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1 Introduction

One of the key aspects classifying the various approaches in numerical simulation of cavitating flows is
the equilibrium flow assumption. It states that internal processes in the flow always occur instantaneously
compared to the time scale of the flow (s. Sezal (2009)). As a consequence, the density-pressure trajectory
in a barotropic flow may follow a unique curve. Contrary to the equilibrium flow assumption, one may
assume that the time to achieve a new state is governed by the magnitude of a finite mass transfer source
term in a volume fraction transport equation (s. Asnaghi et al. (2015)). In this case, the set of possible
density-pressure states is not predefined, but strongly depends on the rate at which pressure changes.
Although it has been pointed out by Koukouvinis and Gavaises (2015) that the equilibrium assumption
for a barotropic flow would theoretically be mimicked by the mass transfer model if the finite transfer
rate tended to infinity, the model parameters triggering the finite transfer rate are generally considered as
empirical (s. Frikha et al. (2008)).
In this paper, effects of the finite mass transfer rate with special focus on condensation will be studied
in detail. First, a cavity collapse will be considered to demonstrate how the finite transfer source term
must be modified to satisfy the equilibrium flow assumption. Second, a single bubble collapse is studied
numerically and effects of the finite mass transfer rate will be discussed.

2 Finite Mass Transfer Approach and Equilibrium Flow Assumption

Following Asnaghi et al. (2015), the finite mass transfer rate is expressed as a source term in the transport
equation for the liquid volume fraction γ, where u is the velocity of the mixture flow, ρl the liquid density
and C a constant to adjust the magnitude of the source term:

∂γ

∂t
+ ∇ · (γu) =

Cψ (p, γ)
ρl

(1)

The density is perceived as a mixture quantity, varying according to the volume fraction γ, such that
ρ = γρl + (1 − γ) ρv, where ρv denotes the vapour density. Substituting first the mixture density and then
the volume fraction transport equation (1) into the mass conservation equation

∂ρ

∂t
+ ∇ · (ρu) = 0, (2)

and further taking into account that the individual phase densities are considered as constant values,
yields a local velocity divergence (s. Asnaghi et al. (2015))

∇ · u = S fin = kCψ (p, γ) , where k =
1
ρl
−

1
ρv
. (3)

To modify the finite source term S fin in a way that it satisfies the equilibrium flow assumption, the col-
lapse of a spherical cavity is considered and C is now associated with a condensation constant Cc. The
reason why condensation is addressed in particular, is the underlying assumption that the motion of a
condensation front is driven by pressure gradients, similar to the motion of a bubble interface obtained
from the Rayleigh-Plesset equation (s. Franc and Michel (2004)). The local condensation time in an in-
finitesimal small control volume dVC as illustrated in Fig. 1 must then be in line with the accelerating
condensation front to achieve an equilibrium state at any instance in time. Applying the Gauss-theorem
to the control volume dVC yields

dVC∇ · u = uedAe − uwdAw, (4)



Fig. 1: Condensing control volume

where ue and uw denote the in- and outflow velocity of the control volume, presuming that the normal
vector of the condensation front is perpendicular to the corresponding in- and outflow surface given by
Ae and Aw. As the condensation front passes the control volume with a speed Ṙ (t), its density increases
at a rate governed by Ṙ (t). This is reflected by the boundary conditions ue = −Ṙ (t) and uw = 0, which
gives

dVC∇ · u = −Ṙ (t) dAe ⇒ ∇ · u = −
Ṙ (t)
dx

. (5)

To achieve an equilibrium state, the control volume must be fully condensed within the time T that it
takes for the interface to pass the control volume length dx. Thus, the control volume is fully occupied
by vapour at time instance t = 0, fully condensed at time instance t = T and the relation between length
dx and local condensation time T associated with the control volume is given by∫ T

0
Ṙ (t) dt = dx. (6)

From Eq. (6) it follows that the source term must be time dependent to satisfy the equilibrium assump-
tion. Substituting the velocity divergence by a time dependent source S (t) yields S (t) = −Ṙ (t) /dx.
Integration and substitution of Eq. (6) gives∫ T

0
S (t) dt =

1
dx

∫ T

0
Ṙ (t) dt = −1. (7)

Eq. (7) imposes a restriction on the time integral of the source term S (t) over the local condensation time
T . The time integral is now replaced by an integral over pressure by multiplying the finite source term
S fin = kCcψ (p, γ) with the pressure time derivative ∂p/∂t, such that∫ T

0
S (t) dt = kCc

∫ T

0
ψ (p, γ)

(
∂p
∂t

)
dt = kCc

∫ p(T )

p(0)
ψ (p, γ) dp = −1. (8)

The thermodynamic states corresponding to time instances t = 0 and t = T are given by vapour pres-
sure p (0) = pv and condensation pressure p (T ) = pc, respectively. Further presuming that the interim
states are given by a barotropic equation of state ρ (p), the term ψ (p, γ) can be associated with a local
compressibility law for ∂ρ/∂p and we get∫ p(T )

p(0)
ψ (p, γ) dp =

∫ pc

pv

(
∂ρ

∂p

)
dp =

∫ ρ(pc)

ρ(pv)
dρ = ρl − ρv. (9)

Substituting Eq. (9) into Eq. (8), then solving Eq. (8) for Cc and substituting back into the time dependent
source term S (t) = kCcψ (p, γ) ∂p/∂t yields

∇ · u = S (t) = −
ψ (p, γ)
ρl − ρv

∂p
∂t
. (10)

Eq. (10) represents the modified source term that satisfies the equilibrium flow assumption. It should be
noted that ψ (p, γ) may still scale with another constant such that Eq. (9) is satisfied.
To study the effect of finite mass transfer on condensation and evaporation, the ρ-p trajectory at an



isolated point in space will be determined. To further isolate the effect of mass transfer, it is supposed
that the density gradient is zero. Thus, the temporal density change at that point is only a result of velocity
divergence or mass transfer, respectively. In this case, the mass conservation Eq. (2) simplifies to

∇ · u = −
1
ρ

∂ρ

∂t
. (11)

Following the considerations above, the equilibrium flow approach basically distinguishes from the finite
mass transfer approach by the factor ∂p/∂t (s. Eq. (12)). To simplify the comparison, both the finite and
the equilibrium source term is multiplied with the same condensation/evaporation constant Cc,v = 1. This
means for the equilibrium approach that the pressure pc, at which full condensation is achieved, is not
predefined as in Eq. (9) but a result of the magnitude of Cc.

−
1
ρ

∂ρ

∂t
=

{
kCc,vψ (p, γ) finite mass transfer
kCc,vψ (p, γ) ∂p

∂t equilibrium flow
(12)

In Eq. (12), constant Cc,v is considered as dimensionless in both cases and the dimension of ψ (p, γ) is
adjusted accordingly. Eq. (12) is solved for ρ numerically by employing a backward Euler step ∂ρ/∂t =(
ρt − ρt−1

)
/∆t. Employing the cavitation model by Merkle et al. (1998), the finite mass transfer rate is

written as a superposition of a condensation and an evaporation term as follows:

Cc,vψ (p, γ) =
1
ρ

[
(1 − γ) Ccmax (p − pv, 0) + γCvmin (p − pv, 0)

]
(13)

The volume fraction γ is updated explicitly such that γt−1 =
(
ρt−1 − ρv

)
/ (ρl − ρv). The pressure growth

rate dp/dt = ṗ is assumed as constant, such that pt = pt−1 + ṗ∆t. Convergence with respect to the time
step size was ensured by systematic variation of ∆t, where ∆t = 10−4 s was found to be sufficiently small.
For both condensation and evaporation, the starting pressure is pv = 2340 Pa. The corresponding starting
densities are ρv = 0.02 kgm−3 and ρl = 1000 kgm−3, respectively.
Fig. 2 left illustrates the impact of the pressure growth rate ṗ, which tends to stretch out the conden-
sation/evaporation curves for increasing values in case of finite mass transfer. This is explained by the
circumstance that the density growth/decay tends to lack behind when the pressure growth rate is in-
creased for the same finite mass transfer rate. For the equilibrium flow approach, however, all the state
curves merge to one single curve associated with a pressure growth/decay rate of 1.0 Pas−1 in the finite
mass transfer case.

Fig. 2: ρ-p trajectories for the finite mass transfer approach (left) and the equilibrium flow assumption
(right)

3 Single Bubble Collapse - Effect of Finite Mass Transfer Rate on Flow Dynamics

To further investigate the impact of the finite mass transfer rate on the flow dynamics, the collapse of a
single bubble is studied numerically, using the OpenFOAM solver interPhaseChangeFOAM. The Merkle
model as represented by Eq. (13) is employed and only the Euler equations are solved. Again, liquid and
vapour density are assumed to be ρl = 1000 kgm−3 and ρv = 0.02 kgm−3. The initial bubble radius is



R0 = 0.4 mm and the bubble and its vicinity is embedded in a uniform polar grid with a resolution of
50 cells per mm in radial direction and 50 cells per π/2 rad in circumferential direction. Only one cell
layer of one eight of the domain is simulated, applying corresponding symmetry and wedge boundary
conditions as indicated in Fig. 3. The far field boundary is located at 0.5 m from the bubble centre,
where the fixed value condition p∞ = 105 Pa and zero gradient conditions for liquid volume fraction
and velocity are applied. The initial liquid volume fraction is set to 0 inside the bubble and 1 outside the
bubble. The initial pressure field satisfies the Laplace equation, which gives (s. Franc and Michel (2004))

p (r)
ρ

+
1
2

R4Ṙ2

r4 −
1
r

(
2RṘ2 + R2R̈

)
=

p∞
ρ
. (14)

In Eq. (14), r is the radial coordinate and R denotes the location of the bubble interface. Applying the
initial conditions Ṙ (t = 0) = 0 and p (r = R0) = pv yields R̈ = (pv − p∞) / (ρR0). Further assuming
vapour pressure pv inside the bubble yields the initial pressure field:

p (r) =

{
pv if r ≤ R0

p∞ +
R0
r (pv − p∞) if r > R0

(15)

As a reference, the characteristic Rayleigh collapse time τ is obtained from numerical integration of
the analytical solution for the bubble interface velocity derived from the Rayleigh-Plesset equation (s.
Franc and Michel (2004))

dR
dt

= −

√√
2
3

p∞ − pv

ρ

R3
0

R3 − 1

, (16)

which gives τ = 3.6933·10−5 s. The integration was initialised with a bubble radius of R0 = 0.399999 mm
and forwarded with Rt = Rt−1 + Ṙ∆t, where ∆t = 10−10 s. The dimensionless radial pressure distribution
is then given by (s. Franc and Michel (2004))

Π (r, t) =
p (r, t) − p∞

p∞ − pv
=

R
3r

R3
0

R3 − 4

 − R4

3r4

R3
0

R3 − 1

 . (17)

The evolution of the bubble radius over time (s. Fig. 4), the pressure wave moving towards the bubble

Fig. 3: Initial pressure field

centre with the bubble interface (s. Fig. 5) and the ρ-p trajectory (s. Fig. 6) at three different observation
points indicated in Fig. 3 are of particular interest. The study is carried out for three different condensa-
tion rates Cc = 10; 100; 1000 with a time step size of ∆t = 5 · 10−8 s. During the collapse, the initially
sharp bubble interface is subjected to diffusion. The bubble radius is therefore estimated by computing
the equivalent radius of a bubble that contains the same amount of vapour but which is fully occupied by
vapour.
Concerning the evolution of the bubble radius in Fig. 4, a good agreement is achieved with the evolution
predicted by the quasi analytical Rayleigh-Plesset equation (analytical RP). The slight overestimation is
least pronounced for the medium condensation rate Cc = 100. For the smallest rate Cc = 10, however,



Fig. 4: Bubble radius evolution Fig. 5: Radial p-distribution Fig. 6: ρ-p trajectories

the bubble radius evolution undergoes a sudden deceleration close to the final collapse stage. Concern-
ing the radial pressure distribution, which is evaluated at two different time instances close to the final
collapse stage, it is striking that the bubble interior pressure slightly increases above vapour pressure for
the medium condensation rate Cc = 100, and significantly increases for the smallest condensation rate
Cc = 10. Only the largest condensation rate Cc = 1000 preserves vapour pressure at the considered time
instances. The steepness of the ρ-p trajectories increases with increasing condensation rate and decreases
as the bubble centre is approached, where pressure changes more rapidly. This confirms the observations
from Section 2. In addition, the following effects of finite mass transfer rate on the flow dynamics are
identified.
Effects of finite mass transfer rate on the flow dynamics: It is recalled from Section 2 that the mass
transfer rate should ideally be just large enough to prevent mass flux through the interface at any time
instance. This can only be achieved by satisfying the equilibrium flow assumption, which requires a time
dependent source term. Due to the neglect of time dependencies in the mass transfer term, the transfer
rate is either too small or too large compared to the ideal situation and can only be correct at one instance
in time. Based on that, two different mechanisms driving the flow towards the centre are identified. The
major contribution results from the global pressure gradients, causing an inertia driven flow, which is
observed in the analytical Rayleigh-Plesset model (s. Franc and Michel (2004)) in a similar way. In addi-
tion to that, the velocity divergence at the condensing interface is a secondary local driver. With the finite
condensation rate being too small on the one hand, the inertia driven flow passes the condensing interface
(uw > 0 in Fig. 1). The flow then focuses to the centre quicker than the condensation front. Due to the
symmetry of the flow, a stagnation point forms at the centre, explaining the pressure increase inside the
bubble. With the condensation rate being too large on the other hand, the condensation time T associated
with a local control volume tends to be smaller than the time that it takes for the inertia driven flow to
pass the length dx of the control volume. However, the condensation front can not arbitrarily move ahead
of the inertia driven flow, because the condensation rate also depends on the local pressure rise which
goes along with the inertia driven flow. These two situations are further illustrated by Fig. 7 to 10.
A secondary velocity peak at the interface due to the strong velocity divergence is clearly observed in

Fig. 7: Velocity magnitude for Cc = 100 at time
instance t/τ = 0.8123

Fig. 8: Volume fraction for Cc = 100 at time in-
stance t/τ = 0.8123



Fig. 9: Velocity magnitude for Cc = 1000 at time
instance t/τ = 0.8123

Fig. 10: Volume fraction for Cc = 1000 at time
instance t/τ = 0.8123

Fig. 9, which depicts the instantaneous velocity distribution at t/τ = 0.8123 for Cc = 1000. Taking the
instantaneous volume fraction in Fig. 10 into account, it appears that some mass flux has already passed
the condensation front. However, this effect is much more pronounced in Fig. 7, which depicts the in-
stantaneous velocity field for Cc = 100. The secondary velocity peak is not observed in this case and the
interface itself appears to be more diffusive compared to the larger condensation rate. The misalignment
of the two flow drivers when violating the equilibrium is likely one of the reasons for different predictions
of the radial pressure distributions depending on the condensation rate (s. Fig. 5).

4 Conclusion

It has been demonstrated that the mass transfer approach satisfies the equilibrium flow assumption during
a cavity collapse if the pressure time derivative ∂p/∂t is included in the source term of the volume fraction
transport equation (s. Eq. (10)). Two different mechanisms driving the flow during the collapse have been
identified. The first driver results from pressure gradients, causing an inertia driven flow and focusing it
towards the cavity centre. The second driver results from the local velocity divergence at locations where
the condensation source term is active, causing a local mass flux into the condensation front. The coupling
of the condensation source term with the pressure time derivative establishes a dynamic equilibrium of
the two drivers, such that the acceleration of the condensation front is in line with the inertia driven flow.
The neglect of the pressure time derivative in the condensation source term results in a decoupling of
the two mechanisms mentioned above. An equilibrium flow can still be simulated by applying very large
finite mass transfer rates (s. Koukouvinis and Gavaises (2015)), thereby preventing mass flux through
the condensation interface. However, the formation of a secondary velocity peak associated with the
tendency of the condensation front to move ahead of the inertia driven flow, is likely to affect the pressure
dynamics.
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