

Delft University of Technology

Push for quantization
Deep fisher hashing
Li, Yunqiang; Pei, Wenjie; Zha, Yufei; Van Gemert, Jan

Publication date
2020
Document Version
Final published version
Citation (APA)
Li, Y., Pei, W., Zha, Y., & Van Gemert, J. (2020). Push for quantization: Deep fisher hashing. Paper
presented at 30th British Machine Vision Conference, BMVC 2019, Cardiff, United Kingdom.

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

YUNQIANG LI ET AL.: PUSH FOR QUANTIZATION: DEEP FISHER HASHING 1

Push for Quantization: Deep Fisher Hashing

Yunqiang Li?1

y.li-19@tudelft.nl

Wenjie Pei?2

wenjiecoder@outlook.com

Yufei zha∗3

zhayufei@126.com

Jan van Gemert1

j.c.vangemert@tudelft.nl

1 Vision Lab, Delft University of
Technology, Netherlands

2 Tencent, China
3 School of Computer Science,
Northwestern Polytechnical
University, Xi’an, China

Abstract

Current massive datasets demand light-weight access for analysis. Discrete hashing
methods are thus beneficial because they map high-dimensional data to compact binary
codes that are efficient to store and process, while preserving semantic similarity. To
optimize powerful deep learning methods for image hashing, gradient-based methods are
required. Binary codes, however, are discrete and thus have no continuous derivatives.
Relaxing the problem by solving it in a continuous space and then quantizing the solution
is not guaranteed to yield separable binary codes. The quantization needs to be included
in the optimization. In this paper we push for quantization: We optimize maximum class
separability in the binary space. We introduce a margin on distances between dissimilar
image pairs as measured in the binary space. In addition to pair-wise distances, we draw
inspiration from Fisher’s Linear Discriminant Analysis (Fisher LDA) to maximize the
binary distances between classes and at the same time minimize the binary distance of
images within the same class. Experiments on CIFAR-10, NUS-WIDE and ImageNet100
demonstrate compact codes comparing favorably to the current state of the art.

1 Introduction
Image hashing aims to map high-dimensional images onto compact binary codes where pair-
wise distances between binary codes corresponds to semantic image distances, i.e., Similar
binary codes should have similar class labels. Binary codes are efficient to store and have
low computational cost which is particularly relevant in today’s big data age where huge
datasets demand fast processing.

A problem in applying powerful deep learning methods for image hashing is that deep
nets are optimized using gradient descent while binary codes are discrete and thus have no
continuous derivatives and cannot be directly optimized by gradient descent. The current
solution [2, 12, 20, 22, 37, 39] is to relax the discrete problem to a continuous one, and after
optimization in the continuous space, quantize it to obtain discrete codes. This approach,
however, disregards the importance of the quantization, which is problematic because image

? Both authors contributed equally. ∗ Corresponding Author
c© 2019. The copyright of this document resides with its authors.

It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Cao, Long, Bin, and Wang} 2018

Citation
Citation
{Jiang and Li} 2017

Citation
Citation
{Li, Wang, and Kang} 2016

Citation
Citation
{Liu, Wang, Shan, and Chen} 2016

Citation
Citation
{Zhang, Chen, and Saligrama} 2016

Citation
Citation
{Zhu, Long, Wang, and Cao} 2016

2 YUNQIANG LI ET AL.: PUSH FOR QUANTIZATION: DEEP FISHER HASHING

class similarity in the continuous space is not necessarily preserved in the binary space, as
illustrated in Fig. 1. The quantization needs to be included in the optimization.

In this paper we go beyond preserving semantic distances in the continuous space: We
push for quantization by optimizing maximum class separability in the binary space. To do
so, we introduce a margin on distances between dissimilar image pairs explicitly measured in
the binary space. In addition to pair-wise distances, we draw inspiration from Fisher’s Linear
Discriminant Analysis (Fisher LDA) to maximize the binary distances between classes and
at the same time minimize the binary distance of images within the same class

We have the following contributions. 1) Adding a margin to pairwise labels pushes
dissimilar samples apart in the binary space; 2) Fisher’s criterion to maximize the between-
class distance and to minimize the within-class distance leads to compact hash codes; 3) We
show how to optimize this under discrete constraints and 4) We outperform state-of-the-art
methods on two datasets, being particular advantageous for a small number of hashing bits.

2 Related work

V3 V4

V1

Class 1

Class 2

V2

Figure 1: Example of two separable
classes in a continuous space. After quan-
tization (assign to grid cells) the classes
are no longer separable. In this paper we
aim for separability in the binary space.

Amount of supervision. Existing hashing
methods can be grouped on the amount of prior
domain knowledge. Hashing methods with-
out prior knowledge are applicable to any do-
main and include well-known methods such as
Locality-Sensitive Hashing (LSH) [7] and its ex-
tensions [5, 15, 16, 26, 28]. If some knowl-
edge about the data distribution is known in the
form of an unlabeled training set, this knowl-
edge can be advantageously exploited by unsu-
pervised methods [8, 10, 11, 13, 24, 25, 33]
which learn hash functions by preserving the
training set distance distribution. With the avail-
ability of additional prior knowledge about how
samples should be grouped together, supervised
methods [4, 9, 21, 27, 29, 30, 36] can leverage such label information. Particularly success-
ful supervised hashing methods use deep learning [18, 22, 23, 34, 35] to learn the feature
representation. Supervision can be in the form of pairwise label information [2, 3, 19, 20, 39]
or in the form of class labels [9, 19, 23, 30]. In this paper we exploit both pairwise and class
label knowledge, leading to highly compact and discriminative hash codes.

Quantization in hashing. Several methods optimize the continue space and apply the sign
to obtain binary codes [2, 4, 12, 20, 22, 24, 37, 38, 39]. A quantization loss is proposed in
deep learning based hashing [2, 12, 20, 22, 38, 39] to force the learned continuous represen-
tations to approach the desired binary codes. However, optimizing quantization alone may
not preserve class separability in the binary space. An elegant solution is to employ sigmoid
or tanh to approximate the non-smooth sign function [3, 17], but unfortunately comes with
the drawback that such activation functions have difficulty to converge when using gradi-
ent descent methods. We circumvent these limitations by imposing the quantization loss in
the discrete space, optimizing the separability in the hashing space directly while guiding
parameter optimization in the continuous space.

Citation
Citation
{Gionis, Indyk, and Motwani} 2000

Citation
Citation
{Datar and Indyk} 2004

Citation
Citation
{Kulis and Grauman} 2009

Citation
Citation
{Kulis, Jain, and Grauman} 2009

Citation
Citation
{Mu and Yan} 2010

Citation
Citation
{Raginsky} 2009

Citation
Citation
{Gong and Lazebnik} 2011

Citation
Citation
{He, Wen, and Sun} 2013

Citation
Citation
{Jiang and Li} 2015

Citation
Citation
{Kong and Li} 2012

Citation
Citation
{Liu, Wang, and fuprotect unhbox voidb@x penalty @M {}Chang} 2011

Citation
Citation
{Liu, Kumar, Kumar, and Chang} 2014

Citation
Citation
{Weiss, Torralba, and Fergus} 2008

Citation
Citation
{Chang} 2012

Citation
Citation
{Gui, Liu, Sun, Tao, and Tan} 2018

Citation
Citation
{Lin, Shen, Shi, Hengel, and Suter} 2014

Citation
Citation
{Norouzi and Fleet} 2011

Citation
Citation
{Raziperchikolaei and Carreira-Perpiñán} 2016

Citation
Citation
{Shen, Shen, Liu, and Shen} 2015

Citation
Citation
{Zhang, Zhang, Li, and Guo} 2014

Citation
Citation
{Lai, Pan, Liu, and Yan} 2015{}

Citation
Citation
{Liu, Wang, Shan, and Chen} 2016

Citation
Citation
{Liu, Wang, Shan, and Chen} 2017

Citation
Citation
{Xia, Pan, Lai, Liu, and Yan} 2014

Citation
Citation
{Yao, Long, Mei, and Rui} 2016

Citation
Citation
{Cao, Long, Bin, and Wang} 2018

Citation
Citation
{Cao, Long, Wang, and Yu} 2017

Citation
Citation
{Li, Sun, He, and Tan} 2017

Citation
Citation
{Li, Wang, and Kang} 2016

Citation
Citation
{Zhu, Long, Wang, and Cao} 2016

Citation
Citation
{Gui, Liu, Sun, Tao, and Tan} 2018

Citation
Citation
{Li, Sun, He, and Tan} 2017

Citation
Citation
{Liu, Wang, Shan, and Chen} 2017

Citation
Citation
{Shen, Shen, Liu, and Shen} 2015

Citation
Citation
{Cao, Long, Bin, and Wang} 2018

Citation
Citation
{Chang} 2012

Citation
Citation
{Jiang and Li} 2017

Citation
Citation
{Li, Wang, and Kang} 2016

Citation
Citation
{Liu, Wang, Shan, and Chen} 2016

Citation
Citation
{Liu, Wang, and fuprotect unhbox voidb@x penalty @M {}Chang} 2011

Citation
Citation
{Zhang, Chen, and Saligrama} 2016

Citation
Citation
{Zhao, Huang, Wang, and Tan} 2015

Citation
Citation
{Zhu, Long, Wang, and Cao} 2016

Citation
Citation
{Cao, Long, Bin, and Wang} 2018

Citation
Citation
{Jiang and Li} 2017

Citation
Citation
{Li, Wang, and Kang} 2016

Citation
Citation
{Liu, Wang, Shan, and Chen} 2016

Citation
Citation
{Zhao, Huang, Wang, and Tan} 2015

Citation
Citation
{Zhu, Long, Wang, and Cao} 2016

Citation
Citation
{Cao, Long, Wang, and Yu} 2017

Citation
Citation
{Lai, Pan, Liu, and Yan} 2015{}

YUNQIANG LI ET AL.: PUSH FOR QUANTIZATION: DEEP FISHER HASHING 3

Training Images

Fisher
binary code

Continuously
Distribution

Quantized Center LearningPairwise Similarity Learning

intraL

interL

quantL

Without margin Large margin

pairL * Pairwise label

* Margin

* Class label
ConvNet

Figure 2: Images with class labels (red and green) are input to a CNN which outputs a k-
dimensional continues representation U. Module 1 maximizes a margin between dissimilar
images in binary space (LPair). Module 2 minimizes binary distances within the same class
(LIntra) and pushes different classes away (LInter) while quantizing U as binary codes (LQuant).

Discrete optimization. Another branch of hashing methods to solve the discrete optimiza-
tion is to utilize the class information to directly learn the hashing codes. For instance,
SDH [30], as well as its extensions such as FSDH [9] and DSDH [19], propose to regress
the same-class images to the same binary codes. While this kind of methods encourages a
close binary distance between samples from the same class, they cannot guarantee the sepa-
rability of samples from different classes. In contrast, we propose to explicitly maximize the
binary distances between classes and at the same time minimize the binary distances within
the same class.

3 Deep Fisher Hashing with Pairwise Margin

In Fig. 2 we illustrate our model. Two components steer the discrete optimization: 1) A
Pairwise Similarity Learning module to preserve semantic similarity between image pairs
while using a margin to push similar and non-similar images further apart (Lpair). 2) A
Quantized Center Learning module inspired by Fisher’s linear discriminant that maximizes
the distance between different-class images (Linter) whilst minimizing the distance between
same-class images (Lintra) where the binarization requires minimizing quantization errors
Lquant. These two modules are optimized jointly on top of a convolutional network (CNN).

For a train set of N images X = {xi}N
i=1, with M class labels Y = {yi}N

i=n ∈RM×N , where
yi ∈RM is a vector with all elements ≥ 0 that sums to 1, representing the class proportion of
sample xi. For single-label (multi-class) yi reverts to a one-hot encoding {0,1}M . If xi has m
multiple labels, each has a value of 1/m in yi. The last layer of the CNN U= {ui}N

i=1 ∈RK×N

is the learned representations of X. The output codes B = {bi}N
i=1 ∈ {−1,1}K×N are the

discretized binary values corresponding to U with each image encoded by K binary bits.

3.1 Pairwise Similarity Learning

The main goal of hashing is to have small distances between similar image pairs and large
distances between dissimilar image pairs in the binary representation. For binary vectors
bi,bj ∈ {−1,1}K , the Hamming distance DH(bi,b j) =

1
2 (K−bᵀ

i ·b j) =
1
4 DE(bi,b j). Since

K is a constant, it can be left out and we define the dissimilarity D(bi,b j) = − 1
2

(
bᵀ

i ·b j
)
.

Note that larger dissimilarity D indicates larger Hamming distance and less similarity.

Citation
Citation
{Shen, Shen, Liu, and Shen} 2015

Citation
Citation
{Gui, Liu, Sun, Tao, and Tan} 2018

Citation
Citation
{Li, Sun, He, and Tan} 2017

4 YUNQIANG LI ET AL.: PUSH FOR QUANTIZATION: DEEP FISHER HASHING

-5 0 5
Dissimilarity

0

5

10

15

L
o

s
s

Same-class, m = 3
Same-class, m = 6
Different-class, m = 3
Different-class, m = 6

Figure 3: Our symmetric large mar-
gin logistic loss of both same-class and
different-class cases as a function of the
dissimilarity with different margin m.
Larger m encourages separation.

Similar images should share many binary
values while dissimilar images should share few
binary values. Given the dissimilarity D(·, ·) ∈
(− 1

2 K, 1
2 K), a dissimilarity of 0 between binary

vectors bi and b j means that half of their bits are
different. To encourage more overlapping bits
for similar images and less overlapping bits for
dissimilar images, we add a margin m to a sym-
metric logistic loss centered at 0:

LS(D)= log(1+eD+m);LD(D)= log(1+e−D+m).
(1)

The hyper-parameter m > 0 controls separation
between similar pairs S and dissimilar pairs D.
When m = 0, our model will turn into the clas-
sical way used in [19, 20]. Fig. 3 illustrates the loss curves of same-class pairs and different-
class pairs as a function of dissimilarity calculated by our dissimilarity measure with various
values of m. Larger margin can help to pull same-class pairs together while push different-
class pairs far away.

The Pairwise Similarity module minimizes the large margin logistic loss:

Lpair = ∑
(i, j)∈S

LS(D(bi,b j))+ ∑
(i, j)∈D

LD(D(bi,b j))

s.t. bi,b j ∈ {−1,1}K , i, j = 1, ...,N.

(2)

Since bi and b j are discretized hashing codes from the continuous output of the CNN (ui
and u j), thus it is hard to back-propagate gradients from Lpair to parameters of the CNN.
To make the CNN trainable with Lpair, we introduce an auxiliary variable ui = bi. Then we
apply Lagrange multipliers to get the Lagrangian:

L̃pair = ∑
(i, j)∈S

LS(D(ui,u j))+ ∑
(i, j)∈D

LD(D(ui,u j))+ψ

N

∑
i=1
‖ui−bi‖2

2,

s.t. bi,b j ∈ {−1,1}K , i, j = 1, ...,N,

(3)

where ψ is the Lagrange multiplier. The term ∑
N
i=1 ‖ui−bi‖2

2 can be viewed as a constraint
to minimize the discrepancy between the binary space and the continuous space.

3.2 Quantized Center Learning

The Quantized Center Learning module, see Fig. 4, maximizes the inter-class distances
whilst minimizing the intra-class distances in a quantized setting. To represent class-distances
we learn a center for each of the M classes: C = {ci}M

i=1 ∈ {−1,1}K×M , where each cen-
ter c is encoded by K bits of binary codes. Let u be the network output representation.
We then encourage the learned binary code(vertex) of each representation to be close to the
corresponding class center while the distance between different class centers is maximized,
taking quantization to binary vectors into account.

Citation
Citation
{Li, Sun, He, and Tan} 2017

Citation
Citation
{Li, Wang, and Kang} 2016

YUNQIANG LI ET AL.: PUSH FOR QUANTIZATION: DEEP FISHER HASHING 5

Minimizing intra-class distances (Lintra). This minimizes the sum of Euclidean dis-
tance between the binary codes bi of the N training images to their class center:

Lintra =
N

∑
i=1
‖bi−Cyi‖2

2, (4)

where all class centers C are indexed by bi’s class membership vector yi.
Maximizing inter-class distances (Linter). We maximize the sum of pairwise Euclidean

distance between different class centers to maximize the inter-class distance of training data:

N

∑
i=1

N

∑
j=1, j 6=i

‖ci− c j‖2
2 =

N

∑
i=1

N

∑
j=1, j 6=i

(2K−2cᵀi c j). (5)

Since ci,c j ∈ {−1,1}K and cᵀi c j 6=i ≥−K, maximizing Eq. (5) is equivalent to minimizing

N

∑
i=1

N

∑
j=1, j 6=i

(cᵀi c j− (−K))2 = ‖CᵀC−K(2I− JK)‖2
F , (6)

where ‖·‖F denotes the Frobenius norm, I is the identity matrix and JK is the all-ones matrix.
Simplifying the notation where A replaces K(2I− JK) yields

Linter = ‖CᵀC−A‖2
F . (7)

Minimizing quantization cost (Lquant). The Center Learning module exploits label
information to learn binary codes by minimizing Lintra and Linter simultaneously. We also
need to encourage the learned representation to be close to the quantized binary codes. Lquant
minimizes the total quantization cost in moving representations ui towards the desired bi,

Lquant =
N

∑
i=1
‖bi−ui‖2

2. (8)

4 Optimization
Our proposed Pairwise Similarity module and Quantized Center Learning module are opti-
mized jointly in an alternating fashion where their gradients are back-propagated to train the
upstream CNN. Combining the loss functions L̃pair in Eq. (3), Lintra in Eq. (4), Linter in Eq. (7)
and Lquant in Eq. (8), the optimization of the whole framework is

min
bi,ui,C

[
ϕ
(

∑
(i, j)∈S

LS(D(ui,u j))+ ∑
(i, j)∈D

LD(D(ui,u j))
)

+ µ

N

∑
i=1
‖bi−Cyi‖2

2 +ν‖CᵀC−A‖2
F +

N

∑
i=1
‖bi−ui‖2

2

]
,

s.t. C ∈ {−1,1}K×M, bi ∈ {−1,1}K , i = 1,2, . . . ,N,

(9)

where ϕ , µ and ν are hyper-parameters that balance the effect of three objective functions.
Optimizing Eq. (9) involves the interaction of two types of variables: discrete variables

{B = {bi}N
i=1, C} and continuous variables U = {ui}N

i=1. A typical solution to such multi-
variable optimization problem is to alternate between two steps. In particular: 1) optimize U
while fixing B and C focusing on Lpair in the Pairwise Similarity Learning module, 2) fixing
U and optimize discrete variables B and C in the Quantized Center Learning.

6 YUNQIANG LI ET AL.: PUSH FOR QUANTIZATION: DEEP FISHER HASHING

-2 0 2
-2

0

2
Class 1
Class 2

-2 0 2
-2

0

2
Class 1
Class 2

-2 0 2
-2

0

2
Class 1
Class 2

(a): Input (b): Only Lintra (c): Lintra + Linter

Figure 4: Illustration of Quantized Center learning. All points denote 2D representations
extracted by a CNN model from randomly selected two classes samples of CIFAR-10, for
100 samples per class. Binarization is illustrated by quantization sgn(·) (black lines). (a):
Inefficient hashing: Binarization will assign same-class points to different bins, while as-
signing different-class points to the same bins. (b): Using Lintra clusters classes together and
hashing is improved since binarization will assign the classes to different, neighboring bins:
class 1 to [−1,1] and class 2 to [1,1]. (c): Using Lintra + Linter also pushes the classes away
from each other, improving the hashing further since after binarization class 1 is [−1,1] and
class 2 is [1,−1] making the difference between class samples two bit flips.

4.1 Optimizing Pairwise Similarity Learning
Given B = {bi}N

i=1, it is straightforward to optimize U = {ui}N
i=1 by minimizing the sub-

problem resolved from Eq. (9) corresponding to Lpair by gradient descent:

min
U

m

∑
i=1
‖bi−ui‖2

2 +ϕ
(

∑
(i, j)∈S

LS(D(ui,u j))+ ∑
(i, j)∈D

LD(D(ui,u j))
)

(10)

Since U is the output of the last layer of the upstream CNN, which is denoted as ui =
WᵀFCNNs(xi;θ)+ v. Here W is the transformation matrix of the last fully connected layer
and v is the bias term. θ is the parameters of CNNs before the last layer. For simplicity,
we denote all parameters of CNNs models as Θ = {W,v,Θ}. The CNN parameters are
optimized by gradient back-propagation: ∂L

∂Θ
= ∂L

∂U
∂U
∂Θ

, where L is the Loss function corre-
sponding to Eq. (10).

4.2 Optimizing Quantized Center Learning
With fixed CNN parameters Θ, we learn B and C by optimizing the Quantized Center Learn-
ing module, as:

min
B,C

µ

N

∑
i=1
‖bi−Cyi‖2

2 +ν‖CᵀC−A‖2
F +

N

∑
i=1
‖bi−ui‖2

2,

s.t. C ∈ {−1,1}K×M, B = {bi}N
i=1 ∈ {−1,1}K×N .

(11)

We solve this problem by calling alternating optimization strategy again: optimize variables
B and C by updating one variable with the other fixed.
Initialization of bi and C. Given the representations ui, we initialize bi as bi = sgn(ui). In
the first iteration we initialize the class centers C with the class mean of the output represen-
tations, later we update C directly.

YUNQIANG LI ET AL.: PUSH FOR QUANTIZATION: DEEP FISHER HASHING 7

Fix bi, update C. Keeping bi fixed in Eq. (11) reduces this sub-problem to

min
C

µ

N

∑
i=1
‖bi−Cyi‖2

2 +ν‖CᵀC−A‖2
F ,

s.t. C ∈ {−1,1}K×M.

(12)

Due to the discrete constraints on the class centers C, the minimization of above problem is a
discrete optimization problem which is hard to optimize directly. We introduce an auxiliary
variable V with the constrain C = V, and adding the Lagrange multiplier, the optimization
of Eq. (12) is:

min
C,V

µ

N

∑
i=1
‖bi−Vyi‖2

2 +ν‖VᵀV−A‖2
F +η‖C−V‖2

F ,

s.t. C ∈ {−1,1}K×M.

(13)

Fixing V, since the optimal solution for C for minimizing ‖C−V‖2
F is C = sgn(V),

hence ‖C−V‖2
F in Eq. (13) can be replaced with ‖sgn(V)−V‖2

F . Let L2 denote the loss
function after applying Lagrange multipliers, then the gradient w.r.t. V is calculated as:

∂L2

∂V
= 2µ(VY−B)Yᵀ+4νV(VᵀV−A)+2η(V− sgn(V)), (14)

approximating the class center C with the learned V.
Fix C, update bi. With the variable C fixed in Eq. (11), we optimize the binary code bi with
the sub-problem

min
bi

µ

N

∑
i=1
‖bi−Cyi‖2

2 +
N

∑
i=1
‖bi−ui‖2

2,

s.t. bi ∈ {−1,1}K , i = 1, . . . ,N.

(15)

We have the closed-form solution of problem (15):

B = sgn(µCY+U). (16)

See the supplementary for the detailed proof. By defining F = µCY+U as the Fisher’s
transformed representations, we note that F is a translation transformation of original rep-
resentations U which pushes different-class points to different vertex and pulls same-class
points to same vertex, whileF does not change the relative position between same class. The
learned center C determines where the corresponding class translates to. The 2D example in
Fig. 4 shows that the shape within a class does not change, yet the classes do translate.

4.3 Joint Optimization

We update the two modules jointly, see supplementary material. In each iteration, the Pair-
wise Similarity Learning module and Quantized Center Learning module are optimized in an
alternating way to learn the continuous variable U and discrete variables {B,C}, respectively.

8 YUNQIANG LI ET AL.: PUSH FOR QUANTIZATION: DEEP FISHER HASHING

5 Experiments
Datasets. We conduct experiments on three datasets: CIFAR-10, NUS-WIDE and Ima-
geNet100. CIFAR-10 consists of 60k color images with the resolution of 32×32 categorized
into 10 classes. Each image has a single label. NUS-WIDE is a multi-label dataset, which
contains 269,648 color images collected from Flickr. There are 81 classes, where each im-
age is annotated with one or multiple class labels. Following [17, 19, 24], we use a subset of
195,834 images associated with 21 most frequent classes (concepts) for evaluation, among
which 105,972 images has more than two labels and 89,862 images have a single label. Each
class contains at least 5,000 samples. ImageNet100 consists of 130K single labelled images
from 100 categories, which is a subset of the large benchmark ImageNet [6].
Experimental settings. Following [19, 20], 100 random images per class in CIFAR-10
form the test query set and 500 images per class are the training set. For NUS-WIDE, we
randomly select 100 images per class as test queries and 500 images per class as the training
set. The pairwise ground truth for two images sharing at least one common label is similar
and otherwise dissimilar. Following [3], we sample 100 images per class for ImageNet100
to construct a training set, and all the images in the validation set are used as the test set.
Evaluation metrics. We evaluate retrieval performance using: mean Average Precision
(MAP), precision of the top N returned examples (P@N), Precision-Recall curves (PR) and
Recall curves (R@N). All compared methods use identical training and test sets for fair com-
parison. For NUS-WIDE, we adopt MAP@5000 and MAP@50000 for the small-data setting
and large-data setting, respectively. We show the results of MAP@1000 for ImageNet100.
Network and parameter settings. To have a fair comparison with previous methods [19,
20, 32], we fine-tune the VGG-F[19, 20] architecture for the experiments on CIFAR-10
and NUS-WIDE while the AlexNet architecture [14] is fine-tuned for the experments on
ImageNet100. Both deep network architectures are pre-trained on ImageNet. The hyper-
parameters {ϕ,µ,η ,ν ,} are tuned by cross-validation on a validation set and the margin m
is chosen from {0.5,1,1.5,2}. Stochastic Gradient Descent (SGD) is used for optimization.

5.1 Exp 1: Effect of Quantized Center Learning
To investigate the effect of LIntra (minimizing intra-class distances) and LInter (maximizing
inter-class distances) in the Quantized Center Learning module, we conduct an ablation study
in the small-data setting which starts with the Pairwise Similarity Learning module Lpair
in Eq. (3) in the model and then augment the model incrementally with Lintra in Eq. (4) and
LInter in Eq. (7). In Table 1 we show the experimental results. We observe that both LIntra and
LInter contribute substantially to the performance of the whole model.

5.2 Exp 2: Functionality of different modules
We evaluate the effect of combining modules on both CIFAR-10 and ImageNet100 datasets
using precision and recall curves for top 5,000 returned images for different number of bits.
In Fig. 5 we compare on CIFAR-10 and ImageNet100. We observe that each module adds
value. The only exception is Fisher-only, which outperforms the combined Pairwise+Fisher
model for a code size of 48. Second, the combined models can get relatively well for fewer
bits, while the single models need more bits to achieve the same performance.

The results on ImageNet100 shown in Fig. 5 indicate that the Quantized Center Learn-
ing module improves the performance substantially. One potential explanation is that the

Citation
Citation
{Lai, Pan, Liu, and Yan} 2015{}

Citation
Citation
{Li, Sun, He, and Tan} 2017

Citation
Citation
{Liu, Wang, and fuprotect unhbox voidb@x penalty @M {}Chang} 2011

Citation
Citation
{Deng, Dong, Socher, and Li} 2009

Citation
Citation
{Li, Sun, He, and Tan} 2017

Citation
Citation
{Li, Wang, and Kang} 2016

Citation
Citation
{Cao, Long, Wang, and Yu} 2017

Citation
Citation
{Li, Sun, He, and Tan} 2017

Citation
Citation
{Li, Wang, and Kang} 2016

Citation
Citation
{Wang, Shi, and Kitani} 2016

Citation
Citation
{Li, Sun, He, and Tan} 2017

Citation
Citation
{Li, Wang, and Kang} 2016

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

YUNQIANG LI ET AL.: PUSH FOR QUANTIZATION: DEEP FISHER HASHING 9

Components CIFAR-10 ImageNet100
Baseline LIntra LInter 12 Bits 24 Bits 16 Bits 48 Bits

× × 0.730 0.787 0.431 0.572
Lpair X × 0.746 0.802 0.543 0.696

X X 0.772 0.809 0.576 0.726

Table 1: Comparative results for our model with different components of the Quantized Cen-
ter Learning module on CIFAR-10 and ImageNet100 . We start with the Pairwise Similarity
Learning (Lpair) and augment incrementally with two components: LIntra in Eq. (4) and LInter
in Eq. (7). For 24-bits in CIFAR-10 the performance seems already saturated; for all other
settings, each added component brings an advantage.

8 12 16 24 32 48

Number of bits

0.7

0.75

0.8

0.85

P
re

ci
si

on
@

50
00

P
C
P+C
P+M
P+C+M

8 12 16 24 32 48

Number of bits

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.72

R
ec

al
l@

50
00

P
C
P+C
P+M
P+C+M

16 32 48 64

Number of bits

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

P
re

ci
si

on
@

10
00

P
C
P+C
P+M
P+C+M

16 32 48 64

Number of bits

0.25

0.3

0.35

0.4

0.45

0.5

0.55

R
ec

al
l@

10
00

P
C
P+C
P+M
P+C+M

CIFAR-10 ImageNet100

Figure 5: Evaluating different modules on two datasets. Herein P refers to the Pairwise
Similarity Learning module without margin while C refers to the Quantized Center Learning
module. P+M denotes the Pairwise Similarity Learning module with tuned margin.

Pairwise Similarity Learning module (L̃pair) is sensitive to the balance between the positive
and negative training sample pairs, which is hard to achieve in the data with large number
of classes. In contrast, the Quantized Center Learning module does not suffer from this
limitation. The sensitivity of the margin m is in the supplemental.

5.3 Exp 3: Comparison with others
In Table 2 we show results on both CIFAR-10 and NUS-WIDE datasets in the small-data
setting. In particular for a few number of bits, our model compares well to others. It is worth
noting that the performance comparison among VGG-F and AlexNet networks is considered
to be fair [31], since both architectures have the same network composition.

Method CIFAR-10 Method NUS-WIDE
12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

Ours 0.803 0.825 0.831 0.844 Ours 0.795 0.823 0.833 0.842
DSDH [19] 0.740 0.786 0.801 0.820 DSDH [19] 0.776 0.808 0.820 0.829
Greedy Hash [31] 0.774 0.795 0.810 0.822 Greedy Hash [31] – – – –
DPSH [20] 0.713 0.727 0.744 0.757 DPSH [20] 0.752 0.790 0.794 0.812
DQN [1] 0.554 0.558 0.564 0.580 DQN [1] 0.768 0.776 0.783 0.792
DTSH [32] 0.710 0.750 0.765 0.774 DTSH [32] 0.773 0.808 0.812 0.824
NINH [18] 0.552 0.566 0.558 0.581 NINH [18] 0.674 0.697 0.713 0.715
CNNH [34] 0.439 0.511 0.509 0.522 CNNH [34] 0.611 0.618 0.625 0.608

Table 2: MAP for various methods for the small-data setting for CIFAR-10 and NUS-WIDE.
The best performance is boldfaced. For NUS-WIDE, the top 5,000 is used for the MAP.

Citation
Citation
{Su, Zhang, Han, and Tian} 2018

Citation
Citation
{Li, Sun, He, and Tan} 2017

Citation
Citation
{Li, Sun, He, and Tan} 2017

Citation
Citation
{Su, Zhang, Han, and Tian} 2018

Citation
Citation
{Su, Zhang, Han, and Tian} 2018

Citation
Citation
{Li, Wang, and Kang} 2016

Citation
Citation
{Li, Wang, and Kang} 2016

Citation
Citation
{Cao, Long, Wang, Zhu, and Wen} 2016

Citation
Citation
{Cao, Long, Wang, Zhu, and Wen} 2016

Citation
Citation
{Wang, Shi, and Kitani} 2016

Citation
Citation
{Wang, Shi, and Kitani} 2016

Citation
Citation
{Lai, Pan, Liu, and Yan} 2015{}

Citation
Citation
{Lai, Pan, Liu, and Yan} 2015{}

Citation
Citation
{Xia, Pan, Lai, Liu, and Yan} 2014

Citation
Citation
{Xia, Pan, Lai, Liu, and Yan} 2014

10 YUNQIANG LI ET AL.: PUSH FOR QUANTIZATION: DEEP FISHER HASHING

The state-of-the-art DSDH [19] model also uses pairwise labels and classification labels.
The major difference between is in using the classification label: DSDH [19] learns hash
codes by maximizing the classification performance while our model learns centers to model
between-class and between-sample distances. While DSDH performs excellent, our model
outperforms DSDH in all experiments.

Another interesting observation is that SDH [30], which is based on sole classification
label information, performs competitively on NUS-WIDE but not as good on CIFAR-10. In
contrast, our model and DSDH [19] that leverage two types of information, perform much
more robust. It reveals the necessity of incorporating the pairwise label information.

We also conduct experiments to compare our method to other baseline models on Ima-
geNet100 and the results are presented in Table 3. It is observed that our model achieves the
best performance on all bits except for the 16 bits.

ImageNet100 (mAP@1K)
Method 16 Bits 32 Bits 48 Bits 64 Bits

CNNH [34] 0.281 0.450 0.525 0.554
NINH [18] 0.290 0.461 0.530 0.565
DHN [39] 0.311 0.472 0.542 0.573
HashNet [3] 0.506 0.630 0.663 0.683
Greedy Hash [31] 0.625 0.662 0.682 0.688
Ours 0.590 0.697 0.726 0.747

Table 3: MAP@1K results on ImageNet100 using AlexNet.

6 Conclusion
We present a supervised deep binary hashing method focusing on binary separability through
a pair-wise margin and inspired by Fisher’s linear discriminant which minimizes within-class
distances while maximizing between-class distances. For medium-sized datasets with much
training data –where larger hash codes can be used– our method performs on par or only
slightly better than other methods. Our method is most suitable for extremely large datasets
with few training data where only tiny bit codes can be used; there our method compares
most favorably to others.

Citation
Citation
{Li, Sun, He, and Tan} 2017

Citation
Citation
{Li, Sun, He, and Tan} 2017

Citation
Citation
{Shen, Shen, Liu, and Shen} 2015

Citation
Citation
{Li, Sun, He, and Tan} 2017

Citation
Citation
{Xia, Pan, Lai, Liu, and Yan} 2014

Citation
Citation
{Lai, Pan, Liu, and Yan} 2015{}

Citation
Citation
{Zhu, Long, Wang, and Cao} 2016

Citation
Citation
{Cao, Long, Wang, and Yu} 2017

Citation
Citation
{Su, Zhang, Han, and Tian} 2018

YUNQIANG LI ET AL.: PUSH FOR QUANTIZATION: DEEP FISHER HASHING 11

References
[1] Yue Cao, Mingsheng Long, Jianmin Wang, Han Zhu, and Qingfu Wen. Deep quantization network for efficient

image retrieval. In AAAI, 2016.

[2] Yue Cao, Mingsheng Long, Liu Bin, and Jianmin Wang. Deep cauchy hashing for hamming space retrieval.
In CVPR, 2018.

[3] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S Yu. Hashnet: Deep learning to hash by contin-
uation. 2017.

[4] Shih Fu Chang. Supervised hashing with kernels. In CVPR, 2012.

[5] Mayur Datar and Piotr Indyk. Locality-sensitive hashing scheme based on p-stable distributions. In Proceed-
ings of the ACM Symposium on Computational Geometry, pages 253–262. ACM Press, 2004.

[6] Jia Deng, Wei Dong, R Socher, and Li Jia Li. Imagenet: A large-scale hierarchical image database. In CVPR,
2009.

[7] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via hashing. In
Proceedings of International Conference on Very Large Databases, pages 518–529, 2000.

[8] Yunchao Gong and Svetlana Lazebnik. Iterative quantization: A procrustean approach to learning binary
codes. In CVPR, 2011.

[9] J. Gui, T. Liu, Z. Sun, D. Tao, and T. Tan. Fast supervised discrete hashing. IEEE Transactions on Pattern
Analysis Machine Intelligence, PP(99):1–1, 2018.

[10] Kaiming He, Fang Wen, and Jian Sun. K-means hashing: An affinity-preserving quantization method for
learning binary compact codes. In CVPR, 2013.

[11] Qing Yuan Jiang and Wu Jun Li. Scalable graph hashing with feature transformation. In International Con-
ference on Artificial Intelligence, 2015.

[12] Qing-Yuan Jiang and Wu-Jun Li. Deep cross-modal hashing. In CVPR, 2017.

[13] Weihao Kong and Wu Jun Li. Isotropic hashing. In NIPS, 2012.

[14] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In NIPS. 2012.

[15] Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for scalable image search. In ICCV,
2009.

[16] Brian Kulis, Prateek Jain, and Kristen Grauman. Fast similarity search for learned metrics. IEEE Transactions
on Pattern Analysis Machine Intelligence, 31(12):2143, 2009.

[17] H. Lai, Y. Pan, Ye Liu, and S. Yan. Simultaneous feature learning and hash coding with deep neural networks.
In CVPR, 2015.

[18] Hanjiang Lai, Yan Pan, Ye Liu, and Shuicheng Yan. Simultaneous feature learning and hash coding with deep
neural networks. In CVPR, 2015.

[19] Qi Li, Zhenan Sun, Ran He, and Tieniu Tan. Deep supervised discrete hashing. In NIPS. 2017.

[20] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. Feature learning based deep supervised hashing with
pairwise labels. In IJCAI, 2016.

[21] Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton Van Den Hengel, and David Suter. Fast supervised hashing
with decision trees for high-dimensional data. In CVPR, 2014.

[22] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. Deep supervised hashing for fast image
retrieval. CVPR, 2016.

12 YUNQIANG LI ET AL.: PUSH FOR QUANTIZATION: DEEP FISHER HASHING

[23] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. Learning multifunctional binary codes for both
category and attribute oriented retrieval tasks. In CVPR, 2017.

[24] Wei Liu, Jun Wang, and Shih fu Chang. Hashing with graphs. In ICML, 2011.

[25] Wei Liu, Sanjiv Kumar, Sanjiv Kumar, and Shih Fu Chang. Discrete graph hashing. In NIPS, 2014.

[26] Yadong Mu and Shuicheng Yan. Non-metric locality-sensitive hashing. In AAAI, 2010.

[27] Mohammad Norouzi and David J. Fleet. Minimal loss hashing for compact binary codes. In ICML, 2011.

[28] M Raginsky. Locality-sensitive binary codes from shift-invariant kernels. 2009.

[29] Ramin Raziperchikolaei and Miguel Á Carreira-Perpiñán. Optimizing affinity-based binary hashing using
auxiliary coordinates. In NIPS, 2016.

[30] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen. Supervised discrete hashing. In CVPR, 2015.

[31] Shupeng Su, Chao Zhang, Kai Han, and Yonghong Tian. Greedy hash: Towards fast optimization for accurate
hash coding in cnn. In Advances in Neural Information Processing Systems, pages 798–807, 2018.

[32] Xiaofang Wang, Yi Shi, and Kris M Kitani. Deep supervised hashing with triplet labels. Asian Conference on
Computer Vision, 2016.

[33] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In NIPS, 2008.

[34] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and Shuicheng Yan. Supervised hashing for image retrieval
via image representation learning. In AAAI, 2014.

[35] Ting Yao, Fuchen Long, Tao Mei, and Yong Rui. Deep semantic-preserving and ranking-based hashing for
image retrieval. In IJCAI, 2016.

[36] Peichao Zhang, Wei Zhang, Wu Jun Li, and Minyi Guo. Supervised hashing with latent factor models. In
SIGIR, 2014.

[37] Ziming Zhang, Yuting Chen, and Venkatesh Saligrama. Efficient training of very deep neural networks for
supervised hashing. In CVPR, 2016.

[38] Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan. Deep semantic ranking based hashing for multi-
label image retrieval. In CVPR, 2015.

[39] Han Zhu, Mingsheng Long, Jianmin Wang, and Yue Cao. Deep hashing network for efficient similarity
retrieval. In AAAI, 2016.

