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1 Abstract 

Structures may be subjected to both mechanical loads and imposed deformation. On one hand, the mechanical loads 
include, for example, the self-weight of the construction work (CEN, 2001), the action from normal use by person, 
furniture and movable objects, vehicles (CEN, 2001), snow (CEN, 2003), wind (CEN, 2005), execution (CEN, 
2005), etc. On the other hand, when the deformation of a structure is restrained, imposed deformation occurs 
(Breugel, 2013, p. 1). The sources of deformation can be various, not only environmental conditions, such as 
temperature and humidity changes, but also chemical or physical actions, such as sulphate ingress or creep 
(H.W.Reinhardt, 2014, p. 454).  

If the shortening of a structure is restrained, the structure will be subjected to imposed deformation which results in 
tensile stress. Since the tensile strength of concrete is relatively low, concrete structures, such as tunnels, bridges and 
pavement roads, always suffer a high risk of cracking (S.Y.Gu, 2008, p. 1). Even if the concrete structure is 
prestressed, the tensile stress resulting from imposed deformation would consume the compressive stress in concrete 
and raise the risk of cracking. If the crack width exceeds the limit, leakage, corrosion and even structural failure may 
happen. 

According to the schematised 𝑁 𝜀 diagram of reinforced concrete (Breugel, 2013, p. 9), the development of 
cracking caused by imposed deformation and mechanical load are different. Suppose the cracking is caused by 
imposed deformation, there is a developing stage for cracking. It means the cracks caused by imposed deformation 
could be either fully or not fully developed. However, suppose the cracking is caused by mechanical loads, the 
cracks could only be fully developed.  

The stiffness of fully or not fully cracked members are different. The stress resulting from imposed deformation in a 
structure is related to the stiffness of the structure. Therefore, cracking has significant impact on the magnitude of 
stress resulting from imposed deformation. Therefore, when a structure is subjected to imposed deformation and 
mechanical load together, it is necessary to take the impact of cracking into account during structure design.  

The combination of imposed deformation and mechanic loads is referred to as combined actions. It is common to use 
FEM software to analyse the stress resulting from the combined actions during structure design when cracking has to 
be taken into account. However, FEM analysis only is not enough. It is also necessary to check the results calculated 
by FEM software to avoid mistakes, for example a wrong input. 

There is a project called 'Approach Ring South, Groningen' (Herepoort, 2019). In the project, widened deck 
KW03.01 is subjected to a combination of imposed deformation and prestressing force. FEM software called SCIA is 
used to calculate the prestress consumption in the widened deck KW03.01. According to the data file of the project, 
41% in maximum of the compressive stress resulting from prestressing is consumed when the structure is subjected 
to combined actions, which is much more than the engineering experience. As a result, a simple approach is required 
to check whether the prestress consumption in widened deck KW03.01 suits the expectation or not, where the 
prestress consumption is calculated by FEM software. 
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2 Glossary 

To avoid misunderstanding, hereby provides definition of some keywords which are mentioned in this paper.  

The Simple Approach: A method carried out to check whether the prestress consumption in widened deck 
KW03.01 suits the expectation or not, where the prestress consumption is calculated by FEM software. 

Prestress Consumption: Compressive stress in concrete which is consumed by the tensile stress resulting from 
imposed deformation. Different from prestress loss in prestressing cables. 

Prestress Consumption in Proportion: Ratio of stress resulting from imposed deformation and compressive stress 
resulting from prestressing. 

Mechanic Load: The self-weight of the construction work (CEN, 2001), the actions from normal use by person, 
furniture and movable objects, vehicles (CEN, 2001), snow (CEN, 2003), wind (CEN, 2005), execution (CEN, 
2005), etc. 

Imposed Deformation: Restrained deformation. In this paper, if not emphasised, the imposed deformation is in-
plane only.   

Restrained Deformation: The deformation of a member or structure which is prevented by the supports or boundary 
conditions. The deformation may be caused by environmental change and/or chemical and physical reactions 
(H.W.Reinhardt, 2014). 

Environmental Change: Temperature and humidity changes, etc. 

Chemical and Physical Reactions: Sulphate ingress and abrasion, etc. 

Combined Actions: Combination of imposed deformation and/or mechanical loads. 

Tensile Member: Reinforced concrete member which is subjected to axial normal force and imposed deformation. 

Cracking Force: Normal force applied to a reinforced concrete tensile member when the first crack appears. 

Cracking Strain: Strain in a reinforced concrete tensile member when the first crack appears.  

Cracking Strength: Stress in a concrete tensile member when the first crack appears in the tensile member. 

Hydration: Procedure of a series of chemical reactions during which, In the presence of water, the silicates and 
aluminates of cement form products which is firm and hard mass (A.M. Neville, J.J. brooks, 2010, p. 12). Hydration 
of concrete causes autogenous shrinkage in concrete. 

Heat of Hydration: The quantity of heat (in joules) per gram of unhydrated cement, evolved upon complete 
hydration at a given temperature (A.M. Neville, J.J. brooks, 2010, p. 13).  

Cooling: The loss of heat of hydration because the temperature of concrete is higher than the environment it exposed 
to. Cooling of concrete causes thermal contraction in concrete. 

Thermal Contraction: Shrinking of concrete as it is cooling down. 

Drying Shrinkage: Shrinkage of concrete caused by withdraw of water from hardened concrete exposed to 
unsaturated environment (A.M. Neville, J.J. brooks, 2010, p. 235). 

Autogenous Shrinkage: Shrinkage of concrete caused by loss of water used up in hydration and except in massive 
concrete structures (A.M. Neville, J.J. brooks, 2010, p. 234).  

Creep: Additional deformation to the elastic deformation in concrete when it is subjected to sustained constant stress 
(A.M. Neville, J.J. brooks, 2010, p. 212). 

Impact of Connection: The strain and stress in widened deck KW03.01 resulting from the imposed deformation 
which is caused by the appearance of connection. The connections are built between old decks and new decks. 
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Impact of Cracking: Cracking decreases the stiffness of concrete member and the stiffness of concrete member is 
related to the magnitude of stress resulting from imposed deformation. As a result, the strain and stress calculated 
with and without cracking in widened deck KW03.01 are different. The difference is called the impact of cracking. 

Input Data: Date of time history, material properties and combined actions to be used in the simple approach. 

Time History of Construction: Data of important timing when the old decks, new decks and connections of 
widened deck KW03.01 are constructed.  
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3 List of Acronyms and Abbreviations 

To avoid misunderstanding, hereby provides definition of all acronyms and abbreviations which are mentioned in 
this paper.  

FEM: Finite element model.  
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4 Introduction 

4.1 Background Information 

When the deformation of structure caused by environmental change and/or chemical and physical reactions is 
restrained, imposed deformation is produced (Breugel, 2013). An example of imposed deformation is shown in 
Figure 1. The temperature drop ∆𝑇 is expected to cause a shortening of the bar in Figure 1. In Figure 1(a), the bar is 
shortened freely because the right-hand end of the bar is free. However, in Figure 1(b), the bar is fixed on both ends. 
So, the shortening of the bar Figure 1(b) is not free but restrained by the supports at the ends of the bar. Such a 
restrained deformation is referred to as imposed deformation.  

 

Figure 1:Comparison between Free and Restrained Deformation. 

Suppose the deformation prevented by the supports or boundaries is strain, the imposed deformation is referred to as 
imposed strain ∆𝜀. Similarly, suppose the deformation prevented by the supports or boundaries is curvature, the 
imposed deformation is referred to as restrained curvature ∆𝜅. Examples of structures subjected to imposed 
deformation are shown in Appendix A1. 

As shown in Appendix A1, a structure may be subjected to both imposed deformation and mechanical loads at same 
time. The combination of imposed deformation and mechanical loads is referred to as combined actions. 

Suppose the shortening of a structure is restrained, tensile stress would appear. Since the tensile strength of concrete 
is relatively low, concrete structures, such as tunnels, bridges and pavement roads, always suffer a high risk of 
cracking (S.Y.Gu, 2008, p. 1). If the concrete structure is prestressed, the tensile stress resulting from imposed 
deformation will consume the prestress which also raises the risk of cracking. If the crack width exceeds the limit, 
leakage, corrosion and even structural failure will happen. 

Cracking may happen when a reinforced concrete tensile member, or in short tensile member, is subjected to normal 
force 𝑁 and/or impose deformation ∆𝜀. As shown in Figure 2, cracking of a tensile member consists of three stages 
(Breugel, 2013, p. 9). The first stage is uncracked stage, starting from point 0,0  to point 𝜀 , 𝑁  where 𝑁  and 
𝜀  represent the cracking force and cracking strain. In first stage, 𝑁 𝑁  and ∆𝜀 𝜀 , the tensile member is 
uncracked and linear elastic. When 𝑁 𝑁  or ∆𝜀 𝜀 , the first crack appears and cracking comes to the second 
stage. Suppose the cracking is caused by mechanical loads, the normal force 𝑁 applied to the tensile member would 
be constant. In this case, all possible cracks would appear together at same time. However, suppose the cracking is 
caused by imposed deformation, instead of mechanic loads, the imposed strain ∆𝜀 applied to the tensile member 
would be constant. When first crack appears, the normal stiffness of tensile member decreases. As a result, with a 
constant imposed deformation, the normal force in tensile member drops below the cracking force 𝑁 . Further 
cracks will not appear unless the imposed strain keeps increasing, making the normal force in the tensile member 
exceeds the cracking force 𝑁  again. For simplicity, when cracking is in second stage, it is assumed that the normal 
force in tensile member is constant and equals to the cracking force 𝑁 . When the maximum cracks appear, cracking 
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comes to the third stage. The mean strain of cracked tensile member at this moment is denoted as 𝜀 . In this stage, 

the crack pattern is taken fully developed. So, the third stage is referred to as fully developed stage, while the second 
stage, where the crack pattern is not fully developed, is referred to as developing stage. 

As mentioned above, cracking caused by imposed deformation and mechanical loads are different. Those caused by 
imposed deformation consists of three stages, while those caused by mechanical loads consists of only the first stage 
and the third stage. As a result, when a tensile member is subjected to both imposed deformation and mechanical 
loads, the crack pattern can be either fully or not fully developed.  

The mean stiffness of not fully cracked tensile member is larger than that of fully cracked one, which is expected to 
result in different magnitudes of stress in concrete when further imposed deformation is applied. Therefore, when a 
combination of imposed deformation and mechanical loads is applied, the structure should be designed with the 
combination instead of equivaling imposed deformation into mechanical loads, so that it is enabled to take not fully 
cracked pattern into account.  

 
*It is assumed that the rebar will not be broken due to cracking. In this case, the mean strain of the tensile member is equal to the mean strain of 
rebar 𝜀 . Therefore, the mean strain of tensile member is referred to as the mean strain of rebar 𝜀  in this diagram.   

Figure 2:Schematised 𝑁 – 𝜀 Diagram of Reinforced Concrete Tensile Member. 

4.2 Motivation and Problem Statement 

The combination of imposed deformation and mechanic loads is referred to as combined actions. It is common to use 
FEM software to analyse the stress resulting from the combined actions during structure design when cracking is 
taken into account. However, FEM analysis only is not enough. It is also important to check the results from FEM 
software to make sure that the results are reliable. 

There is a project called 'Approach Ring South, Groningen', where the viaduct of main roadway N7 over the Laan 
Corpus den Hoorn in Groningen was widened (Herepoort, 2019). The viaduct deck is called KW03.01. Figure 3 
shows the on-site picture, the satellite image of deck KW03.01 before being widened and the effect picture after 
being widened. The aim of the project is to improve traffic flow, accessibility, safety and quality of life. Extra lanes, 
new connections and level crossings will make the twelve-kilometre ring road safer and make city and region more 
accessible. 
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Figure 3:On-site Picture, Satellite Image and Effect Picture of Deck KW03.01. 

The existing decks were built in 2009, which consists of two parts with same dimensions (Herepoort, 2007, p. 5). For 
simplicity, the existing decks of KW03.01 being widened are referred to as old decks, while the newly casted decks 
to widened existing decks are referred to as new decks. 

After being prestressed, new decks were connected to old decks by connections (Herepoort, 2019). So, the widened 
deck KW03.01 consists of three parts: the old decks built in 2009, the new decks built in 2019 and the connections. 
The sketch of the widened deck KW03.01 is shown in Figure 4. The thickness of the decks varies from ℎ 550 mm 
at the ends to ℎ 850 mm at mid-support, where the mean thickness is ℎ 700 mm. 

 

Figure 4:Sketch of Widened Deck KW03.01. 
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Old decks and new decks are prestressed while the connections are not. Since connections are made after old decks 
and new decks being prestressed, the thermal deformation of old decks and new decks is assumed to be free. As 
results, old decks and new decks only suffer the shortening due to drying, hydration and creep, while connections 
suffer the thermal deformation and the shortening due to cooling, drying and hydration. As shown in Figure 4, the 
width of new deck in north is variable. However, the distribution of prestressing tendons inside the deck, see Figure 
5, enables it to deform without any bending (Herepoort, 2019). 

 

Figure 5:Distribution of Tendons in the North New Deck. 

The thermal deformation and the shortening due to drying, hydration and creep are time-dependent, which grow 
faster in the early age and get slow gradually as the time goes. New decks were built at a time ∆𝑡 11 years after 
old decks being built. After new decks being built, new decks are expected to deform faster than old decks. 
Therefore, after being connected, the old decks are expected to prevent the deformation of new decks, resulting in in-
plane imposed deformation. Similar to shortening of new decks, the shortening of connections also results in in-plane 
imposed deformation. In addition to the imposed deformation, the prestressing force applied to old decks and new 
decks is acting in-plane as well. So the widened deck KW03.01 is subjected to combined actions in-plane. 

During the structure design of widened deck KW03.01, FEM software called SCIA is used to calculate the stress 
resulting from imposed deformation, or in short resulting stress. The results of SCIA is shown in Appendix A2. As 
shown in Appendix A2.4, the resulting stress consumes 41% in maximum of the compressive stress resulting from 
prestressing, which is much more than engineering experience. So, a simple approach is required to check whether 
the prestress consumption calculated by SCIA is reliable or not.  

As shown in Section 4.1, the mean stiffness of not fully cracked tensile member is larger than that of fully cracked 
one, which is expected to result in different magnitudes of stress in concrete when further imposed deformation is 
applied. Therefore, to obtain a reasonable prestress consumption by the simple approach, the impact of cracking has 
to be taken into account. 

4.3 Research Questions 

To carry out the simple approach mentioned in Section 4.2, four research questions have to be answered. Hereby 
summarized the research questions. 

1. What are the models to be used during the simple approach? 

To answer this question, dimensions of the model has to be determined.  

2. What is the mechanics to be used to calculate the impact of connection? 

In addition to the models to be used during the simple approach, the mechanics for structural analysis is 
important as well. Without the mechanics for structural analysis, the stress resulting from the combined actions, 
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especially the imposed deformation, cannot be calculated. To get reliable prestress consumption at the end of the 
simple approach, a reliable mechanics for structural analysis is necessary. 

3. How much is the prestress consumption calculated by the simple approach? 

To answer this question, the answer to the first two research questions are required. Otherwise, the calculation of 
prestress consumption cannot be carried out. The prestress consumption calculated by the simple approach will 
be compared with that calculated by FEM software to answer the final research question.  

4. Whether the prestress consumption calculated by FEM software is reliable?  

This is the final research question of this thesis. To answer this question, the answer to the third research 
questions is required. 

4.4 Scope and Limitation 

The simple approach is to check the mean prestress consumption which is calculated basing on the mean imposed 
deformation and the mean dimensions. For simplicity, it is assumed that the stress distribution resulting from 
combined actions is linear. However, the stress distribution resulting from combined actions is non-linear. 

In the simple approach, prestress is taken constant and uniformly distributed in old decks and new decks. The 
prestress loss consists of the losses due to elastic deformation, friction, shrinkage, creep and relaxation. For 
simplicity, prestress loss is calculated without the impact of imposed deformation, see Appendix A15.1. However, in 
reality, tensile stress resulting from imposed deformation decreases the shortening of the decks and, therefore, 
decreases the prestress loss. Similarly, compressive stress resulting from imposed deformation increases the 
shortening of the decks and, therefore, increases the prestress loss. For simplicity, the impact of imposed deformation 
on the prestress loss mentioned above is neglected. So the prestress consumption calculated by the simple approach 
is conservative in the tensed area but not in the compressed area.   

In the simple approach, cracking is taken into account. The cracked area is taken as the parts of widened deck 
KW03.01 where tensile stress resulting from combined actions exceeds the cracking strength of concrete, and the 
tensile stress resulting from combined actions is calculated without the impact of cracking. However, in real case, 
cracking decreases the stiffness of the decks and, therefore, decreases the tensile stress resulting from combined 
actions. Since it is not effective to estimate the crack pattern step by step, the cracked area of the decks are estimated 
without the impact of cracking. It is expected that the cracked area estimated in the simple approach is larger than 
that in reality.   

As a result, the simple approach can give a general prestress consumption which can be used to check the reliability 
of the results calculated by FEM software. But the prestress consumption cannot be used directly to the structural 
design, for example to determine the exact stress at specific position in the widened deck KW03.01 or to determine 
the amount of reinforcement required.  
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5 Reading Guide 

There are eleven chapters and twenty appendix in this paper. To avoid readers getting lost when reading this paper, a 
flow chart is provided below as a brief reading guide to show the relation between chapters and appendix. 
  

 

check the prestress consumption calculated by SCIA (Chapter 9)

difference between the 
calculations carried out 
by SCIA and the simple 

approach (Chapter 9) 

impact of cracking 
(Appendix A19)

reducing prestress 
consumption by making 

connection later 
(Appendix A15) 

reducing prestress 
consumption by redcing 

prestressing force 
(Appendix A20)

mechanics used in the simple appraoch (Chapter 8)

mechanics without impact of 
shear deformtion (Appendix 

A12)

mechanics with impact of shear 
deformtion (Appendix A13)

advantage and disadvantage of 
two mechanics (Appendix A14)

simplified models used in the simpel approach (Chapter 7)

prestressing steps has no impact on the results of 
the simple approach (Appendix A7) 

simplified dimensions have no impact on the 
results of the simple approach (Appendix A8) 

introduction of the reason to carry out the simple approach (Cahpter 4)

data of calculation carried out by SCIA (Appendix A2) 
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6 Input Data 

6.1 Time History of Construction 

Both the material properties of concrete and the in-plane imposed deformation are related to the age of concrete. To 
inform the age of concrete in the old decks, new decks and connections, time history of construction (Herepoort, 
2019) is summarized. As shown in Figure 6, there are five important timing during the construction of widened deck 
KW03.01. 

𝑡   the timing when the construction of old decks was finished 

𝑡   the timing when the construction of new decks was finished 

𝑡  the timing when the construction of connections was finished, also referred to as the timing to make 
connection 

𝑡  the timing when the connections were stiff enough to restrain the deformation of free 
shrinkage/creep, or in short to produce imposed deformation 

𝑡  the target timing to calculate the remaining prestress force, the imposed deformation and the 
resulting strain and stress, also referred to as 𝑡  

 

Figure 6:Time History of Construction. 

The data of time history of construction is shown in Table 1 and Table 2.  

timing of old deck being built t I 0 years

timing of new deck being built t II 11 years

timing of connection being built Δt II-III 28 days

connected age of connection Δt III-IV 1 days

target time after new deck being built Δt II-V 36500 days  
*∆𝑡 1 𝑑𝑎𝑦𝑠 which means it takes one day for the concrete in connections to get stiff enough to produce imposed deformation, see Appendix 
A3. 

Table 1:Basic Data of Time History of Construction. 

timing of connection being stiff Δt II-IV 29 days

connected age of old deck Δt I-IV 4044 days

connected age of new deck Δt II-IV 29 days

target age of old deck Δt I-V 40515 days

target age of connection Δt III-V 36472 days

target age of new deck Δt II-V 36500 days  
*The data in Table 2 is evaluated basing on the data in Table 1. 

Table 2:Other Data of Time History of Construction. 
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6.2 Material Properties and Environmental Conditions  

As shown in Section 6.1, the material properties of concrete are related to the age of concrete, while the age of 
concrete in old decks, new decks and connections are not same. For simplicity, here only summarized the material 
properties of concrete at time 𝑡 28 days. In addition, the material properties of prestressing cables and the 
environmental conditions of the widened deck KW03.01 are also summarized, see Table 3, Table 4 and Table 5.  

The material properties of concrete at other time in addition to 𝑡 28 days are also used in this case study. The 
expressions used to evaluate these data are shown in Appendix A3. For the convenience of reading, the data is not 
summarized here.  

Environment relative humidity RH 75 % 
Cement (CEM III/B) coefficient related to cement s 0.25   

Concrete (C35/45) 

characteristic strength fck 35 MPa 

gravity γc 25 kN/m3 

compresive strength fcm 43 MPa 

tensile strength fctm 3.2 MPa 

elastic modulus Ecm 34 GPa 

poisson's ratio ν 0.2   

coefficient of thermal expansion αc 0.00001 /℃ 

Prestressing Cable 
(Y1860) 

area of cross-section per cable Ᾱp 1800 mm2 

number of cables in the north one n 25   
number of cables in the south one n 25  

elastic modulus Ep 195 GPa 

Table 3:Basic Data of Material Properties and Environmental Conditions of Old Decks. 

Environment relative humidity RH 75 % 
Cement (CEM III/B) coefficient related to cement s 0.25   

Concrete (C35/45) 

characteristic strength fck 35 MPa 

gravity γc 25 kN/m3 

compression strength fcm 43 MPa 

elastic modulus Ecm 34 GPa 

poisson's ratio ν 0.2   

coefficient of thermal expansion αc 0.00001 /℃ 

Table 4:Basic Data of Material Properties and Environmental Conditions of Connections. 

Environment relative humidity RH 75 % 
Cement (CEM III/B) coefficient related to cement s 0.25   

Concrete (C45/55) 

characteristic strength fck 45 MPa 

gravity γc 25 kN/m3 

compression strength fcm 53 MPa 

elastic modulus Ecm 36 GPa 

poisson's ratio ν 0.2   

coefficient of thermal expansion αc 0.00001 /℃ 
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Prestressing Cable 
(Y1860) 

area of cross-section per cable Ᾱp 2850 mm2 

number of cables in the north one n 14   
number of cables in the south one n 3  

elastic modulus Ep 195 GPa 

Table 5:Basic Data of Material Properties and Environmental Conditions of New Decks. 

6.3 Prestressing Tendons 

The shape of prestressing tendons in the old and the new decks are similar (Herepoort, 2007) (Herepoort, 2019). The 
sketch of prestressing tendons in both old deck and new deck is shown in Figure 7. The coordinates of points on the 
prestressing tendons in old decks and new decks are summarized in Table 6 and Table 7.  

 
*The linear part of tendons in new decks are not shown in Figure 7. 
**𝐿 , the horizontal length of tendon curve 𝑖 
***𝑅 , is the radius of tendon curve 𝑖 
****𝑓 , is the vertical height of tendon curve 𝑖 

Figure 7:Sketch of Tendons. 

-600,275 600,366 1600,413 2600,453 3600,488 4600,520 5600,546
6600,569 7600,588 8000,594 8600,602 9600,608 10600,606 11600,596

12600,578 13600,553 14600,520 15600,480 16600,431 17600,375 18600,310
19600,238 19861,218 20600,190 21339,218 21600,238 22600,310 23600,375
24600,431 25600,480 26600,521 27600,554 28600,579 29600,596 30600,607
31600,608 32600,603 33200,596 33600,590 34600,571 35600,549 36600,523
37600,491 38600,456 39600,415 40600,369 41800,275  

*The data in Table 6 is form of 𝑥, 𝑧 . 
** 𝑥, the horizontal position of certain point in longitudinal direction 
***𝑧, the vertical distance from certain point to the top-surface of deck 

Table 6:Coordinates of Tendons in Old Decks. 

0,275 250,286 750,308 1000,320 2630,385 4270,437 5900,475
7540,499 9170,510 10810,506 12440,488 14070,457 15710,411 17340,352

18980,279 20610,192 20670,188 20730,185 20780,183 20840,181 20900,179
20960,178 21070,176 21190,175 21310,176 21420,178 21480,179 21540,181
21600,183 21650,185 21710,188 21770,192 23400,279 25040,352 26670,411
28310,457 29940,488 31570,506 33210,510 34840,499 36480,475 38110,437
39750,385 41380,320 41630,308 42130,286 42380,275  

*The data in Table 7 is form of 𝑥, 𝑧 . 
** 𝑥, the horizontal position of certain point in longitudinal direction 
***𝑧, the vertical distance from certain point to the top-surface of deck 
****The tendons of which the coordinates in bold is not shown in Figure 7. 

Table 7:Coordinates of Tendons in New Decks. 

 



 
 
 

Wednesday, 04 March 
2020 

 COMBINED ACTIONS 14  

 

According to Table 6, Table 7 and Figure 7, the horizontal length 𝐿  and the vertical height 𝑓  of tendon curve 𝑖 can 
be determined. Substitute the horizontal length 𝐿  and the vertical height 𝑓  into Expression 1 to evaluate the radius 
𝑅  of tendon curve 𝑖. Then, substitute the horizontal length 𝐿  and the radius 𝑅  into Expression 2 to evaluate the total 
angular rotation of tendon. The results are summarized in . 

 𝑅
𝐿

8 ∙ 𝑓
 (1) 

*For Tendon Curve 3, 𝐿  in Expression 1 has to be replaced by 𝐿 2⁄ . 

 𝜃
𝐿
𝑅

 (2) 

*Since the prestressing is applied from two sides of tendon, to evaluate the angular rotation for prestress loss, Expression 2 has to be replaced by 
𝜃 ∑ 𝐿𝑖 𝑅𝑖⁄   

L 1 9.2 m

L 2 11.3 m

L 3 1.5 m

L 4 11.3 m

L 5 9.2 m

total length L 42.4 m

f 1 0.3 m

f 2 0.4 m

f 3 0.0 m

f 4 0.4 m

f 5 0.3 m

R 1 132.4 m

R 2 168.6 m

R 3 9.6 m

R 4 167.7 m

R 5 131.6 m

angular rotation θ 0.4

tendon length

deflection

radius

 

L 1 8.17 m

L 2 11.44 m

L 3 1.16 m

L 4 11.44 m

L 5 8.17 m

total length L 42.38 m

f 1 0.13 m

f 2 0.40 m

f 3 0.02 m

f 4 0.40 m

f 5 0.13 m

R 1 192.00 m

R 2 192.00 m

R 3 10.00 m

R 4 192.00 m

R 5 192.00 m

angular rotation θ 0.32

tendon length

deflection

radius

 

Table 8:Data of Tendons in Old Decks. Table 9:Data of Tendons in New Decks. 
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7 Models 

7.1 General 

As shown in Section 4.2, realistic dimensions of the widened deck KW03.01 is variable. For simplicity, the model 
with realistic dimensions is referred to as realistic model. It is expected that, suppose simplified models with mean 
thickness and width are used, the calculations carried out with simplified models would be much easier than those 
carried out with realistic models.  

As shown in Chapter 1, the aim of this thesis is to provide a simple approach to check the prestress consumption 
calculated during the structure design of widened deck KW03.01. As shown in Section 4.4, the simple approach is to 
check the mean prestress consumption which is calculated basing on the mean imposed deformation and the mean 
dimensions. However, according to the expressions in Appendix A6, the magnitude of imposed deformation is 
related to the dimensions of models. Therefore, before simplified models being used, it has to be proved that using 
simplified models has no impact on the magnitude of mean imposed deformation. Otherwise, simplified models are 
not usable. As a result, investigation is carried out to check whether it is possible or not to use simplified models.  

During the investigation, calculations with mean thickness and mean width are carried out respectively to prove that 
the mean thickness and the mean width can be applied. Suppose the mean imposed deformation calculated by mean 
thickness and mean width is close to that calculated by realistic dimensions, simplified models would be used instead 
of realistic models for the convenience of calculation. 

According to Section 6.1, imposed deformation is produced when connections get stiff enough. As a result, 
according to Table 1 and Table 2, the magnitude of imposed deformation in widened deck KW03.01 is the increment 
of free deformation from time 𝑡 11 years 29 days to time 𝑡 111 years. As shown in Section 4.2, old decks 
and new decks only suffer the shortening due to drying, hydration and creep, while connections suffer the shortening 
due to cooling, drying and hydration. Therefore, the source of imposed deformation in old decks and new deck are 
shrinkage and creep, while those in connections are shrinkage and thermal deformation. 

7.2 Reason of Using Three-layer Models 

As shown in Section 4.2, impact of cracking has to be taken into account during the simple approach. According to 
engineering experience and the results calculated by SCIA, see Appendix A2, connections between old decks and 
new decks are expected to be in tension. Since the tensile strength of concrete is relatively small, connections would 
be cracked due to tension. 

As shown in Appendix A16, cracking decreases the stiffness of connection. As shown in Appendix A19, when the 
stiffness of connection decreases to 40% or less, there would be a large impact on the stress resulting from imposed 
deformation. As a result, to take the impact of cracking into account, models with three layers are used, where the 
layers represent old decks, connection and new decks respectively.   
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7.3 Mean Thickness 

7.3.1 Sketch of Models 

In terms of mean thickness, the models of the south part of the widened deck KW03.01 are used. One is Realistic 
Model 1. In Realistic Model 1, the cushion at the ends of the deck is neglected. As a result, the thickness of the deck 
ℎ in realistic model varies from 550 mm at the ends to 850 mm at the mid-support. The sketch of Realistic Model 1 
is shwon in Figure 8. The other is Simplified Model 1. In Simplified Model 1, instead of using variable thickness, a 
mean thickness of the deck ℎ 700 mm is applied. The sketch of Simplified Model 1 is shwon in Figure 9. 

 

Figure 8:Sketch of Realistic Model 1 (Decks in South). 

 

Figure 9:Sketch of Simplified Model 1 (Decks in South). 
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7.3.2 Imposed Deformation Calculated by Realistic Model 1 and Simplified Model 1 

The distributions of imposed deformation along the deck are calculated by both Realistic Model 1 and Simplified 
Model 1. The imposed deformation of Simplified Model 1 is calculated basing on the data shown in Appendix 
A9.3.3, Appendix A9.3.6 and Appendix A11.2. The imposed deformation of Realistic Model 1 is calculated in a 
similar way as that of Simplified Model 1, where the difference is that the dimensions of Realistic Model 1 are not 
constant but expressed into a function of 𝑥, see Appendix A8.  

As a result, the imposed deformation in Realistic Model 1 is a function of 𝑥 as well. For simplicity, here only 
summarized the results of the calculation. 

7.3.2.1 In-plane Imposed Deformation in Old Deck 

 

Figure 10:In-plane Imposed Deformation in Realistic Model 1 and Simplified Model 1 (Old Deck). 

In Figure 10, the bold lines represent the distribution of imposed deformation Realistic Model 1 while the dashed 
lines represent the distribution of imposed deformation Simplified Model 1. The shrinkage shown in Figure 10 is the 
summation of drying shrinkage and autogenous shrinkage.   

As shown in Figure 10, in terms of the creep in realistic model, point 𝑥 10.6 m is the turning point of the diagram 
of creep. This is caused by the coefficient 𝛽 . According to Expression 37, the relation between creep and the 
coefficient 𝛽  is as follow: 

 𝜑 𝑡, 𝑡 𝜑 ∙ 𝛽 𝑡, 𝑡  (3) 

where: 
𝜑   is the notional creep coefficient  

   𝜑 ∙ 𝛽 𝑓 ∙ 𝛽 𝑡  
 𝜑    is the coefficient related to the effect of relative humidity on the notional creep coefficient 

   1
/

. ∙
 𝑓 35 Mpa  

   1
/

. ∙
∙ 𝛼 ∙ 𝛼  𝑓 35 Mpa  

 ℎ   is the notional size 
   2𝐴 𝑥 𝑢 𝑥⁄  
 𝛽 𝑡, 𝑡  is the coefficient related to the development of creep after loading 
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   𝑡 𝑡 𝛽 𝑡 𝑡⁄ .    
 𝛽   is the coefficient related to relative humidity and notional size 
     1.5 1 0.012𝑅𝐻 ℎ 250 ∙ 𝛼 1500 ∙ 𝛼  𝑓 35 Mpa  

As shown in Figure 11, in the old deck, the value of coefficient 𝛽  reaches the upper limit 1500 ∙ 𝛼  at point 
𝑥 10.6 m. The value of coefficient 𝛽  is variable for points 𝑥 10.6 m, while it is a constant for points 𝑥
10.6 m. So, in the old deck, the slop of the diagram of creep changes significantly at point 𝑥 10.6 m. 
However, in the new deck, the values of coefficient 𝛽  are always smaller than upper limit 1500 ∙ 𝛼 . As a 
result, in the new deck, there is no turning point in the diagram of creep, see Figure 24. 

 

Figure 11:Coefficient 𝛽  in Old and New Deck. 

In addition to the turning point, from point 𝑥 0 m to point 𝑥 21.2 m, the creep in old deck increases when 𝑥
10.6 m while decreases when 𝑥 10.6 m. This is caused by the coefficient 𝜑  and coefficient 𝛽 𝑡, 𝑡 . The relation 
between creep and the coefficients is shown in Expression 3.  

The in-plane imposed deformation ∆𝜀  from creep is the increment of free creep from time 𝑡 𝑡  to time 𝑡 𝑡 . 

∆𝜀 𝜀 𝑡 𝜀 𝑡 𝜑 ∙  𝛽 𝑡 , 𝑡 𝛽 𝑡 , 𝑡  ∙ 𝜀  

On one hand, coefficient 𝜑  is calculated by on 𝜑  which is a function of notional size ℎ . Since the notional size 
ℎ  is a function of 𝑥, the coefficient 𝜑  is not a constant but decreases from point 𝑥 0 m to point 𝑥 21.2 m, see 
Figure 12. On the other hand, coefficient 𝛽 𝑡, 𝑡  is calculated by duration 𝑡 𝑡  and coefficient 𝛽 . Due to the 
impact of both duration 𝑡 𝑡  and coefficient 𝛽 , the value of 𝛽 𝑡 , 𝑡 𝛽 𝑡 , 𝑡  is variable from point 𝑥 0 m 
to point 𝑥 21.2 m, which increases when 𝑥 10.6 m while is constant when 𝑥 10.6 m, see Figure 14 and 
Figure 15. 

So, when 𝑥 10.6 m, the speed of the increment of 𝛽 𝑡 , 𝑡 𝛽 𝑡 , 𝑡  is faster than that of the decrement of 
coefficient 𝜑 , resulting a rising of ∆𝜀 . However, when 𝑥 10.6 m, 𝛽 𝑡 , 𝑡 𝛽 𝑡 , 𝑡  becomes a constant, 
resulting a drop of ∆𝜀 .  

In the new deck, from point 𝑥 0 m to point 𝑥 21.2 m, coefficient 𝜑  keeps dropping while 𝛽 𝑡 , 𝑡
𝛽 𝑡 , 𝑡  keeps rising, see Figure 13 and Figure 17. The speed of the increment of 𝛽 𝑡 , 𝑡 𝛽 𝑡 , 𝑡  is slower 
than that of the decrement of coefficient 𝜑 ,  As a result, in the new deck, ∆𝜀  keeps dropping from point 𝑥 0 m 
to point 𝑥 21.2 m, see Figure 24. 
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Figure 12:Coefficient 𝜑  in Old Deck. Figure 13:Coefficient 𝜑  in New Deck. 

 

Figure 14:Coefficient 𝛽 𝑡, 𝑡  in Old Deck. Figure 15:Difference of Coefficient 𝛽 𝑡, 𝑡  in Old Deck from Time 

𝑡 𝑡  to Time 𝑡 𝑡 . 

 

Figure 16:Coefficient 𝛽 𝑡, 𝑡  in New Deck. 

 
Figure 17:Difference of Coefficient 𝛽 𝑡, 𝑡  in New Deck from 

Time 𝑡 𝑡  to Time 𝑡 𝑡 . 
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7.3.2.2 In-plane Imposed Deformation in Connection 

 

Figure 18:In-plane Imposed Deformation in Realistic Model 1 and Simplified Model 1 (Connection). 

In Figure 18, the bold lines represent the distribution of imposed deformation Realistic Model 1 while the dashed 
lines represent the distribution of imposed deformation Simplified Model 1. The shrinkage shown in Figure 18 is the 
summation of drying shrinkage and autogenous shrinkage. Since the imposed deformation due to thermal contraction 
is constant, see Appendix A3, it has no impact on proving the usability of simplified models and, therefore, is not 
taken into account in Figure 18. 

As shown in Figure 18, in terms of the shrinkage in realistic model, point 𝑥 14.3 m is the turning point of 
the diagram of total shrinkage. This is caused by the coefficient 𝑘 . According to Expression 36, 
considering that there is not prestressing in connection, the relationship between total shrinkage at time 𝑡 
and the coefficient 𝑘  is as follow: 

 𝜀 𝜀 𝑡 𝜀 𝑡  (4) 

where: 
 𝜀 𝑡  is the drying shrinkage 
   𝛽 𝑡, 𝑡 ∙ 𝑘 ∙ 𝜀 ,  

 𝑘   is the coefficient depending on the notional size ℎ , see Figure 26 
 𝛽 𝑡, 𝑡  is the coefficient related to drying shrinkage 

   𝑡 𝑡 𝑡 𝑡 0.04 ℎ  

 𝜀 ,   is the basic drying shrinkage 

The in-plane imposed deformation ∆𝜀  from shrinkage is the increment of free shrinkage from time 𝑡 𝑡  
to time 𝑡 𝑡 . As shown in Figure 19, at time 𝑡 𝑡  and time 𝑡 𝑡 , the drying shrinkage is variable in 
the longitudinal direction of the half deck while the autogenous one is constant. As a result, the variance of 
in-plane deformation ∆𝜀  from shrinkage in the longitudinal direction of the half deck is only from the 
drying shrinkage ∆𝜀 .  

∆𝜀 𝜀 𝑡 𝜀 𝑡  𝛽 𝑡 , 𝑡 𝛽 𝑡 , 𝑡  ∙ 𝑘 ∙ 𝜀 ,  
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Figure 19:Drying Shrinkage and Autogenous Shrinkage in Connection at Time 𝑡 𝑡  and Time 𝑡 𝑡 . 

It is shown in Figure 20 that there is no turning point in the diagram of coefficient 𝛽 𝑡, 𝑡  at time 𝑡 𝑡  and time 
𝑡 𝑡 . However, as shown in Figure 21, turning point occurs at point 𝑥 14.3 m in the diagram of coefficient 𝑘 . 
As shown in Figure 23, the notional size ℎ  in connection varies from 262 mm to 314 mm. Substitute the notional 
size ℎ  into Figure 22, turning point appears when ℎ 300 mm. Substitute ℎ 300 mm into Figure 23, it is 
corresponding to point 𝑥 14.3 m. So, a turning point appears in the diagram of coefficient 𝑘  and, therefore, 
appears in the diagram of total shrinkage.  

 

Figure 20:Coefficient 𝛽 𝑡, 𝑡  in Connection at Time 𝑡 𝑡  and Time 𝑡 𝑡 . 

 

Figure 21:Coefficient 𝑘  in Connection. 
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Figure 22:Relation between Coefficient 𝑘  and Notional Size ℎ . Figure 23:Notional Size ℎ  in Connection. 
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7.3.2.3 In-plane Imposed Deformation in New Deck 

 

Figure 24:In-plane Imposed Deformation in Realistic Model 1 and Simplified Model 1 (New Deck). 

As shown in Figure 10, Figure 18 and Figure 24, a larger height of cross-section results in a larger in-plane imposed 
deformation from shrinkage in old deck, which is opposite to the situations in connection and old deck. This is 
caused by the coefficient 𝑘 . According to Expression 36, the relationship between drying shrinkage and the 
coefficient 𝑘  is as follow: 

 𝜀 𝜀 𝑡 𝜀 𝑡  (5) 

where: 
 𝜀 𝑡  is the drying shrinkage 

    𝛽 𝑡, 𝑡  𝛽 𝑡 , 𝑡  ∙ 𝑘 ∙ 𝜀 ,  

 𝑘   is the coefficient depending on the notional size ℎ , see Figure 26 
 𝛽 𝑡, 𝑡  is the coefficient related to drying shrinkage 

   𝑡 𝑡 𝑡 𝑡 0.04 ℎ  

𝛽 𝑡 , 𝑡  is the coefficient related to drying shrinkage 

   𝑡 𝑡 𝑡 𝑡 0.04 ℎ  

 𝜀 ,   is the basic drying shrinkage 

The in-plane imposed deformation ∆𝜀  from shrinkage is the increment of free shrinkage from time 𝑡 𝑡  to time 
𝑡 𝑡 . As shown in Figure 19, at time 𝑡 𝑡  and time 𝑡 𝑡 , the drying shrinkage is variable in the longitudinal 
direction of the half deck while the autogenous one is constant. As a result, the variance of in-plane deformation ∆𝜀  
in the longitudinal direction of the half deck is only from the drying shrinkage ∆𝜀 . 

∆𝜀 𝜀 𝑡 𝜀 𝑡  𝛽 𝑡 , 𝑡 𝛽 𝑡 , 𝑡  ∙ 𝑘 ∙ 𝜀 ,  
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Figure 25:Drying Shrinkage and Autogenous Shrinkage in Old and New Deck at Time 𝑡 𝑡  and Time 𝑡 𝑡 . 

The coefficient 𝛽 𝑡 , 𝑡  and 𝛽 𝑡 , 𝑡  in old deck are shown in Figure 28, while those in connection and new 
deck are shown in Figure 29. In these figures, a larger height of cross-section results in a larger the difference 
between coefficient 𝛽 𝑡 , 𝑡  and 𝛽 𝑡 , 𝑡 . 

As shown in Figure 27, the notional size ℎ  of the old deck is always larger than 500 mm. Substitute the notional 
size ℎ  into Figure 26, the coefficient 𝑘  in old deck is a constant. So, the magnitude of the in-plane imposed 
deformation ∆𝜀  from shrinkage is dominated by the difference between coefficient 𝛽 𝑡 , 𝑡  and 𝛽 𝑡 , 𝑡 , and, 
therefore, a larger height of cross-section results in a larger in-plane imposed deformation from shrinkage in old 
deck. 

However, when it comes to the connection and new deck, the notional size ℎ  is between 100 mm and 500 mm. 
Substitute the notional size ℎ  into Figure 26, a larger ℎ  results in a smaller coefficient 𝑘  in connection and new 
deck which dominates the magnitude of the in-plane imposed deformation ∆𝜀  from shrinkage, and, therefore, a 
larger height of cross-section results in a smaller in-plane imposed deformation from shrinkage in old deck. 

Figure 26:Relation between Coefficient 𝑘  and Notional Size ℎ . Figure 27:Notional Size ℎ . 
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Figure 28:Coefficient 𝛽  in Old Deck. 

 

Figure 29:Coefficient 𝛽  in Connection and New Deck. 
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7.3.3 Data of Mean Imposed Deformation 

The mean imposed deformation calculated by both Realistic Model 1 and Simplified Model 1 are shown in Table 10. 
According to Table 10, the mean imposed deformation of Realistic Model 1 is close to those of Simplified Model 1. 
As a result, simplified models with mean thickness can be used in the following calculation. 

 

imposed deformation Δε 4.64E-05 m/m 4.62E-05 m/m
shrinkage strain Δε cs (t) 2.65E-05 m/m 2.64E-05 m/m

creep strain Δε cc(t) 1.99E-05 m/m 1.98E-05 m/m

imposed deformation Δε 3.89E-04 m/m 3.91E-04 m/m
shrinkage strain Δε cs (t) 2.77E-04 m/m 2.79E-04 m/m

thermal strain Δε thermal 1.12E-04 m/m 1.12E-04 m/m

imposed deformation Δε 4.37E-04 m/m 4.39E-04 m/m
shrinkage strain Δε cs (t) 2.03E-04 m/m 2.04E-04 m/m

creep strain Δε cc(t) 2.34E-04 m/m 2.35E-04 m/m

New Decks

Name of Data Simplified Model Reallistic Model

Old Decks

Connection

 
Table 10:Summary of Mean Imposed Deformation Calculated in Section 7.3. 

7.4 Mean Width 

7.4.1 Sketch of Models 

In terms of mean width, the models of the north part of the widened deck KW03.01 are used. One is Realistic Model 
2. In Realistic Model 2, the width of the deck 𝑏 in realistic model varies from 7900 mm at one end to 11800 mm at 
the other end. The sketch of Realistic Model 2 is shwon in Figure 30. The other is Simplified Model 2. In Simplified 
Model 2, instead of using variable thickness, a mean width of the deck 𝑏 9850 mm is applied. The sketch of 
Simplified Model 2 is shwon in Figure 31. It is proved in Section 7.3 that the mean thickness can be applied. So, in 
Realistic Model 2 and Simplified Model 2, the mean thickness is applied. 
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Figure 30:Sketch of Realistic Model 2 (Decks in North).  

 
Figure 31:Sketch of Simplified Model 2 (Decks in North). 

7.4.2 Imposed Deformation Calculated by Realistic Model 2 and Simplified Model 2 

The distributions of imposed deformation along the deck are calculated by both Realistic Model 2 and Simplified 
Model 2. The imposed deformation of Simplified Model 2 is calculated basing on the data shown in Appendix 
A9.3.3, Appendix A9.3.6 and Appendix A11.3. The imposed deformation of Realistic Model 2 is calculated in a 
similar way as that of Simplified Model 2, where the difference is that the dimensions of Realistic Model 2 are not 
constant but expressed into a function of 𝑥, see Appendix A8.  

As a result, the imposed deformation in Realistic Model 1 is a function of 𝑥 as well. For simplicity, here only 
summarized the results of the calculation. 
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7.4.2.1 In-plane Imposed Deformation in Old Deck 

 

Figure 32:In-plane Imposed Deformation in Realistic Model 2 (Old Deck). 

7.4.2.2 In-plane Imposed Deformation in Connection 

 

Figure 33:In-plane Imposed Deformation in Realistic Model 2 (Connection). 

Since the imposed deformation due to thermal contraction is constant, see Appendix A3, it has no impact on proving 
the usability of simplified models and, therefore, is not taken into account in Figure 89. 
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7.4.2.3 In-plane Imposed Deformation in New Deck 

 

Figure 34:In-plane Imposed Deformation in Realistic Model 2 (New Deck). 

7.4.3 Data of Mean Imposed Deformation 

The mean imposed deformation calculated by both Realistic Model 2 and Simplified Model 2 are shown in Table 11. 
According to Table 11, the mean imposed deformation of Realistic Model 2 is close to those of Simplified Model 2. 
As a result, simplified models with mean width can be used in the following calculation. 

imposed deformation Δε 4.64E-05 m/m 4.64E-05 m/m
shrinkage strain Δε cs (t) 2.65E-05 m/m 2.65E-05 m/m

creep strain Δε cc(t) 1.99E-05 m/m 2.00E-05 m/m

imposed deformation Δε 3.90E-04 m/m 3.90E-04 m/m
shrinkage strain Δε cs (t) 2.77E-04 m/m 2.78E-04 m/m

thermal strain Δε thermal 1.12E-04 m/m 1.12E-04 m/m

imposed deformation Δε 3.50E-04 m/m 3.47E-04 m/m
shrinkage strain Δε cs (t) 2.05E-04 m/m 2.05E-04 m/m

creep strain Δε cc(t) 1.45E-04 m/m 1.42E-04 m/m

New Decks

Name of Data Simplified Model Reallistic Model

Old Decks

Connection

 

Table 11:Summary of Mean Imposed Deformation Calculated in Section 7.4. 
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7.5 Conclusion 

According to Section 7.3.3 and Section 7.4.3, the mean imposed deformation calculated basing on realistic models 
and simplified models are close. It means that, although the magnitude of imposed deformation is related to the 
dimension of structure, using mean dimensions has no impact on the mean imposed deformation.  

So, Simplified Model 1 and Simplified Model 2, representing the south part and the north part of widened deck 
KW03.01, are used, see Figure 35 and Figure 36. 

 

Figure 35:Sketch of Simplified Model 1 (Decks in South). 

 

Figure 36:Sketch of Simplified Model 2 (Decks in North). 
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8 Mechanics for Structural Analysis  

8.1 General 

In addition to the models used in the simple approach, the mechanics used to calculate stress resulting from imposed 
deformation has to be determined as well. The mechanics used in the simple approach is a mechanics of composited 
cross-section with Bernoulli’s rule. 

At the beginning, the impact of shear deformation is not taken into account (Breugel, 2013, pp. 179 - 183). For 
simplicity, this mechanics without the impact of shear deformation is referred to as Mechanics 1. The introduction of 
Mechanics 1 is shown in Appendix A12. As shown in Appendix A12, equivalent loads of imposed deformation, 
normal force 𝑁 and bending moment 𝑀, are applied to the cross-section of the composited cross-section to calculate 
the strain and stress resulting from imposed deformation. This causes problem when there are three or more layers, 
see Section 8.2 and Section 8.3.  

To solve the problem, shear deformation has to be taken into account. Therefore, another mechanics basing on plate 
theory is studied (Blaauwendraad, 2006, pp. 13 - 25). For simplicity, this mechanics is referred to as Mechanics 2. 
The introduction of Mechanics 2 is shown in Appendix A13. As shown in Appendix A13, deformation of plate is 
simplified into nodal displacement which is the product of stiffness matrix and nodal forces. The stiffness matrix is 
the summation of normal stiffness matrix and shear stiffness matrix, where normal stiffness matrix is about normal 
deformation and shear stiffness matrix is about shear deformation.  

8.2 Disadvantage of Mechanics 1 

In a three-layer structure, suppose the stiffness of mid-layer is zero, it is expected that the deformation in the bottom-
layer would not be transferred to the top-layer due to the extremely soft mid-layer. Therefore, the strain and stress 
resulting from imposed deformation in top-layer are zero. However, this is not the case according to Mechanics 1, 
see Figure 37 and Figure 38. Detailing information of the calculation is shown in Appendix A14.3. For the 
convenience of reading, here only summarized the results of the calculation. 

Suppose there is imposed deformation applied to the bottom layer only, according to Mechanics 1, the equivalent 
bending moment is always non-zero. It means, according to Mechanics 1, the three-layer structure can be taken as a 
beam, where the top- and bottom-layer are the flanges while the mid-layer is the web. The stiffness of web has 
almost no impact on the bending resistance of the beam. Similarly, the stiffness of mid-layer has almost no impact on 
the stress in top- and bottom-layer.  

As a result, according to Mechanics 1, the deformation in the bottom-layer is always transferred to the top-layer even 
if the mid-layer is ‘soft’. It means, in terms of the widened deck KW03.01, Mechanics 1 would give unreliable 
results suppose the stiffness of connection decreases due to cracking. Therefore, to check whether the mid-layer of 
model used in the simple approach is ‘soft’ or not, an improved mechanics taking shear deformation into account is 
introduced. For simplicity, it is referred to as Mechanics 2.  
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Figure 37:Strain Distribution Calculated by Mechanics 1 (M1). Figure 38:Stress Distribution Calculated by Mechanics 1 (M1). 

*It is expected that the strain and stress resulting from imposed deformation in top-layer are zero. However, the strain and stress calculated by 
Mechanics 1 (M1) are non-zero. 

8.3 Advantage of Mechanics 2  

The reason of Mechanics 1 being unreliable is that it does not take shear deformation into account. As an improved 
alternative to Mechanics 1, an improved mechanics taking shear deformation into account is introduced. For 
simplicity, it is referred to as Mechanics 2. The detailing introduction of Mechanics 2 are shown in Appendix A13. 
For the convenience of reading, here provided the brief introduction to the difference between Mechanics 1 and 
Mechanics 2: 

Mechanics 1:  

In this mechanics, it is assumed that, when a composited cross-section is subjected to mechanical load and/or 
imposed deformation, the in-plane curvatures of the composited cross-section is uniform. It means the composited 
cross-section remains flat when it is deformed.  

Equivalent loads of imposed deformation, normal force N and bending moment M, are applied to the cross-section of 
composited cross-section to calculate the strain and stress resulting from imposed deformation. The disadvantage of 
Mechanics 1 is that, with normal force N and bending moment M only, shear deformation is neglected.  

Mechanics 2: 

Mechanics 2 is basing on plate theory. According to Mechanics 2, deformation of plate is simplified into nodal 
displacement which is the product of stiffness matrix and nodal forces. When a composited structure subjected to 
imposed deformation is analyzed by Mechanics 2, the layers of the composited cross-section are spit which makes 
the layers free to deform. Then deformation compatibility is restored so that the deformed layers are able to be 
connected.  

Since the stiffness matrix and nodal forces in the layers could be different, the in-plane curvature of each layer could 
be different. It means the composited cross-section will not remain flat when it deforms due to imposed deformation. 
The advantage of Mechanics 2 is that, with shear stiffness taken into account, the shear deformation is taken into 
account. 
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Calculation is carried out to the same three-layer structure mentioned in Section 8.2, see Figure 39 and Figure 40. 
Detailing information of the calculation is shown in Appendix A14.3. For the convenience of reading, here only 
summarized the results of the calculation. As a result, according to Mechanics 2, the deformation in the bottom-layer 
cannot be transferred to the top-layer if the elastic modulus applied to mid-layer is close to zero. 

  

Figure 39:Strain Distribution Calculated by Mechanics 2 (M2). Figure 40:Stress Distribution Calculated by Mechanics 2 (M2). 

*It is expected that the strain and stress resulting from imposed deformation in top-layer are zero. The strain and stress calculated by Mechanics 
2 (M2) suit the expectation. 

8.4 Conclusion 

As for three-layer models, suppose the normal stiffness of mid-layer is relatively small, Mechanics 2 would be 
preferred which is able to give more reliable results than Mechanics 1. However, according to Appendix A19.4, in 
terms of widened deck KW03.01, There is no advantage of Mechanics 2 unless the elastic modulus of concrete in 
connections decrease to about 40% or less. According to Appendix A19.3, the elastic modulus of concrete in south 
and north decreases to 96% and 99% respectively due to cracking, which are much larger than 40%. Therefore, both 
Mechanics 1 and Mechanics 2 are capable to calculate the stress resulting from imposed deformation in widened 
deck KW03.01. 
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9 Calculation  

9.1 General 

With models and mechanics determined, see Chapter 7 and Chapter 8, the simple approach is carried out to calculate 
the stress resulting from imposed deformation and the compressive stress in concrete consumed by the stress 
resulting from imposed deformation. The final results of the simple approach are used to check the results of 
calculation carried out by SCIA. 

In the simple approach, the calculation consists of two steps. In first step, calculation is carried out without cracking 
taken into account. The aim of the first step is to determine cracked area of widened deck KW03.01 when it is 
subjected to combined actions, where combined actions are the imposed deformation and prestressing forces. The 
cracked area is taken as the parts of widened deck KW03.01 where tensile stress resulting from combined actions 
exceeds the cracking strength of concrete. According to the calculation of first step, only connections are cracked, 
see Appendix A19.2. In second step, to take cracking into account, the normal stiffness of connections is re-
evaluated by the expressions shown in Appendix A16 basing on the magnitudes of tensile deformation. Then, the 
stress resulting from imposed deformation and the compressive stress in concrete consumed by the stress resulting 
from imposed deformation are calculated as the final results of the simple approach. 

The final results of the simple approach are used to check the results of calculation carried out by SCIA. The 
calculation carried out by SCIA is linear elastic. The inputs of the calculation, for example the magnitude of imposed 
deformation and material properties are constant, which are calculated by engineers instead of SCIA basing on the 
time history of constructions. During the calculation carried out by SCIA, 4-nodes Mindlin element are used where 
the mash size is 250 mm.    

9.2 Results of SCIA and the Simple Approach 

The aim of this thesis is to provide a simple approach to check whether the prestress consumption in widened deck 
KW03.01 is reliable or not which is calculated by FEM software called SCIA. According to Chapter 7, Simplified 
Model 1 and Simplified Model 2 with mean dimensions are used in the simple approach. According to Chapter 8 and 
Appendix A19.4, both Mechanics 1 and Mechanics 2 without the impact of cracking is capable to calculate the stress 
resulting from imposed deformation in widened deck KW03.01. 

In Appendix A19.4, to estimate the area which is possible to be cracked, calculation without cracking is first carried 
out. As shown in Appendix A15, if connections are made at time ∆𝑡 28 days, connections will be the only 
area which are possible to be cracked. Then re-calculation with the impact of cracking is carried out to investigate the 
stiffness of layers in widened deck KW03.01, see Appendix A19. As shown in Appendix A19, both Mechanics 1 and 
Mechanics 2 give sufficiently accurate results. 

Now that models and mechanics used in the simple approach have been determined, calculations are carried out to 
the widened deck KW03.01 for the stress resulting from imposed deformation and the prestress consumption in 
proportion, where prestress consumption in proportion is the ratio of stress resulting from imposed deformation and 
compressive stress resulting from prestressing.  

The stress resulting from imposed deformation calculated by SCIA are shown in Figure 41 and Figure 43, while 
those calculated by the simple approach are shown in Figure 42 and Figure 45. Figure 42 and Figure 45 are also 
shown in Appendix A19.2. The magnitudes of stress in each layer are shown in the tables next to the figures. As 
shown in the tables, although there are large prestress consumption in both SCIA and simple approach, the stress 
resulting from imposed deformation and prestress consumption in proportion calculated by SCIA are smaller than 
those calculated by the simple approach. Therefore, investigation is carried out to check the source of difference, see 
Section 9.3. 
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Figure 41:Stress Calculated by 
SCIA in South. 

Figure 42:Stress Calculated by 
Mechanics 2 (M2) with and without 
Cracking in South. 

 

 

 

 

 

 

 

 

 

 

Figure 43:Stress 
Calculated by SCIA 
in North at Axis 1-2. 

Figure 44:Stress 
Calculated by SCIA 
in North at Axis 2-3. 

Figure 45:Stress Calculated by 
Mechanics 2 (M2) with and without 
Cracking in North.  

 

1 MPa 15% 1.9 MPa 26%
-2.7 MPa -40% -3.3 MPa -46%

1 MPa 2.1 MPa
0.9 MPa 1.9 MPa
3.2 MPa 40% 4.3 MPa 51%
2.3 MPa 29% 3.6 MPa 44%

Old Deck

Connection

New Deck

SCIA Simple Approach

 

1.5 MPa 22% 1.9 MPa 26%
-2.3 MPa -34% -3.4 MPa -47%
1.1 MPa 2.0 MPa

1 MPa 1.9 MPa
2.4 MPa 41% 2.7 MPa 41%
-1 MPa -17% -1.2 MPa -19%

Old Deck

Connection

New Deck

SCIA (Axis 1-2) Simple Approach

 

1.5 MPa 22% 1.87 MPa 26%
-2.6 MPa -38% -3.4 MPa -47%

1 MPa 1.98 MPa
0.9 MPa 1.85 MPa
2.9 MPa 40% 2.65 MPa 41%

-1.6 MPa -22% -1.2 MPa -19%

Old Deck

Connection

New Deck

SCIA (Axis 2-3) Simple Approach
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9.3 Sources of Different Stress Resulting from Imposed Deformation and 
Prestress Consumption in Proportion 

9.3.1 Models and Mechanics 

Models used in SCIA and the simple approach are different. In the simple approach, simplified models with mean 
dimensions are used, see Section 7.5. However, in SCIA, realistic models are used, see Appendix A2.2.  

In addition to the dimensions of models, the mechanics in SCIA and the simple approach are different as well. On 
one hand, the mechanics of FEM is different from the mechanics of composited cross-section mentioned in 
Appendix A12 and Appendix A13. On the other hand, it is assumed that the deformation of models are fully 
restrained in the simple approach, but not in SCIA. As a result, it is expected that the results of the simple approach 
would be larger than those of SCIA.  

9.3.2 Elastic Modulus 

The elastic modulus of concrete applied to models in SCIA and the simple approach are different. For simplicity, 
hereby only summarized the situation in the south part of widened deck KW03.01, see Table 12. The elastic modulus 
of concrete applied in SCIA is shown in Appendix A2.6, while those applied in the simple approach is shown in 
Appendix A19.2. The evaluation of other elastic modulus are shown in Expression 6 to Expression 10. 

Old Deck E cm (t) 13.4 GPa 23.4 GPa

Connection E cm (t) 5.1 GPa 9.7 GPa

New Deck E cm (t) 15.8 GPa 17.9 GPa

SCIA Simple Approachelastic modulus of concrete

 
 Table 12:Elastic Modulus of Concrete in South. 

 old deck (uncracked – SCIA) 

 𝐸 𝑡
𝐸

1 0.8 ∙ 𝜑 𝑡, 𝑡
34.08

1 0.8 1.93
13.40 GPa (6) 

 connection (cracked – SCIA) 

 𝐸 3.10 670 ∙ 𝜌 10 3.10 670 2.99 10 10 5.11 GPa (7) 

where: 
 𝜌  is the reinforcement ratio 
   2094 mm 1000 700  mm 2.99 10⁄  

new deck (uncracked – SCIA) 

 𝐸 𝑡
𝐸

1 0.8 ∙ 𝜑 𝑡, 𝑡
36.28

1 0.8 1.62
15.80 GPa (8) 

old deck (uncracked – simple approach) 

 𝐸 𝑡
𝐸

1 0.8 ∙ 𝜑 𝑡, 𝑡
34.00

1 0.8 0.57
23.40 GPa (9) 

new deck (uncracked – simple approach) 

 𝐸 𝑡
𝐸

1 0.8 ∙ 𝜑 𝑡, 𝑡
36.00

1 0.8 1.26
17.89 GPa (10) 

According to Expression 6 to Expression 10, the creep factor 𝜑 𝑡, 𝑡  evaluated in SCIA are larger than those 
evaluated in the simple approach. Besides, in SCIA and the simple approach, the expressions to evaluate the elastic 
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modulus of concrete in connections are different as well. According to Appendix A2.6 and Appendix A19.2, only 
connections are expected to be cracked. As for the calculation carried out by SCIA, expressions from NEN 6720 are 
used evaluate the elastic modulus of concrete, see Expression 7. However, in terms of widened deck KW03.01 where 
in-plane loads are taken into account, the expressions introduced in Appendix A16 are recommended to evaluate the 
elastic modulus of concrete. For detailing information, see Appendix A21. 

9.3.3 Imposed Deformation 

Although the sources of imposed deformation taken into account in SCIA and the simple approach are same, the 
imposed deformation applied to models in SCIA and the simple approach are different. For simplicity, hereby only 
summarized the situation in the south part of widened deck KW03.01, see Table 13.  

Old Deck Δε 6.1E-05 m/m 4.6E-05 m/m
Connection Δε 4.6E-04 m/m 3.9E-04 m/m
New Deck Δε 4.9E-04 m/m 4.4E-04 m/m

SCIA Simple Approachelastic modulus of concrete

 
Table 13:Imposed Deformation in South. 

The detailing information of imposed deformation is shown in Table 14 and Table 15. According to Table 14 and 
Table 15, difference of imposed deformation between SCIA and the simple approach is mainly from creep. imposed 
deformation caused by creep in SCIA is much larger than that in the simple approach. The reason is that the creep in 
SCIA is calculated with a larger prestressing stress. The thickness of deck is denoted as ℎ. According to the data file 
of SCIA, when calculating creep, the prestressing stress at cross-section ℎ 550 mm is used. However, in the 
simple approach, the prestressing stress at cross-section ℎ 700 mm is used. With similar prestressing force, a 
smaller cross-section results in larger prestressing stress and, therefore, more creep.  

drying shrinkage ε cd (t) 2.07E-04 m/m 1.80E-04 m/m 2.70E-05 m/m

autogenous shrinkage ε ca (t) 5.12E-05 m/m 5.12E-05 m/m 0.00E+00 m/m

creep ε cc (t) 4.62E-04 m/m 4.27E-04 m/m 3.50E-05 m/m

creep factor (t 0 = 7 days)

drying shrinkage ε cd (t) 2.06E-04 m/m 0.00E+00 m/m 2.06E-04 m/m

autogenous shrinkage ε ca (t) 5.12E-05 m/m 0.00E+00 m/m 5.12E-05 m/m

thermal deformation ε ct (t) m/m 2.00E-04 m/m

drying shrinkage ε cd (t) 1.83E-04 m/m 1.10E-05 m/m 1.72E-04 m/m

autogenous shrinkage ε ca (t) 7.16E-05 m/m 4.13E-05 m/m 3.03E-05 m/m

creep ε cc (t) 4.16E-04 m/m 1.30E-04 m/m 2.86E-04 m/m

creep factor (t 0 = 7 days) ϕ(t,t 0 )

t  = 4015 days

1.63 0.51

2.00E-04

Old Deck

Connection t  = 36500 days t  = 1 days

New Deck t  = 36500 days t  = 28 days

1.93 1.79

t  = 40515 days

final

final

final

 
Table 14:Imposed Deformation in South (SCIA). 
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drying shrinkage ε cd (t) 1.99E-04 m/m 1.72E-04 m/m 2.65E-05 m/m

autogenous shrinkage ε ca (t) 5.12E-05 m/m 5.12E-05 m/m 0.00E+00 m/m

creep ε cc (t) 2.69E-04 m/m 2.49E-04 m/m 1.99E-05 m/m

creep factor (t 0 = 3 days)

creep factor (t 0 = 7 days)

creep factor (t 0 = 28 days)

drying shrinkage ε cd (t) 2.26E-04 m/m 0.00E+00 m/m 2.26E-04 m/m

autogenous shrinkage ε ca (t) 5.12E-05 m/m 0.00E+00 m/m 5.12E-05 m/m

thermal deformation ε ct (t) m/m 1.12E-04 m/m

drying shrinkage ε cd (t) 1.82E-04 m/m 8.87E-06 m/m 1.74E-04 m/m

autogenous shrinkage ε ca (t) 7.16E-05 m/m 4.18E-05 m/m 2.98E-05 m/m

creep ε cc (t) 3.41E-04 m/m 1.07E-04 m/m 2.34E-04 m/m

creep factor (t 0 = 7 days) ϕ(t,t 0 )

old deck

connection t  = 36472 days t  =  1 days

new deck t  = 36500 days t  = 29  days

ϕ(t,t 0 )

2.26 2.09

1.93 1.79

t  = 40515 days

final

t  = 4044 days

1.49 1.37

final

final

1.65 0.52

1.12E-04

 
Table 15:Imposed Deformation in South (Simple Approach). 

9.3.4 Contribution of Each Source 

According to Section 9.3.1 to Section 9.3.3 different models and mechanics, different elastic modulus of concrete 
and different imposed deformation used in SCIA and the simple approach, which are referred to as sources of 
different stress resulting from imposed deformation and different prestress consumption calculated by SCIA and the 
simple approach. For simplicity, the stress resulting from imposed deformation is referred to as resulting stress.  

To investigate the contribution of each source, resulting stress are calculated in steps with different models, 
mechanics, elastic modulus of concrete and imposed deformation, see Table 16. By comparing the results of Step 0 
and Step 1, contribution of different models and mechanics is investigated. By comparing the results of Step 1 and 
Step 2, contribution of different elastic modulus of concrete is investigated. By comparing the results of Step 2 and 
Step 3, contribution of different imposed deformation is investigated. 

Models Mechanics
Elastic 

Modulus of 
Concrete

Imposed 
Deformation

Step 0 SCIA SCIA SCIA SCIA

Step 1
Simple 

Approach
Simple 

Approach
SCIA SCIA

Step 2
Simple 

Approach
Simple 

Approach
Simple 

Approach
SCIA

Step 3
Simple 

Approach
Simple 

Approach
Simple 

Approach
Simple 

Approach  
Table 16:Models, Mechanics, Elastic Modulus of Concrete and Imposed Deformation Used in Each Step. 

The stress resulting from imposed deformation calculated in each step are shown in Table 17 to Table 19. According 
to Table 17 to Table 19, from Step 0 to Step 3, the difference of models and mechanics contributes about 20% to the 
difference of resulting stress, while the difference of elastic modulus of concrete contributes about 80%.  

The resulting stress calculated in Step 1 is larger than that calculated in Step 0. It means using models and mechanics 
from the simple approach increases resulting stress, which suits the expectation in Section 9.3.1.  In addition, the 
contribution of different imposed deformation shown in Step 3 is always small in connections. The reason is that, 
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according to Section 9.3.3, difference of imposed deformation between SCIA and the simple approach is mainly 
from creep, while there is no creep in connections.   

 
 
 

 

   
Figure 46:Stress Resulting from Imposed Deformation from Step 0 to Step 3 in South. 

1 MPa 0% 1.4 MPa 42% 2.0 MPa 58% 1.9 MPa -16%

-2.7 MPa 0% -2.5 MPa -22% -3.6 MPa 122% -3.3 MPa -33%

1 MPa 0% 1.1 MPa 7% 2.0 MPa 93% 2.1 MPa 7%

0.9 MPa 0% 1.0 MPa 8% 1.9 MPa 92% 1.9 MPa 5%

3.2 MPa 0% 3.5 MPa 23% 4.7 MPa 77% 4.3 MPa -28%

2.3 MPa 0% 2.8 MPa 29% 4.0 MPa 71% 3.6 MPa -22%

Step 3Step 0

Old Deck

Connection

New Deck

Step 1 Step 2

 
Table 17:Stress Resulting from Imposed Deformation from Step 0 to Step 3 in South and Contribution to Difference in Each Step. 

 
 
 
 

Axis 1-2 

 
 
 
 

 
Axis 2-3 

   
Figure 47:Stress Resulting from Imposed Deformation from Step 0 to Step 3 in North. 
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1.5 MPa 0% 1.4 MPa -7% 2.7 MPa 107% 1.9 MPa -68%

-2.3 MPa 0% -2.9 MPa 23% -4.7 MPa 77% -3.4 MPa -55%

1.1 MPa 0% 0.9 MPa -21% 2.0 MPa 121% 2.0 MPa 2%

1 MPa 0% 0.8 MPa -21% 1.8 MPa 121% 1.9 MPa 9%

2.4 MPa 0% 3.1 MPa 51% 3.8 MPa 49% 2.7 MPa -81%

-1 MPa 0% -1.7 MPa 92% -1.7 MPa 8% -1.2 MPa -67%

Step 3Step 0

Old Deck

Connection

New Deck

Step 1 Step 2

 
Table 18:Stress Resulting from Imposed Deformation from Step 0 to Step 3 in North and Contribution to Difference in Each Step 
(Axis 1-2). 

1.5 MPa 0% 1.4 MPa -7% 2.7 MPa 107% 1.9 MPa -68%

-2.6 MPa 0% -2.9 MPa 12% -4.7 MPa 88% -3.4 MPa -63%

1 MPa 0% 0.9 MPa -8% 2.0 MPa 108% 2.0 MPa 2%

0.9 MPa 0% 0.8 MPa -7% 1.8 MPa 107% 1.9 MPa 8%

2.9 MPa 0% 3.1 MPa 22% 3.8 MPa 78% 2.7 MPa -129%

-1.6 MPa 0% -1.7 MPa 50% -1.7 MPa 50% -1.2 MPa -400%

Step 3Step 0

Old Deck

Connection

New Deck

Step 1 Step 2

 
Table 19:Stress Resulting from Imposed Deformation from Step 0 to Step 3 in North and Contribution to Difference in Each Step 
(Axis 2-3). 

It has to be mentioned that, although the creep in old decks is small in magnitude, the difference of creep in 
proportion between SCIA and the simple approach is large. As a result, difference of imposed deformation in 
proportion between SCIA and the simple approach is large, which results in large contribution to the difference of 
resulting stress in old decks. 

Besides, when it comes to new decks in north, see Table 18 and Table 19, the contribution of different models and 
mechanics can be equal to or even larger than the contribution of different elastic modulus of concrete. The reason is 
that, for other parts of widened deck KW03.01, the cross-section of simplified models used in the simple approach is 
same as those at Axis 1-2 and Axis 2-3 in SCIA, but not for new deck in north. As a result, the contribution of 
different models is large in new deck in north.  

9.4 Discussion 

9.4.1 General 

According to Section 9.2, although there are large prestress consumption in both SCIA and simple approach, the 
stress resulting from imposed deformation and prestress consumption in proportion calculated by SCIA are smaller 
than those calculated by the simple approach. The sources of the differences and the contribution of each source are 
investigated in Section 9.3. Basing on these investigation, hereby provided a discussion on improving the calculation 
carried out by SCIA and reducing prestress consumption. 

9.4.2 Improving the Calculation Carried out by SCIA 

As shown in Section 9.3.2, when evaluating the elastic modulus of concrete, the creep factors 𝜑 𝑡, 𝑡  evaluated in 
SCIA are larger than those evaluated in the simple approach. In general, there are two things related to creep factor 
𝜑 𝑡, 𝑡 . On one hand, since imposed deformation is a long-term load, creep factor is used to evaluate the elastic 
modulus of concrete, see Expression 6 to Expression 10. On the other hand, since imposed deformation includes the 
deformation due to creep, creep factor is used to calculate imposed deformation, see Table 14 and Table 15.  

When evaluating the elastic modulus of concrete, factor 𝑡  represents the timing when the long-term load is applied. 
As for widened deck KW03.01, factor 𝑡  is time 𝑡 𝑡  when connections get hard enough to produce imposed 
deformation.  
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However, when calculating the imposed deformation, or to be specific the deformation due to creep, factor 𝑡  
represents the timing when the creep begins. As for widened deck KW03.01, factor 𝑡  should be the timing when 
prestressing is applied.  

According to Section 6.1, connections are made after new decks being prestressed. It means the imposed deformation 
is applied to widened deck KW03.01 after prestressing. Therefore, the factor 𝑡  used to evaluate the creep factor 
𝜑 𝑡, 𝑡  for elastic modulus of concrete should be different from that used to evaluate the creep factor 𝜑 𝑡, 𝑡  for 
imposed deformation. However, in SCIA, same factor 𝑡  is used to evaluate the creep factor 𝜑 𝑡, 𝑡  for elastic 
modulus of concrete and imposed deformation. 

As shown in Section 9.3.2, different elastic modulus of concrete contributes about 80% to the difference of stress 
resulting from imposed deformation. Therefore, it is expected that evaluating elastic modulus of concrete with proper 
factor 𝑡  and creep factor 𝜑 𝑡, 𝑡  as mentioned above would improve the calculation of SCIA and make the results 
of SCIA more reliable. 

In addition to factor 𝑡  and creep factor 𝜑 𝑡, 𝑡 , in SCIA and the simple approach, expressions to evaluate the elastic 
modulus of cracked concrete are different as well. As for SCIA, the elastic modulus of connections is constant and 
evaluated as if the connections are fully cracked, see Expression 7. However, in the simple approach, the elastic 
modulus of cracked concrete is evaluating as a function of imposed deformation, see Appendix A16.  

According to Section 4.1, imposed deformation may result in not fully developed crack pattern. Therefore, it is 
expected that using expressions shown in Appendix A16 to evaluate the elastic modulus of cracked concrete would 
improve the calculation of SCIA and make the results of SCIA more reliable as well.      

9.4.3 Reducing Prestress Consumption 

Prestress consumption is the compressive stress in concrete which is consumed by the tensile stress resulting from 
imposed deformation. According to Section 9.2, although the stress resulting from imposed deformation and 
prestress consumption in proportion calculated by SCIA are smaller than those calculated by the simple approach, 
there are large prestress consumption in both SCIA and simple approach. So, it is ensured that the prestress 
consumption in widened deck KW03.01 would be large at time 𝑡 .  

As shown in Appendix A20.3, neither increasing nor decreasing the prestressing force in new decks would help 
reduce prestress consumption. It is more practical to reduce prestress consumption by making connection as late as 
possible, see Appendix A15. However, as shown in Appendix A15, suppose the tensile strength of concrete is 
neglected, new decks are always cracked no matter when connections are made. Therefore, making connections later 
can only help decrease prestress consumption but not avoid cracking.  

To be specific, stress resulting from imposed deformation in south and north are calculated with three different 
timing to make connection, ∆𝑡 28 days, ∆𝑡 60 days and ∆𝑡 90 days. For simplicity, hereby 
only shown the results of the calculation, see Figure 48 and Figure 49. The change of resulting stress due to later 
timing to make connections are shown in the tables next to the figures, where positive means increasing while 
negative means decreasing. 
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Figure 48:Stress Resulting from Imposed Deformation in South with Different Timing to Make Connection. 

 
Figure 49:Stress Resulting from Imposed Deformation in North with Different Timing to Make Connection. 
  

1.85 MPa 1.66 MPa 1.54 MPa
-3.24 MPa -2.92 MPa -2.7 MPa
1.98 MPa 1.98 MPa 1.98 MPa
1.89 MPa 1.88 MPa 1.86 MPa
4.23 MPa 3.78 MPa 3.47 MPa
3.60 MPa 3.18 MPa 2.89 MPa

Δt II-III  = 90 days

Old Deck

Connection

New Deck

Δt II-III  = 28 days Δt II-III  = 60 days

 

1.86 MPa 1.61 MPa 1.47 MPa
-3.36 MPa -2.98 MPa -2.74 MPa
1.98 MPa 1.97 MPa 1.97 MPa
1.85 MPa 1.87 MPa 1.88 MPa
2.63 MPa 2.43 MPa 2.29 MPa

-1.23 MPa -1.18 MPa -1.13 MPa

Δt II-III  = 90 days

Old Deck

Connection

New Deck

Δt II-III  = 28 days Δt II-III  = 60 days

 

0.0 % -10.3 % -16.8 %
0.0 % -9.9 % -16.7 %
0.0 % 0.0 % 0.0 %
0.0 % -0.5 % -1.6 %
0.0 % -10.6 % -18.0 %
0.0 % -11.7 % -19.7 %

Δt II-III  = 90 days

Old Deck

Connection

New Deck

Δt II-III  = 28 days Δt II-III  = 60 days

 

0.0 % -13.4 % -21.0 %
0.0 % -11.3 % -18.5 %
0.0 % -0.5 % -0.5 %
0.0 % 1.1 % 1.6 %
0.0 % -7.6 % -12.9 %
0.0 % -4.1 % -8.1 %

Δt II-III  = 90 days

Old Deck

Connection

New Deck

Δt II-III  = 28 days Δt II-III  = 60 days
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10 Conclusions 

There is a project called 'Approach Ring South, Groningen', where the viaduct of main roadway N7 over the Laan 
Corpus den Hoorn in Groningen was widened (Herepoort, 2019). The viaduct deck is called KW03.01. For 
simplicity, the existing decks of KW03.01 being widened are referred to as old decks, while the newly casted decks 
to widened existing decks are referred to as new decks. 

After new decks being prestressed, old decks and new decks are connected. Since the concrete in new decks is 
younger than that in old decks, it is expected that the deformation of new decks would be larger and restrained by the 
old decks. As a result, imposed deformation is produced, see Section 4.2. Due to the tensile stress resulting from 
imposed deformation, the compressive stress in concrete resulting from prestressing is consumed. For the 
convenience of reading, the consumed compressive stress in concrete is referred to as prestress consumption.   

A software called SCIA is used to calculate the prestress consumption in new decks. According to SCIA, the 
maximum prestress consumption in new decks are 40% and 41% respectively in south and north. To check whether 
the prestress consumption in widened deck KW03.01 is reliable or not, a simple approach is introduced.  

To take into account the cracking at connections between old decks and new decks, three-layer models representing 
old decks, new decks and connections are used in the simple approach. The realistic dimensions of widened deck 
KW03.01 are variable, see Section 4.2. For simplicity, in the simple approach, the dimensions of models are 
simplified to the mean values of realistic dimensions. It is proved that a simplification of using mean thickness and 
width has almost no impact on the magnitude of imposed deformation, see Chapter 7.  

The mechanics used in the simple approach is a mechanics of composited cross-section with Bernoulli’s rule. At the 
beginning of investigation, the impact of shear deformation is not taken into account. For simplicity, it is referred to 
as Mechanics 1. The disadvantage of Mechanics 1 is that stress resulting from imposed deformation calculated by 
Mechanics 1 is not reliable when the mid-layer (connection) of model is ‘soft’, see Section 8.2 and Section 8.3. 
Therefore, to check whether the mid-layer (connection) of model is ‘soft’ or not, an improved mechanics taking 
shear deformation into account is introduced. For simplicity, it is referred to as Mechanics 2.  

According to the stress resulting from imposed deformation calculated by Mechanics 1 and Mechanics 2, it is proved 
that Mechanics 2 is preferred when the mid-layer (connection) is ‘soft’. As for widened deck KW03.01, the mid-
layer (connection) would be taken as ‘soft’ when the normal stiffness of mid-layer (connection) decreasing to 40% 
or less due to cracking.  

However, as for widened deck KW03.01, the normal stiffness of connection in south and north decrease to 96% and 
99% due to cracking respectively, which are much larger than 40%, see Appendix A19.3. Therefore, as for widened 
deck KW03.01, Mechanics 1 and Mechanics 2 give same results and both of them can be used in the simple 
approach. In the end, Mechanics 2 is chosen. 

According to the simple approach, the maximum prestress consumption in new decks are 51% and 40% respectively 
in south and north. Compared with the results of SCIA, 40% and 41%, it is proved that prestress consumption about 
40% or more at time 𝑡  in new decks are reliable. However, it does not mean there is no problem in calculation 
carried out by SCIA. The problem is that the input of SCIA is not evaluated properly, see Section 9.3. When 
evaluating elastic modulus of concrete, the factor 𝑡  of creep factor 𝜑 𝑡, 𝑡  was taken as the starting date of old 
decks and new decks being build, while it should be the date when connections being made. When evaluating creep, 
to simplify the evaluation, stress in concrete at cross-section ℎ 550 mm was used, while it should be that at cross-
section ℎ 700 mm.  

In addition, as shown in Appendix A20.3, neither increasing nor decreasing the prestressing force in new decks 
would help reduce prestress consumption. It is more practical to reduce prestress consumption by making connection 
as late as possible, see Appendix A15. However, as shown in Appendix A15, suppose the tensile strength of concrete 
is neglected, new decks are always cracked no matter when connections are made. Therefore, making connections 
later can only help decrease prestress consumption but not avoid cracking.  
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11 Recommendations 

11.1 General 

The difference in the calculations carried out by SCIA and the simple approach are investigated, where the simple 
approach is carried out to check the prestress consumption calculated by SCIA. According to Section 9.3 the 
calculation carried out by SCIA has to be improved. Some recommendations to improve the calculation carried out 
by SCIA has been shown in Section 9.4.2. For the convenience of reading, hereby provides recommendations to 
improve the calculation carried out by SCIA again, together with recommendations on checking the results of SCIA.  

11.2 About Models 

As shown in Chapter 7, when a deck with variable dimensions is subjected to combined actions, it is proper to use 
simplified models with mean dimensions to calculate the stress resulting from combined actions. With simplified 
models, mechanics of composited cross-section can be easily used such as those introduced in Appendix A12 and 
Appendix A13.   

11.3 About Factor 𝒕𝟎 and Creep Factor 𝝋 𝒕, 𝒕𝟎  to Evaluate Elastic Modulus of 
Concrete and Imposed Deformation 

As shown in Section 9.4.2, the factor 𝑡  used to evaluate the creep factor 𝜑 𝑡, 𝑡  for elastic modulus of concrete 
should be different from that used to evaluate the creep factor 𝜑 𝑡, 𝑡  for imposed deformation. 

When evaluating the elastic modulus of concrete, factor 𝑡  represents the timing when the long-term load is applied. 
As for widened deck KW03.01, factor 𝑡  is time 𝑡 𝑡  when connections get hard enough to produce imposed 
deformation.  

However, when calculating the imposed deformation, or to be specific the deformation due to creep, factor 𝑡  
represents the timing when the creep begins. As for widened deck KW03.01, factor 𝑡  should be the timing when 
prestressing is applied.  

11.4 About Expressions to Evaluate Elastic Modulus of Cracked Concrete 

According to Section 4.1, imposed deformation may result in not fully developed crack pattern. Therefore, it is 
expected that using expressions shown in Appendix A16 to evaluate the elastic modulus of cracked concrete would 
improve the calculation and make the results of calculation more reliable.    

11.5 About Mechanics Used during Calculation   

As for widened deck KW03.01, since it is almost impossible for the stiffness of connections to decrease to 40% or 
less, to calculate the stress resulting from imposed deformation and the compressive stress in concrete consumed by 
the stress, it is more effective to use Mechanics 1 to check the results of SCIA, see Appendix A12. However, for 
other projects, Since it is unknown whether there is large shear deformation or not before carrying out a calculation, 
it is suggested to use Mechanics 2 for a more reliable solution, see Appendix A14. 

11.6 About Reducing Prestress Consumption 

In addition, as shown in Appendix A20.3, neither increasing nor decreasing the prestressing force in new decks 
would help reduce prestress consumption. It is more practical to reduce prestress consumption by making connection 
as late as possible, see Appendix A15. However, as shown in Appendix A15, suppose the tensile strength of concrete 
is neglected, new decks are always cracked no matter when connections are made. Therefore, making connections 
later can only help decrease prestress consumption but not avoid cracking.   
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A1 Examples of Imposed Deformation Resulting in Tensile Stress 

According to Section 4.1, hereby summarized three examples which shows that imposed deformation can results in 
tensile stress. Figure 50 (Breugel, 2013, p. 115) and Figure 52 (Breugel, 2013, p. 119) are about imposed strain while 
Figure 51 (Breugel, 2013, p. 116) is about imposed curvature. It is also shown in following examples that in addition 
to imposed deformation only, a member or structure might be subjected to imposed deformation and mechanical 
loads at same time.  

Figure 50 (Breugel, 2013, p. 115) shows a rectangular reservoir containing a cooled liquid. The horizontal liquid load 
results in tensile stresses in the walls. For part of the reservoir is in the soil and the response to the cooling is more 
rapid for the wall than for the slab, the walls will be shortened relatively to the slab. However, the wall is connected 
to the slab, making the shortening of the walls restrained and causing additional tensile stresses in the wall. 

 

Figure 50:Rectangular Reservoir Containing a Cooled Liquid. 

Figure 51 (Breugel, 2013, p. 116) shows a cylindrical reservoir containing a heated liquid. The heated water makes 
inner surface of the wall swelling relatively to the outer surface. If the deformation is free, the wall will be bent. To 
make the deformation constitutive, an imposed curvature is introduced to the wall. And due to the liquid load, there 
is a the hoop force inside the wall, which gives an additional tensile stress in circumferential direction. 

 

Figure 51:Cylindrical Reservoir Containing a Heated Liquid. 

Figure 52 (Breugel, 2013, p. 119) shows a beam subjected to distributed load and cooling. For the ends of the beam 
are fixed, the shortening of the beam is fully restrained, causing a tensile stress in the longitudinal direction. And due 
to the distributed load, a moment is introduced to the cross-section of the beam. 
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Figure 52:Beam Subjected to Distributed Load and Cooling. 
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A2 Data of Calculation Carried out by SCIA  

A2.1 General 

During the structure design of the widened deck KW03.01, FEM software called SCIA is used to calculate the stress 
resulting from imposed deformation and the compressive stress in concrete resulting from prestressing. The tensile 
stress resulting from imposed deformation consumes the compressive stress in concrete which results from 
prestressing. For simplicity, the compressive stress in concrete being consumed is referred to as prestress 
consumption.  

The calculation carried out by SCIA is linear elastic. The inputs of the calculation, for example the magnitude of 
imposed deformation and material properties are constant, which are calculated by engineers instead of SCIA basing 
on the time history of constructions. During the calculation carried out by SCIA, 4-nodes Mindlin element are used 
where the mash size is 250 mm.    

A2.2 Stress Resulting from Imposed Deformation at Time 𝒕 𝟒𝟎𝟓𝟏𝟓 𝐝𝐚𝐲𝐬 

Stress resulting from imposed deformation calculated by SCIA is shown in Figure 53. As shown in Figure 53, realistic 
models are used in SCIA. As shown in Chapter 7, the thickness of the simplified models is ℎ  700 mm, which is 
equal to those in realistic models at mid-span. Therefore, to make the stress calculated by SCIA and simple approach 
comparable, stress at mid-span is summarized, see Table 20. 

 
Figure 53:Stress Resulting from Imposed Deformation Calculated by SCIA.  
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1.2 MPa 1.5 MPa 1.5 MPa
-2.7 MPa -2.3 MPa -2.6 MPa
1.0 MPa 1.1 MPa 1.0 MPa
0.9 MPa 1.0 MPa 0.9 MPa
3.2 MPa 2.4 MPa 2.9 MPa
2.3 MPa -1.0 MPa -1.6 MPa

New Deck

North (Axis 2-3)South North (Axis 1-2)

Old Deck

Connection

  
Table 20:Stress Resulting from Imposed Deformation Calculated by SCIA. 

A2.3 Stress Resulting from Prestressing at Time 𝒕 𝟒𝟎𝟓𝟏𝟓 𝐝𝐚𝐲𝐬 

The compressive stress in concrete resulting from prestressing calculated by SCIA is shown in Table 21 to Table 23. 
As shown in Figure 53, mid-span is referred to as Axis 1-2 and Axis 2-3. 

 

Table 21:Stress Resulting from Prestressing in Old Decks. 

 

Table 22:Stress Resulting from Prestressing in South New Deck. 

 

Table 23:Stress Resulting from Prestressing in North New Deck. 
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A2.4 Prestress Consumption in Proportion 

The ratio of stress resulting from imposed deformation and compressive stress resulting from prestressing is referred 
to as prestress consumption in proportion. Basing on the data of stress resulting from imposed deformation calculated 
at mid-span, see Table 20, and the data of compressive stress resulting from prestressing at mid-span, see Table 21 to 
Table 23, the prestress consumption in proprortion is calculated, see Table 24. 

15 % 22 % 22 %
-40 % -34 % -38 %
40 % 41 % 40 %
29 % -17 % -22 %

South North (Axis 1-2)

Old Deck

New Deck

North (Axis 2-3)

 
Table 24:Prestress Consumption Calculated basing on the Results from SCIA. 

A2.5 Out-of-plane Moment 

In addition to in-plane loads such as imposed deformation and prestressing introduced in Appendix A2.2 and 
Appendix A2.3, there are also out-of-plane loads carried by widened deck KW03.01. The out-of-plane loads, for 
example self-weight and traffic loads, result in out-of-plane moments. Hereby summarized the situation in new 
decks, including out-of-plane moments 𝑀 , .  and 𝑀 , .  and the maximum tensile stress 𝜎 , .  and 𝜎 , .  

resulting from the moments, at mid-span (7X, 11X, 8X) and mid-support (4X, 5X, 6X), see Figure 54 and Table 25. 

      

Figure 54:Overview of Cross-sections in New Decks. 
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6X -2036 kNꞏm/m 24.8 MPa -1995 kNꞏm/m 24.3 MPa
8X 1161 kNꞏm/m 14.2 MPa 1283 kNꞏm/m 15.6 MPa
4X -2158 kNꞏm/m 26.3 MPa -2076 kNꞏm/m 25.3 MPa
5X -1453 kNꞏm/m 17.7 MPa -1391 kNꞏm/m 17.0 MPa
7X 1123 kNꞏm/m 13.7 MPa 1196 kNꞏm/m 14.6 MPa

11X 810 kNꞏm/m 9.9 MPa 882 kNꞏm/m 10.8 MPa

σ d,6.10bM d,6.10a σ d,6.10a M d,6.10b

 
Table 25:Out-of-plane Moment and Normal Stress in New Decks. 

A2.6 Input Data 

A2.6.1 Material Properties  

Hereby summarized the elastic modulus of concrete which are applied to the realistic models in SCIA. The 
evaluation of the elastic modulus of concrete is copied from the data files of structure design of widened deck 
KW03.01 (Herepoort, 2019).  
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A2.6.2 Imposed Deformation  

Hereby summarized the imposed deformation which are applied to the realistic models in SCIA. The data of imposed 
deformation is copied from the data files of structure design of widened deck KW03.01 (Herepoort, 2019).  
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A3 Calculation of Thermal Deformation 

The hardening process of concrete is the result of a chemical-physical reaction of cement and water. This is an 
exothermic reaction, which is a reaction during which heat is liberated (Breugel, 2013, p. 136). Due to this liberated 
heat, the temperature of the concrete rises and the concrete expands. After the exothermic reaction, the temperature 
of the concrete drops and the concrete shrinks. Suppose that the concrete in hardening process is connected to 
another existing concrete during the hardening, imposed deformation would occur due to the temperature decrement 
and the restrain from the connection. The strain increment ∆𝜀  caused by a temperature decrement ∆𝑇 is as 
follow: 

 ∆𝜀 𝛼 ∙ ∆𝑇 ∙ 𝜓 𝑡, 𝑡 1.12 10  (11) 

where: 
 𝛼   is the thermal expansion coefficient of concrete 
   10 10 /℃ 
 𝜓 𝑡, 𝑡  is the relaxation factor for hardening concrete 
   0.2 

In principle, the thermal expansion coefficient of concrete is a function the thermal expansion coefficient of the 
components. For example, the thermal expansion coefficient of water is about five times larger than that of concrete. 
So, in the early stage of hardening, due to the presence of water, the thermal expansion coefficient of concrete is 
dominated by water (Breugel, 2013, p. 150). However, in the early stage of hardening, the stiffness of concrete is low 
but the relaxation of concrete is high (Breugel, 2013, p. 165). Therefore, the resulting stresses of thermal expansion 
in the early stage of hardening can be neglected. For a practical purpose, it is justified to adopt a constant thermal 
expansion coefficient to the concrete which represents the situation in the late stage of hardening (Breugel, 2013, p. 
150). 

As shown in Section 6.2, the concrete in old decks and connections is C35 while that in new decks is C45. Substitute 
the data from Table 26 into Expression 17 to calculate the magnitude of elastic modulus of concrete C35 and C45 
from time 𝑡 0.2 days to time 𝑡 28 days. The results are shown in Figure 55 and Figure 56. Setting the elastic 
modulus of concrete 𝐸 𝑡  corresponding to time 𝑡 28 days as 100%, the elastic modulus of concrete C35 and 
C45 are expressed into proportion, see Figure 57 and Figure 58. 

As shown in Figure 57 and Figure 58, the elastic modulus at time 𝑡 1 day takes about 70% of that at time 𝑡
28 days. So, it is assumed that ∆𝑡  1 day which means it takes one day for the concrete in connections to get 
stiff enough to produce imposed deformation. 

Figure 55:Development of Elastic Modulus of Concrete C35. Figure 56:Development of Elastic Modulus of Concrete C45. 
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Figure 57:Development of Elastic Modulus of Concrete C35 in 
Proportion. 

Figure 58:Development of Elastic Modulus of Concrete C45 in 
Proportion. 

For lack of information, the temperature change during hardening in this case study is estimated according to the 
temperature development in a hardening concrete floor, see Figure 59  and Figure 60 (Breugel, 2013, p. 148). The 
thickness of the floor is 1 m. The top surface of the floor is exposed to the air while the bottom surface of the deck is 
based on another existing floor. In Figure 59 and Figure 60, it is shown that the maximum temperature during 
hardening occurs at time 𝑡 1 day and the maximum temperature in the floor at time 𝑡 1 day is 68℃.  

During the construction of widened deck KW03.01, the deck was basing on formwork, of which the environment 
conditions were similar to those of the floor mentioned above. So, the maximum temperature in the widened deck 
KW03.01 during hardening is estimated to be 68℃ as well. Suppose that the annual mean temperature on site is 
10℃, the temperature decrement ∆𝑇 would be 58℃. 

  

Figure 59:Temperature Development versus Time. Figure 60:Temperature Development versus Height. 

Relaxation has a considerable impact on the stress development in a hardening concrete. It means the resulting stress 
of temperature decrement ∆𝑇 in hardening concrete is much smaller than that in a hardened concrete. During the 
hardening, a relatively small elastic modulus in the new concrete results in a small stiffness. When the new concrete 
is connected to an existing one, the resulting stress in the existing concrete is relatively small as well. Therefore, in 
this case study, a mathematic trick is applied, which introduces a relaxation factor 𝜓 𝑡, 𝑡  to calculate resulting 
strain ∆𝜀 , see Expression 11.  
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Expression 12 gives quite good results for the stresses in hardening concrete (Breguel, 1980). The relaxation factor 
calculated by Expression 12 is shown in Figure 61. Since it is assumed that the concrete get hard enough at time 𝑡
1 day 24 hours , the relaxation factor 𝜓 𝑡, 𝑡  is estimated to be 0.2. 

 𝜓 𝑡, 𝑡 𝑒
  . ∙ . ∙ ∙ ∙  

 (12) 

 

Figure 61:Relaxation Factor in Hardening Concrete. 
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A4 Expressions to Evaluate the Material Properties of Concrete at Time 𝒕 

days 

The characteristic strength of concrete 𝑓 𝑡  at time 𝑡 is evaluated as follow: 
 For 3 𝑡 28 days 

 𝑓 𝑡 𝑓 𝑡 8 MPa  (13) 

For 𝑡 28 days 

 𝑓 𝑡 𝑓  (14) 

The compressive strength of concrete 𝑓 𝑡  at time 𝑡 is evaluated as follow: 

 𝑓 𝑡 𝛽 𝑡 ∙ 𝑓  (15) 

where: 
 𝑓   is the compressive strength of concrete at 28 days, see Table 26 

𝛽 𝑡  is the coefficient related to time 
   exp 𝑠 1 28 𝑡⁄ .  
 𝑠  is the coefficient related to cement 
   0.20 for cement of strength Classes CEM 42.5 R, CEM 52.5 N and CEM 52.5 R (Class R) 
   0.25 for cement of strength Classes CEM 32.5 R, CEM 42.5 N (Class N) 

0.38 for cement of strength Classes CEM 32.5 N (Class S) 

The tensile strength of concrete 𝑓 𝑡  at time 𝑡 is evaluated as follow: 

 𝑓 𝑡 𝛽 𝑡 ∙ 𝑓  (16) 

where: 
𝑓   is the tensile strength of concrete at 28 days, see Table 26 
𝛼  1 for 𝑡 28 days 

   2/3 for 𝑡 28 days 

Suppose a short-term load is applied, the elastic modulus of concrete 𝐸 𝑡  at time 𝑡 is evaluated as 
follow: 

 𝐸 𝑡
𝑓 𝑡

𝑓

.

𝐸  (17) 

where: 
𝐸   is the elastic modulus of concrete at 28 days, see Table 26 

 

Table 26:Strength and Deformation Characteristics for Concrete. 
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When a long-term variable load is applied to a concrete member, due to the creep or relaxation appears in 
the process, the concrete member performs as if its elastic modulus is decreased. For simplicity, a 
fictitious elastic modulus 𝐸 𝑡  is used to evaluate the internal forces of concrete when it is subjected to a 
long-term variable load (Scholten, 1989).  

 𝐸 𝑡
𝐸

1 0.8 ∙ 𝜑 𝑡, 𝑡
 (18) 

where: 
𝜑 𝑡, 𝑡  is the creep coefficient  

𝜑 ∙ 𝛽 𝑡, 𝑡  
 𝜑   is the notional creep coefficient  
   𝜑 ∙ 𝛽 𝑓 ∙ 𝛽 𝑡  
 𝜑    is the coefficient related to the effect of relative humidity on the notional creep coefficient 

   1 /

. ∙
 𝑓 35 Mpa  

   1 /

. ∙
∙ 𝛼 ∙ 𝛼  𝑓 35 Mpa  

 𝛽 𝑓  is the coefficient related to the effect of concrete strength on the notional creep coefficient 

   16.8 𝑓⁄  

𝛽 𝑡  is the coefficient related to the effect of concrete age at loading on the notional creep coefficient 

   
. .  

 𝛽 𝑡, 𝑡  is the coefficient related to the development of creep after loading 
   𝑡 𝑡 𝛽 𝑡 𝑡⁄ .    
 𝛽   is the coefficient related to relative humidity and notional size 
   1.5 1 0.012𝑅𝐻 ℎ 250 1500 𝑓 35 Mpa  
     1.5 1 0.012𝑅𝐻 ℎ 250 ∙ 𝛼 1500 ∙ 𝛼  𝑓 35 Mpa  
 𝛼   is the coefficient related to the influence of the concrete strength 

   
.

 

𝛼   is the coefficient related to the influence of the concrete strength 

   
.

 

𝛼   is the coefficient related to the influence of the concrete strength 

   
.
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A5 Expressions to Calculate Cross-sectional Calculation at Time 𝒕 days 

A5.1 General 

Cross-sectional calculation consists of the evaluation of cross-sectional properties and the stress resulting from the 
loads applied to the cross-section. the Suppose there is a rectangular concrete deck with 𝑛 prestressing tendons, see 
Figure 62, the expressions shown in this chapter would be used during cross-sectional calculation. 

 
Figure 62:Cross-section. 

A5.2 Cross-sectional Properties of Concrete Deck 

cross-section area  

 𝐴 𝑏 ∙ ℎ (19) 

where: 
 𝑏  is the width of cross-section 
 ℎ  is the height of cross-section 

out-of-plane moment of inertia  

 𝐼 ,
𝑏 ∙ ℎ

12
 (20) 

in-plane moment of inertia  

 𝐼 ,
ℎ ∙ 𝑏

12
 (21) 

 normal stiffness  

 𝐸𝐴 𝑡 𝐸 𝑡 ∙ 𝐴  (22) 

where: 
 𝐸 𝑡  is the elastic modulus of concrete at time 𝑡 

out-of-plane bending stiffness  

 𝐸𝐼 𝑡  𝐸 𝑡 ∙ 𝐼 ,  (23) 

in-plane bending stiffness  

 𝐸𝐼 𝑡 𝐸 𝑡 ∙ 𝐼 ,  (24) 

A5.3 Cross-sectional Properties of Prestressing Cables 

cross-section area of cables 

 𝐴 𝑛 ∙ Ᾱ  (25) 

where: 
 𝑛  is the total number of prestressing cables 
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Ᾱ   is the area of cross-section per cable 

prestressing ratio 

 𝜌
𝐴
𝐴

 (26) 

elastic modulus ratio at time 𝒕 

 𝛼
𝐸

𝐸 𝑡
 (27) 

where: 
𝐸   is the elastic modulus of prestressing cables 

normal stiffness per cable 

 𝐸Ᾱ 𝐸 ∙ Ᾱ  (28) 

normal stiffness of cables 

 𝐸𝐴 𝐸 ∙ 𝐴  (29) 

A5.4 Stress Resulting from Loads 

There are four possible loads which could be applied to the cross-section shown in Figure 62, the normal force 𝑁, the 
bending moment out-of-plane 𝑀 , the bending moment in-plane 𝑀  and the shear force 𝑉. 

Suppose the cross-section is subjected to the bending moment out-of-plane 𝑀 , the cross-section would 

rotate around the in-plane N.A.. Suppose the cross-section is subjected to the bending moment in-plane 𝑀 , 

the cross-section would rotate around the out-of-plane N.A..     

normal stresses at top or bottom edge of the deck 

 𝜎 /
𝑁
𝐴

𝑀 ∙ 𝑧
𝐼 ,

 (30) 

where: 
 𝑁  is the normal force from certain action 
 𝑀  is the out-of-plane moment from certain action 

𝑧 is the z-coordinate of top or bottom edge of cross-section  

normal stresses at right or left edge of the deck 

 𝜎 /
𝑁
𝐴

𝑀 ∙ 𝑦
𝐼 ,

 (31) 

where: 
 𝑁  is the normal force from certain action 
 𝑀  is the in-plane moment from certain action 

𝑦 is the y-coordinate of right or left edge of cross-section  

shear stresses 

 𝜏
𝑉
𝐴

 (32) 

where: 
 𝑉  is the shear force from certain action 
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A6 Expressions to Calculate the Remaining Prestressing Force in Model 

with Uniform Cross-section Mean Dimensions at Time t days 

Expressions from Eurocode NEN-EN 1992-1-1+C2 are used to calculate the strain of creep and shrinkage and the 
relaxation loss. Suppose that the prestressing force is applied step by step and the cables are prestressed from both 
sides, the loss of the prestressing force applied at step 𝜁 would be expressed as follow: 

Initial prestressing force 

 ∆𝑃 , 𝑃 ,  (33) 

where: 
 𝑃 ,  is the initial prestressing force per cable after immediate loss 

   ∙ ∆𝑃 ,  

 ∆𝑃 ,  is the total prestressing force per cable 

 𝜁  is the sequence number of certain prestressing step 

elastic loss per cable 

 ∆𝑃 , 𝐴 𝐸
𝑗 ∙ ∆𝜎 , 𝑡

𝐸 𝑡
 (34) 

where: 

 𝑗   

 𝑛  is the total number of prestressing cables 
 ∆𝜎 , 𝑡  is the increment of stress in concrete when a new prestressing cable is applied 

   𝑛 ∙ 𝑃 , 𝐴⁄   

friction loss per cable 

 ∆𝑃 𝑥 ∆𝑃 , 1 𝑒  (35) 

where: 
 𝜇  is the coefficient of friction 

0.19 
 𝑘  is the coefficient of wobble effect 
   0.01 rad/m 
 𝜃  is the angular rotation 
 𝑅   is the radius of curve 𝑖 of the tendons 
 𝑥  is the distance from certain point to the ends 

 shrinkage loss of cables 

 ∆𝑃 Ᾱ 𝐸 𝜀  (36) 

where: 
 𝜀   is the total shrinkage of concrete  

𝜀  𝑡 𝜀 𝑡  
 𝜀 𝑡  is the drying shrinkage 

    𝛽 𝑡, 𝑡 𝛽 𝑡 , 𝑡  ∙ 𝑘 ∙ 𝜀 ,  

 𝛽 𝑡, 𝑡  is the coefficient related to drying shrinkage 

   𝑡 𝑡 𝑡 𝑡 0.04 ℎ  

𝛽 𝑡 , 𝑡  is the coefficient related to drying shrinkage 



 
 
 

Wednesday, 04 March 
2020 

 COMBINED ACTIONS 61  

 

   𝑡 𝑡 𝑡 𝑡 0.04 ℎ  

 𝑡   is the end of curing 
 ℎ   is the notional size 
   2𝐴 𝑢⁄  
 𝑢  is the perimeter of cross-section 
 𝑘   is the coefficient depending on the notional size ℎ  according to Table 27 
 𝜀 ,   is the basic drying shrinkage 

   0.85 220 110 ∙ 𝛼 ∙ exp 𝛼 ∙ 𝑓 𝑓⁄ ∙ 10 ∙ 𝛽  
 𝑓   10 MPa 
 𝛼    is the coefficient related to cement 
   3 for cement Class S 
   4 for cement Class N 
   6 for cement Class R 

𝛼    is the coefficient related to cement 
   0.13 for cement Class S 
   0.12 for cement Class N 
   0.11 for cement Class R 
 𝛽   1.55 1 𝑅𝐻 𝑅𝐻⁄  
 𝑅𝐻   100 % 
 𝜀 𝑡  is the strain of autogenous shrinkage 
   𝛽 𝑡 𝛽 𝑡 ∙ 𝜀 ∞  
 𝜀 ∞  2.5 𝑓 10 ∙ 10  
 𝛽 𝑡  1 exp 0.2𝑡 .  

h 0 100 200 300 >500

k h 1 0.85 0.75 0.7  

Table 27:Values of 𝑘 . 

mean creep loss per cable 

 ∆𝑃 Ᾱ 𝐸 𝜀 , 𝑡  (37) 

where: 
 𝜀 , 𝑡  is the mean strain of creep 

   𝜀 , 𝑡 𝜀 , 𝑡 2⁄  

 𝜀 , 𝑡 is the strain of creep at the ends 

   𝑃 𝐸𝐴 𝑡 ∆𝑃 0 𝐸𝐴 𝑡⁄ ∆𝑃 , 𝑡 𝐸Ᾱ⁄⁄ ∙ 𝜑 𝑡, 𝑡  

𝜀 , 𝑡 is the strain of creep at the ends 

   𝑃 𝐸𝐴 𝑡 ∆𝑃 𝑙 𝐸𝐴 𝑡⁄ ∆𝑃 , 𝑡 𝐸Ᾱ⁄⁄ ∙ 𝜑 𝑡, 𝑡  

 𝑡   is the timing when prestressing is applied 

  
 creep loss per cable at certain point 

 ∆𝑃 Ᾱ 𝐸 𝜀 , 𝑡  (38) 

where: 
 𝜀 , 𝑡  is the strain of creep at certain point 

   𝑃 𝐸𝐴 𝑡 ∆𝑃 𝑥 𝐸𝐴 𝑡⁄ ∆𝑃 , 𝑡 𝐸Ᾱ⁄⁄ ∙ 𝜑 𝑡, 𝑡  

 𝑥  is the distance from certain point to the ends  
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 𝑡   is the timing when prestressing is applied 

 

Figure 63:Distribution of Elastic Deformation. 

 relaxation loss per cable 

 ∆𝑃 Ᾱ ∙ ∆𝜎  (39) 

where: 

 ∆𝜎   0.39𝜌 𝑒 . ∆ .
∙ 10 ∙ 𝜎  for Class 1 

   0.66𝜌 𝑒 . ∆ .
∙ 10 ∙ 𝜎  for Class 2 

   1.98𝜌 𝑒 ∆ .
∙ 10 ∙ 𝜎  for Class 3 

 ∆𝑡  is the hours after prestressing 
   24 𝑡 𝑡 500000 
 𝜌  the relaxation loss in % at 1000 hours after tensing and at a mean temperature of 20℃ 
   8% for Class 1 
   2.5% for Class 2 
   4% for Class 3 
   or taken from the certificate 
 𝜇  𝜎 𝑓⁄  

 𝜎   ∑ 𝑃 , Ᾱ⁄  

 total loss per cable 

 ∆𝑃 ,  ∆𝑃 , ∆𝑃 ∆𝑃 ∆𝑃 ∆𝑃 𝑛⁄  (40) 

With the prestressing loss obtained, the total remaining prestress force at time 𝑡 days is the summation of remaining 
prestress force of each step as follow:  

 𝑃 𝑡 𝑛 ∙ ∆𝑃 , ∆𝑃 ,  (41) 
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A7 The Impact of Prestressing Steps 

A7.1 General 

The old decks are prestressed in three prestressing steps (Herepoort, 2007, p. 25), or in short the steps, while the new 
decks are prestressed all in 1 step (Herepoort, 2019). The increment of step 𝑖 is denoted   as ∆𝑃 , . The data of 

prestressing is shown in Figure 64 and Figure 65. 

 

Figure 64:Prestressing Steps of Old Decks. 

 

Figure 65:Prestressing Steps of New Decks. 

When prestressing is applied in steps, to make sure that the magnitude of prestressing force being applied suits the 
requirement at the end of each step, the prestress loss between the steps has to be compensated. It means, suppose 
prestressing steps are taken into account, prestress loss between the steps has to be calculated to determine the 
magnitude of prestressing force in each step.  

When it comes to the widened deck KW03.01, the prestressing force in old decks was applied in three steps at time 
𝑡 3 days, 𝑡 7 days and 𝑡 28 days. For simplicity, impact of prestressing steps is investigated to see whether it 
is proper to calculate imposed deformation and remaining prestressing force as if the prestressing force is applied all 
in one step at time 𝑡 7 days. Suppose the imposed deformation and remaining prestressing force in three steps are 
same as those of applying prestressing force all in one step, the impact of prestressing steps would be taken as small. 
Otherwise, the impact of prestressing steps would be taken as large. 

A7.2 Results 

The models used during investigation are Simplified Model 1 and Simplified Model 2, see Section 7.3.1 and Section 
7.4.1. The input data is shown in Chapter 5. The material properties applied to the expressions are calculated by the 
input data and the expressions in Appendix A4 and Appendix A5. The imposed deformation and prestress loss in old 
decks are calculated by the expressions in Appendix A6.   

For the convenience of reading, hereby only summarized the prestress loss calculated during investigation in 
percentage, see Figure 66 to Figure 69. The data of the calculation is summarized in Appendix A8. 
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Figure 66:Prestress Loss Calculated by Three Steps at Time 𝑡 4015 𝑑𝑎𝑦𝑠 11 𝑦𝑒𝑎𝑟𝑠 . 

 
Figure 67:Prestress Loss Calculated by Time 𝑡 40515 𝑑𝑎𝑦𝑠 111 𝑦𝑒𝑎𝑟𝑠 . 

 
Figure 68:Prestress Loss Calculated by All in One Step at Time 𝑡 4015 𝑑𝑎𝑦𝑠 11 𝑦𝑒𝑎𝑟𝑠 . 

 
Figure 69:Prestress Loss Calculated by All in One Step at Time 𝑡 40515 𝑑𝑎𝑦𝑠 111 𝑦𝑒𝑎𝑟𝑠 . 
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A7.3 Discussion 

A7.3.1 Imposed Deformation 

As shown in Section 6.1, connections were built at about ∆𝑡 11 years after old decks being built. As a result, to 
investigate the impact of prestressing steps on the imposed deformation in old decks, the imposed deformation is 
taken as the increment of shrinkage and creep from time 𝑡 4015 days 11 years  to time 𝑡
40515 days 111 years  approximately. 

According to Figure 66 to Figure 69, the increment of shrinkage and creep from time 𝑡 4015 days 11 years  to 
time 𝑡 40515 days 111 years  is small. The detailing data of the increment is as follow: 

three steps   

∆𝜺𝒔𝒉𝒓 𝜀 , 𝜀 , 2.50 10 2.23 10 𝟐. 𝟔𝟓 𝟏𝟎 𝟓 

∆𝜺𝒄𝒓 𝜀 , 𝜀 , 2.69 10 2.49 10 𝟏. 𝟗𝟗 𝟏𝟎 𝟓 

all in one step   

∆𝜺𝒔𝒉𝒓 𝜀 , 𝜀 , 2.56 10 2.29 10 𝟐. 𝟔𝟓 𝟏𝟎 𝟓 

∆𝜺𝒄𝒓 𝜀 , 𝜀 , 2.74 10 2.54 10 𝟐. 𝟎𝟑 𝟏𝟎 𝟓 

where: 
𝜀 ,   is the shrinkage in old decks at time 𝑡 

 𝜀 ,   is the creep in old decks at time 𝑡 

As for three steps, the coefficient 𝑡  used to calculate creep factor 𝜑 𝑡, 𝑡  and the coefficient 𝑡  used to calculate 

shrinkage factor 𝛽 𝑡 , 𝑡  are different from those for all in one step. So, the creep 𝜀 ,  and the shrinkage 𝜀 ,  

calculated by three steps and all in one step are different.  

However, the imposed deformation is the increment of shrinkage and creep. The difference of increment ∆𝜀  and 
∆𝜀  calculated by three steps and all in one step are 2% and 0% respectively. Therefore, the impact of prestressing 
steps on imposed deformation is small.  

A7.3.2 Remaining Prestressing Force 

The widened deck is subjected to not only imposed deformation but also remaining prestressing force at time 𝑡
40515 days 111 years . As shown in Appendix A7.1, when prestressing force is applied in steps, compensation 
has to be made to the prestress loss between steps. Therefore, the initial prestressing force applied by three steps is 
larger than that applied by all in one step. The initial prestressing forces are as follow: 

 three steps 

𝑷𝒎𝟎 𝟐𝟔𝟒𝟖 𝐤𝐍/𝐜𝐚𝐛𝐥𝐞 

 all in one step 

𝑷𝒎𝟎 𝟐𝟓𝟐𝟒 𝐤𝐍/𝐜𝐚𝐛𝐥𝐞 

According to Figure 66 to Figure 69, the remaining per cable at time 𝑡 40515 days 111 years  calculated by 
three steps and all in one step are as follow: 

three steps 

𝑷𝒎 79% ∙ 𝑃 𝟐𝟎𝟗𝟐 𝐤𝐍/𝐜𝐚𝐛𝐥𝐞 

 all in one step 
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𝑷𝒎 78% ∙ 𝑃 𝟏𝟗𝟔𝟗 𝐤𝐍/𝐜𝐚𝐛𝐥𝐞 

The difference of remaining prestressing force 𝑃  calculated by three steps and all in one step is 6%. Therefore, the 
impact of prestressing steps on remaining prestressing force is small. 

A7.4 Conclusion 

The impact of prestressing steps on imposed deformation and remaining prestressing force is small. Therefore, it is 
proper to calculate imposed deformation and remaining prestressing force as if the prestressing force is applied all in 
one step at time 𝑡 7 days instead of three steps at time 𝑡 3 days, 𝑡 7 days and 𝑡 28 days. 
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A8 Dimensions and Material Properties of Models Required to Calculate 

Prestress Loss 

A8.1 Simplified Model 1 

The sketch of Simplified Model 1 has been shown in Section 7.3.1. The input data is shown in Chapter 5. The 
material properties applied to the expressions are calculated by the input data and the expressions in Appendix A4 
and Appendix A5. The prestress loss are calculated by the expressions in Appendix A6.  

Dimensions of Simplified Model 1 are shown in Table 28 to Table 30.  

height of cross-section h 0.70 m
width of cross-section b 10.41 m
length of structure L 42.40 m  

Table 28:Dimensions of Old Deck in Simplified Model 1. 

height of cross-section h 0.70 m
width of cross-section b 1.60 m
length of structure L 42.40 m  

Table 29:Dimensions of New Deck in Simplified Model 1. 

height of cross-section h 0.70 m
width of cross-section b 0.50 m
length of structure L 42.40 m  

Table 30:Dimensions of Connection in Simplified Model 1. 

Material properties of prestressing cables in old deck and new deck are shown in Table 31 and Table 32.  

elastic modulus E p 1.95E+11 Pa

area of prestressing cable Ᾱ p 1.80E-03 m2

number of prestressing cable n 25

area of prestressing cables A p 4.50E-02 m2

ratio of prestress ρ p 6.12E-03

eccentricity e p 0.00 m    
Table 31:Material Properties of Prestressing Cables in Old Deck. 

elastic modulus E p 1.95E+11 Pa

area of prestressing cable Ᾱ p 2.85E-03 m2

number of prestressing cable n 3

area of prestressing cables A p 8.55E-03 m2

ratio of prestress ρ p 7.63E-03

eccentricity e p 0.00 m    
Table 32:Material Properties of Prestressing Cables in New Deck. 

Since the prestress in old decks is applied in three steps at time 𝑡 3 days, 𝑡 7 days and 𝑡 28 days respectively 
(Herepoort, 2007, p. 25), material properties of concrete in old deck at time 𝑡 3 days, 𝑡 7 days and 𝑡 28 days 
are required, see Table 33, Table 34 and Table 35. 
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characteristic strength f ck 3.50E+07 Pa

compression strength f cm 4.30E+07 Pa

elastic modulus E cm 3.40E+10 Pa

characteristic strength f ck (t) 3.50E+07 Pa

mean compression strength f cm (t) 5.48E+07 Pa

where:

factor related to time β cc(t) 1.28E+00

elastic modulus E cm (t) 2.91E+10 Pa  
Table 33:Material Properties of Concrete in Old Deck at Time 𝑡 3 𝑑𝑎𝑦𝑠. 

characteristic strength f ck 3.50E+07 Pa

compression strength f cm 4.30E+07 Pa

elastic modulus E cm 3.40E+10 Pa

characteristic strength f ck (t) 3.35E+07 Pa

mean compression strength f cm (t) 3.35E+07 Pa

where:

factor related to time β cc (t) 7.79E-01

elastic modulus E cm (t) 3.15E+10 Pa  
Table 34:Material Properties of Concrete in Old Deck at Time 𝑡 7 𝑑𝑎𝑦𝑠. 

characteristic strength f ck 3.50E+07 Pa

compression strength f cm 4.30E+07 Pa

elastic modulus E cm 3.40E+10 Pa

characteristic strength f ck (t) 3.50E+07 Pa

mean compression strength f cm (t) 4.30E+07 Pa

where:

factor related to time β cc (t) 1.00E+00

elastic modulus E cm (t) 3.20E+06 Pa  
Table 35:Material Properties of Concrete in Old Deck at Time 𝑡 28 𝑑𝑎𝑦𝑠. 

Since the prestress in new deck is applied all in one step at time 𝑡 7 days, material properties of concrete in new 
deck at time 𝑡 7 days is required, see Table 36. 

characteristic strength f ck 4.50E+07 Pa

compression strength f cm 5.30E+07 Pa

elastic modulus E cm 3.60E+10 Pa

characteristic strength f ck (t) 4.50E+07 Pa

mean compression strength f cm (t) 5.37E+07 Pa

where:

factor related to time β cc (t) 1.01E+00

elastic modulus E cm (t) 3.61E+10 Pa  
Table 36:Material Properties of Concrete in New Deck at Time 𝑡 7 𝑑𝑎𝑦𝑠. 
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A8.2 Realistic Model 1 

The sketch of Realistic Model 1 has been shown in Section 7.3.1. The input data is shown in Chapter 5. The material 
properties applied to the expressions are calculated by the input data and the expressions in Appendix A4 and 
Appendix A5. The prestress loss are calculated by the expressions in Appendix A6.  

Dimensions of Realistic Model 1 are shown in Table 37 to Table 39. 

height of cross-section h(x) 0.000014x  + 0.55 m
width of cross-section b 10.41 m
length of structure L 42.40 m  

*𝑥 is the distance from certain point to the ends of the deck in mm , see Figure 70. 

Table 37:Dimensions of Old Deck in Realistic Model 1. 

height of cross-section h(x) 0.000014x  + 0.55 m
width of cross-section b 1.60 m
length of structure L 42.40 m  

*𝑥 is the distance from certain point to the ends of the deck in mm , see Figure 70. 

Table 38:Dimensions of New Deck in Realistic Model 1. 

height of cross-section h(x) 0.000014x  + 0.55 m
width of cross-section b 0.50 m
length of structure L 42.40 m  

*𝑥 is the distance from certain point to the ends of the deck in mm , see Figure 70. 

Table 39:Dimensions of Connection in Realistic Model 1. 

 
Figure 70:Side View of Half Realistic Model 1. 

Material properties of prestressing cables in old deck and new deck are shown in Table 40 and Table 41. 

elastic modulus E p 1.95E+11 Pa

area of prestressing cable Ᾱ p 1.80E-03 m2

number of prestressing cable n 25

area of prestressing cables A p 4.50E-02 m2

ratio of prestress ρ p  -

eccentricity e p 0.00 m    
*The ratio of prestress is not shown because it is a function of 𝑥.  

Table 40:Material Properties of Prestressing Cables in Old Deck. 

elastic modulus E p 1.95E+11 Pa

area of prestressing cable Ᾱ p 2.85E-03 m2

number of prestressing cable n 3

area of prestressing cables A p 8.55E-03 m2

ratio of prestress ρ p  -

eccentricity e p 0.00 m    
*The ratio of prestress is not shown because it is a function of 𝑥.  

Table 41:Material Properties of Prestressing Cables in New Deck. 
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Since the prestress in old decks is applied in three steps at time 𝑡 3 days, 𝑡 7 days and 𝑡 28 days respectively 
(Herepoort, 2007, p. 25), material properties of concrete in old deck at time 𝑡 3 days, 𝑡 7 days and 𝑡 28 days 
are required, see Table 42, Table 43 and Table 44. 

characteristic strength f ck 3.50E+07 Pa

compression strength f cm 4.30E+07 Pa

elastic modulus E cm 3.40E+10 Pa

characteristic strength f ck (t) 3.50E+07 Pa

mean compression strength f cm (t) 5.48E+07 Pa

where:

factor related to time β cc(t) 1.28E+00

elastic modulus E cm (t) 2.91E+10 Pa  
Table 42:Material Properties of Concrete in Old Deck at Time 𝑡 3 𝑑𝑎𝑦𝑠. 

characteristic strength f ck 3.50E+07 Pa

compression strength f cm 4.30E+07 Pa

elastic modulus E cm 3.40E+10 Pa

characteristic strength f ck (t) 3.35E+07 Pa

mean compression strength f cm (t) 3.35E+07 Pa

where:

factor related to time β cc (t) 7.79E-01

elastic modulus E cm (t) 3.15E+10 Pa  
Table 43:Material Properties of Concrete in Old Deck at Time 𝑡 7 𝑑𝑎𝑦𝑠. 

characteristic strength f ck 3.50E+07 Pa

compression strength f cm 4.30E+07 Pa

elastic modulus E cm 3.40E+10 Pa

characteristic strength f ck (t) 3.50E+07 Pa

mean compression strength f cm (t) 4.30E+07 Pa

where:

factor related to time β cc (t) 1.00E+00

elastic modulus E cm (t) 3.20E+06 Pa  
Table 44:Material Properties of Concrete in Old Deck at Time 𝑡 28 𝑑𝑎𝑦𝑠. 

Since the prestress in new deck is applied all in one step at time 𝑡 7 days, material properties of concrete in new 
deck at time 𝑡 7 days is required, see Table 45. 

characteristic strength f ck 4.50E+07 Pa

compression strength f cm 5.30E+07 Pa

elastic modulus E cm 3.60E+10 Pa

characteristic strength f ck (t) 4.50E+07 Pa

mean compression strength f cm (t) 5.37E+07 Pa

where:

factor related to time β cc (t) 1.01E+00

elastic modulus E cm (t) 3.61E+10 Pa  
Table 45:Material Properties of Concrete in New Deck at Time 𝑡 7 𝑑𝑎𝑦𝑠. 
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A8.3 Simplified Model 2 

The sketch of Simplified Model 2 has been shown in Section 7.4.1. The input data is shown in Chapter 5. The 
material properties applied to the expressions are calculated by the input data and the expressions in Appendix A4 
and Appendix A5. The prestress loss are calculated by the expressions in Appendix A6.  

Dimensions of Simplified Model 2 are shown in Table 46 to Table 48. 

height of cross-section h 0.70 m
width of cross-section b 10.41 m
length of structure L 42.40 m  

Table 46:Dimensions of Old Deck in Simplified Model 2. 

height of cross-section h 0.70 m
width of cross-section b 9.85 m
length of structure L 42.40 m  

Table 47:Dimensions of New Deck in Simplified Model 2. 

height of cross-section h 0.70 m
width of cross-section b 0.50 m
length of structure L 42.40 m  

Table 48:Dimensions of Connection in Simplified Model 2. 

Material properties of prestressing cables in old deck and new deck are shown in Table 49 and Table 50. 

elastic modulus E p 1.95E+11 Pa

area of prestressing cable Ᾱ p 1.80E-03 m2

number of prestressing cable n 25

area of prestressing cables A p 4.50E-02 m2

ratio of area ρ p 6.12E-03

eccentricity e p 0.00 m    
Table 49:Material Properties of Prestressing Cables in Old Deck. 

elastic modulus E p 1.95E+11 Pa

area of prestressing cable Ᾱ p 2.85E-03 m2

number of prestressing cable n 14

area of prestressing cables A p 3.99E-02 m2

ratio of area ρ p 5.79E-03

eccentricity e p 0.00 m    
Table 50:Material Properties of Prestressing Cables in New Deck. 

Since the prestress in old decks is applied in three steps at time 𝑡 3 days, 𝑡 7 days and 𝑡 28 days respectively 
(Herepoort, 2007, p. 25), material properties of concrete in old deck at time 𝑡 3 days, 𝑡 7 days and 𝑡 28 days 
are required, see Table 51, Table 52 and Table 53. 
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characteristic strength f ck 3.50E+07 Pa

compression strength f cm 4.30E+07 Pa

elastic modulus E cm 3.40E+10 Pa

characteristic strength f ck (t) 3.50E+07 Pa

mean compression strength f cm (t) 5.48E+07 Pa

where:

factor related to time β cc(t) 1.28E+00

elastic modulus E cm (t) 2.91E+10 Pa  
Table 51:Material Properties of Concrete in Old Deck at Time 𝑡 3 𝑑𝑎𝑦𝑠. 

characteristic strength f ck 3.50E+07 Pa

compression strength f cm 4.30E+07 Pa

elastic modulus E cm 3.40E+10 Pa

characteristic strength f ck (t) 3.35E+07 Pa

mean compression strength f cm (t) 3.35E+07 Pa

where:

factor related to time β cc (t) 7.79E-01

elastic modulus E cm (t) 3.15E+10 Pa  
Table 52:Material Properties of Concrete in Old Deck at Time 𝑡 7 𝑑𝑎𝑦𝑠. 

characteristic strength f ck 3.50E+07 Pa

compression strength f cm 4.30E+07 Pa

elastic modulus E cm 3.40E+10 Pa

characteristic strength f ck (t) 3.50E+07 Pa

mean compression strength f cm (t) 4.30E+07 Pa

where:

factor related to time β cc (t) 1.00E+00

elastic modulus E cm (t) 3.20E+06 Pa  
Table 53:Material Properties of Concrete in Old Deck at Time 𝑡 28 𝑑𝑎𝑦𝑠. 

Since the prestress in new deck is applied all in one step at time 𝑡 7 days, material properties of concrete in new 
deck at time 𝑡 7 days is required, see Table 54. 

characteristic strength f ck 4.50E+07 Pa

compression strength f cm 5.30E+07 Pa

elastic modulus E cm 3.60E+10 Pa

characteristic strength f ck (t) 4.50E+07 Pa

mean compression strength f cm (t) 5.37E+07 Pa

where:

factor related to time β cc (t) 1.01E+00

elastic modulus E cm (t) 3.61E+10 Pa  
Table 54:Material Properties of Concrete in New Deck at Time 𝑡 7 𝑑𝑎𝑦𝑠. 
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A8.4 Realistic Model 2 

The sketch of Realistic Model 2 has been shown in Section 7.4.1. The input data is shown in Chapter 5. The material 
properties applied to the expressions are calculated by the input data and the expressions in Appendix A4 and 
Appendix A5. The prestress loss are calculated by the expressions in Appendix A6.  

Dimensions of Simplified Model 2 are shown in Table 55 to Table 57. 

height of cross-section h 0.70 m
width of cross-section b 10.41 m
length of structure L 42.40 m  

Table 55:Dimensions of Old Deck in Simplified Model 2. 

height of cross-section h 0.70 m
width of cross-section b  -0.000092x  + 11.8 m
width of cross-section b  0.000092x  + 7.9 m
length of structure L 42.40 m  

*𝑥 is the distance from certain point to the ends of the deck in 𝑚𝑚 , see Figure 71 and Figure 72. 

Table 56:Dimensions of New Deck in Simplified Model 2. 

height of cross-section h 0.70 m
width of cross-section b 0.50 m
length of structure L 42.40 m  

Table 57:Dimensions of Connection in Simplified Model 2. 

  

Figure 71:Sketch of Top View of Half Deck 1. Figure 72:Sketch of Top View of Half Deck 2. 

Material properties of prestressing cables in old deck and new deck are shown in Table 58 and Table 59. 

elastic modulus E p 1.95E+11 Pa

area of prestressing cable Ᾱ p 1.80E-03 m2

number of prestressing cable n 25

area of prestressing cables A p 4.50E-02 m2

ratio of area ρ p  -

eccentricity e p 0.00 m    
*The ratio of prestress is not shown because it is a function of 𝑥.  

Table 58:Material Properties of Prestressing Cables in Old Deck. 
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elastic modulus E p 1.95E+11 Pa

area of prestressing cable Ᾱ p 2.85E-03 m2

number of prestressing cable n 14

area of prestressing cables A p 3.99E-02 m2

ratio of area ρ p  -

eccentricity e p 0.00 m    
*The ratio of prestress is not shown because it is a function of 𝑥.  

Table 59:Material Properties of Prestressing Cables in New Deck. 

Since the prestress in old decks is applied in three steps at time 𝑡 3 days, 𝑡 7 days and 𝑡 28 days respectively 
(Herepoort, 2007, p. 25), material properties of concrete in old deck at time 𝑡 3 days, 𝑡 7 days and 𝑡 28 days 
are required, see Table 60, Table 61 and Table 62. 

characteristic strength f ck 3.50E+07 Pa

compression strength f cm 4.30E+07 Pa

elastic modulus E cm 3.40E+10 Pa

characteristic strength f ck (t) 3.50E+07 Pa

mean compression strength f cm (t) 5.48E+07 Pa

where:

factor related to time β cc(t) 1.28E+00

elastic modulus E cm (t) 2.91E+10 Pa  
Table 60:Material Properties of Concrete in Old Deck at Time 𝑡 3 𝑑𝑎𝑦𝑠. 

characteristic strength f ck 3.50E+07 Pa

compression strength f cm 4.30E+07 Pa

elastic modulus E cm 3.40E+10 Pa

characteristic strength f ck (t) 3.35E+07 Pa

mean compression strength f cm (t) 3.35E+07 Pa

where:

factor related to time β cc (t) 7.79E-01

elastic modulus E cm (t) 3.15E+10 Pa  
Table 61:Material Properties of Concrete in Old Deck at Time 𝑡 7 𝑑𝑎𝑦𝑠. 

characteristic strength f ck 3.50E+07 Pa

compression strength f cm 4.30E+07 Pa

elastic modulus E cm 3.40E+10 Pa

characteristic strength f ck (t) 3.50E+07 Pa

mean compression strength f cm (t) 4.30E+07 Pa

where:

factor related to time β cc (t) 1.00E+00

elastic modulus E cm (t) 3.20E+06 Pa  
Table 62:Material Properties of Concrete in Old Deck at Time 𝑡 28 𝑑𝑎𝑦𝑠. 

Since the prestress in new deck is applied all in one step at time 𝑡 7 days, material properties of concrete in new 
deck at time 𝑡 7 days is required, see Table 63. 
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characteristic strength f ck 4.50E+07 Pa

compression strength f cm 5.30E+07 Pa

elastic modulus E cm 3.60E+10 Pa

characteristic strength f ck (t) 4.50E+07 Pa

mean compression strength f cm (t) 5.37E+07 Pa

where:

factor related to time β cc (t) 1.01E+00

elastic modulus E cm (t) 3.61E+10 Pa  
Table 63:Material Properties of Concrete in New Deck at Time 𝑡 7 𝑑𝑎𝑦𝑠. 
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A9 Calculation of Prestress Loss (Old Deck) 

A9.1 General 

As shown in Appendix A7, to investigate whether it is proper or not to calculate imposed deformation and remaining 
prestressing force as if the prestressing force is applied all in one step at time 𝑡 7 days instead of three steps at 
time 𝑡 3 days, 𝑡 7 days and 𝑡 28 days, imposed deformation and prestress loss in old decks are calculated in 
Appendix A7 by both three steps and all in one step. Hereby summarized the data of the calculation carried out in 
Appendix A7. 

The difference between three steps and all in one step is that, for three steps, prestress loss between the steps has to 
be compensated. Therefore the increment of prestressing force applied to old decks in each step has to be calculated, 
see Appendix A10.  

A9.2 All in One Step (Old Deck) 

Hereby summarized the remaining prestressing force and prestress loss calculated by all in one step, see Table 64 
and Table 65. The detailing data of the calculation is shown in Appendix A9.2.1 and Appendix A9.2.2. Since 
prestressing force is applied all in one step, the prestress loss in Table 64 and Table 65 is same as those shown in 
Appendix A9.2.1 and Appendix A9.2.2 respectively. 

initial prestressing force per cable P m0 2.52E+06 N

mean elastic loss per cable ΔP el,mean 4.63E+04 N

firction loss per cable ΔP μ (x) 1.96E+05 N

shrinkage loss of per cable ΔP shr (t) 8.05E+04 N

creep loss of per cable ΔP cr (t) 8.91E+04 N

relaxation loss per cable ΔP r (t) 9.24E+04 N

final prestressing force per cable P m∞ 2.02E+06 N  
Table 64:Prestress Loss and Remaining Prestressing Force Calculated by All in One Step at time 𝑡 11 𝑦𝑒𝑎𝑟𝑠. 

initial prestressing force per cable P m0 2.52E+06 N

mean elastic loss per cable ΔP el,mean 4.63E+04 N

firction loss per cable ΔP μ (x) 1.96E+05 N

shrinkage loss of per cable ΔP shr (t) 8.05E+04 N

creep loss of per cable ΔP cr (t) 8.91E+04 N

relaxation loss per cable ΔP r (t) 9.24E+04 N

final prestressing force per cable P m∞ 2.02E+06 N

final prestressing force of cables Pm∞ 4.93E+07 N

stress resulting from prestresing σ p∞ 6.76E+06 Pa  
Table 65:Prestress Loss and Remaining Prestressing Force Calculated by All in One Step at time 𝑡 111 𝑦𝑒𝑎𝑟𝑠. 
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A9.2.1 Calculation Related to 𝑷𝟏,𝟕 𝒕  (𝒕 𝟏𝟏 𝐲𝐞𝐚𝐫𝐬 𝟐𝟗 𝐝𝐚𝐲𝐬) 

𝑃 ,  represents the prestressing force applied all in one step from time 𝑡 7 days to 𝑡 11 years 29 days.  

initial prestressing force 

original increment per cable ΔP max,1 2.52E+06 N

where:
initial prestressing force per cable Pm0 2.52E+06 N  

Table 66:Immediate Loss of Step 1 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

elastic loss 

mean elastic loss per cable ΔP el,mean (t) 4.63E+04 N

where:

factor related to number of tendon j 0.48
initial prestressing force per cable Pm0 2.52E+06 N

variation of prestress Δσ el,mean 8.66E+06 N/m2

 
Table 67:Elastic Loss of Step 1 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

 friction loss 

firction loss per cable ΔP μ (x) 1.96E+05 N

where:

factor of friction μ 0.19

angular rotation θ 0.21 rad

wobble effect k 0.01 rad/m  
Table 68:Friction Loss of Step 1 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 
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shrinkage loss 

shrinkage loss of cables ΔP shr (t) 2.01E+06 N

shrinkage loss of per cable ΔP shr (t) 8.05E+04 N

where:

shrinkage ε cs 2.29E-04 m/m

final drying shrinkage ε cd (t) 1.78E-04 m/m

initial drying shrinkage ε cd,0 3.00E-04 m/m

α ds1 4.00

α ds2 0.12

factor f cm0 1.00E+07 Pa

factor RH 0 100.00 %

factor β RH 0.90

factor related to notional size k h 0.70

factor β ts (t,t s ) 0.86

factor β ts (t p ,t s ) 0.01

time at the end of curing t s 1.00 days

final autogenous shrinkage ε ca (t) 5.12E-05 m/m

initial autogenous shrinkage ε ca (∞) 6.25E-05 m/m

factor β as (t) 1.00

factor β as (t s ) 0.18

factor related to cement

 
Table 69:Shrinkage Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

 creep loss 

creep loss of per cable ΔP cr(t) 8.91E+04 N

where:

creep strain at ends ε cc,mean (t) 2.54E-04 m/m  
Table 70:Creep Loss of Step 1 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

 relaxation loss 

relaxation loss per cable ΔP r(t) 9.24E+04 N

where:

variation of prestress Δσ pr 5.13E+07 Pa

initial prestress per cable σ pi 1.40E+09 Pa

factor μ 0.75

relaxation loss at 1000 hrs ρ 1000 2.50 %  
Table 71:Relaxation Loss of Step 1 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 
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A9.2.2 Calculation Related to 𝑷𝟏,𝟕 𝒕  (𝒕 𝟏𝟏𝟏 𝐲𝐞𝐚𝐫𝐬) 

𝑃 ,  represents the prestressing force applied in all in one step from time 𝑡 7 days to 𝑡 111 years.  

 initial prestressing force 

original increment per cable ΔP max,1 2.52E+06 N

where:
initial prestressing force per cable Pm0 2.52E+06 N  

Table 72:Immediate Loss of Step 1 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 111 𝑦𝑒𝑎𝑟𝑠. 

 elastic loss 

mean elastic loss per cable ΔP el,mean (t) 4.63E+04 N

where:

factor related to number of tendon j 0.48
initial prestressing force per cable Pm0 2.52E+06 N

variation of prestress Δσ el,mean 8.66E+06 N/m2

 
Table 73:Elastic Loss of Step 1 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 111 𝑦𝑒𝑎𝑟𝑠. 

 friction loss 

firction loss per cable ΔP μ (x) 1.96E+05 N

where:

factor of friction μ 0.19

angular rotation θ 0.21 rad

wobble effect k 0.01 rad/m  
Table 74:Friction Loss of Step 1 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 111 𝑦𝑒𝑎𝑟𝑠. 
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shrinkage loss 

shrinkage loss of cables ΔP shr (t) 2.25E+06 N

shrinkage loss of per cable ΔP shr (t) 8.98E+04 N

where:

shrinkage ε cs 2.56E-04 m/m

final drying shrinkage ε cd (t) 2.05E-04 m/m

initial drying shrinkage ε cd,0 3.00E-04 m/m

α ds1 4.00

α ds2 0.12

factor f cm0 1.00E+07 Pa

factor RH 0 100.00 %

factor β RH 0.90

factor related to notional size k h 0.70

factor β ts (t,t s ) 0.98

factor β ts (t p ,t s ) 0.01

time at the end of curing t s 1.00 days

final autogenous shrinkage ε ca (t) 5.12E-05 m/m

initial autogenous shrinkage ε ca (∞) 6.25E-05 m/m

factor β as (t) 1.00

factor β as (t s ) 0.18

factor related to cement

 
Table 75:Shrinkage Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 111 𝑦𝑒𝑎𝑟𝑠. 

 creep loss 

creep loss of per cable ΔP cr(t) 9.63E+04 N

where:

creep strain at ends ε cc,mean (t) 2.75E-04 m/m  
Table 76:Creep Loss of Step 1 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 111 𝑦𝑒𝑎𝑟𝑠. 

 relaxation loss 

relaxation loss per cable ΔP r(t) 1.25E+05 N

where:

variation of prestress Δσ pr 6.95E+07 Pa

initial prestress per cable σ pi 1.40E+09 Pa

factor μ 0.75

relaxation loss at 1000 hrs ρ 1000 2.50 %  
Table 77:Relaxation Loss of Step 1 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 111 𝑦𝑒𝑎𝑟𝑠. 
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A9.3 Three Steps (Old Deck) 

Hereby summarized the remaining prestressing force and prestress loss calculated by three steps, see Table 78 and 
Table 79. The detailing data of the calculation is shown in Appendix A9.3.1 to Appendix A9.3.6. 

As for Table 78, mean elastic loss, friction loss and creep loss are the summation of those shown in Appendix A9.3.1 
to Appendix A9.3.3 while shrinkage loss and relaxation loss are only from Appendix A9.3.3. Similarly, when it 
comes to Table 79, mean elastic loss, friction loss and creep loss are the summation of those shown in Appendix 
A9.3.4 to Appendix A9.3.6 while shrinkage loss and relaxation loss are only from Appendix A9.3.6. 

initial prestressing force per cable P m0 2.65E+06 N

mean elastic loss per cable ΔP el,mean 4.78E+04 N

firction loss per cable ΔP μ (x) 2.06E+05 N

shrinkage loss of per cable ΔP s (t) 7.83E+04 N

creep loss of per cable ΔP cr(t) 8.72E+04 N

relaxation loss per cable ΔP r (t) 9.23E+04 N

final prestressing force per cable P m∞ 2.14E+06 N  
Table 78:Prestress Loss and Remaining Prestressing Force Calculated by Three Steps at time 𝑡 11 𝑦𝑒𝑎𝑟𝑠. 

initial prestressing force per cable P m0 2.65E+06 N

mean elastic loss per cable ΔP el,mean 4.78E+04 N

firction loss per cable ΔP μ (x) 2.06E+05 N

shrinkage loss of per cable ΔP s (t) 8.76E+04 N

creep loss of per cable ΔP cr(t) 9.42E+04 N

relaxation loss per cable ΔP r (t) 1.25E+05 N

final prestressing force per cable P m∞ 2.09E+06 N

final prestressing force of cables Pm∞ 5.22E+07 N

stress resulting from prestresing σ p∞ 7.16E+06 Pa  
Table 79:Prestress Loss and Remaining Prestressing Force Calculated by Three Steps at time 𝑡 111 𝑦𝑒𝑎𝑟𝑠. 
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A9.3.1 Calculation Related to 𝑷𝟏,𝟑 𝒕  (𝒕 𝟏𝟏 𝐲𝐞𝐚𝐫𝐬 𝟐𝟗 𝐝𝐚𝐲𝐬) 

𝑃 ,  represents the prestressing force applied in the first of three steps, or in short Step 1, from 𝑡 3 days to 𝑡
11 years.  

 initial prestressing force 

original increment per cable ΔP max,1 5.05E+05 N

where:
initial prestressing force per cable Pm0 5.05E+05 N  

Table 80:Immediate Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

 elastic loss 

mean elastic loss per cable ΔP el,mean (t) 1.00E+04 N

where:

factor related to number of tendon j 0.48
initial prestressing force per cable Pm0 5.05E+05 N

variation of prestress Δσ el,mean 1.73E+06 N/m2

 
Table 81:Elastic Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

 friction loss 

firction loss per cable ΔP μ (x) 3.93E+04 N

where:

factor of friction μ 0.19

angular rotation θ 0.21 rad

wobble effect k 0.01 rad/m  
Table 82:Friction Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29𝑑𝑎𝑦𝑠. 
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shrinkage loss 

shrinkage loss of cables ΔP shr(t) 2.02E+06 N

shrinkage loss of per cable ΔP shr(t) 8.10E+04 N

where:

shrinkage ε cs 2.31E-04 m/m

final drying shrinkage ε cd (t) 1.80E-04 m/m

initial drying shrinkage ε cd,0 3.00E-04 m/m

α ds1 4.00

α ds2 0.12

factor f cm0 1.00E+07 Pa

factor RH 0 100.00 %

factor β RH 0.90

factor related to notional size k h 0.70

factor β ts (t,t s ) 0.86

factor β ts (t p ,t s ) 0.00

time at the end of curing t s 1.00 days

final autogenous shrinkage ε ca (t) 5.12E-05 m/m

initial autogenous shrinkage ε ca (∞) 6.25E-05 m/m

factor β as (t) 1.00

factor β as (t s ) 0.18

factor related to cement

 
Table 83:Shrinkage Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29𝑑𝑎𝑦𝑠. 

 creep loss 

creep loss of per cable ΔP cr(t) 2.26E+04 N

where:

creep strain at ends ε cc,mean (t) 6.44E-05 m/m  
Table 84:Creep Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

 relaxation loss 

relaxation loss per cable ΔP r (t) 6.06E+02 N

where:

variation of prestress Δσ pr 3.36E+05 Pa

initial prestress per cable σ pi 2.81E+08 Pa

factor μ 0.15

relaxation loss at 1000 hrs ρ 1000 2.50 %  
Table 85:Relaxation Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 
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A9.3.2 Calculation Related to 𝑷𝟐,𝟕 𝒕   (𝒕 𝟏𝟏 𝐲𝐞𝐚𝐫𝐬 𝟐𝟗 𝐝𝐚𝐲𝐬) 

𝑃 ,  represents the prestressing force applied in the second of three steps, or in short Step 2, from time 𝑡 7 days 

to 𝑡 11 years.  

 initial prestressing force 

original increment per cable ΔPmax,2 1.05E+06 N

where:
initial prestressing force per cable Pm0 1.05E+06 N  

Table 86:Immediate Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

 elastic loss 

mean elastic loss per cable ΔP el,mean (t) 1.92E+04 N

where:

factor related to number of tendon j 0.48
initial prestressing force per cable Pm0 1.05E+06 N

variation of prestress Δσ el,mean 3.60E+06 N/m2

 
Table 87:Elastic Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

 friction loss 

firction loss per cable ΔP μ (x) 8.15E+04 N

where:

factor of friction μ 0.19

angular rotation θ 0.21 rad

wobble effect k 0.01 rad/m  
Table 88:Friction Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 
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shrinkage loss 

shrinkage loss of cables ΔP shr (t) 2.01E+06 N

shrinkage loss of per cable ΔP shr (t) 8.05E+04 N

where:

shrinkage ε cs 2.29E-04 m/m

final drying shrinkage ε cd (t) 1.78E-04 m/m

initial drying shrinkage ε cd,0 3.00E-04 m/m

α ds1 4.00

α ds2 0.12

factor f cm0 1.00E+07 Pa

factor RH 0 100.00 %

factor β RH 0.90

factor related to notional size k h 0.70

factor β ts (t,t s ) 0.86

factor β ts (t p ,t s ) 0.01

time at the end of curing t s 1.00 days

final autogenous shrinkage ε ca (t) 5.12E-05 m/m

initial autogenous shrinkage ε ca (∞) 6.25E-05 m/m

factor β as (t) 1.00

factor β as (t s ) 0.18

factor related to cement

 
Table 89:Shrinkage Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

 creep loss 

creep loss of per cable ΔP cr (t) 3.70E+04 N

where:

creep strain at ends ε cc,mean (t) 1.06E-04 m/m  
Table 90:Creep Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

 relaxation loss 

relaxation loss per cable ΔP r(t) 1.00E+04 N

where:

variation of prestress Δσ pr 5.57E+06 Pa

initial prestress per cable σ pi 8.41E+08 Pa

factor μ 0.45

relaxation loss at 1000 hrs ρ 1000 2.50 %  
Table 91:Relaxation Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 
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A9.3.3 Calculation Related to 𝑷𝟑,𝟐𝟖 𝒕  (𝒕 𝟏𝟏 𝐲𝐞𝐚𝐫𝐬 𝟐𝟗 𝐝𝐚𝐲𝐬) 

𝑃 ,  represents the prestressing force applied in the third of three steps, or in short Step 3, from time 𝑡 28 days 

to 𝑡 11 years.  

 initial prestressing force 

original increment per cable ΔPmax,3 1.09E+06 N

where:
initial prestressing force per cable Pm0 1.09E+06 N  

Table 92:Immediate Loss of Step 3 from Time 𝑡 28 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

 elastic loss 

mean elastic loss per cable ΔP el,mean (t) 1.88E+04 N

where:

factor related to number of tendon j 0.48
initial prestressing force per cable Pm0 1.11E+06 N

variation of prestress Δσ el,mean 3.75E+06 N/m2

 
Table 93:Elastic Loss of Step 3 from Time 𝑡 28 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

 friction loss 

firction loss per cable ΔP μ (x) 8.51E+04 N

where:

factor of friction μ 0.19

angular rotation θ 0.21 rad

wobble effect k 0.01 rad/m  
Table 94:Friction Loss of Step 3 from Time 𝑡 28 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 
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shrinkage loss 

shrinkage loss of cables ΔP shr(t) 1.96E+06 N

shrinkage loss of per cable ΔP shr(t) 7.83E+04 N

where:

shrinkage ε cs 2.23E-04 m/m

final drying shrinkage ε cd (t) 1.72E-04 m/m

initial drying shrinkage ε cd,0 3.00E-04 m/m

α ds1 4.00

α ds2 0.12

factor f cm0 1.00E+07 Pa

factor RH 0 100.00 %

factor β RH 0.90

factor related to notional size k h 0.70

factor β ts (t,t s ) 0.86

factor β ts (t p ,t s ) 0.04

time at the end of curing t s 1.00 days

final autogenous shrinkage ε ca (t) 5.12E-05 m/m

initial autogenous shrinkage ε ca (∞) 6.25E-05 m/m

factor β as (t) 1.00

factor β as (t s ) 0.18

factor related to cement

 
Table 95:Shrinkage Loss of Step 3 from Time 𝑡 28 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

 creep loss 

creep loss of per cable ΔP cr(t) 2.79E+04 N

where:

creep strain at ends ε cc,mean (t) 7.94E-05 m/m  
Table 96:Creep Loss of Step 3 from Time 𝑡 28 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

 relaxation loss 

relaxation loss per cable ΔP r(t) 9.23E+04 N

where:

variation of prestress Δσ pr 5.13E+07 Pa

initial prestress per cable σ pi 1.40E+09 Pa

factor μ 0.75

relaxation loss at 1000 hrs ρ 1000 2.50 %  
Table 97:Relaxation Loss of Step 3 from Time 𝑡 28 𝑑𝑎𝑦𝑠 to Time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 
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A9.3.4 Calculation Related to 𝑷𝟏,𝟑 𝒕  (𝒕 𝟏𝟏𝟏 𝐲𝐞𝐚𝐫𝐬) 

𝑃 ,  represents the prestressing force applied in the first of three steps, or in short Step 1, from time 𝑡 3 days to 

𝑡 111 years.  

immediate loss 

original increment per cable ΔPmax,1 5.05E+05 N

where:
initial prestressing force per cable Pm0 5.05E+05 N  

Table 98:Immediate Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 elastic loss 

mean elastic loss per cable ΔP el,mean (t) 1.00E+04 N

where:

factor related to number of tendon j 0.48
initial prestressing force per cable Pm0 5.05E+05 N

variation of prestress Δσ el,mean 1.73E+06 N/m2

 
Table 99:Elastic Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 friction loss 

firction loss per cable ΔP μ (x) 3.93E+04 N

where:

factor of friction μ 0.19

angular rotation θ 0.21 rad

wobble effect k 0.01 rad/m  
Table 100:Friction Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 
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shrinkage loss 

shrinkage loss of cables ΔP shr(t) 2.26E+06 N

shrinkage loss of per cable ΔP shr(t) 9.03E+04 N

where:

shrinkage ε cs 2.57E-04 m/m

final drying shrinkage ε cd (t) 2.06E-04 m/m

initial drying shrinkage ε cd,0 3.00E-04 m/m

α ds1 4.00

α ds2 0.12

factor f cm0 1.00E+07 Pa

factor RH 0 100.00 %

factor β RH 0.90

factor related to notional size k h 0.70

factor β ts (t,t s ) 0.98

factor β ts (t p ,t s ) 0.00

time at the end of curing t s 1.00 days

final autogenous shrinkage ε ca (t) 5.12E-05 m/m

initial autogenous shrinkage ε ca (∞) 6.25E-05 m/m

factor β as (t) 1.00

factor β as (t s ) 0.18

factor related to cement

 
Table 101:Shrinkage Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 creep loss 

creep loss of per cable ΔP cr(t) 2.44E+04 N

where:

creep strain ε cc(t) 6.95E-05 m/m  
Table 102:Creep Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 relaxation loss 

relaxation loss per cable ΔP r(t) 1.72E+03 N

where:

variation of prestress Δσ pr 9.56E+05 Pa

initial prestress per cable σ pi 2.81E+08 Pa

factor μ 0.15

relaxation loss at 1000 hrs ρ 1000 2.50 %  
Table 103:Relaxation Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 
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A9.3.5 Calculation Related to 𝑷𝟐,𝟕 𝒕  (𝒕 𝟏𝟏𝟏 𝐲𝐞𝐚𝐫𝐬) 

𝑃 ,  represents the prestressing force applied in the second of three steps, or in short Step 2, from time 𝑡 7 days 

to 𝑡 111 years.  

immediate loss 

original increment per cable ΔPmax,2 1.05E+06 N

where:
initial prestressing force per cable Pm0 1.05E+06 N  

Table 104:Immediate Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 elastic loss 

mean elastic loss per cable ΔP el,mean (t) 1.92E+04 N

where:

factor related to number of tendon j 0.48
initial prestressing force per cable Pm0 1.05E+06 N

variation of prestress Δσ el,mean 3.60E+06 N/m2

 
Table 105:Elastic Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 friction loss 

firction loss per cable ΔP μ (x) 8.15E+04 N

where:

factor of friction μ 0.19

angular rotation θ 0.21 rad

wobble effect k 0.01 rad/m  
Table 106:Friction Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 
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shrinkage loss 

shrinkage loss of cables ΔP shr(t) 2.25E+06 N

shrinkage loss of per cable ΔP shr(t) 8.98E+04 N

where:

shrinkage ε cs 2.56E-04 m/m

final drying shrinkage ε cd (t) 2.05E-04 m/m

initial drying shrinkage ε cd,0 3.00E-04 m/m

α ds1 4.00

α ds2 0.12

factor f cm0 1.00E+07 Pa

factor RH 0 100.00 %

factor β RH 0.90

factor related to notional size k h 0.70

factor β ts (t,t s ) 0.98

factor β ts (t p ,t s ) 0.01

time at the end of curing t s 1.00 days

final autogenous shrinkage ε ca (t) 5.12E-05 m/m

initial autogenous shrinkage ε ca (∞) 6.25E-05 m/m

factor β as (t) 1.00

factor β as (t s ) 0.18

factor related to cement

 
Table 107:Shrinkage Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 creep loss 

creep loss of per cable ΔP cr(t) 4.00E+04 N

where:

creep strain ε cc(t) 1.14E-04 m/m  
Table 108:Creep Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 relaxation loss 

relaxation loss per cable ΔP r (t) 1.97E+04 N

where:

variation of prestress Δσ pr 1.09E+07 Pa

initial prestress per cable σ pi 8.41E+08 Pa

factor μ 0.45

relaxation loss at 1000 hrs ρ 1000 2.50 %  
Table 109:Relaxation Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 
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A9.3.6 Calculation Related to 𝑷𝟑,𝟐𝟖 𝒕  (𝒕 𝟏𝟏𝟏 𝐲𝐞𝐚𝐫𝐬) 

𝑃 ,  represents the prestressing force applied in the third of three steps, or in short Step 3, from time 𝑡 28 days 

to 𝑡 111 years.  

immediate loss 

original increment per cable ΔP max,3 1.09E+06 N

where:
initial prestressing force per cable Pm0 1.09E+06 N  

Table 110: Immediate Loss of Step 3 from Time 𝑡 28 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 elastic loss 

mean elastic loss per cable ΔP el,mean (t) 1.86E+04 N

where:

factor related to number of tendon j 0.48
initial prestressing force per cable Pm0 1.09E+06 N

variation of prestress Δσ el,mean 3.75E+06 N/m2

 
Table 111:Elastic Loss of Step 3 from Time 𝑡 28 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 friction loss 

firction loss per cable ΔP μ (x) 8.51E+04 N

where:

factor of friction μ 0.19

angular rotation θ 0.21 rad

wobble effect k 0.01 rad/m  
Table 112:Friction Loss of Step 3 from Time 𝑡 28 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 
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shrinkage loss 

shrinkage loss of cables ΔP shr(t) 2.19E+06 N

shrinkage loss of per cable ΔP shr(t) 8.76E+04 N

where:

shrinkage ε cs 2.50E-04 m/m

final drying shrinkage ε cd (t) 1.99E-04 m/m

initial drying shrinkage ε cd,0 3.00E-04 m/m

α ds1 4.00

α ds2 0.12

factor f cm0 1.00E+07 Pa

factor RH 0 100.00 %

factor β RH 0.90

factor related to notional size k h 0.70

factor β ts (t,t s ) 0.98

factor β ts (t p ,t s ) 0.04

time at the end of curing t s 1.00 days

final autogenous shrinkage ε ca (t) 5.12E-05 m/m

initial autogenous shrinkage ε ca (∞) 6.25E-05 m/m

factor β as (t) 1.00

factor β as (t s ) 0.18

factor related to cement

 
Table 113:Shrinkage Loss of Step 3 from Time 𝑡 28 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 creep loss 

creep loss of per cable ΔP cr(t) 2.98E+04 N

where:

creep strain ε cc (t) 8.49E-05 m/m  
Table 114:Creep Loss of Step 3 from Time 𝑡 28 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 relaxation loss 

relaxation loss per cable ΔP r(t) 1.25E+05 N

where:

variation of prestress Δσ pr 6.95E+07 Pa

initial prestress per cable σ pi 1.40E+09 Pa

factor μ 0.75

relaxation loss at 1000 hrs ρ 1000 2.50 %  
Table 115:Relaxation Loss of Step 3 from Time 𝑡 28 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 
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A10 Calculation of Increment of Prestressing Force Applied in Each Step 

(Old Deck) 

A10.1 Calculation of ∆𝑷𝟏,𝟑 𝟕 (Old Deck) 

∆𝑃 ,  represents the prestress loss of Step 1 which appears between Step 1 and Step 2 from time 𝑡 3 days to 𝑡
7 days. As shown in Appendix A7.1, prestressing force in old deck at the end of Step 1 is 𝑃 505 kN. Therefore, 
the original increment of prestressing force in Step 1 is as follow: 

∆𝑷𝒎𝒂𝒙,𝟏 𝟓𝟎𝟓 𝐤𝐍 

Then ∆𝑃 ,  is as follow: 

 ∆𝑷𝟏,𝟑 𝟕  ∆𝑃 , ∆𝑃 ∆𝑃 ∆𝑃 ∆𝑃 𝑛⁄ 𝟒𝟎 𝐤𝐍 (42) 

 initial prestressing force 

original increment per cable ΔPmax,1 5.05E+05 N

where:
initial prestressing force per cable Pm0 5.05E+05 N  

Table 116:Immediate Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 7 𝑑𝑎𝑦𝑠. 

 elastic loss 

mean elastic loss per cable ΔP el,mean (t) 1.00E+04 N

where:

factor related to number of tendon j 0.48
initial prestressing force per cable Pm0 5.05E+05 N

variation of prestress Δσ el,mean 1.73E+06 N/m2

 
Table 117:Elastic Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 7 𝑑𝑎𝑦𝑠. 

 friction loss 

firction loss per cable ΔP μ (0) 2.01E+04 N

where:

factor of friction μ 0.19

angular rotation θ 0.21 rad

wobble effect k 0.01 rad/m  
Table 118:Friction Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 7 𝑑𝑎𝑦𝑠. 
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shrinkage loss 

shrinkage loss of cables ΔP shr(t) 1.37E+05 N

shrinkage loss of per cable ΔP shr(t) 5.47E+03 N

where:

shrinkage ε cs 1.56E-05 m/m

final drying shrinkage ε cd (t) 1.23E-06 m/m

initial drying shrinkage ε cd,0 3.00E-04 m/m

α ds1 4.00

α ds2 0.12

factor f cm0 1.00E+07 Pa

factor RH 0 100.00 %

factor β RH 0.90

factor related to notional size k h 0.70

factor β ts (t,t s ) 0.01

factor β ts (t p ,t s ) 0.00

time at the end of curing t s 1.00 days

final autogenous shrinkage ε ca (t) 1.44E-05 m/m

initial autogenous shrinkage ε ca (∞) 6.25E-05 m/m

factor β as (t) 0.41

factor β as (t s ) 0.18

factor related to cement

 
Table 119:Shrinkage Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 7 𝑑𝑎𝑦𝑠. 

 creep loss 

creep loss of per cable ΔP cr(t) 4.29E+03 N

where:

creep strain at ends ε cc,mean (t) 1.22E-05 m/m  
Table 120:Creep Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 7 𝑑𝑎𝑦𝑠. 

 relaxation loss 

relaxation loss per cable ΔP r(t) 7.39E+00 N

where:

variation of prestress Δσ pr 4.11E+03 Pa

initial prestress per cable σ pi 2.81E+08 Pa

factor μ 0.15

relaxation loss at 1000 hrs ρ 1000 2.50 %  
Table 121:Relaxation Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 7 𝑑𝑎𝑦𝑠. 
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A10.2 Calculation of ∆𝑷𝟏,𝟑 𝟐𝟖 (Old Deck) 

∆𝑃 ,  represents the prestress loss of Step 1 which appears between Step 1 and Step 3 from time 𝑡 3 days to 

𝑡 28 days. As shown in Appendix A7.1, prestressing force in old deck at the end of Step 1 is 𝑃 505 kN. 
Therefore, the original increment of prestressing force in Step 1 is as follow: 

∆𝑷𝒎𝒂𝒙,𝟏 𝟓𝟎𝟓 𝐤𝐍 

Then ∆𝑃 ,  is as follow: 

 ∆𝑷𝟏,𝟑 𝟐𝟖 ∆𝑃 , ∆𝑃 ∆𝑃 ∆𝑃 ∆𝑃 𝑛⁄ 𝟓𝟏 𝐤𝐍 (43) 

initial prestressing force 

original increment per cable ΔPmax,1 5.05E+05 N

where:
initial prestressing force per cable Pm0 5.05E+05 N  

Table 122:Immediate Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 28 𝑑𝑎𝑦𝑠. 

 elastic loss 

mean elastic loss per cable ΔP el,mean (t) 1.00E+04 N

where:

factor related to number of tendon j 0.48
initial prestressing force per cable Pm0 5.05E+05 N

variation of prestress Δσ el,mean 1.73E+06 N/m2

 
Table 123:Elastic Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 28 𝑑𝑎𝑦𝑠. 

 friction loss 

firction loss per cable ΔP μ (0) 2.01E+04 N

where:

factor of friction μ 0.19

angular rotation θ 0.21 rad

wobble effect k 0.01 rad/m  
Table 124:Friction Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 28 𝑑𝑎𝑦𝑠. 
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shrinkage loss 

shrinkage loss of cables ΔP shr(t) 3.24E+05 N

shrinkage loss of per cable ΔP shr(t) 1.30E+04 N

where:

shrinkage ε cs 3.70E-05 m/m

final drying shrinkage ε cd (t) 7.49E-06 m/m

initial drying shrinkage ε cd,0 3.00E-04 m/m

α ds1 4.00

α ds2 0.12

factor f cm0 1.00E+07 Pa

factor RH 0 100.00 %

factor β RH 0.90

factor related to notional size k h 0.70

factor β ts (t,t s ) 0.04

factor β ts (t p ,t s ) 0.00

time at the end of curing t s 1.00 days

final autogenous shrinkage ε ca (t) 2.95E-05 m/m

initial autogenous shrinkage ε ca (∞) 6.25E-05 m/m

factor β as (t) 0.65

factor β as (t s ) 0.18

factor related to cement

 
Table 125:Shrinkage Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 28 𝑑𝑎𝑦𝑠. 

 creep loss 

creep loss of per cable ΔP cr(t) 7.40E+03 N

where:

creep strain at ends ε cc,end (t) 2.11E-05 m/m  
Table 126:Creep Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 7 𝑑𝑎𝑦𝑠. 

 relaxation loss 

relaxation loss per cable ΔP r(t) 2.37E+01 N

where:

variation of prestress Δσ pr 1.32E+04 Pa

initial prestress per cable σ pi 2.81E+08 Pa

factor μ 0.15

relaxation loss at 1000 hrs ρ 1000 2.50 %  
Table 127:Relaxation Loss of Step 1 from Time 𝑡 3 𝑑𝑎𝑦𝑠 to Time 𝑡 7 𝑑𝑎𝑦𝑠. 

  



 
 
 

Wednesday, 04 March 
2020 

 COMBINED ACTIONS 98  

 

A10.3 Calculation of ∆𝑷𝟐,𝟕 𝟐𝟖 (Old Deck) 

∆𝑃 ,  represents the prestress loss of Step 2 which appears between Step 2 and Step 3 from time 𝑡 7 days to 

𝑡 28 days. As shown in Appendix A7.1, prestressing force in old deck at the end of Step 2 is 𝑃 1514 kN. 
Therefore, the original increment of prestressing force in Step 2 is as follow: 

∆𝑷𝒎𝒂𝒙,𝟐 𝑃 𝑃 ∆𝑃 , 𝟏𝟎𝟒𝟗 𝐤𝐍 

Then ∆𝑃 ,  is as follow: 

 ∆𝑷𝟐,𝟕 𝟐𝟖  ∆𝑃 , ∆𝑃 ∆𝑃 ∆𝑃 ∆𝑃 𝑛⁄ 𝟖𝟔 𝐤𝐍 (44) 

initial prestressing force 

original increment per cable ΔPmax,2 1.05E+06 N

where:
initial prestressing force per cable Pm0 1.05E+06 N  

Table 128:Immediate Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 28 𝑑𝑎𝑦𝑠. 

 elastic loss 

mean elastic loss per cable ΔP el,mean (t) 1.92E+04 N

where:

factor related to number of tendon j 0.48
initial prestressing force per cable Pm0 1.05E+06 N

variation of prestress Δσ el,mean 3.60E+06 N/m2

 
Table 129:Elastic Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 28 𝑑𝑎𝑦𝑠. 

 friction loss 

firction loss per cable ΔP μ (0) 4.18E+04 N

where:

factor of friction μ 0.19

angular rotation θ 0.21 rad

wobble effect k 0.01 rad/m  
Table 130:Friction Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 28 𝑑𝑎𝑦𝑠. 
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shrinkage loss 

shrinkage loss of cables ΔP shr (t) 3.14E+05 N

shrinkage loss of per cable ΔP shr (t) 1.25E+04 N

where:

shrinkage ε cs 3.57E-05 m/m

final drying shrinkage ε cd (t) 6.25E-06 m/m

initial drying shrinkage ε cd,0 3.00E-04 m/m

α ds1 4.00

α ds2 0.12

factor f cm0 1.00E+07 Pa

factor RH 0 100.00 %

factor β RH 0.90

factor related to notional size k h 0.70

factor β ts (t,t s ) 0.04

factor β ts (t p ,t s ) 0.01

time at the end of curing t s 1.00 days

final autogenous shrinkage ε ca (t) 2.95E-05 m/m

initial autogenous shrinkage ε ca (∞) 6.25E-05 m/m

factor β as (t) 0.65

factor β as (t s ) 0.18

factor related to cement

 
Table 131:Shrinkage Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 28 𝑑𝑎𝑦𝑠. 

 creep loss 

creep loss of per cable ΔP cr (t) 1.15E+04 N

where:

creep strain at ends ε cc,end (t) 3.28E-05 m/m  
Table 132:Creep Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 28 𝑑𝑎𝑦𝑠. 

 relaxation loss 

relaxation loss per cable ΔP r(t) 1.15E+03 N

where:

variation of prestress Δσ pr 6.42E+05 Pa

initial prestress per cable σ pi 8.41E+08 Pa

factor μ 0.45

relaxation loss at 1000 hrs ρ 1000 2.50 %  
Table 133:Relaxation Loss of Step 2 from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 28 𝑑𝑎𝑦𝑠. 
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A10.4 Increment of Prestressing Force Applied in Each Step 

As shown in Appendix A7.1, prestressing force in old deck at the end of Step 1 is 𝑃 505 kN. Therefore, the 
original increment of prestressing force in Step 1 is as follow: 

∆𝑷𝒎𝒂𝒙,𝟏 𝟓𝟎𝟓 𝐤𝐍 

As shown in Appendix A7.1, prestressing force in old deck at the end of Step 2 is 𝑃 1514 kN. Prestress loss 
between Step 1 and Step 2 has to be compensated. The compensation is as follow: 

∆𝑃 , 𝟒𝟎 𝐤𝐍 

Therefore, the original increment of prestressing force in Step 2 is as follow: 

∆𝑷𝒎𝒂𝒙,𝟐 𝑃 𝑃 ∆𝑃 , 𝟏𝟎𝟒𝟗 𝐤𝐍 

As shown in Appendix A7.1, prestressing force in old deck at the end of Step 3 is 𝑃 2524 kN. Prestress loss 
between Step 2 and Step 3 has to be compensated. The compensation is as follow: 

∆𝑃 , ∆𝑃 , , ∆𝑃 , ∆𝑃 , , ∆𝑃 , ∆𝑃 , , 𝟖𝟒 𝐤𝐍 

Therefore, the original increment of prestressing force in Step 3 is as follow: 

∆𝑷𝒎𝒂𝒙,𝟑 𝑃 𝑃 ∆𝑃 , ∆𝑃 , , ∆𝑃 , ∆𝑃 , , ∆𝑃 , ∆𝑃 , , 𝟏𝟎𝟗𝟒 𝐤𝐍 
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A11 Calculation of Prestress Loss (New Deck) 

A11.1 General 

As shown in Appendix A7, the prestressing force is applied all in one step at time 𝑡 7 days. Imposed deformation 
and prestress loss in new decks are calculated by all in one step.  

The models used during investigation are Simplified Model 1 and Simplified Model 2, see Section 7.3.1 and Section 
7.4.1. The input data is shown in Chapter 5. The material properties applied to the expressions are calculated by the 
input data and the expressions in Appendix A4 and Appendix A5. The imposed deformation and prestress loss in old 
decks are calculated by the expressions in Appendix A6. Hereby summarized the data of the calculation. 

A11.2 All in One Step (New Deck - South) 

Hereby summarized the remaining prestressing force and prestress loss calculated by all in one step, see Table 134 
and Table 135. The detailing data of the calculation is shown in Appendix A11.2.1 and Appendix A11.2.2. Since 
prestressing force is applied all in one step, the prestress loss in Table 134 and Table 135 are same as those shown in 
Appendix A11.2.1 and Appendix A11.2.2 respectively. 

initial prestressing force per cable P m0 3.96E+06 N

mean elastic loss per cable ΔP el,mean 5.88E+04 N

firction loss per cable ΔP μ (x) 2.70E+05 N

shrinkage loss of per cable ΔP shr (t) 3.38E+03 N

creep loss of per cable ΔP cr (t) 5.97E+04 N

relaxation loss per cable ΔP r (t) 5.14E+04 N

final prestressing force per cable P m∞ 3.51E+06 N  
Table 134:Prestress Loss and Remaining Prestressing Force Calculated by All in One Step at time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

initial prestressing force per cable P m0 3.96E+06 N

mean elastic loss per cable ΔP el,mean 5.88E+04 N

firction loss per cable ΔP μ (x) 2.70E+05 N

shrinkage loss of per cable ΔP shr (t) 1.41E+05 N

creep loss of per cable ΔP cr(t) 1.90E+05 N

relaxation loss per cable ΔP r(t) 1.90E+05 N

final prestressing force per cable P m∞ 3.11E+06 N

final prestressing force of cables Pm∞ 9.32E+06 N

stress resulting from prestresing σ p∞ 8.32E+06 Pa  
Table 135:Prestress Loss and Remaining Prestressing Force Calculated by All in One Step at time 𝑡 111 𝑦𝑒𝑎𝑟𝑠. 
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A11.2.1 Calculation Related to 𝑷𝟏,𝟕 𝒕  (𝒕 𝟏𝟏 𝐲𝐞𝐚𝐫𝐬 𝟐𝟗 𝐝𝐚𝐲𝐬) 

𝑃 ,  represents the prestressing force applied all in one step from time 𝑡 7 days to 𝑡 11 years 29 days.  

immediate loss 

original increment per cable ΔP max 3.96E+06 N

where:
initial prestressing force per cable Pm0 3.96E+06 N  

Table 136:Immediate Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 elastic loss 

mean elastic loss per cable ΔP el,mean (t) 5.88E+04 N

where:

factor related to number of tendon j 0.33
initial prestressing force per cable Pm0 3.96E+06 N

variation of prestress Δσ el,mean 1.06E+07 N/m2

 
Table 137:Elastic Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 friction loss 

firction loss per cable ΔP μ (x) 2.70E+05 N

where:

factor of friction μ 0.19

angular rotation θ 0.16 rad

wobble effect k 0.01 rad/m  
Table 138:Friction Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 
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shrinkage loss 

shrinkage loss of cables ΔP shr(t) 8.45E+04 N

shrinkage loss of per cable ΔP shr(t) 3.38E+03 N

where:

shrinkage ε cs 5.07E-05 m/m

final drying shrinkage ε cd (t) 8.87E-06 m/m

initial drying shrinkage ε cd,0 2.66E-04 m/m

α ds1 4.00

α ds2 0.12

factor f cm0 1.00E+07 Pa

factor RH 0 100.00 %

factor β RH 0.90

factor related to notional size k h 0.70

factor β ts (t,t s ) 0.06

factor β ts (t p ,t s ) 0.01

time at the end of curing t s 1.00 days

final autogenous shrinkage ε ca (t) 4.18E-05 m/m

initial autogenous shrinkage ε ca (∞) 8.75E-05 m/m

factor β as (t) 0.66

factor β as (t s ) 0.18

factor related to cement

 
Table 139:Shrinkage Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 creep loss 

creep loss of per cable ΔP cr (t) 5.97E+04 N

where:

creep strain ε cc (t) 1.07E-04 m/m  
Table 140:Creep Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 relaxation loss 

relaxation loss per cable ΔP r(t) 5.14E+04 N

where:

variation of prestress Δσ pr 1.80E+07 Pa

initial prestress per cable σ pi 1.39E+09 Pa

factor μ 0.75

relaxation loss at 1000 hrs ρ 1000 2.50 %  
Table 141:Relaxation Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 
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A11.2.2 Calculation Related to 𝑷𝟏,𝟕 𝒕  (𝒕 𝟏𝟏𝟏 𝐲𝐞𝐚𝐫𝐬) 

𝑃 ,  represents the prestressing force applied all in one step from time 𝑡 7 days to 𝑡 111 years. 

immediate loss 

original increment per cable ΔP max 3.96E+06 N

where:
initial prestressing force per cable Pm0 3.96E+06 N  

Table 142:Immediate Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 elastic loss 

mean elastic loss per cable ΔP el,mean (t) 5.88E+04 N

where:

factor related to number of tendon j 0.33
initial prestressing force per cable Pm0 3.96E+06 N

variation of prestress Δσ el,mean 1.06E+07 N/m2

 
Table 143:Elastic Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 friction loss 

firction loss per cable ΔP μ (x) 2.70E+05 N

where:

factor of friction μ 0.19

angular rotation θ 0.16 rad

wobble effect k 0.01 rad/m  
Table 144:Friction Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 
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shrinkage loss 

shrinkage loss of cables ΔP shr (t) 4.24E+05 N

shrinkage loss of per cable ΔP shr (t) 1.41E+05 N

where:

shrinkage ε cs 2.54E-04 m/m

final drying shrinkage ε cd (t) 1.82E-04 m/m

initial drying shrinkage ε cd,0 2.66E-04 m/m

α ds1 4.00

α ds2 0.12

factor f cm0 1.00E+07 Pa

factor RH 0 100.00 %

factor β RH 0.90

factor related to notional size k h 0.70

factor β ts (t,t s ) 0.99

factor β ts (t p ,t s ) 0.01

time at the end of curing t s 1.00 days

final autogenous shrinkage ε ca (t) 7.16E-05 m/m

initial autogenous shrinkage ε ca (∞) 8.75E-05 m/m

factor β as (t) 1.00

factor β as (t s ) 0.18

factor related to cement

 
Table 145:Shrinkage Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 creep loss 

creep loss of per cable ΔP cr (t) 1.90E+05 N

where:

creep strain ε cc (t) 3.41E-04 m/m  
Table 146:Creep Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 relaxation loss 

relaxation loss per cable ΔP r (t) 1.90E+05 N

where:

variation of prestress Δσ pr 6.65E+07 Pa

initial prestress per cable σ pi 1.39E+09 Pa

factor μ 0.75

relaxation loss at 1000 hrs ρ 1000 2.50 %  
Table 147:Relaxation Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 
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A11.3 All in One Step (New Deck - North) 

Hereby summarized the remaining prestressing force and prestress loss calculated by all in one step, see Table 148 
and Table 149. The detailing data of the calculation is shown in Appendix A11.2.1 and Appendix A11.2.2. Since 
prestressing force is applied all in one step, the prestress loss in Table 148 and Table 149 are same as those shown in 
Appendix A11.2.1 and Appendix A11.2.2 respectively. 

initial prestressing force per cable P m0 3.96E+06 N

mean elastic loss per cable ΔP el,mean 6.21E+04 N

firction loss per cable ΔP μ (x) 2.70E+05 N

shrinkage loss of per cable ΔP shr (t) 1.48E+04 N

creep loss of per cable ΔP cr(t) 3.48E+04 N

relaxation loss per cable ΔP r(t) 5.14E+04 N

final prestressing force per cable P m∞ 3.52E+06 N  
Table 148:Prestress Loss and Remaining Prestressing Force Calculated by All in One Step at time 𝑡 11 𝑦𝑒𝑎𝑟𝑠 29 𝑑𝑎𝑦𝑠. 

initial prestressing force per cable P m0 3.96E+06 N

mean elastic loss per cable ΔP el,mean 6.21E+04 N

firction loss per cable ΔP μ (x) 2.70E+05 N

shrinkage loss of per cable ΔP shr (t) 1.41E+05 N

creep loss of per cable ΔP cr(t) 1.15E+05 N

relaxation loss per cable ΔP r(t) 1.90E+05 N

final prestressing force per cable P m∞ 3.18E+06 N

final prestressing force of cables Pm∞ 4.45E+07 N

stress resulting from prestresing σ p∞ 6.45E+06 Pa  
Table 149:Prestress Loss and Remaining Prestressing Force Calculated by All in One Step at time 𝑡 111 𝑦𝑒𝑎𝑟𝑠. 
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A11.3.1 Calculation Related to 𝑷𝟏,𝟕 𝒕  (𝒕 𝟏𝟏 𝐲𝐞𝐚𝐫𝐬 𝟐𝟗 𝐝𝐚𝐲𝐬) 

𝑃 ,  represents the prestressing force applied all in one step from time 𝑡 7 days to 𝑡 11 years 29 days.  

immediate loss 

original increment per cable ΔP max 3.96E+06 N

where:
initial prestressing force per cable Pm0 3.96E+06 N  

Table 150:Immediate Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 elastic loss 

mean elastic loss per cable ΔP el,mean (t) 6.21E+04 N

where:

factor related to number of tendon j 0.46
initial prestressing force per cable Pm0 3.96E+06 N

variation of prestress Δσ el,mean 8.03E+06 N/m2

 
Table 151:Elastic Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 friction loss 

firction loss per cable ΔP μ (x) 2.70E+05 N

where:

factor of friction μ 0.19

angular rotation θ 0.16 rad

wobble effect k 0.01 rad/m  
Table 152:Friction Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 
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shrinkage loss 

shrinkage loss of cables ΔP shr (t) 3.71E+05 N

shrinkage loss of per cable ΔP shr (t) 1.48E+04 N

where:

shrinkage ε cs 4.77E-05 m/m

final drying shrinkage ε cd (t) 5.83E-06 m/m

initial drying shrinkage ε cd,0 2.66E-04 m/m

α ds1 4.00

α ds2 0.12

factor f cm0 1.00E+07 Pa

factor RH 0 100.00 %

factor β RH 0.90

factor related to notional size k h 0.70

factor β ts (t,t s ) 0.04

factor β ts (t p ,t s ) 0.01

time at the end of curing t s 1.00 days

final autogenous shrinkage ε ca (t) 4.18E-05 m/m

initial autogenous shrinkage ε ca (∞) 8.75E-05 m/m

factor β as (t) 0.66

factor β as (t s ) 0.18

factor related to cement

 
Table 153:Shrinkage Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 creep loss 

creep loss of per cable ΔP cr(t) 3.48E+04 N

where:

creep strain ε cc(t) 6.25E-05 m/m  
Table 154:Creep Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 relaxation loss 

relaxation loss per cable ΔP r(t) 5.14E+04 N

where:

variation of prestress Δσ pr 1.80E+07 Pa

initial prestress per cable σ pi 1.39E+09 Pa

factor μ 0.75

relaxation loss at 1000 hrs ρ 1000 2.50 %  
Table 155:Relaxation Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 
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A11.3.2 Calculation Related to 𝑷𝟏,𝟕 𝒕  (𝒕 𝟏𝟏𝟏 𝐲𝐞𝐚𝐫𝐬) 

𝑃 ,  represents the prestressing force applied all in one step from time 𝑡 7 days to 𝑡 111 years. 

immediate loss 

original increment per cable ΔP max 3.96E+06 N

where:
initial prestressing force per cable Pm0 3.96E+06 N  

Table 156:Immediate Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 elastic loss 

mean elastic loss per cable ΔP el,mean (t) 6.21E+04 N

where:

factor related to number of tendon j 0.46
initial prestressing force per cable Pm0 3.96E+06 N

variation of prestress Δσ el,mean 8.03E+06 N/m2

 
Table 157:Elastic Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 friction loss 

firction loss per cable ΔP μ (x) 2.70E+05 N

where:

factor of friction μ 0.19

angular rotation θ 0.16 rad

wobble effect k 0.01 rad/m  
Table 158:Friction Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 
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shrinkage loss 

shrinkage loss of cables ΔP shr(t) 1.97E+06 N

shrinkage loss of per cable ΔP shr(t) 1.41E+05 N

where:

shrinkage ε cs 2.53E-04 m/m

final drying shrinkage ε cd (t) 1.81E-04 m/m

initial drying shrinkage ε cd,0 2.66E-04 m/m

α ds1 4.00

α ds2 0.12

factor f cm0 1.00E+07 Pa

factor RH 0 100.00 %

factor β RH 0.90

factor related to notional size k h 0.70

factor β ts (t,t s ) 0.98

factor β ts (t p ,t s ) 0.01

time at the end of curing t s 1.00 days

final autogenous shrinkage ε ca (t) 7.16E-05 m/m

initial autogenous shrinkage ε ca (∞) 8.75E-05 m/m

factor β as (t) 1.00

factor β as (t s ) 0.18

factor related to cement

 
Table 159:Shrinkage Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 creep loss 

creep loss of per cable ΔP cr(t) 1.15E+05 N

where:

creep strain ε cc(t) 2.08E-04 m/m  
Table 160:Creep Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

 relaxation loss 

relaxation loss per cable ΔP r(t) 1.90E+05 N

where:

variation of prestress Δσ pr 6.65E+07 Pa

initial prestress per cable σ pi 1.39E+09 Pa

factor μ 0.75

relaxation loss at 1000 hrs ρ 1000 2.50 %  
Table 161:Relaxation Loss from Time 𝑡 7 𝑑𝑎𝑦𝑠 to Time 𝑡 𝑡  𝑑𝑎𝑦𝑠. 

  



 
 
 

Wednesday, 04 March 
2020 

 COMBINED ACTIONS 111  

 

A12 Mechanics 1 

A12.1 General 

In Mechanics 1, it is assumed that, when a composited cross-section is subjected to mechanical load and/or imposed 
deformation, the in-plane curvatures of the composited cross-section is uniform. It means the composited cross-
section remains flat when it is deformed.  

Equivalent loads of imposed deformation, normal force N and bending moment M, are applied to the cross-section of 
composited cross-section to calculate the strain and stress resulting from imposed deformation. The disadvantage of 
Mechanics 1 is that, with normal force N and bending moment M only, shear deformation is neglected.  

Suppose there is a composited cross-section with three layers, see Figure 73, the expressions to calculate the 
resulting strain and stress are shown in this chapter. 

  

Figure 73:Composited Cross-section. 

A12.2 Properties of Cross-section 

 normal stiffness of composited cross-section 

 𝐸𝐴 𝐸 𝐴  (45) 

 bending stiffness of composited cross-section 

 𝐸𝐼 𝐸 𝐼 𝐸 𝐴 ∙ 𝑒  (46) 

where: 
  𝑒   is the eccentricity of gravity of certain layer 
    𝑧 𝑧  

  𝑧   is the position of gravity of certain layer 
  𝑧 is the position of gravity of composed cross-section 

    ∑ 𝐸 𝐴 ∙ 𝑧 𝐸𝐴⁄  
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A12.3 Response under ‘Imposed Deformation’ 

Suppose that the Layer 𝑖 is subjected to the imposed deformation ∆𝜀, to calculate the response of the composited 
cross-section, a standard procedure would be used as follow: 

1. Split the composited cross-section, making the Layer 𝑖 free to deform. After that, an external normal force 
𝑁 ∗ is applied to Layer 𝑖, see Figure 74. 

 𝑁 ∗ ∆𝜀 ∙ 𝐸𝐴  (47) 

2. After the external normal force 𝑁 ∗ is applied, the layers are again connected to each other. Then, 
another external force 𝑁∗∗ is applied to the composited cross-section at same position with same 
magnitude but reverse sign.  

 𝑁∗∗  𝑁𝑖
∗ (48) 

By moving the external normal force 𝑁∗∗ to the neutral axis of the composited cross-section, a 
compensating moment 𝑀∗∗ is obtained, see Figure 74. 

 𝑀∗∗ 𝑁∗∗ ∙ 𝑒𝑖 (49) 

 

Figure 74:External Normal Force 𝑁𝑖
∗, External Normal Force 𝑁∗∗ and Compensating Moment 𝑀∗∗. 

3. In the end, the equivalent loads of imposed deformation applied to the composited cross-section is a 
superposition of external normal force 𝑁 ∗, external normal force 𝑁∗∗ and compensating moment 𝑀∗∗. The 
external normal force 𝑁 ∗ is applied to the Layer 𝑖 which is subjected to the imposed deformation ∆𝜀, while 
the external normal force 𝑁∗∗ and compensating moment 𝑀∗∗ are applied to the whole cross-section, see 
Figure 75.  

             

Figure 75:Superposition. 
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4. Use the expressions introduced in A12.4 to calculate the resulting strain and stress in cross-section under 
external normal force 𝑁 ∗, external normal force 𝑁∗∗ and compensating moment 𝑀∗∗ 
respectively. Then the response of composited cross-section under imposed deformation is a superposition 
of the resulting strain and stress of the equivalent loads.    

A12.4 Response under ‘Mechanical Load’ 

  strain at certain point under external normal force 

 𝜀 , 𝜀 (50) 

where: 
  𝜀  is the strain of composited cross-section 
    𝑁 𝐸𝐴⁄  

  𝑁  is the external normal force applied to the composited cross-section 
 

  strain at certain point under external moment 

 𝜀 , 𝜅 ∙ 𝑒  (51) 

where: 
  𝜅  is the curvature for composited cross-section 
    𝑀 𝐸𝐼⁄  

  𝑀  is the external moment applied to the composited cross-section 
  𝑒   is the eccentricity from certain point to the gravity of composited cross-section 

  stress at certain point under external normal force 

 𝜎 , 𝐸 𝐴 ∙ 𝜀 ,  (52) 

where: 
  𝜀 ,   is the strain due to normal force at certain point 

  stress at certain point under external moment 

 𝜎 , 𝐸 𝐴 ∙ 𝜀 ,  (53) 

where: 
  𝜀 ,   is the strain due to moment at certain point 

 

Figure 76:Sketch of Strain and Stress. 
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A13 Mechanics 2 

A13.1 General 

Mechanics 2 is basing on plate theory. According to Mechanics 2, deformation of plate is simplified into nodal 
displacement which is the product of stiffness matrix and nodal forces. When a composited structure subjected to 
imposed deformation is analyzed by Mechanics 2, the layers of the composited cross-section are spit which makes 
the layers free to deform. Then deformation compatibility is restored so that the deformed layers are able to be 
connected.  

Since the stiffness matrix and nodal forces in the layers could be different, the in-plane curvature of each layer could 
be different. It means the composited cross-section will not remain flat when it deforms due to imposed deformation. 
The advantage of Mechanics 2 is that, with shear stiffness taken into account, the shear deformation is taken into 
account. 

Suppose there is a three-layer composited deck and the layers subject to different imposed deformation, see Figure 
77, the expressions to calculate the resulting strain and stress are shown in this chapter. 

 

Figure 77:Top and Side View of Composited Deck. 

A13.2 Split Layers and Deformation Compatibility 

As shown in Figure 78, the composited cross-section is split into three free layers. Suppose different imposed 
deformation, ∆𝜀 , ∆𝜀  and ∆𝜀 , are applied to the split layers, the deformed shapes of the layers would be different. 
The differences between the deformed shapes, or in short the gaps, make the deformed layers unable to be re-
connected. 

To re-connect the layers, the gaps have to be closed, or in other words the compatibility of deformation has to be 
restored, see Figure 79. Since the magnitudes of imposed deformation are known, the deformation required to restore 
compatibility can be calculated and, therefore, equilibrium about deformation is made. Then, by describing the 
required deformation into nodal displacement which is the product of stiffness matrix and nodal forces, nodal forces 
to restore compatibility can be calculated by solving the equilibrium. Finally, with nodal forces calculated, strain and 
stress resulting from imposed deformation can be calculated. 
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Figure 78:'Gaps' due to Free Deformation. Figure 79:'Restored Compatibility'. 

A13.3 General Elasticity Matrices 

In an arbitrary plate, the in-plane stain 𝜀 , 𝜀  and 𝛾 are presented into nodal displacement 𝑢  and 𝑢  while the in-

plane stresses 𝑛 , 𝑛  and 𝑛  in a plate are presented into in-plane nodal forces 𝐹  and 𝐹  (Blaauwendraad, 2006, 

pp. 13 - 25). With the relation between in-plane strain and stress, the general relation between nodal displacement 
and forces is established, of which matrix form is referred to as general elasticity matrices, see Expression 54 and 
Expression 55. 
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or in short:  

 𝒇𝒏
𝐸 𝑡

2
∙ 𝑬𝒏 ∙ 𝒖 (54) 

where: 
 𝐸 𝑡  is the elastic modulus of concrete at time 𝑡 
 𝛼  𝐿 𝑏⁄  
 𝛽  𝑏 𝐿⁄  
 𝐿  is the length of a rectangular plate 
 𝑏  is the width of a rectangular plate 
 𝒇𝒏  is the vector of nodal forces related to normal deformation 
 𝑬𝒏  is the general elasticity matrix related to normal deformation 
 𝒖  is the vector of nodal displacement 

*There are four corners, or in another word nodes, in a rectangular plate. 𝐹  and 𝐹  are the nodal forces in longitudinal and 

transverse direction at the 𝑖-th node, while 𝑢  and 𝑢  are the nodal displacement in longitudinal and transverse direction at the 𝑖-th 

node. 
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Shear stiffness: 
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or in short: 

 𝒇𝒗
𝐸 𝑡

8 1 𝜈
∙ 𝑬𝒗 ∙ 𝒖 (55) 

where: 
 𝜈  is the Poison’s ratio of concrete, which is taken as zero for simplicity 
 𝒇𝒗  is the vector of nodal forces related to shear deformation 
 𝑬𝒗  is the general elasticity matrix related to shear deformation 

Then the general elasticity matrix 𝑬 related to both normal and shear deformation is defined as the summation of 
those related to normal deformation and shear deformation, see Expression 56. 

 𝑬
𝐸 𝑡

2
∙ 𝑬𝒏

𝐸 𝑡
8 1 𝜈

∙ 𝑬𝒗 (56) 

A13.4 Specific Elasticity Matrix 

When it comes to the response of a specific composited deck subjected to imposed deformation, a specific elasticity 
matrix 𝑬𝒊 is required which is derived basing on the general elasticity matrix 𝑬. Take half of the deck shown in 
Figure 77 as an example. According to the supports shown in Figure 77, the split layers with in-plane supports of half 
of the deck is determined as shown in Figure 80. Substitute the elastic modulus of concrete of Layer 𝑖 into 
Expression 56 and extract the elements from general elasticity matrix 𝑬 which are related to unrestrained nodal 
displacement according to the in-plane supports shown in Figure 80, the relation between nodal forces and 
displacement in Layer 𝑖 is derived, see Expression 57 and Expression 58.  
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or in short: 

 𝒇𝒊 𝑬𝒊 ∙ 𝒖𝒊 (57) 

where: 
𝐹 , ,   is the nodal force in longitudinal direction at Node 𝑙 in Layer 𝑖 
𝐹 , ,  is the nodal force in transverse direction at Node 𝑙 in Layer 𝑖 
𝑢 , ,  is the nodal displacement in longitudinal direction at Node 𝑙 in Layer 𝑖 
𝑢 , ,  is the nodal displacement in transverse direction at Node 𝑙 in Layer 𝑖 
𝑙  is the serial number of nodes in Layer 𝑖, see Figure 80 

 𝒇𝒊  is the vector of nodal forces in Layer 𝑖 
 𝒖𝒊  is the vector of nodal displacement in Layer 𝑖 

𝑎   is the element in the general elasticity matrix 𝑬 of Layer 𝑖 at the 𝑗-th row and 𝑘-th column 
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𝑬𝒊  is the specific elasticity matrix of Layer 𝑖 
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or in short: 

 𝒖𝒊 𝑬𝒊
𝟏 ∙ 𝒇𝒊 (58) 

where: 

 𝑏 ,   is the element in the inverse matrix 𝑬𝒊
𝟏 of Layer 𝑖 at the 𝑗-th row and 𝑘-th column 

 

Figure 80:Sketch of Split Deck. 

Suppose the internal forces between layers are represented by the nodal forces shown in Figure 80, the nodal 
displacement in the layers would be derived as follow: 
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or in short: 

 𝒖𝟏 𝑩𝟏 ∙ 𝒇𝟏 (59) 

where: 

𝑩𝟏  is the columns extracted from inverse matrix 𝑬𝟏
𝟏 of Layer 1 related to the nodal forces in   
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or in short: 
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 𝒖𝟐 𝑩𝟐 ∙ 𝒇𝟐 (60) 

where: 

𝑩𝟐  is the columns extracted from inverse matrix 𝑬𝟐
𝟏 of Layer 2 related to the nodal forces in   
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or in short: 

 𝒖𝟑 𝑩𝟑 ∙ 𝒇𝟑 (61) 

where: 

𝑩𝟑  is the columns extracted from inverse matrix 𝑬𝟑
𝟏 of Layer 3 related to the nodal forces in   

A13.5 Restore Compatibility 

The split layers are free to deform subjected to imposed deformation. To make the layers able to be connected, the 
compatibility of deformation has to be restored. As for the layers shown in Figure 80, the deformed shape of layers 
subjected to imposed deformation and internal forces ought to be compatible.  

 Longitudinal Deformation Compatibility between Layer 1 and Layer 2 

 ∆𝜀 ∆𝜀 ∙
𝐿
2

𝑢 , , 𝑢 , ,  (62) 

 Transverse Deformation Compatibility between Layer 1 and Layer 2 

 𝑢 , , 𝑢 , , 𝑢 , ,  (63) 

Longitudinal Deformation Compatibility between Layer 2 and Layer 3 

 ∆𝜀 ∆𝜀 ∙
𝐿
2

𝑢 , , 𝑢 , ,  (64) 

 Transverse Deformation Compatibility between Layer 2 and Layer 3 

 𝑢 , , 𝑢 , , 𝑢 , ,  (65) 

Substitute Expression 59 to 61 into Expression 62 to 65 to solve the internal forces 𝐹 ,  and 𝐹 , . Then substitute the 

solved internal forces 𝐹 ,  and 𝐹 ,  back into Expression 59 to 61 to solve the nodal displacement to restore 

compatibility. 

A13.6 In-plane Strain and Stress Resulting from Imposed Deformation 

The in-plane strain and stress resulting from imposed deformation in longitudinal direction are calculated by the 
solved nodal displacement to restore compatibility. The expressions used during the calculation are as follow: 
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or in short: 

 𝒆𝒙𝒙
𝐿
2

∙ 𝒖𝒙 (66) 

where: 
 𝜀 , ,   is the strain in longitudinal direction at Node 𝑙 in Layer 𝑖 
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or in short: 

 𝝈𝒙𝒙
𝐿
2

∙ 𝑬𝒄𝒎
𝑻 ∙ 𝒖𝒙 (67) 

where: 
 𝜎 , ,   is the stress in longitudinal direction at Node 𝑙 in Layer 𝑖 
 𝐸 , 𝑡   is the elastic modulus of concrete in Layer 𝑖 at time 𝑡 
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A14 Comparison of Mechanics 1 and Mechanics 2 

A14.1 General 

To show the limitation of Mechanics 1 and the advantage of Mechanics 2, a series of calculations carried out to a 
three-layer model. The dimensions of the three-layer model used in the calculations are same. However, the material 
properties and imposed deformation applied to the models are different, or in short the conditions are different. Both 
Mechanics 1 and Mechanics 2 are used during the calculations.  Although the conditions are NOT the real case, the 
calculations under different conditions are able to show the limitation of Mechanics 1 and the advantage of 
Mechanics 2 in a more clear way, because the resulting strain and stress are easy to be predicted under the 
conditions. 

Since it is impossible to check the results calculated by Mechanics 2 under all the possible conditions, the extreme 
conditions mentioned above are also used to prove that Mechanics 2 is applicable in this thesis. Suppose the strain 
and stress resulting imposed deformation, or in short the resulting strain and stress, calculated by Mechanic 2 suits 
the expectations under all the conditions, Mechanics 2 would be taken as applicable in this thesis. Otherwise, the 
mechanics would be taken as inapplicable. Hereby summarized the conditions. 

Conditions 1: ∆𝜺𝒏𝒆𝒘 ∆𝜺𝒐𝒍𝒅 𝟎, 𝑬𝒄𝒎,𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒐𝒏 𝒕 𝟎 

Under Conditions 1, imposed deformation is assumed only applied to the connection, while the elastic modulus of 
connection is assumed to be zero approximately.  

The aim to give calculation under Conditions 1 is to check whether the mechanics are applicable or not when the 
imposed deformation is applied to an extremely soft layer.  

In expectation, since the connection is so soft, the imposed deformation would hardly result in any strain and stress 
in the old and new decks.  

Conditions 2: ∆𝜺𝒐𝒍𝒅 ∆𝜺𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒐𝒏 𝟎, 𝑬𝒄𝒎,𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒐𝒏 𝒕 𝟎 

Under Conditions 2, imposed deformation is assumed only applied to the new deck, while the elastic modulus of 
connection is assumed to be zero approximately.  

The aim to give calculation under Conditions 2 is to check whether the mechanics are applicable or not when the 
connection is too soft to transfer the imposed deformation from one side to the other side.  

In expectation, since the connection is too soft, the imposed deformation in the new deck would not be transferred to 
the old one. So, the imposed deformation would hardly result in any strain and stress in the old deck.  

Conditions 3: ∆𝜺𝒐𝒍𝒅 ∆𝜺𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒐𝒏 𝟎, 𝑬𝒄𝒎,𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒐𝒏 𝒕 𝑬𝒄𝒎,𝒐𝒍𝒅 𝒕  

Under Conditions 3, imposed deformation is assumed only applied to the new deck, while the elastic modulus of old 
deck and connection are assumed to be same.  

The aim to give calculation under Conditions 3 is to check whether the mechanics are applicable or not when two 
adjacent layers share same material properties.  

In expectation, the connection and old deck would perform as a single layer.  

Conditions 4: ∆𝜺𝒐𝒍𝒅 ∆𝜺𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒐𝒏 𝟎, 𝑬𝒄𝒎,𝒄𝒐𝒏𝒏𝒆𝒄𝒕𝒊𝒐𝒏 𝒕 𝑬𝒄𝒎,𝒐𝒍𝒅 𝒕 𝟏. 𝟐 𝐏𝐚 ~ 𝟑𝟔. 𝟔 𝐆𝐏𝐚 

Under Conditions 4, imposed deformation is assumed only applied to the new deck, while the elastic modulus of old 
deck and connection are assumed to be same. A series of elastic modulus are applied to old deck and connection.  

As shown in Section 31, the limitation of Mechanics 1 is expected to be neglecting shear deformation. The aim to 
give calculation under Conditions 4 is to check whether the difference of elastic modulus is the only reason of 
Mechanics 1 and Mechanics 2 giving different results or not, or in other words is to check whether the difference of 
elastic modulus is the only source of shear deformation or not.  
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Suppose Mechanics 1 and Mechanics 2 give similar results, the difference of elastic modulus would not be the only 
source of considerable shear deformation but also the number of layers. Otherwise, the difference of elastic modulus 
is enough to be the source of shear deformation. 

A14.2 Conditions 1 

A14.2.1 Aim and Expectation 

In Conditions 1, it is assumed that the imposed deformation is only applied to the connection while the elastic 
modulus of connection is zero. The aim to give calculation under Conditions 1 is to check whether the mechanics are 
applicable or not when the imposed deformation is applied to an extremely soft layer. It is expected that the resulting 
strain would be non-zero and positive only in the connection, while the resulting stress would be zero in the whole 
widened deck KW03.01, see Figure 81 and Figure 84. 

A14.2.2 Input Data 

As shown in Appendix A13, the expressions in Mechanics 2 contains elastic modulus in denominators. So, the elastic 
modulus of connection during calculation is assumed to be 1 10  GPa, which is close but not equal to zero. The 
material properties and imposed deformation applied in Conditions 1 are shown in Table 162 and Table 163. 

elastic modulus in Old Deck E cm (t) 3.66E+01 GPa

elastic modulus in Connection E cm (t) 1.00E-09 GPa

elastic modulus in New Deck E cm (t) 3.87E+01 GPa  
Table 162:Material Properties Applied under Conditions 1. 

imposed deformation in Old Deck Δε 0 m/m

imposed deformation in Connection Δε 3.89E-04 m/m

imposed deformation in New Deck Δε 0 m/m  
*The structure will be shortened if it is subjected to the imposed deformation in Table 163, suppose it is free to deform.  

Table 163:Imposed Deformation Applied under Conditions 1. 

A14.2.3 Results  

The resulting strain and stress calculated by Mechanics 1 only are shown in Figure 82 and Figure 85 respectively, 
while those calculated by both Mechanics 1 and Mechanics 2 are shown in Figure 83 and Figure 86 respectively. 

Since the stiffness of connection is not zero exactly, non-zero stresses are obtained by both Mechanics 1 (M1) and 
Mechanics 2 (M2). However, with a power of 10, the stresses are almost zero. So, both the stress distribution 
calculated by both Mechanics 1 (M1) and Mechanics 2 (M2) suit the expectation.  

In general, the shortening of the connection is restrained by the old deck and new deck. Since the stiffness of 
connection is assumed close to zero but not zero, non-zero stresses are obtained. Therefore, the parts in old deck and 
new deck, which are close to the connection, are in compression. However, with a power of 10, the stresses can be 
taken as zero approximately.  

According to Mechanics 1, under Conditions 1, the in-plane curvature of deformed deck is uniform. The zero-point 
of stress appears in the old deck, see Figure 85, making the whole new deck in compression. However, according to 
Mechanics 2, under Conditions 1, the in-plane curvature of deformed deck is variable. So, part of the old deck and 
new deck are in tension, see Figure 83 and Figure 86. 
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Figure 81:Material Properties, Imposed Deformation 
and the Sketch of Expectation (Strain) under 
Conditions 1. 

Figure 82:Strain Distribution 
Calculated by Mechanics 1 (M1) 
under Conditions 1. 

Figure 83:Strain Distribution 
Calculated by Mechanics 1 (M1) and 
Mechanics 2 (M2) under Conditions 1. 

 

Figure 84:Material Properties, Imposed Deformation 
and the Sketch of Expectation (Stress) under 
Conditions 1. 

Figure 85:Stress Distribution 
Calculated by Mechanics 1 (M1) 
under Conditions 1. 

Figure 86:Stress Distribution 
Calculated by Mechanics 1 (M1) and 
Mechanics 2 (M2) under Conditions 1. 

A14.2.4 Conclusion 

Under Conditions 1, although the resulting stress calculated by Mechanics 1 and Mechanics 2 are not same, since 
both the results calculated by Mechanics 1 and Mechanics 2 suit the expectation, both of them are applicable when 
the imposed deformation is applied to an extremely soft layer.   
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A14.3 Conditions 2 

A14.3.1 Aim and Expectation 

In Conditions 2, it is assumed that the imposed deformation is only applied to the new deck while the elastic modulus 
of connection is set to be zero. The aim to give calculation under Conditions 2 is to check whether the mechanics are 
applicable or not when the connection is too soft to transfer the imposed deformation from one side to the other side. 
It is expected that the resulting strain would be non-zero and negative only in connection, while the resulting stress 
would be close to zero in the whole widened deck KW03.01, see Figure 87 and Figure 90.  

A14.3.2 Input Data 

Similar to Mechanics 1, the elastic modulus of connection during calculation is set to be 1 10  GPa, which is 
close but not equal to zero. The material properties and imposed deformation applied in Conditions 2 are shown in 
Table 162 and Table 163. 

elastic modulus in Old Deck E cm (t) 3.66E+01 GPa

elastic modulus in Connection E cm (t) 1.00E-09 GPa

elastic modulus in New Deck E cm (t) 3.87E+01 GPa  
Table 164:Material Properties Applied in Conditions 2. 

imposed deformation in Old Deck Δε 0 m/m

imposed deformation in Connection Δε 0 m/m

imposed deformation in New Deck Δε 4.34E-04 m/m  
*The structure will be shortened if it is subjected to the imposed deformation in Table 165, suppose it is free to deform.  

Table 165:Imposed Deformation Applied in Conditions 2. 

12.1.1 Results 

The resulting strain and stress calculated by Mechanics 1 only are shown in Figure 88 and Figure 91 respectively, 
while those calculated by both Mechanics 1 and Mechanics 2 are shown in Figure 89 and Figure 92 respectively. 

Under Conditions 2, results calculated by Mechanics 1 does not suit the expectation while those calculated by 
Mechanics 2 do. The strain and stress distribution in the old deck and new deck calculated by Mechanics 1 are non-
zero which is different from the expectation.  

In general, the shortening of the new deck should be restrained by the connection. However, the connection is too 
soft to give a strong restrain to the new deck. So, the new deck is almost free to deform instead of being in tension. 

According to Mechanics 1, under Conditions 2, the in-plane curvature of deformed deck is uniform. The zero-point 
of strain and stress appears in the old deck, making the strain and stress in old deck and new deck non-zero, see 
Figure 88 and Figure 91.  

According to Mechanics 2, the in-plane curvature of deformed deck is variable. The strain calculated by Mechanics 2 
is the deformation to restore compatibility. The connection is too soft and too easy to deform so that hardly any 
deformation is required in new deck to restore deformation compatibility. Therefore, the strain distribution is almost 
zero in new deck calculated by Mechanics 2, see Figure 89.  
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Figure 87:Material Properties, Imposed Deformation 
and the Sketch of Expectation (Strain) under 
Conditions 2. 

Figure 88:Strain Distribution 
Calculated by Mechanics 1 (M1) 
under Conditions 2. 

Figure 89:Strain Distribution 
Calculated by Mechanics 1 (M1) and 
Mechanics 2 (M2) under Conditions 2. 

 

Figure 90:Material Properties, Imposed Deformation 
and the Sketch of Expectation (Stress) under 
Conditions 2. 

Figure 91:Stress Distribution 
Calculated by Mechanics 1 (M1) 
under Conditions 2. 

Figure 92:Stress Distribution 
Calculated by Mechanics 1 (M1) and 
Mechanics 2 (M2) under Conditions 2. 

A14.3.3 Conclusion 

Under Conditions 2, Mechanics 1 is not applicable because it makes the imposed deformation transferred from one 
side to the other side when the connection not stiff enough produce imposed deformation. However, since the results 
calculated by Mechanics 2 suits the expectation, Mechanics 2 is applicable when the connection is too soft to transfer 
the imposed deformation from one side to the other side. 
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A14.4 Conditions 3  

A14.4.1 Aim and Expectation 

A reliable mechanics should be able to predict the deformation of the two-layer model with a three-layer model, by 
applying same material properties to two adjacent layers. So, in Conditions 3, it is assumed that the imposed 
deformation is only applied to the new deck while the elastic modulus of old deck and connection are assumed to be 
same.  

The aim to give calculation under Conditions 3 is to check whether the mechanics are applicable or not when two 
adjacent layers share same material properties. It is expected that the in-plane curvature in old deck and connection 
would be uniform. Since the shortening of new deck is restrained by connection, the part of old deck and connection 
close to new deck would be in compression, while the new deck would be in tension, see Figure 93 and Figure 96. 

12.1.2 Input Data 

The material properties and imposed deformation applied in Conditions 3 are shown in Table 166 and Table 167. 

elastic modulus in Old Deck E cm (t) 3.66E+01 GPa

elastic modulus in Connection E cm (t) 3.66E+01 GPa

elastic modulus in New Deck E cm (t) 3.87E+01 GPa  
Table 166:Material Properties Applied in Conditions 3. 

imposed deformation in Old Deck Δε 0 m/m

imposed deformation in Connection Δε 0 m/m

imposed deformation in New Deck Δε 4.34E-04 m/m  
*The structure will be shortened if it is subjected to the imposed deformation in Table 167, suppose it is free to deform.  

Table 167:Imposed Deformation Applied in Conditions 3. 

12.1.3 Results 

The resulting strain and stress calculated by Mechanics 1 only are shown in Figure 94 and Figure 97 respectively, 
while those calculated by both Mechanics 1 and Mechanics 2 are shown in Figure 95 and Figure 98 respectively. 

Both the results calculated by Mechanics 1 and Mechanics 2 suit the expectation. The old deck and the connection 
perform as a single layer. Since the shortening of new deck is restrained by connection, the part of old deck and 
connection close to new deck is in compression, while the new deck is in tension. 

In general, the shortening of the new deck is restrained by the connection. Therefore, the part in new deck, which are 
close to the connection, is in tension. According to both Mechanics 1 and Mechanics 2, the in-plane curvature in the 
old deck and connection is uniform, see Figure 94 and Figure 97.  
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Figure 93:Material Properties, Imposed Deformation 
and the Sketch of Expectation (Strain) under 
Conditions 3. 

Figure 94:Strain Distribution 
Calculated by Mechanics 1 (M1) 
under Conditions 3. 

Figure 95:Strain Distribution 
Calculated by Mechanics 1 (M1) and 
Mechanics 2 (M2) under Conditions 3. 

 

Figure 96:Material Properties, Imposed Deformation 
and the Sketch of Expectation (Stress) under 
Conditions 3. 

Figure 97:Stress Distribution 
Calculated by Mechanics 1 (M1) 
under Conditions 3. 

Figure 98:Stress Distribution 
Calculated by Mechanics 1 (M1) and 
Mechanics 2 (M2) under Conditions 3. 

A14.4.2 Conclusion 

Since both the results calculated by Mechanics 1 and Mechanics 2 suit the expectation, both Mechanics 1 and 
Mechanics 2 are applicable when two adjacent layers share same material properties. In other words, both Mechanics 
1 and Mechanics 2 are able to predict the deformation of the two-layer model with a three-layer model, by applying 
same material properties to two adjacent layers. 
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A14.5 Conditions 4 

A14.5.1 Aim and Expectation 

In Conditions 4, it is assumed that the imposed deformation is only applied to the new deck while the elastic modulus 
of old deck and connection are assumed to be same. 

As shown in Section A14.3 and A14.4, the results calculated by Mechanics 1 suit the expectation under Conditions 3 
but not under Conditions 2. As shown in Chapter 8.2, the limitation of Mechanics 1 is expected to be neglecting 
shear deformation. So, the aim to give calculation under Conditions 4 is to study, to what extent, the shear 
deformation is neglectable. 

The calculations carried out under Conditions 3 and Conditions 4 are same except for the magnitude of elastic 
modulus applied to new deck and connection. To show the impact of elastic modulus on the shear deformation, a 
series of elastic modulus are applied to old deck and connection. 

Suppose Mechanics 1 and Mechanics 2 give similar results, the difference of elastic modulus would not be the only 
source of considerable shear deformation but also the number of layers. Otherwise, the difference of elastic modulus 
is enough to be the source of shear deformation. 

A14.5.2 Input Data 

A series of elastic modulus are applied to old deck and connection. The material properties and imposed deformation 
applied in Conditions 3 are shown in Table 168 and Table 169. 

elastic modulus in Old Deck E cm (t) 1.20E-09~3.66E+01 GPa

elastic modulus in Connection E cm (t) 1.20E-09~3.66E+01 GPa

elastic modulus in New Deck E cm (t) 3.87E+01 GPa  

Table 168:Material Properties Applied in Conditions 4. 

imposed deformation in Old Deck Δε 0 m/m

imposed deformation in Connection Δε 0 m/m

imposed deformation in New Deck Δε 4.34E-04 m/m  

*The structure will be shortened if it is subjected to the imposed deformation in Table 168, suppose it is free to deform.  

Table 169:Imposed Deformation Applied in Conditions 4. 

A14.5.3 Results 

A series of stress distribution corresponding to different elastic modulus of old deck and concrete in connection are 
calculated. The calculation is carried out by both Mechanics 1 and Mechanics 2. The colour in the image represents 
the mean strain resulting from the imposed deformation applied to old deck, connection and old deck. 

Take the strain resulting from imposed deformation as an example. As shown in Section A14.4, one elastic modulus 
applied to the old deck and connection is corresponding to one strain distribution calculated by Mechanics 1 and 
Mechanics 2 respectively. Then a series of elastic modulus applied to the old deck and connection is corresponding 
to is corresponding to a series of strain distribution calculated by Mechanics 1 and Mechanics 2 respectively. 

By taking the position in cross-section, the elastic modulus of concrete and the strain resulting from imposed 
deformation as x-, y- and z-axis respectively, the 3D images of the strain distribution calculated by Mechanics 1 and 
Mechanics 2 are plotted respectively, see Figure 100 and Figure 102.  

In other words, Figure 100 and Figure 102 are a series of Figure 94 and Figure 97 placed one by one according to the 
elastic modulus applied to old deck and connection. To show the difference between Figure 100 and Figure 102, the 
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y-view of the 3D image is plotted, see Figure 103 and Figure 104. In Figure 103 and Figure 104, the red line and 
green represent the strain distribution in old deck and connection when the elastic modulus of concrete applied to old 
deck and connection is 0.06 GPa and 1.2 Pa respectively.  

 

Figure 99:Material Properties and Imposed 

Deformation in the South Part (∆𝑡
28 𝑑𝑎𝑦𝑠). 

Figure 100:Three-Dimensional Image of Strain Resulting from All Imposed Deformation 
in Conditions 4. 

 

Figure 101:Material Properties and Imposed 

Deformation in the South Part (∆𝑡
28 𝑑𝑎𝑦𝑠). 

Figure 102:Three-Dimensional Image of Strain Resulting from All Imposed Deformation 
in Conditions 4. 

The both in-plane curvature in the old deck and the connection calculated by Mechanics 1 and Mechanics 2 are 
uniform. It is proved again that both Mechanics 1 and Mechanics 2 are able to predict the deformation of the two-
layer model with a three-layer model, by applying same material properties to two adjacent layers. 

However, when the elastic modulus of concrete applied to old deck and connection is smaller than 0.06 GPa, the 
difference between resulting strain calculated by Mechanics 1 and Mechanics 2 becomes obvious, see the parts 
between red line and green line in Figure 103 and Figure 104. It means, in two-layer model, the limitation of 
Mechanics 1, neglecting the shear deformation, becomes obvious when the stiffness of a layer is much smaller than 
that of the other. 
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Figure 103:Y-View of Figure 100. 

 

Figure 104:Y-View of Figure 102. 

A14.5.4 Conclusion 

According to the results under Condition 1 to Condition 4, whether the shear deformation is neglectable or not 
depends on various factors: the number of layers, the elastic modulus and the imposed deformation applied to the 
layers. Suppose the shear deformation is not neglectable, Mechanics 2 is preferred to give more reliable results. 
However, when a two-layer model is applied, the shear deformation is neglectable in most cases, because the elastic 
modulus of concrete would not be in the situation as low as shown in Figure 103 and Figure 104.  

A14.6 Conclusion 

According to Section A14.2, Section A14.3 and Section A14.4, the advantage of Mechanics 2 is that it takes shear 
deformation into account. As a result, the results of Mechanics 1 and Mechanics 2 are close only if there is no impact 
of shear deformation, otherwise the results of mechanics 2 is more reliable. Since it is unknown whether there is 
large shear deformation or not before carrying out a calculation, it is suggested to use Mechanics 2 for a more 
reliable solution. 
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A15 Impact of Timing to Make Connection on the Resulting Stress  

A15.1 General 

It is expected that different timing to make connection would result in different in-plane strain and stress distribution 
at time 𝑡 𝑡 . To investigate the impact of timing to make connection on the stress resulting from imposed 
deformation, stress resulting from imposed deformation is calculated with a series of timing to make connection. For 
simplicity, the impact of cracking is not taken into account. The mechanics used during the calculations are shown in 
Appendix A12 and Appendix A13. Results of the calculations are investigated to see whether it is possible to find a 
critical timing to make connection which is the earliest one resulting in no prestress consumption in old decks and 
new decks at time 𝑡 𝑡 . 

According to Appendix A12 and Appendix A13, stress resulting from imposed deformation is calculated basing on 
split layers which are first free to deform. The deformation of the layers are calculated with time 𝑡
𝑡  𝑡 111 years . Then mechanical loads are applied to the deformed layers as internal load to restore the 
deformation compatibility so that the layers can be reassembled.   

Before the layers being reassembled, the compressive stress resulting from prestressing are calculated with time 𝑡
𝑡  𝑡 111 years . To restore deformation compatibility, additional deformation is applied to the layers. The 
compressive stress resulting from prestressing would be decreased due to the shortening of the layers while increased 
due to the elongation of the layers. For simplicity, the impact of additional deformation due to imposed deformation, 
or in other words the impact of imposed deformation, on the compressive stress is neglected. Therefore, the prestress 
consumption in proportion is the ratio of the stress resulting from imposed deformation and prestressing, where 
prestressing force is calculated as a constant with time 𝑡 𝑡  𝑡 111 years . 

A15.2 Time History of Construction 

As shown in Section 6.1, connections in widened deck KW03.01 are made at time ∆𝑡 28 days after new 
decks being built. To investigate the impact of timing to make connection, instead of time ∆𝑡 28 days, a 
series of new timing to make connection are applied from time ∆𝒕𝑰𝑰 𝑰𝑰𝑰 𝟕 𝐝𝐚𝐲𝐬 to time ∆𝒕𝑰𝑰 𝑰𝑰𝑰 𝟓𝟎 𝐲𝐞𝐚𝐫𝐬.  

The models used during investigation are Simplified Model 1 and Simplified Model 2, see Section 7.3.1 and Section 
7.4.1. The input data is shown in Chapter 5. The material properties applied to the expressions are calculated by the 
input data and the expressions in Appendix A4 and Appendix A5. The imposed deformation and prestress loss in old 
decks are calculated by the expressions in Appendix A6. For the convenience of reading, the imposed deformation in 
old decks, new decks and connections are denoted as ∆𝜀 , ∆𝜀  and ∆𝜀 . For the simplicity, here only 
summarized the data of time history of construction, see Table 170 and Table 171.  

time of old deck being built t I 0 years

time of new deck being built t II 11 years

time of connection being built after new deck being built Δt II-III 7 ~ 18250 days

connected age of connection Δt III-IV 1 days

target time after new deck being built Δt II-V 36500 days  
Table 170:Basic Data of Time History of Construction. 
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time of connection being stiff after new deck being built Δt II-IV 8 ~ 18251 days

connected age of old deck Δt I-IV 4023 ~ 22266 days

connected age of new deck Δt II-IV 8 ~ 18251 days

target age of old deck Δt I-V 40515 days

target age of connection Δt III-V 36451 ~ 18250 days

target age of new deck Δt II-V 36500 days  
*The data in Table 170 is evaluated basing on the data in Table 171. 

Table 171:Other Data of Time History of Construction. 

Prestress is taken into account, which is constant and uniformly distributed in old decks and new decks. The 
calculation of compressive stress resulting from prestressing at time 𝑡 𝑡  has been introduced in Appendix A9.3, 
Appendix A11.2 and Appendix A11.3. For simplicity, hereby only summarized the results of the calculation, see 
Table 172. 

South:
prestress in old deck σ old,prestressing 7.16E+06 Pa

prestress in new deck σ new,prestressing 8.32E+06 m/m

North:
prestress in old deck σ old,prestressing 7.16E+06 m/m

prestress in new deck σ new,prestressing 6.45E+06 m/m  
Table 172:Compressive Stress Resulting from Prestressing at time 𝑡 𝑡  𝑡 111 𝑦𝑒𝑎𝑟𝑠 . 

A15.3 Results (Making Connection at Time ∆𝒕𝑰𝑰 𝑰𝑰𝑰 𝟕~𝟏𝟖𝟐𝟓𝟎 𝐝𝐚𝐲𝐬) 

With the new time history of construction shown in Appendix A15.2, the stress resulting from imposed deformation  
are calculated as a function of ∆𝑡 . Mechanics 2 is used during the calculation. The final resulting stress shown in 
Figure 106 and Figure 108 is the summation of the resulting stress and the compressive stress resulting from 
prestressing, while the prestress consumption in proportion is the ratio of them.  

According to Figure 106 and Figure 108, in new decks, the maximum compressive stress appears when connections 
are made at time ∆𝑡 4000 days. Suppose only in-plane loads are taken into account, the old decks and new 
decks are always in compression while the connections are always in tension. Suppose out-of-plane loads are also 
taken into account, as shown in Appendix A2.5, the maximum tensile stress resulting from out-of-plane loads in 
cross-section at mid-span varies from 𝜎 9.9 MPa to 𝜎 15.6 MPa, which is always larger than the maximum 
compressive stress resulting from in-plane loads shown in Figure 106 and Figure 108. As a result, suppose the tensile 
strength of concrete is neglected, new decks are always cracked no matter when connections are made.   
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Figure 105:Sketch of Edges in the 
South Part. 

Figure 106:Final Resulting Stress in the South Part without Cracking. 

Figure 107:Sketch of Edges in the 
North Part. 

 

Figure 108:Final Resulting Stress in the North Part without Cracking. 
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A15.4 Results (Making Connection at Time 𝒕 𝟕~𝟗𝟎 𝐝𝐚𝐲𝐬) 

Since either no prestress consumption or minimum prestress consumption is practical, see Appendix A15.4, the 
investigation has to zoom in to a practical period. Therefore, the final resulting stress when connections are made 
before 90 days are investigated, see Figure 110 and Figure 112.  

As shown in Figure 110 and Figure 112, suppose the connection is made at 90 days or earlier, the timing to make 
connection would have significant impact on the magnitude of final resulting stress. In terms of prestress 
consumption, to saves prestress, connection should be made as late as possible. 

Figure 109:Sketch of Edges in the 
South Part. 

Figure 110:Final resulting Stress in the South Part without Cracking (7~90 𝑑𝑎𝑦𝑠). 

Figure 111:Sketch of Edges in the 
North Part. 

Figure 112:Final resulting Stress in the North Part without Cracking (7~90 𝑑𝑎𝑦𝑠). 
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A15.5 Prestress Consumption without Cracking 

As shown in Appendix A15.1, the prestress consumption in proportion is the ratio of the stress resulting from 
imposed deformation and prestressing, where prestressing force is calculated as a constant with time 𝑡
𝑡  𝑡 111 years . The results of the calculation are shown in Figure 110 and Figure 112. When the stress 
resulting from imposed deformation is tensile stress, the ratio would be positive. Otherwise, the ratio would be 
negative.  

In general, a later timing to make connection results in less prestress consumption. As shown in Figure 114 and 

Figure 116, the maximum prestress consumption in proportion occurs when the connection is made at time ∆𝑡
7 𝑑𝑎𝑦𝑠. The values of the maximum prestress consumption in proportion are shown in Table 173. It is shown that 

the maximum prestress consumption appears at the new deck in south when connections are made at time ∆𝑡
7 𝑑𝑎𝑦𝑠, where 58.8% of compressive stress resulting from prestress is consumed due to imposed deformation. 

Old 29.5 %
New 58.8 %
Old 30.0 %
New 44.5 %

South

North
 

Table 173:Ratio between Maximum Tensile Stress and Prestress. 

Figure 113:Sketch of Edges in the 
South Part. 

Figure 114:Consumption of Prestress in the South Part without Cracking (7~90 𝑑𝑎𝑦𝑠). 
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Figure 115:Sketch of Edges in the 
North Part. 

Figure 116:Consumption of Prestress in the North Part without Cracking (7~90 𝑑𝑎𝑦𝑠). 
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A15.6 Examples 

To be specific, hereby shown final resulting stress when connections are made at time ∆t 7 days, ∆t
14 days and time ∆t 28 days. 

Example 1: south part (connection made at time 𝒕 𝟕 𝐝𝐚𝐲𝐬) 

               

Figure 117:Material Properties and Imposed 

Deformation in South (∆𝑡 7 𝑑𝑎𝑦𝑠).  

Figure 118:Stress Calculated by 

Mechanics 1 (M1) in South (∆𝑡
7 𝑑𝑎𝑦𝑠). 

Figure 119:Stress Calculated by 
Mechanics 1 (M1) and Mechanics 2 

(M2) in South (∆𝑡 7 𝑑𝑎𝑦𝑠). 

Example 2: south part (connection made at time 𝒕 𝟏𝟒 𝐝𝐚𝐲𝐬) 

            

Figure 120:Material Properties and Imposed 

Deformation in South (∆𝑡 14 𝑑𝑎𝑦𝑠). 

Figure 121:Stress Calculated by 

Mechanics 1 (M1) in South (∆𝑡
14 𝑑𝑎𝑦𝑠). 

Figure 122:Stress Calculated by 
Mechanics 1 (M1) and Mechanics 2 

(M2) in South (∆𝑡 14 𝑑𝑎𝑦𝑠). 

 



 
 
 

Wednesday, 04 March 
2020 

 COMBINED ACTIONS 137  

 

Example 3: south part (connection made at time 𝒕 𝟐𝟖 𝐝𝐚𝐲𝐬) 

              

Figure 123:Material Properties and Imposed 

Deformation in South (∆𝑡 28 𝑑𝑎𝑦𝑠). 

Figure 124:Stress Calculated by 

Mechanics 1 (M1) in South (∆𝑡
28 𝑑𝑎𝑦𝑠). 

Figure 125:Stress Calculated by 
Mechanics 1 (M1) and Mechanics 2 

(M2) in South (∆𝑡 28 𝑑𝑎𝑦𝑠). 

Example 4: north part (connection made at time 𝒕 𝟕 𝐝𝐚𝐲𝐬) 

       
 

                   

Figure 126:Material Properties and Imposed 
Deformation in North (∆𝑡 7 𝑑𝑎𝑦𝑠).  

Figure 127:Stress Calculated by 
Mechanics 1 (M1) in North (∆𝑡
7 𝑑𝑎𝑦𝑠). 

Figure 128:Stress Calculated by 
Mechanics 1 (M1) and Mechanics 2 

(M2) in North (∆𝑡 7 𝑑𝑎𝑦𝑠). 
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Example 5: north part (connection made at time 𝒕 𝟏𝟒 𝐝𝐚𝐲𝐬) 

 
 

 

Figure 129:Material Properties and Imposed 

Deformation in North (∆𝑡 14 𝑑𝑎𝑦𝑠).  

Figure 130:Stress Calculated by 

Mechanics 1 (M1) in North (∆𝑡
14 𝑑𝑎𝑦𝑠). 

Figure 131:Stress Calculated by 
Mechanics 1 (M1) and Mechanics 2 

(M2) in North (∆𝑡 14 𝑑𝑎𝑦𝑠). 

Example 6: north part (connection made at time 𝒕 𝟐𝟖 𝐝𝐚𝐲𝐬) 

 
 
 

 

Figure 132:Material Properties and Imposed 

Deformation in North (∆𝑡 28 𝑑𝑎𝑦𝑠).  

Figure 133:Stress Calculated by 

Mechanics 1 (M1) in North (∆𝑡
28 𝑑𝑎𝑦𝑠). 

Figure 134:Stress Calculated by 
Mechanics 1 (M1) and Mechanics 2 

(M2) in North (∆𝑡 28 𝑑𝑎𝑦𝑠). 

*The final resulting stress calculated by Mechanics 1 (M1) and Mechanics 2 (M2) are almost same. 
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A15.7 Discussion 

In general, the final resulting stress in widened deck KW03.01 calculated by Mechanics 1 and Mechanics 2 are 
almost same when cracking is not taken into account. The reason is that the stiffness of connections are not small 
enough. The results calculated by Mechanics 1 and Mechanics 2 are different only when the stiffness of connection 
is extremely small, see Appendix A19. However, such a small stiffness will not appear if cracking is not taken into 
account.  

When a long-term variable load is applied to a concrete member, due to the creep or relaxation appears in the 
process, the concrete member performs as if its elastic modulus is decreased. For simplicity, a fictitious elastic 
modulus 𝐸 𝑡  is used to evaluate the internal forces in concrete when it is subjected to a long-term variable load, 
see Expression 18 (Scholten, 1989). 

According to Expression 18, small elastic modulus are applied to the model. As a result, the tensile stress resulting 
from imposed deformation is much smaller than the compressive stress from prestress, making old decks and new 
decks always be in compression. 

If connections are made at earlier timing, imposed deformation will be ∆𝜀 ≪ ∆𝜀 ≪ ∆𝜀 . ∆𝜀 ≪
∆𝜀  because the concrete in old decks is much older that in connections. The deformation of old deck mainly 
appears before connections being made which is not restrained. Therefore, the imposed deformation in old decks is 
much smaller than that in connections. ∆𝜀 ≪ ∆𝜀  because new decks are prestressed but not connections. 
Creep due to prestressing provides additional shortening to new decks, while there is no creep in connections.  

If connections are made at later timing, imposed deformation will be ∆𝜀 ≪ ∆𝜀 ∆𝜀  or ∆𝜀 ≪
∆𝜀 ∆𝜀 . The reason of ∆𝜀 ≪ ∆𝜀  has been mentioned above. There are two reasons of 
∆𝜀  getting close to even exceeding ∆𝜀 . First, creep of new decks mostly appears in earlier ages. Suppose 
the connections are made at later timing, the shortening due to creep would mostly be free, resulting in hardly any 
imposed deformation in new decks. Second, dimensions of new decks are larger than those of connections. So, the 
shortening due to shrinkage in new deck is smaller than that in connections. For both reasons, a later timing to make 
connection results in ∆𝜀  getting close to even exceeding ∆𝜀 . 

A15.8 Conclusion 

Either no prestress consumption or minimum prestress consumption is practical because the minimum prestress 
consumption appears when the connection is made at time ∆𝑡 4000 days or later. Suppose only in-plane 
loads are taken into account, the old decks and new decks are always in compression while the connections are 
always in tension. Suppose out-of-plane loads are also taken into account, the maximum tensile stress resulting from 
out-of-plane loads in cross-section at mid-span is always larger than the maximum compressive stress resulting from 
in-plane loads. As a result, suppose the tensile strength of concrete is neglected, new decks are always cracked no 
matter when connections are made.   
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A16 Relation between Mean Normal Stiffness and Imposed deformation in 

a Tensile Member 

A16.1 Bond Stress – Slip Relationship 

Bond stress – slip relationship is starting point from which the models used in the books are developed (Bruggeling, 
1970, p. 53) (Veen C. v., 1990, p. 22). The bond stress – slip relationship is obtained by a pull-out test (Rehm, 1961, 
p. 138), see Figure 135. With curve-fitting, the experiment data of bond stress – slip relationship is expressed into an 
exponential curve (Noakowski, 1978, p. 153): 

 𝜏 𝑎 ∙ 𝛿  (68) 

where: 
 𝜏   is the bond stress from pull-out test 
 𝛿  is the slip from ‘Pull-out Test’ 
 𝑎  is the bond strength 
   0.38 𝑓  

𝑏 is the factor related to the shape of 𝜏 𝛿 diagram  
   0.18 

 

Figure 135:Bond Stress - Slip Curve Obtained by a Pull-out Test. 

A16.2 Primary Cracks Only 

A16.2.1 Stress Distribution 

Transition length 𝑙  is the minimum distance at which cracks occur, or in other words transfer length (Veen C. v., 
1990, p. 25). Area inside the transition length on both sides of the cracks is called transition zone. Take half of the 
transition zone in a tensile member as an independent member, see Figure 136. The force balance in the element is 
derived basing on Figure 136, see Expression 69.  

The tensile force in cross-section 𝜎 ∙ 𝐴 𝜎 ∙ 𝐴  is balanced by the tensile force 𝜎 , ∙ 𝐴  in rebar at crack. For 

the force balance in rebar, the tensile force in rebar 𝐴 ∙ 𝜎 , 𝜎  is transferred to the concrete by bond within 

transition zone. So, a distance of 𝑙  beginning from the crack is necessary for the concrete stress increasing from 
zero to a value equal to tensile strength 𝜎 . And, therefore, transition length 𝑙  is the minimum distance at which 
cracks occur (Veen C. v., 1990, p. 23). 

 𝜎 , ∙ 𝐴 𝜎 ∙ 𝐴 𝜎 ∙ 𝐴  (69) 

where: 
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 𝜎 ,   is the stress in rebar, or in short the steel stress, at crack 

 𝜎   is the stress in rebar, or in short the steel stress, at the ends of transition zone 
 𝜎   is the stress in concrete, or in short the concrete stress, at the ends of transition zone 
   𝜎  
 𝜎   is the cracking strength of concrete 
   0.6𝑓  (A. S. G. Bruggling, W. A. de Bruijn, 1985) 
 𝐴   is the area of cross-section of rebar 
 𝐴   is the area of cross-section of concrete 

 

Figure 136:Force Balance in Half Transition Zone. 

Let the 𝑥-axis begins at a distance of 𝑙  from crack and points to the crack, see Figure 137. Suppose the strain in 
rebar and concrete at certain point is same when the concrete at this point is not cracked, the deformation 
compatibility at point 𝑥 0 m would be derived into Expression 70. 

 𝜀 𝜀  (70) 

where: 
  𝜀   is the strain in rebar, or in short the steel strain, at point 𝑥 0 m 
   𝜎 𝐸⁄  
 𝐸   is the elastic modulus of rebar 
 𝜀   is the strain in concrete, or in short the concrete strain, at point 𝑥 0 m 
   𝜎 𝐸⁄  
 𝐸   is the elastic modulus of concrete 

Solve Expression 69 and Expression 70 to derive the expressions of steel stresses 𝜎 ,  and 𝜎  in primary cracks, see 

Expression 71 and Expression 72. 

 𝜎 , 𝜎 ∙ 𝛼
1

𝜌
 (71) 

where: 
 𝛼   is the elastic modulus ratio 
   𝐸 𝐸⁄  
 𝜌   is the effective reinforcement ratio 

   𝐴 𝐴 ,⁄  

 𝜎 𝛼 ∙ 𝜎  (72) 

It is generally assumed that the Bond Stress-Slip Relationship is valid for each element d𝑥 and the bond strength 𝑎 
and the factor 𝑏 related to the shape of 𝜏 𝛿 diagram are constants inside transition zone (Veen C. v., 1990, p. 24). 
The distribution of steel stress, concrete stress and bond stress are shown in Figure 137 (Bruggeling, 1970, p. 35). 
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*𝜎 , , 𝜎 ,  and 𝜏 ,  represent the steel stress, concrete stress and bond stress at cracks, while 𝜎 , 𝜎  and 𝜏  represent the steel stress, concrete 
stress and bond stress at the ends of transition zone. 

Figure 137:Sketch of Stress Distribution in Transition Zone (Primary Cracks Only). 

A16.2.2 Shape Factors for Primary Cracks 

Basing on Figure 137, shape factors are introduced to express the distribution of steel stress and concrete stress in 
transition zone. The magnitude of the shape factors is dependent only on the factor 𝑏 in the exponential curve of the 
bond stress – slip relationship (Veen C. v., 1985, pp. 263 - 344) (Noakowski, 1978, p. 153). Therefore, the definition 
and magnitudes of the shape factors when there are primary cracks only are as follow: 

Shape factor of steel stress: 

 𝑆𝜎
𝑠ℎ𝑎𝑑𝑜𝑤 𝑎𝑟𝑒𝑎 𝐶𝐷𝐸

𝑎𝑟𝑒𝑎 𝐶𝐷𝐴𝐸

𝜎 𝑥 ∙ d𝑥

𝜎 , 𝜎 ∙ 𝑙

1 𝑏
2

 (73) 

Shape factor of concrete stress: 

 𝑆𝜎
𝑠ℎ𝑎𝑑𝑜𝑤 𝑎𝑟𝑒𝑎 𝐶′𝐷′𝐸′

𝑎𝑟𝑒𝑎 𝐶′𝐷′𝐴′𝐸′

𝜎 𝑥 ∙ d𝑥

𝜎 ∙ 𝑙
1 𝑏

2
 (74) 

 Shape factor of bond stress 

 𝑆𝜏
𝜏 𝑥 ∙ d𝑥

𝜏 , ∙ 𝑙
1 𝑏
1 𝑏

 (75) 

A16.2.3 Slip at Crack and Transition Length 

Take the rebar in half of the transition zone as an independent element. As shown in Appendix A16.2.1, the tensile 

force 𝐴 ∙ 𝜎 , 𝜎  is transferred to the concrete by the bond within transition zone, see Figure 138. Basing on 

Figure 138, the force balance in rebar derived, see Expression 76.  

 𝜎 , 𝜎 ∙
1
4

𝜋∅ 𝜏 ∙ 𝑙 ∙ 𝜋∅ (76) 
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where: 
 ∅  is the diameter of rebar 
 𝜏   is the mean bond stress 
   𝑆𝜏 ∙ 𝜏 ,  

 

Figure 138:Force Balance in Rebar within Half Transition Zone. 

According to the pull-out test shown in Appendix A16.1, the extra elongation of the rebar and the shortening of the 
concrete within transition zone, or in short the slip at crack, is denoted as 𝛿 . Substitute Expression 68 into 
Expression 76 to derive the relation between transition length 𝑙  and slip 𝛿  at crack, see Expression 77. Therefore, 
the slip at crack 𝛿  is expressed into Expression 78.  

 𝑙
𝜎 , ∙ ∅

4 1 𝛼 ∙ 𝜌 ∙ 𝑆𝜏 ∙ 𝜏 ,
 (77) 

where: 
 𝜏 ,   is the bond stress at crack when there are primary cracks only 

   𝑎 ∙ 𝛿  

 𝛿 𝜀 𝜀 ∙ 𝑙  (78) 

where: 
 𝜀   is the mean steel strain inside transition zone when there are primary cracks only 

   𝑆𝜎 ∙ 𝜎 , 𝜎 𝐸 𝜎 𝐸⁄⁄  

 𝜀   is the mean concrete strain inside transition zone when there are primary cracks only 
   𝑆𝜎 ∙ 𝜎 𝐸⁄  

Solve Expression 77 and Expression 78 to calculate the transition length 𝑙  and the slip 𝛿  at crack. The results are 
shown by Expression 79 and Expression 80. 

 𝛿
1 𝑏

2
∙

∅
4

∙
1

𝑎 ∙ 𝐸
∙

𝜎 ,

1 𝛼 ∙ 𝜌
 (79) 

 𝑙 2 ∙
𝛿 ∙ 𝐸

1 𝑏 ∙ 𝜎 ,
 (80) 

A16.2.4 Mean Normal Stiffness inside Transition Zone  

If a reinforced concrete member is cracked, the concrete will be broken but not the rebar. Since the crack width is 
small compared with the length of transition, the mean strain of the cracked member inside transition zone can be 
represented by the mean steel strain at same position, see Expression 81. 

 𝜀 𝑆𝜎 ∙
𝜎 , 𝜎

𝐸
𝜎
𝐸

1
𝐸

𝑆𝜎 ∙ 𝜎 , 𝑆𝜎 ∙ 𝜎  (81) 

where: 
 𝜀   is the mean steel strain when there are primary cracks only 
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By substituting Expression 71 and Expression 72 into Expression 81 and replacing 𝜎 𝐸⁄  with 𝜀 , the expression of 
mean steel stress inside the transition zone when there are primary cracks only is derived, see Expression 82. It 
means, when a new crack is about to occur, the mean steel strain inside the transition zone is 𝜲 times larger than that 
outside the transition zone.  

As shown in Figure 139, when a new crack is about to occur, the tensile forces both inside and outside the transition 
zone are equal to cracking force 𝑁 . Therefore, in this case, the mean normal stiffness outside the transition zone is 
𝜲 times larger than that inside the transition zone, see Expression 83.  

 𝜀 𝜲 ∙ 𝜀  (82) 

where: 
 𝜲  is a constant describing the increase of deformation 

    𝑆𝜎 ∙ 1
∙

𝑆𝜎   

 𝑆𝜎   is the shape factor of steel stress when there are primary cracks only, see Expression 73 
 𝑆𝜎   is the shape factor of concrete stress when there are primary cracks only, see Expression 7494 

 𝐸𝐴 ,
𝐸𝐴

𝜲
 (83) 

where: 
 𝐸𝐴 ,  is the mean normal stiffness inside the transition zone when there are primary cracks only 

 𝐸𝐴  is the mean normal stiffness outside the transition zone 
   𝐸 ∙ 𝐴 𝐸 𝑡 ∙ 𝐴  

 

Figure 139:Force Balance in Cracked Tensile Member when a New Crack is about to Occur (Primary Cracks Only). 

A16.2.5 Mean Normal Stiffness of Cracked Tensile Member (Primary Cracks Only) 

Simplify the cracked tensile member into a series of springs, see Figure 140. The mean normal stiffness inside 
𝐸𝐴 ,  and that outside the transition zone 𝐸𝐴  in Figure 140 are evaluated by Expression 82 and Expression 83. 

Suppose that there are 𝑛 primary cracks occurred, the elasticity of springs would be derived as follow:  

 𝑘 ,
𝐸𝐴 ,

𝑙 ,

𝐸𝐴
𝜲 ∙ 𝑙 ,

 (84) 

where: 
𝑘 ,  is the elasticity of spring which represents the part of tensile member inside the transition zone 

 𝑙 ,   is the length of spring with elasticity 𝑘 ,  

   2𝑛 ∙ 𝑙  

 𝑘
𝐸𝐴

𝐿 𝑙 ,
 (85) 

where: 
𝑘  is the elasticity of spring which represents the part of tensile member outside the transition zone 
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 𝐿  is the total length of the tensile member 

Expression 86 shows the relation between the elasticity of combined springs and those of single springs.  By 
substituting Expression 84 and Expression 85 into Expression 86, the expression of elasticity of combined springs 
𝑘  is derived, see Expression 87.  

 
1

𝑘
1

𝑘
1

𝑘 ,
 (86) 

where: 
𝑘  is the elasticity of spring which represents the whole tensile member  

 𝑘
𝐸𝐴

𝜲 1 ∙ 2𝑛 ∙ 𝑙 𝐿
 (87) 

Basing on the relation between the mean normal stiffness and the mean elasticity shown in Expression 
88, the expression of mean normal stiffness of the whole tensile member is derived, also see Expression 
88 

 𝐸𝐴 𝑘 ∙ 𝐿
𝐸𝐴

𝜴
 (88) 

where: 
 𝜴  is a constant describing the decrease of mean normal stiffness 
    𝜲 1 ∙ 2𝑛 ∙ 𝑙 𝐿 𝐿⁄  

 

Figure 140:Spring Form of Tensile Member (Primary Cracks Only). 

A16.3 Primary and Secondary Cracks 

A16.3.1 Stress Distribution 

When secondary cracks occur, the stress distribution inside the transition zone is different from that when there are 
primary cracks only (Veen C. v., 1990, p. 27). The bold lines in Figure 141 and Figure 142 represent the distribution 
of stresses when 𝑏 0 and 𝑏 1. As shown in Figure 141 and Figure 142, the distribution of steel strain when 
secondary cracks occur is different from that when there are primary cracks only.  

The shape factor of steel stress when secondary cracks occur is 1.5 times and 2 times of that when there are primary 
cracks only respectively in Figure 141 and Figure 142 (Veen C. v., 1990, p. 28). Then the expressions of mean streel 
strain in Figure 141 and Figure 142 are derived, see Expression 89 and Expression 90. 

 𝜀
1
𝐸

 𝜎 1.5 ∙ 𝜎 , 𝜎 ∙ 𝑆𝜎   (89) 

where: 
 𝜀   is the steel strain inside transition zone when secondary cracks occur 
 𝑆𝜎   is the shape factor of steel stress when there are primary cracks only and 𝑏 0 
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Figure 141:Sketch of Shape Factor in Transition Zone when 𝑏 0 (Secondary and Primary Cracks). 

 𝜀
1
𝐸

 𝜎 2 ∙ 𝜎 , 𝜎 ∙ 𝑆𝜎   (90) 

where: 
 𝜀   is the steel strain inside transition zone when secondary cracks occur 
 𝑆𝜎   is the shape factor of steel stress when there are primary cracks only and 𝑏 1 

 
 

Figure 142:Sketch of Shape Factor in Transition Zone when 𝑏 1 (Secondary and Primary Cracks). 

A16.3.2 Shape Factors for Primary and Secondary Cracks 

Assumed that the relation between the factor 𝑏 and the shape factor of steel stress is linear for 0 𝑏 1,  
Expression 89 and Expression 90 would be derived into Expression 91. Substitute Expression 73 into Expression 91, 
Expression 92 is derived. 

 𝜀
1
𝐸

 𝜎
3 𝑏

2
∙ 𝜎 , 𝜎 ∙ 𝑆𝜎   (91) 
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 𝜀
1
𝐸

 
3 𝑏 1 𝑏

4
∙ 𝜎 ,

1 𝑏
4

∙ 𝜎   (92) 

Compare Expression 92 with Expression 81, the shape factors of steel stress and concrete stress when secondary 
cracks occur are as follow: 

Shape factor of steel stress: 

 𝑆𝜎
3 𝑏 1 𝑏

4
 (93) 

 Shape factor of concrete stress: 

 𝑆𝜎
1 𝑏

4
 (94) 

A16.3.3 Idealized Crack Pattern 

An idealized crack pattern is introduced when it comes to the fully developed cracks (Veen C. v., 1990, p. 29) 
(Bruggeling, 1970, p. 57), see Figure 143. In the idealized crack pattern, the crack distance varies from 𝑙  to 2𝑙 , 
and the mean strain in transition zone 𝜀 ,  when fully developed cracks occur is derived as follow: 

 𝜀 ,
2𝜀 , 𝜀 ,

3
1
𝐸

 
7 𝑏 1 𝑏

12
∙ 𝜎 ,

1 𝑏 5 𝑏
4

∙ 𝜎   (95) 

where: 
 𝜀 ,   is the mean steel strain between primary cracks, see Expression 81 

𝜀 ,  is the mean steel strain between primary and secondary cracks when secondary cracks occur, see 
Expression 92 

Compare Expression 95 with Expression 81, the shape factors of steel stress and concrete stress between primary 
cracks where secondary crack occurs, or in short between primary cracks, are as follow: 

Shape factor of steel stress 

 𝑆𝜎
7 𝑏 1 𝑏

12
 (96) 

 Shape factor of concrete stress 

 𝑆𝜎
1 𝑏 5 𝑏

4
 (97) 
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Figure 143:Sketch of Stress Distribution in Transition Zone (Idealize Crack Pattern). 

To make sure that the idealized crack pattern is able to form when fully developed cracks occur, the distance between 
primary cracks ought to be 3𝑙 , while a secondary cracks ought to occur in between two primary cracks at a distance 
of 𝑙  from one of them, as shown in Figure 143. It means, in this thesis, the position of the cracks are predicted 
basing on the ideal crack pattern shown in Figure 143. Basing on this prediction, the mean normal stiffness between 
primary cracks is derived, see Appendix A16.3.4.   

A16.3.4 Mean Normal Stiffness of Idealized Crack Pattern 

When a reinforced concrete member is cracked, the concrete will be broken but not the rebar. Since the crack width 
is small compared with the length of transition, the mean strain of the cracked member between primary cracks 
where secondary crack occurs, or in short in idealized crack pattern, can be represented by the mean steel strain at 
same position, see Expression 91 and/or Expression 92. 

By substituting Expression 71 and Expression 72 into Expression 92 and replacing 𝜎 𝐸⁄  with 𝜀 , the expression of 
mean steel stress between primary cracks is derived, see Expression 98. It means, when a new crack is about to 
occur, the mean steel strain between primary cracks is 𝜳 times larger than that outside the transition zone.  

As shown in Figure 144, when a new secondary crack is about to occur, the tensile forces both inside and outside the 
transition zone are equal to cracking force 𝑁 . Therefore, in this case, the mean normal stiffness outside the 
transition zone is 𝜳 times larger than that between primary cracks, see Expression 99. 

 𝜀 𝜳 ∙ 𝜀  (98) 

where: 
 𝜳  is a constant describing the increase of deformation 

    𝑆𝜎 ∙ 1
∙

𝑆𝜎   

 𝑆𝜎   is the shape factor of steel stress of idealized crack pattern, see Expression 96 
 𝑆𝜎   is the shape factor of concrete stress of idealized crack pattern, see Expression 97 

 𝐸𝐴 ,
𝐸𝐴

𝜳
 (99) 

where: 
 𝐸𝐴 ,    is the mean normal stiffness of idealized crack pattern 

 𝐸𝐴  is the mean normal stiffness outside the transition zone 
   𝐸 ∙ 𝐴 𝐸 ∙ 𝐴  
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Figure 144:Force Balance in Cracked Tensile Member when a New Crack is about to Occur (Primary and Secondary Cracks). 

A16.3.5 Mean Normal Stiffness of Cracked Tensile Member 

The mean normal stiffness of cracked tensile member when secondary cracks occur is related to the final cracked 
pattern. For simplification, this part is introduced in A16.5. Before that, the final crack pattern has to be determined, 
see A16.4. 

A16.4 Crack Pattern 

A16.4.1 Formation Process of Crack Pattern 

The mean normal stiffness of cracked tensile member when secondary cracks occur is related to the final cracked 
pattern. To obtain the idealized crack pattern, a concept of formation process of crack pattern related to imposed 
deformation ∆𝜀 has to be introduced, see Figure 145. In general, there are for important timing during the formation 
process of crack pattern, which divides the process into four stages: 

∆𝜀   the imposed deformation which results in tensile strain in tensile member 
∆𝜀  the imposed deformation when primary cracks occur, which is referred to as cracking strain 𝜀  
∆𝜀  the imposed deformation when secondary cracks occur, which is referred to as partially developed 

cracking strain  𝜀  

∆𝜀  the imposed deformation when fully developed cracks occur, which is referred to as fully developed 
cracking strain 𝜀  

Stage 1: 

∆𝜀 ∆𝜀 ∆𝜀 : the tensile member is in tension but not cracked, which results in a linear deformation 

Stage 2: 

∆𝜀 ∆𝜀 ∆𝜀 : primary cracks occur due to imposed deformation and reach their maximum at ∆𝜀 ∆𝜀  

Stage 3: 

∆𝜀 ∆𝜀 ∆𝜀 : secondary cracks occur due to imposed deformation and reach their maximum at ∆𝜀 ∆𝜀  

Stage 4: 

∆𝜀 ∆𝜀: all the cracks are developed into fully developed cracks 

 

Figure 145:Formation process of Crack Pattern. 
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A16.4.2 Crack Pattern when ∆𝜺𝑰𝑰 ∆𝜺 ∆𝜺𝑰𝑰𝑰 (Stage 2) 

In Stage 2, primary cracks occur. As shown in Appendix A16.3.3, the position of primary cracks can be predicted 
due to the idealized crack pattern. To make sure that the idealized crack pattern is able to form when fully developed 
cracks occur, the distance between primary cracks ought to be 3𝑙 .  

It means that, when primary cracks are not at their maximum, the primary cracks occur one by one at positions 
randomly as the imposed deformation increases with certain distances which are the integral multiple of 3𝑙 , see 
Figure 146. When the maximum is obtained, all the primary cracks have a distance of 3𝑙  from the neighbour ones, 
see Figure 147. Basing on Figure 147, the maximum number of primary crack 𝑛  is calculated as follow: 

 𝑛 ROUNDDOWN
𝐿

3𝑙
, 0  (100) 

where: 
 𝐿  is the length of the tensile member 

* ROUNDDOWN 𝑥, 0  is a function calculating the maximum integer which is smaller than 𝑥. 

When primary cracks occur, the tensile member is divided into several segments by the cracks. Independent from the 
number of primary cracks, the summation of elongation in each segment ought to equal to the total elongation of the 
tensile member. Therefore, suppose that the 𝑛 1 th primary cracks is about to occur when a imposed 
deformation ∆𝜀 is applied to the tensile member, an equation of deformation would be made as follow: 

 𝛿 𝛿 , 𝛿  (101) 

where: 
 𝛿  is the total elongation of the tensile member 
 𝛿 ,   is the total elongation of inside the transition zone 

   𝜀 ∙ 2𝑛 ∙ 𝑙  
 𝑛  is the number of primary cracks which have already occurred 
 𝜀   is the mean steel strain inside the transition zone 
   𝜲 ∙ 𝜀  
 𝜀   is the steel strain outside the transition zone, see Expression 72 
 𝛿   is the total elongation outside the transition zone 
   𝜀 ∙ 𝐿 2𝑛 ∙ 𝑙  

Resulting from Expression 101, the relation between the number of primary cracks which have already occurred and 
the magnitude of imposed deformation is as follow: 

 𝑛
∆𝜀 𝜀 ∙ 𝐿

𝜲 1 ∙ 𝜀 ∙ 2𝑙
 (102) 

 

Figure 146:Crack Pattern when Primary Cracks are not at Their Maximum.  
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Figure 147:Crack Pattern when Primary Cracks are at Their Maximum. 

*The shadowed parts in Figure 146 and Figure 147 represent the transition zone in the tensile member. 

A16.4.3 Crack Pattern when ∆𝜺𝑰𝑰𝑰 ∆𝜺 ∆𝜺𝑰𝑽 (Stage 3) 

In Stage 3, primary cracks have reach their maximum while secondary cracks occur. As shown in Appendix A16.3.3, 
the position of secondary cracks can be predicted due to the idealized crack pattern. To make sure that the idealized 
crack pattern is able to form when fully developed cracks occur, a secondary cracks ought to occur in between two 
primary cracks at a distance of 𝑙  from one of them, as shown in Figure 143. 

It means that, before secondary cracks occur, the tensile member has been divided by primary cracks into segments 
with a length of 3𝑙 , see Figure 147. When the secondary cracks are not at their maximum, some of these segments 
are divided by the secondary cracks into idealized crack pattern, see Figure 148. When the maximum is obtained, the 
all the segments are divided into idealized crack pattern by the secondary cracks, see Figure 149. Basing on Figure 
149, the maximum number of secondary crack 𝑚  is calculated as follow: 

 𝑚

⎩
⎨

⎧ROUNDDOWN
𝐿

3𝑙
, 0 1, MOD 𝐿, 3𝑙 1

ROUNDDOWN
𝐿

3𝑙
, 0 , MOD 𝐿, 3𝑙 1

 (103) 

* MOD 𝑥, 𝑦  is a function calculating the remainder of 𝑥 𝑦⁄ . 

When secondary cracks occur, some of the segments in Figure 147 change into idealized crack pattern. Independent 
from the number of primary cracks, the summation of elongation in each segment and idealized crack pattern ought 
to equal to the total elongation of the tensile member. Therefore, suppose that the 𝑚 1 th secondary cracks is 
about to occur when a imposed deformation ∆𝜀 is applied to the tensile member, an equation of deformation would 
be made as follow: 

 𝛿 𝛿 , 𝛿 , 𝛿  (104) 

where: 
 𝛿 ,   is the total elongation of the idealized crack pattern 

   𝜀 , ∙ 3𝑚 ∙ 𝑙  

 𝑚  is the number of secondary cracks which have already occurred 
 𝜀 ,   is the mean steel strain of idealized crack pattern 

   𝜳 ∙ 𝜀  
 𝛿 ,   is the total elongation of remained segments  

   𝜀 , ∙ 2 𝑛 𝑚 ∙ 𝑙  

 𝑛   is the maximum number of primary cracks  
 𝜀 ,   is the mean steel strain inside the transition zone 

   𝜲 ∙ 𝜀  
 𝜀   is the steel strain outside the transition zone, see Expression 72 
 𝛿   is the total elongation outside the transition zone 
   𝜀 ∙ 𝐿 𝑚 ∙ 𝑙 2𝑛 ∙ 𝑙  
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Resulting from Expression 104, the relation between the number of secondary cracks which have already occurred 
and the magnitude of imposed deformation is as follow: 

 𝑚
𝜲 1 ∙ 2𝑛 ∙ 𝑙 ∙ 𝜀 ∆𝜀 𝜀 ∙ 𝐿

2𝜲 3𝜳 1 ∙ 𝜀 ∙ 𝑙
 (105) 

 

Figure 148:Crack Pattern when Secondary Cracks are not at Their Maximum. 

 

Figure 149:Crack Pattern when Secondary Cracks are at Their Maximum. 

A16.5 Mean Normal Stiffness of Cracked Tensile Member (Primary and 
Secondary Cracks) 

As shown in Appendix A16.4, the relations between the number of primary or secondary cracks and the magnitude 
of imposed deformation are derived. Simplify the cracked tensile member into a series of springs, see Figure 150. 
The mean normal stiffness of tensile member with idealized crack pattern 𝐸𝐴 , , segments shown in Figure 147 

𝐸𝐴 ,  and that outside the transition zone 𝐸𝐴  in Figure 150 are evaluated by Expression 99, Expression 82 and 

Expression 83 respectively. Suppose that there are 𝑚 secondary cracks occurred, the elasticity of springs would be 
derived as follow:  

 𝑘 ,
𝐸𝐴 ,

𝑙 ,

𝐸𝐴
𝜳 ∙ 𝑙 ,

 (106) 

where: 
𝑘 ,  is the elasticity of spring which represents the part of tensile member with idealized crack pattern 

 𝑙 ,   is the length of spring with elasticity 𝑘 ,  

   3𝑚 ∙ 𝑙  

 𝑘 ,
𝐸𝐴 ,

𝑙 ,

𝐸𝐴
𝜲 ∙ 𝑙 ,

 (107) 

where: 
𝑘 ,  is the elasticity of spring which represents the segments shown in Figure 147 

 𝑙 ,   is the length of spring with elasticity 𝑘 ,  

   2 𝑛 𝑚 ∙ 𝑙  
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 𝑘
𝐸𝐴

𝐿 𝑙 , 𝑙 ,
 (108) 

where: 
𝑘  is the elasticity of spring which represents the part of tensile member outside the transition zone 

 𝐿  is the total length of the tensile member 

Expression 109 shows the relation between the elasticity of combined springs and those of single springs.  By 
substituting Expression 106, Expression 107 and Expression 108 into Expression 109, the expression of elasticity of 
combined springs 𝑘  is derived, see Expression 110.  

 
1

𝑘 ′
1

𝑘
1

𝑘 ,

1
𝑘 ,

 (109) 

where: 
𝑘 ′ is the elasticity of spring which represents the whole tensile member  

 𝑘 ′
𝐸𝐴

𝐿 𝑚 2𝑛 ∙ 𝑙 2 𝑛 𝑚 ∙ 𝜲 ∙ 𝑙 3𝑚 ∙ 𝜳 ∙ 𝑙
 (110) 

Basing on the relation between the mean normal stiffness and the mean elasticity shown in Expression 111, the 
expression of mean normal stiffness of the whole tensile member is derived, also see Expression 111. 

 𝐸𝐴 ′ 𝑘 ′ ∙ 𝐿
𝐸𝐴
𝜴′

 (111) 

where: 
 𝜴′  is a constant describing the decreasing of mean normal stiffness 
    𝐿 𝑚 2𝑛 ∙ 𝑙 2 𝑛 𝑚 ∙ 𝜲 ∙ 𝑙 3𝑚 ∙ 𝜳 ∙ 𝑙 𝐿⁄  

 

Figure 150:Spring Form of Tensile Member (Primary and Secondary Cracks). 

A16.6 Conclusion 

According to Expression 102 and Expression 105, the number of cracks is a function of imposed deformation, while, 
according to Expression 88 and Expression 111, the mean normal stiffness is a function of the number of cracks. The 
expressions describing the relation between mean normal stiffness and imposed deformation are complex. For 
simplicity, here only summarized the derivation of the expressions: 

Primary cracks only: 

By substituting Expression 102 into Expression 88, relation between mean normal stiffness and imposed deformation 
is derived.  

Secondary cracks occur: 

By substituting Expression 105 into Expression 111, relation between mean normal stiffness and imposed 
deformation is established. 

In addition, to show the reliability of the relation derived here, an example is given in Appendix A17.  
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A17 Calculation of Mean Normal Stiffness 

A17.1 General 

A calculation is carried out here to prove that the relation between mean normal stiffness and imposed deformation 
derived in Appendix A16 is capable to describe the behavior of a cracked tensile member when imposed deformation 
is applied. Suppose the diagram of equivalent normal force and imposed deformation calculated here suits the 
schematised N – ε diagram, see Figure 2, the relation between mean normal stiffness and imposed deformation 
derived in Appendix A16 would be taken reliable. 

A17.2 Input Data 

A17.2.1 Dimensions 

The dimensions of the model are summarized in Table 28. It is the model of a concrete tensile member which is 
reinforced. Two rows of reinforcement 6∅25 in longitudinal direction is applied. The basic dimensions of 
reinforcement are summarized in Table 175. Substitute the data from Table 175 into Expressions 118 to 122, the 
dimensions of effective area is evaluated, see Table 176.  

height of cross-section h 0.70 m

width of cross-section b 0.50 m

length of total L 42.40 m

area of cross-section A c 0.35 m2

 
Table 174:Dimensions of the Connection. 

diameter of rebar Φ s 25 mm

area of rebar A s 491 mm
2

spacing s 83 mm

cover c 55 mm  
Table 175:Basic Dimensions of Reinforcement. 

effective area of concrete per rebar A c,eff 28125 mm
2

where:
width of effective area ( <s ) b eff 83.33 mm

height of effective area ( <h /2 ) h eff 337.50 mm

effective reinforcement ratio ρ eff 0.0175  
Table 176:Dimensions of Effective Area. 

A17.2.2 Material Properties and Imposed Deformation 

To calculate the diagram of equivalent normal force and imposed deformation which shows the development process 
of crack pattern, a series of imposed deformation ∆𝜀 is applied to the tensile member. The magnitude of imposed 
deformation is as follow: 

 ∆𝜺 𝟎. 𝟎 𝟏𝟎 𝟒 ~ 𝟓 𝟏𝟎 𝟒 (112) 

The basic data of material properties and environmental conditions of are shown in Table 177. In this calculation, the 
imposed deformation is applied to the tensile member at time 𝑡 36500 days. The material properties at time 𝑡
36500 days are shown in Table 35. Substitute time 𝑡 36500 days into Expressions 13 to 17, the material 
properties of concrete at time 𝑡 36500 days are evaluated.  
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Environment relative humidity RH 75 % 
Cement (CEM III/B) coefficient related to cement s 0.25   

Concrete (C35/45) 

characteristic strength fck 35 MPa 

gravity γc 25 kN/m3 

compressive strength fcm 43 MPa 

Tensile strength fctm 3.2 MPa 

elastic modulus Ecm 34 GPa 

poisson's ratio ν 0.2   

coefficient of thermal expansion αc 0.00001 /℃ 

Reinforcement – Top 
(B500) 

elastic modulus Es 210 GPa 

ratio of elastic modulus αe 5.74  

diameter of rebar Φs 25 mm 

spacing s 100 mm 

cover c 55 mm 

Reinforcement – Bottom 
(B500) 

elastic modulus Es 210 GPa 

ratio of elastic modulus αe 5.74  

diameter of rebar Φs 25 mm 

spacing s 100 mm 

cover c 55 mm 
Table 177:Basic Data of Material Properties and Environmental Conditions. 

characteristic strength f ck 3.50E+07 Pa

compression strength f cm 4.30E+07 Pa

elastic modulus E cm 3.40E+10 Pa

characteristic strength f ck (t) 3.50E+07 Pa

mean compression strength f cm (t) 5.48E+07 Pa

where:

factor related to time β cc (t) 1.28

elastic modulus E cm (t) 3.66E+10 Pa  
Table 178:Material Properties of Concrete at Time 𝑡 36500 𝑑𝑎𝑦𝑠. 

A17.3 Expressions of Equivalent Normal Force 

According to Appendix A16.4.1, there are four stages during the formation process of crack pattern. The expressions 
of equivalent normal force 𝑁 are different in different stages.  

Expression 100 and Expression 103 are the expressions of the maximum number of primary and secondary cracks 
respectively. By substituting Expression 100 back to Expression 102 and solving the equation, the imposed 
deformation ∆𝜀 𝜀  is evaluated which results in the maximum primary cracks. Similarly, by substituting 

Expression 103 back to Expression 105 and solving the equation, the imposed deformation ∆𝜀 𝜀  is evaluated 

which results in the maximum secondary cracks. 

Then substitute ∆𝜀 𝜀  and ∆𝜀 𝜀  into the relations between mean normal stiffness and imposed deformation 

which have been established, the mean normal stiffness 𝐸𝐴  and 𝐸𝐴  are evaluated when the tensile member 

is subjected to ∆𝜀 𝜀  and ∆𝜀 𝜀  respectively. 
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Suppose a tensile member is subjected to a imposed deformation ∆𝜀, the expressions of equivalent normal force 𝑁 
are as follow: 

 ∆𝜺𝑰 ∆𝜺 ∆𝜺𝑰𝑰 𝜺𝒄𝒓 : 

 𝑁 ∆𝜀 ∙ 𝐸𝐴  (113) 

where: 
 ∆𝜀  is the imposed deformation  
 𝐸𝐴  is the mean normal stiffness of uncrack tensile member 
   𝐸 ∙ 𝐴 𝐸 𝑡 ∙ 𝐴  

 ∆𝜺𝑰𝑰 𝜺𝒄𝒓 ∆𝜺 ∆𝜺𝑰𝑰𝑰 𝜺𝒑𝒅𝒄 : 

 𝑁 ∆𝜀 ∙ 𝐸𝐴  (114) 

where: 
 𝐸𝐴  is the mean normal stiffness of tensile member with primary cracks only, see Expression 88 

 ∆𝜺𝑰𝑰𝑰 𝜺𝒑𝒅𝒄 ∆𝜺 ∆𝜺𝑰𝑽 𝜺𝒇𝒅𝒄 : 

 𝑁 ∆𝜀 ∙ 𝐸𝐴 ′ (115) 

where: 
𝐸𝐴 ′ is the mean normal stiffness of tensile member with primary and secondary cracks, see Expression 

111 

 ∆𝜺𝑰𝑽 𝜺𝒇𝒅𝒄 ∆𝜺: 

 𝑁 𝜀 ∙ 𝐸𝐴 ∆𝜀 𝜀 ∙ 𝐸𝐴  (116) 

where: 
 𝜀   is the strain when secondary cracks are at their maximum 

𝐸𝐴  is the mean normal stiffness of tensile member subjected to 𝜀  

 𝐸𝐴  is the mean normal stiffness rebars  
   𝐸 ∙ 𝐴  

The cracking strain 𝜀  at time 𝑡 is evaluated as follow: 

 𝜺𝒄𝒓
𝜎

𝐸 𝑡
𝟎. 𝟓𝟑 𝟏𝟎 𝟒 (117) 

where: 
 𝜎   is the cracking strength of concrete 
   0.6 𝑓  
 𝑓   is the tensile strength of concrete at time 𝑡 28 days 

A17.4 Results 

Basing on the data shown in Appendix A17.2, substitute Expression 112 into relation between mean normal stiffness 
and imposed deformation derived in Appendix A16, a series of equivalent normal forces 𝑁 are calculated. Plot the 
equivalent normal forces 𝑁 and their corresponding imposed deformation, the 𝑁 ∆𝜀 diagram of the tensile member 
is obtained, see Figure 151.  

As shown in Figure 151, the dashed lines in purple, green and light blue represent the cracking strain 𝜀 , partially 
developed strain 𝜀  and fully developed strain 𝜀  respectively. The diagram is divided into four parts which are 

corresponding to the formation process introduced in Appendix A16.4.1. 
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It is shown that the variance of equivalent normal force during the development process of crack pattern is small. It 
means the impact of cracking on the equivalent normal force is not significant from the view of whole tensile 
member.  

During calculation, the constants which describing the increasing of deformation 𝜲 and 𝜳 are 5.09 and 5.90. It 
means, suppose the primary cracks are at their maximum and no secondary cracks occurs, the deformation of the 
transition zones 5.09 times larger than that when it is not cracked. And, suppose the tensile member is fully cracked 
with an idealized crack pattern shown in Figure 143, the deformation of the transition zones 5.90 times larger than 
that when it is not cracked.  

However, the total length of the connection 𝐿 is much longer than that of transition zones of a single crack 2𝑙 . As 
results, the increment of deformation due to a single crack gives hardly any difference to the deformation of whole 
tensile member. And, therefore, the decrement of equivalent normal force is small. In the end, the 𝑁 ∆𝜀 diagram is 
approximately an horizontal line, when the tensile member is not fully cracked, see Figure 151.   

 

Figure 151:𝑁 𝛿 Diagram of Connection in the South Part of Widened Deck KW03.01. 

In addition, it is shown that, from ∆𝜀 𝜀  to ∆𝜀 𝜀 , the variance of equivalent normal force is getting smaller. 

Details A, Details B and Details C are shown in Figure 152, Figure 153 and Figure 154.  

As shown in Figure 152, Figure 153 and Figure 154, the equivalent normal force varies as the imposed deformation 
increases. It reaches its maximum when a new crack is about to occur and drops to its minimum after a new crack 
occurs. The diagram between a minimum and a maximum is linear, because it is assumed that the mean normal 
stiffness of the tensile member is constant during this process.  
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Figure 152:Details A. 

 

Figure 153:Details B. 
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Figure 154:Details C. 

A17.5 Conclusion 

According to Figure 151, suppose a tensile member is much longer than the transition zone of single crack, the 
impact of cracking on the equivalent normal force is neglectable. However, it is proved that the decrement of normal 
stiffness is significant when a tensile member is cracked due to imposed deformation.  

A copy of Figure 2 is shown in Figure 155. Compare Figure 151 with Figure 155, it is shown that the diagram of 
equivalent normal force and imposed deformation calculated here suits the schematised N – ε diagram. So, the 
relation between mean normal stiffness and imposed deformation derived in Appendix A16 is reliable. 

  

Figure 155:Sketch of 𝑁 𝛿 Diagram in ‘Pink Book’.  
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A18 Expressions to Evaluate the Effective Area of Rebar 

According to Eurocode, when the calculation about cracking is carried out, the effective area surrounding the 
reinforcement has to be taken into account, see Figure 156. As shown in Figure 156, the cracks are concentrated in a 
certain part of tensile member. The cross-section of this part is taken as effective area in this thesis. The expression 
of the maximum width of effective area 𝑏 ,  is as follow: 

 𝑏 , 5 𝑐
∅
2

  (118) 

where: 
 𝑐  is the cover of rebar 
 ∅  is the diameter of rebar 

 

Figure 156:Effective Area in Tensile Member. 

Basing on Expression 118, the effective area surrounding rebar in a tensile member is estimated, see Figure 157. The 
shadowed part in Figure 157 represents the effective area. The expressions of width 𝑏  and height ℎ  of effective 

area are as follow: 

 𝑏 MIN  5 𝑐
∅
2

 , 𝑠  (119) 

where: 
 𝑠  is the spacing of rebar 

 ℎ MIN  𝑐
∅
2

2.5 𝑐
∅
2

 ,
ℎ
2

  (120) 

where: 
 ℎ  is the height of cross-section 

With the width and height of effective area evaluated, the area of effective area and the effective reinforcement ratio 
are evaluated as follow: 

 𝐴 , 𝑏 ∙ ℎ  (121) 

 𝜌 ,
𝐴

𝐴 ,
 (122) 

where: 
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 𝐴   is the cross-section area of rebar 

   𝜋 ∙ ∅ 4⁄  

 

Figure 157:Sketch of Effective Area. 
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A19 Impact of Cracking on Prestress Consumption in Proportion 

A19.1 General 

As shown in Appendix A15, independent from the timing to make connection, only connections are in tension. 
Therefore, only connections are possible to be cracked. With the cracked zone estimated, calculations with the 
impact of cracking is carried out. 

The stress at which cracking occurs in concrete is referred to as the cracking strength of concrete 𝜎 , or in short the 
cracking strength. Suppose the tensile stress in connections resulting from combined actions exceeds the cracking 
strength, the connections would be taken as the cracked area to investigate the impact of cracking.  

The cracking strength is often assumed to be equal to the tensile strength of concrete 𝑓 𝑡  at time 𝑡 28 days 
(Breugel, 2013, p. 72). The expression to evaluate 𝑓 𝑡  at time 𝑡 28 days is shown in Appendix A3, see 
Expression 16. However, an important factor to the cracking strength is the duration of  load which causes cracking. 
Suppose a long-term load is applied, cracking strength would be smaller than that when a short-term load is applied 
(A. S. G. Bruggling, W. A. de Bruijn, 1985). The expression to evaluate the cracking strength 𝜎  is as follow: 

 𝜎 0.6 ∙ 𝑓 𝑡  (123) 

where: 
 𝑓 𝑡  is the tensile strength of concrete at time 𝑡 28 days when short-term load is applied 

With cracking strength, suppose the deformation applied to connections is known, the mean normal stiffness of 
cracked connections is available, see Appendix A16. As shown in Appendix A16, a relation is established between 
the mean normal stiffness of a cracked concrete tensile member and imposed deformation applied to it. According to 
the relation established in Appendix A16, the normal stiffness of the connections are re-evaluated when cracking is 
taken into account. With the re-evaluated normal stiffness in connections, the in-plane strain and stress in widened 
deck KW03.01 resulting from the imposed deformation are re-calculated.  

The imposed deformation used to evaluate the mean normal stiffness of connections is taken as the mean strain 
resulting from imposed deformation when cracking is not taken into account. The means strain resulting from 
imposed deformation when cracking is not taken into account is substituted into the expressions in Appendix A16 as 
imposed deformation to re-evaluate the normal stiffness in connections. 

The stress resulting from imposed deformation, shown in Appendix A15.6, is calculated without the impact of 
cracking. Hereby, to investigate the impact of cracking on the resulting strain and stress, re-calculation are carried 
out to Example 3 and Example 6 with cracking taken into account, see Appendix A19.2. 

A19.2 Re-calculated Examples 

The stress resulting from imposed deformation and prestress consumption in proportion in widened deck KW03.01 
are re-calculated. For each re-calculated example, four figures are plotted: 

1. A sketch showing material properties and imposed deformation. 
2. Stress resulting from imposed deformation calculated by Mechanics 1 and Mechanics 2 with cracking. 
3. Stress resulting from imposed deformation calculated by Mechanics 2 with and without cracking. 
4. Prestress consumption in proportion calculated by Mechanics 2 with and without cracking.  

For the same reason shown in Appendix A15.1, the impact of additional deformation due to imposed deformation, or 
in other words the impact of imposed deformation, on the compressive stress is neglected. The compressive stress 
resulting from prestressing at time 𝑡 𝑡  in old decks and new decks is equal to those calculated in Appendix A15. 
As a result, to show the impact of cracking clear, hereby only shown the stress resulting from imposed deformation, 
where the compressive stress resulting from prestressing is excluded.  
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In general, due to imposed deformation, only connections are cracked. Therefore, the stiffness of connection 
decreases. For simplicity, the decreased stiffness is represented into a fictitious elastic modulus of concrete which is 
smaller than the original one, see Figure 158 and Figure 162.  

As shown in Figure 159 and Figure 163, with cracking taken into account, stress resulting from imposed deformation 
calculated by Mechanics 1 and Mechanics 2 are almost same. As shown in Figure 160, Figure 161, Figure 164 and 
Figure 165, stress resulting from imposed deformation and prestress consumption in proportion calculated Mechanics 
2 with and without cracking are almost same. It means, when connections are made at time ∆𝑡 28 days, 
although connections is cracked, the impact of cracking on stress resulting from imposed deformation is small. 

Example 3: south part (connection made at time ∆𝒕𝑰𝑰 𝑰𝑰𝑰 𝟐𝟖 𝐝𝐚𝐲𝐬) 

 

 

   

Figure 158:Material 
Properties and Imposed 
Deformation in South 
(∆𝑡 28 𝑑𝑎𝑦𝑠). 

Figure 159:Stress Calculated by 
Mechanics 1 (M1) and Mechanics 

2 (M2) in South (∆𝑡
28 𝑑𝑎𝑦𝑠). 

Figure 160:Stress Calculated by 
Mechanics 2 (M2) with and 
without Cracking in South 
(∆𝑡 28 𝑑𝑎𝑦𝑠). 

Figure 161:Prestress 
Consumption Calculated by 
Mechanics 2 (M2) with and 
without Cracking in South 

(∆𝑡 28 𝑑𝑎𝑦𝑠). 
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Example 6: north part (connection made at time ∆𝒕𝑰𝑰 𝑰𝑰𝑰 𝟐𝟖 𝐝𝐚𝐲𝐬) 

 

 

   

Figure 162:Material 
Properties and Imposed 
Deformation in North 

(∆𝑡 28 𝑑𝑎𝑦𝑠). 

Figure 163:Stress Calculated by 
Mechanics 1 (M1) and Mechanics 

2 (M2) in North (∆𝑡
28 𝑑𝑎𝑦𝑠). 

Figure 164:Stress Calculated by 
Mechanics 2 (M2) with and 
without Cracking in North 

(∆𝑡 28 𝑑𝑎𝑦𝑠). 

Figure 165:Prestress 
Consumption Calculated by 
Mechanics 2 (M2) with and 
without Cracking in North 

(∆𝑡 28 𝑑𝑎𝑦𝑠). 

A19.3 Additional Calculation 

As shown in Appendix A19.2, the connections are cracked while the impact of cracking is small. To investigate the 
possible impact of cracking, an additional calculation is carried out to Example 3. According to Appendix A16, 
cracking decreases the stiffness connection. Same as the re-calculation in Appendix A19.2, the decreased stiffness is 
represented into a fictitious elastic modulus of concrete which is smaller than the original one. The original elastic 
modulus of concrete in connection is 𝐸 𝑡 10.1 GPa. So, during the additional calculation, the fictitious elastic 
modulus of concrete in connection varies from 𝐸 𝑡 1 Pa to 𝐸 𝑡 10.1 GPa, see Figure 166 and Figure 
168. 

In the additional calculation, stress resulting from imposed deformation in widened deck KW03.01 is a function of 
elastic modulus 𝐸 𝑡  in connection. The resulting stress is calculated by both Mechanics 1 and Mechanics 2.  

The results of additional calculation is plotted into three dimensional figures, see Figure 167 and Figure 169. As 
shown in Figure 167 and Figure 169, the three axis represent the position in cross-section, the elastic modulus of 
concrete and the stress resulting from imposed deformation respectively. In addition to Figure 167 and Figure 169, 
two dimensional figures are plotted as well, where the two axis represent the elastic modulus of concrete and the 
stress resulting from imposed deformation respectively, see Figure 170 and Figure 171.  

As shown in Figure 169 and Figure 171, before the elastic modulus of concrete in connections decrease to 40%, the 
impact of cracking is small. As shown in Appendix A19.2, the elastic modulus of concrete in Example 3 decreases to 
96.0% which is far from 40%. As a result, the impact of cracking on the stress resulting from imposed deformation 
in Example 3 is small. Similarly, the elastic modulus of concrete in Example 6 decreases to 99.0% which is far from 
40% as well. Therefore, the impact of cracking on the stress resulting from imposed deformation in Example 6 is 
also small. 
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As shown in Figure 167 and Figure 169, before the elastic modulus of concrete in connections decrease to 40%, the 
stress calculated by Mechanics 1 and Mechanics 2 are almost same. However, as shown in Figure 169, when the 
elastic modulus of concrete in connections decrease to 40% or less, the stress in widened deck KW03.01 calculated 
by Mechanics 2 drop to zero, while those calculated by Mechanics 1 are non-zero in old decks and new decks.  

It means, when the elastic modulus of concrete in connection is not extremely small, both Mechanics 1 and 
Mechanics 2 are usable. The difference between Mechanics 1 and Mechanics 2 is significant only when the elastic 
modulus of concrete in connection is extremely small. Also see Figure 170 and Figure 171. 

 

Figure 166:Material Properties and Imposed 

Deformation in the South Part (∆𝑡
28 𝑑𝑎𝑦𝑠). 

Figure 167:Stress Distribution in Example 3 Calculated by Mechanics 1 (M1) 
Corresponding to a Series of Elastic Modulus Applied to Connection. 

*The colour in the image represents the mean stress resulting from the imposed deformation applied to old deck, connection and old deck. This 
three-dimensional image shows the impact of decreased elastic modulus on the stress calculated by Mechanics 1.  

 

Figure 168:Material Properties and Imposed 

Deformation in the South Part (∆𝑡
28 𝑑𝑎𝑦𝑠). 

Figure 169:Stress Distribution in Example 3 Calculated by Mechanics 2 (M2) 
Corresponding to a Series of Elastic Modulus Applied to Connection. 

*The colour in the image represents the mean stress resulting from the imposed deformation applied to old deck, connection and old deck. This 
three-dimensional image shows the impact of decreased elastic modulus on the stress calculated by Mechanics 2.  
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Figure 170:Front-view of Figure 167. 

*The colour in the image represents the mean stress resulting from the imposed deformation in applied to old deck, connection and old deck. This 
figure shows the impact of decreased elastic modulus on the stress calculated by Mechanics 1.  

 

Figure 171:Front-View of Figure 169. 

*The colour in the image represents the mean stress resulting from the imposed deformation in applied to old deck, connection and old deck. This 
figure shows the impact of decreased elastic modulus on the stress calculated by Mechanics 2.  

The calculation carried out above is only about in-plane situation. However, as shown in Appendix A15.3, suppose 
out-of-plane loads are also taken into account, as shown in Appendix A2.5, the maximum tensile stress resulting 
from out-of-plane loads in cross-section at mid-span varies from 𝜎 9.9 MPa to 𝜎 15.6 MPa, which is always 
larger than the maximum compressive stress resulting from in-plane loads. As a result, suppose the tensile strength of 
concrete is neglected, new decks are always cracked no matter when connections are made.   

Out-of-plane loads result in out-of-plane cracking. According to Appendix A16, cracking decreases the stiffness of 
new deck. Same as the re-calculation in Appendix A19.2, the decreased stiffness is represented into a fictitious 
elastic modulus of concrete which is smaller than the original one. The original elastic modulus of concrete in new 
deck is 𝐸 𝑡 17.9 GPa. So, during the additional calculation, the fictitious elastic modulus of concrete in 
connection varies from 𝐸 𝑡 1 Pa to 𝐸 𝑡 17.9 GPa, see Figure 172.  
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Figure 172:Material Properties and Imposed 

Deformation in the South Part (∆𝑡
28 𝑑𝑎𝑦𝑠). 

Figure 173:Stress Distribution in Example 3 Calculated by Mechanics 2 (M2) 
Corresponding to a Series of Elastic Modulus Applied to New Decks. 

*The colour in the image represents the mean stress resulting from the imposed deformation applied to old deck, connection and old deck. This 
three-dimensional image shows the impact of decreased elastic modulus on the stress calculated by Mechanics 2.  

 

Figure 174:Front-view of Figure 173. 

*The colour in the image represents the mean stress resulting from the imposed deformation in applied to old deck, connection and old deck. This 
figure shows the impact of decreased elastic modulus on the stress calculated by Mechanics 2.  

As shown in Appendix A2.5, tensile stress in concrete resulting from load case 6.10 a are 𝜎 , . 24.8 MPa and 

𝜎 , . 14.2 MPa at 6X and 8X. For simplification, the maximum linear elastic deformation of concrete at Cross-

section 6X and Cross-section 8X are calculated respectively as follow: 

 maximum elastic deformation at Cross-section 6X 

𝜀 , .
14.2 MPa
17.9 GPa

7.93 10  

 maximum elastic deformation at Cross-section 8X 

𝜀 , .
24.8 MPa
17.9 GPa

1.39 10  
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Substitute the maximum linear elastic deformation 𝜀 , .  as imposed deformation into the expressions shown in 

Appendix A16 to calculate the minimum elastic modulus of concrete at Cross-section 6X and Cross-section 8X. The 
results of calculation are as follow: 

minimum elastic modulus at Cross-section 6X 

𝐸 , . 𝑡 1.7 GPa 

 minimum elastic modulus at Cross-section 8X 

𝐸 , , . 𝑡 2.9 GPa 

Suppose the compressive stress in cross-section has no impact on the magnitude of elastic modulus of concrete, the 
elastic modulus of concrete in the whole cross-section are as follow: 

 

Figure 175:Mean Elastic Modulus of Concrete under Out-of-plane Loads. 

mean elastic modulus at Cross-section 6X 

𝐸 , , . 𝑡 13.8 GPa 

 mean elastic modulus at Cross-section 8X 

𝐸 , , . 𝑡 14.2 GPa 

According to Figure 174, due to the decrement of elastic modulus of concrete, stress resulting from imposed 
deformation would decrease to 84%, where the absolute stress decrement is 0.7 MPa. Although the out-of-plane 
loads may decrease the stress resulting from imposed deformation, the decrement cannot help avoid cracking.    

A19.4 Conclusion 

In general, in terms of widened deck KW03.01, the impact of cracking and the advantage of Mechanics 2 is 
significant only when the elastic modulus of concrete in connections decrease to about 40% or less. However, the 
elastic modulus of concrete decreases to 96% and 99% in south and north respectively, which are much larger than 
40%. Therefore, the impact of cracking on the stress resulting from imposed deformation and the prestress 
consumption in proportion is small. 

In conclusion, both Mechanics 1 and Mechanics 2 without the impact of cracking is capable to calculate the stress 
resulting from imposed deformation in widened deck KW03.01. In terms of prestress consumption, the timing to 
make connection ∆𝑡  is more critical than the impact of cracking.  

Suppose out-of-plane loads are taken into account, it is expected that the stress resulting from imposed deformation 
would be decreased to 84%. However, such a decrement cannot help avoid cracking.  
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A20 Impact of Reduced Prestressing Force on Prestress Consumption 

A20.1 General 

As shown in Section 9.4, since the prestress loss in proportion is large due to imposed deformation and the 
prestressing itself is one of the sources of imposed deformation, an investigation is carried out to see whether it is 
possible to get similar remaining compressive stress in widened deck KW03.01 with reduced prestressing force.  

A20.2 Results 

The investigation is carried out to the widened deck KW03.01. During the investigation, a series of prestress are 
applied to new deck. The magnitude of the prestress varies from 2000 kN/cable to 4000 kN/cable. For simplicity, 
hereby only summarized the final stress and prestress consumption in proportion, where the impact of cracking is 
taken into account, see Figure 176 to Figure 179. 

 
Figure 176:Final Resulting Stress in South Corresponding to Different Prestressing Forces per Cable. 

 
Figure 177:Prestress Consumption in South Corresponding to Different Prestressing Forces per Cable. 
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Figure 178:Final Resulting Stress in North Corresponding to Different Prestressing Forces per Cable. 

 
Figure 179:Prestress Consumption in North Corresponding to Different Prestressing Forces per Cable. 

As shown in Figure 176 to Figure 179, the impact of reduced prestressing force on final resulting stress and prestress 
consumption is different in old deck, connection and new deck. Old decks are always in compression. The reduced 
prestressing force decreases the maximum prestress consumption in old decks. In contrast, connections are always in 
tension. The reduced prestressing force increases the tensile stress in connections. Due to the tensile stress, 
connections are cracked. One on hand, cracking decreases the stiffness of connections, which would decrease the 
stress resulting from imposed deformation. On the other hand, reduced prestressing forces increases the difference of 
imposed deformation in connections and new decks, which would increase the stress resulting from imposed 
deformation. According to Figure 176 to Figure 179, in terms of final resulting stress and prestress consumption, the 
difference of imposed deformation in connections and new decks is more critical to the resulting stress than the 
stiffness of connection. 

The situation of new decks is more complex than those of old decks and connections. In most cases, when 
prestressing force is not extremely small, new decks are in compression. Otherwise, parts of new decks are in 
tension. As shown in Figure 176 to Figure 179, reduced prestressing force increases prestress consumption. Suppose 
the prestressing force per cable applied to new deck is extremely, the maximum prestress consumption would exceed 
100%.  

In addition, as shown in Figure 176 to Figure 179, if the prestressing force applied to new decks is 4000 kN/cable or 
more, the magnitude of prestressing force will have no impact on the maximum prestress consumption in new decks. 
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A20.3 Conclusion 

Reduced prestressing force increases the prestress consumption, or in other words decreases the remaining 
compressive stress in concrete. Suppose prestressing force applied to new decks is extremely small, prestress 
consumption would exceed 100%. As a result, to decrease prestress consumption, a larger prestress should be 
applied.  

As shown in Appendix A20.2, if the prestressing force applied to new decks is 4000 kN/cable or more, the 
magnitude of prestressing force will have no impact on the maximum prestress consumption in new decks. As shown 
in Appendix A7.1, prestressing force applied to new decks is 3956 kN/cable. Therefore, neither increasing or 
decreasing the prestressing force in new decks would help reduce prestress consumption. 
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A21 Expressions for Elastic Modulus of Concrete 

A21.1 General 

According to Section 9.3.2, different expressions are used to evaluate the elastic modulus of concrete in the 
calculation carried out by SCIA and the simple approach. As for the calculation carried out by SCIA, Expression 124 
is used, while, as for the simple approach, the expressions introduced in Appendix A16 are used. 

According to Table 179, Expression 124 is mainly for the eccentrically reinforced rectangular section which is 
subjected to bending without normal force (Normalisatie, 1995). However, the stress in connection resulting from 
imposed deformation shows that the connections of widened deck KW03.01 are in tension, see Section 9.2. As a 
result, it is required to discuss whether it is proper to evaluate the elastic modulus of cracked concrete with 
Expression 124.  

 𝐸 3100 6700 ∙ 100 ∙ 𝜌 (124) 

 
Table 179:Fictitious Elastic Modulus 𝐸  

A21.2 Discussion 

The expressions shown in Table 179 are derived from a 𝑀 𝜅 relationship, see Figure 180, while the 𝑀 𝜅 
relationship is derived basing on a bi-linear concrete compressive stress – strain diagram was used. Therefore, as 
shown in Table 179, only two situations are taken into account. One is eccentrically reinforced rectangular section 
with bending and compressive normal force, while the other is eccentrically reinforced rectangular section with 
bending only. 

Since connections are not prestressed, suppose there are out-of-plane loads only taken into account, cross-sections of 
connections are mainly subjected to bending. In this case, it is suggested to use Expression 124. However, when 
there is in-plane loads only taken into account, the connections of widened deck KW03.01 are in tension, see Section 
9.2. As a result, neither the expressions with nor without normal force suit the in-plane situation.  

As a result, the expressions introduced in Appendix A16 are recommended to evaluate the elastic modulus of cracked 
concrete when there is in-plane load only. Suppose there are out-of-plane loads taken into account, it is 
recommended to first calculate the possible linear elastic deformation in whole cross-section with out-of-plane loads. 
Then use the expressions introduced in Appendix A16 to calculate the elastic modulus of concrete in whole cross-
section, and use the mean elastic modulus of concrete in whole cross-section to calculate the stress resulting from in-
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plane loads. Appendix A19.3 shows an example of evaluating mean elastic modulus of concrete in whole cross-
section.      

 
Figure 180:Determine of Bending Stiffness from 𝑀 𝜅 Diagram 

A21.3 Conclusion 

When in-plane loads are taken into account, instead of the expressions shown in Table 179, the expressions 
introduced in Appendix A16 are recommended to evaluate the elastic modulus of cracked concrete. 




