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Abstract

This study investigates how projected changes in tropical cyclone (TC)-induced storminess, defined
by extreme wind, surge, and wave events, will affect coastal flood hazards along the Sofala coast-
line in Mozambique under the near-future SSP5-85 climate scenario (up to year 2050). While global
studies have suggested intensified storm characteristics in the Sofala region, no study to date has
assessed their implications for regional coastal flood hazard in conjunction with sea-level rise (SLR).
Using the synthetic STORM dataset in combination with probabilistic extreme value analysis and a
storyline-based TC Idai simulation, this study quantifies the projected increase in TC-induced hazards
and evaluates the relative contribution of storminess change and SLR to future flood depth and extent.
Results show a consistent upward shift in the 100-year return levels for wind, surge, and wave. These
changes can be mainly statistically attributed to the exceedance frequency (i.e., how often extremes
occur) rather than exceedance intensity (i.e., how extreme they are when they occur). As such, the
effective return period of historical 100-year events is found to be 45–60 years on average under the
near-future scenario, suggesting that extreme events will become significantly more frequent. Although
the upper tail dependence between surge and wave slightly weakens, the likelihood of joint surge–wave
extremes still increases, lowering the joint return period from an average of 200 years to 120 years.
In the TC Idai storyline, SLR accounts for 60–90% of the increase in total water levels, with a mag-
nitude of around 0.25 m. However, storminess change contributes up to 40% in some areas, and is
shown to substantially heighten flood extent and population exposure. The findings underscore the im-
portance of integrating TC-induced storminess change in Sofala’s future coastal hazard assessments,
in addition to SLR. Recommendations include extending analyses to additional synthetic TC models
and emissions scenarios (e.g. SSP2-45), improving hydrodynamic model validation, and incorporating
rainfall and fluvial forcing to capture the full spectrum of compound flood hazards under a changing
climate.

Keywords: STORM dataset, Tropical Cyclone, Climate Change, Storyline Approach, Storm Surges,
Wave, Coastal Flood Hazard, Delft3D, SFINCS
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1
Introduction

1.1. Research Context
Sofala Province is a central pillar of Mozambique’s economy and regional connectivity. With its strate-
gic coastal location along the Indian Ocean, this province served as a vital gateway for trade and
logistics. It is regarded as the host of the oldest port in Southern Africa, dating back to the tenth
century, before it was relocated to the city of Beira around the beginning of the nineteenth century (Bri-
tannica 2025). Beira is now anchored as the capital of Sofala Province and the second largest city in
Mozambique, home of the busiest port in the country, still regarded as a crucial transit for landlocked
neighbouring countries, supported by major roadways and a key international airport (Filipe et al. 2017).
The province’s economy is diversified, encompassing agriculture, fisheries, and manufacturing, and its
transport infrastructure underpins both national and international commerce, making it indispensable
to Mozambique’s socio-economic framework (World-Bank 2019).

Figure 1.1: UNOSAT Cumulative Tropical Cyclone Idai
Flood Map (UNITAR 2019). The red mark indicated flood
extent derived from analysis based on satellite imagery.

However, Sofala province, being in the heart of
the warm tropical waters of the Indian Ocean, is
prone to Tropical Cyclone (TC)-induced hazards such
as extreme winds, storm surges, and river flooding
(Deltares 2021; Eilander et al. 2023b). Considering
that the densely populated areas mainly reside in the
province’s low-lying terrain along Sofala Bay, espe-
cially around Beira and the delta of Buzi and Pungue
rivers (CIESIN 2018), it denotes a significant flood haz-
ard exposure, especially when cyclones make land-
fall. Vulnerabilities such as chronic poverty, rapid ur-
banisation, and limited disaster-resilient infrastructure
amplify the risks, often resulting in widespread dis-
placement, destruction of critical infrastructure, and
severe disruptions to livelihoods and food security
(Williamson 2022).

Tropical Cyclone Idai, which struck Sofala in March
2019, exemplified the severity of these risks (see Fig-
ure 1.1). Making landfall near Beira with winds of 180–
220 km/h (Knapp et al. 2010), torrential rains exceed-
ing 200 mm in 24 hours and a skew surge of around 2
meters (Eilander et al. 2023a), Idai unleashed devas-
tating floods. Due to the compound fluvial, pluvial and
coastal flooding as well as wind hazards, over 70% of
Beira was reported damaged or destroyed, crippling
logistics infrastructure such as the airport and seaport
due to intense wind and surge (UNDP 2019). The
cyclone displaced nearly 400,000 people, destroyed
more than 715,000 hectares of crops, and left over 1.5
million people affected, with at least 600 fatalities and
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1.2. Research Problem 2

thousands injured, making it regarded by World Meterorological Organization (WMO) as ”One of the
Worst Weather-related Disasters in the Southern Hemisphere” (UNDP 2019; UNITAR 2019). Such
events highlight the importance of developing robust flood adaptation strategies and protection mea-
sures.

Reducing TC-induced flood hazard effectively depends on learning from past events to understand the
risks and vulnerabilities involved; however, because conditions and hazard patterns can change over
time, it is also crucial to consider how these hazards might evolve (UNDRR 2024). Critical components
when considering the future TC-induced flood hazard, especially in the context of coastal flooding, are
its response to sea level rise (SLR) (Woodruff et al. 2013; Xu et al. 2022; Grimley et al. 2024) and storm
climatology change (Emanuel 2008; Lee et al. 2020; Bloemendaal et al. 2022), or what is often called
the change of ”storminess”. Storminess here corresponds to the magnitude as well as the temporal and
spatial pattern of extreme wind, which thus also affects the surge and wave generation (Leijnse et al.
2022; Bakker et al. 2022). These evolving drivers can amplify coastal flood risks by raising baseline
water levels and modifying the intensity or frequency of storm tides, which consist of the combination of
tide, TC-induced surge, and wave-induced water level components (Lin et al. 2012; Marsooli et al. 2019;
Gori et al. 2022). Therefore, integrating historical analysis with forward-looking scenario modelling is
essential for designing resilient and adaptive coastal protection measures.

1.2. Research Problem
Past studies have provided indications of an increased TC-induced coastal flood hazard around the
Sofala region under future climate scenarios. Goulart et al. (2025) demonstrated that superimposing
a sea level rise (SLR) scenario associated with 3°C warming by 2100 could increase the population
exposure to TC Idai’s coastal flooding by approximately 80%. Regarding changes in storminess, Bloe-
mendaal et al. (2022) projected an increase of about 5–10 m/s in 100-year return period TC-induced
wind speeds for this region. Extending these findings, Grossmann-Matheson et al. (2024a) estimated
a rise of 0.5–1 m in offshore significant wave heights. Muis et al. (2023) projected a 10% increase in
100-year return period storm surge levels over the 2021–2050 period, although this estimate does not
explicitly isolate TC-induced events and therefore may under-represent the intense localised storms.

Despite these signals of changing storm characteristics from global-scale studies presented above, no
study to date has explicitly assessed how storminess changes would translate into future total water
levels and flood hazard at a finer regional scale along the Sofala coastline. In contrast, studies focusing
solely on SLR effects, such as Goulart et al. (2025) and Deltares (2021), risk considerably underestimat-
ing future flood hazards by neglecting dynamic storm contributions. One instance is given by Marsooli
et al. (2019), in which the TC climatological change effect on 100-year return period surge levels is
shown to have a comparable magnitude proportion to the SLR at the Gulf of Mexico coast; meanwhile,
it has less contribution in the US east Atlantic coast. However, for the Sofala region, the individual and
combined effects of TC-induced storminess changes and SLR on coastal flood hazards remain largely
unexplored. This includes their spatial variability, which has yet to be adequately assessed.

1.3. Research Objectives
To bridge this critical gap, this research’s first objective is to quantify the change of storminess—wind,
surge, and wave—on a regional scale. This requires bringing global-scale studies on storminess
change presented by Grossmann-Matheson et al. (2024b) and Muis et al. (2023) into a regional scale,
employing consistent input of a synthetic tropical cyclone database under the current and future cli-
mate, STORM-IBTrACS (Bloemendaal et al. 2020c; Bloemendaal et al. 2020b) and STORM-CC (Bloe-
mendaal et al. 2021; Bloemendaal et al. 2022). STORM-IBTrACS and STORM-CC are open-source
datasets consisting of global 10,000 years of synthetic tropical cyclone tracks for current and future
climate, respectively (a full explanation of these datasets is presented in Chapter 3).

Given that TC-induced events dominate the upper tail of the hazard distributions (Dullaart et al. 2021),
particular emphasis is placed on assessing how climate change alters the marginal and joint return pe-
riod curves for wind, surge, and wave along Sofala’s coastline. In marginal cases, emphasis is placed
on the shift in wind, surge, and wave magnitude at a specific return period and what statistical attribu-
tion best characterises this change. These statistical attribution refers to either extreme frequency (i.e.,



1.4. Research Questions 3

how often extremes occur) or extreme intensity (i.e., how extreme they are when they occur). In the
joint cases, specifically joint surge and wave extremes, emphasis will first be placed on extremal depen-
dence, that is, how likely surge and wave are to become extreme simultaneously. For both marginal
and joint cases, the effective return period will be evaluated, which is defined as the return period in the
future climate corresponding to the same wind, surge, and wave magnitude associated with a given
return period under the current climate.

As changes in storminess and its spatial variability are identified, their contribution to future coastal
flood hazards can be systematically assessed. This assessment, particularly in comparison to the
effects of sea level rise (SLR), constitutes the second objective of this study. Unlike the approach
adopted by Marsooli et al. (2019), which compares SLR contributions to changes in the 100-year return
period surge levels, this study evaluates storminess-related water level magnitude changes: wave
runup (setup + swash) and skew surge, based on the return period associated with TC Idai in a spatially
varying manner. This approach is commonly referred to as a probabilistic-scaled past event (see red
dots in Figure 1.2). Combining this with a sea level rise counterfactual scenario as presented in Goulart
et al. (2025) produces a combined probabilistic and storyline framework (equivalent to the blue dots
presented in Figure 1.2). This combined approach not only quantifies changes in hazard magnitudes
but also preserves the physical coherence and realism of extreme event characteristics under future
climate conditions. This approach further enhances the communication of risks by providing tangible,
event-based narratives that are easier for stakeholders and decision-makers to understand and act
upon.

Figure 1.2: Illustration by Zscheischler et al. (2018) of different possibilities to simulate potentially critical compound events in
the future climate. In the context of this research, the climate drivers are represented by TC-induced surge and wave.

By integrating both storminess changes and sea level rise (SLR), this study fills a critical gap in the
current understanding of TC-induced flood hazard in the Sofala region. This approach offers a more
comprehensive assessment of future coastal hazards at a regional scale by evaluating the individual
and combined impacts of these evolving drivers, which have remained to be studied. As the dataset
used, STORM-IBTrACS and STORM-CC are fully open source and available at a global extent, hence
the methodology used in this study can also be replicated elsewhere where the TC-induced effect is
abundant. Furthermore, by utilising a storyline approach, the findings will not only advance scientific
knowledge but also effectively inform regional policy-making, providing essential insights for the devel-
opment of adaptive coastal flood protection strategies and disaster risk management plans.

1.4. Research Questions
Building upon the identified research problem and objectives, this study formulates a set of research
questions to guide the analysis. In essence, these questions consist of the quantification of the pro-
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jected changes in TC-induced coastal hazards and assessing the relative contribution of storminess
and SLR to future flood risks. A probabilistic-scaled future event framework combined with a storyline-
based approach forms the basis for addressing these questions at a regional scale.

Main Research Question:

What are the projected changes in tropical cyclone (TC)-induced wind, surge, and wave
extremes in near-future climate conditions, and what is their importance in future coastal flood

hazard along the Sofala coast?

Objective A:
To quantify the change in tropical cyclone-induced storminess—wind, surge, and wave—at a regional
scale under future climate scenarios.

1. What are the marginal changes in wind, wave, and surge hazards in terms of intensity and fre-
quency?

2. What are the projected changes in joint wave–surge hazard under future climate conditions?

Objective B:
To assess the contribution of storminess changes, relative to SLR, to future TC-induced coastal flood
hazard using a probabilistic-scaled future event and storyline-based approach.

1. To what extent do storminess changes amplify total water levels under future climate conditions,
relative to sea level rise?

2. How does the inclusion of projected storminess change, and sea level rise modify the spatial
patterns of flood extent and depth storyline-based event?

1.5. Research Scope
This study does not incorporate hydrodynamic model calibration and validation, as observation data is
hardly available. Consequently, the focus lies not on the absolute accuracy of the simulated values, but
rather on the relative shifts in patterns under near-future climate conditions. Moreover, as this study’s
foundation is based on the STORM-IBtrACS and STORM-CC datasets, the simulated climate change
scenario and GCMS variations are limited to the HighRes-MIP CMIP6’s GCMs used in STORM-CC
under the SSP585 scenario. The 4 GCMs used were CMCC-CM2-VHR4 (Scoccimarro et al. 2017),
EC-Earth3P-HR (E.-E.-Consortium 2018), HadGEM3-GC31-HM (Roberts 2017), and CNRM-CM6-1-
HR (Voldoire 2019). Since these STORM datasets only involved materials for developing TC-induced
wind fields, we exclude contributions from pluvial and fluvial flooding in this study. As the future scenario
for HighRes-MIP is limited up to the year 2050, the future period is defined as the year 2015-2050
timespan, while the historical or baseline period is represented by the year 1980-2017, following the
timeframe of STORM-CC and STORM-IBtrACS, respectively. Therefore, for the development of the
TC Idai storyline, it is assumed that TC Idai belong to the baseline period instead. Lastly, in this study,
only the first 5,000 years out of the total 10,000 years of synthetic tropical cyclone datasets in STORM-
IBTrACS and STORM-CC are used, under the assumption that these 5,000 years are representative
of the overall distribution, providing sufficient coverage for the analysis.

1.6. Thesis Outline
Chapter 2 elaborates on the geographic and hydromorphodynamic characteristics of the study area,
reviewing relevant literature on the physics underlying TC in the study area and the underlying theo-
retical rationale behind the hydrodynamic and statistical models used in the methodology. Chapter 3
outlines the data sources and methods used to quantify changes in storminess and assess their im-
pact on future coastal flood hazards. Chapter 4 presents the results of the analysis, while Chapter 5
discusses the implications and limitations of these results. Finally, Chapter 6 concludes the thesis by
presenting key findings and recommendations for future research.



2
Literature Review and

General Modelling Rationale

This chapter is divided into two parts: 1.) a pure review of relevant literature, and 2.) literature-aided
modelling rationales. The first part provides a brief geographical and physical description of the study
area (Section 2.1), followed by an overview of the physics behind tropical cyclone-induced wind, surge,
and waves, including how these processes may evolve under future climate conditions (Section 2.2).
The second part will look closely at the known options, descriptions, limitations, and the justification
for the chosen TC modelling approach (Section 2.3) and statistical analysis procedure (Section 2.4).
Detailed description of the data and the setup of the TC modelling approach, as well as the utilisation
of the chosen statistical analysis procedure, will take place later in Chapter 3.

2.1. Study Area
2.1.1. Geographical Situation
Sofala Province (see Figure 2.1) is located in central-eastern Mozambique, bordered by Tete Province
to the north, Zambezia to the northeast, Inhambane to the south, and Manica to the west. On the
eastern boundary, this province is directly connected to the Mozambique Channel, part of the Indian
Ocean that connects Southeast African countries with Madagascar. This channel brings warm current
flowing southward through the channel until it eventually joins the Agulhas Current near South Africa’s
eastern shore (Britannica 2025). This province covers an area of approximately 68,018 square kilo-
metres, featuring a diverse landscape that includes coastal lowlands, inland plains, and major river
systems such as the Buzi, Save, and Púnguè rivers. The latter flows into the sea at the provincial
capital, Beira. Just off the Sofala coast, including the deltas where these rivers end, is part of a larger
area called Sofala Bay, host to rich marine fishery resources. This area is mostly characterised by
extensive coastal wetland and mangrove forest (Deltares 2021). The northernmost coastal districts
of this province are where Marromeu National Reserve is located, denoting Sofala’s ecological and
cultural significance. However, this reserve is listed as one of the African natural heritage sites that
will become highly vulnerable to flooding and coastal erosion by the end of the century, according to
the IPCC’s Sixth Assessment Report in 2022, but only if climate change follows RCP 8.5 (Trisos et al.
2022).

The attached map (Figure 2.1) denoted Sofala’s administrative boundaries, major towns, and physical
features, with an inset showing its location within Mozambique. Administratively, Sofala is divided
into 13 districts, with 9 of which are bordered by the Sofala Bay: (from south to north) Machanga,
Divinhe, Sofala, Buzi, Beira, Dondo, Galinha, Inhaminga, andMarromeu. Beira, the provincial capital, is
Mozambique’s second-largest city and a key port, serving as an economic hub for the province, country
and even neighbouring landlocked countries (Filipe et al. 2017). The map’s colour gradient reflects
population concentrations according to the World Pop dataset (CIESIN 2018), with the highest density
exceeding 300 people per hectare found near the coast of Beira. This dense settlement stretches
upstream, along the Pungwe River floodplain to the Dondo district. Moreover, rural districts, such as
those near the coast of Buzi and Sofala districts, are more sparsely populated (CIESIN 2018). This
demographic distribution underscores how dense Sofala’s population mainly resides in the low-lying
coastal area, potentially exposed to coastal-induced flooding and overflowing from the tidal-influenced

5
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rivers.

2.1.2. Tropical Cyclone in Study Area
Mozambique is located relatively downstream of the TC tracks, with most of the historical TCs com-
ing from the central South Indian Ocean, offshore of Madagascar’s eastern coast. With an extensive
range of latitudes, a large bay area primarily covering Sofala province, and the blocking effect of the
island of Madagascar, the cyclone path affecting Mozambique is somewhat spatially variable (Matyas
2015). Still, the occurrences of cyclone landfalls (or at least passing very close) in any coastal loca-
tion in Mozambique are calculated to be around 0.1 to 0.2 per year (Deltares 2021). These cyclones
commonly occur from October to April during Mozambique’s wet season. As shown in Figure 2.2, the
yearly arrival rate of cyclones based on the IBTrACS dataset on Sofala’s coast and down south to the
Maputo province’s coast is around 0.1. In contrast, just at the northern end of Sofala province, up to
Mozambique’s northernmost, the cyclone arrival rate are doubled to around 0.2.

Figure 2.1: Sofala Province’s geographical situation, administrative area, and population density based on World Pop dataset
(CIESIN 2018)



2.1. Study Area 7

Figure 2.3 shows historical TC tracks of the Catastrophe level of 1 or beyond (> 64 kts or 33 m/s) that
made landfall in or passed very closely to Mozambique between 1970 and 2024. At the Sofala zoom
view, we can see notable TC events such as TC Idai 2019 and TC Eloise 2021 that cause increased
surge water levels and significant pluvial and fluvial inundation in the region (Eilander et al. 2023a).
Notably, the Sofala province has experienced clustered cyclones, sequential TC events that occur very
close in time, at least twice. Once in 1961/1962, Daizy and Gina, and in modern times, 2020/2021,
Chalane and Eloise made landfall just three weeks apart. Still, these did not match the destruction
Cyclone Idai caused, likely due to the relative storm weakness for the Daizy, Gina, and Chalane or
timing during neap or low tides for Eloise (Ormondt et al. 2020). However, slight changes in cyclone
path or timing might have resulted in significantly greater damage (Goulart et al. 2024; Goulart et al.
2025).

Figure 2.2: South Indian Basin’s tropical cyclone yearly occurrence probability based on IBTrACS dataset. This figure is
derived from Deltares (2021)

Figure 2.3: Historical TC tracks (1970-2023) of at least categorised as Catastrophic level 1 (> 64 kts or 33 m/s), that made
landfall in Mozambique (left) and Sofala province specifically (right)

2.1.3. Tidal Condition
Figure 2.4a shows M2 tide magnitude and phase variability across the Mozambique channel based on
the TPXO8.0 dataset. The M2 tidal phase indicates how the tide propagates from south to north in this
stretch of coastline. It also becomes clear that the highest M2 tide is found around the Sofala Bay area,
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with its peak just off Beira’s coast. An IHO station is located just a little inside the mouth of the Pungwe
River, near Beira Port. The tide time series constructed based on the tidal constituents at this station
for the 1980-2017 period is shown in Figure 2.4b. It can be seen that the tide range in this location
reaches more than 7 meters with a HAT of +3.81 m and LAT of -3.3 m, and MHWS as well as MLWS of
around +2.9 m and -2.8 m, respectively. From a regional perspective, the tidal range along the coast
of Sofala province is found to be at least three meters. Owing to this fact, the Sofala province’s coast
might also be classified as a hydrodynamically tide-dominated coast with a macro-tidal regime (Davis Jr.
et al. 1984).

(a)

(b)

Figure 2.4: Tidal characteristics near Beira. (a) M2 tidal amplitude and phase based on TPXO8.0 (Egbert et al. 2002) tide
models around the Mozambique channel. The red star indicated the IHO (International Hydrographic Organization) tide station

location at Beira. (b) Constructed tide time series from 1980 to 2019, based on Beira IHO station’s tidal constituents
(International Hydrographic Organization 2024).

2.1.4. Coastal Characteristic
The characteristic of the bathymetry adjacent to Sofala’s concave-shaped coastline is characterised
by a very wide (up to 150 km) and shallow continental shelf, as shown in Figure 2.5. Especially near
Beira, the sediment deposition carried by the Pungwe and Buzi rivers is evident through the shallow
delta protrusion near the river mouth. This then gently slopes into deeper shelf regions, indicating
active sediment delivery and morphological shaping by marine and riverine processes. On the inland
part, we can see how the coastal area in Sofala province is mainly dominated by a relatively flat and
wide low-lying topography, with the majority of elevation below +10 m, before a sudden transition to +30
m. With this topography and bathymetry, it is best to characterise this coast as a trailing edge, or more
specifically, a neo-trailing edge coast (Inman et al. 1971). This type of coast, also found on the west
coast of Africa, Greenland, and part of Australia, is characterised by its wide and shallow continental
shelf, as well as rich sediment deposition, which produces less pronounced wave energy and high
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surge amplification (elaboration on this physics is shown later in Subsection 2.2.2.

Figure 2.5: Sofala Province’s topography (up to +30 m) and bathymetry (down to -50 m) based on Delta-DTM (Pronk et al.
2024) and GEBCO2024 (GEBCO Compilation Group 2024) respectively

Going deeper into a finer scale, Figure 2.6 shows spatial variability of nearshore slope (from coastline
to the depth of closure) and backshore slope (from coastline to first dune) in the region. The nearshore
slope of the study area becomes progressively steeper towards the north, increasing by approximately
two orders of magnitude, from values on the order of 10−4 to 10−2. This pattern denoted an extensive
surf zone along the coast. In contrast, the backshore slope seems well spread out (mostly below 0.1
slope) with a notable concentration of higher slopes near the port of Beira, close to the Púnguè River
mouth. This indicates that Sofala’s coastal area is primarily characterised by an exposed morphological
setting, lacking natural protective features such as dunes.

Figure 2.6: Sofala Province’s coastal nearshore (left) and backshore (right) slope based on Delta-DTM (Pronk et al. 2024) and
GEBCO2024 (GEBCO Compilation Group 2024) respectively, as derived from Global Coastal Characteristic Database

(Athanasiou et al. 2024)
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2.2. Physics Behind Tropical Cyclone-Induced Coastal Flood Drivers
This section elaborates on the physics behind the development of tropical cyclones, followed by an
explanation of how these tropical cyclones drive surge and waves. Additionally, the physics behind the
evolution of TC under future climate conditions will also be briefly explored. Special attention will be
given to its behaviour in the context of the Sofala region’s physical and geographical characteristics,
as explained earlier.

2.2.1. TC development and movement
Before understanding how surges and waves are generated by a TC, first, the physics of how a TC
is developed and, later, the transport are briefly explored. Several key atmospheric and oceanic con-
ditions are responsible for developing tropical cyclones. Sea surface temperatures greater than 26°C
and proximity to the band of low pressure, such as the Intertropical Convergence Zone (ITCZ), or its
regional version, e.g., the South Indian Convergence Zones, provide the energy and atmospheric ver-
tical motion necessary for cyclogenesis to occur (Holland 1997; Vincent et al. 2011). After being lifted,
a strong Coriolis force will create the cyclonic rotation. This Coriolis movement guides the rotating
direction of the TC; clockwise in the Southern Hemisphere and counterclockwise in the Northern Hemi-
sphere. As this force is dependent on the latitude, most TCs form between absolute values of 5° and
25° latitude, where the Coriolis force is strong enough; near the Equator, where the force is weak, TC
formation is inhibited (Gray 1998). Even with greater Coriolis forcing at higher latitudes, cooler ocean
temperatures and distance from the global band of low pressure usually inhibit further development
beyond 25° latitude (Camargo et al. 2007).

Once a TC forms, large-scale atmospheric circulation patterns in its region play a significant role in
steering the path and translation speed. Tropical cyclones in the South-West Indian Ocean (SWIO)
typically develop between 10°S and 20°S and are first steered westward by the easterly trade winds of
the Mascarene High—a quasi-permanent subtropical high-pressure belt east-southeast of Madagascar
(Bessafi et al. 2006). Whether the cyclone remains on this westward path or turns southward depends
on the location and strength of the subtropical ridge. Once the ridge is weakened or displaced, com-
monly due to a trough in the jet stream, cyclones may recurve poleward into the open ocean. However,
when the ridge is zonally extended and strong, TCs will keep going westward, making landfall in Mada-
gascar or southeast Africa, particularly Mozambique (Matyas 2015). This process is very well illustrated
in Figure 2.7. In addition, the Mozambique Channel provides extra steering challenges through local
circulation, sea surface temperature gradients, and topography, sometimes allowing cyclones to re-
intensify or change course after initial landfall, such as Cyclone Freddy (2023) (Perry et al. 2024; Pall
et al. 2024).

Beyond large-scale steering, physical geography also influences landfall patterns. Because westward
TC motion demands continuous energy input from the ocean–atmosphere system, cyclones do not
always reach deeper into the basin. This geographic filtering effect is especially apparent in the SWIO,
where protruding coastal features such as capes, deltas, or islands act as the first intercept points
for incoming systems (Needham et al. 2015). As a result, landmasses that are more exposed to the
open ocean, such as Madagascar’s eastern coast and northern Mozambique, experience landfall more
frequently (as seen in Figure 2.3). This explains why the concave Sofala bay area is less likely to
be struck unless the storm has high translational momentum or unusually strong steering currents,
producing a lower yearly arrival rate than its northern neighbouring convex coastline, as seen in Figure
2.2.
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Figure 2.7: The Left figure shows the zone of the tropical system in the South Indian Ocean basin, and where the subtropical
ridge supplies winds to translate the tropical cyclone track westward. The right figure illustrates how the TC track might shift

poleward as the ridge is weakened due to a trough in the ridge’s jet stream. (Météo-France 2025)

Tropical cyclone track genesis and movement data have been documented worldwide in the past
decades and archived in the International Best Track Archive for Climate Stewardship (IBTrACS; Knapp
et al. (2010)). This data typically includes time-stamped reports of cyclone eye position and best-track
maximum wind speed estimates. Cyclonic systems are typically referred to in terms of tropical depres-
sion, tropical storm, or tropical cyclone status, based on their one-minute mean surface wind speed.
To further describe the cyclones’ strength, the Saffir–Simpson scale is typically employed, categorising
tropical cyclones in five classes on the basis of maximum sustained winds. Whereas this categorisation
is well established worldwide, it is recognised that in different regions, various regional scales might
be applied. Table 2.1 presents the Saffir–Simpson scale, corresponding wind speed thresholds, and
typical associated wind damages to buildings, electricity and utilities.

Table 2.1: Classification of tropical depressions, storms, and cyclones according to wind speeds based on the Saffir-Simpson
scale, and their associated potential impacts to homes, buildings, electricity and utilities (NOAA 2019).

Storm class Wind speed m/s (km/h) Consequences
Tropical depression <17 (<62) -
Tropical storm 18–32 (63–118) -
TC category 1 33–42 (119–153) Very dangerous winds will produce some damage

TC category 2 43–49 (154–177) Extremely dangerous winds will cause extensive
damage

TC category 3 50–58 (178–208) Devastating damage will occur
TC category 4 58–70 (208–251) Catastrophic damage will occur
TC category 5 >70 (>252) Catastrophic damage will occur

2.2.2. TC-induced Surge
Generation and intensification of tropical cyclone storm surges are regulated by amixture of TC-induced
dynamic meteorological forcing and coastal environments, either at deep water or shallow water (see
Figure 2.8). With cyclones approaching the coast, storm surge amplitude is regulated predominantly by
wind stress over the sea surface, which exerts a quadratically growing force with increasing wind speed.
This mechanism is said to produce 80–85% of the total surge height for the majority of events (Kurian
et al. 2009). However, surge behaviour is also affected by variables such as central pressure, forward
speed, cyclone radius, angle of approach, and coastal geometry (Harris 1963; Rego et al. 2009; Wang
et al. 2021). Wind speed profiles pre-landfall may exert a greater influence on peak surge than wind
speed at landfall, especially for storms of long duration (Needham et al. 2015). Shallow bathymetry
greatly enhances the development of surge because the slower-moving water over shallow shelves
cannot spread out and thus piles up along the coast (Rappaport et al. 1995). Deltaic environments and
estuary systems, like those in Sofala Bay (see Figure 2.5) and the Mississippi River delta, are most
vulnerable to high-magnitude surges caused by fine sediment deposits, wide continental shelves, and
geographical borders.
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(a) (b)

Figure 2.8: TC-induced storm surge generation and transformation in deep water (a) and as it reaches shallow water (b)
(NOAA 2008)

As an initial approximation, a basic linear steady-state equation can be used to estimate how wind-
driven storm surges are influenced by water depth and the width of the continental shelf (Resio et al.
2008):

ζ ∝
(

τs
ρgh

)
W (2.1)

where ζ is the surge height at the coast, τs the wind stress, ρ the density of seawater, g gravitational
acceleration, h the water depth, andW the shelf width. This illustrates that wider and shallower shelves
generate greater surge heights than steeper, narrower ones. In the real world, the geometric complex-
ity of the coastal zone—e.g., river deltas, barrier islands, reef channels, and artificial features such as
levees—imposes highly variable local surge behaviour. The importance of correctly resolving bathy-
metric and geomorphic variability in storm surge modelling is thus strongly illustrated in complex en-
vironments like Mozambique’s Sofala coastline, where shallow embayments and estuarine networks
would have a deep effect on cyclone-induced surge impacts.

2.2.3. TC-induced Wave
The elaboration of the TC-induced wave in this subsection is anchored on the schematic diagram by
(Young 2017) presented in Figure 2.9. Please note that this illustration is based on TC in the North-
ern Hemisphere, and hence the TC anti-clockwise rotation. The physical mechanisms driving wave
generation and asymmetry in such storms are summarised in the following discussion.

Firstly, TC winds force waves in a highly asymmetric way and in a completely different pattern than
the wind itself (Uhlhorn et al. 2014). Because the cyclonic circulation of the storm translates (moves),
the right-hand (ahead) side winds of the track blow in nearly the same direction as the TC motion, so
the newly formed waves are subject to continuous strong forcing for an ”extended” or even ”trapped”
fetch (Bowyer et al. 2005). This allows energy to build up for considerably longer than in ordinary
fetch-limited development, generating wave heights and a JONSWAP-type spectrum whose most im-
portant frequency continuously changes downwards under the effect of nonlinear wave–wave interac-
tions (Young 1998; Young 2006). At the left (rear) side of the storm, winds are counter to the moving
direction; the effective fetch is short, waves quickly outrun the storm, and heights are lower. The asym-
metry of effective fetch consequently produces a wave field wider than, and more asymmetric than, the
accompanying wind vortex (Young 2017).

The dashed-circle drawing in Figure 2.9 illustrates this physics (Young 2017): the concentric rings repre-
sent increasing distance from the tranquil eye, and the thick curved arrows represent the anticlockwise
wind field. Grey lobes mark the zones of peak winds just outside the eyewall. In the front-right quad-
rant, waves thus formed travel with the storm, possess the largest fetch, and propagate outward as
long-period swell (black straight arrows). In contrast, waves that form in the rear-left quadrant travel
opposite to the direction of the storm, exit the wind area early, and therefore are shorter and steeper.
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Figure 2.9: A schematic diagram by Young (2017) depicting wave generation within a tropical cyclone in the northern
hemisphere that is translating. The arrow at the center of the storm indicates that the tropical cyclone is translating ”up the

page”. The wave field is distinguished by (i) swell ahead of the storm, radiating out from the intense wind region to the right of
the storm center, and (ii) significant asymmetry caused by higher winds and an extended translating fetch to the right of the

storm center.

The result is a highly directional spectrum with strong right-of-track swell and a strong left–right asym-
metry that must be resolved by any surge or coastal-impact model.

2.2.4. Tropical Cyclone under Climate Change
Though a theory that predicts the number of tropical cyclones (TCs) based on climate is yet to be con-
structed, a number of known physical processes describe how a warming climate can lead to increased
or decreased TC numbers and intensity (Walsh et al. 2016). Increased sea-surface temperatures, along
with a colder tropical tropopause, amplify the reservoir of thermodynamic energy available to develop
storms, thereby raising the theoretical limit of cyclone wind speed (Vecchi et al. 2007; Emanuel et al.
2013). Conversely, the majority of greenhouse-warming experiments conducted with climate models
anticipate a modest reduction in the mean upward mass flux in the tropics; this reduction in ambient
ascent decreases the likelihood that low-level disturbances will mature into TC vortices (Walsh et al.
2015). Climate change also changes environmental wind shear and mid-tropospheric humidity: higher
shear or drier mid-levels ventilate nascent vortices more effectively, preventing their development from
disorganised convection to full-blown cyclones (Kim et al. 2014). Collectively, these mechanisms cre-
ate a global-scale vision of the future in which the number of TCs overall may not actually increase,
and might actually decrease, while the proportion of the most intense, highest-energy storms will rise.

A study by Bloemendaal et al. (2022) utilised HighResMIP in the STORM algorithm to predict global
changes in TC genesis (1980-2017 versus 2015-2050). As shown in Figure 2.10, across the entire
South Indian basin, it is expected that the average TC per year will decrease from 12.3 (based on
IBTrACS) to 10.4-11.7 (with CMCC being the lowest and CNRM being the highest), with a predicted in-
crease in arrival rate of TC category two or above, and a decrease arrival on category one and tropical
storm. Looking into a finer regional scale, recent-past HighResMIP high-resolution simulations indi-
cate that future tropical-cyclone activity in the South-West Indian Ocean will increasingly be spatially
focused, intensity-wise, in the Mozambique Channel (Pall et al. 2024). Across the multi-model en-
semble, tropical-storm and cyclone numbers, and basin-wide accumulated-cyclone energy decrease
for 2020-2050 versus 1980-2010, but models all show an east-to-west track-density shift: storms that
historically peaked east of Madagascar move westward, causing local track-density increases and
99th-percentile near-surface wind increases in the Mozambique Channel (Pall et al. 2024). This trend
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Figure 2.10: Figure by Bloemendaal et al. (2022). Each of the four HighResMIP GCMs’ relative and absolute frequency of the
various tropical storm (TC) categories (categories 1 through 5) for 10,000 years of baseline climate STORM-B data and 10,000
years of future-climate STORM-C data. The height of the colored bar chart indicates relative numbers, while the right side of

each colored bar chart shows the absolute frequency (as an average per year) for each TC category and input dataset. In the x
axis label, N stands for the total number of cyclone formations.

implies that, while Mozambique may get fewer cyclones in total, the potential for direct interactions
(and associated high winds, waves and surge) within the Channel is projected to grow, underscoring
the role of region-specific coastal-risk analyses.

2.3. Rationale of TC-Induced Wind, Wave and Surge Model
This section will elaborate on the state-of-the-art modelling steps of TC-induced hydrodynamics, mainly
to produce surge and wave components. Known options, descriptions, and limitations are discussed
before a specific procedure is decided on, along with its justification.

2.3.1. Synthetic tropical cyclone tracks
Tropical cyclone track records, such as IBTrACS, usually consist of parameters such as eye coordi-
nates, maximum sustained winds, pressure drops, TC radius, etc (Knapp et al. 2010). These track
records are typically very limited regarding the number of events per location due to their low yearly
arrival rate and scarce recorded data. This limitation hinders risk analysis or engineering design, which
typically requires an extensive dataset to derive an extreme value, either based on a non-parametric
empirical approach or a parametric distribution fitting (Nederhoff et al. 2021). To address this issue, the
current state of the art usually involves generating synthetic cyclones by conducting a Monte Carlo ran-
dom sampling from probability distributions based on historical TC characteristics (James et al. 2005).
This approach allows thousands of synthetic years to be modelled under the assumption that each
event is an independent realisation of a common stochastic process, thus enabling estimation of ex-
treme TC conditions for long (or longer) return periods.

One instance of applying this fully probabilistic approach is presented by Bloemendaal et al. (2020a),
the STORM dataset (see Figure 2.11), which is the backbone of this study (elaboration on this dataset
will take place in Section 3.1.1). Other notable variations of this approach, which incorporate explicit
dynamical simulations in a statistical-dynamical framework, are the MIT model (Emanuel et al. 2006;
Emanuel 2008) and the Columbia HAZard model (CHAZ) (Lee et al. 2018). Aside from using random
seeding techniques, the similarity between these three datasets is also the use of the ERA5 climate
dataset, either directly, as in STORM, or undergoing a physical TC and large-scale environment vari-
ables relationship model first, as in the MIT and CHAZ models (Meiler et al. 2022). By the time this
study is written, these three datasets are the only ones that produce synthetic tracks for both historical
and future climates by applying the variables fromGCMs. However, since the STORM dataset provides
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both fully open-source code and datasets and is still undergoing constant update and refinement, this
study focuses only on using this dataset for general applicability. Detailed description on this dataset
is presented in Subsection 3.1.1.

2.3.2. Spatial tropical cyclone wind field
A hydrodynamic numerical model, either wave or flow, usually requires a temporal and spatially vari-
able wind time series as input. Since track datasets like IBTrACS or synthetic datasets like STORM
include only limited storm structure data (the cyclone track, central pressure, maximum wind speed,
and the radius of maximum winds), parametric wind field models are typically utilised to infer the full
spatial wind field. Kinematic wind analysis approaches, steady-state slab Planetary Boundary Layer
models, a mix of both, or mesoscale weather models are some of the complex and computationally de-
manding techniques that have been developed to predict the spatial wind field (Cardone et al. 2013).
Still, parametric models such as Holland1980 (Holland 1980) and Holland2010 (Holland et al. 2010),
remain the most common approach used due to their easy applicability and less demanding variable in-
put. These two models are founded on an axisymmetric cyclone framework derived from modifications
of the Rankine combined vortex profile, where wind speeds increase with decreasing pressure toward
a maximum at the eyewall, then decline sharply toward the calm centre of the eye and more gradually
toward the outer region, following the underlying exponential pressure gradient. Holland1980 requires
three inputs: maximum wind speed (Vmax), central pressure (p), and the radius of maximum winds
(Rmax), while Holland2010 requires additional wind radii (e.g. R35, R64, R100) to yield more precise
profiles.

Actual TCs are not symmetric, however, such as what is previously explained in Subsection 2.2.3,
and their asymmetry depends on a number of factors beyond storm motion (Knaff et al. 2003). The
Holland model does generate some asymmetry by incorporating a fraction of the translational motion,
but studies such as Lin et al. (2012) recommend altering this input, taking 55% of the motion vector
and rotating it 20° counter-clockwise, for more realistic winds. Additionally, an inflow angle of 22.6°
(Zhang et al. 2012) is typically included to model the inward spiralling of winds. Although the symmetry
assumption has little effect on peak surge near the eyewall, it can lead to an underestimation of surge
impacts at greater distances from the storm centre (Emanuel et al. 2011; Lin et al. 2012). Althoughmore
complex representations of the winds are available to correct for this (Chavas et al. 2015), they cannot
appropriately be introduced here since the STORM dataset is stylised and lacks the structural detail
to make such refinements worthwhile. That being said, the Holland1980 is the only feasible approach
that can be used alongside STORM. An instance of the Holland1980 application for TC Idai is shown
in Figure 2.12. The pressure and wind field based on Holland1980 model are given by:

P (r) = Pc +∆P exp
[
− (Rm/r)

B
]

(2.2)

V (r) =

√
(Rm/r)

B
V 2
max exp

(
1− (Rm/r)

B
+ r2f2/4 − rf/2 (2.3)

Where P (r) represents the atmospheric pressure at a radial distance r, ∆P = Pn − Pc denotes the
pressure difference, with Pc as the cyclone’s central pressure, Pn as the ambient or environmental
pressure, Vmax denotes the maximum wind speed, and f represents the Coriolis parameter. Rm refers
to the radius of maximumwind (RMW), andB is the hurricane’s shape parameter, whichmay be derived
from empirical formulas or assumed constant. In this study, the values used are Pn = 1013.25mbar and
B = 1.563. Given the tropical cyclone parameters ∆P and Rm, the corresponding wind and pressure
fields are computed and applied using a polar grid resembling a ‘spiderweb’ structure.

2.3.3. Hydrodynamic model
There is a range of options in simulating the hydrodynamics of TC-induced surge and wave, starting
from a parametric approach: e.g., a parametric TC surge model by Jakobsen et al. (2004) or a para-
metric TC ocean wave model by Grossmann-Matheson et al. (2025), a data-driven approach (Wei et al.
2020; Lee et al. 2021), or a conventional numerical hydrodynamic model. Unlike in deep-water areas,
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Figure 2.11: From Bloemendaal et al. (2020b); Overview of tropical cyclone tracks in IBTrACS and the STORM dataset. The
top panel represents 38 years (1980–2018) of tracks in the IBTrACS dataset (a), and the bottom panel represents a random
period of 1,000 years of tropical cyclone tracks in the STORM dataset (b). Colours indicate the maximum wind speed of the

tropical cyclone.
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Figure 2.12: Visualisation by (Young 2017) of Holland1980 spatial wind field model. The contour indicates wind speed, while
the blue arrow indicates the wind vector direction.

nearshore conditions have complex bathymetry and non-linear processes like shallow water wave dis-
persion. This makes general parametric models and data-driven methods less reliable, necessitating
the use of a conventional numerical hydrodynamic model. For the hydrodynamic numerical model, a
distinction can be made between whether coupled wave-water level non-linear interaction is to be sim-
ulated explicitly (e.g., coupled Delft3D-SWAN, or ADCIRC-SWAN) or separately. By coupling the wave
and flow models, wave setup can be calculated dynamically; ignoring these processes might lead to
an underestimation of the water level. The magnitude of wave setup is highly sensitive to the coastal
characteristics of the study area, especially to topography and bathymetry conditions. Lin et al. (2012)
demonstrated that in New York harbour, the effect of wave setup only amounted to 1.5% of surge. In
contrast, at the coast of Beira, a study by Deltares (2021) reveals that the relative contribution of wave
setup can be around 20-30% of non-tidal residual.

Accuracy, however, is not the only constraint on whether wave setup needs to be modelled explicitly.
The computational demand of coupling the conventional spectral wave model into a flow model is
said to increase computational time exponentially (Lin et al. 2012). On the other hand, resorting to a
simplified empirical relation of wave setup, such as 0.2 Hs (USACE 2002) or (Stockdon et al. 2006),
is often proven to inaccurately represent the water level at the coast (Leijnse et al. 2025). This is
especially challenging for studies that rely on simulating thousands of synthetic events. In this research,
such simulations form the core methodology used to achieve Objective A. Thus, a computationally
feasible alternative approach to understand the change in TC-induced surge and wave is to focus on
the significant wave height itself rather than the wave-induced water level component. This approach
is previously displayed in Leijnse et al. (2022) and Marcos et al. (2019), which models TC-induced
water level and spectral wave evolution separately, taking a deep water wave observation location to
extract the wave height time series, and continues with statistical analysis to visualize the changes in
extreme tail distribution under future climate condition. However, since this computational limitation is
less of a hindrance for the storyline approach in Objective B, the coupled wave-water level dynamics
will be simulated explicitly (more detail on this is presented in the Methodology section). For simulating
surge and wave to achieve objective A, Delft3D-FM and HurryWave are used. Meanwhile, storyline
scenarios will be simulated using a coupled SFINCS-Snapwave model. A brief description of these
models is presented below:

Delft3D-FM
The Delft3D-Flexible Mesh is a model system that is versatile and advanced enough to simulate the
complex dynamics of tropical cyclones, tsunamis, and storm surges. Delft3D-FM is based on the
Navier–Stokes equations for incompressible flow with 2D (depth-averaged) and 3D formulations on
the nonlinear shallow water approximation (Kernkamp et al. 2011). The full model implemented in
Delft3D-FM comprises a comprehensive set of partial differential equations covering processes such
as hydrodynamics, matter transport, 3D flow modelling, heat transfer, wind forcing, hydraulic struc-
tures, bedforms, and vegetation dynamics. Depending on the case study, certain processes may be
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excluded to better suit specific conditions and to reduce computational costs. In this thesis, the model
configuration focuses on 2D hydrodynamics and wind forcing.

To accurately resolve hydrodynamic equations in topographically complex areas, while maintaining
computational efficiency, it is sometimes desirable to refine the computational grid locally. Delft3D FM
enables this by allowing the use of unstructured grids and automatically generating a refinement degree
based on the bathymetry depth, based on user-defined largest and smallest resolutions (Kernkamp et
al. 2011). To make the computation even more efficient, Delft3D-FM also facilitates multiple processing
(Message Passing Interface; MPI), in which computation can be parallelly divided over multiple cores.
This model has proven its capability to accurately and efficiently produce TC-induced surges based
on thousands of years of TC dataset at a large spatial scale, for the East Coast of Africa (Benito et al.
2024) or even a global scale Dullaart et al. (2021).

Hurrywave
HurryWave is a phase-averaged spectral wave model designed with an emphasis on basin-scale,
hurricane-driven sea states (Deltares 2024b). As such, this model is developed with the sole pur-
pose of prioritising computational speed through a reduced-complexity formulation. It is based on the
same wave–action formulation as in other current models such as Wave Watch III (Tolman 2009) and
SWAN (Booij et al. 1999), but employs an explicit first-order upwind discretisation with an emphasis on
deep-water applications. The wave action balances solved by HurryWave are as follows:

∂N(σ, θ)

∂t
+∇ [cgN(σ, θ)] +

∂cgN(σ, θ)

∂σ
+
∂cθN(σ, θ)

∂θ
=

Swind
σ

+
Sdiss.
σ

+
Snl4

σ

(2.4)

The model advances the wave-action densityN = E/σ (E is the wave energy, σ is the radial frequency)
forward in time and geographic, frequency, and directional space by integrating the action-balance
equation, in which advection by the group velocity cg and refraction by the directional celerity cθ are
balanced against source and sink processes. These are wind input (Swind), dissipation (Sdiss) and
non-linear quadruplet interactions (Snl4); the triad interactions that dominate in shallow water and any
interaction with currents are deliberately omitted in the interests of efficiency. Although not always
written explicitly, the wave-action density N is a function of time, and thus its partial derivative with
respect to time reflects its temporal evolution under the influence of these physical processes.

Several physical processes are therefore unresolved. Water levels are assumed spatially uniform and
constant, which is a reasonable simplification for the intended deep-water application. On the other
hand, it necessitates bed-level corrections when the model is applied in nearshore applications where
water-level gradients matter. Similarly, the absence of a wave–current interaction module precludes
simulations over spatially inhomogeneous current fields. Finally, it is crucial to note that HurryWave is
only appropriate for time-varying problems (non-stationary model). In its validation cases, HurryWave
has demonstrated its capability to produce accurate model predictions when compared against wave
buoy measurements for the Hurricane Idalia and Hurricane Fiona cases (Deltares 2024b).

SFINCS-Snapwave
The SFINCS model (Leijnse et al. 2021) is a reduced-complexity flood solver that includes advec-
tion and wind-drag terms in the Local-Inertial Equations, thereby solving the Simplified Shallow-Water
Equations (SSWE). The inclusion enables the explicit resolution of rapid transients such as infragravity
run-up without compromising the computational efficiency of the original formulation. The most recent
version of SFINCS facilitates a quadtree grid. Thus, it allows spatially varying friction, infiltration, precip-
itation and a weakly-reflective generating–absorbing boundary so that fluvial, pluvial, tidal, wind- and
wave-driven mechanisms can all be included within a single depth-averaged framework. Comparison
against analytical solutions, benchmark experiments and wave-driven inundation cases shows that the
SSWEmodel (SFINCS-SSWE) replicates shock propagation and long-wave run-up far more accurately
than the advection-free LIE version at a moderate (typically < 20%) run-time. Eilander et al. (2023a)
evaluated the performance of SFINCS using a case study in Mozambique, and it showed that it out-
performed the catchment-based -macro-scale CaMa-Flood model (Yamazaki et al. 2013) in terms of
overall accuracy.
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SnapWave (Roelvink et al. 2025) is a fast, stationary wave-transformation engine that propagates
offshore sea states to the nearshore on unstructured grids. It resolves an implicit 2-D wave-energy
balance (refraction, shoaling, bottom friction and depth-limited breaking) for a single representative
frequency and an explicitly resolved directional spectrum. It is solved by quadrant sweeping and con-
verges in a few iterations, providing a very fast run-time, even on standard hardware without parallel
processing. SnapWave is designed to be lightweight, serving as the near-shore wave module for shore-
line evolution tools (ShorelineS), morphodynamic models (XBeach, Delft3D-FM) and floodmodels such
as SFINCS, with good skill (> 0.9) for diverse open-coast, island and reef test cases, and simple to apply
anywhere in the world.

Coupling SnapWave into the SFINCS quadtree grid (Leijnse et al. 2024; Leijnse et al. 2025) allows
the system to compute dynamic wave-induced setup and associated infragravity wave height by (i)
converting wave-breaking dissipation into forces raising mean sea levels, and (ii) optionally passing
infragravity-wave data to a near-shore ”wavemaker” boundary; both are calculated at user-defined sta-
tionary time steps, so wave propagation is resolved within SFINCS. Moreover, the SFINCS’ infragravity
driver, if activated, introduces long-period waves at a specified surf-zone contour, and SSWE advection
to propagate run-up over complex topography. Leijnse et al. (2025) shows that SnapWave coupling
adds up to only 5–15% to total runtime. In their case study for Hurricane Florence (2018) hindcast,
the coupled model is shown to be able to produce open-coast dynamic water levels, significant wave
height, and infragravity wave height at a comparable magnitude to the full-physics XBeach simulation,
with an estimated >1000 times faster computation speed.

2.4. Statistical Analysis Rationale
This section elaborates on the steps taken in the extreme value analysis of hydrodynamic modelling
results on TC-induced surge andwave. Known options, descriptions, and the justification for the chosen
procedure will be addressed.

2.4.1. Marginal extreme value analysis using POT and GPD
For the marginal extreme value analysis, two methods (see Figure 2.13) are commonly considered
in metocean and coastal engineering studies: 1) the annual block maxima-generalised extreme value
distribution (AM-GEV), which typically uses a single highest observation per year and 2) the peak
over threshold-Generalised Pareto Distribution (POT-GPD), which could consider more than a single
observation per year, so long as it exceeds a certain user-defined threshold. (Caires 2016) argued that
the flexibility and more intense data usage in POT-GPD are proven to be advantageous, especially
for a short data record. Considering that the STORM dataset may include more than one storm per
year, the POT-GPD method aligns better with this study, as also employed in many TC-related studies
(Leijnse et al. 2022; Gori et al. 2022; Marsooli et al. 2019; Lin et al. 2012). Elaboration and theoretical
practice of the POT-GPD approach are presented below:

Figure 2.13: Block maxima (left) and peak over threshold method (right). Visualization by (Bhattacharyya et al. 2008)

Peak-over-Threshold (POT)
Extreme events are extracted with the POT approach by first declustering the time series into quasi-
independent storm peaks and then retaining only those peaks that exceed a sufficiently high threshold u.
Let Y = X − u > 0 denote the threshold excess. For a broad class of underlying parent distributions,
the distribution of Y converges to the generalized Pareto distribution (GPD) as u → ∞:

Fu(y) = Pr(Y ≤ y) = 1−
(
1 + ξ

y

σ̃

)−1/ξ

, y > 0, 1 + ξ y/σ̃ > 0, (2.5)
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where σ̃ > 0 is a threshold-specific scale and ξ is the tail (shape) parameter. Because every storm
that crosses u supplies one observation, POT exploits far more data than the annual-maxima/GEV
technique, resulting in more efficient and less biased estimates of low exceedance probabilities. Com-
monly, declustering windows must also be selected so that residual pairs are approximately indepen-
dent, thereby justifying the Poisson assumption (independent and identically distributed) for the times
of joint exceedances. However, this declustering step is not required in this context, as each tropi-
cal cyclone (TC) event is naturally independent due to the physical separation and distinct genesis
mechanisms and timing of individual storms.

Generalized Pareto Distribution
The GPD in Eq. (2.5) encompasses three limiting tail forms: heavy-tailed Pareto (ξ > 0), exponential
(ξ = 0) and bounded (ξ < 0), so the single parameter ξ fully determines tail heaviness and hence the
extrapolated return levels (see Figure 2.14). Threshold stability implies that if the GPD holds for one
high threshold, it remains valid for any higher threshold, with a linear adjustment σ̃u2

= σ̃u1
+ξ(u2−u1).

This property underlies diagnostic plots (mean-residual-life and parameter-stability curves) that guide
threshold selection and provide a check on the asymptotic assumption.

Figure 2.14: GPD probability density function (left) and cumulative density function (right) influenced by different shape
parameters

Define κu as the mean number of threshold-exceeding peaks per year. For a return period m years,
the GPD return level is

zm = u+
σ̃

ξ

[
(κum)ξ − 1

]
(ξ ̸= 0), zm = u+ σ̃ ln(κum) (ξ = 0). (2.6)

Maximum-likelihood, probability-weighted moments (method of moments) and Bayesian schemes are
commonly used to estimate (σ̃, ξ). Asymptotically, these parameters are tied to those of the GEV fitted
to block maxima, ensuring theoretical consistency between POT and annual-maxima analyses while
often delivering narrower confidence intervals in practice.

2.4.2. Bivariate extreme value analysis using threshold-excess method and bi-
variate GPD

As the coastal water level along the coastline of the study area is driven by two central components
—TC-induced surge and TC-induced wave —the joint extreme and dependence between these two
drivers can be further analysed. Following the use of POT-GPD for marginal extreme value analysis,
three representations of the joint extreme values method can be distinguished: 1) threshold-excess
method (Resnick 1987), 2) point process method (Coles et al. 1994), and 3) conditional method (Hef-
fernan et al. 2004) (see Figure 2.15).

Suppose that surge is X and wave is Y , thresholds for these two parameters have previously been
determined in the POT-GPD analysis, (ux and uy). The threshold excess method (left plot) describes
the dependence for extremes that simultaneously exceed both thresholds. Contrastingly, both the
point process method (middle plot) and the conditional method (right plot) can handle joint extreme
events even when only a single marginal threshold is exceeded. However, considering that the same
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Figure 2.15: Visualisation (by Zheng et al. (2014)) of bivariate threshold excess method (left), point process method (middle),
and conditional method (right)

TC-induced winds drive surge and waves, it is highly unlikely that such a situation, where extreme
surge coincides with low waves or vice versa, would occur. Still, it does not mean that both the TC-
induced surge and wave are entirely dependent. Through this logic, more parameterised and advanced
approaches, such as the point process method and the conditional method, are unnecessary for this
study. For this reason, the threshold excess method is employed in this study, in conjunction with the
underlying logistic model, as also used in the joint TC-induced surge-rainfall analysis by Gori et al.
(2022). The theoretical elaboration of this method is elaborated below:

Bivariate Threshold-Excess Method
For a surge–wave pair (X,Y ) the marginal POT step transforms each component to a common scale—
typically unit Fréchet, X∗ = −1/ lnFX(X) and Y ∗ = −1/ lnFY (Y ). Joint extremes are then defined as
(X∗, Y ∗) entering the region D = {x∗ > ux} ∪ {y∗ > uy}. Within D the joint survivor is modelled by a
bivariate GPD:

Pr(X∗ > x, Y ∗ > y) = exp{−V (x, y)} , (x, y) ∈ D,

where the exponent measure V (x, y) characterises extremal dependence. A censored likelihood treats
points for which only one component exceeds its threshold as partially observed, while fully joint ex-
ceedances contribute through the mixed density ∂2V/∂x ∂y. This formulation respects variable-specific
thresholds yet yields consistent parameter estimates for the joint tail, a prerequisite for computing
TC-induced compound surge–wave design events. Thresholds ux and uy are chosen by the same
bias–variance trade-off as in the univariate case, guided by stability plots of the estimated dependence
parameter(s).

Logistic Method
A widely used parametric form for V (x, y) is the logistic model

G(x, y) = exp
[
−
(
x−1/α + y−1/α

)α]
, 0 < α ≤ 1, (2.7)

where α controls extremal dependence: α → 0 implies complete dependence, α = 1 corresponds
to asymptotic independence, and intermediate values represent varying strengths of tail association
(see Figure 2.16). In the surge–wave context, empirical studies typically find α ∈ [0.4, 0.8], indicating
moderate to strong dependence that intensifies design flood levels relative to independent assumptions.
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Figure 2.16: Illustration (by Zheng et al. (2014)) of the spectral density function, h(w), for three datasets simulated using the
bivariate logistic model with varying dependence levels (α = 0.1, 0.5, and 0.95). Top: Scatterplots of each dataset, with

extreme events highlighted in grey. Bottom: Histograms of the variable w = x
x+y

for the extreme events, with the
corresponding spectral density functions h(w) overlaid.

The logistic model is attractive because (i) it is closed-form and requires only one additional parameter
beyond the marginal distribution parameters (threshold, exceedance frequency, shape and scale), (ii)
it nests the independence limit, allowing formal hypothesis tests, and (iii) its likelihood is numerically
stable even with modest sample sizes. When coupled with the bivariate threshold-excess likelihood, it
yields nearly unbiased α̂ and lower root-mean-square error than alternative copula-based estimators for
the dependence range typical of TC surge–wave pairs, while remaining computationally trivial to imple-
ment. Together, the univariate POT–GPD framework and the bivariate threshold-excess logistic model
provide a theoretically consistent and empirically efficient toolkit for fitting TC-induced marginal and
joint surge–wave extremes, enabling robust estimation of return levels and design contours required
for coastal flood-risk assessments.



3
Data and Methodology

Building on the literature-informed rationale presented in the previous chapter, this chapter describes
the datasets and modelling setups used to address the research objectives. The flowchart in Figure
3.1 above provides an overview of how all data, methods, and outputs are integrated within this study.
The overall process is organised into four main parts for clarity, with a brief description as follows:

STORM-IBTrACS
(historical period)

STORM-CC
(future period)

Holland parametric wind model
(1980)

Domain Filter
Tide

TPXO80 

SLR-SSP5.85
 IPCC

Hurrywave DFM

Wind Speed

Wave Height Skew Surge

*Historical and Future

Joint Extreme Attribution

Scaled-Surge

Scaled-Wave

SFINCS-Snapwave

Flood Hazard Storyline

Objective A

Objective B

Part I

Part II

Part III

Part IV

Marginal Extreme Attribution

TC Idai
Hindcast

Figure 3.1: Modelling Flow Chart; left part focuses on the methodology that aims to achieve Objective A, meanwhile the right
part focuses on Objective B

Methodology Part I, ”Domain Filter of STORM and Development of TC Wind Field”, is based on the
decision to use the STORM synthetic tropical cyclone tracks and the Holland (1980) wind model, as pre-
viously elaborated in Subsections 2.3.1 and 2.3.2. Starting from this step, two STORM distinctions are
made: STORM-IBTrACS corresponds to the historical period, and STORM-CC represents the future
climate condition, comprising four STORM-GCMs. One of the outputs of this methodological partition

23
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is presented in Section 4.1, which summarises the general TC occurrences and intensity along the
Mozambique channel. In the Part II ”Surge and Wave Model of Filtered STORM Synthetic Tracks”,
utilising the STORM’s TC Holland1980 wind field from the previous step, a water level (Delft3D-FM)
and spectral wave evolution model (HurryWave) are conducted separately, following the rationale pre-
sented in Subsection 2.3.3. Furthermore, the chosen statistical procedure discussed in Subsection 2.4
underpins the steps, and extreme value attribution takes place in Part III ”Marginal and Joint-Extreme
Value Attribution”. The concurring Holland1980 wind speed (from Part I), Delft3D-FM’s surge, and Hur-
rywave’s wave maxima (from Part II) will be used as input for this statistical procedure. The result of
these attributions is what constitutes the answer to Objective A, which is presented in Section 4.2 and
4.3.

Lastly, in Part IV ”Simulation of Future Climate Flood Hazard Storyline”, as the name suggests, a
future climate storyline of TC Idai will be developed and simulated. To achieve this step, a TC Idai surge
and wave hindcast is first simulated, using a setup similar to that in Part II. The future scaled surge
and wave are then derived based on the hindcasted STORM-IBTrACS return period, and reprojected
into each STORM-GCMs’ marginal distribution. These future scaled surges and waves represent what
we previously referred to as ”storminess change”. These storminess changes, in addition to SLR, are
then simulated more precisely using a coupled nearshore flow-wave model, SFINCS-SnapWave (see
Subsection 2.3.3), producing the TC Idai flood hazard storyline in four different scenarios: historical,
storminess change-only, SLR-only, and combined storminess change-SLR scenarios. The outcomes
of this flood hazard storyline will directly address Objective B, and are presented in Sections 4.4. The
following sections will delve deeper into the datasets used, as well as the detailed setups and analyses
applied in each methodological part.

3.1. Dataset
3.1.1. STORM Datasets
Because tropical cyclones (TCs) are relatively rare and typically affect only small geographic areas, con-
ducting extreme value analysis to estimate metrics in the upper tail distribution, like the 1-in-100-year
return period, with reasonable confidence requires long-term records or modelled data. As previously
elaborated in Section 2.3.1, one way to overcome this issue is to use a synthetic tropical cyclone tracks
database. In this study, the synthetic tropical cyclone tracks databases, STORM-IBTrACS (Bloemen-
daal et al. 2020c) and STORM-CC (Bloemendaal et al. 2021), are employed. Five different scenarios
are distinguished: 1) IBTrACS, which corresponds to the current climate (1980-2017), and 2) CMCC, 3)
EC-Earth, 4) HadGEM, and 5) CNRM, which represent the future climate scenarios (2015-2050). Since
this study focuses on comparing the upper-tail distribution of wind, wave, and surge characteristics un-
der current and future climate conditions—specifically for events with a 100-year return period—using
the first 5,000 years of the 10,000-year STORM dataset is considered sufficient (Grossmann-Matheson
et al. 2023; Leijnse et al. 2022). As noted by Bloemendaal et al. (2020b), the full 10,000-year dataset
is generated by repeating 1,000-year realisations based on the same statistical distribution ten times.
Therefore, analysing just the first 5,000 years is expected to yield representative results that are sta-
tistically consistent with those obtained from the full dataset. Details on both STORM-IBTrACS and
STORM-CC are presented below.

STORM-IBTrACS
The STORM-IBTrACS (Bloemendaal et al. 2020c) dataset is a 10,000-year global synthetic tropical
cyclone (TC) archive generated using the Synthetic Tropical cyclOne geneRation Model (STORM) de-
veloped by Bloemendaal et al. (2020b). This dataset extends the observational record of TC activity
based on 38 years (1980–2018) of historical best-track data from the International Best Track Archive
for Climate Stewardship (IBTrACS) (Knapp et al. 2010), as shown in Figure 2.11. STORM uses a
Monte-Carlo algorithm to resample and simulate TC genesis, tracks, intensities, and sizes to produce
a long-term synthetic realisation database that preserves the statistical properties of the original IB-
TrACS dataset. The model accounts for spatial and seasonal distributions of genesis, environmental
constraints such as maximum potential intensity, and post-landfall decay.

STORM-IBTrACS includes key cyclone properties at 3-hourly intervals, such as minimum central pres-
sure, maximum 10-m wind speed, radius to maximum winds (Rmax), landfall flags, and distance to
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coast. It offers statistically consistent coverage in historically data-scarce regions and allows for ro-
bust estimation of return periods for extreme TCs. The dataset is especially valuable for applications
in coastal flood modelling, wind damage assessments, and probabilistic risk analysis. Unlike climate
model output, STORM-IBTrACS reflects present-day climate conditions only and does not account for
long-term climate variability or change.

STORM-CC
The STORM-CC dataset (Bloemendaal et al. 2021) is used to project tropical cyclone (TC) behaviour
over the future period of 2015 to 2050. It was developed by Bloemendaal et al. (2022) using four out
of the six high-resolution coupled ocean–atmosphere general circulation models (GCMS) that were
affiliated with the High Resolution Model Intercomparison Project (HighResMIP). HighResMIP belongs
to the broader Coupled Model Intercomparison Project Phase 6 (CMIP6) framework. The objective of
HighResMIP was to examine how increasing model resolution, ranging from 25 km to 50 km, affects
the simulation of climate variability and extremes, particularly tropical cyclones.

Four GCMs used in the STORM-CC development are: CMCC-CM2-VHR4 (Scoccimarro et al. 2017),
EC-Earth3P-HR (E.-E.-Consortium 2018), HadGEM3-GC31-HM (Roberts 2017), and CNRM-CM6-1-
HR (Voldoire 2019), all under the high-emission Shared Socioeconomic Pathway 585 (SSP585) sce-
nario. The simulations cover the future period from 2015 to 2050. Bloemendaal et al. (2022) noted
that up to 2050, the differences between SSP585 and lower-emission scenarios are relatively minor.
Among the selected GCMS, only CMCC-CM2-VHR4 features the highest spatial resolution of 25 km
× 25 km. The other three operate at 50 km × 50 km. While all models output data at 6-hour intervals,
these were interpolated by Bloemendaal et al. (2022) to a temporal resolution of 3 hours for consistency
and enhanced usability.

Despite their increased resolution, the GCMs still tend to underestimate TC intensity. Therefore, they
cannot be used directly to forecast future TC characteristics. To address this, Bloemendaal et al. (2022)
applied a method they referred to as the “delta” approach. In this technique, TC tracks are first identified
in both historical and future GCM simulations using the method described by Roberts et al. (2020).
Then, the statistical changes (absolute, relative or distribution shift)—or “deltas”—between the two
periods are calculated for various TC parameters. These parameters include the number of storms per
year, locations of genesis, latitude and longitude of tracks, and central pressure. The computed deltas
are then imposed on the statistics from the STORM-IBTrACS dataset, which is itself designed to be
statistically aligned with historical observations. The modified statistics are then resampled to produce
projected future values. This entire process is carried out separately for each of the four GCMs, thereby
generating synthetic future TC tracks for each model.

In typical climate change studies, it is common practice to compare GCM-predicted characteristics
for historical periods with the ground-truth observation and further assess their biases. However, the
formulation of STORM-CC does not use historical TC tracks generated byGCMs. Instead, it propagates
the future changes in storm statistics directly to the STORM-IBTrACS dataset. This approach is based
on the assumption that biases from baseline and future GCM scenarios are constant, negating the need
for the standard bias correction approach. However, ignoring bias evaluation also means the inability
to produce a performance-based weighted ensemble. Hence, in this study, we assume an ensemble
median model combination.

3.1.2. Sea Level Rise Dataset
The NASA sea level projection tool, based on IPCC AR6 (Masson-Delmotte 2021), is used to determine
the expected sea level rise along the Sofala coast in 2050. IPCC AR6 provides forecast data on total
SLR and rise rate in different periods in the future under five different socioeconomic pathways (SSP1-
1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) with a resolution of 1°, as shown in Figure 3.2. To
be consistent with the scenario used in the STORM-CC dataset, only the highest scenario, which is
the SSP5-85 scenario, is considered in this study. In this emission scenario, the 5th-95th confidence
interval of SLR by 2050 is 0.13–0.42 m with a median value of 0.25 m. This median value will later be
used to superimpose water level boundary conditions under the future climate scenario.

https://sealevel.nasa.gov/ipcc-ar6-sea-level-projection-tool


3.1. Dataset 26

Figure 3.2: Values of SLR near Sofala Province according to IPCC AR6 Projection

3.1.3. Tide Dataset
Sea-surface elevation amplitudes for eight primary (M2, S2, N2, K2, K1, O1, P1, Q1), two long-period
(Mf, Mm), and three non-linear (M4, MS4, MN4) harmonic constituents are calculated using the TPXO8.0
models (Egbert et al. 2002). This dataset is based on a data assimilation model integrating a numeri-
cal model with satellite altimetry. It provides data on tidal constituents at a 1/4° resolution at a global
scale, which is helpful for a data-scarce region such as Sofala Province, Mozambique. Visualisation
on M2 magnitude and phase variability near Sofala’s coast has been presented before in Figure 2.4a.
The extracted tidal constituents derived from this dataset will be constructed into a time series using a
harmonic decomposition approach Codiga (2011). This time series will serve as a boundary condition
along the open boundaries of the DFM model extent, later elaborated in Section 3.2.3.

3.1.4. Bathymetry, Topography, Land Cover and Population Dataset
This study employs the bathymetry dataset from GEBCO 2024 with a resolution of 15 arc seconds
(~450 m), which is the most updated version of GEBCO, providing fewer discontinuities, especially
where measured data is scarcely available, like in Sofala province (GEBCO Compilation Group 2024).
Delta-DTM, an open CopernicusDEM-based digital terrain model (DTM) with a resolution of 1 arc-
second (~30 m), is employed for the topography (Pronk et al. 2024). This DTM is intended explicitly
for delta regions, especially in coastal inundation model applications using globally available datasets,
such as in this study. Pronk et al. (2024) stated that this DTM might outperform other globally available
datasets, such as MERIT. However, it is essential to note that this DTM only covers up to the elevation
of +30 m above MSL and, therefore, is less suitable for studying river basin-scale flooding. Given the
scope of this study, which focuses on coastal inundation only, Delta-DTM is still preferred with the hope
of a more accurate depiction of overflowing processes. Both bathymetry and topography datasets are
joined with CNES-CLS18mean dynamic topography (MDT) correction for the MSL differences (Mulet et
al. 2021). The resulting merged topography and bathymetry are presented in Figure 2.5. The Manning
roughness coefficient from the ESA World Cover 2020 (Hammond et al. 2021) is used for the land
area; meanwhile, the assumed uniform value of 0.02 (a default roughness for sea bed, representing
a moderate level of bottom drag) is used for the sea, as no roughness dataset is available. This ESA
World Cover 2020, alongside WorldPop population density dataset (CIESIN 2018), will also serve as a
basis for exposure assessment in the Part 4 flood hazard storyline.
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3.2. Methodology
3.2.1. Domain and Observation
Before delving into the detailed methodological steps involved in this study, it is important to distinguish
the model domain used in each methodological part (I-V) and to identify the locations of the observation
points. As shown in Figure 3.3, Parts I and II of the methodology focus on a scale larger than the
Sofala region itself. The Delft3D-FM and HurryWave model domain is set more than ∼ 500 km away
from the most protruding part of Sofala’s coast to ensure that the propagation of surge and wave from
deeper water is considered. Meanwhile, the STORM domain filter is extended ∼ 300 km inland to
capture the tropical cyclone wind field that propagates beyond the landfall point. The Delft3D-FM and
HurryWave model observation points along the Sofala coastline have spatial resolutions of 2 km and
5 km, respectively. The Delft3D-FM surge observation is set very close to the coastline, while the
HurryWave’s observation is set at more than -15 m depth to ensure deep water conditions. Time series
of wind, waves, and surge are extracted at these points to allow for the joint and extreme value analyses
in Methodology Part III. The SFINCS model in Part IV, which was used in the estimation of total water
levels and coastal flooding within the storyline-based approach, is also configured along the same
coastline. Details on how the model and analysis are set up and conducted in each part are shown in
the following subsections.

Figure 3.3: Left plot indicates the domain extent for STORM tracks filtering as well as Delft3D-FM and HurryWave extent
(Methodology Part I and II, respectively). Meanwhile, the right plot indicates the observation points used to retrieve wind speed
and wave height (yellow) as well as skew surge (blue) for Part III: marginal and joint extreme analysis. The green outline in the

right plot represents the SFINCS domain, which is later used in Methodology Part IV.

3.2.2. Part I: Domain Filter of STORM and Development of TC Wind Field
The 5000 years sets of STORM-IBTrACS and STORM-CC first go through a domain filter process to
make the later hydrodynamic simulation even more efficient. Aligning with the study region of Sofala
province, only the South-Indian basin of this dataset is considered. Furthermore, we select only TC
events with at least one point inside a 300 km radius from any point along Sofala’s coastline. This dis-
tance is chosen based on the maximum recorded radius of 34-knot winds (R34) in the region, observed
during TC Eloise (2021), which had an R34 of approximately 250 km based on IBTrACS (Knapp et al.
2010). The 300 km threshold includes a conservative buffer of 50 km to account for uncertainties in
storm size, track, and impact range. R34 defines the radius at which sustained winds reach 34 knots
(≈63 km/h), the threshold for tropical storm-force winds. Wind speeds below this threshold are generally
classified as breezes, while those above 64 knots are considered hurricane-force (Knaff et al. 2007).
Therefore, storms with all points beyond a 300 km radius are assumed to have a negligible influence
on surge and wave conditions near Sofala. Furthermore, we cut the beginning or end part outside the
hydrodynamic model domain (see Section 3.2.3 for each TC track, around 500 km seaward and 300
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km landward.

In the second step, the tropical cyclone (TC) tracks from the STORM dataset are transformed into
wind and pressure fields using the Holland1980 parametric model (Holland 1980) (see Section 2.3.2
for detail). The TC wind structure follows the methodology described in reference (Dullaart et al. 2021),
employing a radial grid that extends up to 1000 km, with 375 grid points in the radial direction and 48
grid points in the angular direction. Background surface winds setup, such as surface wind reduction
factor and a directional offset constant, is set following Benito et al. (2024), which employs the STORM-
IBTrACS dataset for the east coast of Africa. An instance of the resulting Holland1980 wind field for
TC Idai is presented in Figure 3.4.

Figure 3.4: Visualisation of Holland1980 spatial wind field model applied to TC Idai. Warmer colour indicates higher wind
speed.

3.2.3. Part II: Surge and Wave Model of Filtered STORM Synthetic Tracks
This section describes the hydrodynamic modelling approach used to simulate surge and wave for
each filtered synthetic tropical cyclone (STC) wind field across all scenarios. Each surge and wave will
be modelled independently, omitting interactions between waves, currents, and sea levels in shallow
waters, equivalent to the approach employed in Marcos et al. (2019). This step will result in two key
findings that are used for later steps: wind speed WS, significant wave height Hs, and skew surge SS
maxima series that later will be used in extreme and joint extreme value analysis elaborated in Section
3.2.4.

Surge model in Delft3D-FM
For the surge, an observation point for every 2 km is set at sea very close to the coastline (not exactly
at the coastline to avoid drying due to bathymetry averaging). The term ’surge’ here refers to skew
surge (later denoted as (SS) and not surge residual due to the following reasons: (1) a simple and
unambiguous measure of the storm surge relevant to any predicted high water; (2) as Williams et
al. (2016) demonstrated, there is negligible dependence between astronomical tide and skew surge,
which simplifies the later development of TC Idai storyline’s water level time series, as we can treat the
tide and skew surge time series independently (if we generated time series of non-tidal residual, we
would have to build an advanced approach to account for non-linear dependence between tide and the
non-tidal residual).

The Delft3D-FM model (see Subsection 2.3.3) is used to model coastal tide and surge water levels. In
this study, the configuration is constructed from scratch using the dfm_tools Python interface, meaning
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that the computational domain, grid, bathymetry, boundary conditions, and forcing inputs are defined
without relying on a pre-existing model setup (Deltares 2024a). This model spans from a latitude of
23.7°S to 15.8°S, and longitude from 34°E to 40.3°E, with the largest grid size set at 0.2 degrees and
getting finer as it reaches lower depths on a staggered-unstructured grid, reaching 2 km resolution
at the coastline. At the external boundary condition line (denoted by a red line in Figure 3.5), the
TPXO8.0 tide timeseries is enforced (see Section 3.1.3), following a random year (1980-2017 for current
climate scenario and 2015-2050 for future climate scenario), random day and hour at a specific month
as detailed within each STORM’s STC track. SLR offset is explicitly superimposed in this tide time
series for the future climate scenarios to account for its effect on surge generation. Inside the Delft3D-
FM domain, the previously developed TC wind field containing velocity components and atmospheric
pressure is enforced as an internal boundary condition, representing surge generation along the TC
tracks. Spinup time is set to 3 hours; meanwhile, a 24-hour tide-only simulation is employed to ensure
proper tide propagation across all domains before it takes effect from the TC-induced wind field. A tide-
only simulation without the TC wind field is also simulated. The difference between the TC-induced
and tide-only time series is then used to form the basis for calculating the skew surge. This strategy is
taken as some of the surge observation points lie outside the TPXO8.0 grid coverage.

To confirm that the tide distribution between each STORM variation is identical despite the differences
in the number of STC tracks and random time selection, a validation is required. This validation is done
by comparing the kernel density of the high-water tide that corresponds to each skew surge in every
STC simulation, which is presented in Appendix A. Within the same kernel density plot (Figure A.1),
the distribution of high-water tide from the nearest tide station, Beira IHO station, is also presented to
confirm Delft3D-FM’s performance in replicating the actual tide situation in the region through the use
of TPXO8.0. Moreover, in the same appendix, the correlation plot between skew surge and tide is also
presented (Figure A.2, validating the independence assumption previously discussed in the preceding
paragraph.

Figure 3.5: Delft3D-FM grid, boundary and observation setup (left) and HurryWave grid and observation setup (right). The grid
resolution for the Delft3D-Fm model is set at 0.2° offshore and becomes increasingly finer near the coastline, with a resolution

of 2 km. HurryWave grid is set at rectilinear uniform 5 km resolution.
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Wave model in HurryWave
As for the wave, the HurryWave model (see Subsection 2.3.3 for details) is employed to model the
TC-induced wave evolution. As in the Delft3D-FM setup, this model configuration is also constructed
from scratch using the same GEBCO 2024 as a base bathymetry. The model extent is set similar to the
Delft3D-FM model, with a uniform rectilinear grid resolution of 5 km as shown in Figure 3.5. A constant
water level of 0 m is set across all simulations, neglecting tide and SLR, as we only focus on wave
evolution under deep water conditions. Given that only the time-series for space-varying TC wind and
pressure fields is considered, the spin-up time is set to 3 hours without any additional water level-only
simulation like in the Delft3D-FM setup. Lastly, both Delft3D-FM and Hurrywave output timestep is set
to 10-min to ensure peak skew surge and significant wave height can be appropriately captured without
time-averaged decay. Furthermore, wind significant wave height (Hs) maxima (maximum 6-hour win-
dow from surge maxima) are derived at observation points that are set at around -15 m elevation every
5 km offshore of Sofala’s coastline. This location is used to ensure the deep water wave condition.

3.2.4. Part III: Marginal and Joint-Extreme Value Attribution
Building on the theoretical background presented in Section 2.4, this section outlines the practical
implementation of marginal and joint-extreme value analyses using the skew surge (SS) from Delft3D-
FM output as well as wind speed (WS) and significant wave height (Hs) from HurryWave model outputs.
Specifically, the univariate peak-over-threshold (POT) method with a Generalised Pareto Distribution
(GPD) is applied for marginal extremes, and a bivariate threshold excess method with a logistic model
is used for assessing compound surge–wave hazards.

Marginal Return Period
The marginal behaviour of TC-induced wind speed (WS), significant wave height (Hs) and skew surge
(SS) is modelled using the Peak-Over-Threshold (POT) approach with the Generalized Pareto Distri-
bution (GPD), following the theoretical foundation outlined in Subsection 2.4.1. Given the heavy-tailed
nature of both variables, the POT-GPD method is well suited for extrapolating low-probability extremes
from tropical cyclone events.

Thresholds are selected for each location using diagnostic tools of root mean square error (RMSE)
between empirical and fitted quantiles, ensuring a balance between bias and variance (following the
approach of Lin et al. (2012) and Marsooli et al. (2019)). Parameter estimation is performed using
maximum likelihood. Return levels corresponding to desired return periods (e.g., 20-, 50-, 100-year)
are then computed using the GPD formula introduced in Equation (2.6).

Joint Return Period
The dependence between Hs and SS is modelled using the bivariate threshold-excess method com-
bined with the logistic model, as introduced in Subsection 2.4.2. The marginal distributions are first
transformed to unit Fréchet space using the fitted GPDs, after which the joint cumulative distribution
function (CDF) is evaluated using the logistic form (Equation (2.7)). This approach enables consistent
estimation of joint exceedance probabilities. Model fitting is carried out via censored maximum like-
lihood, using only those tropical cyclone events where both variables exceed their respective thresh-
olds. These thresholds are the same as those selected in the marginal analysis. The logistic de-
pendence parameter α is estimated per site, allowing the characterisation of tail dependence from
near-independence to near-perfect dependence (see Figure 2.16).

To evaluate the frequency of compound extremes, we compute the joint return period (JRP), defined
as the expected time between events in which both Hs and SS exceed their marginal 100-year return
levels xT and yT . Assuming tropical cyclone arrivals follow a Poisson process with rate λ, the JRP is
calculated as:

JRP =
1

1− e−λP
, (3.1)

where P is the joint exceedance probability, given by:

P = 1− Pr(X ≤ xT )− Pr(Y ≤ yT ) +G(xT , yT ), (3.2)
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and G(xT , yT ) is the joint CDF from the logistic model. The arrival rate λ is derived from the number of
tropical cyclone events identified per scenario within a 300 km radius (see Section 3.2.2) divided by the
total 5000-year simulation period. For this JRP analysis, we took inspiration from Gori et al. (2022)’s R
script and turned it into a Python script. This R script is originally used to analyse the joint return period
of TC-induced rainfall and storm tide under climate change, with a case study in the US.

Attribution of changes in marginal hazards
To evaluate how climate change affects the extremes of individual and compound hazards, attribution
is performed on both the marginal return period curves of Hs and SS, as well as their joint behaviour.
For this research, the 100-year return period will be the benchmark for attributing the marginal (and
later also joint) extreme shifts due to its common use in coastal protection design and risk analysis.

For the marginal case, the analysis focuses on two diagnostic metrics: the change in hazard magnitude
(∆, illustrated in Figure 3.6) and the effective return period (Eff-RP, illustrated in Figure 3.7) under future
climate scenarios. The change in hazard magnitude is defined as the absolute difference between the
future and historical values of a given return period:

∆RP = zfutureRP − zhistoricalRP , (3.3)

where zRP denotes the hazard level (either Hs or SS) associated with a specific return period RP .

Figure 3.6: Visualisation of ∆100yr RP. The black bold dashed vertical line marks the 100-year return period. Each coloured
vertical arrow represents the change in the 100-year return level between future and current climate simulations for a specific

model. These differences, denoted as ∆100yr RP, quantify the projected increase in skew surge under future climate
conditions across various STORM-CC’s GCMs.

The effective return period in the future climate (Eff-RP) is obtained by determining the future return
period corresponding to the historical 100-year hazard level:

Eff-RP100 =
1

1− F future(zhistorical100 )
, (3.4)

where F future is the cumulative distribution function under future conditions.
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Figure 3.7: Visualisation of Eff-RP100. The black bold horizontal dashed line marks the 100-year skew surge level under the
current climate (STORM-IBTrACS) fit. Each coloured downward arrow indicates the effective return period of that surge level
under future climate projections from different STORM-CC’s GCMs. The position of each arrow along the x-axis reflects how
frequently the historical 100-year event is expected to occur in a future climate, with lower return periods indicating an increase

in frequency.

Frequency vs Intensity sensitivity in marginal hazards
To gain a deeper understanding of the drivers behind changes in extreme event hazard under future
climate scenarios, we decomposed the change in the 100-year return level (∆z100) into two distinct
components: frequency and intensity. This approach is based on the Generalised Pareto Distribution
(GPD) fitted to exceedances over a fixed threshold (here, the CMCC threshold is used, as it is the
lowest), using parameters estimated separately for the baseline (IBTrACS) and future GCM scenarios.
The frequency component represents changes in the rate of exceedances, denoted by the parameter
λ, which captures how often the threshold is crossed. The intensity component refers to changes in
the distribution of exceedance magnitudes, governed by the GPD scale (σ) and shape (ξ) parameters.

We isolate each contribution by computing the return level in three configurations:

• Baseline: zhistorical = z100(λhistorical, σhistorical, ξhistorical)

• Frequency-only: zfreq = z100(λfuture, σhistorical, ξhistorical)

• Intensity-only: zint = z100(λhistorical, σfuture, ξfuture)

From these, the absolute contributions are defined as:

∆zfreq = zfreq − zhistorical

∆zint = zint − zhistorical

To allow consistent comparison, we compute the magnitude-normalised fractions:

Frequency Fraction =
|∆zfreq|

|∆zfreq|+ |∆zint|

Intensity Fraction =
|∆zint|

|∆zfreq|+ |∆zint|

This decomposition allows an attribution of observed return level changes to either an increased occur-
rence of exceedance events or a shift in the tail heaviness of their magnitude distribution.

Attribution of changes in joint hazards
For compound hazard attribution, changes in the joint distribution are assessed by computing the future
return period associated with a joint extreme event, defined as the co-occurrence of both Hs and SS
exceeding their respective historical 100-year levels (also known AND scenario). This joint event cor-
responds to the baseline joint return period. The corresponding future return period, referred to as the
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effective 100-year joint return period (Eff-100yr-JRP, illustrated in Figure 3.8), is calculated using the
same historical thresholds (xT , yT ), but evaluated with the joint distribution derived from future storm
simulations.

This attribution framework allows for the disaggregation of future hazard changes into interpretable
shifts in hazard magnitude and frequency, facilitating a clearer understanding of climate-driven shifts
in both univariate and joint extreme behaviour. While this study centres on the 100-year threshold in
the main results, return periods of 20, 50, and 200 years are similarly evaluated and provided in the
Appendix.

Figure 3.8: Visualisation of joint extreme value attribution. The left panels show the joint distribution of surge and wave height
in real values, while the right panels present the same data in cumulative distribution function (CDF) space. The top row
corresponds to the current climate distribution, and the bottom row to the future climate distribution. Blue dots indicate the

100-year return period (RP) surge-wave point under the current climate, while red dots show its position in CDF space under
both the current and future distributions.

3.2.5. Part IV: Simulation of Future Climate Flood Hazard Storyline
The storyline for Tropical Cyclone (TC) Idai time series was developed using a structured three-step
approach to simulate both surge and wave characteristics under future climate scenarios:

TC Idai Hindcast
As no observation data is present during the TC Idai event, the skew surge (SS) and significant wave
height (Hs) hindcast time seriesis acquired through explicit simulation of surge and wave using the
same exact setup of Delft3D-FM and HurryWave elaborated earlier in Section 3.2.3. The wind field
used in this model is developed based on historical best-track data (IBTrACS) (not STORM-IBTrACS).
The extracted time series of near-coastline surge and offshore wave (see Figure 3.3) from this hindcast
will serve as a basis for return period mapping and scaling elaborated in the following Subsection.
Additionally, an extra water level time series is also extracted at the wave observation points, which will
later be used as an offshore boundary condition for the SFINCS-SnapWave model.
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Return Period Mapping and Scaling
At each near-coastline surge and offshore wave observation location (see Figure 3.3), the return peri-
ods of Idai’s simulated SS and Hs were estimated using fitted historical marginal distributions from the
calculation in Section 3.2.4. These return periods were then mapped to corresponding hazard magni-
tudes under future climate conditions, based on marginal distributions derived from each STORM-CC’s
GCM. A scaling methodology (see Figure 4.12) was applied to adjust the historical time series, such
that the future scenario preserves the same return period as the historical event while reflecting GCM-
specific water level and wave progression. Especially for wave, the wave period time series is estimated
such that the future climate storyline exhibits the same wave steepness as the historical one. Other
wave parameters, such as wave direction and directional spreading, are kept consistent with historical
values. In the main body of this research, we only take the historical and STORM-GCMs’ ensemble
median scaled water level and wave time series to feed into the nearshore SFINCS-SnapWave model
discussed in the following Subsection.

(a)

(b)

Figure 3.9: Scaling water level (a) and wave (b) timeseries for future climate storyline
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Nearshore Re-simulation Using Scaled Inputs
To evaluate the impact of historical and future TC Idai storyline on coastal inundation, a two-iteration
modelling strategy is employed. This dual approach serves two purposes: the first iteration quantifies
the dynamic wave-induced components (i.e., setup and infragravity swash) at the shoreline, while the
second iteration translates these effects, superimposing with the skew surge and SLR counterfactuals,
into inundation impacts using a physically consistent, coastline-forced boundary. The first iteration thus
utilises a complete SFINCS-SnapWave model setup (see Subsection 2.3.3 for a detailed description of
the SFINCS-SnapWave model). In contrast, a faster SFINCS-only model is employed for the second
iteration, as it focuses solely on simulating the superposition of near-coastline water levels due to tide,
skew surge, wave setup, infragravity swash, and SLR. The grid resolution in both iterations is devel-
oped using the same three quadtree refinement levels, from 960×960 m at most offshore locations to
30×30 m nearshore (see Figure 3.10). This fine resolution, especially near the coastline, allowed for
high-resolution representation of surge-wave interaction, accommodating both wave setup and infra-
gravity wave-driven dynamic swash motion. This model employed bathymetry, MDT correction, and
topography as stated in Section 3.1.4.

First Iteration: Offshore-forced wave-induced decomposition
The first iteration focuses on capturing wave-induced water level components using offshore bound-
ary forcing. The external boundary for both wave and water level input is placed along the offshore
HurryWave observation points indicated by the yellow line in Figure 3.10. Wind forcing is applied as
a surface boundary condition using the spider-web wind and pressure field representation of histori-
cal TC Idai, spatially varying across the entire model domain rather than being limited to the external
boundaries, as in the previous Delft3D-FM hindcast model. For each simulation, the model is driven
by either the historical or the ensemble-median scaled future wave time series, while maintaining the
same historical water level time series at the offshore boundary. This approach avoids inconsistencies
that would arise from applying scaled surge values—originally derived at nearshore locations—at off-
shore boundaries, where the surge amplification is significantly lower. Using nearshore-scaled values
at an offshore boundary would introduce unrealistic gradients and compromise the physical reliability
of the tide and surge propagation.

To isolate wave-induced contributions at the coastline surge observation location, a transect is defined
perpendicular to the coastline at each surge observation point. Along this transect, the following three
model variations are executed:

1. SnapWave & IG Wave Paddle – includes both short-wave and long-wave (infragravity) forcing.
2. SnapWave-only – includes only short-wave forcing.
3. Water level-only – includes no wave forcing (tide and surge only).

The time series extracted along the transect are then differenced to isolate the contributions of various
wave-induced components:

• Wave setup = SnapWave-only − Water level-only.
• Infragravity (IG) swash = SnapWave & IG Paddle − SnapWave-only.
• Total wave runup = SnapWave & IG Paddle − Water level-only.

The wave setup and IG swash time series are retained for diagnostic interpretation, helping to quantify
the magnitude of wave-induced contributions at the coast. Meanwhile, the resulting wave runup time
series is used as boundary input for the second iteration.

Second Iteration: Coastline-forced inundation simulation
The second iteration focuses on simulating coastal inundation using coastline boundary forcing, as
indicated by the green line in Figure 3.10. The SnapWave module is deactivated, and the model is
forced at the surge observation location using a composite total water level time series, defined as:

• Historical or scaled future tide–surge water level (as in Figure 3.9a), and
• Wave runup time series derived from the first iteration.
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This modelling approach enables a consistent and physically robust simulation of compound flooding
from tide, surge, and wave runup under both historical and future climate scenarios. By decoupling off-
shore wave dynamics and using derived runup as a boundary input, this iteration focuses computational
resources on inundation processes without loss of physical accuracy.

Within this inundation model, exposure of land cover and population is assessed through a spatial
overlay technique, where the simulated flood extent is intersected with static datasets from ESA World-
Cover and WorldPop, as previously described in Subsection 3.1.4. Lastly, it is important to iterate that
no flood depth threshold is set within this exposure analysis, meaning that all areas within the inundation
footprint are considered exposed, regardless of depth.

Figure 3.10: The left map shows SFINCS’ grid, IG wave paddle and boundary condition setup for 1st (yellow line) and 2nd
iteration (green line). The grid consists of three quadtree refinement levels, ranging from the base grid of 960 x 30 m to 960 x

30 m. The right figure shows what quadtree refinement looks like (original visualisation by Richter et al. (2013)).



4
Results

In this chapter, the results will be interpreted, and a takeaway will be drawn at the end of each section.
This takeaway, along with its implications (Section 5.1), will serve as a basis to answer research ques-
tions in the Conclusion chapter. More specifically, Section 4.2 addresses marginal extreme attribution,
and Section 4.3 addresses joint extreme attribution, both of which will be explored concerning research
questions in Objective A. However, before that, a brief built-up discussion on overall TC behaviour in
the Mozambique channel is presented in Section 4.1. Lastly, Objective B’s research questions will be
covered in Section 4.4, which focuses on TC Idai hindcast and future climate storyline.

4.1. TC Occurrences and Intensity in Mozambique Channel
This section presents the result of Methodology Part I, ”Domain Filter of STORM and Development of
TC Wind Field”, specifically the domain filter step elaborated in Subsection 3.2.2.

We begin our results discussion by first looking at the filtered STC tracks within each STORM sce-
nario, which is the output from the methodology Part I (Subsection 3.2.2). Figure 4.1 shows TC yearly
occurrence probability within a 200 km vicinity per 10 km grid cell based on STORM-IBTrACS and its
differences to STORM-GCMs. It is notable that, according to STORM-IBTrACS, the yearly occurrences
in the deep waters of the Mozambique Channel off the coast of Sofala are approximately 0.3, whereas
along the coastline, they are around 0.1. These values are twice as much as we saw before in Figure
2.2 (or more clearly shown in Figure B.1), which is based on the actual IBTrACS record. This discrep-
ancy is due to the rate estimation being based solely on historical tracks (1980–2020, in the case of
Figure 2.2), which contains very few events over a relatively short period, and may introduce inaccu-
racy as it does not fully capture the possibility of TC arrival across a sufficient portion of the region. As
opposed to that, the Monte Carlo random sampling approach used in STORM (as elaborated upon in
Subsection 2.3.1) yields a significantly larger number and a well-spread set of samples, covering al-
most every possible track within the region. This finding of higher TC occurrences when using synthetic
TC datasets compared to strictly on historical tracks is also demonstrated in similar studies (Deltares
2021; Nederhoff et al. 2021).

Within Figure 4.1, we can also observe that among the STORM-GCMs ensembles, only STORM–EC-
Earth produces a higher annual TC occurrence (0.667/year) than STORM–IBTrACS (0.507/year), fol-
lowed closely by STORM–CNRM with a comparable rate of ~0.5/year. STORM-HadGEM and CMCC
produce the least amount of tracks within the domain, with only ~0.4 and ~0.3, respectively. How-
ever, upon closer examination of the spatial variability, we found that despite a decrease in overall
domain-wide TC probability, STORM-HadGEM still manages to sustain the number of occurrences
in the nearshore region, with almost no difference in TC probability compared to STORM-IBTrACS.
On the other hand, STORM-CMCC’s TC probability dropped by around 0.05 nearshore, in contrast to
STORM-CNRM and EC-Earth, which show ~0.05 and ~0.1 jumps, respectively. These findings indi-
cate the importance of TC movement patterns, in the sense that, even with fewer total number of TC
events, the spatial distribution of TCs significantly influences the likelihood of storms reaching the coast
or even making landfall.

Furthermore, Figure 4.2 highlights the spatial variability of STORM’s TC intensity over the Mozambique
channel based on 5000 years of simulation each. This figure visually represents a gradient of increas-
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Figure 4.1: Left figure shows TC yearly occurrences probability within 200 km vicinity per 10 km grid cell in Mozambique
channel based on domain-filtered STORM-IBTrACS. Meanwhile, the four collage plots on the right illustrate the differences

compared to STORM-CC; blue indicates less frequent occurrences, and red represents higher occurrences. Above each plot,
the number of filtered TC tracks from the first 5000 years of each STORM dataset is indicated, along with its mean occurrence
per year for the entire domain. The dashed black line represents the administrative land border of Sofala, with a star symbol

indicating Beira’s coordinates, and the grey line depicts Mozambique’s administrative boundary.

ing TC maximum 10-min sustained wind speed, with warmer colours (reds) indicating higher intensity
along the track segments. Orange-ish colour or around 40 m/s indicates around TC category 2 (see Ta-
ble 2.1). Compared to the IBTrACS reference, STORM CNRM, HadGEM and EC-Earth demonstrated
notably more intense and widespread high-wind track segments. In contrast, STORM CMCC exhibits
a comparable yet slightly higher overall intensity pattern to IBTrACS. The bottom-right bar plot quan-
titatively supports this observation, showing that while the majority of storms fall within the TD–Cat 2
category, HadGEM yields the highest proportion of Category 3–5 tracks (~6.7%), followed by EC-Earth
and CNRM. It is also interesting to note that STORM-IBTrACS is found to produce the highest ratio
of tropical depression tracks, at least around 10% higher than those of the STORM-GCMs ensemble,
leading to a lower ratio of more intense TC categories. These results suggest that while track occur-
rences and movement vary across ensembles, the intensity distribution, particularly the presence of
extreme wind events, also becomes a key differentiator among the STORM datasets.

Takeaway for Section ”TC Occurrences and Intensity in Mozambique Channel”:

In a nutshell, an examination of the STORM datasets across the Mozambique Channel off So-
fala’s coast illustrates that both the occurrence and intensity of tropical cyclones exhibit high
spatial and inter-model variability. While the synthetic datasets generate more frequent TCs
compared to historical records, their spatial distributions, especially the nearshore occurrences
probability and intensity, vary significantly across GCM ensembles. Notably, EC-Earth and
CNRM both have elevated nearshore occurrences and more intense wind profiles, whereas
CMCC has reduced occurrences and lower nearshore intensities. On the other hand, HadGEM
exhibits an opposite pattern: with a lower annual domain-wide TC probability overall, it has
nearshore occurrence rates comparable to STORM–IBTrACS but displays the strongest evi-
dence of a shift towards increased wind intensity, with the greatest proportion of Category 3–5
events. The following section builds on this information by examining more closely how these
variations in TC occurrences and intensity influence the spatial distribution of extreme values in
wind speed, along with their resulting skew surge, and wave height along Sofala’s coast.
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Figure 4.2: 5000 years of STORM TC track’s eye maximum wind speed intensity in Mozambique channel, in order from top left
to bottom left: IBTrACS, CMCC, CNRM, EC-Earth, and HadGEM. The segment order is arranged so that the track with higher
wind speeds is displayed above the track with less pronounced intensity, with warmer colours indicating higher wind speed.
Same as the previous figure, the dashed black line represents the administrative land border of Sofala, with a star symbol

indicating Beira’s coordinates. The bottom-right plot shows the relative occurrences of each TC track’s highest category within
the domain for each STORM variation. Lighter colours represent higher catastrophic category, from Tropical Depression (TD),

Tropical Storm (TS) to Cyclone Category 5 (Cat 5).



4.2. Attribution of Changes in Marginal Extreme TC-Induced Wind, Surge and Wave along
Sofala's coast 40

4.2. Attribution of Changes in Marginal Extreme TC-Induced Wind,
Surge and Wave along Sofala's coast

This section presents one of the results of Methodology Part III ”Marginal and Joint-Extreme Value
Attribution”, with emphasis on the marginal attribution as elaborated in Subsection 3.2.4.

4.2.1. Sensitivity to exceedance frequency vs intensity in extreme upper tail dis-
tribution

Building upon the differences in tropical cyclone occurrence and intensity across the STORM datasets
(Figures 4.1 and 4.2), we further investigate how these differences translate into changes in extreme
TC-induced coastal hazards. Specifically, we first aim to distinguish whether the increase (or decrease)
in the 100-year return levels of wind speed, skew surge, and significant wave height is more strongly in-
fluenced by changes in exceedance frequency (i.e., how often extremes occur) or exceedance intensity
(i.e., how extreme they are when they occur). This attribution is achieved through a statistical decompo-
sition based on the Generalised Pareto Distribution (GPD), where return level shifts are recomputed by
isolating contributions from the rate of exceedance (λ) and from the GPD shape and scale parameters
(ξ, σ). By normalising the absolute contributions of each component, we obtain magnitude-based frac-
tions that reflect the relative influence of frequency and intensity on the total change in hazard severity.
See the Methodology Subsection 3.2.4 for a more detailed description.

As shown in Figure 4.3, frequency emerges as the dominant driver of change across all hazard types
and GCM scenarios. In most cases, frequency accounts for more than 75% of the absolute change in
the 100-year return level, especially in EC-Earth and CNRMensembles, which aligns with their elevated
nearshore TC occurrence probabilities. Even in HadGEM, where the intensity distribution appears to
shift towards higher wind categories (cf. Figure 4.2), the frequency component still contributes a greater
share of the return level increase for both surge and waves. CMCC is the only scenario where intensity
plays a more comparable role, likely due to both a reduced overall TC rate and a more moderate inten-
sity profile. These findings reiterate that, for most cases, the projected changes (increase or decrease,
depending on the STORM-GCMs variation) in coastal hazard are more attributable to more frequent
threshold exceedances rather than to heavier-tailed extremes. This distinction may become critical for
risk-informed design, as more frequent but moderate extremes may lead to greater cumulative impacts
than rare, intense events alone.

Figure 4.3: Boxplots of magnitude-normalised contributions of frequency and intensity to changes in the 100-year return level
(∆z100) for wind speed (WS), skew surge (SS), and significant wave height (Hs), across all GCM scenarios. Each bar
represents the absolute fractional contribution of each component, computed from GPD-based tail extrapolation under
fixed-threshold analysis. Values above the boxes indicate the mean contribution across all spatial points. Across most

scenarios and variables, frequency dominates the change in return level, particularly in EC-Earth and CNRM, while CMCC
shows a more balanced influence of frequency and intensity.

4.2.2. Shift in marginal extreme TC-induced wind, surge and wave
This subsection will elaborate on the shifts in marginal extremes based on fitted GPD distribution pa-
rameters. Unlike previous sensitivity analyses where the threshold is fixed, the result in this figure is
based on an optimum threshold-RMSE fit method previously stated in Section 3.2.4. One instance of
a fitted return period curve at a coastal location in Beira is presented in Figure 4.4. As elaborated in
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the methodology before (see illustration in Figure 3.6),∆ is defined as the difference between STORM-
GCMs’ and STORM-IBTrACS magnitude at a specific return period. From this figure, we can infer
the variability of the pattern across different return periods. Within the skew surge plot, for example,
there is a crossover point where STORM-IBTrACS overtakes EC-Earth and CNRM magnitude once
it reaches above the 2000-year return period. In contrast, the gap between each STORM variation’s
significant wave height is shown to be almost undistinguishable once it reaches a 200-year return pe-
riod, or around 4.8 m of significant wave height, denoting depth-limited wave height in this part of the
coast (deep water assumption no longer holds, and thus denotes as a limitation of this research). Al-
though this variability is proven to be important across different return periods, for the main part of this
research, the 100-year return period will still be the benchmark for attributing marginal (and later also
joint) extreme shifts due to its common use in coastal protection design and risk analysis.

Figure 4.4: Example of fitted return period curve across each WS (top), SS (middle) and Hs (bottom) parameters at one of
Beira’s coastal points.
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Figure 4.5 illustrates the spatial distribution and ensemble variability in the 100-year return levels dif-
ference (∆z100) for wind speed, skew surge, and wave height along Sofala’s coastline. The left panel
maps display the ensemble median ∆z100 at every coastal location, and the right panel plots the distri-
bution of such values in the spatial domain as empirical kernel density estimates (KDE) for every GCM
ensemble and for the combined ensemble median. Interestingly, wind speed produces greater and
more spatially consistent increases than skew surge and significant wave height. The results show
that the most increased wind speed extremes are found close to the central coastal areas bordering
Dondo, Beira and Buzi, with ∆WS100 values larger than 5 m/s for the ensemble median. This finding
is a reflection of higher occurrences of more intense wind speed tracks under STORM-GCMs in this
specific stretch of coast, as previously shown in Figure 4.2 (from blue and green-ish colour to orange
and red-ish colour), aided also by the identified dominance contribution of exceedance frequency in
determining changes in extreme upper tail magnitude (Figure 4.3).

Furthermore, to explain the spatial variability of ensemble median ∆SS100 and ∆Hs100 absolute mag-
nitude, we can refer back to the physics of TC-induced surge and wave related to the bathymetric
condition along the coastline (Literature review Subsection 2.2.2 and 2.2.3). As previously shown in
the bathymetric map shown in Figure 2.5 and nearshore slope in 2.6, the coastal area south of Beira
up to Sofala district is shallower with significantly gentler nearshore slope compared to its northern
counterpart in Dondo to Marromeu and southern counterpart in Divinhe and Machanga districts. This
characteristic is owing to the sediment deposition brought by the Pungwe and Buzi rivers. The effect
of this characteristic is twofold: first, as the magnitude of the wind-induced surge is inversely propor-
tional to water depth (see Equation 2.1), hence overall surge is higher in this shallow region even when
forced with the same intensity of wind; secondly, the gentle slope greatly enhances the development
of surge because the slower-moving water over shallow shelves cannot spread out and thus piles up
along the coast. As opposed to that, the shallow bathymetry imposes a depth-limited effect on wave
height, leading to a reduction in ∆Hs, especially as waves near their maximum possible height for that
depth. These explanations form the basis for why ∆SS tends to be higher where ∆Hs is less and vice
versa, as depicted in the left spatial map of Figure 4.5.

The KDE plots on the right highlight spatial inter-model variability in the projected return level changes.
HadGEM, EC-Earth, and CNRM always remain at the higher end of the distribution, reflecting larger
hazard shifts under these GCMs, while CMCC reflects minimal or even negative change in some places.
HadGEM, despite an overall highest density at the higher end of ∆WS100, still produces lower overall
∆SS100 and ∆Hs100 compared to EC-Earth, likely due to less spatially distributed TC occurrences,
as shown in Figure 4.1. Notably, the ensemble medians (black dashed curves) reflect a clear coast-
wide increase in all three hazard metrics, although the exact magnitude differs. These spatial and
probabilistic indications validate that, irrespective of the hazard attribution mechanism (wind speed,
surge or wave), the Sofala coastline is projected to experience an upward shift in extreme TC-elicited
storminess under future climates. This result is further supported by the ensemble-median effective
return period maps in Figure 4.6, which denotes a significant forward shift in hazard: what was once a
100-year event could become as regular as probabilistically every 46 years for wind speed, 59 years
for surge, and 57 years for wave height (median of ensemble median effective return period over the
whole coastal points). The spatial variability of these marginal effective return periods, on the other
hand, may range from 40 to 60 years for wind speed, 50 to 75 years for surge, and 35 to 75 years for
wave height.
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Figure 4.5: Spatial distribution (left) and ensemble kernel density estimates (right) of the change in 100-year return levels
(∆z100) for wind speed, skew surge, and significant wave height. Maps represent ensemble median values per coastal

location, while the KDE plots show the spatial distribution of ∆z100 across all coastal points for each GCM. Dashed black lines
indicate the median across the GCM ensemble.
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Figure 4.6: Ensemble-median effective return period (RP) maps under future climate scenarios, evaluated for historical
100-year thresholds of wind speed (left), skew surge (middle), and significant wave height (right). Insets show the ensemble

distribution of the effective RP across all coastal locations.

Takeaway for Section ”Attribution of Changes in Marginal Extreme TC-Induced Wind, Surge
and Wave along Sofala’s coast”:
In summary, the attribution of changes in marginal extremes highlights a consistent upward shift
in the 100-year return levels of TC-induced wind speed, skew surge, and wave height along
the Sofala coastline, mainly driven by an increased frequency of threshold exceedances rather
than by the intensity of those exceedances. This shift is most pronounced in regions exposed
to higher TC occurrence under future climate scenarios, and, especially for surge and wave,
is also modulated by local bathymetric conditions (higher surge yet more limited wave height
at a shallower depth). Across most GCMs, wind speed exhibits the strongest and most spa-
tially consistent increases, followed by surge and wave height, with CMCC standing out as the
least impactful scenario. The ensemble-median effective return periodmaps also highlight the in-
creasing risk, where future conditions will make events of a historical 100-year occurrence much
more frequent, reaching a median of 45 to 60-year effective return period for each hazard. The
results present strong indication that TC-induced marginal hazard extremes might becomemore
frequent under future climate conditions. The subsequent section expands upon this description,
accounting for how these changes operate against each other: the compounding behaviour of
surge and wave extremes by way of bivariate attribution frameworks.

4.3. Attribution of Changes in Joint Extreme TC-Induced Surge and
Wave along Sofala's coast

This section presents one of the results of Methodology Part III ”Marginal and Joint-Extreme Value
Attribution”, with emphasis on the joint attribution as elaborated in Subsection 3.2.4.

In addition to marginal extremes, the joint behaviour of storm surge and wave height is critical for un-
derstanding compound flooding risk along Sofala’s coastline. Compound events, where both variables
reach extreme values simultaneously, often lead to disproportionately higher impacts compared to iso-
lated extremes. Although both surge and wave are similarly driven by wind, their occurrence can not be
simply represented as fully dependent variables. To assess this, we analysed the pairwise dependence
structure between skew surge and significant wave height using the logistic extreme value framework.
This method is previously elaborated in Subsection 3.2.4; meanwhile, the theoretical basis is discussed
in Subsection 2.4.2. Figure 4.7 shows an example of a bivariate threshold excess fit for a coastal point in
Beira across all STORM variations. It is shown that the theoretical logistic model (denoted by coloured
h(w) line), driven by the fitted α value, produced a satisfactory alignment compared to the empirical
angular variable density. Still, it is highly evident in most of the presented STORM variations that the
theoretical fit can not fully represent the asymmetrical behaviour of the empirical density, with notable
underestimation at a certain angular variable range. This finding denotes the limitation of applying a
simplistic logistic model, which is characterised by a strict symmetric spectral distribution.
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Figure 4.7: Joint–tail behaviour of skew surge (SS) and significant wave height (Hs) at one point along the Beira
coastline. For each STORM variation, the upper panel displays a scatter of SS versus Hs after both variables have been

transformed to standard–normal margins. Black circles denote bulk storms, whereas coloured open circles highlight extremes,
defined as events in which either SS or Hs exceeds its own POT threshold on the original scale. A grey dotted line indicates
the 1:1 reference. The same colour is reused in the panel immediately below, which shows (i) a histogram of the angular

variable w = ZSS/(ZSS + ZHs), where Z = 1/[− ln(U)] is the unit-Fréchet transform of each marginal exceedance; (ii) a grey,
data-driven kernel–density estimate; and (iii) the coloured spectral density h(w;α) of the fitted logistic model. The fitted
dependence parameter α is printed in bold inside each scatter panel; smaller values of α indicate a stronger SS–Hs tail

association.
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Figure 4.8: Spatial and ensemble distribution of the estimated extremal dependence parameter α between skew surge and
significant wave height. Lower α values (lighter colours) indicate stronger tail dependence in the joint tail, meaning surge and
wave extremes are more likely to co-occur. The left panel shows the historical baseline derived from STORM–IBTrACS, while

the middle panel depicts the ensemble-median projection under future climate scenarios. The violin plots on the right
summarise the spatial distribution of α values across models, highlighting variation among GCMs and shifts relative to the

historical baseline. The dotted line in the violin plots denotes the quartile range 25-75 percentile, while the middle dashed line
denotes the median.

Figure 4.8 presents the spatial distribution of the fitted extremal dependence parameter α, where lower
values indicate stronger tail dependence—i.e., a greater tendency for extremes in both variables to co-
occur. There are likely two mechanisms that drive most of the α to be no less than 0.4, or in other words,
not fully dependent. Firstly, the different responses towards depth, as previously elaborated, surges
are likely to accumulate in shallower regions where wave heights become more limited. Secondly,
the contrasting spatial structures of wind-induced surge and wave fields likely contribute to this effect.
TC-induced surge tends to exhibit a broader spatial distribution, influenced by large-scale pressure
gradients and wind stress over extended areas. In contrast, TC-induced waves are more tightly coupled
to the wind field structure, with the highest wave heights concentrated around the eyewall, minimal
heights near the eye, and rapid decay beyond the core wind zone. This mismatch in spatial patterns
limits their full dependence.

The results show a general increase in α between surge and wave height across most of the Sofala
coastline (except Inhaminga andMarromeu districts), evidenced by the darker shading in the ensemble-
median map, and the rightward shift in the overall density of the violin plot for most GCMs. In partic-
ular, EC-Earth, CNRM, and CMCC exhibit overall higher α than the IBTrACS baseline. Interestingly,
HadGEM demonstrates a somewhat concentrated dependence around 0.5-0.6 and produces a slightly
lower overall α quartile range compared to IBTrACS. Still, when we consider the ensemble median of
each of the points, it becomes clear that the tail dependence of surge and wave is expected to decrease
(higher α) under the future climate conditions. Spatially, the central coast around Beira, including So-
fala, Buzi, Dondo, and Beira itself, exhibits the most pronounced decrease in tail dependence. This
lessening of joint behaviour implies that extreme surge and wave height compound events are projected
to become less synchronised.

From a physical perspective, the decrease in tail dependence under the future climate scenario can
likely be associated with the depth-limited effect of wave generation. That is, as the TC wind speed
becomes increasingly intense under future climate scenarios (as seen in Figure 4.2), the surge could
become increasingly higher, whereas the wave height is limited to a certain height, producing less
correlated surge-wave magnitude pairs. Nevertheless, this does not fully account for why the STORM-
HadGEM scenario, which generates the most intense wind speeds overall, also exhibits the highest
level of dependence. Other physical factors, such as TC translation speed, angle, and landfall location,
as well as the fact that this analysis derives surge and wave height magnitudes from different obser-
vation locations (near the coastline for surge and in deep water for wave), may have influenced these
results. Further investigation is thus needed to understand this behaviour, which is beyond the scope
of this study.
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Figure 4.9 further compares the historical joint return period (JRP) of 100-year storm surge and wave
height with their corresponding effective JRP under future climate scenarios. The left panel illustrates
the spatial distribution of historical JRPs derived from STORM–IBTrACS, showing an increasing pattern
of JRP as it moves further from the Pungwe River mouth in Beira. The lowest JRP of around 150 years,
as found around Buzi and Beira, indicates a more frequent co-occurrence of historical 100-year storm
surges and wave heights, compared to those on Marromau’s coast, which has a JRP of around 400
years. The fact that no coastal point demonstrated a JRP of exactly or at least close to 100 years
implies that the TC-induced surge and wave height in this region are indeed not fully dependent, as
previously explained.

Figure 4.9: Effective joint return period (JRP) of historical 100-year skew surge and wave height extremes under future climate
scenarios. The left map shows the historical JRP baseline, while the middle map presents the ensemble-median future JRP

values; the right violin plots illustrate the distribution of effective JRPs across GCMs. The dotted lines within the violin show the
interquartile range, while the dashed line denotes the median. Lower JRPs (lighter colour on the spatial map) indicate

increased likelihood of co-occurring extremes, driven by both marginal increases and changes in dependence.

Furthermore, the ensemble-median future JRP map (middle panel) reveals a pronounced reduction
in joint return periods along the entire Sofala coastline, resulting in the JRP being almost uniformly
reduced to around 120 years. Notable differences are found along the northern coast, particularly in
the districts of Galinha, Inhaminga, and Marromeu, where the effective JRPs plunge from 200 to 350
years to around 120 years. This indicates that what was previously considered a 1-in-100-year joint
surge-wave hazard may become twice to three times as likely in the future at this stretch of coastline.
The JRP changes are the least severe around Beira, with a shift from around 200 years JRP to around
120 years.

The rightmost violin plots further summarise the spatial pattern across different GCM scenarios. All
future models show a distinct shift toward lower JRPs compared to the historical reference, including
their ensemble median. Among them, HadGEM and EC-Earth produce the lowest ensemble medians,
with some coastal locations exhibiting effective JRPs as low as 50–60 years. CNRM also demonstrates
a considerable shift, though its interquartile range remains slightly broader, which suggests greater
spatial variability in joint risk. In contrast, CMCC remains the least conservative scenario, with several
locations retaining JRPs near the baseline IBTrACS and an overall higher interquartile range.

From these findings, an interesting notion arises. That is, despite an overall pattern of reduced joint
tail dependence, we instead find an overall trend of decreasing extreme surge and wave joint return
periods, which theoretically should have been the inverse of that. The contradictory trend between
dependence and effective JRP, as shown in HadGEM (higher tail dependence yet lower effective JRP)
and CMCC (lower tail dependence, yet still higher effective JRP), demonstrates this behaviour more
specifically. To understand this, we need to refer back to the parameters that constitute the JRP in
the first place, which are: extremal dependence (α), TC arrival rate (λ), as well as marginal surge
and wave cumulative distribution functions (CDFs) (see Equation 3.1 and 3.2). Here, λ only acts as
a normalising factor; hence, it should not be taken into consideration in JRP sensitivity. On the other
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hand, the surge and wave CDFs are the result of CDF-mapping based on fitted marginal surge and
wave distributions, which, as previously discussed in Subsection 4.2.1, is predominantly constituted
by marginal exceedance frequency, followed by exceedance intensity. Thus, we can infer that, while
dependence plays a role, the exceedance frequency and intensity shifts in the marginal surge and wave
extremes remain the primary drivers of changes in compound hazard likelihood under future climate
scenarios.

Takeaway for Section ”Attribution of Changes in Joint Extreme TC-Induced Surge and Wave
along Sofala’s coast”:

To summarise, the found ensemble-median decrease in surge–wave upper tail dependence,
combined with the consistent reduction in effective joint return periods relative to the IBTrACS,
consolidates the major tendency observed across all GCMs. These findings provide evidence
that the likelihood of compound surge–wave extremes co-occurrence is projected to rise signif-
icantly (from around 200 years to around 120 years JRP) across most segments of the Sofala
coastline, primarily due to a shift in each marginal extreme surge and wave itself, rather than
their dependence structure. Due to the significant decrease in JRP, it can also be concluded
that the future coastal hazard landscape in this region is shaped not only by the shift in marginal
extreme surge and wave, but also by their enhanced co-occurrence. In order to easily contex-
tualise how such compound risk escalation translates into tangible coastal impacts, the next
section revisits the case of Tropical Cyclone Idai by developing a future climate storyline sce-
nario, while preserving the actual co-occurring pattern of surge and wave.

4.4. Importance of Storminess Change and SLR in TC Idai Future
Climate Storyline

As previously elaborated in the Introduction chapter, a storyline approach is conducted as a means to
communicate the possible shifts of coastal flood hazard effectively. Here, TC Idai is taken as a case
study given its severe presence and implications for the Sofala region. Given that no measurements of
water level and wave height are available in this region, we begin the discussion of this chapter with a
brief elaboration on the TC Idai hindcast results. Based on this hindcast, a probabilistically scaled future
magnitude can be acquired using the fitted distribution parameters found during the marginal extreme
fit (POT and GPD). By explicitly simulating both historical and future surge and wave scenarios in the
SFINCS-SnapWave model, we can obtain the ∆WL (water level differences) as well as flood extent
driven by shifts in future surge and wave extremes (changes in storminess) and how they compare to
SLR-only and combined SLR-storminess change scenarios. Details on how this analysis is conducted
are presented in Subsection 3.2.5.

4.4.1. TC Idai hindcast and scaled future surge and wave
Historical skew surge and significant wave height from TC Idai, indicated by the black line, are shown in
Figure 4.10, with observation points as defined in Figure 3.5. This hindcast is produced by Delft3D-FM
and HurryWave model, as previously elaborated in 3.2.5. A full spatial map of the hindcasted water
level and wave is presented in Figure C.1. It can be noted from the spatial figure on the left that TC
Idai track (black dashed line) made landfall at the central coast of the Beira district and caused a skew
surge centred around the Pungwe River mouth, just at the southern border of the district, and decayed
the further it gets from this location (also indicated by the black line in the middle plot). Inside the river
mouth, the skew surge is even more pronounced, exceeding 2.5 m, which is likely due to the surge
amplification effect imposed by the funnel-shaped river mouth. It is also interesting to note that, from a
spatial perspective, the skew surge magnitude declined significantly at the northern Sofala’s coastline
compared to the southern side. This behaviour can be related to the bathymetric condition in this region,
in which the nearshore slope at Dondo, Galinha, and Inhaminga is significantly steeper compared to
those districts located south of Beira (see Figure 2.6 for details on nearshore slope), hence produces
less surge that are piling up to the coast.

In contrast, from the bottom row plots, we can infer that the higher range of significant wave height is
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instead found 1-1.5°away from the TC Idai eye-track and landfall point, which is inversely correlated
to the surge spatial trend. There are at least three mechanisms involved in producing this result: the
TC spatial wind field characteristic, the depth-limited effect of wave generation and the TC translation
path. Firstly, as wave height is proportional to TC-induced wind speed, the spatial pattern of the TC
wind field will dictate how wave height generation is distributed spatially. The spatial wind field distribu-
tion following Holland (1980) (Figure 2.12) as well as the TC-induced wave schematization (Figure 2.9)
best describe this behaviour. In both, the maximum wind speed, and consequently the highest wave
heights, are located at the eyewall, gradually decreasing with distance from the cyclone’s eye and even
markedly calmer inside the eyewall itself. Secondly, the depth-limited effect on wave generation also
plays a significant role in limiting wave height at each local observation location, despite the extremely
high wind speed at that location. Since the wave observation points are located at varying depths, this
may slightly reduce wave height generation, particularly near the Buzi and Pungwe river mouths, close
to the TC Idai landfall area, where depths are closer to -15 m MSL compared to the deeper northern
points around -20 m MSL. Lastly and probably most importantly, the spatial pattern of maximum wave
heights is also shaped by wave propagation and the cyclone’s translation path. Since the plot reflects
peak Hs regardless of timing, these maxima may have been generated earlier along the storm track
and propagated away from the eye. This explains why locations slightly offset from the track, particu-
larly in the forward right quadrant, can experience the highest Hs even without extreme local wind or
bathymetric conditions.

Figure 4.10: Spatial and latitudinal distribution of historical and ensemble future projections of TC Idai-induced coastal hazards
along the Sofala coastline. Top row: (Left) Historical skew surge magnitudes mapped along coastal locations, with TC Idai’s
track overlaid in green. (Middle) Latitude profiles of skew surge showing historical values (black), ensemble-median future

projections (red), and individual GCM members (faint lines). (Right) Log-scaled return periods (years) associated with historical
skew surge magnitudes. Bottom row: (Left) Same as the top row, except it is now based on TC-induced significant wave

height.

In terms of future projections, the red, bold line in the surge and wave panels indicates the ensemble
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median of scaled TC Idai skew surge and wave height magnitude. The faint-coloured lines, on the other
hand, represent each STORM-GCM scaled magnitude, which has been derived through the return
period scaling of each STORM-GCM’s GPD-fitted parameter. The return period at each of the coastal
points is represented in the blue line in the right-most plot. From the return period plot, we can also
infer that at some locations, the surge and significant wave height exceed a 1000-year return period,
denoting the severity of this event. It can be noted that the ensemble median, compared to the historical
case (black line), projects an overall increase in skew surge and significant wave height along the Sofala
coast. This scaled magnitude is thus translated into a scaled water level and significant wave height
time series along the coastline using the approach previously illustrated in Figure 4.12. One instance
of the scaled time series of water level and wave height at the location in Beira where the highest surge
was estimated is shown in Figure 4.11.

Figure 4.11: Example of scaled water level and significant wave height time series at one of the stations near Beira. The black
bold solid line shows the hindcast time series, while the red one shows the scaled time series based on ensemble-median
future projections. The scaled time series based on individual STORM-GCMs’ statistics is shown in faint colored lines. It is

important to note that SLR will be later superimposed for the future scenario’s time series.

Major increases in surge are found along the districts south of Beira, specifically the Buzi and Sofala
districts. Around Beira, the projected skew surge increase is limited to approximately 0.1–0.2 metres.
This modest rise is attributed to the relatively small gap between the extreme tail magnitudes (exceeding
1000-year return periods) of STORM-IBTrACS and those of the STORM-GCM ensemble. In contrast to
the spatial variability observed in skew surge differences, significant wave height increases are almost
uniformly insignificant along the coastline, with maximum growth of around 0.5 m. It should be noted
that, in the main body of this report, only the ensemble median future scenario is considered for the
coming contribution analysis of storminess change into total water level and flood hazard along the
Sofala coastline (Subsection 4.4.2).

However, before moving on to that discussion, we must review how the hindcast significant wave height
shown earlier translates into wave-induced setup, as well as infragravity (IG) wave swash, as shown in
Figure 4.12a. This combination of wave-induced water level component, also known as wave runup, is
based on the result of the SFINCS-Snapwave model (1st iteration) previously elaborated in Subsection
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3.2.5. A full spatial map on the produced nearshore significant wave height and infragravity wave height
is presented in Figure C.2. The equivalent result under the future ensemble median scenario is shown
in Figure 4.12b. The∆TWL’s contribution, i.e. the difference between future and historical wave setup
and IG swash, will be shown in the following Subsection.

As shown in the figure, the highest wave runup instead occurs away from the landfall point, specifically
along Divinhe’s coastline. At this location, there is some sort of barrier island protecting the main
Divinhe’s coast, exposed closer to the peak infragravity water level as depicted in Figure C.2. Around
Pungwe’s river mouth (around Beira), where skew surge is the highest, the wave runup contributes an
extra 0.5-0.6 m to the total water level. When we look at the relative contribution of wave setup and
IG swash, we can find that most of the wave-induced water level in this region is instead modulated
by IG swash. The reason for this pattern is due to the very mild nearshore slope along this coastline,
as shown in Figure 2.6, which significantly reduces the cross-shore radiation stress gradient caused
by wave breaking. In contrast, this mild bed slope is argued to have an almost negligible effect on IG
swash (Stockdon et al. 2006). Equivalently, the steeper coast at the southmost part of Sofala hence
generated the highest wave setup due to more intense wave-breaking radiation stress gradient.

(a)

(b)

Figure 4.12: Hindcast (a) and ensemble future-scaled (b) spatial and latitudinal distribution of TC Idai hindcast’s wave-induced
water level along the Sofala coastline. The middle plot shows the absolute contribution of wave setup and IG swash in stacked

horizontal bars, whereas the right plot shows their relative contribution.
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4.4.2. Contribution of storminess change and SLR to TC Idai storyline's total wa-
ter level (TWL) and flood exposure

TC Idai Storyline's ∆TWL
The total water level along the coastline comprises the combination of tide, surge, wave runup, and
a sea level rise offset. Given that in this storyline scenario, the tide is assumed constant, hence,
∆TWL here refers to the sum of SLR as well as future climate skew surge and wave runup differ-
ences (∆WaveRunup and ∆SkewSurge). It is essential to note that SLR here refers to the SSP585
year 2050 magnitude, as previously elaborated in Subsection 3.1.2, with a magnitude of 0.24-0.26 m
near Sofala’s coastline. Figure 4.13 shows the absolute and relative contribution of each of these three
components along the coast of Sofala’s coastline under the TC Idai future climate storyline. From the
leftmost spatial map, we can infer that the highest ∆TWL is instead found around Sofala and Divinhe
district, with up to around 0.6 m difference, 0.2 meters higher than near the landfall area around Buzi
and Beira districts.

In terms of contribution, it can be inferred that storminess-induced changes, represented by∆WaveRunup
and ∆Skew Surge, generally contribute less to the overall ∆TWL compared to sea-level rise (SLR),
with an approximate spatial average ratio of 30:70. Overall, it can be inferred that ignoring storminess
change may lead to 10-60% of the total ∆TWL. Although in certain locations storminess contributions
can reach as high as 40–60%, their impact is notably lower in the most critical region—indicated by the
blue dashed line—near Beira and Buzi. In this area, where the population is densest (see Figure 2.1)
and skew surge reaches its peak (Figure 4.10), storminess change accounts for only about 10–40%
of the total ∆TWL. At most coastal points, ∆WaveRunup is almost negligible, aligning well with the
overall low magnitude of TC Idai’s wave runup hindcast (as seen earlier in Figure ??). The only region
where ∆WaveRunup makes a notable contribution is in the Divinhe districts, the same area where
IG swash hindcast is found to be the highest, which are characterised by a complex delta and barrier
island with very sparse population.

Figure 4.13: The left map shows the total ∆TWL along Sofala’s coastline, meanwhile the middle and right plot (presented in
stacked horizonatl bars) shows the absolute and relative ∆WaveRunup (∆WaveSetup + ∆IGSwash), ∆SkewSurge and
SLR contribution to overall ∆TWL. The dashed blue box, as well as the dashed blue line border, indicate TC Idai’s most

impacted areas, which will be the focus of the ∆ Flood hazard and Exposure discussion.

TC Idai Storyline's ∆ Flood hazard and Exposure
The discussion on the importance of storminess change and SLR on shaping TC Idai’s flood hazard
and exposure will focus on the most impacted region around Beira and Buzi as highlighted by the blue
dashed box and line in Figure 4.13. As shown in Figure 4.14, four flood hazard and exposure maps are
distinguished in this discussion. Aside from the historical TC Idai flood hindcast, the other three sce-
narios represent isolated contributors to increased hazard: storminess change-only, SLR-only, and the
total future change, which reflects the combined influence of both SLR and storminess change. The de-
composition of this increase into individual contributors reveals that SLR has a more significant impact
on future flood hazard expansion compared to the scenario that only considers storminess changes.
In most regions, SLR-induced inundation depth gains exceed 0.3-0.5 m, whereas storminess-only re-
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mains below 0.2 m. Notably, areas with significant increases due to both isolated SLR and storminess
changes are localised around the inner delta and distributary mouths, as well as along Buzi’s coastline.
The inner delta area is historically a floodplain grassland, where tidal and surge amplification, due to a
funnel-shaped river mouth, takes effect. However, it is worth noting that in the SLR-only scenario, this
flooding extends even southward, covering the residential area near the highway (indicated by the dark
grey line). Aside from that, flooding in the Chota area is also found to be absent in both historical and
storminess change-only scenarios, in contrast to the SLR-only scenario. The total future change, on
the other hand, exhibits a pattern of significantly enhanced depth and area compared to the SLR-only
scenario. A notable increase in the flooded area is especially pronounced along Buzi’s coastline, as
well as in the inner delta of the Pungwe.

This enhanced flood hazard directly translates into elevated land-use and population exposure, as
shown in Figure 4.15. The depth–area distribution (left panel) highlights that the total future scenario
produces the most extensive inundation, particularly for flood depths between 0.5–1.5 metres. While
SLR-only already drives a major shift from the historical case, it becomes evident that SLR alone still
underestimates the full hazard. The total future curve, which includes both SLR and storminess change,
consistently exceeds the SLR-only scenario across nearly all depth classes. This underestimation is
further reflected in the exposure of land-use and population, in which the SLR-only scenario underesti-
mates the flood-exposed area by up to 20 km². As seen in the middle panel, both SLR-only and total
future scenarios cause a clear rise in exposed cropland and built-up area, but the total future case
pushes these values even higher, particularly within the Beira district. The increased exposed area
on Mangrove as well as grassland, on the other hand, is mainly comprised of the flooded area along
the Buzi coastline. The same pattern holds for population exposure (right panel), where the number of
flood-affected residents nearly triples under the total future scenario compared to the historical scenario,
and is 50% higher than the SLR-only scenario. This population panel highlights once again that, while
the storminess change-only scenario produces a minimal increase in exposed population, its effect is
very apparent when it is combined with the SLR-only scenario.

Takeaway for Section ”Importance of Storminess Change and SLR in TC Idai Future Climate
Storyline”:

The TC Idai hindcast highlights a surge-dominated flooding regime around Beira, where wave
runup contributes minimally due to the region’s very shallow and gently sloping nearshore
bathymetry. Overall, the TC Idai future climate storyline reveals that sea-level rise (SLR) ex-
erts a greater influence than storminess change in driving increases in total water level (TWL)
and flood hazard across the Sofala coastline under the SSP585 2015–2050 scenario. However,
the analysis clearly shows that storminess change should strictly not be overlooked: ignoring
it leads to an underestimation of TWL by approximately 10–60% of the total ∆TWL, and sig-
nificantly underestimates flood-exposed land use by up to 20 km² and population exposure by
over 10,000 people, particularly in low-lying urban and peri-urban zones. In a broader context,
the overall effect of climate change is shown to exacerbate TC Idai-like events, highlighting
its significant presence that should be considered in future coastal protection design and risk
mitigation.



4.4. Importance of Storminess Change and SLR in TC Idai Future Climate Storyline 54

Figure 4.14: Spatial distribution of flood depth and component contributions under the TC Idai future climate storyline. The
top-left panel shows the historical flood depth as simulated under present-day surge and wave forcing. The top-right panel

isolates the flood depth change caused by storminess change alone (i.e., future skew surge and wave runup minus historical).
The bottom-left panel shows flood depth changes driven solely by sea-level rise (SLR) under SSP585 2050 conditions. The
bottom-right panel displays the total future change resulting from the combined influence of SLR and storminess change.

Figure 4.15: Projected change in flood exposure under TC Idai future climate storyline. The left panel shows the depth-area
distribution curves for each scenario. The middle panel presents exposed land use by category. The right panel displays the

population exposed by flood depth class.



5
Discussion

5.1. Research Implication
This section presents research implications derived from the key takeaway presented at each section
of the previous chapter.

5.1.1. Implications of TC Occurrence and Intensity Variability in the Mozambique
Channel

As elaborated in Section 4.1, the observed spatial and inter-model variability in synthetic TC occur-
rence and intensity across the Mozambique Channel presents a critical implication for regional risk
assessment. Firstly, EC-Earth and CNRM show increased nearshore TC occurrences, while CMCC
and HadGEM indicate lower or stable rates, highlighting the divides over future TC landfall trend es-
timates in the region. Still, when looking at TC intensities, it is clearly agreed that all future GCMs
predicted a lower decrease in the tropical depression track, with a heightened relative frequency of
tropical storms or higher category tracks. In the sense of general wind-induced hazards, these find-
ings suggest that while the number of landfalling cyclones remains uncertain, the potential impact per
event is expected to grow, with stronger storms becoming more common. This highlights the need for
improving cyclone forecasts in the Mozambique Channel so that both the TC strength and landfall loca-
tion (or TC movement in general) can be predicted more reliably to support early warning and disaster
preparation.

5.1.2. Implications of Changes in Marginal Wind, Surge, and Wave Extremes
While the previous subsection focused on general changes in TC occurrence and intensity, the impli-
cations discussed here relate more specifically to the concept of reliability against extreme TC-induced
wind, surge, and wave loads. This includes, for example, the structural reliability of buildings facing
intense wind and the capacity of flood defences to withstand surge and wave impacts under a certain
level. As discussed in Section 4.2, the projected increase in 100-year return levels for TC-induced
wind speed, surge, and wave height implies that coastal infrastructure standards based on historical
design thresholds may become outdated in the near future. Additionally, considering that the histori-
cal 100-year return levels are now effectively reduced to as low as a 45-60 year return period event,
it necessitates an even greater need to update the design code based on future-facing EVA models.
Moreover, the finding on how these return levels are more sensitive to exceedance frequency (i.e.,
how often extremes occur) than the exceedance intensity (i.e., how extreme they are when they occur)
indicates how coastal infrastructure design should take into account structural integrity against more
frequent but moderate extreme event, not just rare, extremely high magnitude event. Additionally, the
spatially varying response, driven by local bathymetry, calls for site-specific design thresholds rather
than uniform national or regional standards, especially in rapidly growing coastal areas like Beira.

5.1.3. Implications of Joint Surge–Wave Extremes under Future Climate Condi-
tions

The decline in joint return periods for high wave and surge events (from around 200 years to around
120 years JRP), as elaborated in Section 4.3, implies that compound surge and wave extremes will be
more frequent, posing a serious challenge to the design of infrastructure. Even when the tail depen-
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dence between surge and wave is slightly weaker, the rise in joint extremes implies that structures built
on the historical joint probabilities (or even isolating only to the marginal one) are under-designed. This
emphasises the need to move beyond univariate levels of safety and incorporate future climate joint
exceedance criteria into coastal defence codes. In port areas like Beira, for example, the breakwater
design must consider a higher probability of combined surge and wave loading. Exclusion of these
compound effects may result in overly conservative overtopping rates, greater structural fatigue, re-
duced stability, and reduced protection lifespans (Mares-Nasarre et al. 2024). Future-proofing coastal
infrastructure, therefore, requires that joint hazard analysis, on the basis of bivariate return periods and
probabilistic load combinations, be built into design and policy structures.

5.1.4. Implications of Storminess and Sea-Level Rise in Future TC Events
The TC Idai future climate storylines shown in Section 4.4 reveal that, while sea-level rise (SLR) is the
dominant driver of increased total water level and flood hazard, storminess changes (more specifically,
future climate-scaled surge and wave runup) also contribute significantly. The use of SLR projections
alone is shown to underestimate flood risk, especially in densely populated locations like Beira, where
a slight shift in dynamic water level induced by surge and wave runup significantly affects overall flood
hazard and exposure. This finding has direct implications for flood risk mitigation strategies and the de-
sign of coastal infrastructure. Failure to consider the effects of storminess change can lead to a severe
underestimation of flood exposure, which projects a false view of existing resilience, and potentially
compromise the efficacy of coastal defences.

5.2. Research Contribution
To date, this study is the first to explore the effect of climate change on TC-induced surges and waves at
a regional scale in Mozambique, specifically in the Sofala region. Grossmann-Matheson et al. (2024a)
has previously presented global changes in TC-induced wave height under a future climate scenario;
however, it focuses solely on the ocean’s deep-water location. Muis et al. (2023) presented changes in
extreme surge along the global coastline under future climate scenarios by employing CMIP6 HighRes-
MIP explicitly; however, it has not yet taken into account more intense TC effects. Although these
previous studies have suggested potential increases in surge and wave climate near the coast of Sofala
under 2015-2050 climate conditions, this study confirms these trends more specifically by focusing on
both TC-induced surge and wave changes at a more detailed regional scale. This study has showcased
a better understanding towards the spatial variability of extreme wind, wave, and surge along Sofala’s
coastline by taking into account the compounded effects of intensity, frequency, dependence, and their
interaction with local bathymetry.

Building upon Goulart et al. (2025)’s study, which has nicely demonstrated the potential severity of
considering the SLR scenario in the TC Idai counterfactual storyline, this study doubles down on what
if an additional future climate-scaled TC Idai surge and wave is considered. With this storyline medium,
the contribution of each and combined storminess change and SLR to the total water level and resulting
flood hazard can be distinguished. This approach is taken as an alternative to comparing SLR to an
assumed 100-year return period surge differences presented by Marsooli et al. (2019)’s study. By
preserving the statistical and physical coherence of the historical TC Idai, it provides a realistic event-
based narrative that is easier for stakeholders and local decision-makers to understand.

As this study employed an open-source STORM dataset for both current and future climate, the method-
ology used in this study can thus be replicated elsewhere, especially in those locations where TC is
abundant. It is essential to note, however, that the resulting message may vary from location to location.
Unlike in tide-dominated Sofala’s coast, storminess change may dominate over SLR or, in contrast, be
so small that it becomes negligible. As a hypothetical example, in the Hernani coast in the Philippines,
TC Haiyan’s (2013) future climate storyline might reveal domination of storminess change over SLR,
mainly driven by wave-runup, due to the wave-dominated landscape of the coastal area (Leijnse et al.
2021). Using a global-scale study, such as those presented by Grossmann-Matheson et al. (2024a)
and Muis et al. (2023), is thus useful as a first-order estimate, especially when combined with knowl-
edge of morphodynamic and hydrodynamic characteristics of the location of interest.
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5.3. Research Limitation I: Climate Uncertainties
5.3.1. Uncertainties from different synthetic tropical cyclone models
In this study, the STORM dataset is employed as a basis for representing the current and future climate
conditions of TC around the Mozambique Channel. However, as elaborated earlier in Subsection 2.3.1,
other state-of-the-art global synthetic tropical datasets also exist: the MIT model (Emanuel et al. 2006;
Emanuel 2008) and the Columbia HAZard model (CHAZ) (Lee et al. 2018). Aside from employing
a comparable historical track-based (such as IBTrACS) Monte Carlo framework, both the MIT model
(Emanuel et al. 2006; Emanuel 2008) and the Columbia HAZard model (CHAZ) (Lee et al. 2018) incor-
porate statistical-dynamical approaches that simulate storm structure and evolution using large-scale
environmental inputs from ERA5 or GCMs. In contrast, the STORM model also uses ERA5 as input
but follows a fully statistical approach, generating synthetic TCs by resampling and adjusting histori-
cal storm properties without explicitly modelling their dynamical evolution. Future climate scenarios in
STORM, on the other hand, are constructed by applying delta changes derived from high-resolution
GCM simulations to key storm variables such as intensity, frequency, and track characteristics. Well-
known studies employing this statistical-dynamical MIT model for future TC-induced storm surge attri-
bution are presented by the Princeton University research group (Lin et al. 2012; Marsooli et al. 2019;
Gori et al. 2022).

Under current climate conditions, Meiler et al. (2022) demonstrated the uncertainties of these three
global synthetic tropical cyclone datasets (STORM, MIT, and CHAZ) to wind-induced risk, revealing
variable estimates in the upper tail distribution in the Southern Hemisphere region (including the South-
west Indian Ocean and South-west Pacific Ocean). This variability is even more pronounced under
future climate conditions, as demonstrated in Meiler et al. (2025)’s study. In this study, STORM exhibits
the highest overall densities of increased risk under future climate conditions by 2050, indicating more
frequent higher-to-moderate TC intensity events, while MIT shows a broader distribution, reflecting
greater variability in intensity. It is currently unclear which of these three synthetic tropical cyclone
models produced the most reliable estimate of current and future TC conditions, either globally or more
regionally specific. Hence, one alternative is instead to embrace the uncertainties in the same way as
intermodel variability introduced by different GCMs. These uncertainties have not yet been considered
and thus should be viewed as recommendations for future direction following this research.

5.3.2. Uncertainties introduced by GCMs intermodel variability
As explained in the Subsection 3.1.1, the ensemble median of the intermodel GCMs approach is taken
as a representative future climate condition. In a similar fashion, themedian of the 2050 SLR uncertainty
range (Figure 3.2) is used to represent future sea level rise, neglecting the range of uncertainty under
the same SSP585 scenario. This procedure is motivated by the absence of historical TC tracks gener-
ated by each GCM in the STORM dataset, negating the possibility of a performance-based weighted
ensemble approach as employed by Gori et al. (2022). The assumption used in this study is thus that
all GCMs hold equal performance in representing the real-world behaviour of tropical cyclone genesis,
occurrences, movement and intensity. Since the dataset includes only four HighRes-MIP GCMs, the
spread of projected outcomes, thus the estimated uncertainty range, is likely less variable than it would
be if a larger set of models were used. As shown in Figure 4.6 and 4.9, for example, the ensemble
median will mostly closely resembles the higher EC-Earth, HadGEM, and CNRM scenario compared
to lower-intensity CMCC, as if it acts like a negative outlier. Simulation of additional synthetic tropical
cyclone datasets, such as MIT and CHAZ, which utilise a more variable number of GCM variations,
is thus becoming increasingly necessary. Further study should therefore not only extend the same
methodology using the MIT and CHAZ datasets, but also further develop a multi-method ensemble
to assess the robustness and variability of different synthetic tropical cyclone methods across different
GCMs, just as showcased in the community-driven framework of global wave climate scenarios (Morim
et al. 2019).

5.3.3. Emission scenarios uncertainties
This study’s limitation on under-representing future climate uncertainty does not end there. As noted in
the research underlying the STORM-GCMs dataset (Bloemendaal et al. 2022), the difference in devi-
ation between SSP5-85 and the lower emission scenarios is almost negligible before the 2050 period.
However, how these small deviations impacted the difference in TC-induced surge and wave remains



5.4. Research Limitation II: Hydrodynamic Model Application 58

a significant question mark. As the STORM source code is openly available, a synthetic tropical cy-
clone dataset covering other emission scenarios can be constructed and later used as input for an
equivalent surge and wave modelling framework, introducing TC-induced surge and wave variability
across multiple emission scenarios. The corresponding sea-level rise (SLR) rates under different emis-
sion scenarios, as shown in Figure 3.2, can likewise be incorporated into the hydrodynamic model to
represent future climate conditions across emission scenarios.

5.3.4. Aleatory uncertainties in STORM dataset
As demonstrated in the Appendix D, specifically in Figure D.1, a different subset of the 1000-year
STORM dataset is found to produce significantly variable 100-yearWS, SS, andHs return levels. This
uncertainty is found to be very problematic, as the order of STORM variations that produce the higher
or lower return level can be swapped between one 1000-year subset and another. This issue is also
highlighted in a recent study by Meiler et al. (2025), denoting that a different sample of a 1000-year
STORM subset could result in divergence of wind-induced risk. The cause of this is argued to be one
of the consequences of the fully statistical approach used in STORM, which exhibits highly sensitive
sampling that is unable to capture natural variability inherently. These uncertainties are found to be
less evident in a statistical-dynamical synthetic tropical cyclone model, such as MIT and CHAZ (Meiler
et al. 2025). In our study, it is thus decided to fully employ the first five out of the ten 1000-year subsets
of STORM (the first 5000 years out of 10,000 years of STORM).

As presented in the Figure D.2, it has been shown that the 100-year WS, SS, and Hs return levels
across all STORM variations have converged as more subsets are introduced. Still, due to time limi-
tations, it is currently unknown how the remaining 5000 years of the set that are not simulated in this
study will influence the return level uncertainty across various return periods. We expect that adding
the remaining not-yet-simulated 5000 years subsets will not have a significant effect on the marginal
and joint attribution that are performed in Section 4.2 and 4.3, as it is based on a 100-year return level
that has been shown to converge. However, as depicted in the TC Idai hindcast (see Figure 4.10), the
highest surge and wave are found to be associated with a more than 1000-year return period, which
is shown in Figure D.3 not to be a converged return level. Thus, we acknowledge that unexplored
aleatory uncertainty corresponds to this upper tail return level as one of the key limitations in the future
scaling of TC Idai surge and wave maximum magnitude and timeseries.

5.4. Research Limitation II: Hydrodynamic Model Application
5.4.1. Absence of hydrodynamic model validation and the use of globally avail-

able digital elevation model
As stated earlier in the Research Scope (Section 1.5), this study does not incorporate hydrodynamic
model calibration and validation using observation data (water level and wave time series) during a TC
event, as such data are rarely available. Although the focus of this study lies on the relative shifts in
patterns under near-future climate conditions rather than on precise magnitude estimates, the lack of
validation may still affect the reliability of surge and wave outputs, especially in locations where local
topographic or bathymetric features strongly influence hydrodynamic behaviour. While all scenarios
are treated with the same non-validated model setup, thereby allowing relative differences between
climate scenarios to be compared consistently, this approach still introduces uncertainty related to the
range of unknown model configurations. Future work should either consider this uncertainty or include
a greater effort in model validation, e.g., using an altimetry dataset for wave validation or consulting
with local government.

Aligning with this limitation, the use of globally available GEBCO and Delta-DTM bathymetry also high-
lights the possible inaccuracy, especially in representing the TC Idai flood hazard storyline. As demon-
strated by Parodi et al. (2020) in a small island developing state case study, the variation of globally
available topography and bathymetry products could contribute to around 30% of total flood hazard
epistemic uncertainties in this region. Epistemic uncertainties are uncertainties driven by imperfect
knowledge or a lack of data (Uusitalo et al. 2015), which is also relevant to the Sofala case study in
Mozambique. Future work should also ensure that this uncertainty doesn’t affect the overall trend ob-
served in both current and future climate conditions. One possible alternative is to adopt an already
developed topobathy dataset, which combines direct measurement and an adjusted global topobathy
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dataset, especially around Beira, used in Deltares (2021) report. Within the same report, an altimetry-
based wave model validation is also presented, which may be replicated for HurryWave model calibra-
tion.

5.4.2. Ignored physicial parameters
For the probabilistic-based attribution component of this study (Objective A), surge and wave dynamics
are modelled separately using Delft3D-FM and HurryWave, without simulating the non-linear interac-
tions between wave, current, and water level (particularly important in shallow coastal areas). A similar
approach is used in Marcos et al. (2019). This simplification neglects wave setup and other coupled
processes that may significantly influence total water levels nearshore. Although this approach en-
ables the simulation of thousands of synthetic TC events in a computationally efficient manner, as
argued before in Subsection 2.3.3, it may lead to underestimation of peak water levels in areas where
such interactions are known to be significant. In contrast, the storyline-based analysis (Objective B),
which includes TC Idai hindcast and future climate storyline, incorporates these non-linear effects more
explicitly using the coupled SFINCS-SnapWave model. Future work, especially those replicating the
methodology used in this study in a wave-dominated region, could improve the accuracy of probabilistic
surge and wave projections by incorporating dynamic coupling between water level and spectral wave
models, or by applying calibrated surrogate models trained on fully coupled simulations to approximate
wave–surge interactions at lower computational cost. A sanity test can be conducted to determine
whether the wave can be fully decoupled or not by simulating samples of varying TC synthetic tracks
using both coupled and separated water level–wave model setups, and subsequently comparing the
two, as performed by Lin et al. (2012).

Moreover, as stated earlier in the Subsection 4.2.2 and illustrated in Figure 4.4, the HurryWave’s ob-
servation points, which are assumed to always fall within deep water conditions, are instead showing
an undesirable depth-limited effect, especially above the 200-year return period mark. As previously
elaborated in Subsection 2.3.3, HurryWave is designed for deep-water applications, as it cannot in-
corporate non-stationary water levels into its simulations. When depth-limited effects occur, the wave
transformation is no longer representative of true deep-water conditions, leading to potential underes-
timation of extreme wave heights. This limitation could affect the accuracy of climate attribution for
extreme wave events beyond the 100-year return period, with no exception to the TC Idai storyline,
which is showcased to exceed a 1000-year event in some locations (Figure 4.10). Bringing the wave
observation to an even deeper location (e.g., -30 m) can be an alternative approach to overcoming
this issue in future studies. Other notable simplifications of hydrodynamic physical parameters, espe-
cially within the application of SFINCS-SnapWave model in the storyline approach, include: 1) ignored
morphological processes such as severe coastal dune erosion, which is stated to be present along the
coast of Beira during the TC Idai event (Deltares 2021), 2) assumed zero river discharge, which causes
underestimation in backwater effect, especially along the Buzi and Pungwe river, 3) assumed uniform
friction over all the sea and water bodies, even though mangrove is found to be present on the edge of
the Buzi and Pungwe river mouth.

5.4.3. Ignored pluvial, fluvial, and wind hazard
Lastly, it is imperative to note that the TC-induced hazard, especially around the Mozambique region, is
often also characterised by torrential rain and, consequently, increased pluvial and fluvial hazard. TC
Idai, which is used as a case study for the storyline approach, showcased these compound coastal-
fluvial-pluvial hazard behaviours, with fluvial contributing to the largest flooded area, followed by coastal
and pluvial forcing (Eilander et al. 2023a). Moreover, wind hazard, which might inherently damage
buildings and crops, as demonstrated by Steinmann et al. (2023), should also not be ignored. All of
these fluvial, pluvial and direct wind hazards are excluded in this study, which leaves a huge gap in
the understanding of the full potential coastal flood hazard in the Sofala region under future climate
conditions.

One alternative for bridging the fluvial and pluvial gap is to employ the Interagency Performance Eval-
uation Task Force Rainfall Analysis method (IPET 2006), which quantifies rainfall based on pressure
deficit and spatial variability along the TC radius. Due to its simplicity, this approach is feasible for use
alongside the STORM dataset (and Holland1980 wind model), although it assumes constant rainfall
rates within the TC storm and ignores asymmetry or rainfall bands (Nederhoff et al. 2024). Another ap-
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proach that is more physically sophisticated and complex is the Tropical Cyclone Rainfall (TCR) model
developed by Zhu et al. (2013), which is designed to fit well within the MIT synthetic tropical models
(Emanuel et al. 2006; Emanuel 2008). One study, which delves into the future joint rainfall-storm surge
hazard, is presented by Gori et al. (2022). As for the direct wind hazard, a wind damage and risk model
such as CLIMADA (CLIMate ADAptation) (Kropf et al. 2022) can be adopted. This model has previ-
ously been used for the TC Idai case study in Steinmann et al. (2023), and even at a greater regional
and global extent as presented by Meiler et al. (2022).

Future studies may further extend the complexity of the model and the attribution of joint TC-induced
surge and wave hazards under future climate scenarios presented in this study by also introducing
pluvial and fluvial forcing while assessing direct wind damage. Incorporating these additional forcings
would require a fully multivariate framework, but doing so would offer a more comprehensive under-
standing of TC-induced compound flood risks, although at the expense of increased computational
demand.



6
Conclusion & Recommendation

6.1. Conclusion
Reducing flood hazard effectively depends on learning from past events to understand the risks and vul-
nerabilities involved; however, because conditions and hazard patterns can change over time, it is also
crucial to consider how these hazards might evolve. These hazards, particularly in TC-prone coastal
regions like Sofala province, involve TC-induced wind, surge and wave, or what is often summarised as
storminess. Despite signals of changing TC-induced storm characteristics under future climate scenar-
ios from various global-scale studies, no study to date has explicitly assessed how storminess changes
would translate into future total water levels and flood hazard at a finer regional scale along the Sofala
coastline. In contrast, studies that focus solely on SLR effects risk considerably underestimating future
flood hazards by neglecting the dynamic contributions of storms. Utilising the STORM dataset, this
study has revealed the extent of near-future (up to year 2050) storminess change in the Sofala region
(Objective A) and its relative importance compared to sea level rise (Objective B). The key findings of
this study are concluded below by directly addressing the formulated research questions.

Objective A:
To quantify the change in tropical cyclone-induced storminess—wind, surge, and wave—at a regional
scale under future climate scenarios.

• Q1. What are the marginal changes in wind, wave, and surge hazards in terms of intensity
and frequency?

Projected ensemble median changes in tropical cyclone (TC)-induced hazards along the Sofala
coast reveal a clear upward shift in the 100-year return levels for wind speed, skew surge, and
significant wave height. Wind speed exhibits the most consistent and spatially extensive increase,
as opposed to a more spatially variable surge and wave increase, owing to the non-linear inter-
action of surge and wave with the bathymetric condition. These upward shifts in storminess are
found to be statistically driven mainly by exceedance frequency (i.e., how often extremes occur)
rather than exceedance intensity (i.e., how extreme they are when they occur). As such, these
projected hazard shifts significantly reduce the effective return periods of the current 100-year
TC-induced wind, surge, and wave events to an average of 45-60 years. This finding thus exem-
plifies the need to ensure the reliability of coastal infrastructure design to withstand more frequent
extreme events, rather than just rare, extremely high-magnitude ones.

• Q2. What are the projected changes in joint wave–surge hazard under future climate con-
ditions?

Joint surge–wave extremes are projected to become significantly more frequent under future cli-
mate scenarios. Despite a general slight decrease in upper tail dependence (i.e., weaker extremal
co-occurrence), the effective joint return period (JRP) of historical 100-year surge and wave pairs
decreases from around 200–400 years to 120 years on average. This statistical paradox arises
because the primary drivers of JRP reduction are the shifts in frequency and magnitude of each
marginal surge and wave distribution. Thus, even with reduced dependence, the compound haz-
ard still becomes more likely. This emphasises the need to move beyond univariate marginal
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levels of safety and incorporate future climate joint exceedance criteria into coastal infrastructure
codes.

Objective B:
To assess the contribution of storminess changes, relative to SLR, to future TC-induced coastal flood
hazard using a probabilistic-scaled future event and storyline-based approach.

• Q1. To what extent do storminess changes amplify total water levels under future climate
conditions, relative to sea level rise?

Using the TC Idai future climate storyline, the combined changes in storm-induced surge and
wave runup result in a modest yet spatially variable increase in total water levels (TWL) along
the Sofala coast. On average, sea-level rise (SLR) accounts for about 60–90% of the projected
increase in TWL, while storminess-related changes contribute the remaining 10–40%. In densely
populated areas such as Beira and Buzi, where flood risk is most critical, the storminess share is
closer to 10–30%, while it can reach up to 40–60% in less populated southern districts like Divinhe.
It is important to note that in this region, the depth-limited wave response in very dissipative
coastal zones dampens the contribution of wave-induced components, reinforcing the dominance
of surge and SLR in these regions. However, such a finding cannot be generalised to other coastal
regions, especially where wave-induced water levels are more abundant.

• Q2. How does the inclusion of projected storminess change and sea level rise modify the
spatial patterns of flood extent and depth in the storyline-based event?

The future flood hazard landscape under TC Idai-like conditions becomes substantially more se-
vere when both SLR and storminess changes are considered. While SLR alone significantly
expands inundation (especially in low-lying deltaic zones and around Beira’s urban core), the
combined scenario increases flood extent and depth even further, exposing an additional 20
km2 of built-up and agricultural land and over 10,000 more residents to flooding. The flood
depth–area distribution indicates a shift towards deeper flooding (0.5–1.5 m) under the combined
scenario, which is underestimated by SLR-only projections. This clearly demonstrates that stormi-
ness change, though secondary in magnitude, plays a decisive role in amplifying compound flood
impacts when interacting with sea level rise, and thus should not be ignored in the development
of future coastal protection design and risk mitigation strategies.

6.2. Future Research Recommendation
Building on the findings and limitations of this study, the following directions are proposed to guide
future research, especially to improve further the understanding and modelling of current and future
tropical cyclone (TC)-induced coastal flood hazards in Mozambique and similar regions:

• Extend the analysis using other synthetic TC models and emission scenarios. While this
study uses the STORM dataset, future work should also incorporate alternative synthetic TC
datasets such as the MIT model or CHAZ to account for structural differences in cyclone gener-
ation and track behaviour. These datasets offer different assumptions and additional dynamical
processes, which are valuable for assessing uncertainty. Furthermore, given the aleatory uncer-
tainty present in the STORM dataset, it is also suggested that future studies incorporate the full
10,000-year synthetic track dataset to encompass the entire range of TC variability required in
a specific region. Additionally, exploring a wider range of emission scenarios (e.g., SSP2–4.5,
SSP1–2.6) will also allow the mapping of adaptation thresholds under multiple climate pathways
rather than focusing solely on SSP5–8.5.

• Improve hydrodynamic model validation and parametrisation To reduce epistemic uncer-
tainty, future studies should incorporate available observations, such as altimetry or in situ tide/wave
data, for model validation, especially during past TC events. Moreover, improved representation
of physical parameters, such as more accurate bathymetry, dune or coastal defence elevation,
and topography, is necessary. This also includes spatially variable friction coefficients (e.g., man-
groves, settlement) and non-zero river discharge. A better two-way coupling between waves and
water level may also be needed, especially when replicating this study in a more wave-dominated
region, given that in this research, surge and wave are modelled separately, except during the
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storyline simulation. Considering the massive tidal range in this region, with a range of more
than 3 m along the whole Sofala coastline (more than 7 m near the estuary region as in Figure
2.4b), the chosen location for wave observation is shown to be too shallow, thereby violating the
deep-water assumption. Thus, future studies should also carefully assess the optimal location
for deep-water wave observation.

• Include rainfall and fluvial forcing and direct wind hazard to capture full TC-induced com-
pound hazard. Tropical cyclones often bring intense rainfall, leading to substantial pluvial and
fluvial flooding, as demonstrated by the aftermath of TC Idai in deltaic regions such as the Buzi
and Pungwe river systems. Moreover, direct wind damage to buildings and crops is also shown to
be significant. These forcings are not yet taken into consideration in this study. Future research
should incorporate rainfall-runoff modelling, river discharge, and direct wind damage into the haz-
ard framework. Methods such as the IPET or TCR rainfall models, as well as the CLIMADA wind
damage model, can be integrated with the applied Holland1980 wind field model. Especially for
the hydrodynamic integration, additional rainfall boundary conditions can be incorporated in a
coupled coastal, fluvial and pluvial hydrodynamic model such as SFINCS. Furthermore, applying
multivariate statistics would allow a comprehensive assessment of compound flood risks under
both current and future climate scenarios.
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A
Tide Distribution Validation

& Tide-Skew Surge Independence

This appendix relates to the discussion that took place at SubSection 3.2.3. A comparison of the high-
water tide elevation kernel density between each STORM variation at the nearest observation point
near Beira IHO tide station is presented in Figure A.1. This tide distribution is developed based on
mined Delft3D-FM tide-only simulation output at every observation point that is used for skew surge
calculation. A sea level rise correction is conducted by subtracting 0.25 m uniformly from the future
STORM-GCMs high-water tide distribution. It can be noted from the figure that there is satisfactory
agreement between each STORM variation, confirming equivalent tide variability across the different
runs. Moreover, the distribution from the Beira IHO tide station is also presented. The comparison with
the Beira IHO station demonstrates the hydrodynamic model’s performance in replicating the actual
tide situation in the study area.

Figure A.1: Kernel density estimates of high-water tide elevations from Delft3D-FM tide-only simulations (STORM variations)
at the observation point near the Beira IHO tide station. A uniform sea level rise correction of 0.25 m is applied to the future

STORM-GCMs. The nearest tide station, Beira IHO, distribution is also shown for comparison.

Aside from tide distribution, the correlation between tide and skew surge is also evaluated, as shown
in the scatter plots presented in Figure A.2. From this figure, we can infer that the correlation between
skew surge and its corresponding high tide is almost nonexistent across all STORM variations, with
maximum absolute values of 0.08. This finding confirms the validity of the assumptions underlying the
choice of skew surge over non-tidal residual, ensuring an independent relationship.
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Figure A.2: Scatter plots of skew surge versus corresponding high water for each STORM variation at the Beira observation
point. The red line indicates the correlation line, with its value shown in the top left of each scatter plot.



B
IBTrACS vs STORM-IBTrACS

Occurrences

The figure below shows the differences in occurrences between the original IBTrACS dataset and
STORM-IBTrACS, relating to the discussion that took place in Section 4.1. The comparison of TC in-
tensity (maximum wind speed) between STORM and IBTrACS can be seen in its original publication
by Bloemendaal et al. (2020b)

Figure B.1: Yearly probability of at least one tropical cyclone (TC) occurrence within a 200 km radius per 10 km grid cell in the
Mozambique Channel. Left: Based on domain-filtered IBTrACS (1980–2023) observations. Right: Difference between STORM
(5,000-year synthetic catalogue) and IBTrACS; red areas indicate regions where STORM shows a lower annual occurrence

probability than IBTrACS.
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C
TC Idai Hindcast Map

Figures below illustrate the result of TC Idai storm surge and wave hindcast in connection to the dis-
cussion in Subsection 4.4.1.

Figure C.1: TC Idai storm surge and wave hindcast. The left plot shows the maximum water level produced using Delft-3D FM,
whereas the right plot shows the maximum offshore significant wave height simulated using HurryWave.

Figure C.2: TC Idai nearshore significant wave height (left) and infragravity wave height (right) hindcast map produced using
coupled flow-wave SFINCS-SnapWave model.
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D
Marginal Fit Sensitivity

This appendix elaborates on the marginal fit sensitivity discussed briefly in Subsection 5.3.4 on aleatory
uncertainties introduced by the sampling of the STORM synthetic tropical cyclone dataset. The sensitiv-
ity analysis of the marginal extreme value distribution fit is done by conducting a POT and GPD analysis
across all simulated STORM 1000-year subsets. Figure D.2 shows 100-year return period wind speed,
skew surge, and significant wave height across different STORM subsets (1st 1000 years to 5th 1000
years) in three different coastal points (5: Machanga, 85: Beira, and 160: Marromeu districts). It can
be inferred that the 100-year STORM-IBTrACS and ensemble median of STORM-GCMs value is highly
variable across different subsets, except for point 160’s wind speed and surge. The variability is even
more pronounced once we consider each STORM-GCMs 100-year return levels, with very definitive
magnitude differences between each subset. This finding thus highlights the unreliability of using only
a single 1000-year subset of STORM, as it introduces significant aleatory uncertainty.

Figure D.1: Sensitivity of 100-year return levels for wind speed, skew surge, and significant wave height across five different
non-overlapping 1000-year STORM subsets at three coastal locations: Point 5 (Machanga), Point 85 (Beira), and Point 160

(Marromeu). Each line represents a different STORM-GCM or observational reference (IBTrACS), while the ensemble median
is shown in red.
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Furthermore, we also tested how the 100-year return levels will look as more STORM subset is taken
into account, as shown in Figure D.2. It can be observed from the figure that most of the STORM-
IBTrACS and the ensemblemedian of STORM-GCMs exhibit a convergence pattern asmore 1000-year
subsets are introduced, particularly for wind speed and wave height. This convergence pattern is also
depicted in each STORM-GCM. This finding suggests that 5000 years appears to be an overall justified
number of simulated events, as indicated by the convergence, which denotes a minimum possible
aleatory uncertainty. Still, upon closer examination of the surge, especially at observation points 5
and 85, the STORM-IBTrACS’ return level appears to decrease almost linearly as more subsets are
considered, indicating failure to converge. Meaning that, if a larger number of subsets is introduced,
the 100-year surge might still be considerably different. This non-convergence pattern is even more
pronounced under a higher return period, e.g. in a 1000-year return level as shown in Figure D.3, which
is especially problematic when considering that TC Idai is shown to exceed those of a 1000-year return
period event (see Figure 4.10). Still, given the limited time resources, the 5000 years’ worth of synthetic
TC tracks simulated in this study is preferred compared to using only a single STORM subset.

Figure D.2: The 100-year return levels for wind speed, skew surge, and significant wave height as a function of increasing
STORM subset size (from 1000 to 5000 years), for Points 5, 85, and 160. Each line represents a STORM-GCM or

observational baseline (IBTrACS), with the ensemble median shown in red.
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Figure D.3: Same as Figure D.2, but for 1000-year return level
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