x ∨ ¬yi, respectively)
can be added. To optimize the positive effect on the performance, only a
subset of the local learned clauses should be added [HDvZvM04].

• Autarky detection: An autarky (or autark assignment) is a partial as-
signment ϕ that satisfies all clauses that are “touched” by ϕ. Hence, all
satisfying assignments are autark assignments. Autarkies that do not sat-
isfy all clauses can be used to reduce the size of the formula: Let Ftouched

be the clauses in F that are satisfied by an autarky. The remaining clauses
F∗ := F \ Ftouched are satisfiability equivalent with F . So if we detect an
autark assignment, we can reduce F by removing all clauses in Ftouched.

15

CHAPTER 2. STATE-OF-THE-ART SAT SOLVING

In case a look-ahead on x creates only a single new clause (e.g. yi ∨ yj),
called an 1-autarky, then local learned clauses x∨¬yi and x∨¬yj can be
added [Kul00]. In other words, if either yi or yj is assigned to true, then
assigning x to true yields an autarky.

• Double look-ahead: If many new binary clauses are created during a
look-ahead, the reduced formula is possibly unsatisfiable [Li99]. Unsatis-
fiability of the reduced formula can be checked using double look-aheads:
Additional look-aheads on a second level of propagation (on the resulted
formula after a look-ahead). Either double look-aheads detect unsatis-
fiability of the reduced formula, thereby finding a forced literal, or the
information of double look-aheads can be stored as local learned binary
clauses.

Eager data-structures

In contrast to the lazy data-structures used in conflict-driven Sat solvers, look-
ahead Sat solvers use eager data-structures. To accurately measure a Diff
heuristic, the exact sizes of all newly created clauses should be computed effi-
ciently - which is not possible using lazy data-structures.

To reduce the number of cache misses while performing look-aheads (which
can significantly improve performance), the formula should be stored using as
little memory as possible. Storing binary clauses requires only half the memory
required to store non-binary clauses [HDvZvM04]. Therefore, it is more efficient
to store the formula in separate binary and non-binary data-structures. Also,
satisfied clauses should not be processed during a look-ahead. So the data-
structures should be designed in such a way that clauses can be removed easily
to reduce the required memory while performing look-aheads.

Future progress. Look-ahead Sat solvers are strong on random k-Sat for-
mulae and many structured (crafted) instances. Techniques that work for one
class do not necessarily work for the other. Only three techniques significantly
improve the performance on random k-Sat instances: (1) An effective decision
heuristic; (2) detection of failed literals (enhanced with double look-aheads);
and (3) restriction of the look-ahead variables. Other techniques do not reduce
the computational time by more than 10%. For the last four years no clear
gains have been reported on hard random k-Sat formulae. Therefore, there are
no high expectations of progress in the short term.

However, on structured instances, quite some progress has been made. Ad-
ditional reasoning substantially boosts performance. For instance, many struc-
tured benchmarks are solved much faster (some up to 100 times) by adding
a specific form of local learned clauses [HDvZvM04]. Yet, on random k-Sat
formulae only about 5% can be gained. The same holds for the use of eager
data-structures. By adding more reasoning and extending the power of eager
data-structures, even more progress of look-ahead Sat solvers on structured
benchmarks can be established.

16

2.2. COMPLETE SOLVERS

2.2.3 Domain of application

Conflict-driven Sat solvers focus on fast performances on industrial bench-
marks [ES03], while look-ahead Sat solvers are traditionally optimized on ran-
dom k-Sat formulae [DD03, Li99], especially on the unsatisfiable instances.

In practice, look-ahead Sat solvers are strong on benchmarks where either
the density (ratio clauses to variables) or the diameter (longest shortest path
in the resolution graph6., for instance) is small [Her06]. On the other hand,
conflict-driven solvers outperform look-ahead solvers on benchmarks with either
a large diameter or high density.

Figure 2.3 illustrates this. Using the structured (crafted and industrial)
benchmarks from the Sat 2005 competition and SATlib, the relative perfor-
mance is measured of the solvers minisat (conflict-driven) and march (look-
ahead). For a given combination of density and diameter of the resolution
graph, the strongest solver is plotted.

Notice that Figure 2.3 compares minisat and march and therefore it should
not be interpreted blindly as a comparison between conflict-driven and look-
ahead Sat solvers in general. The solver march is the only look-ahead Sat solver
that is optimized for large and structured benchmarks. Selecting a different
look-ahead Sat solver would change the picture in favor of minisat.

1

10

100

1000

1 10 100 1000

d
en

si
ty

diameter

minisat

rsrsrs
rsrsrs
rsrsrsrsrsrsrs
rsrsrsrsrsrsrs
rsrsrsrs
rs
rs
rsrsrsrs
rsrsrs

rsrsrs

rs

rs

rs
rs

rsrs
rs

rs
rs

rs

rs

rs

rs

rs

rs

rs

rsrsrsrsrs

rs

rs

rsrsrsrsrsrsrsrsrsrsrsrsrs

rsrs

rs

rs rs

rs

rs

rs

rs
rs

rs
rs

rs

rs

rs

rs
rs

rs

rsrs rsrs rsrs

rs

rsrsrs rsrsrs rsrsrsrs

rs rs

rs

rs

rs

rs

march

+
+
+
+

+
+
++
+

+++
++
+++++++++++++++++
+++++++
++++++++++
+++++
+++++
++

+
++

+

++
+

++

++
++
+++++++
++++++++++++++
+++

+++

+++++++++

++ + +++

++++

+

+

+

Figure 2.3 — Strongest architecture on structured benchmarks split by density and
diameter. Architectures represented by minisat (conflict-driven) and
march (look-ahead).

6.The resolution graph is a clause-based graph. Its vertices are the clauses and clauses are
connected if they have exactly one clashing literal.

17

CHAPTER 2. STATE-OF-THE-ART SAT SOLVING

The almost clear separation shown in Figure 2.3 can be explained as follows:
The density expresses the cost of unit propagation. The higher the density, the
more clauses need to be reduced for each assigned variable. Look-ahead becomes
very expensive for formulae with high densities, while using lazy data-structures,
the cost of unit propagation does not increase heavily on these formulae.

The diameter expresses the global connectivity of the clauses. The larger
the diameter, the more multiple local clusters occur within the formula. Local
clusters reduce the effectiveness of reasoning by look-ahead Sat solvers: As-
signing decision variables to a truth value will modify the formula only locally.
Therefore, expensive reasoning is only expected to learn facts within the last
modified cluster. On the other hand, conflict-driven solvers profit from local
clusters: Conflict clauses will arise from local conflicts and therefore they will
be reused frequently.

2.3 Incomplete Solvers

Most incomplete Sat solvers are local search solvers. They can be divided
into two architectures: Stochastic local search solvers and unit propagation local

search solvers. There is also a third incomplete Sat solver architecture, called
survey propagation. It has been developed by physicists and does not use local
search [BMZ05]. Currently, it only performs well on a specific type of bench-
marks: Random 3-Sat formulae with a huge number of variables. Since it yet
has to prove itself in true competition, it is not discussed here in detail.

The generic structure of local search Sat solvers is shown in Algorithm 2.3:
An initial random assignment is attempted to be modified in such a way that it
satisfies the given formula. The structure contains two parameters: 1) MAX TRIES

to make sure that the algorithm will eventually terminate and 2) MAX STEPS to
guarantee that a “poor” algorithm can jump out of a local minimum.

Algorithm 2.3 Generic structure of local search Sat solvers.

1: procedure Solve(F)
2: for i in 1 to MAX TRIES do
3: ϕ := random initial assignment
4: for j in 1 to MAX STEPS do
5: if ϕ satisfies F then
6: return satisfiable

7: end if
8: ϕ := Flip(ϕ)
9: end for

10: end for
11: return unknown

12: end procedure

18

2.3. INCOMPLETE SOLVERS

2.3.1 Stochastic Local Search

Mainstream local search solvers are the so-called stochastic local search (SLS)
solvers. They dominate the random Sat division of the Sat competitions. The
first SLS Sat solver was gsat by Selman et al. [SLM92]. Gsat uses an initiative
global heuristic to improve the assignment: In each step the variable is flipped
which mostly increases the number of satisfied clauses.

Later, SLS Sat solvers attempted to improve the assignment using a more
local heuristic. The WalkSat algorithm [SKC94] (see Algorithm 2.4) is the
most frequently used architecture. It starts each step by selecting a random
falsified clause C in the current assignment ϕ applied to F (denoted by ϕ ◦ F).
C is satisfied by one of three possible flips:

• Free flip: If the assignment on a variable in C can be flipped so that
no clause becomes unsatisfied, this flip is regarded as free. Such a flip is
always preferred by the algorithm.

• Random walk: To prevent the algorithm to get stuck in a local minimum,
the assignment on a random variable in C is flipped with probability p -
known as the noise setting.

• Heuristic flip: With probability 1− p the “optimal” variable is selected
to be flipped in the assignment. Optimality is based on a heuristic. In
general, the variable that mostly improves the number of satisfied literals
is selected. Also, the recent history of flipped variables could be taken
into account as in novelty [MSK97].

Algorithm 2.4 Flip WalkSat(ϕ)

1: C := random falsified clause by ϕ ◦ F
2: if a variable ∈ C can be flipped for free then
3: flip in ϕ that variable
4: else
5: flip in ϕ with probability p a random variable ∈ C
6: flip in ϕ with probability 1− p the “optimal” variable of ∈ C
7: end if
8: return ϕ

Crucial to fast performance of WalkSat-based solvers is an optimal setting
for the noise parameter p. However, the optimum is different for each family of
benchmarks. Optimal values range from about 0.2 to 0.8. The AutoWalkSAT

solver estimates the optimal value as a pre-processing step [PK01].

Hoos [Hoo02] proposes to use a more dynamic heuristic which aims to adapt
p towards the optimal value while solving a formula. After each mθ steps (with
m referring to the number of clauses and θ = 1

6), it either increases or decreases
p depending on the progress made, in terms of the number of satisfied clauses.

19

CHAPTER 2. STATE-OF-THE-ART SAT SOLVING

NoiseDecrease : p := p + (1− p)φ b2.1

NoiseIncrease : p := p− 0.5 p φ b2.2

Although the adaptive noise algorithm uses three magic constants7. to re-
place a single one, the performance is generally comparable with the optimal
static heuristic. Moreover, on some instances adaptive noise outperforms opti-
mal static noise. Apparently, while solving, different noise settings are optimal
during different phases.

Future progress. Recent state-of-the-art SLS Sat solvers are no longer im-
plemented using the pure WalkSat algorithm. The framework is extended
by adding for example global / greedy flips (flipping the variable that results
in the largest increase of satisfied clauses). The fast solver g2wsat is based on
this combination [LH05]. Another spin-off is the addition of resolvents as in
R+AdaptNovelty+ [APSS05] - the winner of the random Sat division during the
Sat 2005 competition. Future SLS solvers will probably consist of a bricolage
of many effective techniques.

Currently, complete Sat solvers are stronger on many satisfiable structured
problems. Yet, there are many recent developments in the field of SLS Sat
solvers. Future progress will depend on the success of these new techniques to
make SLS solvers competitive on these formulae, as well.

2.3.2 Unit Propagation Local Search

The UnitWalk algorithm (see Algorithm 2.5) flips variables using unit prop-
agation. During each step (called a period), the current assignment (called
ϕmaster) is modified as follows: An ordering π of variables is computed, and an
empty assignment ϕactive is created. ϕactive is filled in such a way that it satis-
fies the unit clauses in ϕactive ◦F . If there are no unit clauses left in ϕactive ◦F ,
ϕactive is extended by assigning the next free variable in π according to its truth
value in ϕmaster. A period ends when all variables are assigned in ϕactive. Then,
the current assignment is replaced by ϕactive.

The UnitWalk Sat solver based on the UnitWalk algorithm won the ran-
dom Sat division during the Sat 2003 competition8.. UnitWalk is also strong
on bounded model checking benchmarks [VB03].

7.In [Hoo02] only two parameters (θ and φ) are discussed, so the 0.5 in NoiseIncrease is
not regarded as a parameter. The proposed settings are θ = 1

6
and φ = 1

5
.

8.The version of UnitWalk which participated during the Sat 2003 competition was a hybrid
solver that switches between the UnitWalk and WalkSat algorithm from time to time. Since
no WalkSat-based solver participated during that competition, it is not clear which algorithm
contributed most to this success. However, on the random k-Sat formulae - which are a
substantial part of the random category - the WalkSat algorithm is stronger.

20

2.4. REPRESENTATION

Algorithm 2.5 Flip UnitWalk(ϕmaster)

1: π := random order of the variables
2: ϕactive := {xi = ∗}
3: for i in 1 to n do
4: while unit clause u ∈ ϕactive ◦F do
5: ϕactive[VAR(u)] := TRUTH(u)
6: end while
7: if variable xπ(i) is not assigned in ϕactive then
8: ϕactive[xπ(i)] := ϕmaster[xπ(i)]
9: end if

10: end for
11: if ϕactive = ϕmaster then
12: random flip variable in ϕactive

13: end if
14: return ϕactive

Future progress. The UnitWalk algorithm has not yet received much at-
tention of the Sat community. Currently, only the UnitWalk solver is based on
this algorithm. Notice that no heuristics are used. In all likelihood, there is
quite some room for improvements. Judging from the performance of UnitWalk,
this deserves serious research. Especially considering that UnitWalk outperforms
other local search Sat solvers on benchmarks with many binary clauses - which
is the case in most structured problems.

2.4 Representation

Current state-of-the-art Sat solvers can quickly solve enormous formulae with
millions of clauses. Most of these instances arise from problems that are natu-
rally encoded as Sat problems - such as electronic circuit verification [VB03].
Also, Sat solvers outperform alternative techniques on problems that are orig-
inally encoded as Sat - such as random k-Sat formulae.

On the other hand, some easy problems are impossible to solve. For instance,
is it possible to put n pigeons in n− 1 holes so that each hole contains at most
one pigeon? Clearly, the answer is no. However, Sat solving techniques have
severe difficulties solving any encoding of this problem (say for n > 15). It
requires a higher level of representation (such as cardinality solving [vL06]) to
tackle this problem efficiently.

The important difference is the Sat and cardinality representation of the
constraints forbidding a pigeon to be in more than one hole. In general, the
translation to CNF uses binary clauses of type ¬pi,j ∨ ¬pi,j+1 (if pigeon i is in
hole j it cannot be in hole j + 1). The size of a resolution proof of such an
translation is at least exponential in the number of pigeons [BIK+92]. On the
other hand, if these constraints are encoded as a cardinality constraints (i.e.
∑

j ¬pi,j ≤ 1), it is possible to construct a cardinality resolution proof which
size is only quadratic in the number of pigeons [vL06].

21

CHAPTER 2. STATE-OF-THE-ART SAT SOLVING

Many problems lie somewhere in between: Although they could not be trans-
formed naturally to Sat, Sat solvers can effectively solve them, given that they
are properly encoded. We discuss two aspects of encoding: First, problems can
be transformed in numerous ways into Sat, but straightforward transforma-
tions are rarely optimal. Second, even with an “optimal” transformation, some
pre-processing techniques may be required.

2.4.1 Transformation

The transformation of a problem from its original representation to Conjunc-

tive Normal Form (CNF) could be realized in many ways. An efficient trans-
formation could make the difference whether or not Sat solving is an effective
technique to tackle the problem.

A straightforward transformation is generally not the most efficient one.
Consider for instance the constraint AtMostOne(x1, x2, . . . , xn) - meaning that
at most one Boolean variable xi could be 1 and the others must be 0. A straight-
forward transformation costs O(n2) binary clauses, while by introducing O(n)
additional variables, several transformations exist which require only O(n) bi-
nary clauses. In [AM04] the effects of these transformations on the performance
of state-of-the-art Sat solvers are presented: More sophisticated transforma-
tions boost performance.

For more difficult constraints, like pseudo-Boolean (PB) constraints, little
research has been done regarding the “optimal” transformation. However, even
without this knowledge, a significant positive result has been achieved: In the
recent PB competitions9., one competitor, minisat+, which translates all con-
straints to CNF (also the optimization function) [ES06], performs best. Appar-
ently, the PB-based solvers cannot capitalize on this richer representation.

2.4.2 Pre-processing

Pre-processing the original formula is generally required to repair an inefficient
transformation. It can also be used to modify the formula to the solver’s pre-
ferred (hybrid) representation. Four pre-processing techniques are discussed:

• Simplification: Reduction of a formula can be achieved by propagation
of original unit clauses, substitution of equivalent variables xi ↔ (¬)xj ,
subsumption (removal of redundant clauses), and self-subsumption (re-
moval of redundant literals)

• Resolution: Adding (non-redundant) resolvents could significantly im-
prove performance of Sat solvers. In general, complete Sat solvers solve
the formulae that are constrained further, faster. While local search may
have more difficulties to satisfy all clauses once many are added. Yet,
R+AdaptNovelty+ showed - by winning the random Sat division (2005) -
that SLS solvers can also profit from added resolvents [APSS05].

9.see http://www.cril.univ-artois.fr/PB05 and http://www.cril.univ-artois.fr/PB06

22

http://www.cril.univ-artois.fr/PB05
http://www.cril.univ-artois.fr/PB06

2.5. FUTURE PROGRESS AND CONTRIBUTIONS

In addition, DP (variable elimination) resolution [DP60] can be used to
speed-up solving: This technique is used in the SatElite pre-processor [EB05]
which makes the strong minisat solver even faster. This combination won
four divisions during the Sat 2005 competition.

• Syntactical structure detection: Straightforward transformation of
high level (non-clausal) constraints can often be traced cheaply using
a syntactical structure detection. This is done in march eq to extract
equivalence (or XOR) constants [HDvZvM04] for its hybrid representa-
tion. Syntactical structure detection can also be used to replace a poor
transformation by a more sophisticated one.

• Blocked Clauses: Graph coloring problems can be encoded using for all
vertices vi ExactlyOneColor(vi) constraints and NotTheSameColor(vi, vj)
constraints for all edges (vi, vj) Another valid encoding uses AtLeastOne-
Color(vi) for all vertices vi. The transformation to Sat of the former
encoding adds blocked clauses, while the latter transformation does not.
Blocked clauses arise from the Extended Resolution Rule [Kul99]. Al-
though these clauses are redundant (removing them yields a satisfiability
equivalent formula), adding them could speed up the solving process. Like
graph coloring, many problems can be encoded with or without blocked
clauses. Whether the presence of blocked clauses is a curse or a blessing
depends on the type of solver. The performance of conflict-driven solvers is
generally improved by adding blocked clauses, while SLS Sat solvers slow
down. So, pre-processing can be used to add or remove blocked clauses to
meet the solver’s preference.

2.5 Future progress and contributions

Throughout this chapter, we presented state-of-the-art Sat solving techniques
combined with some interesting areas for future research. These topics can be
divided in five categories, which will be discussed in this section.

2.5.1 Enhancing the look-ahead architecture

More and optimized reasoning will likely be the key to future progress in Sat
solving. This may cast some trouble for conflict-driven Sat solvers: Recall that
the use of lazy data-structures will make it difficult to add some techniques of
sophisticated reasoning. On the other hand, look-ahead Sat solvers already use
quite some reasoning and there appear no obstacles to add even more. However,
conflict-driven Sat solvers outperform other architectures on industrial prob-
lems, because in recent years, the majority of the Sat solving community has
concentrated on these specific benchmarks. Yet, if the focus would shift towards
boosting the performances of look-ahead Sat solvers, this gap could be closed.

23

CHAPTER 2. STATE-OF-THE-ART SAT SOLVING

To contribute on this, we implemented our own look-ahead Sat solver march.
The development was focused on maximizing the spectrum of Sat applications
on which it achieved competitive performance - while using the look-ahead ar-
chitecture. An early version, called march eq, presented in Chapter 3, improved
performance by modifying existing look-ahead techniques such that they would
work on medium-sized and large problems as well. Also, we implemented ad-
ditional reasoning techniques (e.g. equivalence reasoning) in such a way that
the reasoning would boost the performance if applicable without increasing the
computational time if not applicable.

We continued by improving performance on structured formulae. The ver-
sion march dl, presented in Chapter 4, includes various techniques contributing
to this goal. First, we added an advanced pre-processor. It removes various
forms of redundancy that often occur in the encoding of structured formulae.
After the removal, the pre-processor adds some clauses to increase the number
of implied variables while solving the problem. Second, we started replacing
some of the static heuristics - mostly optimized towards random formulae - by
adaptive heuristics. We will elaborate on this in Section 2.5.3. Third, we devel-
oped a new branch strategy that selects decision variables in such a way that the
formula is solved locally (instead of globally). This technique appeared essential
to solve various structured problems.

Focus on improving look-ahead Sat solvers does not mean that one should
neglect the achievements of conflict-driven Sat solvers. On the contrary: A
bright future for look-ahead Sat solvers could only be possibly using features
that contributed to the current success of conflict-driven Sat solvers. The most
important feature is arguably global learning. Modifying this technique to im-
prove the overall performance of look-ahead solvers is the topic of current re-
search.

2.5.2 Enhancing the UnitWalk architecture

The raison d’être of incomplete Sat solvers is that they outperform complete
Sat solvers on a wide range of satisfiable instances. On satisfiable random
k-Sat formulae they clearly do - in particular the WalkSat-based solvers.
However, on most satisfiable benchmarks with many binary clauses - which
is generally the case in structured instances - the incomplete Sat solvers can
hardly compete. The UnitWalk Sat solver is a relatively strong incomplete
Sat solver on these instances, even though it has not enjoyed much academic
attention. Based on the Sat 2003 competition results [LS03], we can state that
its costly computations during each period probably disqualify it as a solver for
formulae of a certain, substantial, size. Improving this solver with optimizations
and heuristics, possibly with additional techniques of WalkSat-based solvers,
may result in a solver that outperforms complete Sat solvers on structured
benchmarks, as well.

24

2.5. FUTURE PROGRESS AND CONTRIBUTIONS

We implemented our own UnitWalk-based Sat solver called UnitMarch.
Chapter 7 describes this solver in detail. Our main contribution is the paral-
lelization of the UnitWalk algorithm by exploiting the architecture of modern
computers. Although we implemented the parallelization only for this type of
Sat solver, it may also be used to improve others.

A second contribution is the addition of a new reasoning technique [KMT07]
to detect autarkies - which to our knowledge has not been used before. The
technique can in theory be added to all Sat solvers, but it is better suited for
incomplete solvers since they use full assignments. Especially in combination
with our parallel solver, this technique seems useful: An autarky found by one
of the parallel paths can be communicated to the other ones.

2.5.3 Adaptive heuristics

Of course, some techniques that contributed to WalkSat-based solvers are
also expected to improve future Sat solvers - such as the AdaptiveNoise al-
gorithm [Hoo02]. Adaptive heuristics will become more important in the future:
As Sat solvers will apply more reasoning, more parameters will be used. Since
parameters influence each other, the “optimal” settings may be too complex to
determine. In such a case, adaptive heuristics may prove to be very useful.

Also, the success of Sat solving will increase the range of its applications.
For many users, Sat solvers are regarded as a black box technology. Since they
have no clue about the “optimal” setting for certain parameters, Sat solvers
should automatically tune them - with some pre-processing, but preferably us-
ing adaptive heuristics. Chapter 5 presents an adaptive algorithm for the Dou-
bleLook procedure. Similar to the AdaptiveNoise algorithm, the proposed
algorithm yields better performances on many benchmarks compared to the
optimal static setting.

2.5.4 Direction heuristics

Besides modifying and optimizing existing techniques, research should also be
focused on promising features that have been more or less neglected in the past.
Direction heuristics which can effectively predict the satisfiable branch, is one
of these features. They could significantly improve performance on satisfiable
instances. Also, they could be used to create short conflict clauses. Chapter 6
describes a method to measure the effectiveness of the direction heuristic used
in a solver on a specific family. Moreover, we explain how to capitalize on the
observed effectiveness.

25

CHAPTER 2. STATE-OF-THE-ART SAT SOLVING

2.5.5 Representation

Regarding the optimal representation of a formula (with respect to solving it)
not much research has been done, yet. This thesis contains only minor contribu-
tions to this research area. These include a new 3-Sat translator (Section 3.2)
and addition of ternary clauses (Section 4.3.2). Probably the most influential
work is the SatElite pre-processor [EB05], which has been used by the winners
of industrial divisions in both the Sat 2005 and Sat 2007 competitions. Al-
though there exist many pre-processing techniques, they rarely are useful for
all different kind of CNF formulae. Studying the effectiveness of the various
techniques on a large range of benchmarks is required to develop a powerful
general purpose pre-processor.

26

Two roads diverged in a wood, and I –

I took the one less traveled by,

and that has made all the difference.

Robert Frost 3
March eq∗

In the computer game Maniac Mansion you can choose between three avatars
to play with. Available avatars are Razor, a hip rock chick with a hairdo to
die for, and Jeff Woodie, the ultimate cool surf dude. Appealing as they may
be, both Razor and Jeff Woodie lack even the most basic searching skills. Not
surprisingly, the most skilled avatar is Bernard, the nerd. Recall that we have
to be pragmatic - there is a killer on the hunt. So we do not go for looks, we go
for Bernard Bernoulli: A nerd with his gadgets and engineering skills may be a
blessing in disguise.

Besides Bernard, there is another avatar you can choose in our Maniac Man-
sion example (which is not in the actual computer game) that may have what it
takes to find the front door key: A maid. She may be modest, but she is quick,
thorough and she has the right working morale.

Sat solvers share many similarities with the characters above. Some search
fast without much reasoning. Other solvers are clever. They think more, but
they are much slower, especially on huge formulae. The former type can be
associated with the conflict-driven architecture (maid), which is also the domi-
nant structure of modern Sat solvers, while the latter describes features of the
look-ahead architecture (nerd).

Look-ahead Sat solvers are relatively slow, but they have great potential
thanks to their additional reasoning. This chapter describes an early version
(2004) of our own look-ahead solver, called march eq. This solver reduces the
computational costs of many additional reasoning techniques used by look-ahead
Sat solvers – to make it competitive.

∗This chapter is based on: Marijn J.H. Heule, Joris van Zwieten, Mark Dufour and Hans
van Maaren. March eq: Implementing Additional Reasoning into an Efficient Lookahead Sat

Solver. SAT 2004 Springer LNCS 3542 (2005), 345–359.

27

CHAPTER 3. MARCH EQ

3.1 Introduction

Look-ahead Sat solvers usually consist of a simple DPLL algorithm [DLL62]
and a more sophisticated look-ahead procedure to determine an effective deci-
sion variable. The look-ahead procedure measures the effectiveness of variables
by performing look-ahead on a set of variables and evaluating the reduction
of the formula. We refer to the look-ahead on literal x as the Iterative Unit
Propagation (IUP) on the union of a formula with the unit clause x (in short
IUP(F ∪{x})). The effectiveness of a variable xi is obtained using a look-ahead
evaluation function (in short Diff), which evaluates the differences between F
and the reduced formula after IUP(F ∪ {xi}) and IUP(F ∪ {¬xi}). A widely
used Diff counts the newly created binary clauses.

Besides the selection of a decision variable, the look-ahead procedure may
detect failed literals: If the look-ahead on ¬x results in a conflict, x is forced
to true. Detection of failed literals can result in a substantial reduction of the
DPLL-tree.

During the last decade, several enhancements have been proposed to make
look-ahead Sat solvers more powerful. In satz by Li [LA97b] heuristics propz

are used, which restrict the number of variables that enter the look-ahead proce-
dure. Especially on random instances the application of these heuristics results
in a clear performance gain. However, the use of these heuristics is not clear
from a general viewpoint. Experiments with our pre-selection heuristics show
that different benchmark families require different numbers of variables entering
the look-ahead phase to perform optimally.

Since much reasoning is already performed at each node of the DPLL-tree,
it is relatively cheap to extend the look-ahead with (some) additional reasoning.
For instance: Integration of equivalence reasoning in satz - implemented in
eqsatz [Li03] - made it possible to solve various crafted and real-world problems
which were beyond the reach of existing techniques. However, the performance
may drop significantly on some problems, due to the integrated equivalence
reasoning. Our variant of equivalence reasoning extends the set of problems
which benefit from its integration and aims to remove the disadvantages.

Another form of additional reasoning is implemented in OKsolver10. [Kul02]:
Local learning. When performing look-ahead on x, any unit clause yi that is
found means that the binary clause ¬x ∨ yi is implied by the formula, and can
be ”learned”, i.e. added to the current formula. As with equivalence reasoning,
addition of these local learned resolvents could both increase and decrease the
performance (depending on the formula). We propose a partial addition of these
resolvents which results in a speed-up practically everywhere.

Generally, look-ahead Sat solvers are effective on relatively small, hard for-
mulas. Le Berre [LeB01] proposes a wide range of enhancements of the look-
ahead procedure. Most of them are implemented in march eq. Due to the high
computational costs of the an enhanced look-ahead procedure, elaborate prob-
lems are often solved more efficiently by other techniques. Reducing these costs

10.Version 1.2 at http://cs-svr1.swan.ac.uk/~csoliver/OKsolver.html

28

http://cs-svr1.swan.ac.uk/~csoliver/OKsolver.html

3.2. TRANSLATION TO 3-SAT

is essential for making look-ahead techniques more competitive on a wider range
of benchmarks problems. In this chapter, we suggest (i) several techniques to
reduce these costs and (ii) a cheap integration of additional reasoning. Due to
the latter, benchmarks that do not profit from additional reasoning will not be
significantly harder to solve.

Most topics discussed in this chapter are illustrated with experimental results
showing the performance gains by our proposed techniques. The benchmarks
range from uniform random 3-Sat near the observed phase transition [MSL92],
to bounded model checking (longmult [BCCZ99], zarpas [LS03]), factoring
problems (pyhala braun [SLH05]) and crafted problems (stanion/hwb [LS03],
quasigroup [ZS00]). Only unsatisfiable instances were selected to provide a
more stable overview. Comparison of the performance of march eq with perfor-
mances of state-of-the-art solvers is presented in [HvM04].

All techniques have been implemented into a reference variant of march eq,
which is essentially a slightly optimised version of march eq 100, the solver that
won two categories of the Sat 2004 competition [LS04]. This variant uses
exactly the same techniques as the winning variant: Full (100%) look-ahead,
addition of all constraint resolvents, tree-based look-ahead, equivalence reason-
ing, and removal of inactive clauses. All these techniques are discussed below.

3.2 Translation to 3-SAT

The translation of the input formula to 3-Sat stems from an early version of
march eq, in which it was essential to allow fast computation of the pre-selection
heuristics. Translation is not required for the current pre-selection heuristics,
yet it is still used, because it enables significant optimization of the internal
data-structures.

The formula is pre-processed to reduce the amount of redundancy introduced
by a straightforward 3-Sat translation. Each pair of literals that occurs more
than once together in a clause in the formula is substituted by a single dummy

variable, starting with the most frequently occurring pair. Three clauses are
added for each dummy variable to make it satisfiability equivalent to the dis-
junction of the pair of literals it substitutes. In the example below, ¬x2 ∨ x4

is the most occurring literal pair and is therefore replaced with the dummy
variable d1.

x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ ¬x5

x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ x6

¬x1 ∨ ¬x2 ∨ ¬x3 ∨ x4 ∨ ¬x6

¬x1 ∨ ¬x2 ∨ x4 ∨ x5 ∨ x6

⇔
x1 ∨ d1 ∨ ¬x3 ∨ ¬x5

x1 ∨ d1 ∨ ¬x3 ∨ x6

¬x1 ∨ d1 ∨ ¬x3 ∨ ¬x6

¬x1 ∨ d1 ∨ x5 ∨ x6

∧
d1 ∨ x2

d1 ∨ ¬x4

¬d1 ∨ ¬x2 ∨ x4

Notice that resolution on dummy variable d1 always requires ¬d1∨¬x2∨x4.
Yet, for the clauses d1 ∨ x2 and d1 ∨ ¬x4 this results in tautological clauses
which contain either both x2 and ¬x2 or both x4 and ¬x4, respectively. In the
literature these clauses are known as blocked clauses [Kul99]. Blocked clauses
can be removed resulting in a satisfiability equivalent formula. However, we do

29

CHAPTER 3. MARCH EQ

not remove them because their presence does in practice improve performance
of march eq. This result may not hold for other Sat solvers.

It appears that to achieve good performance, binary clauses obtained from
the original ternary clauses should be given more weight than binary clauses
obtained from ternary clauses which were generated by translation. This is
accomplished by an appropriate look-ahead evaluation function, such as the
variant of Diff proposed by Dubois et al. [DD01], which weighs all newly created
binary clauses.

3.3 Time Stamps

March eq uses a time stamp data structure, TimeAssignments (TA), which re-
duces backtracking during the look-ahead phase to a single integer addition:
Increasing the CurrentTimeStamp (CTS).

All the variables that are assigned during look-ahead on a literal x are
stamped: If a variable is assigned the value true, it is stamped with the CTS;
if it is assigned the value false, it is stamped with CTS + 1. Therefore, simply
adding 2 to the CTS unassigns all assigned variables.

The actual truth value that is assigned to a variable is not stored in the data
structure, but can be derived from the time stamp of the variable:

TA[x] =







stamp < CTS unfixed

stamp ≥ CTS and stamp ≡ 0 (mod 2) true

stamp ≥ CTS and stamp ≡ 1 (mod 2) false

Variables that have already been assigned before the start of the look-ahead
phase, i.e. during the solving phase, have been stamped with the Maximum-

TimeStamp (MTS) or with MTS + 1. These variables can be unassigned by
stamping them with the value zero, which happens while backtracking during
the solving phase (i.e. not during the look-ahead phase). The MTS equals the
maximal even value of an (32-bit) integer. One has to ensure that the CTS is
always smaller than the MTS. This will usually be the case and it can easily
be checked at the start of each look-ahead.

3.4 Constraint Resolvents

As mentioned in the introduction, a binary resolvent could be added for every
unary clause that is created during the propagation of a look-ahead literal - pro-
vided that the binary clause does not already exist. A special type of resolvent
is created from a unary clause that was a ternary clause prior to the look-ahead.
In this case we speak of constraint resolvents.

Constraint resolvents have the property that they cannot be found by a
look-ahead on the complement of the unary clause. Adding these constraint
resolvents results in a more vigorous detection of failed literals. An example:

30

3.4. CONSTRAINT RESOLVENTS

r ∨ ¬s
s ∨ ¬t

s ∨ t ∨ x







r ∨ x

u ∨ ¬v
u ∨ ¬w

v ∨ w ∨ x







u ∨ x

¬r ∨ ¬u ∨ x























































x

(i) (ii) (iii)

Figure 3.1 — Detection of a failed literal by adding constraint resolvents. (i) The
original clauses, (ii) constraint resolvents and (iii) a forced literal.

First, consider only the original clauses of an example formula (Figure 3.1
(i)). A look-ahead on ¬r, IUP(F ∪{¬r}), results in the unary clause x. There-
fore, one could add the resolvent r ∨ x to the formula. Since the unary clause x
was originally a ternary clause (before the look-ahead on ¬r), this is a constraint
resolvent. The unique property of constraints resolvents is that when they are
added to the formula, look-ahead on the complement of the unary clause results
in the complement of the look-ahead-literal. Without this addition this would
not be the case. Applying this to the example: After addition of r ∨ x to the
formula, IUP(F∪{¬x}) will result in unary clause r, while without this addition
it will not.

IUP(F ∪ {¬r}) also results in unary clause ¬t. Therefore, resolvent r ∨ ¬t
could be added to the formula. Since unary clause ¬t was originally a binary
clause, r ∨ ¬t is not a constraint resolvent. IUP(F ∪ {t}) would result in unary
clause r.

Constraint resolvent u∨x is detected during IUP(F ∪{¬u}). After the addi-
tion of both constraint resolvents (Figure 3.1 (ii)), the look-ahead IUP(F∪{¬x})
results in a conflict, making ¬x a failed literal and thus forces x. Obviously,
IUP(F ∪{¬x}) will not result in a conflict if the constraint resolvents r∨x and
u ∨ x were not added both.

Table 3.1 shows the usefulness of the concept of constraint resolvents: In
all our experiments, the addition of mere constraint resolvents outperformed a
variant with full local learning (adding all binary resolvents). This could be
explained by the above example: Adding other resolvents than constraint resol-
vents will not increase the number of detected failed literals. These resolvents
merely increase the computational costs. This explanation is supported by the
data in the table: The tree-size of both variants is comparable.

When we look at zarpas/rule 14 1 30dat, it appears that only adding
constraint resolvents is essential to solve this benchmark within 2000 seconds.
The node-count of zero means that the instance is found unsatisfiable during
the first execution of the look-ahead procedure.

31

CHAPTER 3. MARCH EQ

Table 3.1 — Performance of march eq on several benchmarks with three different
settings of addition of resolvents during the look-ahead phase.

no resolvents
all binary
resolvents

all constraint
resolvents

Benchmarks time(s) treesize time(s) treesize time(s) treesize
random unsat 250 (100) 1.61 4059.1 1.51 3389.2 1.45 3391.7
random unsat 350 (100) 55.41 89709 51.28 72721 48.78 73357
stanion/hwb-n20-01 31.52 282882 24.76 180408 23.65 183553
stanion/hwb-n20-02 41.32 345703 33.94 219915 30.91 222251
stanion/hwb-n20-03 30.54 280561 23.48 161687 21.7 163984
longmult8 139.13 15905 341.46 8054 90.8 8149
longmult10 504.92 330094 915.84 11877 226.31 11597
longmult12 836.78 41522 847.95 5273 176.85 5426
pyhala-unsat-35-4-03 781.19 29591 1379.33 19100 662.93 19517
pyhala-unsat-35-4-04 733.44 28312 1366.19 18901 659.04 19364
quasigroup3-9 11.67 2139 11.09 1543 7.97 1495
quasigroup6-12 117.49 3177 66.13 1362 58.05 1311
quasigroup7-12 14.47 346 11.06 248 10.03 256
zarpas/rule14 1 15dat > 2000 - 46.59 0 20.7 0
zarpas/rule14 1 30dat > 2000 - > 2000 - 186.27 0

3.5 Implication Arrays

Due to the 3-Sat translation the data structure of march eq only needs to ac-
commodate binary and ternary clauses. We will use the following formula as an
example:

Fexample = (a∨ c)∧ (¬b∨¬d)∧ (b∨d)∧ (a∨¬b∨d)∧ (¬a∨ b∨¬d)∧ (¬a∨ b∨ c)

Binary and ternary clauses are stored separately in two implication arrays.
A binary clause a ∨ c is stored as two implications: c is stored in the binary
implication array of ¬a and a is stored in the binary implication array of ¬c. A
ternary clause (a∨¬b∨d) is stored as three implications: ¬b∨d is stored in the
ternary implication array of ¬a and the similar is done for b and ¬d. Figure 3.2
shows the implication arrays that represent the example formula Fexample.

Storing binary clauses in implication arrays requires only half the memory
that would be needed to store them in an ordinary clause database / variable in-
dex data structure - see Figure 3.3. Since march eq adds many binary resolvents
during the solving phase, the binary clauses on average outnumber the ternary
clauses. Therefore, storing these binary clauses in implication arrays signifi-
cantly reduces the total amount of memory used by march eq. Furthermore, the
implication arrays improve data locality. This often leads to a speed-up due to
better usage of the cache.

32

3.5. IMPLICATION ARRAYS

March eq uses a variant of iterative unit propagation (IFIUP) that prop-
agates binary implications before ternary implications. The first step of this
procedure is to assign as many variables as possible using only the binary im-
plication arrays. Then, if no conflict is found, the ternary implication array of
each variable that was assigned in the first step is evaluated. We will illustrate
this second step with an example.

a
¬a

b
¬b
c
¬c
d
¬d

c
¬d

d

a
¬b
b

(i)

a
¬a

b
¬b
c
¬c
d
¬d

b ¬d b c
¬b d
a d
¬a ¬d ¬a c

¬a b
¬a b
a ¬b

(ii)

Figure 3.2 — The binary (i) and ternary (ii) implication arrays that represent the
example formula Fexample.

clause
0 a c
1 ¬b ¬d
2 b d
3 a ¬b d
4 ¬a b ¬d
5 ¬a b c

(i)

a
¬a

b
¬b
c
¬c
d
¬d

0 3
4 5
2 4 5
1 3
0 5

2 3
1 4

(ii)

Figure 3.3 — A common clause database / variable index data structure. All clauses
are stored in a clause database (i), and for each literal the variable
index lists the clauses in which it occurs (ii).

Suppose look-ahead is performed on ¬c. The ternary implication array of ¬c
contains (¬a ∨ b). Now there are five possibilities:

1. If the clause is already satisfied, i.e. a has already been assigned the value
false or b has already been assigned the value true, then nothing needs to
be done.

2. If a has already been assigned the value true, then b is implied and so b is
assigned the value true. The first step of the procedure is called to assign
as many variables implied by b as possible. Also, the constraint resolvent
(c ∨ b) is added as two binary implications.

33

CHAPTER 3. MARCH EQ

3. If b has already been assigned the value false, then ¬a is implied and so
a is assigned the value false. The first step of the procedure is called to
assign as many variables implied by ¬a as possible. Also, the constraint
resolvent (c ∨ ¬a) is added as two binary implications.

4. If a and b are unassigned, then we have found a new binary clause.

5. If a has already been assigned the value true and b has already been
assigned the value false, then ¬c is a failed literal. Thus c is implied.

The variant of Diff used in march eq weighs new binary clauses that are
produced during the look-ahead phase. A ternary clause that is reduced to a
binary clause that gets satisfied in the same iteration of IFIUP, should not be
included in this computation. However, in the current implementation these
clauses are in fact included, which causes noise in the Diff heuristics. The first
step of the IFIUP procedure, combined with the addition of constraint resol-
vents, ensures that the highest possible amount of variables are assigned before

the second step of the IFIUP procedure. This reduces the noise significantly.

An advantage of IFIUP over general IUP is that it will detect conflicts faster.
Due to the addition of constraint resolvents, most conflicts will be detected in
the first call of the first step of IFIUP. In such a case, the second step of IFIUP
is never executed. Since the second step of IFIUP is considerably slower than
the first, an overall speed-up is expected.

Storage of ternary clauses in implication arrays requires an equal amount of
memory as the common alternative. However, ternary implication arrays allow
optimisation of the second step of the IFIUP procedure. On the other hand,
ternary clauses are no longer stored as such: It is not possible to efficiently verify
if they have already been satisfied and early detection of a solution is neglected.
One knows only that a solution exists if all variables have been assigned and no
conflict has occurred.

3.6 Equivalence Reasoning

During the pre-processing phase, march eq extracts the so-called equivalence
clauses (l1 ↔ l2 ↔ · · · ↔ li) from the formula and places them into a separate
data-structure called the Conjunction of Equivalences (CoE). After extraction,
a solution for the CoE is computed as described in [HvM04, WvM98].

In [HvM04], we propose a new look-ahead evaluation function for bench-
marks containing equivalence clauses: Let eqn be a weight for a reduced equiv-
alence clause of new length n, C(x) the set of all reduced equivalence clauses
(Qi) during a look-ahead on x, and B(x) the set of all newly created binary
clauses during the look-ahead on x. Using both sets, the look-ahead evaluation
can be calculated as in Equation 3.2. Variable xi with the highest Diffeq(xi)
× Diffeq(¬xi) is selected for branching.

34

3.6. EQUIVALENCE REASONING

eqn = 5.5× 0.85n b3.1

Diffeq = |B|+
∑

QiεC

eq|Qi| b3.2

Besides the look-ahead evaluation and the pre-selection heuristics (discussed
in Section 3.7), the intensity of communication between the CoE- and CNF-part
of the formula is kept rather low (see Figure 3.4). Naturally, all unary clauses
in all phases of the solver are exchanged between both parts. However, during
the solving phase, all binary equivalences are removed from the CoE and trans-
formed to the four equivalent binary implications which in turn are added to the
implication arrays. The reason for this is twofold: (i) The binary implication
structure is faster during the look-ahead phase than the CoE-structure, and (ii)
for all unary clauses yi that are created in the CoE during IUP(F ∪ {x}), con-
straint resolvent ¬x ∨ yi can be added to the formula without having to check
the original length.

CoE CNFpre-selection
heuristics

look-ahead
evaluation

unary clauses

binary equivalences

communication during the pre-processing phase
communication during the solving phase
communication during the look-ahead phase

Figure 3.4 — Various forms of communication in march eq

We examined other forms of communication, but only small gains were no-
ticed on only some problems. Mostly, performance decreased due to higher
communication costs. For instance: Communication of binary equivalences
from the CNF- to the CoE-part makes it possible to substitute those binary
equivalences in order to reduce the total length of the equivalence clauses. This
rarely resulted in an overall speed-up.

35

CHAPTER 3. MARCH EQ

We tried to integrate the equivalence reasoning in such a manner that it
would only be applied when the performance would benefit from it. Therefore,
march eq does not perform any equivalence reasoning if no equivalence clauses
are detected during the pre-processing phase (if no CoE exists), making march eq

equivalent to its older brother march.
Table 3.2 shows that the integration of equivalence reasoning in march rarely

results in a loss of performance: On some benchmarks like the random unsat and
the quasigroup family no performance difference is noticed, since no equivalence
clauses were detected. Most families containing equivalence clauses are solved
faster due to the integration. However, there are some exceptions, like the
longmult family in the table.

If we compare the integration of equivalence reasoning in march (which re-
sulted in march eq) with the integration in satz (which resulted in eqsatz), we
note that eqsatz is much slower than satz on benchmarks that contain no equiv-
alence clauses. While satz11. solves 100 random unsat 350 benchmarks near the
treshold on average in 22.14 seconds using 105798 nodes, eqsatz12. requires on
average 795.85 seconds and 43308 nodes to solve the same set. Note that no
slowdown occurs for march eq.

Table 3.2 — Performance of march eq on several benchmarks with and without
equivalence reasoning.

without
equivalence
reasoning

with
equivalence
reasoning

Benchmarks time(s) treesize time(s) treesize speed-up
random unsat 250 (100) 1.45 3391.7 1.45 3391.7 -
random unsat 350 (100) 48.78 73357.2 48.78 73357.2 -
stanion/hwb-n20-01 42.88 182575 23.65 183553 44.85 %
stanion/hwb-n20-02 55.34 222487 30.91 222251 44.15 %
stanion/hwb-n20-03 42.08 164131 21.70 163984 48.43 %
longmult8 76.69 8091 90.80 8149 -18.40 %
longmult10 171.66 11597 226.31 11597 -31.84 %
longmult12 126.36 6038 176.85 5426 -39.96 %
pyhala-unsat-35-4-03 737.15 19513 662.93 19517 10.07 %
pyhala-unsat-35-4-04 691.04 19378 659.04 19364 4.63 %
quasigroup3-9 7.97 1495 7.97 1495 -
quasigroup6-12 58.05 1311 58.05 1311 -
quasigroup7-12 10.03 256 10.03 256 -
zarpas/rule14 1 15dat 21.68 0 20.70 0 4.52 %
zarpas/rule14 1 30dat 219.61 0 186.27 0 15.18 %

11.Version 2.15.2 at http://www.laria.u-picardie.fr/~cli/EnglishPage.html
12.Version 2.0 at http://www.laria.u-picardie.fr/~cli/EnglishPage.html

36

http://www.laria.u-picardie.fr/~cli/EnglishPage.html
http://www.laria.u-picardie.fr/~cli/EnglishPage.html

3.7. PRE-SELECTION HEURISTICS

3.7 Pre-selection Heuristics

Overall performance can be gained or lost by performing look-ahead on a subset
of the free variables in a node: Gains are achieved by the reduction of computa-
tional costs, while losses are the result of either the inability of the pre-selection

heuristics (heuristics that determine the set of variables to enter the look-ahead
phase) to select effective decision variables or the lack of detected failed literals.
When look-ahead is performed on only a subset of the variables, only a subset of
the failed literals is most likely detected. Depending on the formula, this could
increase the size of the DPLL-tree.

During our experiments, we used pre-selection heuristics which are an ap-
proximation of our combined look-ahead evaluation function (Ace) [HvM04].
These pre-selection heuristics are costly, but because they provide a clear dis-
crimination between the variables, a small subset of variables could be selected.
Experiments with a fixed number of variables entering the look-ahead procedure
is shown in Figure 3.5. The fixed number is based on a percentage of the origi-
nal number of variables and the ”best” variables (with the highest pre-selection
ranking) are selected.

20

25

30

35

40

45

50

0% 20% 40% 60% 80% 100% 210

220

230

240

250

260

270

0% 20% 40% 60% 80% 100%

(a) (b)

50

100

150

200

250

300

0% 20% 40% 60% 80% 100% 350

400

450

500

550

600

650

700

0% 20% 40% 60% 80% 100%

(c) (d)

Figure 3.5 — Runtime(s) vs. percentage look-ahead variables on single instances:
(a) random unsat 350; (b) longmult10; (c) quasigroup6-12; and
(d) pyhala-braun-unsat-35-4-04.

37

CHAPTER 3. MARCH EQ

The plots in this figure do not offer any indication of which percentage
is required to achieve optimal general performance: While for some instances
100% look-ahead appears optimal, others are solved faster using a much smaller
percentage.

Two variants of march eq were submitted to the Sat 2004 competition [LS04]:
One which selects in every node the ”best” 10 % variables (march eq 010) and
one with full (100%) look-ahead (march eq 100). Although during our exper-
iments the first variant solved the most benchmarks, at the competition both
variants solved the same number of benchmarks, albeit different ones. The dif-
ferences can be explained by the behavior of versions of march eq with different
percentages shown in Figure 3.5.

3.8 Tree-based Look-ahead

The structure of our look-ahead procedure is based on the observation that dif-
ferent literals to perform look-ahead on, often entail certain shared implications,
and that we can form ’sharing’ trees from these relations, which in turn may be
used to reduce the number of times these implications have to be propagated
during look-ahead.

Suppose that two look-ahead literals share a certain implication. In this sim-
ple case, we could propagate the shared implication first, followed by a propaga-
tion of one of the look-ahead literals, backtracking the latter, then propagating
the other look-ahead literal and only in the end backtracking to the initial state.
This way, the shared implication has been propagated only once.

F

a

b c

2

3 4

5

1 6

implication

action

1 propagate a

2 propagate b

3 backtrack b

4 propagate c

5 backtrack c

6 backtrack a

Figure 3.6 — Graphical form of an implication tree with corresponding actions.

Figure 3.6 shows this example graphically. The implications among a, b
and c form a small tree. Some thought reveals that this process, when applied
recursively, could work for arbitrary trees. Based on this idea, our solver extracts
- prior to look-ahead - trees from the implications among the literals selected
for look-ahead, in such a way that each literal occurs in exactly one tree. The
look-ahead procedure is improved by recursively visiting these trees. Of course,
the more dense the implication graph, the more possibilities are available for

38

3.8. TREE-BASED LOOK-AHEAD

forming trees, so local learning will in many cases be an important catalyst for
the effectiveness of this method.

Unfortunately, there are many ways of extracting trees from a graph, so that
each vertex occurs in exactly one tree. Large trees are obviously desirable, as
they imply more sharing, as does having literals with the most impact on the
formula near the root of a tree. To this end, we have developed a simple heuris-
tic. More involved methods would probably produce better results, although
optimality in this area could easily mean solving NP-complete problems again.
We consider this an interesting direction for future research.

Our heuristic requires a list of predictions to be available, of the relative
amount of propagations that each look-ahead literal implies, to be able to con-
struct trees that share as much of these as possible. In the case of march eq,
the pre-selection heuristic provides us with such a list.

The heuristic now travels this list once, in order of decreasing prediction,
while constructing trees out of the corresponding literals. It does this by deter-
mining for each literal, if available, one other look-ahead literal that will become
its parent in some tree. When a literal is assigned a parent, this relationship
remains fixed. On the outset, as much trees are created as there are look-ahead
literals, each consisting of just the corresponding literal.

a ¬a b c d e ¬f g

(i)

a

b c

¬a d e ¬f g

(ii)

a

b c

d

¬a e ¬f g

(iii)

a

b c

d

¬a e

¬f

g

(iv)

g

a

b c

d

¬a e

¬f

(v)

Figure 3.7 — Five steps of building implication trees.

39

CHAPTER 3. MARCH EQ

More specifically, for each literal that it encounters, the heuristic checks
whether this literal is implied by any other look-ahead literals that are the root
of some tree. If so, these are labeled child nodes of the node corresponding to the
implied literal. If not already encountered, these child nodes are now recursively
checked in the same manner. At the same time, we remove the corresponding
elements from the list, so that each literal will be checked exactly once, and will
receive a position within exactly one tree.

Figure 3.7 shows the process for a small set of look-ahead literals. The
formula for this example contains the binary clause a∨¬b, a∨¬c, ¬a∨g, c∨¬d,
and e ∨ f amongst other clauses. A gray box in the figure denotes the current
position.

Because of the order in which the list is traveled, literals which have received
higher predictions are labeled as parent nodes as early as possible. This is
important, because it is often possible to extract many different trees from an
implication graph, and because every literal should occur in exactly one tree.

Availability of implication trees opens up several possibilities of going beyond
resolution. One such possibility is to detect implied literals. Whenever a node
has descendants that are complementary, clearly the corresponding literal is
implied. By approximation, we detect this for the most important literals, as
these should have ended up near the roots of larger trees by the above heuristic.
For solvers unable to deduce such implications by themselves, we suggest a
simple, linear-time algorithm that scans the trees.

Some intriguing ideas for further research have occurred to us during the
development our tree-based look-ahead procedure, but which, we have not been
able to pursue due to time constraints. One possible extension would be to
add variables that both positively and negatively imply some look-ahead literal
as full-fledged look-ahead variables. This way we may discover important, but
previously undetected variables to perform look-ahead on and possibly branch
upon. Because of the inherent sharing, the overhead will be smaller than without
a tree-based look-ahead.

Also, once trees have been created, we could include non-look-ahead literals
in the sharing, as well as in the checking of implied literals. As for the first,
suppose that literals a and b imply some literal c. In this case we could share
not just the propagation of c, but also that of any other shared implications of
a and b. Sharing among tree roots could be exploited in the same manner, with
the difference that in the case of many shared implications, we would have to
determine which trees could best share implications with each other. In general,
it might be a good idea to focus in detail on possibilities of sharing.

40

3.9. REMOVAL OF INACTIVE CLAUSES

Table 3.3 — Performance of march eq on several benchmarks with and without the
use of tree-based look-ahead.

normal
look-ahead

tree-based
look-ahead

Benchmarks time(s) treesize time(s) treesize speed-up
random unsat 250 (100) 1.24 3428.5 1.45 3391.7 -16.94 %
random unsat 350 (100) 40.57 74501.7 48.78 73357.2 -20.24 %
stanion/hwb-n20-01 29.55 184363 23.65 183553 19.97 %
stanion/hwb-n20-02 40.93 227237 30.91 222251 24.48 %
stanion/hwb-n20-03 25.88 155702 21.70 163984 16.15 %
longmult8 332.64 7918 90.80 8149 72.70 %
longmult10 1014.09 10861 226.31 11597 77.68 %
longmult12 727.01 4654 176.85 5426 75.67 %
pyhala-unsat-35-4-03 1084.08 19093 662.93 19517 38.85 %
pyhala-unsat-35-4-04 1098.50 19493 659.04 19364 40.01 %
quasigroup3-9 8.85 1508 7.97 1495 9.94 %
quasigroup6-12 78.75 1339 58.05 1311 26.29 %
quasigroup7-12 13.03 268 10.03 256 23.02 %
zarpas/rule14 1 15dat 25.62 0 20.70 0 19.20 %
zarpas/rule14 1 30dat 192.30 0 186.27 0 3.14 %

3.9 Removal of Inactive Clauses

The presence of inactive clauses increases the computational costs of the pro-
cedures performed during the look-ahead phase. Two important causes can
be appointed: First, the larger the number of clauses considered during the
look-ahead, the poorer the performance of the cache. Second, if both active
and inactive clauses occur in the active data-structure during the look-ahead, a
check is necessary to determine the status of every clause. Removal of inactive
clauses from the active data-structure prevents these unfavorable effects from
taking place.

When a variable x is assigned to a certain truth value during the solving
phase, all the ternary clauses in which it occurs become inactive in the arrays
pointing to clause indices: The clauses in which x occurs positively become
satisfied, while those clauses in which it occurs negatively are reduced to binary
clauses. These binary clauses are moved to the implication arrays.

Table 3.4 shows that the removal of inactive clauses during the solving phase
is useful on all kinds of benchmarks. Although the speed-up is only small
on uniform random benchmarks, larger gains are achieved on more structured
instances.

41

CHAPTER 3. MARCH EQ

Table 3.4 — Performance of march eq on several benchmarks with and without the
removal of inactive clauses on the chosen path.

without removal with removal
Benchmarks time(s) treesize time(s) treesize speed-up
random unsat 250 (100) 1.70 3393.7 1.45 3391.7 14.71 %
random unsat 350 (100) 63.38 73371.9 48.78 73357.2 23.04 %
stanion/hwb-n20-01 24.92 182575 23.65 183553 5.10 %
stanion/hwb-n20-02 33.78 222487 30.91 222251 8.50 %
stanion/hwb-n20-03 23.68 164131 21.70 163984 8.36 %
longmult8 114.71 8091 90.80 8149 20.84 %
longmult10 287.37 11597 226.31 11597 21.25 %
longmult12 254.51 6038 176.85 5426 30.51 %
pyhala-unsat-35-4-03 783.52 19513 662.93 19517 15.39 %
pyhala-unsat-35-4-04 772.59 19378 659.04 19364 14.70 %
quasigroup3-9 11.73 1497 7.97 1495 32.05 %
quasigroup6-12 136.70 1335 58.05 1311 57.53 %
quasigroup7-12 22.53 256 10.03 256 55.48 %
zarpas/rule14 1 15dat 29.80 0 20.70 0 30.54 %
zarpas/rule14 1 30dat 254.81 0 186.27 0 26.90 %

3.10 Conclusion

Several techniques have been discussed to increase the solving capabilities of a
look-ahead Sat solver. Some are essential for solving various specific bench-
marks: A range of families can only be solved using equivalence reasoning, and
as we have seen, march eq is able to solve a large zarpas benchmark by only
adding constraint resolvents.

Other proposed techniques generally result in a performance boost. However,
the usefulness of our pre-selection heuristics is as yet undoubtedly subject to
improvement and will be subject of future research.

42

To equal a predecessor,

one must have twice they worth.

Baltasar Gracian

4
March dl∗

In the sequel of Maniac Mansion13., you are able to travel through time. Unfor-
tunately, time traveling provides no escape from the maniac, but at each time
frame the mansion differs in size layout and furniture. Yet the front door is
always locked. You can choose the moment in time for your search, knowing
that if a key exists somewhere in time, it exists at any time.

The question arises to which moment in time you want to travel: Is it to
the past, when the house was still small but with broken stairways and no
electricity? Or in the future, where the mansion will have grown to massive
proportions, but its elevators make it easy to move fast? You have to choose
between size and mobility. There is no moment in time in which all conditions
will be perfect. The optimal choice will depend heavily on how you search.

Back to Sat. Similarly to the above, you have some influence on the rep-
resentation of a formula (mansion) that needs to be solved. Mostly, the given
formula is a problem translated into Sat and frequently the provided transla-
tion (current time frame) is far from optimal for your Sat solver. Depending
on the solver, you might prefer a totally different representation. In short, re-
ducing size appears useful for most complete solving methods, while mobility
suits incomplete solvers [Pre07].

We added an enhanced pre-processor to march eq. Before solving, this pre-
processor reduces the size of the formula. After reduction, constraints are added.
Together with the other contributions presented in this chapter this resulted in
version march dl. Besides modification of the formula, this chapter also intro-
duces a new strategy that attempts to solve a problem locally. In the context
of the Maniac Mansion example, this strategy works as follows: In the old way,
each succeeding room is selected such that it is next to the current one. This
might require quite some walking since the door of that room may not be the
nearest door around. For instance the door to the room across the hallway may
be nearer. Therefore, we improved on this by selecting the succeeding room by
nearest closed door instead of the door to the adjacent room.

∗This chapter is based on: Marijn J.H. Heule and Hans van Maaren. March dl: Adding

Adaptive Heuristics and a New Branching Strategy. Journal on Satisfiability, Boolean Mod-
eling and Computation 2 (2006), 47-59.

13.Maniac Mansion: Day of the Tentacle, LucasArts, 1993

43

CHAPTER 4. MARCH DL

4.1 Introduction

The satisfiability (Sat) competitions of the last years have boosted the de-
velopment of Sat solvers: Each year, several unsolvable benchmarks (within
the given time limit), were easily solved the year after. Modern Sat solver
architectures can be split into three divisions: Conflict-driven (minisat, vallst,
zChaff), look-ahead (kcnfs, march, OKsolver) and local search (AdaptNovelty+,
R+ AdaptNovelty+, unitwalk). All solvers mentioned above won a category in the
past competitions [LS03, LS04, LS06, SLH05]. Each architecture outperforms
the other two on parts of the spectrum of available CNF instances. For instance,
conflict-driven solvers dominate on industrial formulae, look-ahead solvers are
very strong on unsatisfiable random formulae, while local-search techniques are
unbeatable on large satisfiable random formulae.

As a look-ahead Sat solver, early development of march was focused on fast
performance on unsatisfiable uniform random 3-Sat formulas. Frustrated by
the poor performance on structured instances, we attempted to increase the
speed on this latter kind of benchmarks by additional reasoning and eager data-
structures. The resulted solver, march eq, is described in detail in [HDvZvM04].
Since equivalence reasoning - an important part of march eq and thus march dl -
is not further developed, we will ignore this aspect of the solver in this chapter.

The march eq solver was quite successful: It won two (crafted) categories
during the Sat 2004 competition [LS04]. However, various benchmarks - rela-
tively easy to solve by conflict-driven solvers - were still unsolvable by march eq.
We developed some enhancements in order to solve several of these instances.
These enhancements are the primary focus of this chapter.

The usefulness of each enhancement is illustrated by some experiments. We
selected a small set of benchmarks for this purpose, since extensive experiments
are beyond the scope of this chapter. Because look-ahead Sat solvers perform
relatively well on unsatisfiable uniform random 3-Sat formulae, we generated14.

200 of them (100 of 250 variables with 1075 clauses, and 100 of 350 variables with
1500 clauses) as a reference. We added some crafted and structured instances
from five families:

• the connamacher family contributed by Connamacher to Sat 2004. This
family consists of encodings of the generic uniquely extendible constraint
satisfaction problem [Con04].

• the ezfact family contributed by Pehoushek to Sat 2002 [SLH05]. These
benchmarks are encodings of factorization problems.

• the lksat family contributed by Anton to Sat 2004 [LS04]. These are
random l-clustered k-Sat instances.

• the longmult family contributed by Biere. Instances from this family arise
from bounded model checking [BCCZ99].

• the philips family contributed by Heule to Sat 2004 [LS04]. Encoding
of a multiplier circuit provided by Philips.

14.using mkcnf available from http://www.satlib.org .

44

http://www.satlib.org

4.2. LOOK-AHEAD ARCHITECTURE

All experiments were performed on a system with an Intel 3.0 GHz CPU and 1
Gb of memory running on Fedora Core 4.

The remaining part of this chapter is structured as follows: Section 4.2 pro-
vides a short introduction to the look-ahead architecture together with some
references to the origin of the techniques. Section 4.3 deals with two small en-
hancements to the march dl pre-processor. Two new adaptive heuristics are in-
troduced in Section 4.4, and a new branching strategy is presented in Section 4.5.
Finally, Section 4.6 concludes with some results on the overall performance.

4.2 Look-ahead architecture

Since march dl is a look-ahead Sat solver, we will first provide a brief intro-
duction on its general architecture. This architecture (introduced in [Fre95])
consists of a DPLL search-tree [DLL62] using a LookAhead procedure to deter-
mine a decision variable xdecision (see Algorithm 4.1). We refer to a look-ahead
on literal l as assigning l to true and performing iterative unit propagation. If
a conflict occurs during this unit propagation (the empty clause is generated),
then l is called a failed literal - forcing l to be fixed on false. The resulting
formula after a look-ahead on l is denoted by F(l = 1).

Algorithm 4.1 DPLL(F)

1: if F is empty then
2: return satisfiable

3: else if empty clause ∈ F then
4: return unsatisfiable

5: end if
6: 〈F , xdecision 〉 := LookAhead(F)
7: B := GetDirection(xdecision)
8: if DPLL(F(xdecision ← B)) = satisfiable then
9: return satisfiable

10: end if
11: return DPLL(F(xdecision ← ¬B))

Five subprocedures of the LookAhead procedure (see Algorithm 4.2) are com-
mon in most modern look-ahead Sat solvers:

• Preselect - In general, performing a look-ahead on all unfixed variables
is very costly. Therefore, most look-ahead Sat solvers pre-select a subset
(denoted by P) of the unfixed variables in each node of the search-tree to
enter the LookAhead procedure. This enhancement was introduced by
Li et al. [LA97a]. In each node, variables are ranked based on their occur-
rences in binary and ternary clauses. Variables with the highest ranking
are pre-selected. Some modifications to these pre-selection heuristics are
discussed in Section 4.4.1.

45

CHAPTER 4. MARCH DL

Algorithm 4.2 LookAhead(F)

1: P := PreSelect(F)
2: for each variable xi in P do
3: F ′ := F(xi = 0)
4: if empty clause /∈ F ′ and F ′

2 � F2 then
5: F ′ := DoubleLook(F ′)
6: end if
7: F ′′ := F(xi = 1)
8: if empty clause /∈ F ′′ and F ′′

2 � F2 then
9: F ′′ := DoubleLook(F ′′)

10: end if
11: if empty clause ∈ F ′ and empty clause ∈ F ′′ then
12: return unsatisfiable

13: else if empty clause ∈ F ′ then
14: F := F ′′

15: else if empty clause ∈ F ′′ then
16: F := F ′

17: else
18: H(xi) = MixDiff(Diff(F , F ′), Diff(F , F ′′))
19: end if
20: end for
21: return xi with greatest H(xi)

• DoubleLook - If during the look-ahead on a literal, many new binary
clauses are created (denoted by F ′

2 � F2), the resulting formula is fre-
quently unsatisfiable. The DoubleLook procedure attempts to find a
conflict in the resulted formula by performing additional look-aheads. De-
tails on this subprocedure are presented in Section 4.4.2.

• Diff - The look-ahead evaluation function (Diff) used in march dl is
identical to the one used in march eq: Newly created binary clauses and
reduced equivalence clauses are counted in a weighted fashion. The re-
sulting sum is used as an indicator of the size of the search-tree of the
reduced formula. A higher sum suggests a smaller search-tree. For a full
description we refer to [HDvZvM04].

• MixDiff - Combines the two Diff numbers. Let L := Diff(F ,F(x = 0))
and R := Diff(F ,F(x = 1)) then MixDiff(L, R) := 1024 × LR + L +
R. Motivation for this formula is that an effective decision variable splits
the formula into two small search-trees (realized by LR). The L + R
addition is used for tie-breaking purposes. The formula is used in most
look-ahead Sat solvers (POSIT, kcnfs, march, and satz) and originates
from [Fre95].

46

4.3. PRE-PROCESSOR ENHANCEMENTS

• GetDirection - Given a decision variable xdecision, it pays off (for look-
ahead Sat solvers only on satisfiable instances) to choose wisely whether
to first enter branch F(xdecision = 1) or branch F(xdecision = 0). The first
is preferred if Diff(F ,F(xdecision = 1)) < Diff (F ,F(xdecision = 0)),
otherwise the latter.

4.3 Pre-processor enhancements

The performance of look-ahead Sat solvers is highly related to the size of the
formula: In general, large CNF’s require much more solving time regardless the
complexity of the underlying problem. Both other architectures are not very
sensitive to this. Therefore, pre-processing (reducing the size of) the formula
is essential for fast performance of a look-ahead Sat solver. march dl simplifies
the formula - like march eq - by binary equivalence propagation, detection of
failed literals and subsumption of clauses [HDvZvM04].

4.3.1 Root look-ahead

Unlike the other solvers participating in the Sat competitions, all march versions
use a 3-Sat translator in the pre-processor. march dl uses the same translator
as the one used in march eq [HDvZvM04]. In the pre-processor, most march

versions perform an iterative full look-ahead procedure to reduce the formula.
This procedure checks for all literals (full) whether unit propagation will result in
a conflict. This is iteratively performed until no new failed literals are detected.

In march eq, this procedure was executed after applying the 3-Sat translator.
The resulted formula - after the iterative full look-ahead procedure - frequently
contained many dummy (introduced by the translation) variables. By executing
the procedure before the 3-Sat translator, generally, less dummy variables have
to be used.

Table 4.1 shows some experimental results of the effects - on solving time
and number of generated dummies - on performing a root look-ahead before or
after the 3-Sat translator. This table gives quite an accurate illustration of the
effect of this enhancement: If swapping the execution order of the root look-
ahead and the translator results in less generated dummy variables, then less
computational time is required. Otherwise, no difference is noticed in solving
times too.

4.3.2 Ternary resolvents

While pre-processing a formula, many resolvents could be added. Addition of
all possible resolvents will - in general - significantly increase the size of the
problem. Even adding only all resolvents of length two in the preprocessing
phase, will increase solving time in most cases. Therefore, adding resolvents in
march eq is restricted to all binary constraint resolvents [HDvZvM04], both in
the pre-processor and in the actual solving phase.

47

CHAPTER 4. MARCH DL

Table 4.1 — Performance of march dl and the number of used dummy variables by
applying the root look-ahead before or after the 3-Sat translator.

before 3-Sat after 3-Sat
Benchmarks time(s) #dummies time(s) #dummies

random-unsat-250 (100) 0.52 0 0.52 0
random-unsat-350 (100) 15.04 0 15.04 0
connm-n600-d0.04-sat04-975 406.52 148 406.52 148
connm-n600-d0.04-sat04-978 535.05 142 535.05 142
connm-n600-d0.04-sat04-981 220.78 141 220.78 141
ezfact48-1 8.61 1803 13.34 1850
ezfact48-2 8.84 1792 14.76 1846
ezfact48-3 19.93 1817 28.86 1857
lksat-n1000-k3-l5-sat04-930 26.47 0 26.47 0
lksat-n1000-k3-l5-sat04-931 25.41 0 25.41 0
lksat-n1000-k3-l5-sat04-932 6.97 0 6.97 0
longmult8 35.62 195 51.14 377
longmult10 117.50 246 140.72 471
longmult12 218.92 293 352.17 565
philips 292.81 0 292.81 0

In march eq, we already implemented a prototype procedure adding some ternary
resolvents. This procedure is now efficiently implemented in march dl and adds
- just after the 3-Sat translation - only ternary resolvents of a certain type: All
ternary resolvents are added to the formula that could be created by resolving
two ternary clauses:

(xi ∨ xj ∨ xr)⊗xj
(xi ∨ ¬xj ∨ xs) = (xi ∨ xr ∨ xs) b4.1

In this equation, ⊗xj
refers to the resolution operator on variable xj . Notice

that added ternary resolvents could be used to create other ternary resolvents
using the same equation.

The motivation to add these resolvents is first observed in [BS92]. On uni-
form random 3-Sat formulae, their addition in the pre-processor reduces on
average the computational costs by about 10%. We experimented with the
addition of these resolvents on various structured benchmarks. Within our ex-
perimental domain, this addition appeared to have either a favorable influence
or no influence at all regarding the required computation time.

Table 4.2 shows the number of ternary clauses after the 3-Sat translator (de-
noted by #Ttrans) and the number of ternary resolvents that - using (1) - could
be added (denoted by #Tresolve). The last two columns show the computational
cost of march dl with and without this addition. The table convincingly shows
the usefulness of adding these ternary resolvents on a wide scale of benchmarks.
In only one case the performance is slightly decreased. Since, on structured
benchmarks, the far majority of the clauses has length two, this performance
boost can be realized by the addition of relatively few clauses.

48

4.4. ADAPTIVE HEURISTICS

Table 4.2 — Performance of march dl on several benchmarks with and without
adding ternary resolvents during the pre-processing phase.

Benchmarks #Ttrans #Tresolve with without

random-unsat-250 (100) 1075 92.7 0.52 0.55
random-unsat-350 (100) 1500 89.3 15.04 16.13
connm-n600-d0.04-sat04-975 7640 16840 406.52 > 2000
connm-n600-d0.04-sat04-978 7292 17908 535.05 > 2000
connm-n600-d0.04-sat04-981 7242 16888 220.78 > 2000
ezfact48-1 8086 4292 8.61 > 2000
ezfact48-2 8063 3969 8.84 > 2000
ezfact48-3 8104 4596 19.93 > 2000
lksat-n1000-k3-l5-sat04-930 3629 1080 26.47 392.91
lksat-n1000-k3-l5-sat04-931 3602 715 25.41 875.20
lksat-n1000-k3-l5-sat04-932 3634 926 6.97 233.51
longmult8 1638 48 35.62 37.48
longmult10 2142 57 117.50 111.85

longmult12 2670 62 218.92 233.85
philips 896 0 292.81 292.81

4.4 Adaptive heuristics

Most heuristics used in look-ahead Sat solvers are heavily optimized towards
fast performance on uniform random formulae. These heuristics are partly the
cause of mediocre performance on structured instances. By developing heuristics
that adapt towards each specific instance, we tried to do well ’across the board’.

4.4.1 Pre-selection heuristics

The main differences between the four march versions submitted to the Sat
2004 competition (march 001, march 007, march eq 010, and march eq 100) is
the number of variables pre-selected to enter the LookAhead procedure. Each
version pre-selects a fixed number of variables determined as a percentage of
the original number of variables. The last suffix (xxx) denotes this percentage.
For instance, while solving a CNF with 1234 initial variables, march eq 010

will pre-select 123 variables in each node of the DPLL search-tree to enter the
LookAhead procedure. If, in a certain node, there are less than 123 variables
unfixed, all remaining variables will be pre-selected. Hence, deeper in the search-
tree relative more unfixed variables are pre-selected.

The motivation to use a different percentage in each of the submitted versions
originates from the observation that the optimal percentage is benchmark de-
pendent [HDvZvM04]. Therefore, we decided to use more dynamic pre-selection
heuristics in march dl. We also observed that - within our experimental domain
- the optimal percentage was closely related to the frequency of detected failed
literals: When relatively many failed literals were detected, higher percentages

49

CHAPTER 4. MARCH DL

appeared optimal. Let #failedi be the number of detected failed literals in node
i. We tried to exploit the correlation mentioned above by using the average
number of detected failed literals as an indicator for the maximum size of the
pre-selected set in node n (denoted by Pn

max):

Pn
max := µ +

γ

n

n
∑

i=1

#failedi b4.2

In the above, parameter µ refers to lower bound of Pmax in each node (namely
when the average tends to zero) and γ is a parameter modeling the importance
of failed literals. During small scale experiments on various structured and
random instances, with µ := 5 and γ := 7, resulted in favorable performance on
most instances. Notice that these adaptive pre-selection heuristics are heavily
influenced by the branching strategy - which in turn affects by these heuristics.

In most nodes |P| = Pmax. Only when the number of unfixed variables in the
formula is smaller than Pmax, then all variables are pre-selected and resulting
in |P| < Pmax. It could happen that all variables in P are forced - due to the
detection of failed literals - during the LookAhead procedure. In these cases
the procedure is restarted with the reduced formula.

Table 4.3 — Performance of march dl and three modified versions march dl∗xxx (in
short m dl∗xxx) with a constant number of pre-selected variables. Sub-
script xxx denotes the used percentage of the number of variables.

Benchmarks march dl m dl∗001 m dl∗010 m dl∗100

random-unsat-250 (100) 0.52 0.94 0.54 0.71
random-unsat-350 (100) 15.04 33.62 15.80 25.31
connm-n600-d0.04-sat04-975 406.52 1150.86 389.65 584.96
connm-n600-d0.04-sat04-978 535.05 517.55 661.29 707.19
connm-n600-d0.04-sat04-981 220.78 814.78 210.31 291.60
ezfact48-1 8.61 7.72 8.62 8.67
ezfact48-2 8.84 8.52 9.02 9.05
ezfact48-3 19.93 17.64 19.78 19.89
lksat-n1000-k3-l5-sat04-930 26.47 39.18 23.83 52.85
lksat-n1000-k3-l5-sat04-931 25.41 40.77 23.94 47.50
lksat-n1000-k3-l5-sat04-932 6.97 9.87 6.72 11.65
longmult8 35.62 36.01 43.68 44.21
longmult10 117.50 102.43 107.65 111.87
longmult12 218.92 130.54 153.24 165.43
philips 292.81 282.16 432.84 441.83

The effect of using these adaptive pre-selection heuristics on the performance
is shown in Table 4.3. As a reference, three columns are added with the compu-
tational costs of modified versions of march dl with static percentages. Although
the adaptive variant rarely results in the fastest performance; in general, its per-
formance is relatively - compared to the references - close to optimal. Since these

50

4.4. ADAPTIVE HEURISTICS

adaptive heuristics are still in an experimental phase, we expect to achieve even
better results by further optimizing the settings.

4.4.2 Double look-ahead

The DoubleLook procedure (see Algorithm 4.3) checks whether a formula re-
sulting from a look-ahead is unsatisfiable. It does so by performing additional
unit-propagations. Since the computational costs of the DoubleLook proce-
dure are high, it should not be called after every look-ahead. In the ideal case,
one would only call it when the procedure would detect that the input formula
is unsatisfiable. This could be done by an indicator expressing the usefulness of
a DoubleLook call.

Li [Li99] suggests that the number of newly created binary clauses found
during a look-ahead is an effective indicator whether or not to call the Dou-
bleLook procedure: Many newly created binary clauses during a look-ahead
increases the chance that DoubleLook will detect a conflicting formula. Li’s
solver satz calls DoubleLook if the number of new binary clauses in the re-
duced formula (after a look-ahead) is larger than a certain constant. We refer
to this constant as∆trigger. In satz, ∆trigger := 65 is used.

Algorithm 4.3 DoubleLook(F)

1: P := PreSelect(F)
2: for each variable xi in P do
3: F ′ := F(xi = 0)
4: F ′′ := F(xi = 1)
5: if empty clause ∈ F ′ and empty clause ∈ F ′′ then
6: return F ′

7: else if empty clause ∈ F ′ then
8: F := F ′′

9: else if empty clause ∈ F ′′ then
10: F := F ′

11: end if
12: end for
13: return F

Dubois and Dequen use a slight variation of the above setting in their solver
kcnfs [DD]. Here, the DoubleLook procedure is triggered when the number
of new binary clauses is larger than ∆trigger := 0.175n + 5 (n refers to the ini-
tial number of variables). Both settings of ∆trigger result from optimizing this
parameter towards the performance on uniform random 3-Sat formulae. On
these instances they appear quite effective. However, on structured formulae
- industrial and crafted - these settings are far from optimal: On some fami-
lies, practically none of the look-aheads generate enough new binary to trigger
DoubleLook. Even worse, on many other structured instances both ∆trigger

settings result in a pandemonium of calls of the DoubleLook procedure, which
will come down hard on the computational costs to solve these instances.

51

CHAPTER 4. MARCH DL

To counter these unfavorable effects, march dl uses a more abstract parame-
ter DLsuccess. This parameter refers to the aimed ratio of successful calls on the
DoubleLook procedure. A DoubleLook call is successful if it detects that
the input formula is unsatisfiable. For instance, DLsuccess := 3

4 means that the
solver tries to call the DoubleLook procedure in such a way that three out of
four calls are successful.

We achieve this success ratio by using a dynamic ∆trigger parameter: De-
pending on the success of a certain DoubleLook call, ∆trigger is updated using
DLupdate (see Equation 4.3). Under the assumption that the number of newly
created binary clauses is an effective indicator for the success probability of a
DoubleLook call, it is expected that ∆trigger will converge to a certain value.
In practice either it stabilizes or ∆trigger reaches early in the solving phase a
high value such that DoubleLook is never triggered in a later stadium.

DLupdate :=







−1−DLsuccess

DLsuccess
if DoubleLook(F) is successful

1 otherwise

b4.3

Experiments show that a wide range of settings of DLsuccess (0.7 to 0.95)
result in a similar (fast) performance. In march dl we choose DLsuccess := 9

10 .
We initialized ∆trigger := 0.1n. A full description with large-scale experiments
to analyze and explain the above parameters and the behavior of the evolving
sequence of ∆trigger, will be the subject of Chapter 5.

Table 4.4 — Four different settings of the parameter ∆trigger implemented in
march dl: (a) adaptive (march dl); (b) ∆trigger := 65 (satz); (c) ∆trigger

:= 0.175 n + 5 (kcnfs); and (d) turning it off, so ∆trigger := ∞.

Benchmarks adaptive à la satz à la kcnfs off

random-unsat-250 (100) 0.52 0.51 0.52 0.59
random-unsat-350 (100) 15.04 14.68 14.88 17.94
connm-n600-d0.04-sat04-975 406.52 823.37 815.69 517.41
connm-n600-d0.04-sat04-978 535.05 1808.77 1816.78 1205.27
connm-n600-d0.04-sat04-981 220.78 1149.71 1112.08 729.69
ezfact48-1 8.61 111.04 9.30 10.25
ezfact48-2 8.84 117.33 10.86 10.96
ezfact48-3 19.93 223.86 22.21 21.29
lksat-n1000-k3-l5-sat04-930 26.47 50.49 26.81 32.63
lksat-n1000-k3-l5-sat04-931 25.41 47.61 25.48 31.00
lksat-n1000-k3-l5-sat04-932 6.97 14.97 7.04 8.41
longmult8 35.62 73.38 34.83 34.68

longmult10 117.50 231.99 120.42 111.67

longmult12 218.92 241.80 207.14 198.12

philips 218.92 239.47 218.31 215.87

52

4.5. LOCAL BRANCHING

Table 4.4 shows the performance (in seconds) of four different approaches: (1)
Our proposed adaptive heuristics; (2) the one used in satz; (3) the one used
in kcnfs; and (4) no DoubleLook at all (used in march eq). The adaptive
heuristics are the best option within our experimented domain. The down sides
of the heuristics used in satz and kcnfs are clearly visible: On average the off
setting performs better than both these random-instance-motivated methods.

4.5 Local branching

The look-ahead evaluation heuristic H (see Algorithm 4.2) has an unfavorable
effect: The selected decision variables only have a high MixDiff in common. On
structured instances, decision variables could be scattered all over the structure.
For example, this could make it difficult to resolve local conflicts.

By branching only on variables occurring in reduced clauses, we try to
counter this effect. Clearly, this is not applicable for the first node, because
the initial formula has no reduced clauses. We refer to the above branching
strategy as local branching. Recall that march dl uses a 3-Sat translator in the
pre-processing, thus clauses are either binary or ternary. So, local branching in
this special case means that march dl only branches on variables that occur in
binary clauses that originated from ternary clauses in the initial formula.

This new branching strategy is realized by modifying the PreSelect pro-
cedure: Instead of performing the pre-selection heuristics on the whole formula
in a certain node, we discard all clauses that also occur in the initial formula
(denoted by Finitial). So, only variables occurring in reduced clauses are pre-
selected. The resulted procedure is called LocalPreSelect and is shown in
Algorithm 4.4. Notice that LocalPreSelect does not only pre-selects differ-
ent variables to enter the look-ahead phase (compared to Preselect), it also
could select less variables: The number of variables occurring in reduced clauses
in the formula of node n could be smaller the Pn

max.

Algorithm 4.4 LocalPreSelect(F)

1: Freduced := F \ Finitial

2: if Freduced is empty then
3: Finitial := F
4: restart
5: end if
6: return PreSelect(Freduced)

On some families - satisfiable and unsatisfiable - using local branching re-
sulted in large speed-ups. Two examples of this kind are (1) the ferry family
(all satisfiable) contributed by Maris to the SAT 2003 competition [LS03] and
(2) the homer family (all unsatisfiable) contributed by Aloul to the SAT 2002
competition [SLH05]. Table 4.5 shows the performance of the march versions
submitted to the Sat 2004 and 2005 competition on small instances of these
families. Clearly, march dl is the only solver that - due to local branching -

53

CHAPTER 4. MARCH DL

solves these instances. On formulae where the new branching strategy did not
realize such a speed-up, no significant performance gains or losses were noticed.

Table 4.5 — Performance of different march versions on instances of the ferry and
homer families. The march eq xxx solvers are abbreviated as m eq xxx.

Benchmarks march dl march 001 march 007 m eq 010 m eq 100

ferry8.sat03-384 2.18 > 2000 > 2000 > 2000 > 2000
ferry8u.sat03-385 2.54 > 2000 > 2000 > 2000 > 2000
ferry9.sat03-386 1.70 > 2000 > 2000 > 2000 > 2000
ferry9u.sat03-387 1.37 > 2000 > 2000 > 2000 > 2000
fpga10-11-uns-rcr 118.93 > 2000 > 2000 > 2000 > 2000
fpga10-12-uns-rcr 136.21 > 2000 > 2000 > 2000 > 2000
fpga10-13-uns-rcr 154.78 > 2000 > 2000 > 2000 > 2000

The original motive to implement local branching was to increase the chance
of finding autarkies [Kul00] - partial assignments that satisfy all clauses that
they “touch”. The remaining formula, after removing all satisfied clauses by an
autarky, is satisfiability equivalent to the original formula. A pure literal is an
example of an autarky. Especially on unsatisfiable benchmarks, detection of au-
tarkies is useful: Unsatisfiability of the remaining formula yields unsatisfiability
of the original formula, resulting in a smaller search-tree.

This aspect is also shown in Algorithm 4.4: Whenever the formula F in a
node (except from the rootnode) does not contain reduced clauses - compared to
the initial formula Finitial - an autarky in detected. So, F is satisfiability equiv-
alent to Finitial. To reduce the computational cost to solve Finitial, we restart
the DPLL procedure with F . Although many autark assignments were found
in various families, none of these detections resulted in significant performance
gains. This disappointing result could be explained by the fact that nearly all
autarkies were found on satisfiable instances.

4.6 Results and conclusions

Five enhancements are presented which were developed to increase the overall
performance of march. All were illustrated using some experimental results
showing their contribution of reducing the computational costs. For comparisons
with other solvers we refer to the Sat competition pages15..

The resulted version - march dl - participated in the Sat 2005 competition.
It was awarded with three silver and two bronze medals [LS06]. Unlike previous
competitions, march dl performed relatively good on industrial benchmarks too:
It ended midway in the final ranking in that category. However, much progress
is still required to make look-ahead based solvers competitive on these kind of
structured instances.

15. www.satcompetition.org

54

www.satcompetition.org

Everything should be made as simple

as possible, but not simpler.

Albert Einstein

5
Adaptive Heuristics∗

Let us continue the Maniac Mansion example where we left off in the previous
chapter. You need to find the front door key to get out of the mansion. You
decided that a nerd is probably the best avatar to search the house thanks to
his gadgets and engineering skills. The question we will try to answer is when
to use his gadgets.

First and foremost, the use of gadgets is recommended somewhere during
the search. Otherwise, another avatar would probably be a better option. To
maximize the gain realized by gadgets, we therefore should use them right from
the beginning. Future use should be motivated by actual gain.

Besides owning some gadgets, the nerd also has some knowledge about the
appropriate situation to use them. For instance, with binoculars at hand, he
can search beyond normal sight. He can look ”long distance” where otherwise a
search is required. So, by using binoculars in a large room you may save quite
some time. However, in a small room you do not need to enhance your vision.
In fact, binoculars will be very impractical.

Whether or not to use a gadget does generally not depend on the properties
of the mansion, but on the properties of each room. E.g. in a mansion with
spacious rooms, you probably want to use binoculars. But if most rooms are
filled with boxes that block your sight, that might not be such a good idea.

Based on these considerations, we advice – regardless the layout of the man-
sion – to fully use gadgets in the beginning of the search. And, as soon as a
gadget appears to be completely worthless, to radically decrease the frequency
to use it. Depending on the knowledge when to use a gadget, while consider-
ing the proposed frequency, determines whether a gadget should be used. To
guaranty that gadgets are used every once in a while, the frequency is gradually
raised in time.

Using this advice, we developed an adaptive algorithm to control the appli-
cation of an additional reasoning technique (gadget) called the DoubleLook
procedure. Alternative static heuristics determine the usefulness of this proce-
dure based on properties of the formula (mansion).

∗This chapter is based on: Marijn J.H. Heule and Hans van Maaren. Effective Incorporation
of Double Look-Ahead Procedures. SAT 2007 Springer LNCS 4501 (2007), pp 258-271.

55

CHAPTER 5. ADAPTIVE HEURISTICS

5.1 Introduction

Nowadays state-of-the-art satisfiability (Sat) solving shows two main solving
architectures: Conflict-driven and look-ahead driven. As tuned by the Sat
competitions over the last years these two architectures seem to perform in
an almost complementary way. The conflict-driven solvers dominate the so
called industrial flavored problems (industrial category) while the look-ahead
architecture dominates on random problems and problems with an intrinsic
combinatorial hardness (part of crafted category). This chapter deals with an
engineering type of solver optimization with respect to one of the ingredients of
look-ahead Sat solving.

The look-ahead architecture of (Sat) solvers has two important features:
(1) It selects decision variables that result in a balanced search-tree; and (2) it
detects failed literals to reduce the size of the search-tree. Many enhancements
have been proposed for this architecture in recent years. One of the enhance-
ments for look-ahead Sat solvers is the DoubleLook procedure, which was
introduced by Li [Li99]. The usefulness of this procedure is straight forward:
By also performing look-ahead on a second level of propagation, more failed
literals could be detected, resulting in an even smaller search-tree.

By always performing additional look-aheads on the reduced formula, the
computational costs rise drastically. One would like to restrict this enhance-
ment in such a way that the overall computational time will decrease. Early
implementations rely on restrictions based on static heuristics. Although these
implementations significantly reduce the time to solve random 3-Sat formulae,
they yield a clear performance slowdown on many structured instances.

We designed an algorithm for the DoubleLook procedure that adapts to-
wards the (reduced) CNF formula. Our algorithm has some key advantages:
1) Existing DoubleLook implementations require only minor changes; 2) only
one magic constant is used, which makes it easy to optimize the algorithm for a
specific solver; and 3) this algorithm appears to outperform existing approaches.

In this chapter, Section 5.2 provides a general overview of the look-ahead
architecture and zooms in on the DoubleLook procedure. Section 5.3 deals
with static heuristics for this procedure and their effect on the performance.
Our algorithm is introduced in Section 5.4 together with an alternative by Li.
It offers detailed descriptions and motivates the decisions made regarding its
design. Section 5.5 illustrates the usefulness and the behavior of the algorithm
by experimental results and adaptation plots. Finally, we draw some conclusions
in Section 5.6.

56

5.2. PRELIMINARIES

5.2 Preliminaries

The look-ahead Sat architecture (introduced in [Fre95]) consists of a DPLL
search-tree [DLL62] using a LookAhead procedure to reduce the formula and
to determine a decision variable xdecision(see Algorithm 5.1). We refer to a
look-ahead on literal l as assigning l to true and performing iterative unit prop-
agation. If a conflict occurs during this unit propagation (the empty clause is
generated), then l is called a failed literal - forcing l to be fixed on false. The
resulting formula after a look-ahead on l is denoted by F(l = 1).

Algorithm 5.1 DPLL(F)

1: if F is empty then
2: return satisfiable

3: else if empty clause ∈ F then
4: return unsatisfiable

5: end if
6: 〈F , xdecision 〉 := LookAhead(F)
7: B := GetDirection(xdecision)
8: if DPLL(F(xdecision ← B)) = satisfiable then
9: return satisfiable

10: end if
11: return DPLL(F(xdecision ← ¬B))

The effectiveness of the LookAhead procedure (see Algorithm 5.2) depends
heavily on the LookAheadEvaluation function which should favor variables
that yield a small and balanced search-tree. Detection of failed literals could
further reduce the size of the search-tree. Additionally, several enhancements are
developed to boost the performance of Sat solvers based on this architecture.

One of these enhancements is the Preselect procedure, which preselects
a subset of the variables (denoted by P) to enter the look-ahead phase. By
performing look-ahead only on variables in P the computational costs of the
LookAhead procedure are reduced. However, this may result in less effective
decision variables and less detected failed literals. All three solvers discussed in
this chapter, march dl, satz, and kcnfs, use a Preselect procedure. Yet, their
implementation of this procedure is different.

Another enhancement is the DoubleLook procedure (see Algorithm 5.3),
which was introduced by Li [Li99]. This procedure checks whether a formula
resulting from a look-ahead on l is unsatisfiable - it detects l as a failed literal
by performing additional look-aheads on the reduced formula. Since the compu-
tational costs of these extra unit-propagations are high, this procedure should
not be performed on each reduced formula. In the ideal case, one would want
to apply it only when the reduced formula could be detected to be unsatisfiable.
This requires an indicator expressing the likelihood to observe a conflict.

57

CHAPTER 5. ADAPTIVE HEURISTICS

Let F∗
2 denote the set of binary clauses in the reduced formula. Li [Li99]

suggests that the number of newly created binary clauses (denoted by |F∗
2 \ F|)

in the reduced formula is an effective indicator whether or not to perform ad-
ditional look-aheads: If many new binary clauses are created during the look-
ahead on a literal, the resulting formula is often unsatisfiable. In Algorithm 5.3
the additional look-aheads are triggered when the number of newly created bi-
nary clauses exceeds the value of ∆trigger. The optimal value of this parameter
is the main topic of this chapter.

Algorithm 5.2 LookAhead(F)

1: P := Preselect(F)
2: for all variables xi ∈ P do
3: F ′ := DoubleLook(F(xi = 0), F)
4: F ′′ := DoubleLook(F(xi = 1), F)
5: if empty clause ∈ F ′ and empty clause ∈ F ′′ then
6: return 〈F ; ∗〉
7: else if empty clause ∈ F ′ then
8: F := F ′′

9: else if empty clause ∈ F ′′ then
10: F := F ′

11: else
12: H(xi) = LookAheadEvaluation(F , F ′, F ′′)
13: end if
14: end for
15: return 〈F ; xi with greatest H(xi) 〉

5.3 Static Heuristics

The DoubleLook procedure has been implemented in two look-ahead Sat
solvers. Initially, Li proposed a static value for ∆trigger [Li99]: In the first imple-
mentation in satz the DoubleLook procedure was triggered using ∆trigger :=
65. (The latest version of satz uses a dynamic algorithm which will be dis-
cussed in the next section.) Dubois and Dequen use a variation in their solver
kcnfs [DD]: In their implementation, the DoubleLook procedure is triggered
depending on the original number of variables (denoted by n): ∆trigger := 0.18n.

Both settings of ∆trigger result from optimizing this parameter towards the
performance on random 3-Sat formulae. On these instances they appear quite
effective. However, on structured formulae - industrial and crafted - these set-
tings are far from optimal: On some families, practically none of the look-aheads
generate enough new binary clauses to trigger additional look-aheads. Even
worse, on many other instances both ∆trigger settings result in a pandemonium
of additional look-aheads, which come down hard on the computational costs.

We selected a set of benchmarks from a wide range of families to illustrate
these effects. We generated 20 random 3-Sat formulae with 350 variables with

58

5.3. STATIC HEURISTICS

Algorithm 5.3 DoubleLook(F∗, F)

1: if empty clause ∈ F∗ then
2: return F∗

3: end if
4: if |F∗

2 \ F| > ∆trigger then
5: for all variables xi ∈ P do
6: F ′ := F∗(xi = 0)
7: F ′′ := F∗(xi = 1)
8: if empty clause ∈ F ′ and empty clause ∈ F ′′ then
9: return F ′

10: else if empty clause ∈ F ′ then
11: F∗ := F ′′

12: else if empty clause ∈ F ′′ then
13: F∗ := F ′

14: end if
15: end for
16: end if
17: return F∗

1491 clauses (10 satisfiable and 10 unsatisfiable formulae) and used 10 random

3color instances from the Sat 2002 competition [SLH05]. Additionally, we
added some crafted and structured instances from various families:

• the connamacher family (generic uniquely extendible CSPs) contributed
by Connamacher to Sat 2004 [Con04]. We selected n = 600, d = 0.04;

• the ezfact family (factoring problems) contributed by Pehoushek. We
selected the first three benchmarks of 48 bits from Sat 2002 [SLH05];

• the lksat family, subfamily l5k3 (random l-clustered k-Sat instances)
contributed by Antont to Sat 2004 [LS04]. We selected all unsatisfiable
instances;

• the longmult family contributed by Biere [BCCZ99]. These instances arise
from bounded model checking. We used instances of size 8, 10 and 12;

• the philips family. An encoding of a multiplier circuit contributed by
Heule to Sat 2004 [LS04];

• a pigeon hole problem (phole10) from www.satlib.org;

• the pyhala braun family (factoring problems) contributed by Pyhala Braun
to Sat 2002 [SLH05]. We selected the unsat-35-4-03 and unsat-35-4-04,
the two smallest instances from this family not solved during Sat 2002;

• the stanion/hwb family (equivalence checking problems) contributed by
Stanion. We selected all three benchmarks of size 24 from Sat 2003 [LS03];

• Sat-encodings of quasigroup instances contributed by Zhang [ZS00] We
selected the harder unsatisfiable instances - qg3-9, qg5-13, qg6-12, and
qg7-12.

59

www.satlib.org

CHAPTER 5. ADAPTIVE HEURISTICS

Besides the random instances, all selected benchmarks are unsatisfiable to
realize relatively stable performances. On most these families, the performance
of look-ahead Sat solvers is strong16. (compared to conflict-driven Sat solvers).
We performed two tests: One that used constant numbers for ∆trigger - analogue
to early satz - and another used values depending on the original number of
variables - analogue to kcnfs. For both tests we used the march dl Sat solver17..
All experiments were performed on a system with an Intel 3.0 GHz CPU and 1
Gb of memory running on Fedora Core 4. The results of the first test are shown
in Table 5.1 and 5.2, for the low and high values of ∆trigger, respectively.

Table 5.1 — Performance of march dl using various static (low) values for ∆trigger.

family 0 10 30 65 100 150

3color (10) 118.69 39.91 31.50 62.87 67.96 70.42
anton (5) 276.74 269.00 184.73 119.99 80.31 62.39

connamacher (3) 5352.55 5407.50 4426.95 4373.89 4559.49 4852.63
ezfact48 (3) 650.01 451.55 287.67 321.70 264.79 187.93
longmult (3) 886.51 578.08 452.34 278.93 219.35 255.99
philips (1) 595.43 547.54 391.43 323.97 273.99 306.71
pigeon(1) 246.62 140.05 141.65 141.45 140.53 140.37
pyhala-braun(2) 4000.0 3024.49 2415.46 2019.37 1481.09 1224.92
quasigroup (4) 2351.98 2102.62 1649.78 1437.39 1362.80 1327.79
stanion (3) 2102.21 1661.80 941.59 971.29 964.34 972.18
random-sat (10) 157.12 136.95 96.04 71.01 75.44 86.09
random-uns (10) 322.68 285.80 199.03 143.04 156.70 178.00

Table 5.2 — Performance of march dl using various static (high) values for ∆trigger.

family 250 400 600 850 1150 1500

3color (10) 67.26 70.26 70.24 70.49 72.21 73.52
anton (5) 64.09 73.28 75.02 75.07 77.22 78.98
connamacher (3) 4353.03 2633.67 2642.37 2861.83 4258.05 4099.12
ezfact48 (3) 69.87 47.54 55.78 57.16 54.56 51.91
longmult (3) 272.15 291.85 249.99 243.81 278.86 303.99
philips (1) 313.98 317.23 320.84 325.41 328.31 336.90
pigeon(1) 140.61 141.01 140.86 141.38 142.36 142.73
pyhala-braun(2) 1145.64 941.32 607.76 577.75 449.59 428.26

quasigroup (4) 1225.14 1011.26 849.64 507.18 455.84 358.97

stanion (3) 968.60 963.49 985.46 983.51 988.12 997.59
random-sat (10) 92.53 92.24 93.55 93.20 92.33 91.71
random-uns (10) 186.74 187.64 187.72 189.34 190.04 190.43

16.based on the results of the Sat competitions, see http://www.satcompetition.org
17.available from http://www.st.ewi.tudelft.nl/sat/

60

http://www.satcompetition.org
http://www.st.ewi.tudelft.nl/sat/

5.4. ADAPTIVE DOUBLELOOK

Recall that satz uses ∆trigger := 65 - as a result of experiments on random

3-Sat instances. As expected, setting ∆trigger := 65 boosts performances on
this family. However, instances from the pyhala-braun and quasigroup are
hard to solve with this parameter setting: On these families the computational
time can be reduced by 80% by changing the setting to ∆trigger := 1500. In gen-
eral, we observe that a parameter setting which results in optimal performance
for a specific family, yields far-from-optimal performances on other families.

Table 5.3 offers the results of the second test. On random 3-Sat optimal
performance is realized by ∆trigger := .20n: Indeed close to the setting used in
kcnfs. However, none of the parameter settings result in close-to-optimal per-
formances on all families. Moreover, the optimal performances on the families
3color, connamacher, and quasigroupmeasured during the first test are about
twice as fast as the optimal performances of the second test. So, all parameter
settings used in the second test are far from optimal - at least for these families.

Table 5.3 — Performance of march dl using various static values for ∆trigger.
These static values are based on the original number of variables
(denoted by n).

family .05 n .10 n .15 n .20 n .25 n .30 n

3color (10) 59.08 67.98 70.19 67.08 68.06 65.87
anton (5) 146.13 83.24 62.67 59.40 64.19 67.15
connamacher (3) 4627.01 4387.70 4392.15 5078.09 4841.21 4807.81
ezfact48 (3) 324.14 202.17 61.19 50.75 43.85 47.64
longmult (3) 205.46 247.89 308.71 285.71 265.31 267.09
philips (1) 288.72 285.43 311.09 312.46 323.28 311.15
pigeon(1) 158.59 147.60 142.02 142.99 143.96 142.15
pyhala-braun(2) 1173.64 1095.74 753.08 590.00 546.79 484.66

quasigroup (4) 1473.65 1201.45 1035.91 1069.18 951.36 837.54

stanion (3) 1885.25 1110.04 938.94 949.83 956.62 973.57
random-sat (10) 118.50 88.57 72.86 70.61 71.55 75.97
random-uns (10) 254.60 185.96 155.18 142.56 150.69 165.46

5.4 Adaptive DoubleLook

We developed an adaptive algorithm to control the DoubleLook procedure.
This algorithm updates ∆trigger after each look-ahead in such fashion, that it
adapts towards the characteristics of the (reduced) formula. This section deals
with the decisions made regarding the algorithm. First and foremost - for both
elegance and practical testing - we focused on using only one magic constant.

The algorithm has three components: (i) The ∆trigger initial value, (ii) an
increment strategy TriggerIncrease and (iii) a decrement strategy Trig-
gerDecrease to update ∆trigger. Both strategies consist of two parts: The
location within the DoubleLook procedure and the size of the update value.

61

CHAPTER 5. ADAPTIVE HEURISTICS

Regarding the first component: An effective initial value for ∆trigger is prob-
ably as hard to determine as an effective global value for this parameter. There-
fore, the algorithm should work on many initial values - even on zero, the most
costly value at the root node. Hence our decision to initialize ∆trigger := 0.

The first aspect of the increment strategy is rather straight-forward: As-
suming a strong correlation between the value of ∆trigger and the detection of
a conflict by the DoubleLook procedure, ∆trigger should always be increased
when the procedure fails to meet this objective. Algorithm 5.4 shows an adap-
tive variant of the DoubleLook procedure with the increment strategy located
at line 17, the first position following a failure.

The largest reasonable increment of ∆trigger appears to make this parameter
equal to the number of newly created binary clauses: Since no conflict was ob-
served, ∆trigger should be at least the number of new binary clauses (|F∗

2 \ F|)
- which would have prevented the additional computational costs. The smallest
value of the increment is a value close to zero and would result in a slow adap-
tation. The optimal value will probably be somewhere in between. We prefer a
radical adaptation. For this reason we use the largest reasonable value:

TriggerIncrease() : ∆trigger := |F∗
2 \ F| b5.1

Algorithm 5.4 AdaptiveDoubleLook(F∗, F)

1: if empty clause ∈ F∗ then
2: return F∗

3: end if
4: if |F∗

2 \ F| > ∆trigger then
5: for all variables xi ∈ P do
6: F ′ := F∗(xi = 0)
7: F ′′ := F∗(xi = 1)
8: if empty clause ∈ F ′ and empty clause ∈ F ′′ then
9: TriggerSuccess()

10: return F ′

11: else if empty clause ∈ F ′ then
12: F∗ := F ′′

13: else if empty clause ∈ F ′′ then
14: F∗ := F ′

15: end if
16: end for
17: TriggerIncrease()
18: else
19: TriggerDecrease()
20: end if
21: return F∗

62

5.4. ADAPTIVE DOUBLELOOK

Within the DoubleLook procedure, two events could suggest that ∆trigger

should be decreased18. : (1) The detection of a conflict and (2) the number
of newly created binary clauses is less than ∆trigger. The first event seems
the most logical: If the DoubleLook procedure detects a conflict, this is a
strong indication that a slightly decreased ∆trigger could increase the number
of detected failed literals by this procedure. However, this may result in a
deadlock situation: The increment strategy could update ∆trigger such that no
additional look-ahead will be executed, thereby making it impossible to decrease
this parameter.

Placing the decrement strategy after the second event would guarantee that
additional look-aheads will be executed every once in a while. Assuming that
the computational time could diminish on all benchmarks by the DoubleLook
procedure, then this location (Algorithm 5.4 line 19) seems a more appealing
choice.

How much should ∆trigger be decreased if after a look-ahead the number
of newly created binary clauses is less than this parameter? It seems hard to
provide a motivated answer for this question. Therefore, we decided to obtain
an effective value for the decrement using experiments.

These experiments were based on two considerations: First, the tests on
static heuristics (see Section 5.3) showed that effective parameter settings for
∆trigger ranged from 10 to 1500. Therefore, the decrement should not be absolute
but relative. So, it should be of the form ∆trigger := c×∆trigger for some c ∈ [0, 1].

Second, the size of preselected set P could vary significantly over different
nodes. Therefore, the maximum decrement of ∆trigger in each node depends on
the size of P . We believe this dependency is not favorable, so we decided to
“neutralize” it. Notice that at most 2|P| times in each node ∆trigger could be
decreased. Now, let parameter DLdecrease denote the maximum relative decre-
ment of ∆trigger in a certain node. Then, combining these considerations, the
decrement strategy could be formulated as follows:

TriggerDecrease() : ∆trigger := 2|P|
√

DLdecrease ×∆trigger b5.2

The “optimal” value for parameter DLdecrease is discussed in Section 5.5.1.
The latest version of satz (2.15.2) also uses an adaptive algorithm: (i) It

initializes ∆trigger := .167n; (ii) it increases the ∆trigger using the same Trig-
gerIncrease() placed at the same location. The important difference lies in
the location and size of (iii) the decreasing strategy: The algorithm realized
the decrement at line 9 instead of line 19 of Algorithm 5.4 - so ∆trigger is only
reduced after a successful DoubleLook call instead of slowly decrease after
each look-ahead.

TriggerSuccess() : ∆trigger := .167n b5.3

A drawback of this approach is that ∆trigger could never be reduced to a value
smaller than .167n - although we noticed from the experiments on static heuris-

18.∆trigger could also be decreased after lines 12 and 14 of Algorithm 5.4: Each new forced
literal on a second level of propagation increases the chance of hitting a conflict.

63

CHAPTER 5. ADAPTIVE HEURISTICS

tics that significant smaller values are optimal in some cases (see Table 5.3).
When a high value of ∆trigger is optimal this approach might frequently al-
ter between a relative low value (∆trigger := .167n) and a relative high value
(∆trigger := |F∗

2 \ F|) or result in the deadlock situation mentioned above.

5.5 Results

The adaptive algorithm as described above has been implemented in all look-
ahead Sat solvers that contain a DoubleLook procedure: march dl, satz, and
kcnfs. First, we show the effect of parameter DLdecrease on the computational
time. For this purpose, we use the modified march dl. Second, the performance
is compared between the original versions and the modified variants of satz and
kcnfs. Third, the behavior of the algorithm is illustrated by adaptation plots.
During the experiments we used the benchmarks as described in Section 5.3.

5.5.1 The magic constant

The only undetermined parameter of the adaptive algorithm is DLdecrease. The
computational times resulting from various settings for this parameter are shown
in Table 5.4. The data shows the effectiveness of the adaptive algorithm:

• Different settings for DLdecrease result in comparable performances - gen-
erally close to the optimal values from the experiments using static heuris-
tics.

• We observe that, for DLdecrease := 0.85, performances are realized for the
anton and philips family that are nearly optimal, while on all the other
families this setting outperforms all results using static heuristics.

• The optimal performances achieved by the adaptive heuristics are, on
average, about 20% faster than those that are the result of static heuristics.

Table 5.5 shows the average values of ∆trigger for various settings of DLdecrease.
The average for each family is the mean of the averages of its instances, while
for each instance the average is the mean of the averages over all nodes. Because
these values are not very accurate, we present only rounded integers.

Parameter DLdecrease seems to have little impact on these average values.
Note that - except for pyhala-braun and quasigroup instances - the average
values of ∆trigger are very close to the optimal values shown in Tables 5.1 and 5.2.
In Section 5.5.3 we provide a possible explanation for the two exceptions.

64

5.5. RESULTS

Table 5.4 — Influence of parameter DLdecrease on the computational time.

family .75 .80 .85 .90 .95 .99

3color (10) 25.77 25.39 25.60 28.98 32.79 44.36
anton (5) 69.22 67.66 64.99 63.26 63.60 66.41
connamacher (3) 2258.59 2723.14 1742.62 3038.68 2872.84 4431.91
ezfact48 (3) 39.00 35.18 37.87 38.66 38.68 46.08
longmult (3) 197.29 197.70 203.03 210.12 241.75 258.90
philips (1) 307.22 288.10 286.31 267.17 280.81 299.71
pigeon(1) 99.31 99.77 103.47 110.91 113.81 115.28
pyhala-braun(2) 369.49 365.51 372.98 366.89 376.89 405.05
quasigroup (4) 162.38 161.95 157.24 154.59 150.63 162.01
stanion (3) 941.94 946.38 950.44 965.30 984.20 1010.71
random-sat (10) 70.04 70.71 69.21 69.95 69.74 74.32
random-uns (10) 147.40 147.19 145.95 148.30 149.17 159.90

Table 5.5 — Influence of parameter DLdecrease on the average value of ∆trigger.

family .75 .80 .85 .90 .95 .99

3color (10) 23 24 25 28 33 42
anton (5) 129 134 141 162 176 220
connamacher (3) 538 575 589 527 462 292
ezfact48 (3) 324 332 357 370 420 538
longmult (3) 76 78 80 90 100 127
philips (1) 99 102 107 110 117 142
pigeon 7 7 8 8 9 9
pyhala-braun(2) 105 108 112 117 127 148
quasigroup (4) 537 530 516 489 529 664
stanion (3) 21 22 23 25 29 36
random-sat (10) 57 58 62 67 77 98
random-uns (10) 57 59 62 67 78 98

65

CHAPTER 5. ADAPTIVE HEURISTICS

5.5.2 Comparison

To test the general application of the adaptive algorithm, we also implemented
it in both other Sat solvers that use a DoubleLook procedure: satz and kc-

nfs. We modified the latest version of the source codes19.. All three components
were made according to the proposed adaptive algorithm: First, initialization
is changed to ∆trigger := 0. Second - only for kcnfs - a line is added to in-
crease ∆trigger when no conflict is detected. Analogue to the march dl and satz,
∆trigger := |F∗

2 \ F|.
The third modification is implemented slightly differently, because in satz

and kcnfs the size of the pre-selected set P is computed “on the fly”. There-
fore, 2|P|

√
DLdecrease would not be a constant value in each LookAhead pro-

cedure. As a workaround, we decided to use the average value of march dl for
2|P|
√

DLdecrease instead. Additionally, from satz the decrement strategy Trig-
gerSuccess is removed. While using DLdecrease := 0.85, this average appeared
approximately 0.9985, which was used for an alternative decrement strategy:

TriggerDecrease() : ∆trigger := 0.9985×∆trigger b5.4

Notice that using value 1.0 instead of 0.9985 would drastically reduce the number
of additional look-aheads, because ∆trigger would never be decreased.

Table 5.6 — Comparison between performances of the original and the modified
versions of satz, kcnfs and march dl.

satz kcnfs march dl

family original modified original modified prelim final

3color (10) 52.71 36.91 37.89 27.88 72.51 25.60

anton (5) 183.97 123.16 3433.39 2382.96 80.75 64.99

connamacher (3) > 6000 > 6000 4707.51 4705.23 4134.85 1742.62

ezfact48 (3) 39.96 32.98 > 6000 > 6000 54.22 37.87

longmult (3) 2411.36 1582.85 440.34 413.19 265.88 203.03

philips (1) 1126.38 710.75 750.75 443.27 428.52 286.31

pigeon(1) 23.72 24.12 43.39 40.25 145.38 103.47

pyhala-braun(2) 1247.46 881.91 644.84 466.92 380.57 372.98

quasigroup (4) 172.40 171.54 230.59 173.86 351.85 157.24

stanion (3) 3657.49 3810.53 3834.31 3863.13 993.89 950.44

random-sat (10) 93.82 92.56 79.63 80.33 91.63 69.21

random-uns (10) 260.13 266.81 139.67 138.22 189.75 145.95

The performances of the original and the modified versions of satz, kcnfs,
and march dl are shown in Table 5.6. The proposed adaptive algorithm gen-
erally outperforms the one in satz: On most instances from our test, the per-
formance was improved up to 30%, while on the others only small losses were

19.For satz we used version 215.2 (with the adaptive algorithm) which is available at
http://www.laria.u-picardie.fr/~cli/satz215.2.c and for kcnfs we used the version avail-
able at http://www.laria.u-picardie.fr/~dequen/sat/kcnfs.zip

66

http://www.laria.u-picardie.fr/~cli/satz215.2.c
http://www.laria.u-picardie.fr/~dequen/sat/kcnfs.zip

5.6. CONCLUSIONS

measured. Significant performance boosts are also observed in kcnfs, although
the stanion/hwb instances are solved slightly slower. Since we did not optimize
the magic constant, additional progress could probably be made.

The double look-ahead is the latest feature of march resulting in version
march dl. The preliminary version used has all features except the DoubleLook-
Ahead procedure. The addition of this feature - using the proposed adaptive
algorithm - boost the performance on the complete test set.

5.5.3 Adaptation plots

We selected four benchmarks (due to space limitations) to illustrate the behavior
of the adaptive algorithm. For each benchmark, the first 10.000 (non-leaf) nodes
of the DPLL-tree - using march dl with ∆trigger := .85 - are plotted with a colored
dot. Nodes are numbered in the (depth-first) order they are visited - so for the
first few nodes their number equals their depth. The color is based on the depth
of the node in the DPLL-tree. The horizontal axis shows the number of a certain
node and the vertical axis shows the average value of parameter ∆trigger in this
node. These adaptation plots are shown in Figures 5.1, 5.2, 5.3 and 5.4.

In general, we observed that each family has its own kind of adaptation
plot, while strong similarities between instances from different families were
rare. For none of the tested instances ∆trigger converged to a certain value,
which is probably due to the design of the algorithm.

For half of the families, the value of ∆trigger tends to be above average at
nodes near the root of the search-tree and / or tends to be below average at
nodes near the leafs (see Figures 5.1 and 5.4). For the other half of the families
the opposite trend was noticed (see Figures 5.2 and 5.3).

Recall that for pyhala-braun and quasigroup instances the average value
for ∆trigger was much lower than the optimum based on static heuristics. Fig-
ure 5.4 offers a possible explanation: Notice that nodes near the root use
∆trigger ≈ 1100 while on average nodes use ∆trigger ≈ 100. Adaptation plots
for quasigroup instances showed a similar gap. A low static value for ∆trigger

will probably result in many additional look-aheads at the nodes near the root
which could ruin the overall performance.

5.6 Conclusions

We presented an adaptive algorithm to control the DoubleLook procedure,
which uses - like the static heuristic - only one magic constant. The algorithm
has been implemented in all look-ahead Sat solvers that use a DoubleLook
procedure. As a result of this modification, all three solvers showed a perfor-
mance improvement on a wide selection of benchmarks. On macro level we
observed that for most instances this algorithm approximates the family spe-
cific “optimal” static strategy, while on micro level the algorithm adapts to the
(reduced) formula in each node of the search-tree.

67

CHAPTER 5. ADAPTIVE HEURISTICS

0

2

4

6

8

10

12

14

16

18

20

.

.

.

.

.

..

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

..

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

..

.

..

.

.

.

..

.

..

.

.

.

.

..

.

.

.

.

...

.

.

.

.

.

..

.

..

.

.

..

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

..

..

.

.

.

..

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

..

.

.

...

.

.

.

.

.

.....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

..

.

...

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

...

.

.

..

.

.

.

.

..

.

.

..

.....

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

.

....

.

.

.

.

.

.

..

.

.

.

....

.

.

..

.

.

.

..

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

...

.

.

.

.

.

.

..

.

..

.

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

...

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

....

.

.

.

.

.

..

.

.

.

.

.

...

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

..

..

.

..

..

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

..

.

.

.

.

.

...

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

..

..

.

.

.

.

..

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

..

...

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

...

..

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

..

.

.

...

.

..

.

.

.

.

.

..

.

.

.

..

..

..

.

..

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

...

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..

......

.

...

.

.

.

.

....

...

..

...

.

...

.

..

..

..

.

.

.

.

.

.

..

..

.

.

.....

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

...

.

.

..

.

.

.

..

.

.

.

.

...

.

.

...

..

..

.

.

.

.

.

.

.

...

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

....

.

.

.

.

.

.

.

..

...

.

.

..

.

.

.

..

...

.

.

.

..

.....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

..

.

.

..

.

.

.

..

.

..

..

.

...

.

.

.

.

..

...

....

.

.

.

...

.

.

.

..

.

.

..

.

.

..

.

.

.

.

...

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

...

.

.

.

...

.

.

.

.

..

..

..

.

.

.

...

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

..

..

.

..

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

..

.

.

..

..

.

.

.

.

..

.

.

.

....

.

.

.

.

...

.

.

...

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

........

.

.

..

..

...

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

..

...

...

....

..

...

.

.

..

.

.

.

...

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

..

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

..

..

...

..

.

.

.

..

.

..

.

..

.....

.

.

.

.

..

..

.

.

.

..

.

.

.

...

.

.

.

.

.

.

..

..

.

..

.

.

..

.

...

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

...

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

..

.

.

.

..

.

.

..

..

.

.

..

..

.

.

..

.

.

.

...

.

.

..

.

.

.

.

.

...

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

.

..

...

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

...

.

.

..

.

.

..

.

...

...

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

...

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

..

..

.

.

.

.

.

..

.

.

..

.

.

.

...

.

.

.

.

.

.

.

.

.

....

..

.

.

.

.

.

.

..

.

.

...

.

.

.

.

.

..

...

.

.

..

..

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

..

.

..

.

.

.

...

.

..

..

.

.

.

.

..

.

..

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

....

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

..

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

..

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

.

.

.

.

.

..

.

...

.

.

....

.

..

.

.

.

.

.

.

.

.

..

..

..

..

.

.

.

.

.

.

.

.

.

..

.

..

...

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

..

.

...

.

...

.

.

.

.

..

.

.

.

.

..

.....

.

...

..

..

.

.

.

.

...

.

..

.

..

.

.

.

...

.

.

..

.

.

...

..

.

..

.

..

.

...

.

..

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

....

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

..

.

.

.

..

.

..

..

..

.

.

..

..

..

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

...

.

.

.

.

.

.

.

.

.

..

..

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

...

.

.

..

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

....

..

.

.

.

.

.

..

.

.

.

.....

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

....

.

.

.

.

.

...

.

.

.

.

..

.

.

...

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

..

..

.

.

.

.

.

..

..

.

..

.

..

.

...

.

.

.

..

..

.

.

.

.

.

..

.

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

..

...

...

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

...

.

.

.

.

.

..

.

.

.

.

..

.

.

..

.

..

..

.

...

.

...

.

..

.

.

...

.

.

.

.

.

..

....

.

.

...

..

..

.

.

.

.

.

...

.

.

...

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.....

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

...

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

...

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

..

.

.

.

.

...

....

.

..

..

.

.

.

.

.

.

.

.

.

.

...

.

...

.

..

.

..

.

...

.

.

.

.

..

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

...

.

...

..

..

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

..

.

.

....

.

.

.

.

..

.

..

.

.

.

.

..

..

.

.

.

.

..

..

.

.

.

.

.

.

..

.

...

.

..

..

.

.

..

.

....

.

.

.

.

.

.

.

.

..

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

...

.

.

.

.

.

..

.

..

.

.

.

.

.

..

..

.

.

.

.

.

..

...

.

...

.

.

.

..

...

..

.

.

.

.

.

.

...

.

.

.

.

..

.

.

....

.

..

.

.

.

.

.

.

.

...

.

.

..

.

.

.

..

.

..

.

.

.

..

..

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

..

..

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

..

.

.

.

....

.

.

.

.

.

.

...

.

.

...

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

...

.

..

.

...

.

.

.

.

.

.

.

..

..

..

.

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

..

.

..

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

..

...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

....

.

.

.

.

.

..

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

..

...

.

.

...

..

..

.

.

.

.

.

.

.

....

...

.

.

.

...

.

.

.

.

..

.

.

...

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

...

.

.

.

.

....

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

..

...

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

...

.

...

.

.

...

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

....

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

..

..

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

..

..

.

..

.

.

...

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

..

.

.

.

...

.

..

......

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

...

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

...

.

.

..

.

.

..

.

.

.

.

..

...

..

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

......

..

.

.

...

.

.

..

.

...

..

.

..

.

..

.

.

.

.

.

.

.

.

....

.

..

.

.

.

.

..

.

..

..

.

.

..

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

..

.

..

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..

...

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

..

.

..

.

.

.

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

..

.

.

....

..

.

.

.

..

.

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

...

.

.

.

..

.

.

.

.

.

..

..

..

.

..

.

.....

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

...

..

.

.

.

..

..

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

......

...

..

..

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

..

..

.

.

.

.

.

..

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

..

..

.

.

.

.

.

..

.

.

.

.

...

.

.

.

.

.

..

.

.

....

..

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

...

.

....

.

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

...

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

...

.

.

...

.

..

.

.

.

..

.

..

.

.

..

..

.

.

.

.

..

.

.

..

..

.

..

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

....

..

.

..

.

.

.

.

..

..

.....

.

.

.

.

.

..

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

...

.

.

.

.

.

.

.

...

.

.

.

.

....

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

..

.

.

.

.

.

..

..

.

..

.

.....

.

.

.

..

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

..

.

..

.

.

.

..

..

.

.

..

.

....

.

..

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

...

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

..

..

.

.

..

.

.

.

.

.

...

..

.

.

.

.

..

.

....

.

.

...

.

.

......

..

..

.

.

.

.

...

.

.

..

.

.

.

.

..

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

...

.

.

...

.

.

.

.

.

.

.

..

.

.

.

..

..

.

.

.

.

..

...

.

.

..

.....

..

..

.

.

..

.

.

.

.

..

.

.

.

....

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

..

...

.

.

.

...

..

..

.

...

.

..

.

.

.

..

.

.

...

...

..

.

.

.

...

.

..

.

.

.

.

.

.

.

.

..

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

...

..

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

....

..

.

.

.

.

.

.

.

..

.

.

...

...

..

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

..

.

.

.

.

.

...

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

.

..

.

.....

.

..

.

.

.

.

.

..

.

.

..

.

.

..

..

.

.

.

..

...

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

..

.

.

.

.

.

.

..

.

.

...

.

.

..

.

..

..

.

.

.

.

...

.

..

.

.

..

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

..

.

.

..

.

.

.

..

.

..

..

.

..

.

.

.

.

.

.

..

.

.

.

..

..

.

.

.

.

.

..

.

.

..

.

.

.

..

.

..

.

.

.

.

.

.

..

..

...

.

.

.

.

.

.

.

....

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

.

.

.

....

.

.

..

..

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

....

..

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

..

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

..

.

.

.

.

...

.

.

.

.

.....

.

.

..

.

.

.

.

.

.

.

...

..

.

....

.

.

.

..

.

.

..

.

.

.

.

.

.

..

...

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

..

.

.

..

.

.

..

.

.

....

.

.

.

...

.

..

.

...

.

.

..

.

..

.

.

.

.

.

.

.

..

.

..

..

.

.

..

.

.

.

.

.

..

..

.

.

.

.

.

.

.

..

..

....

..

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

...

...

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

...

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

....

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

.

.

...

.

..

....

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

....

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

...

..

...

.

.

....

..

.

.

...

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

...

..

.

..

....

....

.

.....

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

..

...

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

..

.

..

.

....

.

.

....

.

.

.

...

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

..

.

.

.

..

..

.

.

.

.

.

.

..

.

..

.

.

.

.

.

..

..

...

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

..

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

..

.

..

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

..

.

.

.

.

..

.

.

.

.

..

.

.

.

.........

.

..

.

.

.

.

.

.

.

...

.

...

..

.

..

.

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

.

.

.

..

..

.

.

.

..

.

.

.

.

.

.

...

.

.

..

.

..

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

..

.

.

.

.

...

.

..

.

.

.

...

.

.

.

.

..

.

.

.

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

...

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

...

.

.

..

.

.

.

.

..

.

.

.

.

...

.

.

...

....

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

...

.

..

..

.

.

.....

.

..

..

.

..

.

.

..

.

.

...

.

..

.

.

..

..

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

..

.

.

..

.

.

..

..

.

.

...

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

...

....

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

...

..

.

.

..

.

.

.

..

.

..

..

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

..

.

.

.

.

...

.

.

.

.

...

..

.

....

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

..

.

.

.

..

....

.

.

.

.

.

.

.

.

..

..

..

.

..

.

.

.

.

.

...

.

.

.

.

.

...

..

.

.

.

.

.

....

..

.....

..

.

..

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

....

...

.

.

.

.

.

..

.

.

..

....

..

.

.

....

.

.

.

.

.

.

..

.

.

..

..

.

..

...

..

.

..

.

.

.

.

..

.

.

.

..

.

..

.

.

.

.

.

...

...

.

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

...

.

..

.

....

...

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

..

.

.

.

.

..

..

.

.

..

.

.

.

.

.

.

..

.

..

.

..

.

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

...

..

.

.

..

.

.

..

.

...

.

...

.

.

.

.

.

...

.

...

.

...

.

..

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

..

...

.

..

..

.

.

..

.

.

.

.

.

.

..

...

.

.

.

..

.

.

.

..

.

.

.

..

..

.

.

.

..

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

.

....

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

.

.

.

.

..

..

.

.

.

..

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

...

.

.

.

.

...

..

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

...

..

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

..

.

..

0 2000 4000 6000 8000 10000

0

50

100

150

200

250

300

350

node number

depth

a
v
er

a
g
e

∆
tr

ig
g
e
r

Figure 5.1 — Adaptation plot of the philips benchmark

0

5

10

15

20

25

30

..

....

......

...

.

..

.

.

.

.

.

.

.

.

.

....

..

.

.

.

....

.

....

.

...

..

...

.

..

.

...

.

.

..

..

...

.

.

.

.

.

.

.

.

.

.

.

...

..

..

..

.

.

.

.

.

.

...

.

.

.

.

.

.

..

.

.

.

.

....

.

...

..

.

.

.

.

.

.

.

..

...

...

.

...

.

...

..

.

.

..

.

..

.

...

.

..

..

.

.

.

.

.

...

..

.

.

.

.

..

.

...

.

.

.

.

.

.

...

.

...

..

.

.

.

..

.

.

.

.

.

....

...

.

...

.

..

...

.

.

.

.

.

..

.....

..

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

..

.

..

.

.

.

.

.

..

.

...

..

..

.

.

.

...

.

.

.

.

.

..

..

.

.

..

.

..

..

.

.

.

....

...

.

..

.

...

...

.

..

.

.

.

.

..

.

.

.

...

.

.

.

...

.

.

...

.

.

.

...

.

.

..

.

..

.

.

.

..

.

.

..

..

..

...

..

..

.

.

....

......

.

.

.

.

.

..

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

....

....

.

..

...

.........

.

.

.

.

.

..

..

.

.

..

...

.

.

..

..

.

.

..

.

.

..

..

.

.

.

.

..

..

..

.

..

...

...

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

..

...

..

..

.

.

..

...

.

.

.

..

.

..

.

.

.

.

.

..

.

.

.

.

.

...

.

..

.

..

.

.

.

.

..

..

.

.

.

...

.

.

...

....

.

.

..

.

..

.

..

...

.

.

..

..

..

.

.

.

.

..

.

..

....

.

..

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

...

..

.

.

.

..

..

.

.

.

..

.

.

.

...

.

.

..

.

..

.

.

.

..

..

.

..

..

.

.

..

.

.

..

..

...

.

.

.

.

...

.

.

..

.

.

.

.

..

.

..

.

.

.

...

..

..

.

.

.

.

.

.

.

...

...

.

..

..

.

.

..

.

...

.

....

..

.

.

.

..

..

.

.

.

.

.

.

.

....

.

.

.

.

..

....

.

..

...

..

..

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

....

.

.

.

.

...

..

...

.

.

..

..

.

...

..

.

.

.

.

.

..

.

.

..

..

..

.

.

.

.

.

.

.

.

.

....

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...

...

.

.

...

.

.

...

.

.

.

..

.

.

.

...

.

.

.

..

..

....

.

.

.

.

...

.

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

..

.

...

.

.

..

.

.

....

.

...

...

...

.

.

.

.

.

..

.

.

.

..

.

.

.

..

.

.

...

.

..

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

..

..

..

...

....

...

..

.

....

..

..

.

.

.

.

.

.

.

..

.

.

..

..

..

.

..

.

.

...

...

..

.

.

.

.

.

.

.....

.

....

..

..

..

.

.

.

.

.

.

.

..

.

.

.

......

..

.

.

.

.

.

.

.

.

.

...

...

.

.

.

...

.

.

.

.

.

.

.

..

.

.

.

..

..

...

.

.

.

..

.

.

.

.

...

.

.

.

.

.

.

.

.

..

..

..

..

....

.

..

.

.

.

.

.

...

.

...

..

.

.

.....

.

.

..

.

..

.

.

..

.

.

.

.

..

..

..

.

...

..

.

..

.

...

...

..

.

.

...

.

.

.

.

.

.

.

.

..

.

..

.

...

.

.

.

.

..

.

..

.

..

.

.

.

.

.

..

.

.

.

.

.

.....

....

..

.

.

.

..

..

.

.

.

..

..

..

.

.....

.

..

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

..

....

.

.

...

.

.

..

.

..

.

.

...

.

.

.

.

.

.

.

..

.

..

.

.

....

...

.

.

.

.

.

.

.

.

..

.

..

..

..

.

.

..

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

..

.

.

..

..

..

..

.

...

.

.

..

.

.

.

.

.

..

.

.

..

..

.

...

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....

.

...

.

.

....

.

.

...

..

.

.

.

.

..

.

.

....

..

.

.

.

.

..

.

..

.

.....

.

.

.

...

..

...

..

.

.

..

...

.

.

.

.

..

.

....

..

.

.

.

..

.

...

.

..

.

.

..

.

...

..

..

.

.

.

.

.

.

..

..

..

..

.

.

...

......

..

..

.

.

.

.

.

.

..

.

.

..

.

.

.

..

..

.

.

.

.

.

....

.

...

.

..

.

.

.

....

.

.

.

.

.

..

.

.

.

.

.

.

.

...

..

.

...

...

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.....

.

.

.

.

.

.

...

.

..

.

.

.

.

..

.

..

....

.

.

.

.

....

.

..

...

..

.

.

....

.

..

..

.

.

.

..

.

.

...

.

.

.

.

..

.

..

.

..

......

...

.

...

.

..

..

.

...

.

...

.

.

.

.

..

.

.

.

..

.

..

..

.

.

.

..

.

.

.

.

.

..

......

.

.

.

.

...

.

.

..

..

....

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

..

..

.

.

.

.

....

...

.

..

..

.

.

.

.

..

.

.

..

.

.

.

.

.

.

..

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

..

...

.

..

.

.

.

.

..

.

..

.

..

...

...

.

.

.

..

.

.

.

....

.

..

.

.

...

..

..

.

.

..

...

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

..

.

..

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

.

...

.

.

..

..

.

.

.

.

..

.

.

...

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

...

.

.

..

.

....

.

.

....

.

.

..

.

.

.

.

.

.

...

..

.

.

...

.

..

..

.

..

...

.

..

..

...

..

...

.

.

.

.

.

.

.

..

..

...

.

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

..

..

.

.

...

..

..

...

..

.

..

.

....

.

..

.

..

.

..

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.....

..

.

..

.....

...

..

.

.

.

..

.

...

.

.

.

.

.

.

..

..

.

....

.

..

.

..

.

.

.....

.

......

.

.

.

...

.

.

.

.

...

..

..

.

.

.

..

.

.

.

..

.

..

.

.

.

.

..

.

..

.

.

...

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

....

..

.

..

..

.

..

.

..

.

.

.

.

.

.

.

.

.

....

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.....

.

.

....

.

....

.

.

.

.

.

.

.

.

..

.

.

....

.

.

.

.

.

.

.

.

.

...

.

..

..

.

.

.

.

..

.

.

.

...

...

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

.

..

...

.

.

.

.

...

.

.

.

.

....

...

.

.......

.

....

.

...

..

..

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

...

..

.

.

..

..

.

.

.

.

....

...

.

.

.

.

..

.

.

..

.

.

.

...

.

..

..

.....

.

.

...

...

.

..

...

.

.

...

....

.

.

.

..

.

.

.

.

.

.

....

.

.

...

..

.

..

.

..

.

.

..

.

....

.

.

.

.

.

.

.

.

.

.

...

...

.

.

.

.

.

.

.

.

....

..

.

.

..

.

.

.

.

.

.

.

.

..

.......

.

.

.

.

.

.

...

...

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

...

.

..

..

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

...

.

..........

..

.

..

.

..

.

.

...

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

..

..

.

.

.

.

.

..

...

.

..

.

..

.

.

..

.

.

...

.

..

.

.

.

....

.

.

....

..

.

.

.

..

..

.

...

..

.

.

.

.

.

.....

..

..

.

.

...

..

.

.

.

.

.

.

.

.

..

.

.

....

..

..

..

.

.

.

..

.

....

.

.

..

...

.

..

.

..

.

.

.

..

.

..

...

....

.

.

..

......

....

...

.

.

....

.

.

.

..

..

.

.

...

......

.

.

.

.

...

.

....

..

.....

..

..

.

.

.

..

.

...

...

.

.

.

.

.

.

...

.

.

...

.

.

.....

.

.

.

....

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

..

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

..

.

...

.

.....

.

..

.

.....

.

..

..

.

..

.

.

..

.

.

...

...

..

.

.

.

.

..

.

.

.

.

.

.

.

...

..

.

.

.

.

..

.

.

.

.

..

.....

.

.

.

.

....

..

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

...

...

...

....

.

..

.

.

.

...

.

.

.

..

..

.

.

.

.

.

.

.

.

...

.

.

....

.

..

..

.

..

.

..

...

.

.

.

.

.

.

.

.

.

.

..

..

.

.

....

...

.

...

..

..

..

.

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

....

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

..

...

.

..

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.....

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.........

.

..

.

.

.

...

.

.

.

.

...

..

.

.

.....

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

..

...

..

.

..

.

.

.

...

.

..

.

.

.

.

.

..

.

.

....

.

.

.

..

..

.

.

.

.

.

..

.

.

.

.

.

...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

..

.

..

.

.

.

.

....

.

..

.

..

.

.

.

.

.

...

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

..

.

..

..

.

...

..

..

..

..

..

...

.

.

.

.

.

..

..

.

..

.

.

..

.

...

..

......

..

.

.

.

.

.

...

.

.

.

..

.

.

...

..

.

.

..

.

.

.

.

....

.

...

...

.

.

.

..

..

.

.

.

..

...

.

.

..

....

..

...

.

.

...

.

.

..

.

...

.

.

..

.

.

.

.

.

...

..

..

.

.

.

..

..

.

..

.

.

..

......

.

.

.

.

..

..

.....

.

..

.

.

.

..

.

...

..

..

.

.

.

.

..

.

.

..

.

.

.

..

.

..

..

..

....

..

.

.

.

...

.

.

.

..

.

.

.

.

.

...

..

.

.....

.

.

.

.

...

..

....

.

.

.

..

.

.

.

..

..

.

..

......

.

.

.

.

.

.....

.

..

..

.....

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

......

.

.

..

.

.

.

.

.

..

..

.

.

..

.

.

.

.

..

.

..

..

.

.

.

.

.

......

....

.

.

.

.

.

.

.

.....

.....

..

..

.

.

..

.

.

.

....

.

.....

.

..

..

.

.

..

.

...

.

.

.

..

.

...

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

..

.

..

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

......

.

.

.

...

..

..

.

.

.

.

..

.

.

.....

....

.

..

.

.

...

..

.

.

.

.

...

.

.

.

.

.

.

.

.

.

......

..

......

.

..

.

..

.....

.

.

.

..

.

.

.

.

..

.

.

.

.

.

....

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

...

.

..

..

.

.

.

.

...

.

..

...

..

.

...

..

...

..

..

.

.

.

.

.

.

.

...

..

..

.

..

.

.

.

..

......

..

..

..

...

.

..

..

.

..

.

....

..

..

...

.

.

.

..

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

..

.

..

.

.

.

....

..

.

..

..

.

..

.

.

.

.

...

.

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

..

..

.

.

.

..

.

.

..

..

.

..

..

..

.

.

..

.

.

.

.

.

....

...

...

.

.

.

.

.

.

...

..

.

..

.

..

.

...

.

.

..

....

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

..

.

.

.

.

.

.

..

..

..

..

....

.

.

.

.

...

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

..

.

.

..

..

.

.

..

.

..

.

.

..

..

.

...

..

.

.

...

..

..

.

.

.

.

..

..

.

.

.

.

..

.

.

..

.

..

.

.

.

..

.

.

.

.

..

.

.

...

..

...

.

.

.

.

.

...

.

..

.

...

..

.

..

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

......

.

.

.

.

..

...

..

..

.

.

.

.

.

...

....

.

......

.

.

.

.

.

.

.

.....

.

..

.....

.

..

.

.

.

.

.

.

.

....

..

.

.

.

...

..

....

.

....

.

.

.

.

..

.

.

.

.

..

..

.

.

..

.

.

.

.

.

.

.

..

.

..

.

..

.

.

...

.

.

.

.

..

.

.

.

.

..

.

.

.

....

.

.

.

.

.

..

.

..

.

.

.

.

.

.......

.

.

.

.

..

.

.

.

..

.....

.

.

..

.

.

.

.

.

..

..

.

.

..

.

.

..

.

..

.

.

....

..

.

.

...

..

.

.

.

.

..

.

.

.

.

...

.

.

.

.

.

..

.

.

.....

.

...

...

.

.

..

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

...

.

.

.

...

..

.

..

..

.

..

..

..

.

..

.

.

...

..

.

...

.

.

.

.

..

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

..

.

.

..

..

.

.

.

.

..

.

...

.

.

.

.

.

..

..

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

..

.

..

.

...

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

...

.

..

.

...

.

.

..

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

..

..

..

..

.

..

.

..

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

...

.

.

.

.

..

..

.

.

.

..

.

..

.

.

..

...

...

..

.

....

.....

.

.

.

.

.

.

.

.

.

.

.

.

.

...

..

..

....

.

..

..

.

.

....

.

..

....

..

.

..

.

..

..

.

.

.

..

.

....

.

.

.

.

.

.

.

...

..

.

...

...

....

..

..

..

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

...

.

.

.

.

.

.

.

.

.

...

..

.

.

..

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

..

......

.

.

.

.

.

.

..

.....

.

.

.

.

..

.

.

.

.

.

.

.

..

.

....

.

.

..

.

...

.

.

.

.

..

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

..

.

..

.

..

.

....

.

.

.

...

.......

...

..

.

.

.

.

..

...

..

..

..

....

.

....

.

.

.

..

..

.

.

.

.

.

.

.

....

..

...

.

.

.

.

.

.

.......

....

.

...

.

.

.

.

.

.

...

.

..

.........

.

.

.

.

.

.

.

...

.

.

.

.

....

.

.

.

.

..

.

..

.

.

.

..

.

.

.

.

.

.

..

....

.

.

.

...

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

..

.

.

.

..

.

.

...

.

.

.

.

..

.

.

....

....

....

..

.

.

.

..

.

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

...

..

....

..

.

.

.

.

.

..

.

...

.

.

.

.

..

.

..

...

..

..

.

.

.

.

..

.

..

...

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

...

...

..

.....

.

...

.

.....

..

....

.

....

.

.

..

.

.

.

.

.....

..

.

..

.

.

.

..

..

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

..

.

..

.

..

.

...

...

.

.

.

.

.

....

.

...

....

.

.

..

.

..

.

.

.

..

..

.

.

.

.

.

.

..

.

...

.

.

.

..

..

.

..

.

....

...

.

.

.

..

....

.

.

..

...

.

..

.

..

.

...

..

.

..

.

.

...

.

.

.

.

..

..

.

.

..

.

.

.

.

.

.

..

.

..

.

.

....

.....

.

.

..

.

.

.

..

...

..

..

.

.

.

...

.

.

.

.

...

..

..

..

..

..

.

.

..

.

.

.

.

..

..

.

.

...

.

.

.

.

.

.

.

..

.

..

..

.

....

..

.

.

...

.

.

.

..

..

.

..

..

....

.

..

.

.

.

.

.

..

..

..

...

.

.

..

.

.

.

.

.

.

.

..

...

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

..

.

.

..

.

.

..

.

...

.

.

.

....

.

...

.

...

.

...

..

.

.

..

.

.

.

.

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

.

..

..

.

....

..

.....

.

.

.

...

.

..

..

.

..

.

.

.

.

..

..

.

.

.

..

.

.

.

.

..

.

....

..

.

.

.

.

.

..

.

.

....

.

....

.

.

..

.

.

.

..

...

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

..

..

.

..

.

.

.

.......

..

..

..

.

.

..

..

.....

...

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

.

.

...

..

.

....

.

.

.

...

....

.

.

...

.

.

.

.

.

.

.

.

..

...

.

..

.

.

.....

.

..

.

.

.

.

..

..

.

..

.

..

.

.

..

.

.

..

.

...

.

.

.

.

..

..

.

.

....

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

...

.

.

.

.

.

.

..

.

.

.

.

.

.

..

...

.

.

...

.

...

.

..

.

.

..

.

..

.......

..

.

........

.

.

.

.

.

.

.

.

...

.

.

....

...

.

.

.

.

.

...

...

.

.

.

..

....

.

.

.

.

.

..

..

..

..

.

.

.

.

.

.

...

.

.

..

...

.

.

..

...

.

.

.

.

.

..

..

.

.

.

..

..

...

.

..

.

.

..

.

.

.

.

..

.

..

...

.

.

.

.

.

.

..

.

.

...

..

.

.

..

.

.

..

..

....

..

.

....

.

.

.

..

.

.

.

.

.

.

.

..

....

.

..

.

..

..

.

.

.

...

..

..

.

.

.

.

.

.

........

.

.

.

.

.

.

.

.

.

..

.

.

.

..

..

..

...

..

.

.

.

.

...

..

..

.

.

..

.

.

...

.

..

.

.

.

....

.

.

..

.

..

.

...

..

.

.

.

..

.

...

.

.

..

.

.

.

.

.

.

.

.

.

..

.

..

.

..

..

.

.

...

.

.

..

....

.

.

.

.

.

.

.

....

.

.

.

..

.

.

..

...

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

...

.

..

.

..

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

..

.

...

..

.

.

.

.

.

...

...

..

.

.

..

..

.

.

.

.

.

.

.

..

.

.

...

.

.

.

.

.

.

.

..

.

...

.

.

.

.

.

...

.

..

..

.

...

.

.

.

.

.

.

.

..

.

..

.

.

.

...

.

..

..

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

...

...

.

.

...

.

......

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

...

.

.

.

..

......

.

.

.

.

.

..

..

.

....

.

.

.

.

.

...

.

..

..

.

.

..

.

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

.

..

..

.

.

..

...

..

.

.

.

.

.

.....

..

..

.

.

.

..

.

.

.

.

.

.

.

..

.

.......

.

..

.

.

..

.

.

....

.

.

.

.

.

..

...

...

.

..

.

.

..

.

.

.

.

.

..

...

.

..

..

.

.

.

.

..

...

..

.

...

..

.

.

.

.

.

.

.

....

.

..

.

.

..

.

...

..

.

...

.

..

.

.

.

.

.

...

...

.

.

..

.

.

.

.

...

.

..

.

.

..

.

..

.

.

..

....

.

.

.

..

.

.

.

.

.

.

.

...

..

....

.....

.

.

.

.

.

.

.

.

.

.

.

.

..

.

...

.....

.

.

.

.

..

.

...

...

.

.

..

.

.

.

.

.

.

....

.

.

.

..

.

.

....

.

.

.

.

...

.

..

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

..

...

.

..

....

.

..

...

...

.

.

.

..

..

.

..

..

.

..

..

.

.

.

.

..

.

.

.

.....

.

.

.

.

....

.

.

.

.

.

....

..

.

.

.....

...

.

.

.

..

..

..

.

.

.

.

..

.

.

.

.

...

.

.

.

.

.

.

.

..

.

.

.

...

..

.

..

...

.

.

.

.

.

..

..

...

.

.

.

.

.

.

.

.

.

.

.

.

....

.

..

..

.

..

.

..

..

.

.

.

..

..

..

.

...

.

.

..

..

.

.

.

.

.

..

.

.....

..

.

.

.

.

.

..

..

.

.

..

.

...

.

..

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

..

.

...

.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.....

......

.

.

.

..

.

..

.

.

..

..

.

.

.

.

.

.

.

..

.

.

.

....

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.....

......

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

..

..

.

..

.

.

.

.

...

..

..

.

.

.

..

...

.

.

.

.

..

.

.

..

.

.

..

.

....

.

.

...

.

.

.

.

.

.

..

.

.

..

..

.

.

.

..

..

......

.

..

.

......

.

.

.

...

...

..

.

....

....

..

..

.

.

..

.

.

..

...

.

..

.

.

.

.

.

.

..

..

.

.

.

...

.

.

..

..

.

.

..

.

.

.

.....

..

.

..

.

.

..

...

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

....

.

..

.

...

.

.

..

.

.

.

......

..

.

.

..

.

.

.

..

.

..

..

.

.

.

...

..

.

.

.

.

.

.

.

.

.

.

.

...

..

...

.

.

.

.

.

..

..

...

..

..

.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

..

.

......

...

.

.

.

.

.

..

..

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...

..

.

...

.

.

.

..

.

.

.

..

.

.

.

.

.

..

.

.

.

.

..

.

.

...

.

..

.

..

..

....

.

.

.

...

.....

.

.

...

..

.

..

.

.

..

..

...

..

.

.

.

.

.

..

.

.

.

.

..

...

.

....

.

.

.

..

.

..

.

.

...

.

..

.

.

.

..

.

.

.

.

.

..

...

..

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

...

...

.

.

..

..

..

.

...

........

.

.

.

.

...

..

.

.

.

.

.

.

.

..

..

.

...

....

.

..

..

..

.

..

....

..

.

..

.

..

.

..

.

.

..

.

...

..

.

....

.

.

.

.

.

..

.

..

..

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

...

.

.

.

.

..

.

.

..

.

.

.

..

.

..

.

.

.

.

.

.

..

..

.

.

.

.

..

.

...

..

.

.

.

.

.

.

.

..

.

....

..

.

.

.

..

.

.

.

...

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

.

.

..

.

..

..

.

...

.

..

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

....

...

...

...

.

.

.

.

.

....

..

..

..

...

.

.

....

.

.

..

.

..

.

.

.

.

.

....

.

.

....

.

..

...

....

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

..

.

..

.

..

.

.

.

...

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

....

...

.

.

..

.

.

.

.

..

.

....

....

.

.

.

.

.

....

.

.

.

.

.

...

...

..

.

.

....

.

..

..

.

...

.

..

.

.

.

..

.

.

..

.

.

.

.

...

..

.

.

.

....

..

.

..

.

..

....

.

....

.

..

.

..

...

.

..

.

.

..

...

.

.

.

.

...

.

.

.

.

..

.

..

..

..

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

....

.

.

.

..

..

.

.

.

.

..

.

...

.

.

.

.

...

..

.

..

..

.

.

...

.

..

.

.

.

.

.

.

.

.

...

...

.

..

.

......

...

.

..

.

.

.

..

..

.

.

..

.

..

.

.

.

...

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

..

.

...

.

.

.

.

.

.....

.

.

.

..

.

.

.

.

.

..

...

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

...

.

.

...

..

.

...

.

.

.

.

.

.

.

..

...

..

....

..

.

.

...

....

..

.

.

.

..

.

..

..

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

.

.

.

...

.

...

......

.

..

.

.

.

.

.

.

.

.

...

....

..

.

.

..

..

.

.

.

.

..

.

..

.

...

.

..

.

.

....

...

.

..

.

.

.

.

.

..

.

.

..

.

.

..

.

.

......

.

..

.

..

.

.

.

.

.

.

.

..

..

.

.

.

..

..

.

.

..

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

.

.

....

.

..

.

...

.

....

..

..

.

.

.

.

.

....

.

.

.

.

.

.

..

.

.

.

.

.

...

..

.

.

....

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

..

.

.

..

.

..

...

..

.

.

.

.

..

.

.

..

.

.

..

.

.

...

.

..

.

.

...

.

.

.

.

.

..

.

.

.

...

.

.

..

.

..

.

.

.

.

.

.

....

...

...

..

.

.

.......

.

.

.

.

......

.

.

....

.

...

...

.

..

.

.

.

...

.

.

.

.

...

...

..

..

......

..

..

.

.

..

.

.

.

..

.....

.

..

.

.

....

.

.

.

...

.

.

.

...

.

.

.

.

.

.

.

....

..

.

.

.

....

.

...

.

.

..

..

..

.

..

.

.

.

....

..

0 2000 4000 6000 8000 10000

0

50

100

150

200

250

node number

depth

a
v
er

a
g
e

∆
tr

ig
g
e
r

Figure 5.2 — Adaptation plot of a random 3-Sat formula with n = 350, ρ = 4.26

68

5.6. CONCLUSIONS

0

5

10

15

20

25

..

.

..

..

.

..

.

...

..

.

..

..

.

..

..

..

.

..

.

..

...

.

..

..

.

..

.

.

....

...

..

...

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

...

.

.

.

..

..

...

..

.

.

..

.

..

..

...

.

.

.

.

.

.

..

..

.

..

..

.

..

.

....

..

.

..

...

.

.

.

.

.

.

.

.

.

.....

...

.

...

...

..

.

..

..

..

..

..

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..

..

.

.

.

...

..

.

..

....

..

.

.

..

.

...

..

...

.

.

.

.

...

.

.

.

..

...

..

.

.

.

..

..

..

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

...

.

..

..

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

...

..

..

..

..

.

.

.

...

.

.

..

.

...

..

.

..

.

..

..

....

..

.

.

.

.

..

..

.

.

.

.

..

...

.

.

..

..

...

.

..

...

.

.

.

.

.

.

.

....

.

.

...

..

..

.

....

.

.

.

.

.

.

.

..

.

.

..

.

..

...

...

.

.

.

.

.

.

.

..

..

..

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

....

.

.

.

....

.

.

.

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

...

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

...

.

.

.

..

..

.

...

.

.

.

..

..

..

.

..

.

...

...

..

..

....

.

.

...

.

.

.

.....

.

.

.

....

.

.

.

.

....

.

.

.

.....

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

....

.

.

.

..

...

.

.

.

.

.....

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

.

..

.

.

.

...

..

...

.

.

...

.

..

.

..

.

..

...

..

..

.

.

.

..

.

...

.

..

.

...

....

.

..

.

..

..

.

..

.

.

..

.

..

.

.

.

..

..

.

..

..

..

.

..

.

..

.

..

.

.

.

.

...

..

...

.

..

.

.

.

...

....

.

..

...

.

.

...

...

.

.

.

.

..

.

.

.

..

.

..

.

..

.

.

.

..

..

.

.

.

....

.

.

.

.

....

.

.

.

....

..

.

.

.

....

.

.

.

....

.

.

.

.

....

.

.

.

.....

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

..

..

.

.

....

.

..

.

..

...

.

.

.

.

...

..

.

..

.

.

...

.

..

.....

...

....

.

.

.

.

.

..

.

.

...

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.....

.

..

.

.

.

.

.

.

.

.

..

.

.

...

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

..

..

.

.

.

.

..

.

....

.

.

.

..

.

.

.

.

..

.

.

.

.

...

..

.

..

.

.

.

.

.

.

....

.

.

.

....

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.....

.

.

.

.....

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

......

.

.

.

..

.

.

.

..

..

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

.

...

..

..

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

...

.

.

.

.

.

..

.

.

..

.

..

.

...

.

.

..

..

.

..

.

..

..

...

.

.

..

..

.

.

.

..

.

..

.

.

..

..

.

.

.

..

..

..

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.

.

.

.

..

..

.

.

.

...

..

..

.

.

.

..

..

..

.

.

.

.

.

...

.

.

.

.

...

...

..

.....

..

.

.

.

.

.

.

...

.

.

.

....

.

..

.

.

..

..

.

.

..

.

.

.

.

.

.

...

.

..

..

..

.

...

..

.

..

..

.

.

.

..

...

.

.

.

....

..

.

..

...

..

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

...

.

..

.

.

...

....

.

..

..

..

.

..

...

.

.

.

.

........

.

.

.

.

.

.

.

.

.

.

....

.

.

.

....

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....

.

.

.

.....

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.....

.

.

.

....

.

.

.

....

.

.

.

.

.

.

.

.

.

.

....

.

..

.

.

.

....

.

.

.

....

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

...

.

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

..

..

.

.

...

.

.

...

.

.

.

.

..

.

.

.

..

..

.

.

.

.

.

.

....

.

.

.

..

.

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

.

....

.

.

..

.

..

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

....

.

.

.

.

.

..

.

.

..

.

.

.

.

.

..

..

.

.

.

..

.

.

.

....

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

......

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

....

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.....

.

.

.

....

.

.

.

....

.

.

.

.

.

...

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

....

.

.

.

....

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

...

.

.

.

.

.

.

..

.

.

....

.

.

.

.

..

.

.

...

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

...

.

......

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

....

.

..

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.....

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

...

..

.

.

..

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

....

..

.

.

..

.

.

...

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

....

..

.

.

...

.

...

..

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

....

.

....

.

.

.

....

.

....

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

....

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

....

.

....

..

.

.

.

...

.

.

.

.

..

.

...

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

..

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

...

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

..

.

..

..

.

..

.

..

..

..

.

..

.

..

.

.

.....

.

.

..

...

..

.

..

.

...

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

..

...

..

....

.

..

.

.

..

.

..

.

.

..

.

...

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

...

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

...

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

...

.

..

.

....

..

..

.

...

.

..

.

...

.

.

.

......

.

..

.

...

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

...

.

.

.

...

..

.

...

.

.....

.

.

.....

.

.

.

...

.

..

.

..

..

..

..

..

..

..

.

..

......

.

.

.

...

.

..

.

..

...

...

..

..

..

..

.

..

..

..

.

.

.

.

.

.

...

.

.

.

.

...

...

..

.

.

..

..

.

.

..

..

.

.

.

..

.

.

.

.

......

.

..

.

...

..

.

.

.

.

.

.

.

...

.

.

.

..

.

..

.

...

.

.

.

...

.

..

.

....

..

..

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

..

.

.....

.

.

..

..

.

...

.

...

......

.

.

.

...

.....

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

.

...

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

...

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

...

..

.

.

.

.

..

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.....

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

.

.

..

.

.

.

.

.

..

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

...

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

...

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

..

.

.

.

...

..

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..

..

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

...

.

.

..

.

..

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

....

..

.

.

.

..

.

.

..

..

.

.

.

..

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.....

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

..

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

...

...

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

...

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

...

...

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.....

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

......

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

....

.

.

..

.

..

.

.

.

.

..

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

....

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.......

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

...

.

.

.

.

..

.

..

.

.

..

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

...

.

.

.

.

.

.

.

..

..

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

...

.

.

..

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

...

.

.

.

.

..

.

..

.

.

.

.

.

.

..

...

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

....

..

.

..

..

..

.

..

...

..

.

..

..

..

.

..

....

.

.

.

.

.

.

....

.

.

..

.

.

.

.

.

.....

.

....

..

....

.

....

.

.

.......

.

.....

.

......

.

....

.

.

.

....

.

...

.

.

.

.

.

.

..

.

.

.......

..

.

.

......

.

.

.

.

.

.

.

...

...

.

....

.

.

.

......

.

...

..

.

.

...

..

.

....

..

....

.

....

.

.

.

.

.

.

....

.

.....

.

.

....

.

......

.

.

.

..

.

..

.

.

..

.

..

..

.

..

.

..

.

..

.

..

.

.

.

.

.....

.

....

..

....

.

.

....

.

.

.....

.

....

..

...

..

.

.....

.

.

.

.

.

.....

.

...

..

.

.

.....

.

....

.

.

.

...

..

.

....

.

.

....

.

.

...

...

.

.

...

..

.

....

.

.

....

.

....

.

.

...

..

.

....

.

..

....

.

......

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

...

.

..

.

..

.

.

.

..

..

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

..

.

..

.

..

..

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

....

..

.

.

.

.

.

.

.

.

.

..

.

...

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

..

.

..

..

.

.

.

...

..

.

..

.

.

..

..

..

.

.

.

.

.

.

....

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

...

.

.

.

..

.

..

.

.

.

.

.

.

.

.....

.

...

...

..

.

...

.

..

..

..

.

..

.

.

.

.

.

.

...

..

.

.

.

.

.

.

...

.

.

.

..

.

..

.

...

.

.

.

.

.

..

..

.

..

..

.

.

.

.

.

.

.

.

..

.

.

.

......

.

..

.

.

....

.

....

.

.

.

......

.

..........

.

.

...........

..

.

..

.

.

..

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

..

.

.

......

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......

.

......

.

.

......

.

......

..

.

.

.

..

.

..

..

.

.

..

.

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.

.

......

.

......

.

.

.

.

.....

.

.

......

..

...

.

.

.

.

.

.

.

.

....

..

...

..

.

.

.

.

...

.

..

.

.

.

......

...

......

.

.

......

.

......

...

.

.....

.

.

...

.

....

.

.

.

.

...

..

.

.

.

.

.

.

......

.

......

.

.

......

.

..

..

....

..

...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

......

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

.

..

.

.

.

....

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

...

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

..

.

.

.

.

.

.

.

..

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

..

.

.

.

.

.

...

...

...

..

.

..

..

..

.

..

...

..

.

..

..

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

...

..

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

...

.

.

..

.

.

....

.

..

...

..

.

...

.

..

..

.

...

.

...

...

.

.

..

.

.

...

.

...

.

..

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

..

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

...

.

.

.

.....

.

..

..

.

.

..

.

.

.

....

.

.

.

.

..

.

..

...

.

.

.

.

...

.

.

....

.

.

.

.

....

...

...

..

.

..

.

.

.

....

.

.

.

.

.

.

..

..

.

..

.

.

.

....

...

.

..

.

...

.

.

....

.

.

.

.

.

..

.

.

.....

.

.

..

.

.

..

.

.

..

.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

..

.

..

.

.

..

.

...

.

.

...

.

...

.

.

.

..

.

...

.

..

.

...

.

.

.

..

.

.

...

.

...

..

.

.

.

....

.

.

..

.

.

..

.

.

..

.

....

.

.

.

.

.

..

.

.

.

.

..

..

.

..

..

.

.

.

...

.

.

.

..

.

.

.

...

.

.

..

.

.

...

.

...

..

.

.

..

...

.

.

.

.

...

.

.

.

.

.

...

.

..

.

...

.

.

.

.

.

.

..

0 2000 4000 6000 8000 10000

0

200

400

600

800

1000

1200

1400

node number

depth

a
v
er

a
g
e

∆
tr

ig
g
e
r

Figure 5.3 — Adaptation plot of connm-ue-csp-sat-n600-d0.04-s1211252026

0

5

10

15

20

25
.
.

.

.

.

.

.

.

.

.

....

.....

..

.

.

..

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.......

.

.

.

..

....

.

..

..

.

..

.

...

.

.

..

...

.

.

..

..

.

..

.

.

..

.

..

..

..

..

....

.

.

.

.

.

..

..

...

..

...

.

.

...

...

.

.

.

...

..

..

....

...

.

..

..

.

.

...

.

.

..

..

.

..

..

.

..

..

.

...

.....

...

...

..

.......

...

..

...

....

....

.

.

....

..

.

.....

.

...

....

..

..

.

..

..

.

.

.

.

.

.

..

.

..

.

.

.

.

...

.

.

...

...

....

.....

.

....

....

.

..

..

...

...

...

.

...

..

.

..

...

.

.

..

.

..

...

....

.

.

.

..

.

.

..

...........

.......

.....

.

..

.......

..........

.............

.......

.....

...

..........

.......

...

..

....

....

.............

..

....

.

.........

...

..........

..

...

...

........

...

....

................

.

.......

....

........

..

...

..

.

..

...

.........

...

........

......

...........

......

..........

.......

....

.......

.....

..

..

...

....

.

..

..

.

.

.......

.....

....

...

...

...

........

..

..

.

...

..

........

.

...

......

.....

...

.

........

..

.

.

...........

..

.

..

..

...

.......

...

.

.....

...

........

.

..

.........

...

..

..........

.........

.....

.

...

.

....

.

..

...

.

.

.

.

.

.

.

.......

.

......

......

.......

..

...

.......

........

......

...

..

.......

.

...

..

....

....

.

...

.

..

.

.

.

...

..

....

..

.

................

.....................

...........................
.........
..
.
......................
.
.
.......................
......
....
...........................
...............
..
..
......................
........
..............
...............
...
......
..........
.
.
.
.
.....................................
............
.....
...............
..........
....
.......
..
..
..
.....
.
..
.
.......
.
..
.....
.........
........
.............
..
........................
.....
......
...
.............
.
..
.
.......
.....

..

.....

....

......

..

..........

......

........

..............

........

...................

......................

..........

.......................

..

......

..

.

..

..

........................

.

.

.......

.........

.....

.

.........

..........

........................

........

.

...

.....................

......

..

............

...

.

.....

......

.......

......

..

.

..

...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

....

...

.

.

.

.

..

...

.

....

..

....

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

....

..

..

...

..............

..

....

...

.

....

..

.

..

.

..

..

.

.

..

.

...

..

.

..

.

....

......

...

.....

....

.

.....

...

.....

.

..

.....

....

.....

..

.......

.

.

.........

..

...........

.........

......

....

....

..

..

.....

...

................

.....................

...........

....

........

...

.......

................

.........

..............

...

.

...

.

...

.....

............

.

..........................
.............
...
....
.......
.
..............
.
.....
.

.

.

.

.

.

.

.......

.....

.

...........

........

..

..........

..

.....................

.....................

...................

..

..........

..........

.....

........

.....

..

...

..

.....

..

.

...

.

.

..

.

...

.

.

.

.......

.

.

.

.........

....

...

..

...........

..

........

.........

.....

.

.........

..

..

.................

..................

......

.

......

..

....

..

......

............

................

.

....

.

.

.

..............

..

.....

.

.....

.....

.

........

.....

..........

.

...

........

.......

.

.

..

........

.

...............

...

..

....

.

.

...

.

......

..

.....

.........

...

....

...

.....

......

.

.......

..

.........

....

..

.

.

.

..

......

.......

...

...

...

...

...

...

...

.

.............

.............

......

.....

..

.

..

..

.....

..

..

.

....

.

.

.

.

....

....

.

.

.

.

....

.....................

........

...

....

.

.

..

..

...

...

.

.

........

..

.

.

....

.

.

.

..

.......

.....

.....

..........

.

....

....

.

...

....

.

.

....

....

..

.

.

..

..

.....

..

...

.

..

.

.

.

.

..........

...

.....

.......................

..

....

........

....

.

.

.

.

.

..

........

.....

.

.

.

..

.

..

...

.

..

.

.

..

...

...

........

..

.

..

..

.

.

.

.

.

...

.

..

.

..

...

..

.....

............

..

.

.

..

.

.

...........

...

...

.....

.........

...

.

...

.

.

.

...

.

.

.

.

..

.

...

.

.

.

.

.

.

..

.....

..

..

....

....

..

.....

......

.

..

....

..

...

..

....

.

.

.

.

..

..

.

.

.

.

....

..

..

.

...

.......

.............

.........

....

.

.

..

...

....

.

.

.

..

.

....

.

......

......

........

....

...........

..

.

....

............

.

..

......

....

...

.............

.....

..

...

..

...

.

.........

...

..........

..

.............................
.
..
.
..
........
......
.....
.
.
..
.......
..
.
..
..

....

.

...

..............

.

.....

..

..

..

.

..

.....

..

..

..

.

..

...

..

.

..

..

.

.

........

...

..

..

.

.

.

....

...

..

.

..

.

...

.

...

.

...

..

.

.........

.........

..

..

...

..

.

..

...

...

......

..

.

.

.

..

...

.....

..

.

..

.

.....

...

......

..

.

....

...

.

...

...

..

.

....

.......

..

.....

..

..

..

.

..

....

..

.

..

..

..

.

..

.

....

.

..

..

.

.....

....

.

..

.

.

...

.....

.

.

...

...

...

.....

....

....

.

.............................
................
......
.
.
..
.......
.......
..
.....
.
.

..

..........

.

...

.

.

....

.........

.......

..

.

..

.

..

.

.......

.......

..

...........

..

...

...

..

....

..

...

....

..

.......

..

.

.

..

.

......

..

..

.

.

....

.....

..

..

.

..

.....

......

..

..

.

.

.

..

....

..

..

..

.

...

.

......

..

.

.

.

.

..

..

...

..

..

.

.......

.

.

.

...

.....

.

.

...

..

.

......

............

.....

...

......

...

.

...

.

.

.

.

.

...

.

.

....

.

.

..............

........

.....

...

.........

....

...

................

...................

...

...

...

...........

...

.

......

.........

....

..............

........

.......

.....

..

.

....

...............

.............

...........

......

....

.

.............

............

.....

.....

........

....

..

...

.

.......

......

.....

..

.

.

.

..

...

...

....

.

..

.

.........

......................

.

....

...

..............

..

.....

..

.

...

.....

...

.

.

....

..

..............

.........

..

...

.

......

................................
.............
..
..
...
..
................
....
....
..
..
...
...........
........
.
..
..............
...........
..
.........
...........
............
..
......
.......
.
..
....
..
..
.
.
......
....

.

.

.

.

..

..

...

.......

..........

..

....

.

..

.

.

.

.

......

...........

..

.....

................

.........

....

.

........

..

.

...

....

.

........

.

.......

..

.

.

..

.

.

....

.....

.......

.....

..

.................

..........

..

.

.

.........

...

..

...........

..

.........

.

.

........

.

...

..

..

.....

.

...

.........

..

.

.....

.

....

.

.

.

...

..

..

.......

..

.

....

.....

..

..

..

.

..

...

......

..

....

..

..

.............

....................

.

.....

..

..

....

.......

..

............

.

..

..

..

.

....

.....

.

..

.....

..

...

...

.....

..

.

..

.

.

..

..................

.....

.....

..

...........

...

....

.

.

..

.

...........

.

............

....

.

.....

......

...

..

....

.......

.

.

....

.....

...

......

.....

.

..

...

........

..

.

..

....

...

.

......

.......

.

..

...

...

......

...

.

..

.

......

..

.

.

...

.

.....

.

....

.

.

.

.

.

.

.

..

.

..

....

.......

.

.....

.........

...

...

....

...

........

....

..........

...

.

...

...

...

.......

.

..

..

...........

...........

......

..

..

........

...

..

.

...

..........

.........

..

..

.

.

...

...

..

.

...

......

.......

.

.

.

...

.

.

........

.

.

...

..

....

..

.....

.............

..

.

.

.

..

......

......

..

.

.

.

..

.....

..

......

.....

.....

.......

....

....

....

..

.

......

.....

..

.

.........

.....

......

.......

......

...

..

.....

.

..

.........

...

...

.

..

.

...

.

....

.....

..

..

...

..

.

.

.

.

..

....

...

...........

.....

..

.

.

..

..

.

......

.

.....

.

.........

........

...

...

.

..

.

.

.

..

.........

..

....

.......

...

...

...

...

..

.

..

......

.....

.....

..

.

..

..

....

...........

...........

.

..

.

....

.

.........

.....

...

....

...........

..........

...

.

..

.

...

...

..

..

...

.

.

.

..

...

...

.....

..

......

.

.

...

......

.....

...

..

.....

..

.

.

....

.

.

..

.

.

.

...........

.

.

....

....

...............

............

.....

...................

...

...............

................

....

....

..........

..

....

......

.....

.....

...

.........

.........

..

.........

...

..

........

...

...

..

......

...

.....

.......

.

.......

.

........

...

..

..........

.

.....

...

..

.

..

..

.....

.....

.......

.

......

..

.......

...

..

..........

...

.

.........

.....

..

...

........

.

.......

.......

............

....

...

..........

........

.

..

....

.

.

.

..

..

.

..

..

.

.

.

.

.........

...

..

...

.............

.

.

.

...

...

..

.........

...........

....

..

........

.......

......

..............

...............

..

.........

......

........

....

.........

....

.

............

..

.

...........

.....

....

.......

.....................

.

...

.....

..

.

..

....

.

...

.....

..

.

..

...........

.

.....

.......

.

...

...

.........

.

.

..

.........

..

.........

.....

.

.

.

.......

..

..........

.......

.

....

..

...............

...........

..............

.......

...........

...

........

............

..........

....

....

.

.

............

................

.

...

.....

.

.

.

....

...

.

..

.

...

.................

..

..

......

.

.........

...

..

..

....

......

...

.

.

.

....

......

.

..

.

.....

.......

....

........

.....

.........

.

.

.

..

........

.

.........

.

..

.......

....

...........

..

.

.........

..

.....

.....

.

.....

.......

...

.....

.

.........

.......

..

..

.....

....

..

.

...

.....

.....

..

..

........

...

...

.......

.

.

.

.

.

.

..........

...

....

.............

.

....

....

...........

.......

.................

...

..

...

.

..

.

..

..

..

.....

..

.........

.

....

.....

..

.

.

.......

........

..

....

...

................

...

.

............

........

.........

......

............

..............

..

........

........

.....

..

....

...

..

.......

...

........

.

...

.

........

...........

........

.........

.

....

...........

........

.............

........

.....

.......

.

.....

.

....

....

.

..

.

..

..

............

..............

.......

..

.....

..

..............

.................

..

.

......

.......

........

...

......................

..

.

....

.

..

....

..........

.....

..

...

..

...

....

..

.

.

.

..

...........

.....

..........

..

....

......

....

...

...

.

...

.

..

.

.

.

...

..

....

.

.

.

..

.....

..

.

........

.

.

...

..

.

....

...

.

..

.

...

.

...

.

.

..

.

.

.......

....

.

.

.

.....

.

.

.

.

..

...

....

.

..

......

....

.

........

..

.

.......

......

....

........

.

.

.........

.

....

....

............

....

...

.......

.

.....

.....

.

.

........

.

..

...

.

.

.

.....

...

.

...

...

..

......

.

..

.

.......

.

...

..

.

..........

.......

........

.....

..

.

..

...

......

........

..

...

.....

..

....

.........

..

...

..

....

.......

...

...

.

..

...

.

..

.

.

......

...

.

..

.....

.

....

.........

...

..

..

...........

....

...........

.....

..

...

.

....

.

......

...

.

.

.

..

...

.

...

.

...

...

.....

......

.

......

.

......

...

....

.......

.

....

.

..

......

.

...

.

..

.

..

.

.......

...........

.

.....

.........

....

.

.

....

...

.

...

...

...

.....

..

...

..

..

.

.

..

......

....

.

..........

....

.

...

......

......

..

.

.

..

..

.

.

..

.

.

.

..

..

.

.

.

.

...

...........

...

.......

....

.

..

........

..

...

...

..

.

.....

...

..

.

.

.

.

....

.

..

..

...

.

.

.

.

.

.

.

...........

.

.............

....

.....

..................

.......

.....

....

......

..

..

....

..

..

...........

.......

................

......

.....

.

.

....

...........

............

...........

.........

......

................

.............

.......

......

.

....

....

....

...........

........

....

...

......

..

..

...

...

.

.

.

.

.

.

......

.

.

....

......

....

.......

..

...

.

..

..

....

..

.

..

....

....

.....

...

...

......

..........

..

......

.......

.........

..

.

..

...

....

...

...

.

..........

...

....

........

...

.....

...

.......

...............

..

.............

.........

...................

....

.

.

.

..........

.

..

..........

......

.........

..

..

.....................

.....

.

.....

.....

.......................

.............

.

....

.

.....

..................

...........

.

..........

..............

..........

........................

...............

.

..........

......

.

......

..
.....................................
...................
..............................
.
..
.................................
..
...............
.....................
....
.
....
..
.
.
..
........................
...............
.

.

.

..........

.

.

.

....

.........

.....

...

.

........

......

..

0 2000 4000 6000 8000 10000

0

200

400

600

800

1000

1200

node number

depth

a
v
er

a
g
e

∆
tr

ig
g
e
r

Figure 5.4 — Adaptation plot of pyhala-braun-unsat-35-4-03

69

I am not left,

I am not right,

I am straight-forward.

Rita Verdonk, dutch MP 6
Direction heuristics∗

Intuition about where you should search can be a very powerful tool to solve
problems. Recall the Maniac Mansion example and consider yourself a deity
with perfect, flawless intuition. Searching for the key is now much easier: Just
follow your intuition and if the key is not in the first room you look for it, there
is none. Otherwise, just help yourself out.

However, there are no humans with perfect intuition. So, imagine that you
are a woman: You have some intuition, albeit not perfect. This too could help
the search, although less substantially. Again, the best place to look first is
the room where your intuition leads you. But, if the key is not there, how to
continue the search process?

Current search strategies use intuition to get to the first room and continue
searching in the nearby rooms. Yet, this might not fully exploit the power of
your intuition: Say, while walking to the first ”most intuitive” room, there was
a crossing where your intuition was not clear. Turning left and turning right at
that crossing were both appealing. We propose not to continue searching the
nearby rooms, but to return to that particular crossing and this time take the
opposite direction. Although such a strategy is more costly – the next preferred
room may be quite some distance away – you may find the key much faster.

Applying this idea to Sat solving, we made two important contributions.
First, we studied the intuition observed while solving different formulae (man-
sions) by different Sat solvers (women). Second, to capitalize on the observed
intuition, we formalized a search strategy which selects the most appealing prior
crossing to return to in case the key was not found in a certain room.

∗This chapter is based on: Marijn J.H. Heule and H. van Maaren. Whose side are you on?

Finding solutions in a biased search-tree. Submitted to the Journal on Satisfiability, Boolean
Modeling and Computation.

71

CHAPTER 6. DIRECTION HEURISTICS

6.1 Introduction

Various state-of-the-art satisfiability (Sat) solvers use direction heuristics to
predict the sign of the decision variables: These heuristics choose, after the se-
lection of the decision variable, which Boolean value is examined first. Direction
heuristics are in theory very powerful: If always the correct Boolean value is
chosen, satisfiable formulae would be solved without backtracking. Moreover,
existence of perfect direction heuristics (computable in polynomial time) would
prove that P = NP .

On some families these heuristics bias the location of solutions in the search-
tree. Given a large family with many satisfiable instances, this bias can be
measured on small instances. The usefulness of this depends on what we call the
bias-extrapolation property: Given the direction heuristics of a specific solver, the
observed bias on smaller instances extrapolates to larger ones. Notice that this
notion depends on the action of a particular solver on the family involved: I.e. a
solver with random direction heuristics may also satisfy the bias extrapolation
property, but not in a very useful way - probably, there is no bias at all. In
case the estimated bias shows a logical pattern, it could be used to consider
a jumping strategy that adapts towards the distribution of the solutions. We
refer to this strategy as distribution jumping.

Other jump strategies have been developed for Sat solvers. The most fre-
quently used technique is the restart strategy [GSC97]: If after some number of
backtracks no solution has been found, the solving procedure is restarted with a
different decision sequence. This process is generally repeated for an increasing
number of backtracks. This technique could fix an ineffective decision sequence.
A disadvantage of restarts is its potential slowdown of performance on unsatis-
fiable instances, especially on look-ahead Sat solvers. However, conflict driven
Sat solvers on average improve their performance using restarts.

Another jumping strategy is the random jump [Zha06]. Instead of jumping
all the way to the root of the search-tree, this technique jumps after some back-
tracks to a random level between the current one and the root. This technique
could fix a wrongfully chosen sign of some of the decision variables. By storing
the subtrees that have been visited the performance on unsatisfiable instances
is only slightly reduced for look-ahead Sat solvers.

Both these techniques are designed to break free from an elaborate subtree
in which the solver is “trapped”. Our proposed technique not only jumps out of
such a subtree but also towards a subtree with a high probability of containing
a solution. Unlike restart strategies, random jumping and distribution jumping
only alter the signs of decision variables. Therefore, for look-ahead Sat solvers,
the performance on unsatisfiable formulae does not influence costs, besides some
minor overhead.

72

6.2. DIRECTION HEURISTICS

The outline is as follows: Section 6.2 introduces the direction heuristics used
in complete (DPLL based) Sat solvers. In each step, these solvers select a
decision variable (decision heuristics). Whether to first visit the positive branch

(assigning the decision variable to true) or the negative branch (assigning the
decision variable to false) is determined by these direction heuristics. These
heuristics can heavily influence the performance on satisfiable benchmarks. In
case conflict clauses are added, the performance on unsatisfiable instances is
affected, as well.

Section 6.3 studies the influence of existing direction heuristics. More spe-
cific, we ask ourselves the question: Given a (complete) Sat solver and a bench-
mark family, is the distribution of solutions in the search-tree biased (not uni-
form)? A possible bias is caused by the direction heuristics used in the Sat
solver. We offer some tools to visualize, measure and compare the possible bias
for different Sat solvers on hard random k-Sat formulae. We selected this fam-
ily of formulae because it is well studied and one can easily generate many hard
instances for various sizes.

The bias we observe, can intuitively be explained: Since the direction heuris-
tics discussed in this paper try to select the heuristically most satisfiable subtree
(referred to as the left branch) first, a bias towards the left branches is expected
and observed. Near the root of the search-tree, the considered (reduced) formu-
lae are larger and more complex compared to those lower in the tree. Therefore,
it is expected that the effectiveness of direction heuristics improves (and thus
the bias towards the left branches increases) in nodes deeper in the tree - which
is also observed.

Section 6.4 discusses the possibilities to capitalize on a given / observed
bias. We focus on the observed bias of look-ahead Sat solvers on random k-Sat
formulae. We developed a new jump strategy, called distribution jumping, which
visits subtrees in decreasing (observed) probability of containing a solution. We
show that using the proposed (generalized) order of visiting subtrees - compared
to chronological order - results in a significant speed-up in theory.

We implemented this new technique in march ks and Section 6.5 offers the
results. These results show performance gains on random k-Sat formulae. On
many satisfiable structured benchmarks improvements were observed, as well.
Due to this technique, the look-ahead Sat solver march ks won the satisfiable
crafted family of the Sat 2007 competition. Finally some conclusions are drawn
in Section 6.6.

6.2 Direction heuristics

All state-of-the-art complete Sat solvers are based on the DPLL architec-
ture [DLL62]. This recursive algorithm (see Algorithm 6.1) first simplifies the
formula by performing unit propagation (see Algorithm 6.2) and checks whether
it hits a leaf node. Otherwise, it selects a decision variable xdecision and splits
the formula into two subformulae where xdecision is forced - the positive branch

(denoted by F(xdecision = 1)) and the negative branch (F(xdecision = 0)).

73

CHAPTER 6. DIRECTION HEURISTICS

Algorithm 6.1 DPLL(F)

1: F := UnitPropagation(F)
2: if F is empty then
3: return satisfiable

4: else if empty clause ∈ F then
5: return unsatisfiable

6: end if
7: xdecision := DecisionHeuristics(F)
8: B := DirectionHeuristics(xdecision)
9: if DPLL(F(xdecision ← B)) = satisfiable then

10: return satisfiable

11: else
12: return DPLL(F(xdecision ← ¬B))
13: end if

Algorithm 6.2 UnitPropagation(F)

1: while F does not contain an empty clause and unit clause y exists do
2: satisfy y and simplify F
3: end while
4: return F

Two important heuristics emerge for splitting: Variable selection heuristics

(in the DecisionHeuristics procedure) and direction heuristics (in the Di-
rectionHeuristics procedure). Variable selection heuristics aim at selecting
a decision variable in each recursion step yielding a relatively small search-tree.
Direction heuristics try to find a satisfying assignment as fast as possible by
choosing which subformula - F(xdecision = 0) or F(xdecision = 1) - to examine
first. We will refer to the left branch as the subformula that is visited first. Con-
sequently, the right branch refers to the one examined later. In theory, direction
heuristics could be very powerful: If one always predicts the correct direction,
all satisfiable formulae will be solved in a linear number of decisions.

The search-tree of a DPLL-based Sat solver can be visualized as a binary
search-tree. Figure 6.1 shows such a tree with decision variables drawn in the
internal nodes. Edges show the type of each branch. A black leaf refers to an
unsatisfiable dead end, while a white leaf indicates that a satisfying assignment
has been found. An internal node is colored black in case both its children are
black, and white otherwise. For instance, at depth 4 of this search-tree, 3 nodes
are colored white. This means that at depth 4, 3 subtrees contain a solution.

Traditionally, Sat research tends to focus on variable selection heuristics.
Exemplary of the lack of interest in direction heuristics is its use in the conflict-
driven Sat solver minisat [ES03]: While this solver is the most powerful on a
wide range of instances, it always branches negatively. An explanation for the
effectiveness of this heuristic may be found in the general encoding of most
(structural) Sat formulae. Also, these direction heuristics are more sophis-
ticated then they appear: Choosing the same sign consequently is - even on
random formulae - much more effective than a random selection [MvVW07].

74

6.2. DIRECTION HEURISTICS

positive left branch

positive right branch

negative left branch

positive right branch

x8

x1

x5

x3

x5

x7

x1

x8

x3

x7

x8

x9

x3

x6

x2

x3

x7

x5

x6

x2

x1

x6

x9

x7

x2

x4

x3

x1

x2

x5

x9

x1

Figure 6.1 — Complete binary search-tree (DPLL) for a formula with nine vari-
ables (x1, . . . , x9). The decision variables are shown inside the inter-
nal nodes. A node is colored black if all child nodes are unsatisfiable,
and white otherwise. The type of edge shows whether it is visited
first (left branch), visited last (right branch), its decision variable is as-
signed to true (positive branch), or its decision variable is assigned to
false (negative branch).

75

CHAPTER 6. DIRECTION HEURISTICS

Throughout this chapter, we will discuss only Sat solving techniques that
do not add global constraints such as a conflict clauses. So, only chronological
backtracking is considered. Also, given a Sat solver and a certain formula, the
complete search-tree will always be identical: Visiting (leaf)nodes in a different
order will not affect the binary representation as shown in Figure 6.1. In case the
formula is satisfiable, the order in which (leaf)nodes are visited only influences
the fraction of the search-space that has to be explored to find a (first) solution.

We will focus on the direction heuristics used in look-ahead Sat solvers.
This choice is motivated by the strong performance of these solvers on random
k-Sat formulae (the ones we selected for our experiments). Also, they do not
add conflict clauses which disturb the pure binary search-tree representation.
The additional reasoning used in look-ahead Sat solvers is performed on line 7
of Algorithm 6.1: While computing the decision variable, it searches for implied
(forced) variables to reduce the current formula.

Another simple direction heuristic is used in the look-ahead Sat solver kc-

nfs [DD]. It aims at selecting the most satisfiable branch. It compares the
difference of occurrences between xdecision and ¬xdecision. The larger of these
two satisfies more clauses in which xdecision occurs and is therefore preferred.

The look-ahead Sat solver march ks bases its direction heuristics on the re-
duction caused by the decision variable [HvM06]. The reduction from F to
F(xdecision = 0) and from F to F(xdecision = 1) is measured by the number of
clauses that are reduced in size without being satisfied. In general, the stronger
this reduction the higher the probability the subformula is unsatisfiable. There-
fore, march ks branches first on the subformula with the smallest reduction.

Oliver Kullmann proposes direction heuristics (used in his look-head OK-

solver) to select the subformula with the lowest probability that a random assign-
ment will falsify a random formula of the same size [Kul02]. Let Fk denote the
set of clauses in F of size k. It prefers either F(xdecision = 0) or F(xdecision = 1)
for which the following is smallest:

∑

k≥2

−|Fk| · ln(1− 2−k) b6.1

6.3 Observed bias on random k-Sat formulae

This section studies the effectiveness of existing direction heuristics of Sat
solvers based on the DPLL architecture. Here we will provide a large study
of different solvers on random k-Sat formulae with different sizes and densi-
ties. The main motivation to use these formulae is that one can easily create
many instances of different sizes and hardness. Therefore, this family of formu-
lae seems an obvious candidate to test whether the direction heuristics used in
some Sat solvers satisfy the bias-extrapolation property. We focus on the hard
random k-Sat instances - near the (observed) phase transition density. The
concepts introduced in this section are developed to offer some insights in the
effectiveness of direction heuristics.

76

6.3. OBSERVED BIAS ON RANDOM K-SAT FORMULAE

6.3.1 Distribution of solutions

We determined the bias of the distribution of solutions amongst the various
subtrees using the following experiment: Consider all the subtrees Td,i which
are at depth d. Assuming that the search-tree is big enough, there are 2d of
these subtrees. Given a set of satisfiable formulae, what is the probability that
a certain subtree contains a solution? Let the left branch in a node denote the
subformula - either F(xi = 0) or F(xi = 1) - which a solver decides to examine
first. Consequently, we refer to the right branch as the latter one.

Subtrees are numbered from left to right starting with Td,0 (see Figure 6.2
for an example with d = 3). We generated sets of random k-Sat formulae for
various sizes of the number of variables (denoted by n) and for different densities
(clause-variable ratio, denoted by ρ). For each set, 10.000 formulae (satisfiable
and unsatisfiable) were generated from which we discarded the unsatisfiable
instances.

b

b

b

b

T3,0

b

T3,1

b

b

T3,2

b

T3,3

b

b

b

T3,4

b

T3,5

b

b

T3,6

b

T3,7

Figure 6.2 — A search-tree with jump depth 3 and 8 subtrees Ti

Definition: The satisfying subtree probability Psat(d, i) denotes - for a given
Sat solver and a set of satisfiable benchmarks - the fraction of satisfiable in-
stances that have at least one solution in Td,i.

Definition: The satisfying subtree mean µsat(d) denotes - for a given Sat solver
and a set of satisfiable benchmarks - the average number of subtrees at depth d
that have at least one solution.

We compute µsat(d) as

µsat(d) =

2d−1
∑

i=0

Psat(d, i) b6.2

By definition Psat(0, 0) = 1 and µsat(0) = 1. Because formulae could have
solutions in both Td,2i and Td,2i+1, µsat(d) is increasing. Or more formal:

Psat(d, 2i) + Psat(d, 2i + 1) ≥ Psat(d− 1, i) , and thus b6.3

µsat(d) ≥ µsat(d− 1) b6.4

77

CHAPTER 6. DIRECTION HEURISTICS

Given a Sat solver and a set of satisfiable benchmarks, we can estimate for
all 2d subtrees Td,i the probability Psat(d, i). A histogram showing the Psat(12, i)
values using march ks on the test set with n = 350 and ρ = 4.26 is shown in
Figure 6.3. We refer to such a plot as to the solution distribution histogram.
The horizontal axis denotes the subtree index i of T12,i, while the vertical axis
provides the satisfying subtree probability.

Colors visualize the number of right branches (denoted as #RB) required to
reach a subtree: #RB(Td,0) = 0, #RB(Td,1) = 1, #RB(Td,2) = 1, #RB(Td,3) =
2,#RB(Td,4) = 1 etc. The figure clearly shows that the distribution is bi-
ased towards the left branches: The highest probability is Psat(12, 0) (zero
right branches), followed by Psat(12, 2048), Psat(12, 1024), and Psat(12, 256) -
all reachable by one right branch.

P
sa

t
(1

2
,i

)

#RB

0

2

4

6

8

10

12

40963584307225602048153610245120

0.12

0.09

0.06

0.03

0

Figure 6.3 — Solution distribution histogram showing Psat(12, i) using march ks on
10.000 random 3-Sat formulae with n = 350 and ρ = 4.26. For this
experiment, µsat(12) = 19.534.

A solution distribution histogram of Psat(12, i) using kcnfs on the same
benchmark set is shown in Figure 6.4. Similar to the histogram using march ks,
the Psat(12, i) values are higher if T (12, i) can be reached in less right branches.
However, the high (peak) Psat(12, i) values are about 50% higher for march ks

than for kcnfs, while the µsat(10) values for both solvers does not differ much.
So, the low Psat(12, i) values must be higher for kcnfs. This can be observed in
the more dense part down in the histogram. Since the same test set is used,
based on the lower peak Psat(12, i) values we can conclude that the direction
heuristics of kcnfs result in a smaller bias to the left branches on these instances.

Again, we see (Figure 6.5) a bias towards the left branches if we look at the
solution distribution histogram of march ks on random 4-Sat formulae near the
phase transition density (in this case ρ = 9.9). Also, the high Psat(12, i) values
for march ks on random 3-Sat are much higher than on random 4-Sat formulae.

78

6.3. OBSERVED BIAS ON RANDOM K-SAT FORMULAE

However, the µsat(12) value is much smaller too. So, the lower peaks might be
caused by the lower number of satisfiable subtrees. Therefore, we cannot easily
conclude that the direction heuristics used in march ks result in a larger bias on
random 3-Sat formulae.

P
sa

t
(1

2
,i

)

#RB

0

2

4

6

8

10

12

40963584307225602048153610245120

0.08

0.06

0.04

0.02

0

Figure 6.4 — Solution distribution histogram showing Psat(12, i) using kcnfs on
10.000 random 3-Sat formulae with n = 350 and ρ = 4.26. For this
experiment, µsat(12) = 18.021.

P
sa

t
(1

2
,i

)

#RB

0

2

4

6

8

10

12

40963584307225602048153610245120

0.03

0.02

0.01

0

Figure 6.5 — Solution distribution histogram showing Psat(12, i) using march ks on
10.000 random 4-Sat formulae with n = 120 variables and ρ = 9.9.
For this experiment, µsat(12) = 4.817.

79

CHAPTER 6. DIRECTION HEURISTICS

Appendix 6.A shows solution distribution histograms for various sizes and
densities of random 3-Sat formulae obtained using march ks. First and fore-
most, we see in all solution distribution histograms the characteristic bias to-
wards the left branches. From this observation the claim seems justified that
the actions of march ks on random 3-Sat formulae satisfy the bias extrapolation
property. Another similarity is that the peak Psat(10, i) values are about the
same size for test sets with the same density. Regarding µsat(10) values, we ob-
serve that µsat(10) is larger if the number of variables is larger. Also, amongst
formulae with the same ρ, µsat(10) is higher while the the peak Psat(10, i) val-
ues are comparable. So, the µsat(10) values are higher because of higher low
Psat(10) values. This can be observed in the histograms by the more dense lower
sections of the plots.

6.3.2 Satisfying subtree bias

We observed that the distribution of solutions (while experimenting with ran-
dom k-Sat formulae) is biased towards the left branches due to the direction
heuristics used in some Sat solvers. Although there is a great deal of resem-
blance between the various solution distribution histograms, the magnitude of
the Psat(d, i) values differs. Yet, this magnitude does not easily translate into a
comparable bias. To express the differences, we introduce a measurement called
the satisfying subtree bias.

Definition: The satisfying subtree bias Bsat(d, i) denotes - for a given Sat
solver and a set of satisfiable benchmarks - the normalized fraction of all for-
mulae which have a solution in Td−1, i

2
that also have a solution in Td,i.

The satisfying subtree bias Bsat(d, i) is computed as:

Bsat(d, i) =
Psat(d, i)

Psat(d, 2b i
2c) + Psat(d, 2b i

2c+ 1)
b6.5

For even i, we say that the branch towards Td,i is biased to the left if
Bsat(d, i) > 0.5. In case Bsat(d, i) < 0.5 we call these branches biased to the
right. For odd i the complement holds. The larger the difference between
Bsat(d, i) and 0.5, the larger the bias.

To compare the effectiveness of direction heuristics of Sat solvers on random
k-Sat formulae, we measured on various depths the average bias towards the
left branches. This bias for depth d is computed as the sum of all Bsat(d, i)
values with i even, divided by the number of nonzero Bsat(d− 1, i) values.

Figure 6.6 shows the average bias and offers some interesting insights: First,
we see that, for both march ks and kcnfs, the average bias towards the left
branches is comparable for small d and in particular d = 1. This can be ex-
plained by the fact that the direction heuristics used in both solvers is similar for
formulae with no or few binary clauses. For small d on random k-Sat formulae
this is the case. Second, the larger d, the larger the average bias towards the

80

6.3. OBSERVED BIAS ON RANDOM K-SAT FORMULAE

left branches, for all solver / test set combinations. This supports the intuition
that direction heuristics are more effective lower in the search-tree, because the
formula is reduced and therefore less complex. Third, the direction heuristics
used in march ks are clearly more effective on the experimented random k-Sat
test sets.

Another visualization comparing the effectiveness of direction heuristics are
Psat/Bsat trees. The root of such a tree contains all satisfiable formulae in the
given test set. The number in the vertices show the fraction of formulae that
still have a solution (the Psat(d, i) values), while the edges are labeled with the
Bsat(d, i) values.

Appendix 6.B shows Psat/Bsat trees for march ks and kcnfs on random 3-Sat
and random 4-Sat formulae. Figure 6.13 shows such a tree for random 3-Sat
with n = 350 and ρ = 4.26 using march ks. Again, we see for all d, Psat(d, i)
values are higher if T (d, i) can be reached with less right branches. Also, again
we see that the Bsat(d, i) towards the left increases, while d increases. So, the
used direction heuristics seem to ”guess” the branch containing a solution lower
in the search-tree more accurately. Both observations above are also supported
by the other Psat/Bsat trees.

6.3.3 Finding the first solution

The observed distribution of solutions as well as the bias provide some insight
in the effectiveness of the used direction heuristics. Yet, for satisfiable instances
we are mainly interested in the usefulness of these heuristics to find the first

solution quickly.

In order to naturally present the effect of distribution jumping, we first
(this subsection) consider the march ks solver without this feature and refer to
it as march ks−. More precisely, march ks− visits subtrees in chronological (or
depth first) order. We denote chronological order at jump depth d by πchro,d

= (0, 1, 2, 3, . . . , 2d − 1). Since other (jump) orders will be discussed later, all
definitions use an arbitrary order at depth d called πj,d.

Definition: The first solution probability Pfirst(πj,d, i) denotes - for a given
Sat solver and a set of satisfiable benchmarks - the probability that while visit-
ing subtrees at depth d using jump order πj,d, the solver needs to explore more
than i subsequent subtrees to find the first solution (satisfying assignment).

For any πj,d holds Pfirst(πj,d,0) = 1, Pfirst(πj,d,2
d) = 0, and Pfirst(πj,d,i) ≥

Pfirst(πj,d,i+1). A first solution probability plot for a given Sat solver and
benchmark family shows the probabilities Pfirst(πj,d, i) with i ∈ {0, . . . , 2d}.
Figure 6.7 shows the probability plot for various random 3-Sat formulae solved
using march ks−. The order of the test sets in the legend represents the order
of the probability plots. The shape for the various size and densities have many
similarities.

81

CHAPTER 6. DIRECTION HEURISTICS

av
er

a
g
e

b
ia

s
to

w
a
rd

s
th

e
le

ft
b
ra

n
ch

es

d

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

1 3 5 7 9 112 4 6 8 10 12

kcnfs, 4-Sat, n = 120, ρ = 9.9
kcnfs, 3-Sat, n = 350, ρ = 4.26

march ks, 4-Sat, n = 120, ρ = 9.9
march ks, 3-Sat, n = 350, ρ = 4.26
march ks, 3-Sat, n = 400, ρ = 4.26

Figure 6.6 — The average (for various d) bias towards the left branches using
march ks and kcnfs on random k-Sat formulae.

Definition: The expected tree size Esize(πj,d) denotes - for a given Sat solver
and a set of satisfiable benchmarks - the expected size of the search-tree required
to solve an instance while visiting subtrees at depth d using jump order πj,d.

Esize(πj,d) is computed as:

Esize(πj,d) = 2−d
∑

i∈{0,...,2d−1}

Pfirst(πj,d, i) b6.6

Notice that Esize(πj,d) correlates with the size of the surface below the first
solution probability plot with solver and jump depth d. Based on Figure 6.7,
we can state that for march ks− the expected tree size Esize(πchro,12) increases if
the density increases. This was expected because formulae with a higher density
have on average fewer solutions; it takes longer to find the first solution. For test
sets with the same density, Esize(πchro,12) is slightly smaller for those formulae
with more variables. Based on these data, no conclusions can be drawn regarding
the computational time: Exploring the whole search-tree requires much more
effort for hard random formulae with increased size.

82

6.4. DISTRIBUTION JUMPING

P
fi
rs

t
(π

ch
ro

,1
2
,i

)

0

0.2

0.4

0.6

0.8

1

0 512 1024 1536 2048 2560 3072 3584 4096

n = 300, ρ = 4.4
n = 350, ρ = 4.4
n = 300, ρ = 4.3
n = 350, ρ = 4.3
n = 400, ρ = 4.3
n = 300, ρ = 4.26
n = 350, ρ = 4.26
n = 400, ρ = 4.26
n = 300, ρ = 4.2
n = 350, ρ = 4.2
n = 400, ρ = 4.2
n = 300, ρ = 4.1
n = 350, ρ = 4.1

Figure 6.7 — First solution probability plot showing Pfirst(πchro,12, i) on random
3-Sat formulae using march ks.

6.4 Distribution jumping

The idea behind distribution jumping arises naturally from the observations
made in the prior section: While visiting the subtrees in chronological (or depth
first) order, the first solution probability plots show some characteristic angels
- hinting that the expected tree size is far from optimal. So, could we construct
an alternative jump order which visits the subtrees in a (near) optimal order?
First we will discuss the possibilities to optimize the jump order, followed by
some thoughts on the optimal jump depth.

6.4.1 Optimizing the jump order

This section deals with the question how to construct a jump order with the
(near) minimal expected tree size. First, we motivate why we focus on the
minimization of the expected tree size. Second, we determine the (close to)
minimal Esize(πj,12) for various random k-Sat formulae using a greedy algo-
rithm. Third, we construct a generalized jump order that can be implemented
into a Sat solver.

Theoretical speed-up

Why shall we try to optimize the expected tree size? The reason is closely
related to the theoretical speed-up. The performance gain realized by distribution
jumping can be approximated if the following two restrictions are met:

83

CHAPTER 6. DIRECTION HEURISTICS

R1) the size of the subtrees is about equal;
R2) the jump depth is much smaller than the size of subtrees.

Due to R1 the expected computational costs of each subtree is equal and R2

marginalizes the overhead costs - getting from one subtree to another - of the
distribution jumping technique. Using march ks, the search-trees for hard ran-
dom k-Sat appear to be quite balanced (satisfying R1). Given a relatively small
jump depth (satisfying R2) the speed-up could be computed. However, R1 and
R2 are probably hard to meet for more structured formulae. Given a large set
of satisfiable benchmarks, we can compute the theoretical speed-up caused by
distribution jumping πj,d:

S(πj,d) :=
Esize(πchro,d)

Esize(πj,d)
b6.7

Greedy jump order

For jump depth d there exist 2d! jump orders in which subtrees can be visited.
This makes it hard to compute the optimal jump order. We denote the optimal
jump order πopt,d(test set), the πj,d for which Esize(πj,d) is minimal for the test
set using a given Sat solver. Because πopt,d(test set) is hard to compute, we
focused on an approximation.

Any πopt,d(test set) has the property that it is progressive: Given a Sat
solver and benchmark set, we call πj,d a progressive jump order if the probability
that the first solution is found at the i-th visited subtree according to πj,d

(Pfirst(πj,d, i + 1)− Pfirst(πj,d, i)) is decreasing.
A πj,d that is not progressive can easily be improved with respect to a smaller

expected tree size: If the probability is not decreasing for a certain i, then swap
the order in which the i-th and i + 1-th subtrees are visited according to that
πj,d in order to obtain a πj,d

∗ which has a smaller expected tree size. Any πj,d

can be made progressive by applying a finite number of those swaps.
Out of the 2d! possible jump orders, probably only a small number is pro-

gressive. We assume that other progressive jump orders of a given test set have
an expected tree size close to the minimal one. Therefore, we developed a greedy
algorithm which computes for a given Sat solver and test set a progressive jump
order called πgreedy,d(test set). Consider the following algorithm:

1. Start with an empty jump order and a set of satisfiable benchmarks.
2. Select the subtree Td,i in which most formulae have at least one solution.

In case of a tie-break we select the one with the smallest i. The selected
subtree is the next to be visited in the greedy jump order.

3. All formulae that have at least one solution in the selected subtree (of step
2) are removed from the set.

4. Repeat the steps 2 and 3 until all formulae of the set are removed.

84

6.4. DISTRIBUTION JUMPING

We computed the greedy jump order for various random k-Sat test sets (de-
noted by Rk,n,ρ) using march ks. The results are shown in Table 6.1. Columns
two to five show the order in which T12,i’s should be visited according to the
greedy orders based on different hard random k-Sat formulae. To clearly present
also the #RB(T12,i) values within the order, only the indices i are shown. These
are printed in binary representation with bold 1’s (right branches). E.g., in Ta-
ble 6.1 T12,1024 is shown as 010000000000.

Table 6.1 — πgreedy,12(k, n, ρ) computed for random 3-Sat (n ∈ {300, 305, 400},
ρ = 4.26) and 4-Sat (n = 120, ρ = 9.9). The index of the greedy jump
orders is shown in binary representation.

πgreedy,12 πgreedy,12 πgreedy,12 πgreedy,12

πchro,12 (R3,300,4.26) (R3,350,4.26) (R3,400,4.26) (R4,120,9.9)
0 000000000000 000000000000 000000000000 000000000000
1 100000000000 100000000000 100000000000 001000000000
2 010000000000 010000000000 001000000000 010000000000
3 001000000000 000100000000 000100000000 000100000000
4 000010000000 001000000000 010000000000 100000000000
5 000000100000 000000100000 000010000000 010010000000
6 000100000000 000010000000 000000010000 000000100000
7 000001000000 101000000000 000001000000 000010000000
8 110000000000 000000001000 100001000000 000000010000
9 100001000000 100100000000 101000000000 110000000000
10 100010000000 000000010000 100001000000 100100000000
11 000000010000 110000000000 000000100000 101000000000
12 010100000000 011000000000 110000000000 100010000000
13 000000001000 000000000010 000000001000 000000000100
14 100001000000 100010000000 010010000000 010100000000
15 001100000000 000001000000 001100000000 010001000000
16 101000000000 100000010000 001010000000 000110000000
17 100100000000 100001000000 100100000000 001100000000
18 000110000000 010001000000 011000000000 000001000000
19 000000000001 001000010000 000010100000 010000100000
.

An interesting trait that can be observed from the πgreedy,12(Rk,n,ρ) jump
orders is that they spoil the somewhat perfect pictures presented in Section 6.3.
Recall that in the solution distribution histograms all subtrees which can be
reached in a single right branch show higher peaks than all subtrees reach-
able with two (or more) right branches. Here, we observe a similar tendency.
Yet, T12,1, T12,2, T12,4, T12,8 seem far less important than for instance T12,3072

(110000000000). So, based on the greedy jump orders we can conclude that for
optimal performance, Td,i should not solely be visited in increasing number of
right branches. In other words, the Psat(d, i) values are not a perfect tool for
constructing the ideal jump order.

85

CHAPTER 6. DIRECTION HEURISTICS

Generalized jump order

Since we only computed πgreedy,12 (only for jump depth 12) and the order is
slightly different for the different experimented data-sets, a more generalized
permutation is required for the actual implementation. Although the greedy
jump orders are our best approximation of the optimal jump order, we failed
to convert them to a generalized jump order. Instead, we created a general-
ized jump order based on two prior observations: First, subtrees reachable in
less right branches have a higher probability of containing a solution (see Sec-
tion 6.3.1). Second, among subtrees which are reachable in the same number of
right branches, those with right branches near the root have a higher probability
of containing a solution (see Section 6.3.2).

Based on these observations, we propose the following jump order: First,
visit Td,0, followed by all Td,i’s that can be reached in only one right branch.
Continue with all Ti’s that can be reached in two right branches, etc. All
Td,i’s that can be reached in the same number of right branches are visited in
decreasing order of i. We refer to this permutation as πleft,d.

Table 6.2 shows the visiting order of the subtrees with πchro,4 and πleft,4.
There are only a few similarities between πchro,d and πleft,d: The first and the
last subtree (Td,0 and Td,2d−1) have the same position in both jump orders.
Also, both πchro,d and πleft,d are symmetric: If subtree Td,i has position j in the
order than subtree Td,2d−1−j has position 2d − 1− j in that order.

Notice that πchro,d and πleft,d are in some sense complementary: πchro,d starts
by visiting subtrees that have right branches near the leaf nodes, while πleft,d

starts by visiting subtrees having right branches near the root. Since the next
subtree selected by πchro,d is the nearest subtree, “jumping” is very cheap. A
motivation for using πleft,d is that direction heuristics are more likely to fail
near the root of the search tree because at these nodes it is harder to predict
the “good” direction. Therefore, subtrees with few right branches near the root
of the search-tree have a higher probability of containing a solution.

Using the data from the experiments on random k-Sat formulae to compute
the distribution of solutions, we obtained20. the Pfirst(πleft,d, i) and Esize(πleft,d, i)
values. Figure 6.8 shows the first solution probability plots based on this data
for random 3-Sat test sets of different sizes and densities using march ks− and
πleft,12. The lines decrease much more rapidly compared to those of Figure 6.7,
also indicating that the expected tree size is much smaller using this jump order.
The sequence (from top to bottom) of these lines is about the same for both
figures: The larger ρ, the higher the line in the sequence. However, in Figure 6.8
a larger n does not always result in a lower line.

Table 6.3 summarizes the results of these tests on all the experimented data.
Shown is µsat(d), Esize(πchro,d), Esize(πleft,d) and the theoretical speed-up which
is computed using these values. The speed-up using march ks− with πleft,d is

20.The data was gathered using march ks− while visiting the subtree in chronological order.
Because march ks− uses adaptive heuristics, actual jumping according to πleft,d might result
in a slightly different search-tree and thus may influence the Pfirst(πleft,d, i) and Esize(πleft,)

values. Further discussion in Section 6.5.1

86

6.4. DISTRIBUTION JUMPING

Table 6.2 — Jump orders in which subtrees can be visited with jump depth 4.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

πchro,4 T4,0 T4,1 T4,2 T4,3 T4,4 T4,5 T4,6 T4,7 T4,8 T4,9 T4,10 T4,11 T4,12 T4,13 T4,14 T4,15

πleft,4 T4,0 T4,8 T4,4 T4,2 T4,1 T4,12 T4,10 T4,9 T4,6 T4,5 T4,3 T4,14 T4,13 T4,11 T4,7 T4,15

P
fi
rs

t
(π

le
ft

,1
2
,i

)

0

0.2

0.4

0.6

0.8

1

0 512 1024 1536 2048 2560 3072 3584 4096

n = 300, ρ = 4.4
n = 350, ρ = 4.4
n = 300, ρ = 4.3
n = 350, ρ = 4.3
n = 400, ρ = 4.3
n = 300, ρ = 4.26
n = 350, ρ = 4.26
n = 400, ρ = 4.26
n = 300, ρ = 4.2
n = 350, ρ = 4.2
n = 400, ρ = 4.2
n = 300, ρ = 4.1
n = 350, ρ = 4.1

Figure 6.8 — First solution probability plot showing Pfirst(πleft,12, i) on random
3-Sat formulae using march ks−. Please compare to Figure 6.7.

about a factor 4. On formulae below the phase transition density, the speed-up
is even greater, while above the phase transition density it is less. Also, formulae
with a higher µsat(d) value have a greater speed-up - although the correlation
is much less clear. The speed-up realized by kcnfs with πleft,d is smaller than
by march ks−. A possible explanation is that the direction heuristics used in
kcnfs result in a smaller bias towards the left. Using march ks− with πleft,d,
the speed-up on the 4-Sat test set is the smallest. This may be caused by the
relatively small µsat(12) value.

6.4.2 Optimizing the jump depth

Under the assumption that πleft,d is an effective jump order, we now face the
question: When to jump? Or more precise: What is the optimal jump depth?
For different values of jump depth d, the leaf nodes of the search-tree are visited
in a different order - in contrast to jumping using πchro,d. Which d is optimal?
First, we will try to answer this question from a theoretical viewpoint followed
by some practical difficulties.

87

CHAPTER 6. DIRECTION HEURISTICS

Table 6.3 — Expected size and speed-up for random k-Sat formulae.

solver family n ρ µsat(12) Esize(πchro,12) Esize(πleft,12) S(πleft,12)
march ks− 3-Sat 300 4.1 95.803 0.04965 0.00993 5.00
march ks− 3-Sat 300 4.2 29.575 0.11863 0.02727 4.35
march ks− 3-Sat 300 4.26 15.775 0.15673 0.03804 4.12
march ks− 3-Sat 300 4.3 10.843 0.18026 0.04365 4.13
march ks− 3-Sat 300 4.4 5.379 0.23408 0.05456 4.29
march ks− 3-Sat 350 4.1 147.933 0.03934 0.00811 4.85
march ks− 3-Sat 350 4.2 40.199 0.10919 0.02510 4.35
march ks− 3-Sat 350 4.26 19.534 0.15406 0.03822 4.03
kcnfs 3-Sat 350 4.26 18.021 0.16990 0.06113 2.78
march ks− 3-Sat 350 4.3 12.925 0.17409 0.04569 3.81
march ks− 3-Sat 350 4.4 5.871 0.22971 0.06399 3.59
march ks− 3-Sat 400 4.2 52.906 0.10237 0.02572 3.98
march ks− 3-Sat 400 4.26 24.461 0.15047 0.04056 3.71
march ks− 3-Sat 400 4.3 15.281 0.17682 0.04715 3.75
march ks− 4-Sat 120 9.9 4.817 0.23514 0.07864 2.99

Notice that

Pfirst(πchro,d, 2i) = Pfirst(πchro,d−1, i) and

Pfirst(πchro,d−1, i + 1) ≤ Pfirst(πchro,d, 2i + 1) ≤ Pfirst(πchro,d−1, i)

So,

2Esize(πchro,d−1)− 21−dPfirst(πchro,d−1, 0)

2
≤ Esize(πchro,d) ≤

2Esize(πchro,d−1)

2

Esize(πchro,d−1)− 2−d ≤ Esize(πchro,d) ≤ Esize(πchro,d−1)

In other words, Esize(πchro,d) is decreasing for increasing d and converges fast.
These properties are independent of the used Sat solver21. and the used bench-
mark family. Figure 6.9 shows how Pfirst(πchro,d, i) (and thus Esize(πchro,d)
evolves for increasing d based on 10.000 random 3-Sat formulae with n = 400
and ρ = 4.26 using march ks. For these formulae and solver, Esize(πchro,d) con-
verges to 0.150.

Both properties - decrease and convergence - may not hold for Esize(πleft,d)
for some solver / benchmark family combinations. The influence of the jump
depth on Esize(πleft,d) depends heavily on the direction heuristics used in a
solver. Using march ks on random 3-Sat formulae, we observed that Esize(πleft,d)
is decreasing for increasing d. However (fortunately), Esize(πleft,d) is still visibly
decreasing for increasing d during our experiments (using d ∈ {0, . . . , 12}). This
observation is visualized in Figure 6.10. Consequently the theoretical speed-up

21.Assuming that subtrees are visited in chronological order and no restarts are performed

88

6.4. DISTRIBUTION JUMPING

of using march ks with distribution jumping based on πleft,d instead of march ks−

improves while increasing d.
This is also the main conclusion of Table 6.4 - showing the influence of

the jump depth on Esize(πchro,d), Esize(πleft,d) and the theoretical speed-up.
Notice also that Esize(πchro,0) = Esize(πleft,0) and Esize(πchro,1) = Esize(πleft,1).
While using march ks on random 3-Sat formulae with n = 400 and ρ = 4.26,
Esize(πleft,d) < Esize(πchro,d) during the experiments (i.e. for d ∈ {2, . . . , 12}).

Table 6.4 — The influence of the jump depth denoted as d on Esize(πchro,d),
Esize(πleft,d) and the expected speed-up S(πleft,d) on random 3-Sat for-
mulae with 400 variables and density 4.26.

d Esize(πchro,d) Esize(πleft,d) S(πleft,d)
0 1.000 1.000 1.000
1 0.571 0.571 1.000
2 0.357 0.347 1.029
3 0.252 0.231 1.089
4 0.200 0.165 1.215
5 0.175 0.128 1.373
6 0.163 0.102 1.589
7 0.156 0.085 1.837
8 0.153 0.072 2.125
9 0.152 0.062 2.440
10 0.151 0.054 2.790
11 0.151 0.048 3.173
12 0.151 0.041 3.713

So, based on the theoretical speed-up, the optimal value for the jump depth
is probably d = ∞. In other words, theoretically jumping between the leaf
nodes of the search-tree results in the largest performance gain.

However, in practice, two kinds of overhead exist: First, the cost of jumping.
While solving, march ks spends most time to determine for each node the de-
cision variable and to detect forced variables. Compared to these calculations,
the cost of jumping (backtracking to the nearest parent node and descending in
the tree) for one subtree to another is relatively cheap. Therefore, the overhead
of jumping is marginal.

On the other hand, because the cost of obtaining the decision variable and
forced literals is huge, one would like to remember this information. Therefore,
these data should be stored for nodes that will be visited more than once (i.e.
those nodes at depth ≤ d). That will cost a lot of memory and time if d is large.

To reduce overhead, we therefore decided to use a jump depth in such way
that only a fraction of the nodes needs to be stored: In the first phase of solving
(before the first jump) the average depth of the search-tree is estimated. The
jump depth is set to be 7 levels above this average. Using this heuristic only
about 1 in 100 nodes is stored.

89

CHAPTER 6. DIRECTION HEURISTICS

P
fi
rs

t
(π

ch
ro

,d
,i

)

0

0.2

0.4

0.6

0.8

1

2d−3 2d−2 2d−1 2d0

d = 0
d = 1
d = 2
d = 3
d = 4
d = 5
d = 6
d = 7
d = 8
d = 9

d = 10
d = 11
d = 12

Figure 6.9 — Influence of the jump depth d on the first solution probability
Pfirst(πchro,d, i) using march ks on 10.000 random 3-Sat formulae with
n = 400 and ρ = 4.26.

P
fi
rs

t
(π

le
ft

,d
,i

)

0

0.2

0.4

0.6

0.8

1

2d−3 2d−2 2d−1 2d0

d = 0
d = 1
d = 2
d = 3
d = 4
d = 5
d = 6
d = 7
d = 8
d = 9

d = 10
d = 11
d = 12

Figure 6.10 — Influence of the jump depth d on the first solution probability
Pfirst(πleft,d, i) using march ks on 10.000 random 3-Sat formulae
with n = 400 and ρ = 4.26.

90

6.5. RESULTS

6.5 Results

Distribution jumping is one of the main new features in the march Sat solver
resulting in version march ks which participated at the Sat 2007 competition:
The technique is implemented as discussed above. First, using the dynamic
jump depth heuristic d is computed. Second, the solver jumps using πleft,d.

6.5.1 Random 3-SAT

To examine the actual speed-up resulting from distribution jumping, we run
both march ks− and march ks on 10.000 random 3-Sat formulae with n = 400
and ρ = 4.26. The results are shown in Figure 6.11. On most of these instances,
the adaptive jump depth for march ks was set to 15. On satisfiable formulae,
the performance of march ks is much better. Although march ks− is faster on
several instances, on average it takes about 3.5 times more effort to compute
the first solution. Regarding the extremes: The largest performance gain on a
single instance is a factor 744 (from 81.94 to 0.11 seconds), while the largest
performance loss is a factor 37 (from 35.52 to 0.95 seconds).

lo
g

ti
m

e
(s

)
m

ar
ch

k
s−

log time (s) march ks

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

UNSAT

uu

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u
u

u

u
u

u
u

u

u

u

u

u

u

u

u

u

u

u

u

u u
u

u
u
u
u

u

u

u
uu

u u

u

u

u

u

u

u

u

u

u

u

u

uu
u

u

uuu

u

u

u

u
u

u

u

u

u

u

u

u

u

u

u

uu

u u

u

u

u
u

u

u

u

u

u

u

u

u
u

u

u

u

u

u
u

u
u
u u
u

u

u

u

u

u

u
u

u

u

u u
u

u u
uu uu

u

u
u

u

u

u

u
u

u

u
u

u

u

u

u

u

u

u u

u

u

u

u

u

u
u
u u

u

u

u

u

u

u

u

u

u

u

u

uu

u

u

u

uu
u

u

u

u
uu

u

u
u u

u

u

u u

u
u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u
u

u
u

u

u

u
u

u

u

u

uu

u
u

u

u

u

u u

u

u

u

u

u

u
u
u

u

u
u u

u

u

uu

uu

u

u

u

u

u

u
u u

u

u

u

u

u

u

u u

u

u

u

u

u
u

u

u

uu

u

u
u

u

u
u
u

u

u

u

u

u

u

u
u

u

u

u

u

u

u
u

u
u

u

u

u

u

u u

u u

u

u u

u

u

u

u

u

uu
u

uu

u

u

u
u

u

u

u
u

u

u
u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u u

u

u

u

u
u

u

u

u

u

u

u
uu
u

u
uu uu

u

u

u

u

u

u

u
u
u
u

u

u

u

u

u

u

u u
u

u

u

u u

u
u

u
u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u
u

u u

u

u u

u u

u
u
u

u

uu

u

u

u

u

u
u

u

u

u

u

u

u

u

uu
u

u

u

u

uu
u

u

u
uu
u

u

u

u

u
u

u

uu
u
u

u

u

u

uu
u

u

u

u
u

u

u

u

u

u
u

u

u
u

u

u u

u u

u

u
u

u

u uu

u

u

u

u

u

u
u

u u

u

u

u

uu
u

u

u

u
u

u
u

u

u

u

u
u

u

u

uu

u

u

u
u

u
u

u

u
u
u

u

u

u

u

u

u

u

u

u

u

u

u
u
u

u
u

u
u
u

uu

uu u

u u
u

u

u

u

u

u u

u
u

u

u u
u

u

u

u

u
u

u

u

u

u

u
u

u

u

u u
u

u

u

u
u

u
u

u
u

uu

u

uu

u

u

u

u

u
u

u

u u

u

u u

u

u

u

u

u

u

u

u

u

uu

u

u

u

u

u

u

uu

u

u

u

u

u

u
u

u

u
u

u

u u

u
u

u
u

u

u
u

u u
u

u

u

u

u

u

u

uuu

u

u

u

u

u u

u

u

u

u

u
u

u

u

u u
u

u
uu

u

u
u

u

u

u

u
u

u

u

u

u u

u

u

u

u
u

u

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u
u

u u u
u
u

u

u

u

u

u

u

u

u

u

u

u
u
u u

u

u

u

u

u

u

u

u u
u u

u u

u

u

u

u

u

u

u

uu

u

u

u
u
u

u

u

u
u

u

u

u

uu

u

u
u u

u
u

u

u
u

u

u

u

u u

u

u
u

u
u

uu u

u

u
u

u

u

u

u

u

u

u

u

u

uu

u

u
u
u uu

u

u
u

u

u

u
u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u
u

uu u

u

uu

u

u

u

u

u

u
u

u

uu u

u

u
u

u u

u

u

u

u

u
u

u u

u

u

u u

u

u
u

u
u

u
u

u u
u

u
u

u
u u

u

u

u

u

u

u
u

u
u

u

u

u
u u

u

u

uu

u

u
u

u

u

u u

u

u

u

u

u

u

u

uu

u

u
u
u

u

u

u

u

u

u

u

u

u

u

u

u

u u

u

u

u
u

u

u

u

u

u

u u
u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u
u

u

u

u

u

u

u

u

u

u

u

u u
u

u

u

u
u

u

u u

u

u
u

u

u

u u

u

u

u

u
u

u

uu

u

u

uu
uu

u

u

u

u
u

u

u

u

u

u u
u

u
u

u

uu

uu

u

uu u

u

u

u

u

u u

u

u

u
u
u

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u

u

u

uu

uu

u

u
u

uu
u

u

u

u
u

u

u

uu

u

u
u
u

u

u u

u u

u
u

uu

uu u

u

u

u
u u
u

u u

u

u u

u

u

u

u
u

u
u

u
u

u

u

uu

u u

u

uu

u

u

u

u

u

u

u
u u

u

u
u

u
u

u

u

u

u

u

u

u

u

u

u u
uu
u

u

u

u

u

u

u

u uu

u
u

u
u

uu

u

u

u
u

u

u

u

u
u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u
u

u

u

u

u

u
u

u

u u u

u

u

u

u

u
uu

u
u

u
u

u

u

u

u

u

u
u

u

u

u

u

u

u

u
u

uu

u

u

u

u u

u
u

u

u

u

u

u

u
u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

uu

u

u

uu
u

uu

u

u

u

u

u

u

u

u

u

u

u
u

uu

u

u

u

u
u

u

u

u

u

u
u

u

u

u

u

u

u
u

u

u

u

uuu

u

u

u

u

u

u

u

u
uu u

u

u
u

u

u

u
u

u

u

u
u

u

u

u u

u

u

u
u

u

u

u

u

u

u

u

u
u
u

u

u

u

u
u

u

u
u

u

u

uu

u

u

u

u

u

u
u

u
uu

u

u u

u

u

u
u

u

u

u

u
u

u

u uu
u

u

u

u

uu

u

u

u

u

u

uu

u

u

uu

u
u

u u

u

u
u

u

u

u

u

u
u

u

u

uu

u

u

u

u u

u

u

u

u
u

u

u

u

u

u u

u

u

u

u

u

u

u

u

u
u u
u

u
u

u

u

u

u
u u

u

u
u

u

u

uu

u

u
u

u

u

u
u

u

u

u
u

u

u
u

u

u uu

uu

u
u
uu

u

u

u

uu u

u

u
u

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

uu

u

u

u
u

u
u

u

u
u
u

u
u

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u u

u

u

u

u

u
u

u

u u
u
u

u

u

u
u

uuu

u

u

u

u
u

u

u
u

u

u

u
uu

u

u

u

u

u

u

u

u

u

u

uu u u

u
u
u

u

u

u

u

u

u

u

uu

u
u
u

u

u

u

u

u

u

uu
u u

u

u
u

u
u
u

u

u

u
u

u
u

u

u

u

u

u

u

u

u

u

u
u

u

u
u

u

u

u

u

u

u

u

u

u
u

u

u

u u
u u

uu

uu

u
u
u
u u
u u
u
u

u

u u

u

u

u
u
u u

u

u

u

uu

u

u
u

u u uu

u

u
u

uu

u

u

u

u

u

u

u

uu

u

uu

u

u

u

u

u

u

u u

u

u

u

u

u
u

u

u

u

u

u

u

u
u

u
u
u

u

u

u uu

u

u

u

u

u
u

u

u

u

u

u

u
u

u
u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u

u

u

u

u

u

u

u

u

u

u
u

u

u

u

u

u
u

u

u

u

u
u u
u

u

u

u

u

u u
u

u
u

u

u
u
u

u

u

uu

u

u

u
u

u

u

u

u

u
u u

u

uu

u
u

u

u

u

u

uu

u

u

u

u

u

u

uu

uu u
u

uu

u

u
u

u

u

u

u

u

u
u

u

uu u
u
uu

u

u u

u

u

u

u

u

u

uu
uu

u
u

u

u

uu

u

u u

u

u
u

u

u

u

u

u
u

u

u

u

u
u

u

u

uu
u
u

u

u

u
u

u

u
uuu

u

u

SAT

b

b

b

b

b

b

b

b
b

b

b

b b

b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b
b

b b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

bb

b

b b

b

b

b

b
b

b

b

bb

b

b

b
b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b b

b

b

b
b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b
b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

bb

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b
b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b
b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

bb

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

bb

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b
b

b b
b

b

b

b

b

b b

b

b

b

b
b

b

b b

b
b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b
b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b b

b

b
b

b

b

b
b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b
b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b
b

b
b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b b

b

b

b b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

bb b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

bb

b

b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

bb

b

b

b

b

b

b
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b
b

b

b

b

b

b b

bb

b

b

b

bb

b

b

b

b

b

b

b

b

b

Figure 6.11 — Performance comparison (logscale) between march ks− and march ks

on 10.000 random 3-Sat formulae with n = 400 and ρ = 4.26

91

CHAPTER 6. DIRECTION HEURISTICS

The performance of march ks− and march ks on unsatisfiable instances is
comparable. Due to the use of some adaptive heuristics in these Sat solvers,
they may not explore exactly the same search-tree. It appears that this could re-
sult in a computational cost difference of about 10 % in favor of either march ks−

or march ks. The overhead costs in march ks are only marginal.

Large random 3-Sat formulae with density 4.26 appeared still hard for our
current implementation. So, for our experiments we generated random 3-Sat
formulae for four different sizes - 600 and 700 variables both at density 4.0
and 4.1 - to test the improvement of march ks. We compared the performance
of our solvers with R+AdaptNovelty+ [APSS05] - an incomplete (local search)
solver which appeared the strongest on these kinds of formulae during the Sat
2005 competition [LS06]. In general, incomplete Sat solvers are dominant on
satisfiable random formulae, but they fail to compete with complete Sat solvers
on most structured satisfiable instances.

Table 6.5 — Number of solved (#Sat) and unknown (#Unk) instances within a
timeout of 600 seconds

march ks− march ks R+AdaptNovelty+

n ρ #Sat #Unk #Sat #Unk #Sat #Unk
600 4.0 86 14 100 0 100 0
700 4.0 75 25 100 0 100 0
600 4.1 73 27 100 0 100 0
700 4.1 15 85 90 10 100 0

Table 6.5 shows the results of this experiment. The progress from march ks−

to march ks is clear. However, R+AdaptNovelty+ is still more successful on these
instances.

6.5.2 SAT Competition 2007

March ks participated at the SAT Competition 2007. It won the satisfiable
crafted category and several other awards. Especially in the former category,
distribution jumping contributed to the success of the solver. Without this
feature it would not have won.

Four crafted benchmarks connm-ue-csp-sat-n800-d-0.02 (connamacher),
QG7a-gensys-ukn005, QG7a-gensys-brn004, and QG7a-gensys-brn100 (quasi-
group) are not solved by march ks without distribution jumping in 12 hours.
However, the competition version which includes this feature solves these in-
stances in 306, 422, 585, 3858 seconds, respectively. The dynamic jump depth
heuristic selects d = 12 for the connamacher instance and d = 26 for the quasi-
group instances. The solutions were found with only one or two right branches
(above the jump depth). Various other solvers were able to solve the quasigroup
instances within the 1200 seconds timeout. However, the connamacher instance
was only solved by march ks and satzilla.

92

6.6. CONCLUSIONS

Two other hard crafted benchmarks, ezfact64-3 and ezfact64-6, both
factorization problems, where solved by march ks in the second round in 3370
and 2963 seconds, respectively. Only minisat was also able to solve ezfact64-3,
while ezfact64-6 was exclusively solved by march ks. Without distribution
jumping, solving these instances requires about twice the computational time.
Since the timeout in the second round was 5000 seconds, march ks− would not
have solved them. Therefore, if march ks− would have participated in the Sat
2007 competition - instead of march ks - it would not have won the crafted
satisfiable category, because it would not have solved these six benchmarks.

6.6 Conclusions

We observed that both march ks and kcnfs bias on random k-Sat formulae -
due to the used direction heuristics - the distribution of solutions towards the
left branches. We introduced a measurement called the satisfying subtree bias
Bsat to quantify the bias. Using Bsat the bias of the direction heuristics used in
different solvers can be compared.

To capitalize on these observations we developed the new jumping strategy
distribution jumping. While alternative jump strategies examine a random new
part of the search-tree, our proposed method jumps towards a subtree that has
a high probability of containing a solution.

Distribution jumping has been implemented in march ks. With this new fea-
ture, the Sat solver can solve significantly more satisfiable random k-Sat for-
mulae without hurting its performance on unsatisfiable instances. Despite the
progress, march ks is still outperformed by incomplete solvers on these bench-
marks.

Yet, also the performance of march ks is improved on satisfiable structured
formulae. Apparently, distribution jumping is applicable outside the experi-
mented domain. Thanks to this new technique, march ks won the satisfiable
crafted category of the Sat 2007 Competition.

The usefulness of distribution jumping could be even further increased by
better direction heuristics: The more biased the distribution of solutions, the
larger the expected speed-up. Also, the results of the greedy jump orders suggest
that there is an opportunity to improve the generalized jump order.

93

CHAPTER 6. DIRECTION HEURISTICS

6.A Solution distribution histograms

ρ n = 300 n = 350 n = 400

4.1

µsat(10) = 61.1

10245120

0.4

0.2

0

µsat(10) = 88.6

10245120

0.4

0.2

0

4.2

µsat(10) = 21.1

10245120

0.2

0.1

0

µsat(10) = 27.7

10245120

0.2

0.1

0

µsat(10) = 34.8

10245120

0.2

0.1

0

4.26

µsat(10) = 11.9

10245120

0.16

0.08

0

µsat(10) = 14.4

10245120

0.16

0.08

0

µsat(10) = 17.4

10245120

0.16

0.08

0

4.3

µsat(10) = 8.46

10245120

0.12

0.06

0

µsat(10) = 9.88

10245120

0.12

0.06

0

µsat(10) = 11.4

10245120

0.12

0.06

0

4.4

µsat(10) = 4.43

10245120

0.08

0.04

0

µsat(10) = 4.78

10245120

0.08

0.04

0

Figure 6.12 — Solution distribution plots showing Psat(10, i) (y-axis) of
random 3-Sat formulae with n ∈ {300, 350, 400} and ρ ∈
{4.1, 4.2, 4.26, 4.3, 4.4} using march ks.

94

6.B. PSAT / BSAT TREES

6.B Psat/ Bsat trees

#RB

0

1

2

3

4

5

SAT

0.652

0.432

0.367

0.400

0.179
0.368

0.0790.352
0.0320.333

0.0640.667

0.1450.648
0.0590.332

0.1180.668

0.306
0.632

0.1470.366
0.0570.322

0.1200.678

0.2540.634
0.1180.359

0.2110.641

0.551

0.600

0.300
0.396

0.1520.385
0.0670.350

0.1250.650

0.2430.615
0.1120.356

0.2020.644

0.458
0.604

0.2390.383
0.1100.360

0.1960.640

0.3850.617
0.1900.369

0.3240.631

0.856

0.568

0.515

0.409

0.277
0.391

0.1360.377
0.0570.339

0.1110.661

0.2240.623
0.1010.354

0.1840.646

0.431
0.609

0.2210.380
0.0980.353

0.1800.647

0.3610.620
0.1740.366

0.3010.634

0.744

0.591

0.429
0.403

0.2150.378
0.0980.357

0.1760.643

0.3530.622
0.1690.368

0.2910.632

0.635
0.597

0.3590.401
0.1710.364

0.2980.636

0.5350.599
0.2850.386

0.4530.614

Figure 6.13 — Psat/Bsat tree of march ks− running on random 3-Sat with n = 350
and ρ = 4.26. Psat(d, i) values are shown in the vertices and Bsat(d,
i) values are shown on the edges.

95

CHAPTER 6. DIRECTION HEURISTICS

#RB

0

1

2

3

4

5

SAT

0.652

0.432

0.386

0.420

0.205
0.402

0.0980.382
0.0420.366

0.0740.634

0.1580.618
0.0770.392

0.1190.608

0.304
0.598

0.1460.373
0.0660.358

0.1180.642

0.2460.627
0.1220.381

0.1980.619

0.533

0.580

0.299
0.407

0.1520.394
0.0680.360

0.1210.640

0.2340.606
0.1120.375

0.1870.625

0.435
0.593

0.2280.392
0.1130.388

0.1790.612

0.3540.608
0.1840.396

0.2800.604

0.856

0.568

0.531

0.426

0.291
0.403

0.1400.377
0.0620.360

0.1100.640

0.2320.623
0.1110.373

0.1860.627

0.430
0.597

0.2350.405
0.1080.364

0.1890.636

0.3450.595
0.1720.382

0.2780.618

0.714

0.574

0.421
0.413

0.2220.397
0.1060.379

0.1730.621

0.3380.603
0.1690.379

0.2760.621

0.598
0.587

0.3310.402
0.1640.385

0.2630.615

0.4930.598
0.2730.405

0.4000.595

Figure 6.14 — Psat/Bsat tree of kcnfs running on random 3-Sat with n = 350 and
ρ = 4.26. Psat(d, i) values are shown in the vertices and Bsat(d, i)
values are shown on the edges.

96

6.B. PSAT / BSAT TREES

#RB

0

1

2

3

4

5

SAT

0.579

0.423

0.288

0.400

0.121
0.361

0.0490.365
0.0180.337

0.0350.663

0.0860.635
0.0350.362

0.0610.638

0.214
0.639

0.0910.369
0.0330.332

0.0680.668

0.1560.631
0.0580.328

0.1180.672

0.432

0.600

0.201
0.385

0.0810.352
0.0310.356

0.0570.644

0.1500.648
0.0590.350

0.1100.650

0.321
0.615

0.1410.371
0.0530.338

0.1040.662

0.2380.629
0.0980.356

0.1770.644

0.791

0.577

0.433

0.417

0.199
0.381

0.0830.366
0.0290.313

0.0630.687

0.1440.634
0.0560.347

0.1050.653

0.323
0.619

0.1450.382
0.0560.344

0.1060.656

0.2350.618
0.1030.376

0.1710.624

0.606

0.583

0.308
0.404

0.1340.378
0.0500.327

0.1020.673

0.2210.622
0.0890.347

0.1660.653

0.455
0.596

0.2140.387
0.0890.359

0.1580.641

0.3380.613
0.1480.369

0.2540.631

Figure 6.15 — Psat/Bsat tree of march ks− running on random 4-Sat with n = 120
and ρ = 9.9. Psat(d, i) values are shown in the vertices and Bsat(d, i)
values are shown on the edges.

97

CHAPTER 6. DIRECTION HEURISTICS

#RB

0

1

2

3

4

5

SAT

0.584

0.427

0.299

0.409

0.151
0.430

0.0650.383
0.0280.403

0.0410.597

0.1040.617
0.0470.403

0.0700.597

0.201
0.570

0.0950.405
0.0440.420

0.0610.580

0.1390.595
0.0670.417

0.0930.583

0.432

0.591

0.213
0.413

0.0940.388
0.0360.347

0.0680.653

0.1480.612
0.0630.375

0.1050.625

0.303
0.587

0.1410.392
0.0610.383

0.0980.617

0.2180.608
0.1070.418

0.1500.582

0.785

0.573

0.429

0.418

0.214
0.414

0.0960.392
0.0370.355

0.0670.645

0.1480.608
0.0640.383

0.1030.617

0.302
0.586

0.1460.412
0.0730.434

0.0960.566

0.2080.588
0.0970.392

0.1500.608

0.598

0.582

0.303
0.408

0.1390.389
0.0600.386

0.0950.614

0.2180.611
0.1000.399

0.1500.601

0.440
0.592

0.2080.391
0.0880.368

0.1510.632

0.3240.609
0.1430.373

0.2400.627

Figure 6.16 — Psat/Bsat tree of kcnfs running on random 4-Sat with n = 120 and
ρ = 9.9. Psat(d, i) values are shown in the vertices and Bsat(d, i)
values are shown on the edges.

98

Gutta cavat lapidem,

non vi, sed saepe cadendo

———————————–

A water drop hollows a stone,

not by the force,

but by falling often.

Ovid 7
UnitMarch∗

Consider a variation of the Maniac Mansion example, where you search with
several people at the same time - as in the computer game. The potential
advantage of being with a group comes with two major disadvantages: First,
all members of the group are lazy. They can search rooms simultaneously, but
nobody wants to do more than the others. So, they wait to search the next
room until everybody has finished their current room. Especially, when rooms
differ a lot in size, the advantage of being with a bunch of people decreases
significantly.

The second disadvantage is group dynamics: As soon as two or more people
are together in the same room, the ambiance becomes more social and the work
morale decreases. Regardless of the number of people in the room, the total work
effort reduces to that of a single person. Moreover, once people are together,
they stick together. With a bit of bad luck, all may end up in the same room.

To avoid this, two forms of communication are allowed. First, as soon as two
people enter the same room, one is forced to get out and continue his search in
a random other room; this counters group dynamics. Second, imagine that you
require multiple keys to unlock the front door. This mean that there are many
“subproblems” to be solved. If you search alone, this does not really affect your
strategy because you just continue to search until all necessary keys are found.
But, searching with a group now becomes even more effective: Different keys
can be found by different people. Here it is crucial that each person reports is
results, so that everybody will stay up-to-date.

We developed an incomplete Sat solver UnitMarch based on the UnitWalk
algorithm. A disadvantage of this algorithm is that each step (room) is very ex-
pensive. To reduce the burden of the search costs, we parallelized the algorithm
such that it can search multiple steps (rooms) simultaneously. However, the
problems that arise are similar to the disadvantages of the lazy group. Yet by
communicating if searches occur in the same space and by reporting a solution
for a subproblem, the resulting parallel algorithm is faster than the original one.

∗This chapter is based on: Marijn J.H. Heule and H. van Maaren. Parallel SAT Solving

using Bit-level Operations, Accepted for the Journal on Satisfiability, Boolean Modeling and
Computation. This article is an extended version of Marijn J.H. Heule and Hans van Maaren.
From Idempotent Generalized Boolean Assignments to Multi-bit Search. SAT 2007 Springer
LNCS 4501 (2007), pp 134-147.

99

CHAPTER 7. UNITMARCH

7.1 Introduction

State-of-the-art satisfiability (Sat) solvers can be divided into complete (solv-
ing both satisfiable and unsatisfiable formulae) and incomplete (solving only
satisfiables) ones. The former class of solvers uses fast data-structures and rea-
soning techniques on partial assignments to solve problems. Surprisingly, they
also dominate performance of incomplete solvers on most satisfiable structured
instances22.. Incomplete Sat solvers, mostly based on local search, mainly per-
form modifications on a (full) assignment using “randomized” flipping decisions.
In general, these solvers are less complex. Incomplete solvers are very strong on
satisfiable random benchmarks.

Todays 32/64 bit architecture enables computers to perform 32 or 64 of the
familiar Boolean operations within a single clock cycle. Since assignment modi-
fications can be considered Boolean operations, multiple of those modifications
can be parallelized. Incomplete Sat solvers seem the most likely candidates to
apply this technique, because they do not use reasoning techniques and because
assignment modifications are an important aspect of the used algorithms.

Current Sat solvers do not make use of the opportunity of a p-bit processor
to simulate parallel 1-bit (Boolean) search on p 1-bit processors. Conventional
parallel Sat solving [BSK03, BS96, ZBH96] differs from the proposed method
in Section 7.3: The former gains performance by dividing the workload over
multiple processors and by some minor changes to the solving algorithm, while
the latter uses a single processor and requires significant modifications to the
algorithm. The most closely related work [IKM+02] also parallelizes a Sat
solver (GSAT), on a single processor. However, they use a vector processor
(used in most supercomputers), instead of scalar processor (used in most desktop
computers).

Sat solvers that use integer type of heuristics frequently (counters for in-
stance), are not very suitable for modification in this respect. However, Sat
solvers whose computational “center of gravity” consists of propagating truth
values (or other 1-bit operations) may profit from this opportunity. One of such
solvers is the state-of-the-art local search Sat solver UnitWalk [HK05]. We show
that UnitWalk can be upgraded using a single p-bit processor. This results in a
considerable speed-up.

7.2 Big Boolean Algebras

A Boolean Algebra is a six tuple (B, ∧, ∨, ¬, 0, 1) in which set B contains
all elements in the Algebra, ∧ and ∨ are two binary operators, ¬ is a unary
operator and 0 and 1 are constants. For a Boolean Algebra all the Boolean
laws are obeyed.

22.Based on the results on the Sat competitions. See www.satcompetition.org for details.

100

www.satcompetition.org

7.2. BIG BOOLEAN ALGEBRAS

The Boolean laws are (for x, y, z ∈ B):

• Commutative law: x ∨ y = y ∨ x, x ∧ y = y ∧ x

• Associative law: x ∨ (y ∨ z) = (x ∨ y) ∨ z, x ∧ (y ∧ z) = (x ∧ y) ∧ z

• Distributive law: x∨(y∧z) = (x∧y)∨(x∧z), x∧(y∨z) = (x∨y)∧(x∨z)

• Absorption law: x ∨ (x ∧ y) = x, x ∧ (x ∨ y) = x

• Complement law: x ∨ ¬x = 1, x ∧ ¬x = 0

The conventional Boolean Algebra B consists only of the two constants 0
and 1. The operators ∧, ∨, ¬ are defined as logical AND, OR and NOT operators,
respectively. We refer to a big Boolean Algebra if B consists of more than the
two constants and the operators are defined such that all the Boolean axioms
are obeyed. A Boolean Algebra can be extended with other constants (e.g. 3,
4) or with variables (e.g. x, y) as long as the operators are properly defined.

7.2.1 p-bit Boolean Algebras

Throughout this chapter, we will focus on a specific type of big Boolean Alge-
bras, which we refer to as p-bit Boolean Algebras.

Definition The p-bit Boolean Algebra is a Boolean Algebra with B = {0, 1}p,
0 = (0, 0, . . . , 0), 1 = (1, 1, . . . , 1). The operators ∧, ∨, ¬ are defined as bitwise

logical AND, OR and NOT operators, respectively.

The p-bit Boolean Algebra can be seen as a free product of copies of the classical
two valued one.

Example 7.1

Consider the 3-bit Boolean Algebra. We abbreviate multi-bit Booleans (the
elements of p-bit Boolean Algebras): (0, 1, 0) will be represented by 010. Let F
be the formula

¬(x→ (y ∨ (x ∧ z))) b7.1

which is equivalent to Conjunctive Normal Form (CNF)

x ∧ ¬y ∧ (¬x ∨ ¬z) b7.2

and assigning x := 101, y := 001 and z := 111, we calculate

101 ∧ ¬001 ∧ (¬101 ∨ ¬111) = 0 b7.3

By assigning x := 101, y := 001 and z := 011 however, F evaluates to the
value 100, as the reader may verify. All non-zero multi-bit Boolean outcomes
verify that the given formula is satisfiable (so called “completeness”of Boolean
Algebras) [Bro90].

101

CHAPTER 7. UNITMARCH

At this point, the reader should realize that if we deal with CNF representa-
tions of formulae a big Boolean Algebra looses a bit of its interest: If a certain
clause gets a 0 in some bit position (by some partial multi-bit assignment) there
is no possibility to extract a satisfying assignment from this bit position, be-
cause the multiplications (the AND’s of the CNF) in this bit position can never
undo this “being zero”!

Example 7.2

Consider the 2-bit Boolean Algebra and the formula x ∧ y. The reader may
check that there are 16 possible 2-bit Boolean assignments of which 7 evaluate
to a non-zero multi-bit Boolean. Drawing multi-bit Boolean assignments (MBA)
randomly, the probability of hitting a non-zero multi-bit Boolean outcome is 7

16 ,
while in the conventional Boolean situation this probability is 1

4 . In general, the
probability is 1− (3

4)p using the p-bit Boolean Algebra.

The above example shows that probability to hit a solution using random
sampling MBA’s increases using a larger big Boolean Algebra. In case multi-
bit Booleans can be used in approximately the same computational time as
normal Booleans, solutions can be found faster. This is done in [KKM96],
where Boolean “patterns” (rather than Booleans) are propagated through a
circuit to increase the probability of hitting a solution - indicating an error in
their application.

Although this random sampling can be considered a rather straight forward
parallelism, we claim that efficient multi-bit propagation for Sat solving is not
straight forward at all: In [KKM96], at each step, variables are either unassigned
or assigned a full Boolean pattern, while in the proposed propagation variables
can also be assigned a partial Boolean assignment.

Example 7.3

The sets of idempotents in finite rings of integers form a big Boolean Algebra.
This Boolean Algebra has some exotic properties: The operators x ∧ y and ¬z
are defined as the arithmetical operations x× y and 1− z, respectively. See for
details [HvM07].

7.2.2 Generic MBA’s

For any formula with n variables, there exist 2n different Boolean assignments.
Using the 2n bit Boolean Algebra, we can associate each of these 2n Boolean
assignments to some bit position of a MBA. We call such a MBA, a generic

multi-bit Boolean assignment. An example of a generic MBA for 3 variables is:

x := 0 1 0 0 1 1 0 1

y := 0 0 1 0 1 0 1 1

z := 0 0 0 1 0 1 1 1

102

7.2. BIG BOOLEAN ALGEBRAS

Let F be a formula on n variables and consider the 2n bit Boolean Algebra.
From the definition follows that this Algebra contains 22n

elements. This is the
same number as the number of logically independent Boolean functions on n
variables. In fact, it is not hard to demonstrate that in the above situation, a
MBA to the variables exists such that each formula on n variables evaluates to its
associated multi-bit Boolean, each multi-bit Boolean representing an equivalence
class of Boolean functions.

Example 7.4

Consider the Boolean functions with 2 variables and the 4-bit Boolean Algebra.
A generic MBA is for instance x = 0011, y = 0101. In this case x∧¬y evaluates
to 0010, ¬(¬x∧y) to 1011, x↔ y to 1001, ¬(x↔ y) to 0110 and (x∨y)↔ ¬y
to 0010. In this case, every formula on 2 variables can be checked on feasibility
by propagating the values x = 0011 and y = 0101, and only the outcome 0
(or 0000) reflects a contradiction. That (0011, 0101) is generic follows from the
fact that all four possible assignments to 2 variables - (0,0), (0,1), (1,0) and
(1,1) - are represented in the four bit positions of the MBA. Because x ∧ ¬y
and (x ∨ y) ↔ ¬y evaluate to the same multi-bit Boolean (using the same
generic MBA), we can conclude that these two Boolean functions are logically
equivalent. Table 7.1 shows the multi-bit Boolean identifiers for all Boolean
functions using this generic MBA.

Table 7.1 — Multi-bit Boolean identifiers for Boolean functions with two variables
using generic MBA x = 0011 and y = 0101.

Boolean function multi-bit Boolean Boolean function multi-bit Boolean

equivalence class identifier equivalence class identifier

0 0000 ¬x ∧ ¬y 1000

x ∧ y 0001 x↔ y 1001

x ∧ ¬y 0010 ¬y 1010

x 0011 x ∨ ¬y 1011

¬x ∧ y 0100 ¬x 1100

y 0101 x ∨ ¬y 1101

¬x↔ y 0110 ¬x ∨ ¬y 1110

x ∨ y 0111 1 1111

A fantasy application of the above could be:

• Suppose a secret formula is kept of which we only know that it contains
n variables;

• Suppose arbitrarily size multi-bit Booleans are allowed as input for the
variables;

• Suppose that we are allowed to make one single guess on its feasibility by
assigning a value to each of its input variables.

103

CHAPTER 7. UNITMARCH

In this situation, the input of a generic MBA reveals the feasibility by checking
whether the outcome is a non-zero multi-bit Boolean. If we allow large multi-
bit Booleans as input to the propagation process, formulae can be solved on
feasibility in one run. Notice that in this case we just exchange time for space.

Working with MBA’s can be beneficial in situations when the multiple
Boolean operations involved can be performed in a single clock cycle - as in
modern computers. More specifically: If a 32-bit processor is available, formu-
lae with up to 5 variables can be resolved in one propagation run using generic
MBA’s in about the same time an ordinary Boolean assignment is propagated.

7.3 Multi-Bit Unit Propagation

This section describes the use of MBA’s to parallelize a Sat solving algorithm.
However, this differs from conventional parallelism: Modifications of MBA’s
can be processed in parallel, while, for instance, operations on counters cannot.
In general, only 1-bit operations can be parallelized. Therefore, algorithms
that potentially benefit from MBA’s should have their computational “center
of gravity” on assignment modifications.

A widely used procedure for assignment modifications is unit propagation:
Given a formula F and an assignment ϕ. If ϕ applied to F (denoted by ϕ ◦ F)
contains unit clauses (clauses of size 1) then the remaining literal in each unit
clause is forced to be true - thereby expanding ϕ. This procedure continues until
there are no unit clauses left in ϕ ◦ F . This section describes a Sat solving
algorithm that uses unit propagation at its computational “center of gravity”.

The UnitWalk algorithm.

For a possible application we focused on local search (incomplete) Sat solvers.
In contrast to complete Sat solvers, they are less complicated and work with full
assignments. A generic structure of local search Sat solvers is as follows: An
assignment ϕ is generated, earmarking a random Boolean value to all variables.
By flipping the truth values of variables, ϕ can be modified to satisfy as many
clauses as possible of the formula at hand. If after a multitude of flips ϕ still
does not satisfy the formula, a new random assignment is generated.

Most local search Sat solvers use counting heuristics to flip the truth value
of the variables in a turn-based manner. These heuristics appear hard to par-
allelize on a single processor. However, the UnitWalk algorithm [HK05] is
an exception. Instead of counting heuristics, it uses unit propagation to flip
variables. The UnitWalk Sat solver - based on this algorithm - is the fastest
local search Sat solver on many structured instances and won the Sat 2003
competition in the category All random SAT [LS03].

The UnitWalk algorithm (see Algorithm 7.1) flips variables in so-called
periods: Each period starts with an initial assignment (referred to as master
assignment ϕmaster), an empty assignment ϕactive and a random order of the
variables π. First, unit propagation is executed on the empty assignment. Sec-

104

7.3. MULTI-BIT UNIT PROPAGATION

ond, the first unassigned variable in π is assigned to its value in ϕmaster, followed
by unit propagation of this value. A period ends when all variables are assigned
a value in ϕactive. Notice that conflicts - clauses with all literals assigned to false
- are more or less neglected, depending on the implementation. A new period
starts with the resulting ϕactive as ϕmaster and a new order of the variables.

Algorithm 7.1 Flip UnitWalk(ϕmaster)

1: for i in 1 to MAX PERIODS do
2: if ϕmaster satisfies F then
3: break
4: end if
5: π := random order of the variables
6: ϕactive := {xi = ∗}
7: for j in 1 to n do
8: while unit clause u ∈ ϕactive ◦ F do
9: ϕactive[VAR(u)] := TRUTH(u)

10: end while
11: if xπ(j) not assigned in ϕactive then
12: ϕactive[xπ(j)] := ϕmaster[xπ(j)]
13: end if
14: end for
15: if ϕactive = ϕmaster then
16: random flip variable in ϕactive

17: end if
18: ϕmaster := ϕactive

19: end for
20: return ϕmaster

Example 7.5

Consider the example formula and initial settings below. Unassigned values in
ϕactive are denoted by *.

Fexample := (x1 ∨ x2) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (¬x2 ∨ ¬x3)

(¬x2 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ x4) ∧ (¬x3 ∨ ¬x4)

ϕmaster := {x1 = 0, x2 = 1, x3 = 1, x4 = 0}
ϕactive := {x1 = ∗, x2 = ∗, x3 = ∗, x4 = ∗}

π := (x2, x1, x4, x3)

Since the formula contains no unit clauses, the algorithm starts by selecting the
first variable from the random order - x2. We assign this variable to true (as
in ϕmaster) and perform unit propagation. Due to ¬x2 ∨ ¬x3 this results in one
unit clause ¬x3. Propagation of this unit clause - assigning x3 to false - results
in unit clauses x4, and ¬x4. Because two complementary unit clauses have been
generated we found a conflict. However, the UnitWalk algorithm does not
resolve this conflict.

105

CHAPTER 7. UNITMARCH

Instead, it continues by selecting23. one of them, say ¬x4, and assign x4 to
false. After this assignment ϕactive ◦ F does not contain unit clauses anymore.
We conclude this period by assigning x1 to its value in ϕmaster. This results in
the full assignment ϕactive = {x1 = 0, x2 = 1, x3 = 0, x4 = 0}. Notice that the
new assignment does not satisfy clause ¬x2 ∨ x3 ∨ x4.

Now, consider the same example, this time using a 4-bit assignment to all
the variables. The reader must keep in mind that by parallelizing the former,
we aim to satisfy clauses in each bit position! Recall that once a certain clause
gets a 0 at some bit position, no satisfying assignment is possible at that bit
position. Hence, variables may be flipped in multiple bits, and “conflict” means
a conflict in some bit position. For the latter we shall use the term bit-conflict.
In the multi-bit case, a clause is called unit with respect to a certain bit position
if at that bit position one literal is unassigned and all others are falsified. So,
a clause can be(come) unit on multiple bit positions and on different literals at
the same time. Further, we keep using the term “truth value” for its multi-bit
analogue. Notice that in the initial settings below, the first bit in ϕmaster equals
the 1-bit example and that the ordering is the same.

ϕmaster := {x1 = 0110, x2 = 1100, x3 = 1010, x4 = 0110}
ϕactive := {x1 = ∗∗∗∗, x2 = ∗∗∗∗, x3 = ∗∗∗∗, x4 = ∗∗∗∗}

π := (x2, x1, x4, x3)

Again, we start by assigning x2 to its value in ϕmaster followed by unit propa-
gation. This will result in two unit clauses :

(x1 = ∗∗∗∗ ∨ x2 = 1100) ⇒ x1 := ∗∗11
(¬x2 = 0011 ∨ ¬x3 = ∗∗∗∗) ⇒ x3 := 00∗∗

One of them is selected, say x1 and assigned to its value, resulting in:

(¬x1 = ∗∗00 ∨ x2 = 1100 ∨ x3 = 00∗∗) ⇒ x3 := 0011
Now we assign x3 which triggers three clauses:

(¬x2 = 0011∨ x3 = 0011∨ ¬x4 = ∗∗∗∗) ⇒ x4 := 00∗∗
(¬x2 = 0011 ∨ x3 = 0011 ∨ x4 = 00∗∗) ⇒ x4 := 00∗∗ (bit−conflict)

(¬x3 = 1100 ∨ ¬x4 = 11∗∗) ⇒ x4 := 0000
When unit propagation stops, only the first two bits of x1 are still undefined.
These bits are set to their value in ϕmaster assigning all variables. The period
ends with ϕactive = {x1 = 0111, x2 = 1100, x3 = 0011, x4 = 0000} - which
satisfies the formula in the third and fourth bit.

23.In [HK05] the authors suggest to select the truth value used in ϕmaster. However, this is
not implemented in the latest version of the solver and we consider it as a choice.

106

7.4. IMPLEMENTATION UNITMARCH

The reader may check that: (1) The order in which unit clauses are propa-
gated, as well as the order in which clauses are evaluated, is not fixed. In case
conflicts occur, the order influences ϕactive. For example, evaluating ¬x2∨x3∨x4

before ¬x2 ∨ x3 ∨ ¬x4 results in a different final ϕactive. (2) In the 4-bit exam-
ple the third and fourth bit are the same for all variables. This effect could
reduce the parallelism, because the algorithm as such does not intervene here
and in fact maintains this collapse. This effect is not restricted to formulas
with a small number of variables. To counter this unwanted effect, we added a
technique removing duplicates - see Section 7.5.1.

7.4 Implementation UnitMarch

7.4.1 Unit propagation

The UnitPropagation procedure within the UnitWalk algorithm is not con-
fluent: Different implementations yield different results. In short, two design
decisions need to be made:

• In case of multiple unit clauses: Which one to select for propagation;

• In case of a conflict: Whether or how to act.

The most recent UnitWalk (version 1.003) implements the following UnitPro-
pagation procedure: Unit clauses are stored in a multi-set (a set that can
contain duplicate elements) data-structure. For each iteration a random ele-
ment u from the multi-set is selected. If the complement of the selected unit
clause also occurs in the multi-set - indicating a conflict - all occurrences of u
and ¬u are removed from the multi-set. The algorithm continues with the next
random element - see Algorithm 7.2. Notice that this is a defensive flip strategy:
The truth value for u in ϕactive tends to be copied from ϕmaster.

Algorithm 7.2 UnitPropagation MultiSet ()

1: while UnitMultiSet is not empty do
2: u := random element from UnitMultiSet

3: remove all occurrences of u in UnitMultiSet

4: if unit clause ¬u also occurs in UnitMultiSet then
5: remove all occurrences of ¬u in UnitMultiSet

6: else
7: ϕactive[VAR(u)] := TRUTH(u)
8: for all clauses Ci in which ¬u occurs do
9: if Ci becomes a unit clause then

10: add Ci to UnitMultiSet

11: end if
12: end for
13: end if
14: end while

107

CHAPTER 7. UNITMARCH

In our implementation we took a slightly different approach, since the above
algorithm was hard to implement efficiently in a multi-bit version. Instead of the
multi-set we used a queue (first in, first out) data-structure - see Algorithm 7.3:
Unit clauses are selected in the order in which they are added to the queue. In
general, “early” generated unit clauses will have more bits assigned (at the time
of propagation) compared to “recent” unit clauses. Therefore the queue seems
a useful data-structure since it always propagates the “earliest” unit clause left.

In addition, conflicts are handled differently: The queue is not allowed to
contain complementary or duplicate unit clauses. The truth value of the first
generated unit clause will be used during the further propagation. Notice that
this flip strategy is more offensive: Given a bit-conflict, the truth value of the
variable is flipped in approximately half of the cases. As we will see in the re-
sults (Section 7.6), both implementations yield comparable results (the average
number of periods).

Algorithm 7.3 UnitPropagation Queue ()

1: while UnitQueue is not empty do
2: u := removed front element from UnitQueue

3: for all clauses Ci in which ¬u occurs do
4: if Ci becomes a unit clause then
5: v := remaining literal in Ci

6: ϕactive[VAR(v)] := TRUTH(v)
7: if v not in UnitQueue then append v to UnitQueue

8: end if
9: end for

10: end while

7.4.2 Detection of Unit Clauses

The UnitWalk algorithm spends most computational time in detecting which
clauses became unit clauses given an expansion of ϕactive. If a variable is assigned
a Boolean value, all clauses in which it occurs with complementary polarity are
potential unit clauses. In a 1-bit implementation, a potential unit clause can
only be unit on a single literal, while in a multi-bit implementation it can become
unit on multiple literals (each on a different bit position):

Example 7.6

Given ϕactive = {x1 = 010∗, x2 = 10∗1, x3 = 101∗, x4 = ∗001} with x3 as re-
maining literal of a unit clause to be propagated and with potential clause
x1 ∨ ¬x2 ∨ ¬x3 ∨ x4.

(x1 = 010∗∨¬x2 = 01∗0∨¬x3 = 010∗∨x4 = ∗001) ⇒ x2 := 1001, x4 := 1001
In general, a clause can become unit on all literals - apart from the propagation
literal.

108

7.4. IMPLEMENTATION UNITMARCH

Encoding.

Since each bit in ϕactive consists of three possible values (*,0,1), we used two
bits to encode each value: 00 = *, 01 = 0, 10 = 1, and 11 = bit-conflict24..
We used an array ϕ+

− in which both xi and ¬xi have a separate assignment:
The first bit of each value is stored in xi while the second bit is stored in ¬xi.
Back to the example. ϕactive is stored as:

{

ϕ+
−[x1] = 0100, ϕ+

−[x2] = 1001, ϕ+
−[x3] = 1010, ϕ+

−[x4] = 0001

ϕ+
−[¬x1] = 1010, ϕ+

−[¬x2] = 0100, ϕ+
−[¬x3] = 0100, ϕ+

−[¬x4] = 0110

Using ϕ+
− we can compute the unit clauses as below. Conflicts are ignored by

only allowing unassigned bits - computed by NOT(ϕ+
−[xi] OR ϕ+

−[¬xi]) - to be
assigned. Back to the example:

x1 := ϕ+
−[x3] AND NOT(ϕ+

−[x1] OR ϕ+
−[¬x1]) AND ϕ+

−[x2] AND ϕ+
−[¬x4]

¬x2 := ϕ+
−[x3] AND ϕ+

−[¬x1] AND NOT(ϕ+
−[x2] OR ϕ+

−[¬x2]) AND ϕ+
−[¬x4]

x4 := ϕ+
−[x3] AND ϕ+

−[¬x1] AND ϕ+
−[x2] AND NOT(ϕ+

−[x4] OR ϕ+
−[¬x4])

The above shows a potential disadvantage of the multi-bit propagation: To
check whether a clause of size k becomes a unit clause and to determine the
remaining literal(s) is not trivially computed in O(k) steps - as is the case with
1-bit propagation. However, a O(k) implementation can be realized by splitting
the computation into two stages:

• Compute the unit mask of a clause - a multi-bit Boolean which is true
on all positions with exactly one not falsified literal (denoted by MNF =1)
and false elsewhere;

• Use the unit mask to quickly determine the newly created unit clauses:
All literals that are unassigned at a true position in the unit mask became
unit.

To compute MNF =1, we use two auxiliary masks, MNF < 1 and MNF < 2. The
masks denote multi-bit Booleans which are 1 on all positions with less than
one (and two, respectively) not falsified literals and 0 elsewhere. Notice that
MNF= 1 := MNF < 1 XOR MNF < 2. For each literal li in a clause we update
MNF< 1 and MNF < 2 by the following two rules:

MNF < 2 := (MNF < 2 AND ϕ+
−[¬ly,i]) OR MNF< 1

MNF < 1 := MNF < 1 AND ϕ+
−[¬ly,i]

24.The bit-conflict value is not possible within or implementation

109

CHAPTER 7. UNITMARCH

Algorithm 7.4 ComputeUnitMask (clause Cy)

1: MNF < 1 := ALL BITS TRUE, MNF < 2 := ALL BITS TRUE

2: for i in 1 to |Cy| do
3: MNF< 2 := (MNF < 2 AND ϕ+

−[¬ly,i]) OR MNF < 1

4: MNF< 1 := MNF< 1 AND ϕ+
−[¬ly,i]

5: end for
6: return MNF < 1 XOR MNF< 2

The implementation of the above is shown in Algorithm 7.4. Once MNF= 1 is
computed (MNF =1 = 1010 in the example) we can determine the newly create
unit clauses. For the example we only need the computations:

x1 := MNF =1 AND NOT(ϕ+
−[x1] OR ϕ+

−[¬x1])

¬x2 := MNF =1 AND NOT(ϕ+
−[x2] OR ϕ+

−[¬x2])

x4 := MNF =1 AND NOT(ϕ+
−[x4] OR ϕ+

−[¬x4])

7.5 Communication

The above description of a multi-bit version of the UnitWalk algorithm can
be seen as performing the algorithm in parallel without communication. How-
ever, communication can be added to the algorithm to possibly further extend
performance gain. This section offers two kinds of communication. The first
is a parallel detection algorithm for duplicate assignments and the second is a
parallel algorithm to compute the largest autarky in a given (full) assignment.

7.5.1 Duplicate assignments

During our experiments we frequently observed convergence of the different bit
positions in an assignment. For a given assignment ϕ, the j-th bit position is
called a duplicate if there exists a i < j such that all variables are assigned to the
same truth value at bit position i and j. On most benchmarks, duplicates were
observed. In some cases even (all) n− 1 bit positions became duplicate. Due to
the construction of the UnitWalk algorithm, once a bit position is a duplicate,
it will remain a duplicate if no intervention is made. Because duplicates reduce
the parallel behavior of the algorithm, we decided to detect duplicates and
replace them with a new random assignment.

To detect the duplicates, we used assignment matrices: The assignment
matrix Mϕ(xi) of a variable xi for a p-bit assignment ϕ is a symmetric n × n
0,1-matrix of which each j-th row and column is ϕ[xi] if xi is assigned to true
on the j-th bit-position and ϕ[¬xi] otherwise. The assignment matrix Mϕ(F)
is the entrywise product (so called Hadamard product, denoted by •) of the the
assignment matrices of all the variables in F .

110

7.5. COMMUNICATION

Example 7.7

Given ϕ = {x1 = 010010, x2 = 101101, x3 = 110111, x4 = 000000}. Now we
compute the assignment matrices:

Mϕ(x1) =















1 0 1 1 0 1
0 1 0 0 1 0
1 0 1 1 0 1
1 0 1 1 0 1
0 1 0 0 1 0
1 0 1 1 0 1















Mϕ(x3) =















1 1 0 1 1 1
1 1 0 1 1 1
0 0 1 0 0 0
1 1 0 1 1 1
1 1 0 1 1 1
1 1 0 1 1 1















Mϕ(x2) =















1 0 1 1 0 1
0 1 0 0 1 0
1 0 1 1 0 1
1 0 1 1 0 1
0 1 0 0 1 0
1 0 1 1 0 1















Mϕ(x4) =















1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 1















⇒ Mϕ(F) =















1 0 0 1 0 1
0 1 0 0 1 0
0 0 1 0 0 0
1 0 0 1 0 1
0 1 0 0 1 0
1 0 0 1 0 1















Notice that all assignment matrices Mϕ(xi) have at least as many 1’s as
0’s. If a row contains 1’s in the lower triangle of Mϕ(F), the corresponding
bit position is a duplicate. In the example above, the 4-th, 5-th and 6-th bit
positions are duplicates. Using Mϕ(F) we can obtain mduplicates: Compute the
Hadamard product of the strictly lower triangular matrix and Mϕ(F). Multiply
the result with the all one vector. The resulting mask mduplicates is a p-bit
Boolean which has 1’s on all bit positions that are duplicates and 0’s otherwise.
In this example the computation is:

mduplicates =
(















0 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 1 0 0 0
1 1 1 1 0 0
1 1 1 1 1 0















•















1 0 0 1 0 1
0 1 0 0 1 0
0 0 1 0 0 0
1 0 0 1 0 1
0 1 0 0 1 0
1 0 0 1 0 1















)

















1
1
1
1
1
1

















=
[

0 0 0 1 1 1
]

b7.4

In UnitMarch mduplicates is computed as in Algorithm 7.5 - for the p-bit
Boolean Algebra. Let n denote the number of variables. Although the algorithm
has worst case complexity O(pn), in practice it is quite fast due to the break
command at line 11.

7.5.2 Autarkies

An autarky (or autark assignment) is a partial assignment ϕ that satisfies all
clauses that are “touched” (have at least one literal assigned) by ϕ. So, all
satisfying assignments are autark assignments. Autarkies that do not satisfy all
clauses can be used to reduce the size of the formula: Let Ftouched be the clauses
in F that are satisfied by an autarky. The remaining formula F∗ := F \ Ftouched

111

CHAPTER 7. UNITMARCH

Algorithm 7.5 ComputeDuplicateMask (assignment ϕ)

1: mduplicates := [0]n

2: for j in 1 to n− 1 do
3: mcolumn := [0]j[1]n−j

4: for xi ∈ F do
5: if xi is assigned to true on the j-th bit-position in ϕ then
6: mcolumn := mcolumn AND ϕ[xi]
7: else
8: mcolumn := mcolumn AND ϕ[¬xi]
9: end if

10: if mcolumn = [0]n then
11: break
12: end if
13: end for
14: mduplicates := mduplicates OR mcolumn

15: end for
16: return mduplicates

is satisfiability equivalent to F . If we detect an autark assignment we can reduce
F by removing all clauses in Ftouched.

Given a partial assignment, one can compute the largest autarky being a
reduction of that assignment using the following algorithm [KMT07]:

• Loop through all the clauses;

• If a clause is touched but not satisfied, unassign all variables in that clause;

• Repeat the above until no assignment changes have been made.

The outcome of the algorithm is either an empty assignment, showing that
there exists no autarky which is a reduction of the input assignment, or some
variables are still assigned which form an autarky. Notice that the algorithm is
confluent: All variables that occur in any autarky being a reduction of the input
assignment will be in the output. The larger the number of assigned variables
of the input assignment, the higher the probability that algorithm will return
an autarky. Especially local search Sat solvers - such as UnitWalk - are likely to
profit from the algorithm, since at each period they work with a full assignment.

The above algorithm can easily be parallelized using MBA’s: Check whether
at one or more bit positions the clause is touched but not satisfied. Then
unassign all variables on those bit positions. Parallelizing the algorithm has
two main advantages: First, since it is easy to perform the detection in parallel,
the costs are relatively small. Second, if an autarky is found on a single bit
position, clauses can be removed from the formula which will reduce the the
propagation costs of the entire solving procedure. Therefore, detecting autarkies
and removing clauses in parallel, could (at least in theory) result in a super linear
speed-up.

112

7.5. COMMUNICATION

Example 7.8

To explain the multi-bit autarky detection, we start by using a slightly modified
example formula from the multi-bit unit propagation example and the same
initial ϕmaster. In this example ~ denotes a bit position that has recently been
unassigned.

F ′
example := (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (¬x2 ∨ ¬x3)

(¬x2 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ x3 ∨ x4) ∧ (¬x3 ∨ ¬x4)

ϕmaster := {x1 = 0110, x2 = 1100, x3 = 1010, x4 = 0110}
First, we loop once through all the clauses. If a clause is not satisfied on a certain
bit position all variables in that clause are unassigned at that bit position:

(x1 = 0110∨ x2 = 1100) ⇒ x1 := 011~, x2 := 110~

(¬x1 = 100∗ ∨ ¬x2 = 001∗ ∨ x3 = 1010) ⇒ x1 := 0~1∗, x2 := 1~0∗,
x3 := 1~1~

(¬x2 = 0∗1∗ ∨ ¬x3 = 0∗0∗) ⇒ x2 := ~∗0∗, x3 := ~∗1∗
(¬x2 = ∗∗1∗ ∨ x3 = ∗∗1∗ ∨ ¬x4 = 1001) ⇒ x4 := 0~10

(¬x2 = ∗∗1∗ ∨ x3 = ∗∗1∗ ∨ x4 = 0∗10) ⇒ x4 := ~∗1~
(¬x3 = ∗∗0∗ ∨ ¬x4 = ∗∗0∗) ⇒ x3 := ∗∗~∗, x4 := ∗∗~∗

Second, we loop again through the clauses. This will unassign one more bit
position:

(x1 = 0∗1∗ ∨ x2 = ∗∗0∗) ⇒ x1 := ~∗1∗
Since no assignments are unassigned by the other clauses, the algorithm stops.
The presence of assigned variables x1 and x2 on bit position 3 indicate that we
found an autarky. This autarky satisfies all clauses except ¬x3 ∨ ¬x4. Since
the remaining clause is satisfiability equivalent to F ′

example, the satisfied clauses
can be removed from the formula and we can continue solving only the reduced
formula. The example shows that detection of autarkies can reduce the formula
considerably and speed-up the solving time.

Detection of autarkies can be implemented more efficiently compared to the
description above: Only in the first iteration, one needs to loop through all
the clauses. In succeeding iterations, only those clauses that contain a variable
that was unassigned (at some bit position) in the prior iteration need to be
examined. Another technique to reduce the computational costs of the detection
algorithm is to call it once every k periods. In case an autarky exists on some bit
position(s), the UnitWalk algorithm will not alter the truth values on those
bit positions of the variables contributing to the autarky. Therefore, calling
the detection algorithm every once in a while will reveal the same autarkies -
although slightly later.

113

CHAPTER 7. UNITMARCH

7.6 Results

We implemented the UnitWalk algorithm as a multi-bit local search solver
using UnitPropagation Queue. The resulting solver, called UnitMarch, can
be used for any number of bits. We added the method which detects and re-
places duplicates with new random assignments (see Section 7.5.1). Because
the autarky detection feature (see Section 7.5.2) only slightly influences the
performance on the selected benchmarks, we decided to present the results
from [HvM07]. The performance of UnitMarch is compared with the latest ver-
sion of UnitWalk25..

The latter is a hybrid solver: If after a number of periods the number of
unsatisfied clauses is not reduced the solver switches to WalkSat [SKC94].
In turn, if that algorithm does not find a solution after a multitude of flips it
switches back, etc. Since we wanted to compare the influence of multi-bit search
on the pure UnitWalk algorithm, this switching was disabled.

Table 7.2 shows a comparison between UnitWalk, UnitMarch 1-bit and Unit-

March 32-bit on various benchmarks. Apart from the dlx2-bugXX family26., all
benchmarks can be found on SATlib27. along with a description. For each solver,
we set MAX PERIODS := ∞. We used 100 random seeds for all benchmarks.

The solvers UnitWalk and UnitMarch 1-bit show comparable performance.
First, the number of periods executed per second is almost the same for all
checked benchmarks. This shows that our implementation, with some overhead
for parallelization, is fast enough on the benchmarks at hand. Second, the aver-
age number of periods between the two versions is comparable. Although they
differ slightly between instances, the results are “too close to call”: There is no
clear winner. Hence, the UnitPropagation Queue procedure shows compa-
rable to the UnitPropagation MultiSet procedure in terms of performance.

Comparing both 1-bit solvers to UnitMarch 32-bit shows that the latter is
the clear winner on almost all experimented instances. We found few exceptions
(see logistics-d); all having less than 100 periods on the three solvers. Appar-
ently, multi-bit search as implemented is not effective on these simple instances.
Figures 7.1 and 7.2 present the effect of using different numbers of bits in more
detail. Both figures use logarithmic axes - thus f(x) = c

x
is represented as a

straight line. Four benchmarks are tested for all bits sizes 1 to 32. Using double
logarithmic scaling, these instances show a linear dependency between the av-
erage number of periods and the number of used bits. The average time is also
diminished on all these instances, although this reduction varies per instance.
Notice that on all these instances the trend is strictly decreasing. On instances
such as the parity benchmarks, it could be expected that computers with a p-bit
architecture with p > 32 will boost performance even further.

25.version 1.003 available from http://logic.pdmi.ras.ru/~arist/UnitWalk/
26.available from http://www.miroslav-velev.com/sat_benchmarks.html
27.http://www.satlib.org

114

http://logic.pdmi.ras.ru/~arist/UnitWalk/
http://www.miroslav-velev.com/sat_benchmarks.html
http://www.satlib.org

7.6. RESULTS

Table 7.2 — Comparison between the performance - in average number of periods
and average time and standard deviation - of UnitWalk, UnitMarch 1-
bit, and UnitMarch 32-bit on various benchmarks. The presented data
averages runs using 100 different random seeds.

UnitWalk 1.003 UnitMarch 1-bit UnitMarch 32-bit
periods time periods time periods time

aim-2-1-1 119336 6.13 (6.36) 37520 1.62 (1.65) 1339 0.32 (0.33)

aim-2-1-2 1395975 73.56 (71.97) 1001609 44.67 (43.37) 45934 11.35 (10.68)

aim-2-1-3 26487 1.40 (1.39) 12147 0.53 (0.60) 646 0.16 (0.15)

aim-2-1-4 57794 3.13 (3.01) 30708 1.38 (1.58) 945 0.23 (0.22)

aim-3-4-1 89923 7.57 (7.05) 62191 3.19 (3.07) 2134 1.40 (1.42)

aim-3-4-2 99744 8.43 (7.98) 181623 9.33 (8.51) 5838 3.81 (3.33)

aim-3-4-3 51898 4.33 (4.07) 20870 1.7 (0.90) 738 0.48 (0.45)

aim-3-4-4 264125 21.96 (17.79) 240856 21.21 (13.43) 6234 4.29 (3.15)

bw-large.b 441 0.32 (0.33) 311 0.18 (0.13) 13 0.05 (0.03)

bw-large.c 13870 47.61 (40.90) 9342 19.85 (22.05) 498 7.63 (7.44)

dlx2-bug17 1102 6.40 (9.53) 432 2.31 (2.80) 7 0.43 (0.41)

dlx2-bug39 2830 6.78 (6.13) 1899 4.38 (3.72) 69 1.33 (1.76)

dlx2-bug40 1632 3.96 (4.02) 988 2.34 (2.20) 26 0.55 (0.55)

flat200-05 19384 3.46 (3.40) 19880 2.19 (2.35) 704 0.81 (0.75)

flat200-24 5247 0.98 (1.02) 5145 0.56 (0.56) 130 0.16 (0.18)

flat200-39 12142 2.16 (2.29) 12048 1.31 (1.21) 391 0.44 (0.45)

flat200-48 2941 0.52 (0.54) 2346 0.26 (0.25) 84 0.10 (0.10)

flat200-64 6406 1.14 (1.03) 6799 0.75 (0.75) 268 0.34 (0.35)

logistics-a 1970338 636.47 (563.21) 863165 369.09 (383.97) 25100 55.97 (43.53)

logistics-b 6313 1.91 (2.24) 11878 5.43 (5.76) 354 0.73 (0.63)

logistics-c 133572 72.16 (69.36) 310450 228.49 (224.92) 9803 34.19 (31.75)

logistics-d 23 0.11 (0.07) 24 0.08 (0.04) 5 0.11 (0.03)

par16-1 14245 4.97 (4.73) 11267 2.65 (2.85) 365 0.21 (0.20)

par16-2 21417 7.43 (8.08) 20601 5.05 (5.18) 702 0.42 (0.34)

par16-3 17913 6.31 (7.04) 16872 3.98 (3.93) 551 0.33 (0.42)

par16-4 16955 5.94 (5.77) 14087 3.33 (3.47) 523 0.34 (0.32)

par16-5 18889 6.60 (6.70) 23028 5.41 (5.00) 640 0.36 (0.36)

qg1-08 101390 424.17 (399.59) 121127 362.74 (377.55) 4229 127.57 (120.87)

qg2-08 803258 3404.49 (3501.46) 1005351 4360.92 (4518.23) 26223 991.23 (967.20)

qg3-08 165 0.08 (0.06) 166 0.10 (0.10) 5 0.03 (0.03)

qg4-09 1344 1.10 (0.96) 2098 1.82 (1.66) 66 0.53 (0.53)

qg5-11 591 1.92 (1.82) 670 2.13 (2.00) 23 0.82 (0.68)

qg7-13 92600 492.66 (465.71) 98172 408.35 (419.56) 2937 171.63 (146.69)

uf250-054 307317 33.69 (35.84) 472970 30.03 (27.82) 14851 10.74 (11.57)

uf250-062 42137 4.60 (4.85) 88670 5.61 (5.44) 2427 1.74 (1.84)

uf250-071 135296 14.49 (12.79) 218375 13.92 (13.70) 6404 4.59 (4.66)

uf250-072 126387 13.91 (13.33) 172789 10.95 (9.81) 5624 4.10 (4.28)

uf250-093 92110 9.78 (9.71) 146132 9.23 (8.37) 4521 3.25 (2.94)

115

CHAPTER 7. UNITMARCH

av
er

a
g
e

n
u
m

b
er

o
f
p
er

io
d
s

105

104

103

102

10
32168

bits
421

aim-200-2-1-1.cnf
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs
rs

rs
rs

rs

rs
rs

rs rs

rs
rs

rs
rs

rs

flat200-11.cnf

+

+

+

+

+

+

+

+

+

+

+

+

+ +

+

+
+

+

+

+
+ +

+ +
+

+ +

+

+

+

+ +

+

parity16-1.cnf

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs

rs

rs

rs

rs
rs

rs

rs

rs

rs

rs
rs

rs

rs
rs

rs

rs

rs
rs

rs

rs

rs

qg5-11.cnf

+

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+
+

+

+

+

+
+

+ + +

+
+

+ +

+
+

+

+

Figure 7.1 — Average number of periods by UnitMarch using different number of
bits - computed using 1000 random seeds. Both axes are logarithmic.

av
er

a
g
e

ti
m

e
(i
n

se
co

n
d
s)

0.1

1

32168
bits

421

aim-200-2-1-1.cnf

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs

rs rs

rs

rs

rs

rs

rs rs

rs rs

rs

rs

rs

rs rs

rs rs

rs

flat200-11.cnf

+

+

+

+ +

+ + + + + + +

+ + + + + + + + + + + + + + + + + + + +

+

parity16-1.cnf
rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs

rs rs

rs

rs rs

rs

rs

rs

rs

rs

rs

rs

qg5-11.cnf+

+

+

+

+

+

+

+

+

+

+

+
+

+
+

+ + +
+

+

+

+

+

+

+

+
+

+

+

+

+
+

+

Figure 7.2 — Average time (in seconds) by UnitMarch using different number of bits
- computed using 1000 random seeds. Both axes are logarithmic.

116

7.6. RESULTS

Although the detection of autarkies sporadically influenced the results on the
selected benchmarks, we present the usefulness of this technique using a separate
experiment: We concatenated multiple satisfiable random 3-Sat formulae28.

such that each formula uses different variables. Each concatenated formula
consists of multiple components and for each component there exists an autarky
satisfying only the component. Experiments on similar formulae is discussed
in [BS06].

The performance of UnitMarch on these formulae - with and without the
autarky feature - is shown in Figure 7.3. The version with autarky detection
is orders of magnitude faster. Also, the larger the number of components, the
larger the speed-up factor realized by the technique. So, if formulae consist
of independent components, they can be solved much faster using detection of
autarkies. Practical applications for this technique are under current research.

number of components

av
er

a
g
e

co
m

p
u
ta

ti
o
n
a
l
ti
m

e
(s

)

1

10

100

1000

10000

10 20 30 40 50 60 70 80 90 100

without autarky detection
with autarky detection

Figure 7.3 — Performance of UnitMarch 32-bit with and without autarky detection
on concatenated formulae of random 3-Sat instances.

28.with 200 variables and 860 clauses, also from http://www.satlib.org

117

http://www.satlib.org

CHAPTER 7. UNITMARCH

7.7 Conclusions and future work

Our first observation is that the probability of hitting a solution of proposi-
tional Boolean formulae is increased by using bigger Boolean Algebras. Also,
Boolean formulae with n variables can be checked on feasibility with a single
(generic) multi-bit Boolean assignment using the 2n bit Boolean Algebra. Com-
pared to conventional checking algorithms, the above just exchanges time for
space. However, the architecture of today’s computers is 32- or 64-bit - which
enables execution of 32 (or 64) 1-bit operations simultaneously. Although many
algorithms do not seem suitable for this kind of parallelism, the UnitWalk
algorithm appears to be a suitable first candidate, as well as a state-of-the-art
Sat solver [LS03].

Our multi-bit implementation of this algorithm, called UnitMarch, shows
that this algorithm can be parallelized in such a way that the 1-bit version
shows comparable performance to the UnitWalk solver. Using double logarithmic
scaling, these instances show a linear dependency between the average number
of periods and the number of used bits. Most importantly, the average time to
solve instances is reduced by using the 32-bit version.

The implementations of UnitWalk and UnitMarch are currently comparable
(regardless the multi-bit feature) but are far from optimal: For instance, in
both solvers unit clauses in the original CNF are propagated in each period.
Another performance boost is expected by adding (redundant) clauses - for in-
stance as implemented in the local search solver R+AdaptNovelty+ [APSS05] -
because they will increase the number of unit propagations. Finally, further
experiments (not presented in this chapter) showed that ordering the variables
less randomly and more based on multi-bit heuristics results in improved per-
formance on many benchmarks. Developing enhancements (like replacement of
duplicate assignments and detection of autarkies) and effective multi-bit heuris-
tics is under current research.

118

Take away paradox from the thinker

and you have a professor.

Soren Kierkegaard

8
Conclusions

We concluded our analysis regarding state-of-the-art Sat solving techniques
(see Section 2.5) with five topics of interesting future research areas: Enhancing
the LookAhead architecture, enhancing the UnitWalk architecture, adaptive
heuristics, direction heuristics, and representation. In this chapter, we will
summarize our contributions in these areas and offer possible extensions or
continuations of the work presented here.

8.1 A relic with a future

About 90% of the complete Sat solvers that participated during the recent Sat
competitions were based on the conflict-driven architecture. Look-ahead Sat
solvers are far less popular. They are considered only strong on unsatisfiable
random k-Sat formulae. However, we believe that look-ahead Sat solvers can
be competitive on a wide variety of benchmarks.

Many contributions to the look-ahead Sat solver architecture have been
presented in this thesis. First, we reduced the computational costs of several
existing look-ahead Sat solving techniques and added equivalence reasoning
in such a way that it is only applied when useful (Chapter 3). Second, to
improve the performance of march on structured instances, we enhanced the pre-
processor, added adaptive heuristics and developed a new branching strategy
(Chapter 4). Also, we improved our own adaptive heuristics (Chapter 5) and
studied the influence of direction heuristics. Then we capitalized on the observed
results (Chapter 6).

These contributions boosted the performance of our look-ahead Sat solver
march. The different versions of this solver won various awards during the Sat
competitions. Amongst these are the first prizes in the divisions: Crafted ALL
(Sat 2004), crafted UNSAT (Sat 2004), crafted SAT (Sat 2007), and random
UNSAT (Sat 2007). These awards prove that march is very competitive on
both crafted and random formulae.

Yet conflict-driven Sat solvers are still superior on industrial benchmarks.
Quite some additional progress is required to close this gap. Still, we expect
it can be done by adding more reasoning techniques - such as adding conflict

119

CHAPTER 8. CONCLUSIONS

clauses. Fast performance on industrial benchmarks would really prove that the
LookAhead architecture could function as a foundation for general purpose
Sat solvers.

Another challenge for look-ahead Sat solvers is the ability to solve large
hard random k-Sat formulae. Although the presented techniques have boosted
the performance on structured benchmarks, only small gains were established
on random formulae. For instance, unsatisfiable random 3-Sat formulae near
the phase transition density with 1000 variables cannot be solved within years of
computational time. Look-ahead Sat solvers perform best on the smaller sized
instances and therefore are likely the most fruitful candidates to solve larger
formulae in the future.

8.2 Marching on?

Techniques such as unit propagation and autarky detection appeared to be
suitable for parallelization using multi-bit Booleans. Although performance im-
proved by implementing the parallelization in our incomplete Sat solver Unit-

March, it was not enough to make the solver very competitive. The question
arises: Can we capitalize on these results for future research?

A first direction is to further enhance UnitMarch by adding new techniques
and possibly try to parallelize these as well. Currently, we experiment with
the use of a less random order of the variables as input for each period. Early
results show that the speed improves significantly on various instances, although
performance losses have been observed too.

A second possible continuation of this research is to parallelize other tech-
niques in a similar manner outside the scope of UnitMarch. A possible alternative
is studying the possibilities to parallelize look-aheads on a single processor. At
first sight, look-aheads seem an interesting candidate: 1) Most of the computa-
tional time is spent performing unit propagation, 2) look-aheads are independent
of each other, and 3) they all start from the same formula. However, look-aheads
also perform some counting, which is difficult to parallelize.

8.3 Adaptation, adaptation, adaptation

Not only does there exist a wide variety of Sat formulae, the reduced formulae
that arise while solving a certain problem appear to be quite different too.
Therefore, solving strategies should adapt towards these differences as well.
Chapter 5 presented such an adaptive algorithm to guide the DoubleLook
procedure. Due to this adaptive technique, this procedure reduces the solving
time on a vast majority of benchmarks.

Besides the reduction of the overall computational costs, adaptive heuristics
have several other advantages. For instance, users of Sat solvers do not require
knowledge of optimal parameter settings for their specific problem. Also, one

120

8.4. LEFT OR RIGHT, THAT IS THE QUESTION

does not need to update parameter settings after adding a new feature, which
is often the case using magic (static) constants.

Apart from the adaptive algorithm for the DoubleLook procedure, we
developed an adaptive algorithm to determine the optimal number of look-
ahead variables (see Section 4.4.1). In general, this algorithm does improve the
solving speed, but some performance losses were also observed. It appeared hard
to construct an adaptive algorithm which is elegant (uses few magic constants)
and sets the parameters to near optimal values.

Ultimately, one desires an adaptive algorithm that not only effectively mod-
ifies the parameters of the various heuristics. Ideally, it even selects the optimal
(Sat solving) architecture for each (reduced) formula. For instance, the original
formula might be best reduced using a conflict driven solver, while the remaining
formula is best solved using the WalkSat architecture.

Concluding, there is a high potential for adaptive algorithms and therefore
these are an interesting topic of Sat research. Yet, quite some progress is still
required to make Sat solvers really adaptive.

8.4 Left or right, that is the question

Direction heuristics, although very powerful in theory, are not a well-studied
topic within the field of Sat solving. Chapter 6 provides a first study on how
direction heuristics in look-ahead Sat solvers influence the distribution of so-
lutions on random k-Sat formulae. All studied Sat solvers showed a similar
bias on these formulae, but some biased the distribution of solutions more than
others. We currently study the bias of direction heuristics in look-ahead Sat
solvers on structured instances.

Capitalizing on the observed bias is a logical next step. We developed a
new jump strategy that visits subtrees in decreasing probability (based on the
observations) of containing a solution. This jump strategy called distribution
jumping appeared successful on the studied random k-Sat formulae as well as
on many structured benchmarks. Yet the usefulness of distribution jumping
can likely be improved: First, by developing direction heuristics that bias the
distribution of solutions even more: The larger the bias, the larger the expected
gain. Second, the generalized jump order πleft is probably not the optimal one.
Constructing a generalized jump order with more similarities to the greedy jump
orders (see Section 6.4.1) could further improve performance.

Last but not least, the effect of direction heuristics in conflict-driven Sat
solvers needs to be studied. Due to the addition of conflict clauses, direction
heuristics influence performance on unsatisfiable formulae as well. This com-
plicates the choice for the left of the right branch even more. Current strong
conflict-driven Sat solvers either branch negatively (always assign decision vari-
ables to false) [ES03] or perform progress saving (assign decision variables to
their last forced value) [PD07]. Both techniques are very simple (in terms of
computational costs). More sophisticated direction heuristics that focus on early
detection of conflicts may improve conflict-driven Sat solvers.

121

CHAPTER 8. CONCLUSIONS

8.5 Re-representation

Sat solving has become a quite powerful method to effectively solve a wide
variety of problems. Transforming these problems into Sat can be realized in
various ways. Not much is known about which transformation results in an
ideal representation for a certain Sat solver. This thesis provides only some
minor contributions to this research area. Amongst these are the pre-processing
techniques in Section 4.3. Additional progress of Sat solvers is expected if
we would obtain more knowledge about an effective representation: A pre-
processor can use this knowledge to translate a transformed problem into such
a representation.

Furthermore, we should study whether pure CNF is the ideal representation.
Hybrid representations consisting of both clauses and seperate higher level con-
straints (such as cardinality constraints) may be very useful to Sat solvers in
the future. An advantage of a hybrid representation is that new forms of (spe-
cialized) reasoning can be added. On the other hand, existing techniques such as
conflict analysis and look-ahead may become more complex and therefore more
expensive. In Section 3.6, we showed how equivalence clauses can be extracted
from the CNF to create a hybrid representation. The equivalence reasoning as
implemented in march improves performance on several benchmarks, without
hurting it on others. Similar enhancements could be added with other higher
level constraints or to other Sat solvers.

122

Bibliography

[AM04] Carlos Ansótegui and Felip Manyà, Mapping problems with finite-

domain variables to problems with Boolean variables., In Hoos and
Mitchell [HM05], pp. 1–15.

[APSS05] Anbulagan, Duc Nghia Pham, John K. Slaney, and Abdul Sattar,
Old resolution meets modern SLS., AAAI (Manuela M. Veloso and
Subbarao Kambhampati, eds.), AAAI Press / The MIT Press,
2005, pp. 354–359.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yun-
shan Zhu, Symbolic model checking without BDDs, TACAS ’99:
Proceedings of the 5th International Conference on Tools and Al-
gorithms for Construction and Analysis of Systems (London, UK),
Springer-Verlag, 1999, pp. 193–207.

[BIK+92] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi,
Pavel Pudlák, and Alan Woods, Exponential lower bounds for the

pigeonhole principle, STOC ’92: Proceedings of the twenty-fourth
annual ACM symposium on Theory of computing (New York, NY,
USA), ACM, 1992, pp. 200–220.

[BMZ05] Alfredo Braunstein, Marc Mézard, and Riccardo Zecchina, Sur-

vey propagation: An algorithm for satisfiability, Random Struct.
Algorithms 27 (2005), no. 2, 201–226.

[Bro90] Frank Markham Brown, Boolean reasoning: The logic of Boolean

equations, Kluwer Academic Publishers, Dordrecht, 1990.

[BS92] Alain Billionnet and Alain Sutter, An efficient algorithm for the

3 satisfiability problem, Operation Research Letters 12 (1992),
29–36.

[BS96] Max Böhm and Ewald Speckenmeyer, A fast parallel SAT-solver -

efficient workload balancing, Annals of Mathematics and Artificial
Intelligence 17 (1996), no. 159, 381–400.

[BS06] Armin Biere and Carsten Sinz, Decomposing SAT problems into

connected components, Journal on Satisfiability, Boolean Model-
ing and Computation 2 (2006), 191–198.

[BSK03] Wolfgang Blochinger, Carsten Sinz, and Wolfgang Küchlin, Par-

allel propositional satisfiability checking with distributed dynamic

learning, Parallel Comput. 29 (2003), no. 7, 969–994.

[BW05] Fahiem Bacchus and Toby Walsh (eds.), Theory and applications

of satisfiability testing, 8th international conference, SAT 2005,

St. Andrews, UK, june 19-23, 2005, proceedings, Lecture Notes
in Computer Science, vol. 3569, Springer, 2005.

123

BIBLIOGRAPHY

[Con04] Harold S. Connamacher, A random constraint satisfaction prob-

lem that seems hard for DPLL, In Hoos and Mitchell [HM05].

[Coo71] Stephen A. Cook, The complexity of theorem-proving procedures,
STOC ’71: Proceedings of the third annual ACM symposium on
Theory of computing (New York, NY, USA), ACM, 1971, pp. 151–
158.

[DD] Gilles Dequen and Olivier Dubois, Source code of the kcnfs solver,
Available at http://www.laria.u-picardie.fr/~dequen/sat/.

[DD01] Olivier Dubois and Gilles Dequen, A backbone-search heuristic

for efficient solving of hard 3-SAT formulae., IJCAI (Bernhard
Nebel, ed.), Morgan Kaufmann, 2001, pp. 248–253.

[DD03] Gilles Dequen and Olivier Dubois, kcnfs: An efficient solver for

random k-SAT formulae, In Giunchiglia and Tacchella [GT04],
pp. 486–501.

[DLL62] Martin Davis, George Logemann, and Donald Loveland, A ma-

chine program for theorem-proving, Commun. ACM 5 (1962),
no. 7, 394–397.

[DP60] Martin Davis and Hilary Putnam, A computing procedure for

quantification theory, Journal of the ACM 7 (1960), no. 3, 201–
215.

[EB05] Niklas Eén and Armin Biere, Effective preprocessing in SAT

through variable and clause elimination., In Bacchus and Walsh
[BW05], pp. 61–75.

[ES03] Niklas Eén and Niklas Sörensson, An extensible SAT-solver, In
Giunchiglia and Tacchella [GT04], pp. 502–518.

[ES05] Niklas Eén and Niklas Sörensson, Minisat – a SAT solver with

conflict-clause minimization., 2005, Solver description for SAT
2005.

[ES06] Niklas Eén and Niklas Sörensson, Translating pseudo-Boolean

constraints into SAT, Journal on Satisfiability, Boolean Model-
ing and Computation 2 (2006), 1–25.

[Fre95] Jon William Freeman, Improvements to propositional satisfiabil-

ity search algorithms., Ph.D. thesis, University of Pennsylvania,
Philadelphia, PA, USA, 1995.

[GSC97] Carla P. Gomes, Bart Selman, and Nuno Crato, Heavy-tailed dis-

tributions in combinatorial search., In Smolka [Smo97], pp. 121–
135.

124

http://www.laria.u-picardie.fr/~dequen/sat/

BIBLIOGRAPHY

[GT04] Enrico Giunchiglia and Armando Tacchella (eds.), Theory and

applications of satisfiability testing, 6th international conference,

SAT 2003. Santa Margherita Ligure, Italy, may 5-8, 2003 se-

lected revised papers, Lecture Notes in Computer Science, vol.
2919, Springer, 2004.

[HDvZvM04] Marijn J.H. Heule, Mark Dufour, Joris E. van Zwieten, and Hans
van Maaren, March eq: Implementing additional reasoning into

an efficient look-ahead SAT solver, In Hoos and Mitchell [HM05],
pp. 345–359.

[Her06] Paul Herwig, Decomposing satisfiability problems., Master’s the-
sis, TU Delft, 2006.

[HK05] Edward A. Hirsch and Arist Kojevnikov, UnitWalk: A new SAT

solver that uses local search guided by unit clause elimination,
Annals of Mathematics and Artificial Intelligence 43 (2005), no. 1-
4, 91–111.

[HM05] Holger H. Hoos and David G. Mitchell (eds.), Theory and appli-

cations of satisfiability testing, 7th international conference, SAT

2004, Vancouver, BC, Canada, may 10-13, 2004, revised selected

papers, Lecture Notes in Computer Science, vol. 3542, Springer,
2005.

[Hoo02] Holger H. Hoos, An adaptive noise mechanism for WalkSAT,
Eighteenth national conference on Artificial intelligence (Menlo
Park, CA, USA), American Association for Artificial Intelligence,
2002, pp. 655–660.

[HvM04] Marijn J.H. Heule and Hans van Maaren, Aligning CNF- and

equivalence-reasoning, In Hoos and Mitchell [HM05], pp. 145–156.

[HvM06] Marijn J.H. Heule and Hans van Maaren, March dl: Adding adap-

tive heuristics and a new branching strategy, Journal on Satisfia-
bility, Boolean Modeling and Computation 2 (2006), 47–59.

[HvM07] Marijn J.H. Heule and Hans van Maaren, From idempotent gen-

eralized boolean assignments to multi-bit search, In Marques-Silva
and Sakallah [MSS07], pp. 134–147.

[IKM+02] Kazuo Iwama, Daisuke Kawai, Shuichi Miyazaki, Yasuo Okabe,
and Jun Umemoto, Parallelizing local search for CNF satisfiabil-

ity using vectorization and PVM., ACM Journal of Experimental
Algorithms 7 (2002), 2.

[KHR+02] Henry Kautz, Eric Horvitz, Yongshao Ruan, Carla Gomes, and
Bart Selman, Dynamic restart policies, Eighteenth national con-
ference on Artificial intelligence (Menlo Park, CA, USA), Ameri-
can Association for Artificial Intelligence, 2002, pp. 674–681.

125

BIBLIOGRAPHY

[KKM96] Florian Krohm, Andreas Kuehlmann, and Arjen Mets, The use of

random simulation in formal verification, ICCD, IEEE Computer
Society, 1996, pp. 371–376.

[KMT07] Oliver Kullmann, Victor W. Marek, and Miroslaw Truszczyński,
Computing autarkies and properties of the autarky monoid, 2007,
In preparation.

[Kul99] Oliver Kullmann, On a generalization of extended resolution, Dis-
crete Applied Mathematics 96-97 (1999), no. 1, 149–176.

[Kul00] Oliver Kullmann, Investigations on autark assignments, Discrete
Applied Mathematics 107 (2000), no. 1-3, 99–137.

[Kul02] Oliver Kullmann, Investigating the behaviour of a SAT solver

on random formulas, Tech. Report CSR 23-2002, Univer-
sity of Wales Swansea, Computer Science Report Series
(http://www-compsci.swan.ac.uk/reports/2002.html), Oc-
tober 2002, 119 pages.

[Kul08] Oliver Kullmann, A survey on practical SAT algorithms, Com-
plexity of Constraints (Nadia Creignou, Phokion Kolaitis, and
Heribert Vollmer, eds.), Springer, 2008.

[LA97a] Chu Min Li and Anbulagan, Heuristics based on unit propagation

for satisfiability problems., IJCAI (1), 1997, pp. 366–371.

[LA97b] Chu Min Li and Anbulagan, Look-ahead versus look-back for sat-

isfiability problems., In Smolka [Smo97], pp. 341–355.

[LeB01] Daniel LeBerre, Exploiting the real power of unit propagation look-

ahead, Proceedings of SAT2001: Workshop on Theory and Appli-
cation of Satisfiability Testing, vol. 9, Elsevier, 2001.

[LH05] Chu Min Li and Wen Qi Huang, Diversification and determinism

in local search for satisfiability, In Bacchus and Walsh [BW05],
pp. 158–172.

[Li99] Chu Min Li, A constraint-based approach to narrow search trees

for satisfiability, Information processing letters 71 (1999), no. 2,
75–80.

[Li03] Chu-Min Li, Equivalent literal propagation in the DLL procedure,
Discrete Applied Mathematics 130 (2003), no. 2, 251–276.

[LS03] Daniel LeBerre and Laurent Simon, The essentials of the SAT

2003 competition, In Giunchiglia and Tacchella [GT04], pp. 452–
467.

126

http://www-compsci.swan.ac.uk/reports/2002.html

BIBLIOGRAPHY

[LS04] Daniel LeBerre and Laurent Simon, Fifty-five solvers in Vancou-

ver: The SAT 2004 competition, In Hoos and Mitchell [HM05],
pp. 321–344.

[LS06] Daniel LeBerre and Laurent Simon, Preface special volume on the

SAT 2005 competitions and evaluations, 2006, Journal on Satisfi-
ability, Boolean Modeling and Computation 2.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao
Zhang, and Sharad Malik, Chaff: Engineering an efficient SAT

solver., DAC, ACM, 2001, pp. 530–535.

[MSK97] David McAllester, Bart Selman, and Henry Kautz, Evidence for

invariants in local search, Proceedings of the Fourteenth Na-
tional Conference on Artificial Intelligence (AAAI’97) (Provi-
dence, Rhode Island), 1997, pp. 321–326.

[MSL92] David G. Mitchell, Bart Selman, and Hector J. Levesque, Hard

and easy distributions for SAT problems, Proceedings of the Tenth
National Conference on Artificial Intelligence (Menlo Park, Cali-
fornia) (Paul Rosenbloom and Peter Szolovits, eds.), AAAI Press,
1992, pp. 459–465.

[MSS96] Joao P. Marques-Silva and Karem A. Sakallah, GRASP – a new

search algorithm for satisfiability, ICCAD ’96: Proceedings of
the 1996 IEEE/ACM international conference on Computer-aided
design (Washington, DC, USA), IEEE Computer Society, 1996,
pp. 220–227.

[MSS07] João Marques-Silva and Karem A. Sakallah (eds.), Theory and ap-

plications of satisfiability testing - SAT 2007, 10th international

conference, Lisbon, Portugal, may 28-31, 2007, proceedings, Lec-
ture Notes in Computer Science, vol. 4501, Springer, 2007.

[MvVW07] Dimos Mpekas, Michiel van Vlaardingen, and Siert Wieringa, The

first steps to a hybrid SAT solver, 2007, MSc report, SAT@Delft.

[PD07] Knot Pipatsrisawat and Adnan Darwiche, A lightweight compo-

nent caching scheme for satisfiability solvers, In Marques-Silva
and Sakallah [MSS07], pp. 294–299.

[PK01] Donald J. Patterson and Henry Kautz, Auto-WalkSAT: A self-

tuning implementation of walksat, Proceedings of SAT2001:
Workshop on Theory and Application of Satisfiability Testing,
vol. 9, Elsevier, 2001.

[Pre07] Steven David Prestwich, Variable dependency in local search:

Prevention is better than cure, In Marques-Silva and Sakallah
[MSS07], pp. 107–120.

127

BIBLIOGRAPHY

[SKC94] Bart Selman, Henry A. Kautz, and Bram Cohen, Noise strategies

for improving local search, AAAI ’94: Proceedings of the twelfth
national conference on Artificial intelligence (vol. 1) (Menlo Park,
CA, USA), American Association for Artificial Intelligence, 1994,
pp. 337–343.

[SLH05] Laurent Simon, Daniel LeBerre, and Edward A. Hirsch, The

SAT2002 competition, Annals of Mathematics and Artificial In-
telligence 43 (2005), no. 1, 307–342.

[SLM92] Bart Selman, Hector J. Levesque, and D. Mitchell, A new method

for solving hard satisfiability problems, Proceedings of the Tenth
National Conference on Artificial Intelligence (Menlo Park, Cali-
fornia) (Paul Rosenbloom and Peter Szolovits, eds.), AAAI Press,
1992, pp. 440–446.

[Smo97] Gert Smolka (ed.), Principles and practice of constraint program-

ming - CP97, third international conference, Linz, Austria, octo-

ber 29 - november 1, 1997, proceedings, Lecture Notes in Com-
puter Science, vol. 1330, Springer, 1997.

[VB03] Miroslav N. Velev and Randal E. Bryant, Effective use of boolean

satisfiability procedures in the formal verification of superscalar

and VLIW microprocessors, J. Symb. Comput. 35 (2003), no. 2,
73–106.

[vL06] Martijn van Lambalgen, 3MCard: A lookahead cardinality solver,
Master’s thesis, TU Delft, 2006.

[WvM98] Joost P. Warners and Hans van Maaren, A two-phase algorithm

for solving a class of hard satisfiability problems, Operation Re-
search Letters 23 (1998), no. 3-5, 81–88.

[ZBH96] Hantao Zhang, Maria Paola Bonacina, and Jieh Hsiang, PSATO:

a distributed propositional prover and its application to quasigroup

problems, Journal of Symbolic Computation 21 (1996), no. 4, 543–
560.

[Zha06] Hantao Zhang, A complete random jump strategy with guiding

paths, SAT (Armin Biere and Carla P. Gomes, eds.), Lecture
Notes in Computer Science, vol. 4121, Springer, 2006, pp. 96–
101.

[ZMMM01] Lintao Zhang, Conor F. Madigan, Matthew W. Moskewicz, and
Sharad Malik, Efficient conflict driven learning in boolean satisfi-

ability solver., ICCAD, 2001, pp. 279–285.

[ZS00] Hantao Zhang and Mark Stickel, Implementing the Davis-Putnam

method, Journal of Automated Reasoning 24 (2000), no. 1-2, 277–
296.

128

Summary

SMART solving
Tools and techniques for satisfiability solvers

The satisfiability problem (Sat) lies at the core of the complexity theory.
This is a decision problem: Not the solution itself, but whether or not a solution
exists – given a specified set of requirements – is the central question. Over the
years, the satisfiability problem has taken center stage as a means of effective
representation to tackle problems with different characteristics: Many problems
can first be translated into Sat and then solved by means of software dedicated
to the Sat problem. Due to the increasing power of these Sat solvers, the
number of applications climbs every year. Examples of this kind of ‘translat-
able’ problems are scheduling problems, verification of software and hardware,
bounded model checking and a wide variety of mathematical puzzles.

Sat solvers come in two flavors: Complete and incomplete. Complete solvers
systematically go over the whole search space and are able to determine with
certainty whether a solution exists. Incomplete Sat solvers look for a solution
at a venture. They don’t follow a system, yet they might hit a solution.

Most complete Sat solvers are based on the ConflictDriven architecture.
At a dead end, they analyze what went wrong and where in the search space
it happened. Then they resume the search from there. Conflict-driven solvers
make relatively cheap decisions (in terms of computational costs), which enables
them to search the space swiftly.

Only a few complete Sat solvers are based on an architecture that chooses
its battles, so to speak. The LookAhead architecture peers further into the
search space before making the next move. Look-ahead solvers make expensive
decisions in order to keep the search space as small as possible.

Incomplete Sat solvers have a dominant and a rare type of architecture as
well. The commonly used WalkSat makes cheap decisions, while UnitWalk
– a bit off the wall – makes more costly moves.

This thesis deals with a number of contributions to the development of
Sat solvers – both complete and incomplete. With the adagium ‘poundwise,
pennyfoolish’ in mind, its focus is primarily set on both rare, more expensive
approaches. On one hand, expensive procedures are implemented efficiently to
reduce their relative costs, while they maintain their impact on the search space.
On the other hand, building up reasoning power further limits the search space.

129

SUMMARY

The growing attention for Sat solvers generates a growing group of users.
More and more of them will not be familiar with the specific ins and outs
of their application, which makes it difficult to tune the Sat solvers. Here,
adaptive heuristics may be of use. Given a specific problem, these heuristics
set the parameters in such a way that the solver performs (almost) optimally.
This thesis presents some elegant adaptive heuristics for a technique that looks
even further ahead into the search area to learn even more: The DoubleLook
procedure. Thanks to these adaptive heuristics – that keep on fine-tuning the
parameters on the fly – this ‘binocular-technique’ can be helpful to solve more
problems.

The raison d’être of incomplete Sat solvers is the assumption that on many
problems, they find a solution faster than complete solvers. Yet they are only
superior within a certain niche; they work well on big (random) problems. To
extend the span of incomplete Sat solvers, this thesis presents a Sat solver with
the more rarely used UnitWalk architecture. Several expensive calculations
are run simultaneously – on a single processor – which keeps costs relatively
low. In addition, the solver features some communicative skills: Whenever a
solution is found for part of the problem, all further calculations will run more
efficiently. Despite these enhancements and its good results, this solver is not
(yet) competitive on structured problems; an field dominated by complete Sat
solvers.

However, our complete Sat solver march, based on the LookAhead ar-
chitecture, has won many awards in the prestigious Sat competitions, among
which the gold medal for random problems without solutions (2007); a tradi-
tional stronghold of LookAhead solvers. More intriguing is the gold medal
for crafted problems with solutions (2007). This is a field which is dominated
– besides march – by conflict-driven solvers. In conclusion, the new techniques
presented in this thesis have enhanced the LookAhead architecture to such an
extend, that this type of solvers can compete on more problems while sustaining
dominance on random instances.

130

Samenvatting

Goedkoop is duurkoop: effectieve technieken

voor het vervulbaarheidsprobleem

Het vervulbaarheidsprobleem (satisfiability, afgekort Sat) ligt aan de basis
van de complexiteitstheorie. Dit is een beslissingsprobleem: niet de oplossing
zelf, maar de vraag óf er een oplossing bestaat gegeven een bepaald eisen-
pakket staat centraal. Daarnaast staat het vervulbaarheidsprobleem steeds
meer in de belangstelling als een effectieve representatie om problemen van an-
dere aard te lijf te gaan: veel problemen kunnen vertaald worden naar Sat en
middels een programma voor dit probleem (Sat solver) worden opgelost. Door
de toenemende kracht van Sat solvers groeit het aantal toepassingen ieder jaar.
Voorbeelden van dit soort ‘vertaalbare’ problemen zijn roosteringsvraagstukken,
software- en hardware-verificatie, bounded model checking en een verscheiden-
heid aan wiskundige puzzels.

Sat solvers zijn er in twee smaken: compleet en incompleet. Complete
solvers kammen systematisch de hele zoekruimte uit en kunnen daardoor uit-
sluitsel geven of een probleem oplosbaar is of niet. Incomplete solvers zoeken
louter op de bonnefooi naar een oplossing. Ze hanteren geen systematiek, maar
kunnen wel op een oplossing stuiten.

De meeste complete Sat solvers zijn gebaseerd op de ConflictDriven ar-
chitectuur, die bij een doodlopende weg in de zoekruimte analyseert waar het
is misgegaan, naar dat punt terugkeert en de zoekprocedure vervolgt. Deze
architectuur maakt goedkope beslissingen en kan daardoor snel de zoekruimte
afspeuren. Slechts een enkele complete Sat solver maakt gebruik van een ar-
chitectuur die vooruitblikt (LookAhead). Deze neemt juist dure beslissingen
met als doel de zoekruimte zo klein mogelijk te houden.

Ook incomplete Sat solvers kennen een dominante architectuur (WalkSat)
die goedkope beslissingen neemt, en een zeldzamere architectuur (UnitWalk)
die minder goedkope beslissingen neemt.

Deze thesis behandelt een groot aantal bijdragen aan de ontwikkeling van
Sat solvers. Daarbij ligt de focus met name op de voortgang van de beide zeldza-
mere en duurdere benaderingswijzen met als belangrijkste motivatie: goedkoop
is duurkoop. Enerzijds worden kostbare beslissingen efficiënt gëımplementeerd,
zodat ze minder duur worden maar hun impact op de zoekruimte behouden.
Anderzijds wordt de zoekruimte verder verkleind door de redeneerkracht van de
solvers uit te breiden.

131

SAMENVATTING

De groeiende populariteit van Sat solvers creëert een groeiende groep ge-
bruikers van deze software. Steeds meer gebruikers zullen de ins en outs van de
solvers niet kennen. Daardoor is het voor hen niet eenvoudig om hun specifieke
probleem met een Sat solver op te lossen. Hier kunnen adaptieve heuristieken
uitkomst bieden. Gegeven een probleem stellen deze heuristieken de parameters
zodanig in, dat de solver (bijna) optimaal presteert. Deze thesis presenteert een
elegante adaptieve heuristiek voor een techniek die ver in de zoekruimte vooruit
kijkt om zo extra veel te leren, de DoubleLook procedure. Door de inzet
van deze adaptieve heuristiek die ook gaandeweg het zoekproces de parameters
blijft bijstellen is deze ‘verrekijktechniek’ nu op veel meer problemen effectief
inzetbaar.

Het bestaansrecht van incomplete Sat solvers ligt in de veronderstelling dat
zij op tal van problemen met oplossingen sneller zouden werken. Toch zijn ze
alleen superieur in een bepaalde niche, namelijk de grote willekeurige (random)
problemen. Om de reikwijdte van incomplete Sat solvers te vergroten, pre-
senteert dit proefschrift een Sat solver met de minder gangbare UnitWalk
architectuur. De kosten blijven beperkt door meerdere dure berekeningen tege-
lijkertijd op een enkele processor uit te voeren. Daarnaast zijn communicatieve
vaardigheden toegevoegd: wanneer een oplossing voor een deel van het probleem
gevonden is, zullen alle berekeningen efficiënter verlopen. Ondanks de verbe-
terde prestaties van deze UnitWalk-variant, is de solver (nog) niet competatief
op gestructureerde problemen, waar complete Sat solvers de dienst uitmaken.

Daarentegen, de door ons ontwikkelde complete Sat solver march, gebaseerd
op de LookAhead architectuur, heeft een groot aantal prijzen gewonnen op de
gezaghebbende Sat competities29., waaronder de gouden medaille voor random
problemen zonder oplossingen (2007), een gebied waar LookAhead solvers tra-
ditioneel sterk zijn. Interessanter is de gouden medaille voor crafted problemen
met oplossingen (2007). Dit is een categorie die naast march wordt gedomineerd
door conflictgedreven solvers. Concluderend, de nieuwe techieken gepresenteerd
in dit proefschrift hebben de LookAhead architectuur dusdanig versterkt, dat
deze soort solvers op veel meer gebieden kunnen concurreren, zonder op random
problemen aan prestatie in te boeten.

29.www.satcompetition.org

132

www.satcompetition.org

Acknowledgements

After grinding the numbers, punching the code and writing this thesis, I guess
it’s fair to say that I am kind of an expert on searching. However, those who
know me well, will be amused if not amazed by this qualification, to say the
least. They know that reality is laughing in the face of theory, for they have
not forgotten ‘the vacuum cleaner incident’. Some years ago, the day before my
mother would return from a trip to Bali, we – my dad, my brother, my sister
and me – urgently needed to clean the house, which had suffered severely in her
absence. Time was pressing on but we could not find the thing we needed most;
the vacuum cleaner. My father promised to look around the couch on which
he was sitting, while I frantically searched the rest of the house. My mind was
spinning with search strategies. I opened doors, closets, removed desks and
checked everywhere systematically, but even the most scrutinizing query could
not shine light on my blind spot: House cleaning and the supplies that go with
it. After an hour, I gave up. Finally, my sister found it in the doorway to my
own room on the top floor, where it had been laying that whole week. I must
have stepped over it a hundred times – even while I was looking for it. I guess
it’s one thing to have an idea, but it is quite another – and it takes more than
just me – to put it into gear and deliver the goods.

With this in mind, it is no small wonder that I owe much gratitude to many
people who helped me on this project. First and foremost, I thank Hans van
Maaren, who triggered my scientific senses from the moment I entered the Sat-
isfiability course. He made and kept me enthusiastic about research ever since.
I thank him for the freedom I enjoyed, playing around and thinking out loud
while Hans kept a sharp eye on scientific relevance. Plus we had a lot of fun
in the process. Second, I thank Cees Witteveen for welcoming me so warmly
into his group. Also, I very much appreciate his suggestions for presenting this
thesis in a more general context.

Furthermore, I thank Joris van Zwieten and Mark Dufour for teaching me to
write software efficiently and for showing what the higher art of programming is
all about: Working until four in the morning, skipping showers and debugging
with black coffee and yesterday’s pizza. Without their help, the first version
of march would have never been so successful. I thank Sean Weaver for his
involvement with everything we discuss, whose enthusiasm crosses oceans, who
can talk without moving his lips. Thanks to Mathijs de Weerdt, my colleague
and roommate, for help and comments. Over the last year our conversations
stretched far beyond the professional horizon. I thank Denise van der Helm
for her thoughts and suggestions and for going to school together all our lives.
Also, I would like to thank Denis de Leeuw Duarte for his contributions to the
development of UnitMarch, and Stephan van Keulen for his efforts to compute
most of the data used in Chapter 6.

133

ACKNOWLEDGEMENTS

I thank my friends and travel companions. Joost Röselaers with whom I
share both the spiritual and the profane things in life. Harmen Dikkers for his
sharpness, persistent good spirits and good fortune and Dirk van Egmond for
his friendship and his help with anything, anytime.

I want to thank my mom, dad, brother and sister for their love and support,
and for keeping me with my feet on the ground, whenever my mind is elsewhere.
Finally, I want to thank my friend Arjen van Lith for his textual scrutiny, for
designing the cover of this thesis and for just being by my side.

134

Curriculum Vitae

Marienus (Marijn) Johannes Hendrikus Heule was born on March 12, 1979 in
Rijnsburg. He solved his first 100-piece puzzle before he could walk. Marijn
attended the Rijnlands Lyceum in Oegstgeest from 1991 until 1997, when he
obtained his VWO-diploma.

Following his life-long fascination with puzzles, he enrolled in the Delft Uni-
versity of Technology in 1997, where he studied Computer Science. For his
ingenieurs degree (MSc, obtained in 2004), he first studied solvability of two-
player board games with perfect information with Dr.drs. L.J.M. Rothkrantz
and finished his final assignment on satisfiability solving with Dr. H. van Maaren.
Marijn received the award for the best graduate student of the year in Computer
Science.

Subsequently, Marijn started working as a PhD student (2004-2008) at the
Algorithms group of Delft University of Technology with Dr. H. van Maaren
as his supervisor. He studied a wide variety of subjects within the field of
satisfiability (Sat), which resulted in this thesis. Meanwhile, he kept his focus
on solving itself and wrote software dedicated to the Sat problem. His solver
won several awards in various editions of the prestigious Sat competitions.

In addition to his research, Marijn helped set up the Journal on Satisfiability,
Boolean Modeling and Computation (JSAT) and now contributes to this journal
as a production editor. At Delft University, he gives courses in Satisfiability,
supervises several graduate students and advises them on their masters’ theses.

Currently Marijn works as a production editor of the Handbook on Satisfi-
ability (IOS Press, eds. Armin Biere, Hans van Maaren, and Toby Walsh). He
will continue his research in Delft as a post-doc, this time focusing on cardinality
solving.

cv.1 Awards

• Best Sat solver on All crafted problems by march eq at Sat’04

• Best Sat solver on Sat crafted problems by march eq at Sat’04

• Silver medal on All random problems by march dl at Sat’05

• Silver medal on Unsat random problems by march dl at Sat’05

• Bronze medal on All crafted problems by march dl at Sat’05

• Silver medal on Sat crafted problems by march dl at Sat’05

• Bronze medal on Unsat crafted problems by march dl at Sat’05

• Silver medal on All problems by march ks at Sat’07

• Gold medal on Unsat random problems by march ks at Sat’07

• Gold medal on Sat crafted problems by march ks at Sat’07

135

CURRICULUM VITAE

cv.2 Publications

Henriette Bier, Adriaan de Jong, Gijs van der Hoorn, Niels Brouw-
ers, Marijn J.H. Heule and Hans van Maaren. Prototypes for Auto-

mated Architectural 3D-Layout. VSMM07 Springer LNCS, to appear,
12 pages.

Marijn J.H. Heule and Hans van Maaren. Parallel SAT Solving using

Bit-level Operations. Accepted for Journal on Satisfiability, Boolean
Modeling and Computation.

Marijn J.H. Heule and Hans van Maaren. Whose side are you on?

Finding solutions in a biased search-tree. Submitted to Journal on
Satisfiability, Boolean Modeling and Computation.

Hans van Maaren, Linda van Norden, and Marijn J.H. Heule.
Sums of squares based approximation algorithms for MAX-SAT.
Accepted for Discrete Applied Mathematics.

Marijn J.H. Heule and Hans van Maaren.
From Idempotent Generalized Boolean Assignments to Multi-bit

Search. SAT 2007 Springer LNCS 4501 (2007), pp. 134–147.

Marijn J.H. Heule and Hans van Maaren.
Effective Incorporation of Double Look-Ahead Procedures.
SAT 2007 Springer LNCS 4501 (2007), pp. 258–271.

Marijn J.H. Heule and Leon J.M. Rothkrantz.
Solving Games: Dependence of applicable solving procedures. Elsevier
Science of Computer Programming 67(1) (2007), pp. 105–124.

Paul Herwig, Marijn J.H. Heule, Martijn van Lambalgen, and Hans
van Maaren. A new method to construct lower bounds for Van

der Waerden numbers. The Electronic Journal of Combinatorics 14
(2007), #R6.

Marijn J.H. Heule and Hans van Maaren. March dl: Adding Adaptive

Heuristics and a New Branching Strategy. Journal on Satisfiability,
Boolean Modeling and Computation 2 (2006), pp. 47–59.

Marijn J.H. Heule and Hans van Maaren. Observed Lower Bounds for

Random 3-Sat Phase Transition Density using Linear Programming.
SAT 2005 Springer LNCS 3569 (2005), pp. 122–134.

Marijn J.H. Heule and Hans van Maaren.
Aligning CNF- and Equivalence-Reasoning.
SAT 2004 Springer LNCS 3542 (2005), pp. 145–156.

Marijn Heule, Joris van Zwieten, Mark Dufour and Hans van Maaren.
March eq: Implementing Additional Reasoning into an Efficient Look-

Ahead Sat Solver. SAT 2004 Springer LNCS 3542 (2005), pp. 345–
359.

136

http://www.st.ewi.tudelft.nl/~marijn/publications/vsmm.pdf
http://www.st.ewi.tudelft.nl/~marijn/publications/
http://www.st.ewi.tudelft.nl/~marijn/publications/
http://www.st.ewi.tudelft.nl/~marijn/publications/
http://www.st.ewi.tudelft.nl/~marijn/publications/idempotent.pdf
http://www.st.ewi.tudelft.nl/~marijn/publications/doublelook.pdf
http://www.st.ewi.tudelft.nl/~marijn/publications/solving_games.pdf
http://www.st.ewi.tudelft.nl/~marijn/publications/waerden.pdf
http://www.st.ewi.tudelft.nl/~marijn/publications/JSAT2_3_Heule.pdf
http://www.st.ewi.tudelft.nl/~marijn/publications/35690122.pdf
http://www.st.ewi.tudelft.nl/~marijn/publications/35420145.pdf
http://www.st.ewi.tudelft.nl/~marijn/publications/35420345.pdf

	Introduction
	The satisfiability problem
	Motivation
	Thesis Overview

	State-of-the-Art SAT Solving
	Preliminaries
	SAT basic terminology
	SAT solving terminology

	Complete Solvers
	Conflict-Driven Architecture
	Look-ahead architecture
	Domain of application

	Incomplete Solvers
	Stochastic Local Search
	Unit Propagation Local Search

	Representation
	Transformation
	Pre-processing

	Future progress and contributions
	Enhancing the look-ahead architecture
	Enhancing the UnitWalk architecture
	Adaptive heuristics
	Direction heuristics
	Representation

	March_eq
	Introduction
	Translation to 3-SAT
	Time Stamps
	Constraint Resolvents
	Implication Arrays
	Equivalence Reasoning
	Pre-selection Heuristics
	Tree-based Look-ahead
	Removal of Inactive Clauses
	Conclusion

	March_dl
	Introduction
	Look-ahead architecture
	Pre-processor enhancements
	Root look-ahead
	Ternary resolvents

	Adaptive heuristics
	Pre-selection heuristics
	Double look-ahead

	Local branching
	Results and conclusions

	Adaptive Heuristics
	Introduction
	Preliminaries
	Static Heuristics
	Adaptive DoubleLook
	Results
	The magic constant
	Comparison
	Adaptation plots

	Conclusions

	Direction heuristics
	Introduction
	Direction heuristics
	Observed bias on random k-SAT formulae
	Distribution of solutions
	Satisfying subtree bias
	Finding the first solution

	Distribution jumping
	Optimizing the jump order
	Optimizing the jump depth

	Results
	Random 3-SAT
	SAT Competition 2007

	Conclusions
	Solution distribution histograms
	Psat / Bsat trees

	UnitMarch
	Introduction
	Big Boolean Algebras
	p-bit Boolean Algebras
	Generic MBA's

	Multi-Bit Unit Propagation
	Implementation UnitMarch
	Unit propagation
	Detection of Unit Clauses

	Communication
	Duplicate assignments
	Autarkies

	Results
	Conclusions and future work

	Conclusions
	A relic with a future
	Marching on?
	Adaptation, adaptation, adaptation
	Left or right, that is the question
	Re-representation

	Bibliography
	Summary
	Samenvatting
	Acknowledgements
	Curriculum Vitae
	Awards
	Publications

