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Electroencephalography (EEG) source localization has been applied in the development of brain-
computer interfaces to control hand prostheses. When performing fine movements, our brain
uses sensory feedback regarding position, velocity, and force to improve performance. Under-
standing the cortical mechanisms underlying individual finger movements can lead to a higher
number of degrees of freedom (DoF) when developing BCI-controlled hand prostheses. Our goal
was to test the efficacy of separating the activity of two individual fingers during a pinch-and-hold
motor task using EEG source localization.
EEG data from three healthy participants performing the motor task using different fingers
were collected and analyzed using two parametric and two non-parametric source localization
methods. A statistical analysis was performed on the source space to test whether it is possible
to distinguish between the two fingers.
We were able to measure the cortical response to the perturbations on the channel level during
the hold phase of the motor task. However, source power in the primary motor (M1) and
somatosensory (S1) cortices was low for all conditions. The most active sources were found
in the frontal cortex over Brodmann area 8. A cluster-based permutation test performed on
the source space results did not reveal differences between the two fingers on the cortical area.
Statistically significant (p < 0.05) source differences are reported in one case, however, the
locations of the sources indicate this effect is irrelevant to the motor task. Our findings indicate
that there are no measurable source-level differences regarding the motor activity of individual
fingers during the hold phase of the motor task, independently of the source localization method
used.
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I. Introduction

Electroencephalography (EEG) is used to measure
the electrical activity of the brain using electrodes
placed on the scalp. The electrodes measure the volt-
age potential at various locations on the scalp. These
measurements are in the order of microvolts (µV).
EEG is non-invasive, portable, and demonstrates high
temporal resolution in the order of milliseconds [1].

EEG can be used to measure and identify the activa-
tion patterns of neural patches. The current produced
by a single neuron is not powerful enough to be de-
tected, however, the currents produced from multiple
neurons firing are superimposed and whenever neu-
rons fire in a synchronous manner, their activity is
measured using EEG [2]. Neural activity can be ap-
proximated by current dipoles [3]. The current of the
dipoles produces potential differences as it propagates
across tissues. These potential changes are measured
from the scalp using EEG and can be spatially and
temporally localized inside the brain or on its cortical
surface [3–5]. The localization process is also termed
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as the EEG inverse problem in the literature.

The EEG inverse problem is ill-posed; the number
of dipole sources is larger than the number of EEG
electrodes, thus the solution is non-unique, and the so-
lution is susceptible to noise and small changes in the
data, thus is unstable [6]. To obtain a unique solution,
prior information regarding the source characteristics
or physiological assumptions need to be made to con-
straint the solution space. Using the recorded EEG
and a forward model of the head, one can work back-
ward and solve the inverse problem by estimating the
location, orientation, and strength of the current dipole
sources which explain the measurements. Localizing
the dipole sources gives an estimate of the changes
in neural activity of the brain across time. The ac-
curacy of the results is dependent on several factors,
such as the noise level and the modeling errors of the
head [7–9], and the errors in the source model [6]. In
the literature, this process is called source localization.

Two main approaches to solving the inverse problem
are presented in the literature: parametric and non-
parametric methods. Parametric methods typically
assume a small number of active sources, which can
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be represented as current dipoles of unknown strength,
orientation, and location inside the brain. In contrast,
non-parametric methods assume a large number of
dipoles distributed across the brain volume. Their
locations are fixed and therefore their strengths and
possibly their orientations are to be estimated.

EEG-based BCIs are communication systems that
measure brain activity using EEG and use the signals
from the electrodes to interface with a computer or
another external device [10]. Patients who suffer from
impaired movement can use BCIs to control external
devices using their neural activity. This is especially
important to amputees and those who suffer from se-
vere paralysis [11]. Using a BCI to control an external
prosthesis, patients with impaired motor functions
have successfully regained some degree of movement
through motor prostheses [12–14]. As an example, a
recent study reported that a tetraplegic patient was
able to walk again through the use of a BCI-controlled
exoskeleton [15].

In the literature, source localization techniques have
been used to distinguish between left and right-hand
movements [16, 17]. EEG source localization tech-
niques have also been used to separate between both
real and imaginary movements of the index finger of
the left and right hand [12]. These techniques provide
some degree of control to the patients and restore parts
of their functionality, however only a limited range of
movements and attempted movements is effectively de-
coded, severely limiting the degrees of freedom (DoF)
of the end prosthesis. It is possible to improve the qual-
ity of motor prostheses by increasing the controlled
degrees of freedom using source localization methods
of high spatial accuracy, allowing for the detection of
active current sources of proximity. This approach
holds promise since motor functions are organized
somatotopically in the motor cortex [18].

Source localization methods have been used in the
literature to develop brain-computer interfaces (BCI).
Decoding and replicating highly dexterous motor con-
trol in a hand prosthesis, such as individual finger
movements, is a challenging task that would improve
the quality and performance of the prosthesis. The
area of the brain related to the movement of the hand
and the fingers has a large representation in the pri-
mary motor cortex (M1). Furthermore, individual fin-
gers are controlled by different areas in the M1, which
are spatially separated and clearly distinguishable us-
ing fMRI [19]. EEG source localization methods with
high spatial accuracy are useful in spatially separating
the sources responsible for the individual movement
of the fingers from the cortical area of the hand in the
M1. Being able to distinguish between the movement
of the index and the ring fingers increases the available
DoF in a hand prosthesis.

In the literature, a few researchers have used source
localization to investigate brain activity during finger
movements. Some attention has been focused on lo-
calizing the motor or event-related potentials (ERP)

arising from cued commands [20]. This approach is
used both for time and frequency analyses. The anal-
ysis of motor EEG data in the frequency domain has
proven there is a robust effect in both the beta and
the gamma bands related to motor planning and exe-
cution [21]. Power in the beta band has been shown
to decrease 500 ms before movement onset, an effect
that lasts until the movement is executed. A subse-
quent power increase is also reported 300 to 1000 ms
after movement onset. In the literature, these events
are termed as event-related desynchronizations (ERD)
and synchronizations (ERS) respectively [22].

While the peri-motor time window has been thor-
oughly studied, the connection between the activity of
the brain and the application of a constant force over
time, such as individual finger flexion during pinch and
hold tasks, has yet to be investigated. It is interesting
to investigate the cortical behavior during constant
force production, as any findings can lead to more
advanced hand prostheses, which can simulate the bi-
ological behavior of the human hand and individual
fingers during pinch and hold tasks.

In this study, we investigated the feasibility of ap-
plying EEG source localization methods to accurately
distinguish movements of the index and the ring fin-
gers of the right hand in healthy participants. A motor
experiment was designed and EEG data were recorded
from healthy participants while they performed a pinch
and hold task using two individual fingers of the right
hand. Both cases were tested with and without pertur-
bations. The perturbations were included to increase
the cortical contribution of the M1 and investigate
the effect of the perturbation on the sensorimotor re-
sponse. The active sources in the brain were localized
using four different source localization methods, two
parametric and two non-parametric; we selected the
methods based on their accuracy, as reviewed in the
literature survey. A statistical test was performed
on the source-space results of each method to test
whether it is possible to distinguish between the use
of the index finger and the ring finger for both the
perturbed and the unperturbed conditions.

II. Materials and Methods

Subjects

Seven healthy right-handed subjects (aged between
22 and 29 years; all males) participated in the exper-
iment. Participants were M.Sc. students recruited
from the Biomedical Engineering faculty of the Delft
University of Technology. All participants provided
written consent after they were informed about the
experimental procedure and were allowed to ask ques-
tions. The study protocol was approved by the ethics
committee of the university.
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Experimental protocol

During the experimental sessions, participants were
seated comfortably in a padded chair 150cm away from
a computer screen. Their right forearm was placed on
top of an arm support and movement of the wrist joint
was prevented using a wrist brace. This position pre-
vented the excessive movement of the forearm and the
wrist during trials, while allowing the free movement
of the index and ring fingers. The movement of the
thumb was constrained by the stationary indentation
of the haptic interface, whereas the controlling finger
was placed in the opposite, movable indentation. The
device offers adjustable stiffness, mass, and damping
and was designed at the TU Delft by Cristiansson [23].
The position of the controlling finger and the applied
forces are measured by a Linear Position Transducer
(Schaevitz 2000 LCIT) and a Tension/Compression
Load Cell (FUTEK L2357+JM-2A) respectively. The
complete setup is shown in Figure 1.

Participants were instructed to perform a series
of force tasks using their index and ring fingers in
succession. They were first trained to apply a force
by flexing the controlling finger to match the target
force level shown on the screen. During the trials,
participants were asked to apply a pinching force by
flexing the controlling finger (either index or ring), thus
moving the sliding lever of the robot. Visual feedback
was projected on the screen. The target force was set
to 12 N, a value well within the physiological limits
for young males [24]. A horizontal line on the screen
indicated the target force that the participants had
to reach. The force applied by the participants was
measured by the force sensor and plotted in real-time
against the reference.

In total, participants completed 5 conditions; a rest-
ing state measurement and 4 different force tasks (2
using the index finger and 2 using the ring finger).
Participants performed each condition once, where
each force condition consisted of 50 trials and the rest-
ing condition was measured continuously for 1 minute.
The total number of performed force trials was 200.
Participants completed the resting measurement first,
followed by the force conditions presented in random
order. No two participants performed the same order
of conditions during their experiments. All conditions
were preceded by a short 10-trial training session to fa-
miliarize participants with the condition. Participants
were given a short 1-minute break after 25 consecutive
trials per condition. Upon completing all 50 trials for
each condition, participants were allowed to have a
5-minute break to prevent fatigue.

Force tasks were performed with and without posi-
tion perturbations. During a force task, participants
are required to maintain a constant force output ir-
respective of the position of the joint. Position per-
turbations force participants to control in such a way
that minimizes the effect of the position change in the
applied force [25]. Force feedback is useful and thus,
the activity of the somatosensory cortex is expected

(a) Complete setup

(b) Hand position in detail

Figure 1: During the experiment, participants were
fitted with the 128-channel EEG cap and seated com-
fortably in a chair. Their right arm was resting on the
arm of the chair. The reference signal and the applied
force, as measured by the haptic interface, were plotted
in real-time on the computer screen in front of them.
The placement of the fingers and the wrist is presented
in more detail in the bottom image. The thumb was
placed on the immovable indentation and the control-
ling finger (the index in this case) was placed in a
similar indentation on the movable arm of the robot.
An emergency button which stops the experiment was
placed within reach of the left arm of the subject.

to increase. The designed position perturbations were
random-phase multisine signals (i.e. the sum of multi-
ple sinusoids of random phase and a certain frequency).
Multisine perturbations are preferable over random
signals, since the excited frequencies are controlled
precisely, which offers numerous advantages in system
identification [25].

The position perturbations were multisine signals
with a peak-to-peak amplitude of 2 cm around the
resting position x0, with a period T of 1 second and a
fundamental frequency f0 of 1 Hz. Both odd and even
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Figure 2: The perturbation signal used during the
experimental procedure. The signal is made up of 15
random-phase sinusoidal components, each having a
different frequency across the whole integer range of 1
to 15 Hz. This signal is periodic with T = 1 seconds.
For the perturbed trials, the position perturbation con-
sists of 6 periods of the base multisine signal, which
adds up to 6 seconds in total.

harmonics of the fundamental frequency were excited
in the range [1, 15] Hz. The signal was designed to
have the same power in each frequency bin. A single
realization of the multisine signal was generated; the
complete perturbation signal had a length of 6 seconds,
leading to 6 periods per trial and a total of 300 periods
per condition. The signal is presented in Figure 2
both in time and in frequency domain.

Participants were fitted with an EEG cap with 128
electrodes (Waveguard 128). The cap is following the
10-5 system [26]. The layout of the cap is shown in
Figure 3. Cortical activity was recorded at 2 kHz
from 126 electrodes using an EEG amplifier (Refa by
TMSi, Oldenzaal, The Netherlands). The position of
the controlling finger, the applied force, and the initi-
ation trigger were also recorded through the amplifier
via a galvanic isolator transformer (TMSi, Oldenzaal,
The Netherlands). The signals were recorded using
the ASALab software.

EEG Preprocessing

EEG data were preprocessed using the FieldTrip
toolbox, developed by the Donders Center for Cogni-
tive Neuroimaging [27]. The preprocessing pipeline is
an adaptation of Makoto’s preprocessing pipeline for
EEGlab [28].

Three complete datasets were used in the study.
The rest were discarded post-experimentation due to
hardware failures and data corruption. In one case,
more than 50% of the total trials had to be discarded as
the participant moved before the experiment started.
In two other cases, a faulty lead in the EEG cap
caused only noise and artifacts to be recorded for some
conditions. In another case, the recorded data for one
condition were incomplete and could not be recovered.
In the end, we decided to omit the incomplete datasets
to avoid inconsistencies in the analysis.

EEG was recorded continuously during each task.

Figure 3: The layout topology of the EEG cap used
during the experiments. The channels are projected
from 3D to 2D. Due to the projection, some of the
electrodes appear to be placed outside the head circle.
The outer circular boundary corresponds to the covered
area of the electrodes. The closer an electrode is to
the edge of the outer circle, the lower its placement on
the 3D head. We used the WaveGuard EEG cap by
AntNeuro which features 128 channels. Two channels
are marked: the F1 and the C3. These two channels
were chosen for further analysis and are highlighted
for future reference.

The continuous-time EEG data were band-pass fil-
tered using a finite impulse response (FIR) Hamming-
windowed sinc filter. We filtered the data using a
forward band-pass filter with an order of 3380 and de-
lay compensation to achieve zero-phase. The passband
of the filter was selected as [1, 100] Hz, which removes
the baseline drift caused by frequencies f < 1 Hz while
retaining the neural activity within both the β– and
the γ– bands. The continuous EEG was subsequently
downsampled to 256 Hz. Next, the continuous EEG
was cut into individual trials using the time informa-
tion of the recorded trigger signals at the start and
the end of each trial (epoching).

Individual trials were removed post-epoching, in
cases when the participants moved too soon or too
late, using the finger position signal recorded from the
robotic manipulator. The conditions were grouped
based on whether a perturbation was applied or not.
The data of each finger were processed together per
subject to simplify the following steps of trial and
channel rejection and improve the performance and
accuracy of the Independent Component Analysis
(ICA) [29]. Transient responses were cut out dur-
ing the analysis. The first and last 1-second intervals
from each trial were discarded; for the multisine con-
ditions, this is equivalent to discarding the response
to the first and the last periods of the perturbation
signal, resulting in a total of 200 1-second periods per
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Figure 4: The three-layer boundary element method (BEM) realistic head model used in the current study.
The three layers and their conductivity values are listed from the innermost to outermost: σbrain = 0.33 S/m,
σskull = 0.0041 S/m, σscalp = 0.33 S/m. The black dots on the top of the scalp denote the position of the
channels of the Waveguard 128 EEG cap. Inside the brain (highlighted green layer) the source model is plotted as
a grid of points, denoting the positions of the dipole sources in 3D space. The grid resolution is 5mm.

condition per participant.
The data were visually inspected for EMG artifacts.

Noisy trials and corrupted channels were discarded
from the dataset. Channels contaminated by noise and
glitches were identified both visually and using the
approach of Farahani et al. [30] and discarded. Next,
the data were re-referenced to the common average
of the remaining channels. ICA was performed on
the dataset to separate and identify noisy components
using the RUNICA implementation provided in Field-
Trip; RUNICA is based on the implementation of the
algorithm in EEGlab which is a modified implementa-
tion of the Infomax ICA decomposition algorithm [28].
The Infomax algorithm is better suited for finding cor-
tical EEG sources than fastICA and thus was chosen
to remove blink artifacts from the datasets [31]. The
independent components were analyzed in both the
time and frequency domains. Components related to
the EOG activity were rejected and the remaining
components are projected back to the EEG measure-
ment space for each channel. Robust de-meaning was
performed on the artifact-free data [32]. To study
the steady-state cortical response, the time window
of interest per trial was selected as the time window
tw = [1, 5] seconds. The cleaned data structures con-
sist of EEG voltages recorded for 4 conditions from
E ≤ 126 electrodes during M ≤ 50 trials per condi-
tion.

Forward Model

For the current study, a template three-layer bound-
ary element method (BEM) realistic head model was
used [33] and the results of the source localization were
interpolated on a template MRI [34]. The conductiv-
ity values selected for the homogeneous tissues in the
model were 0.33 S/m for the scalp (σscalp) and brain
(σbrain) tissues and 0.0041 S/m for the skull (σskull)
tissue. The effects of the choice of tissue conductivity

values have been researched and well documented in
the literature [9, 35, 36]. The conductivity ratio be-
tween the scalp and skull has been shown to affect the
localization error more than the individual values of
σscalp and σskull. In our head model, the chosen values
produce a conductivity ratio σscalp/σskull of 80. The
sources were scattered across the whole brain volume
on a grid with a resolution of 5 mm. The positions of
the Waveguard electrodes were aligned on the surface
of the skin in 3D using a template layout provided by
the FieldTrip toolbox. We applied the 3D iterative
closest point (ICP) [37, 38] algorithm on a subset of
electrodes along the nasion-inion line and along the C*
electrodes to register the two point-clouds in 3D space.
After correcting the rotation, translation, and scaling
of the electrodes, they were projected on the surface
of the skin. The complete head model is presented in
Figure 4.

Analysis Pipeline

1. Channel-Level

Prior to source localization, the data were analyzed
on the channel level in both time and frequency do-
mains. For the conditions with the periodic perturba-
tion, the recorded EEG signals were analyzed across
P = 4 periods and M repetitions, per the relevant
literature [39]. Due to the periodic nature of the per-
turbation, we can assume the response is also periodic
with T = 1 second. Any other activity is considered
noise. For the conditions without perturbations, the
signals were only analyzed across repetitions.

1.1 SNR calculation An estimate of the cortical
activity as a response to the perturbation was calcu-
lated by computing the signal-to-noise ratio (SNR)
for each channel. The SNR was computed for the
two conditions for which the perturbation was applied.
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This process is described in a relevant study where
the wrist joint is perturbed in a similar way [39]. The
formulas which will be presented below are adapted
from the relevant literature.

In line with the applied periodic perturbation, the
steady-state response was cut into P = 4 segments of
T = 1 second duration. The signals were transformed
into the frequency domain using the Fourier trans-
form. This resulted in X [e,m,p](f), where e denotes
the electrode, m denotes the trial number, and p de-
notes the period; X [m,p](f) is a matrix which contains
the Fourier transform of the sampled voltages of all E
electrodes for trial number m and period p.

To estimate the power of the signal of each channel,
we average the signal of each electrode over periods
within each trial in the frequency domain. This reduces
the effect of the noise due to the non-periodic parts of
the response. The power of the signal is calculated and
averaged across trials and summed over all frequencies.

ÊX,total(e) =
∑F

f=1
1
M

∑M
m=1

∣∣∣ 1P ∑P
p=1X

[e,m,p](f)
∣∣∣2 (1)

To estimate the level of noise, a similar approach
was used. Firstly, the variance of the signals in the
frequency domain over P = 4 periods in each trial
is calculated. Next, the variance is averaged across
all M trials. Finally, the result is summed across all
frequencies.

σ̂2
X(e) =

∑F
f=1

1
M

∑M
m=1

1
P−1

∑P
p=1

∣∣∣X [e,m,p](f) − 1
P

∑P
p=1X

[e,m,p](f)
∣∣∣2

(2)
Having calculated the signal power estimate and the

noise level estimate across all channels, the two are
divided to get the SNR per channel.

SNR(e) =
ÊX,total(e)

σ̂2
X(e)

(3)

1.2 Time-Frequency analysis The power of the
recorded signals per frequency was calculated across
time by performing a time-frequency analysis for all
conditions using the Morlet wavelet method [27]. The
analysis was performed across individual trials and the
results were averaged by condition for each participant.
The width of the Gaussian used when constructing
the wavelet to estimate the phase and amplitude of
the signal was 7 cycles. The range of the center fre-
quencies of the wavelet includes all integer frequencies
in the range of 1 to 100 Hz. The time window was
shifted in 25 ms increments across time points ranging
from 5 seconds prior to movement onset until 1-second
post-trial completion. The results were visually in-
spected for movement-related power changes in three
individual bands; the alpha (8-12 Hz) [40], beta (14-30
Hz) and gamma (30-100 Hz) bands [21].

2. Source-Space

The results from the source localization methods
are sensitive to the selection of the parameters, the

accuracy of the forward model, and the level of noise
present in the data [6]. The number of localized
sources and their power depends largely on the
lead field matrix and the selection of the source
localization method to be used. To mitigate these
effects, we applied four different source localization
methods on the cleaned EEG data: two parametric
and two non-parametric. Their results were compared
for similarities at the source level and identify
which produces the most accurate results under
our conditions. In the literature, the most used
parametric methods are beamforming methods in the
time and frequency domain: the linearly constrained
minimum variance (LCMV) beamformer [41] and
the dynamical imaging of coherent sources (DICS)
beamformer [42] respectively. Similarly, the most well-
known non-parametric method is the low-resolution
electromagnetic tomography (LORETA) [43].
LORETA solutions are blurry and are not suited
for spatially separating sources which are closely
located. Two improvements upon this method
correct this issue: the standardized low-resolution
electromagnetic tomography (sLORETA) [44] and
the exact low-resolution electromagnetic tomograpgy
(eLORETA) [45]. In the present study, the two
improved methods were used.

2.1 Parametric methods A beamformer is a spa-
tial filter that filters the EEG data from the electrodes
to separate and maintain signals originating from an
area of interest [46]. An advantage of this technique
is that it requires no prior knowledge regarding the
number of dipoles [6]. In the current study, the data
were analyzed using the linearly constrained minimum
variance (LCMV) beamformer [41], which uses time-
domain data for source localization, and the dynami-
cal imaging of coherent sources (DICS) [42] method,
which calculates the coherency between active sources
and the source power is estimated in the frequency
domain [47].

Using LCMV, source power was calculated by com-
puting the neural activity index (NAI). The NAI is
computed by normalizing the source power using an
estimate of the spatially inhomogeneous noise [27].
Estimating the noise is done using FieldTrip and the
estimate is based on the smallest eigenvalue of the co-
variance matrix. Using the NAI to estimate the source
power is necessary to correct for the center-of-head
bias due to the lead fields. This can be circumvented
by normalizing the columns of the lead field matrix
during computation.

An alternative to computing the NAI to correct the
depth bias is to contrast two distinct conditions. This
can be done in a within-trial fashion, by contrasting
the time window of interest to the pre-stimulus base-
line, or by contrasting a specific time window across
two different conditions i.e. with and without the
application of a perturbation. Calculating a common
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spatial filter using the data from all the conditions
is suggested for this process. Using a common filter,
source activity differences can be attributed to differ-
ences in power among conditions instead of differences
between individual spatial filters. For the LCMV a
common filter was calculated for all conditions and
the NAI was calculated using the projection of the
noise. Due to ICA component rejection, the covariance
matrix is not full rank and thus the regularization pa-
rameter λ was set to 100%, as proposed in the relevant
literature [27].

Using DICS, changes in source power were calcu-
lated by comparing the steady-state response to the
pre-stimulus baseline in the alpha frequency band.
The steady-state response time window was chosen
as [1 5] seconds while the baseline was chosen as [-5
-1] seconds, where t = 0 marks the trial onset. As in
the case of the LCMV beamformer, the regularization
parameter was chosen as λ = 100% to correct for the
low-rank of the cross-spectral density matrix. The
analysis was performed in the alpha frequency band
(8-12 Hz) to localize the sources responsible for the
suppression of the mu rhythm, centered around 10 Hz
with a spectral smoothing of ±2 Hz.

2.2 Non-parametric methods Low-resolution
electromagnetic tomography (LORETA) [43] is a pop-
ular method used in source localization, operating
under the constraint of smoothly distributed sources
across the whole brain volume. The core assumption
of this method is that neighboring neurons are acti-
vated simultaneously and synchronously. The method
normalizes the columns of the lead field matrix to
correct for the depth bias of other methods. How-
ever, it produces blurry source estimates due to the
initial assumption. Experiments have shown that this
method is not suitable for focal source estimation due
to spurious brain activity [48].

Standardized low-resolution electromagnetic tomog-
raphy (sLORETA) is a method based on the minimum
norm solution. The inverse solution is obtained by
calculating the minimum-norm estimate of the current
density and standardizing it using its variance. This
variance in the current density is attributed to the
actual variance of the sources and the noise present
in the EEG measurements. The sLORETA method is
reported to produce a zero localization error [44]. This
method gives the lowest localization error as reported
in the literature [6, 21,44].

Exact low resolution brain electromagnetic tomog-
raphy (eLORETA) [45] is another advanced method,
based on the weighted minimum norm inverse solution.
It computes the cortical current density distribution
in 3D space. In eLORETA, the specific weights that
are used in the method allow for the exact localization
of focal test sources, providing solutions with exact
localization yet low spatial resolution. This is inherent
to all LORETA variants and is based on the physio-

logical assumption that neighboring neuronal sources
are highly correlated. The eLORETA method is an
improvement of sLORETA as it has been shown to
have zero localization bias in the presence of structured
noise.

All of the above methods are greatly affected by
regularization. When computing the inverse solution,
the regularization parameter λ needs to be specified.
Since our source estimates were calculated from the
reconstructed EEG data post-ICA component rejec-
tion, the data matrix is rank-deficient and therefore
regularization is necessary. For the LCMV case, a
low-rank covariance matrix greatly deteriorates the
quality of the solution to that of a minimum-norm
estimate [49]. It is possible to circumvent this issue
by using sLORETA/eLORETA instead of the LCMV
beamformer. However, regularization is beneficial for
LORETA variants as it reduces both blurriness and
false positives [6]. Due to the above and since artifacts
were removed through ICA component rejection, which
causes the covariance and cross-spectral density ma-
trices for the parametric methods to be rank-deficient,
the regularization parameter λ was set to 100% in
FieldTrip for all methods.

3. Statistics

The experimental design is that of a within-subject
experiment; each participant was tested in all con-
ditions. Randomization of the condition order was
applied to account for order effects [50].

A cluster-based statistical analysis was performed
on the source localization results of every method to
answer the initial research question: is it possible to
distinguish the activity of the index finger from the
activity of the ring finger performing a pinch and hold
force task? The research question can be formulated
into a binary null-hypothesis; the two conditions (con-
trolling using the index against using the ring fingers)
are identical and the source locations and powers are
drawn from the same probability distribution. To test
the null hypothesis, a Monte Carlo method was ap-
plied to the grouped data from all participants; the
source-space results were group-averaged per condition
across all participants and the conditions were tested
contrasting the perturbed against the unperturbed
case per controlling finger. The p-values of the source
power across all source locations was calculated and
is presented in Table 1.

III. Results

Channel Level Analysis

The SNR was calculated on the channel level for the
perturbed conditions. The channels with the highest
SNR are found in the frontal region, creating a cluster
around F1. This channel is highlighted with a red box
in Figure 3. In the regular 10-10 system of EEG elec-
trode locations, the F1 channel is positioned over the
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Figure 5: The signal-to-noise ratio (SNR) is plotted topographically across the head per condition for all
participants. Image (a) shows the topographical plot across the 2D electrode layout for participant #1. Images
(b) and (c) follow the same approach for participants #2 and #3. Images (d)-(f) present the SNR when the
participants were tested using the ring finger. The positions of the electrodes are marked using dots.

frontal cortex. F1 is examined further, as it is consis-
tently found among the channels with the highest SNR.
A second cluster of high-SNR channels is found in the
left central-posterior side, around the CP3 electrode.
This cluster contains the centro-parietal electrodes on
the left side, which are located right above the left
posterior parietal lobe. In one participant, high SNR
values are also found on the right side of the head over
the right posterior parietal lobe. The results of the
SNR calculation are plotted separately for the index
and the ring fingers in Figure 5.

The perturbed and unperturbed responses were com-
pared against each other in both the time and fre-
quency domains using the data from the F1 channel.
The EEG signal was averaged per condition across all
trials for each participant. The power of the signal was
calculated using the multitaper frequency transforma-
tion method after averaging. There is a clear difference
between the averaged signals when comparing the per-
turbed conditions against the unperturbed for both
fingers. Differences are found mainly in the alpha
and in the delta bands. There are oscillatory compo-
nents in the low frequencies when the perturbations
were applied. A comparison between the averaged sig-
nals recorded from the F1 channel for one participant
during the perturbed and unperturbed conditions are
presented on the top row in Figure 6. In the Ap-
pendix, an overview of the data per participant is
presented in Figures 13 and Figure 14.

The C3 channel is positioned over Brodmann area
4 - the primary motor cortex [51]. The position of the
channel on the EEG cap is also highlighted in Figure
3. To investigate the involvement of the motor cortex

during the experiment, the power of the signal was
calculated using the same procedure as before, and
the results were compared among participants for the
perturbed and the unperturbed conditions. In contrast
to the data from the F1 channel, there is an absence
of a strong oscillatory behavior in the averaged signals.
The neural oscillations during the perturbed condi-
tions, found earlier in the alpha and in the delta bands,
are almost non-distinguishable. Results from a single
participant are presented on the bottom row in the
Figure 6. An overview of the results per participant
is presented in the Appendix; Figure 15 shows the
comparison between the perturbed and unperturbed
conditions for the index finger and Figure 16 for the
ring finger.

Channels F1 and C3 were examined for oscillatory
components in time by performing a time-frequency
analysis. The C3 channel shows evidence of mu rhythm
suppression, starting approximately 3 seconds before
movement onset and lasting throughout the whole trial.
Mu rhythm suppression is interrupted in some cases
by sudden power increases during the [-1 -0.5] seconds
time window. A power drop in the alpha band is also
present in the data from the F1 channel. No prominent
power changes relative to the baseline time window
are found in the beta or gamma frequency bands. The
time-frequency analysis results for all participants dur-
ing the perturbed conditions are presented in Figure
7. All the results are presented in the Appendix in
Figures 17 and 18.
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Figure 6: The F1 and the C3 channels are analyzed separately. The timelocked signals are shown in the
figures above. A comparison of the perturbed and unperturbed conditions for a single participant. The response
to the perturbation is shown in blue and the unperturbed response is shown in orange. For each channel, the
time-domain signals are plotted during the hold phase of the experiment, during the time window tss = [1 5]
seconds. The frequency power spectra of the signals are plotted below the time-domain signals.

Source Localization

Source space results obtained using the LCMV
beamformer method were averaged per condition
among participants. A binary mask was used to high-
light sources with power values in the 98th percentile.
Results are displayed in Figure 8. The sources with
the strongest activity are biased towards the center of
the head. Weak source activity is found at the motor
cortex. Using this method, power is distributed across
the whole brain and there are no focal sources.

In Figure 9 the results of the DICS beamformer
are shown. The previously identified power drop in
the alpha band (mu rhythm suppression) was localized.
The power difference was calculated by performing a
frequency analysis in the pre-stimulus baseline time
window tbsl = [-5 -1] seconds and during the steady-
state response to the perturbation in the time window
tss = [1 5] seconds, calculating the source power, and
then contrasting the source power of the two individual
time windows. Mu rhythm suppression is localized at
both the left and right hemispheres and is present on
the cortical surface and deeper inside the brain. An
increase in activity is found at the posterior area of
the brain, at the primary visual cortex (Brodmann
area 17). Increased activity at the visual cortex is not
present during the unperturbed conditions. However,
there is an increase at the frontal and left parietal
areas of the brain.

Using the sLORETA method, distinct clusters of
strong sources are found across the brain volume.

Source activity in the visual cortex is high during the
perturbed conditions, similar to the results from the
DICS method. Furthermore, strong activity at the left
and right dorsolateral frontal cortices (Brodmann area
9) is present. Activity on the left side is focal and more
pronounced. Strong sources are found at the premotor
cortex (Brodmann area 6), which is stronger during
the unperturbed conditions. This area is related to
motor planning. Comparing the conditions with and
without the perturbations we can see that the frontal
sources are weaker when participants performed the
motor task under the multisine perturbation.

Results from eLORETA (Figure 11) show activity
in the same areas as sLORETA, however, the source
power is lower and less focal. The power of the sources
is distributed across the brain volume, with stronger
activity located in the left prefrontal cortex for all
cases. This activity is more pronounced in the two
conditions where the perturbation was not applied.

Statistical Analysis

Source localization results for each method were
statistically tested using a Monte Carlo method. We
are interested in finding if there is a difference between
using different fingers based on the power of the sources
during the perturbed and the unperturbed conditions.
Thus, the null hypothesis is binary; we calculated the
probability that the two conditions are drawn from
the same probability distribution. The null hypothesis
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(a) Participant #1 (b) Participant #2 (c) Participant #3

Figure 7: Time-frequency analyses of the data from the F1 and C3 channels per participant for the perturbed
condition while using the index finger. Color code represents the absolute power increase or drop relative to the
chosen baseline time window of [-5 -3] seconds. The power values are expressed in µV 2/Hz.

is rejected if statistically significant p-values are found
(p < 0.05). The differences in the results required
two tests for each applied source localization method;
a total of 8 tests were performed. The results are
summarized in Table 1. Statistical significance is
found and the null hypothesis is rejected only when
comparing the power of the localizes sources using the
DICS method between the trials performed under the
position perturbation. The sources for which the p-
values are statistically significant are located far away
from the motor cortex. However, there are numerous
sources deep in the left and right frontal cortices. This
is visualized in Figure 12.

IV. Discussion

The goal of the present study was to examine the
possibility of disentangling the activation patterns
of two individual fingers - the index and the ring -
during a pinch and hold force task using EEG source
localization methods and position perturbations. On
the channel level, strong activity in the frontal area is
measured by the F1 channel. This activity is prevalent
during the perturbed trials. Therefore, it may be
related to motor planning, regarding the movement of
the controlling finger as a response to the perturbation
signal.

On the source level, the four methods provided
varying results both in terms the power of the localized
sources. Source localization accuracy is affected by
the variability of the cranial anatomy of the subjects.
Anatomical differences between the participants result

in large variability in the anatomical locations of each
electrode [26]. Furthermore, the farther away from the
center of the head an electrode is placed, the higher
the variability in terms of anatomical accuracy; this
is especially important for areas close to the occipital
lobe. As a result, important electrodes for source
localization are possibly placed over different brain
areas in different subjects. The statistical analysis
performed on the source-space results indicates that
separating between the two controlling fingers is not
feasible using the current approach.

Channel-level

1. Time-domain analysis

The SNR of each EEG channel (Figure 5) was cal-
culated for the conditions where the perturbation was
applied, once per finger per participant, similarly to the
literature [39,52]. A high-SNR cluster of channels is
located around F1 at the frontal area of the head. The
F1 channel primarily records the activity of the supple-
mentary motor cortex (Brodmann area 8). A second
cluster is located in the area around the CP3/CP5
channels in two of the three participants. The cluster
located around the CP3/CP5 channels records the
activity of the postcentral gyrus, which refers to the
primary somatosensory cortex (S1 - Brodmann areas
1-3) the parietal cortex, and the supramarginal gyrus
(Brodmann area 40). This is a clear indication of a sen-
sory response to the stimulus instead of active motor
control as a response to the position perturbation.

The C3 channel is located closest to the left primary
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(a) Index (MS) (b) Ring (MS)

Figure 8: LCMV beamformer source localization results during the perturbed conditions. The top row
displays the results of the source localization, grand averaged over all participants per condition, without any
applied masking. The sources with power values in the top 2% are highlighted using a binary mask and shown in
the bottom row. Figures (a) and (c) show the results when participants used their index finger. Figures (b) and
(d) show the results when participants used their ring finger. Each figure is accompanied by a relevant color bar.
Sources with higher power values are displayed with brighter colors in both rows. The color code represents the
power of the sources and is reported in a.u.

motor cortex (M1) and is prominent in recording its
activity. High-SNR activity in the C3 channel during
the steady-state response to the perturbation is not
found, thus the activity of the M1 is not correlated to
the perturbation. This is surprising since the perturba-
tions force the participants to correct for the changes
in finger position while maintaining finger flexion; it
was expected that the need to control for the pertur-
bations would stimulate the hand area in the M1. An
argument can be made that the distance between the
M1 and the S1 is relatively small, thus the recorded
signals could be intertwined and the second cluster
represents both motor and sensory activity.

During the hold stage of the perturbed trials, the
signal of the C3 channel shows low-power oscillatory be-

havior in the delta and alpha bands. In the literature,
delta-band activity has been proposed as promising
for decoding purposes, albeit with limited success [53].
Oscillations in the alpha band were investigated fur-
ther; the DICS method was used to localize the sources
responsible for this activity. An overview is presented
in the Appendix in Figures 16 and 15.

The absence of oscillatory activity during the unper-
turbed trials is to be expected, as there is no oscillatory
movement involved. The observed results are in line
with this assumption.

Comparing the time-domain signals of the perturbed
and the unperturbed conditions for each finger per
participant shows differences which are assumed to
be related to the perturbation. However, there is no
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(a) Index (MS) (b) Ring (MS)

Figure 9: DICS beamformer source localization results during the perturbed conditions. The sources were
localized based on the power in the alpha frequency band, centered around 10 Hz with a frequency smoothing of
±2 Hz. Power is normalized and contrasted between the steady-state time window tss = [1 5] seconds and the
pre-stimulus baseline tbsl = [−5 − 1] seconds where t0 = 0 indicates the start of the trial. The results were grand
averaged over all participants per condition, without applying any masking. Figure (a) shows the results when
participants used their index finger, while (b) shows the results when participants used their ring finger. Positive
values indicate a power increase relative to the baseline; similarly, negative values indicate a power drop.

(a) Index (MS) (b) Ring (MS)

Figure 10: Source localization results from the sLORETA method during the perturbed conditions. The
sources were localized based on the time-locked EEG signals during the steady-state time window tss = [1 5]. The
instant t = 0 indicates the start of the trial. The results were grand averaged over all participants per condition.
Figure (a) shows the results when participants used the index finger. Similarly, figure (b) shows the results when
participants used the ring finger. Figures are accompanied by a color bar indicating the strength of the localized
sources. Highly-active sources are indicated with a brighter color. Values are reported in a.u.

observable difference when comparing the index and
the ring fingers per condition using the the SNR plots
and the single-channel analysis of the F1/C3 channels.

It is not possible to distinguish between the used finger
for each condition using the channel-level results.

In all cases, the recorded voltages from the par-
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(a) Index (MS) (b) Ring (MS)

Figure 11: Source localization results from the eLORETA method during the perturbed conditions. The sources
were localized based on the time-locked EEG signals during the steady-state time window tss = [1 5]. The instant
t = 0 indicates the start of the trial. The results were grand averaged over all participants per condition, without
any applied masking. Figures (a) and (c) show the results when participants used the index finger. Similarly,
figure (b) shows the results when participants used the ring finger. Figures are accompanied by a color bar
indicating the strength of the localized sources. Highly-active sources are indicated with a brighter color. Values
are shown in a.u.

ticipant #3 were consistently higher. This can be
attributed to using a different (larger) EEG cap for
this participant. Due to the inherent physiological
variability of head size and shape among participants,
different cap sizes were available in the experiment,
which could affect the sensitivity of the measurements,
even though the impedance values per channel were
checked before and after the study to be lower than
10 kΩ. There is an intrinsic variability in using the
EEG modality, making it difficult to use consistently
for BCI applications.

2. Time-Frequency domain analysis

In the literature, beta band ERDs are reported as
the most prominent effect over the motor cortex prior
and during movement [21]. This power drop in the
beta band (14-30 Hz) is initiated approximately 500 ms
before movement onset and is followed by an increase
in power at the post-movement execution time window.
We performed a time-frequency analysis on the EEG
signals from the F1 and C3 channels to locate the beta
ERD. An absence of strong neural oscillations in the
beta band is observed in our findings. It is possible that
the lack of a prominent beta band oscillation is due to
the design of the experiment; motor preparation and
thus the beta band ERD could have occurred during
the baseline time window, thus not showing a clear
decrease in power during the execution of the motor

task. One possible adjustment to the experimental
design could be the removal of the 3-second countdown
timer, leaving less time for the participants to prepare
for the task ahead. Using an earlier time period as a
baseline is also possible, however this approach creates
other issues, such as longer times between trials and
thus longer experimentation times.

A prominent ERD is found at the alpha band (8-12
Hz), centered around 11 Hz. This neural activity is the
mu rhythm. Mu rhythms occur in the sensorimotor
cortex and are associated with coordinating perception
and voluntary movement [40]. Mu rhythm suppression
is reported when a person performs a motor action or
an imaginary motor action with sufficient training. As
a result, these power drops are used to design motor
BCIs [10, 54]. What is interesting, however, is that
the ERD at the alpha band is observable in both the
F1 and C3 electrodes for both the perturbed and un-
perturbed conditions. This is visible in participants
#1 and #3 during the motor preparation stage during
the time window of [-3 0] seconds. For participant #2,
this ERD is non-detectable. This could also be at-
tributed to possible motor preparation and imaginary
movements occurring during the baseline time window,
as reported earlier. Alpha band decoding strategies
exploiting mu rhythm suppression have been used in
the literature with mixed results [55,56].

Two participants also exhibit short high power
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MS NP

LCMV

min(p) 0.2517 1
max(p) 1 1
mean(p) 0.9722 1

sum(p < 0.05) 0 0

DICS

min(p) ≈ 10−3 1
max(p) 1 1
mean(p) 0.8076 1

sum(p < 0.05) 26593 0

sLORETA

min(p) 0.1359 1
max(p) 1 1
mean(p) 0.9872 1

sum(p < 0.05) 0 0

eLORETA

min(p) 0.1309 1
max(p) 1 1
mean(p) 0.9693 1

sum(p < 0.05) 0 0

Table 1: Results of the Monte Carlo cluster-based
permutation test. The results are reported per source
localization method and condition. The results of the
statistical test between the two conditions with an ap-
plied multisine position perturbation are reported in the
column titled ”MS”. The column titled ”NP” stands for
”no-perturbation” and indicates the conditions without
a position perturbation. The minimum and maximum
p-values are reported for each case, as well as the
mean of the distribution and the number of p-values
indicating statistical significance.

bursts in the alpha band right after the countdown
stimulus is visually presented. These bursts are de-
tected for both the F1 and the C3 channels. This
is a strange behavior which can be attributed to mi-
nor movements during the preparation stage, such
as pushing against the lever followed by relaxing the
fingers. Approximately 500 ms before the trial starts
we can see these high-power bursts giving way to the
mu rhythm suppression, which persists throughout the
whole trial.

Finger kinematics have been decoded in the litera-
ture from the delta band (fd ≤ 4 Hz) during repetitive
finger movements [53]. Delta-band signals are consid-
ered favorable for decoding finger movements, as they
can have more power and are less likely to be corrupted
by muscular artifacts and noise [57]. Contreras-Vidal
et al. report in their work that the results varied
greatly among participants, while poor to moderate
decoding accuracies are reported. They conclude that
kinematics can be inferred by employing genetic al-
gorithms and linear decoders, to some extent. Our
time-frequency analysis demonstrates that this low-
frequency activity is inconsistent among participants;
for participant #1 there is a burst of high-power activ-
ity centered around the experiment onset time point t0.
Participant #2 exhibits an erratic delta-band activity,
with bursts of power later during the trials. Finally,
participant #3 exhibits an increase in power that is

Figure 12: The figure depicts the location of the
sources for which statistical significance (p ≤ 0.05)
is calculated using the results from the DICS source
localization method.

sustained throughout the complete trial. As a result,
we decided not to focus on the delta frequency band
in the current work.

Source-space results

Differences between neural responses found on the
channel-space indicate differences also present on the
source-space; however, the opposite assumption cannot
be made due to the nature of the inverse problem, the
choice of source localization method, and the forward
model used. As such, similar channel-level responses
do not guarantee that there are no differences on the
source space.

Four of the most prominent methods in the liter-
ature were selected to perform source localization in
time and in frequency domain and evaluate the results
in terms of accuracy and consistency. Each method
gave varying results in terms of source power. The
most important parameters affecting source localiza-
tion results are the choice of forward model [9], the
number of tissue layers [35], the anisotropy of each
tissue [8], the tissue conductivity values [58], the pro-
duced lead field matrix [36], the source localization
method used [6], and in many cases the choice of the
regularization parameter λ [44, 45].

A common spatial filter was constructed and used
to obtain the source-space results using beamforming.
The use of a common spatial filter per participant
across all conditions guaranteed that the results would
be directly comparable. These filters provide numerous
benefits, such as higher fidelity due to the incorpo-
ration of more information from multiple conditions,
since the covariance and cross-spectral density matri-
ces are based on the combined datasets [27]. They
also allow us to compare the results directly, as they
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eliminate the contribution of the filter to the localized
sources. As a result, any differences in the source level
results can be attributed to differences in the actual
sources instead of filter differences and errors.

For the LCMV beamformer, the localized sources
were grouped at the center of the head. There is mini-
mal activity in the M1 area of the head, as depicted
in Figure 8. This was unexpected, as the lead fields
were normalized and we also calculated and reported
the NAI to correct for the depth bias. Even so, the
sources with the highest power were consistently lo-
calized in the center of the head across all conditions.
In the literature, fMRI results have been shown to
produce similar results [59]. Results from an fMRI
motor task have shown activity in the center of the
head during a finger flexion task. However, in that
study, activity has been also found in the M1 area and
the supplementary motor cortex (SMA). However, in
that study, participants were performing finger flexion
periodically, every 2 seconds. This would be equivalent
to examining the ERP centered around the t0 mark
of the trial initiation instead of a pinch and hold task
like in our study. Using LCMV, there are no visible
differences between the cortical activity of the par-
ticipants when using different fingers to perform the
control task. This holds true for both the perturbed
and the unperturbed conditions.

The sources responsible for the mu rhythm sup-
pression were localized using the DICS beamformer.
Localization using this method requires a different
approach: instead of calculating the NAI as before,
we contrasted the activity during the steady-state
time window to a baseline window of equal length.
A power reduction in the M1/S1 area is found, yet
not as strong or focal as initially expected. These
power drops are also seen in both the left and right
hemispheres. A possible explanation for this is that
mu rhythm suppression can occur through both real-
ized and imaginary movements. Mu rhythm activity
relates to the mirror neuron system, linking percep-
tion to motor action [60]. Similarly to the LCMV
method, the results obtained using DICS are visually
indistinguishable when comparing between using the
index and the ring fingers for the perturbed and the
unperturbed conditions.

Two non-parametric methods were also used;
sLORETA and eLORETA. The two methods provided
similar results in terms of the location of the sources,
but the sources differed in terms of their power. Sim-
ilarly to the DICS method, the results show strong
activity in the visual cortex during the perturbed trials
and stronger activity in the prefrontal cortex during
the unperturbed trials. Sources with high power in
the hand area of the M1 were not found; this indi-
cates that the cortical contribution when maintaining
a constant pinching force during a hold task when
using individual fingers is very small and can not be
detected using EEG source localization.

The validity of the results is confirmed by reviewing

the power of the localized source in the posterior side
of the head, the visual cortex. The left side of the
posterior (visual) cortex shows higher activation during
the perturbed conditions; this is expected since the
haptic manipulator was placed on the right side of the
visual field of the participants. The 15 Hz movement
of the device was registered by the left visual cortex.
The absence of such activity in the unperturbed trials
is also to be expected.

Beamforming techniques provided inconsistent re-
sults compared to the sLORETA and eLORETA meth-
ods. The latter produced more focal sources, as ex-
pected from the literature [21]. There are no visual
differences between the source locations or their power
to indicate it is possible to separate between the index
and the ring fingers using the above methods.

Statistical analysis

The cluster-based permutation test, performed on
the source-space results from each method, did not
reveal a difference between the use of the index fin-
ger and the ring finger in the operation of the haptic
manipulator for neither the perturbed nor the unper-
turbed conditions for three out of four methods. For
the DICS method, when comparing the source-space
data from the perturbed conditions, the cluster-based
permutation test revealed a significant difference be-
tween the use of the index finger and the ring finger
in the operation of the haptic manipulator (p < 0.05).
However, this effect is most pronounced in the sources
located deep in the frontal cortex; this may have been
caused due to noise or background brain activity in
the alpha band and thus be a false positive. We do
not have a reason to believe this is a true positive,
thus validating the use of the DICS method in the
context of the current study. Furthermore, the sta-
tistical analysis of the sLORETA and the eLORETA
methods indicate it is not possible to distinguish be-
tween the used finger from the source space during
the hold phase of the movement using non-parametric
methods.

Kuo et al. performed a similar study on EEG source
localization of finger movements. In their study, they
did not separate between two fingers, but they man-
aged to consistently localize the movement of the
thumb on the hand area in the M1 using the sLORETA
method [21]. They report that they used twice as many
EEG channels in their study and subject-specific head
models, derived through MRI. Their results were also
compared against BOLD responses from fMRI during
the same motor tasks. It may be possible to achieve
better results in the future by increasing the accuracy
of the forward model by making it subject-specific;
however, this increases the cost of the study and re-
quires more time. Our results do not encourage this
approach.
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Limitations

Forward model errors

The quality of the inverse solutions is affected by
the accuracy of the forward model. The effects of
the parameters of the forward model on the inverse
solutions have been reviewed in the literature [36].
In the present study, a three-layer BEM head model,
constructed from a template MRI, was used. Tem-
plate BEM head models increase localization errors
across the brain regions which deviate from the true
geometry. This is valid for both three and four-layer
models. BEM head models are homogeneous and the
three-layered variant does not model the cerebrospinal
fluid (CSF). Four-layer models produce more accurate
results, demonstrating the importance of including the
CSF layer in a model [9]. However, advanced imaging
and segmentation methods are required to model the
CSF layer.

In BEM, the assumption of homogeneity and lack
of anisotropy in different tissues of the same layer is
necessary, yet inaccurate [46]. The anisotropic proper-
ties of the skull tissue, as well as the white matter, are
ignored [61]. Finite element methods (FEM) allow for
the construction of a realistic head model which ac-
counts for the anisotropic propertes of each tissue, thus
improving the results of the inverse solution. These
numerical models are more complex and computation-
ally demanding than analytical models, however, they
offer higher resolution and localization accuracy [5].
Constructing such a model requires a patient-specific
MRI. MRI-extracted information is preferable to tem-
plate head models for higher accuracy [62]. However,
in the present study, it was not possible to obtain such
data from the participants due to the added cost and
required resources.

When constructing a homogeneous head model, the
conductivity values of the layers must be selected. The
skull tissue is inherently anisotropic, as it consists of
two hard outer layers enclosing a spongious inner layer.
Its conductivity is argued to be patient-specific and the
conductivity of the skull plays an important role in the
accuracy of the simulation results [36]. Brain tissue
also exhibits anisotropic properties. Gray matter is
considered homogeneous and isotropic, whereas white
matter is much more anisotropic and inhomogeneous
in comparison [63]. Thus, the gray matter, the scalp,
and the cerebrospinal fluid (CSF) are assumed to have
isotropic conductive properties when constructing a
realistic head model [61]. In the present study, the
conductivity values were selected according to the
literature; it is argued that the ratio between the skull
and scalp tissues is more important than the individual
conductivities [35]. These values have been presented
in Figure 4.

The incorporation of prior information in a realistic
head model also improves the accuracy of the localized
sources. In the literature, solving the inverse problem
using EEG source localization methods during a finger

movement task using a FEM head model, shows a
high spatial correlation between the localized sources
and fMRI activation sites [59]. This indicates that
a complex numerical head model with the incorpo-
ration of prior information concerning the location
of the sources, obtained through fMRI, can reduce
localization errors and increase the accuracy of the
inverse solutions. The reduction of localization errors
can be attributed to the elimination of discrepancies
between the conducting brain model and the true head
physiology. Constructing more complex head models
improves the spatial accuracy of the inverse solutions,
it requires, however, more resources and more intricate
calculations need to be completed when solving the
inverse problem. Thus is not ideal for BCI applications
where real-time processing plays an important role.

Inverse solutions

Regularization plays an important role in the ac-
curacy of the inverse solutions. The regularization
parameter introduces noise in the covariance matrix
(in the LCMV case) and the cross-spectral density
matrix (in the DICS case), which makes the matrices
full-rank and allows for the computation of the inverse
solution. Performing ICA decomposition and reject-
ing components to remove artifacts lowers the rank
of these matrices [29, 31]. Using ICA to reject EOG
artifacts reduces the rank of the matrix, and thus the
regularization parameter is set to λ = 1 in FieldTrip.
For instance, in the case of the LCMV, using a smaller
regularization parameter the sources are spread out
in the edges of the brain, changing the overall source
estimation dramatically. However, estimating the reg-
ularization parameter is a complex task that has been
reviewed extensively in the literature [6].

Beamformers localize one dipole source at a time
by isolating contributions from non-relevant current
sources. This is accomplished by constructing spatial
filters according to the given source model. As a
result, beamformers are sensitive to noise, as it is
hard to construct accurate spatial filters to zero out
the contribution of spontaneous source power changes,
making them more suitable for MEG data [64]. Higher-
density source models might lead to worse localization
results when beamforming approaches are used in EEG.
Furthermore, brain activity is rarely focal in nature.
In many cases, sources in the brain are correlated in
their activity [46]. Beamformers have been shown to
perform poorly when correlated sources are present
at a given time instance [65]. This might explain the
reason why stronger sources are found in the center of
the brain instead of the M1 using the LCMV method.

The two non-parametric methods offer more focal
solutions at a faster computational speed. However,
they did not manage to find high-power sources in
the M1. Source locations are consistent between the
methods, indicating that a strong cortical effect in
the M1 is not present during a steady pinch and hold
task. The goal of the current study was to examine the

16



possibility of discerning between using two different
fingers under perturbed and unperturbed motor tasks;
the physiological accuracy of the source localization
methods, while not of direct importance, still plays a
significant role in identifying the relevant activity in
the brain. The results of the statistical analysis have
shown that the source space activity of the two fingers,
using the methods explained in the present study, is
very similar.

Other limitations

In the case of EEG source localization, it is impor-
tant to use artifact-free data. Cleaning EEG data is
an interactive process, as trials can be contaminated
by EMG or other artifacts. During the analysis, visual
inspection of the data proved to be more accurate
in rejecting noisy trials. Furthermore, some artifacts
are introduced through common activities such as eye
blinks. To make a robust system that can be used
in BCI, these artifacts are best dealt with through
ICA and component rejection. While in offline data
processing ICA can be used without any downsides to
analyze EEG data, this is not possible for real-time
applications. ICA decomposition is a time-consuming
process that requires minutes to analyze a few sec-
onds of data, which introduces delays and increases
the latency between command and execution. In the
present study, the data were recorded and analyzed
offline, thus ICA was employed during cleaning the
EEG data; this is a luxury that is not available during
real-time data processing for BCI. Furthermore, the
inherent variability of ICA can affect EEG signals even
when removing EOG artifacts. Algorithms have been
developed to improve the performance of component
rejection without human supervision, however, it is
still advised to visually inspect and individually decide
which components should be rejected when cleaning
EEG data [31].

V. Conclusions

• Parametric methods (sLORETA and eLORETA)
were computationally efficient and provided more
focal sources when compared to parametric (LCMV
and DICS beamformers).

• Active sources during the hold phase of the experi-
ment are found in the frontal cortex and the visual
cortex. The former are close to the supplementary
motor area (Brodmann area 8) and could be related
to motor planning.

• No source activity in the hand areas of the M1/S1
during the hold phase of the motor task (time win-
dow tss = [1 5] seconds).

• The statistical analysis of the source-space results
indicates that the two fingers have very similar cor-
tical responses. Using the methods of the present
study, no statistically significant sources were found.

• Research using subject-specific realistic head models,
constructed using individualized MRI scans, which
also take into account tissue anisotropy using FEM,
could provide different results.

References

[1] M. Modaneszadeh, R. N. Schmidt, C. Medical,
and C. Avenue, “Wireless , 32-Channel9 Eeg and
Epilepsy Monitoring System,” Instrumentation,
vol. 1157, no. C, pp. 1157–1160, 1997.

[2] A. A. Gaho, S. Hyder, and A. Musavi, “EEG Sig-
nals based Brain Source Localization Approaches,”
vol. 9, no. 9, pp. 253–261, 2018.

[3] P. H. Schimpf, C. Ramon, and J. Haueisen,
“Dipole models for the EEG and MEG,” IEEE
Transactions on Biomedical Engineering, vol. 49,
no. 5, pp. 409–418, 2002.

[4] J. C. de Munck, B. W. van Dijk, and H. Spekreijse,
“Mathematical dipoles are adequate to describe re-
alistic generators of human brain activity.,” IEEE
transactions on bio-medical engineering, vol. 35,
pp. 960–6, nov 1988.

[5] M. A. Jatoi and N. Kamel, Brain Source Local-
ization Using EEG Signal Analysis, vol. 91. 2017.

[6] R. Grech, T. Cassar, J. Muscat, K. P. Camil-
leri, S. G. Fabri, M. Zervakis, P. Xanthopoulos,
V. Sakkalis, and B. Vanrumste, “Review on solv-
ing the inverse problem in EEG source analysis,”
Journal of NeuroEngineering and Rehabilitation,
vol. 5, pp. 1–33, 2008.

[7] C. J. Stok, “The influence of model parameters
on EEG/MEG single dipole source estimation,”
IEEE Transactions on Biomedical Engineering,
vol. BME-34, pp. 289–296, apr 1987.

[8] C. Ramon, P. H. Schimpf, and J. Haueisen, “In-
fluence of head models on EEG simulations and
inverse source localizations,” BioMedical Engi-
neering Online, vol. 5, pp. 1–13, 2006.

[9] Z. Akalin Acar and S. Makeig, “Effects of forward
model errors on EEG source localization,” Brain
Topography, vol. 26, no. 3, pp. 378–396, 2013.
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Appendices

Figure 13: The signal of the F1 EEG channel is averaged across trials and analyzed in time and frequency
domains for all participants. A comparison is shown between the perturbed and the unperturbed conditions when
participants used their index finger to control the lever. The oscillatory behavior of the blue signal is the response
to the perturbation, as it is not present in the red signal. Two oscillatory peaks are pronounced at the 3 and 9 Hz
frequencies.
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Figure 14: The signal of the F1 EEG channel is presented as before. In this instance, the participants used
their ring finger to control the lever. Similar results are reported.

Figure 15: The signal of the C3 EEG channel is averaged across trials and analyzed in time and frequency
domains for all participants.
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Figure 16: The signal of the C3 EEG channel is presented as before. In this instance, the participants used
their ring finger to control the lever. Similar results are reported.
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(a) Participant #1

(b) Participant #2

(c) Participant #3

Figure 17: Time-frequency analyses of the data from the F1 channel for all conditions per participant. Each
row shows the results of the analysis of the index and the ring fingers, starting with the two conditions with
the perturbation and following with the results from the unperturbed conditions. Dark blue color indicates an
absolute power drop relative to the chosen baseline time window of [-5 -3] seconds and a bright yellow indicates
an absolute power increase relative to the same time window. The power values are expressed in µW/Hz. The
maximum and minimum values are shown per condition in its respective color bar.
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(a) Participant #1

(b) Participant #2

(c) Participant #3

Figure 18: Time-frequency analyses of the data from the C3 channel for all conditions per participant. Each
row shows the results of the analysis of the index and the ring fingers, starting with the two conditions with
the perturbation and following with the results from the unperturbed conditions. Dark blue color indicates an
absolute power drop relative to the chosen baseline time window of [-5 -3] seconds and a bright yellow indicates
an absolute power increase relative to the same time window. The power values are expressed in µW/Hz. The
maximum and minimum values are shown per condition in its respective color bar.
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(a) (b)

(c) (d)

Figure 19: LCMV beamformer source localization results. The results of the source localization are grand
averaged over all participants per condition, without any applied masking. Figures (a) and (b) correspond to
the perturbed conditions for the index and the ring fingers respectively. Figures (c) and (d) correspond to the
unperturbed conditions, similarly arranged. Each figure is accompanied by a relevant color bar. Sources with
higher power values are displayed with brighter colors; the power of the sources is given in a.u.
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(a) (b)

(c) (d)

Figure 20: LCMV beamformer results, after applying masking to isolate the sources that have power values
in the top 2%. Just as before, the values of the sources are shown in a.u.
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(a) (b)

(c) (d)

Figure 21: DICS beamformer source localization results. The sources were localized based on the power in
the alpha frequency band, centered around 10 Hz with a frequency smoothing of ±2 Hz. Power is normalized and
contrasted between the steady-state time window tss = [1 5] seconds and the pre-stimulus baseline tbsl = [−5 − 1]
seconds where t0 = 0 indicates the start of the trial. Positive values indicate a power increase during the
steady-state in terms of the baseline; similarly, negative values indicate a power drop. The results were grand
averaged over all participants per condition, without applying any masking. Each row corresponds to a different
condition; the top row corresponds to the perturbed conditions and the bottom row corresponds to the unperturbed
conditions. Figures (a) and (c) show the results when participants used their index finger. Figures (b) and (d)
show the results when participants used their ring finger. The figures are all accompanied by a color bar indicating
the color of the relative change between the baseline and the steady-state. Power values are shown in a.u.
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(a) (b)

(c) (d)

Figure 22: Source localization results from the sLORETA method. The sources were localized based on the
time-locked EEG signals during the steady-state time window tss = [1 5]. The instant t = 0 indicates the start
of the trial. The results were grand averaged over all participants per condition, without any applied masking.
Figures (a) and (c) show the results from using the index finger, with and without an applied perturbation
respectively. Similarly, figures (b) and (d) show the results of using the ring finger. Figures are accompanied by a
color bar indicating the strength of the localized sources. Highly-active sources are indicated with a brighter color.
Source power values are shown in a.u.
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(a) (b)

(c) (d)

Figure 23: Source localization results from the eLORETA method. The sources were localized based on the
time-locked EEG signals during the steady-state time window tss = [1 5]. The instant t = 0 indicates the start
of the trial. The results were grand averaged over all participants per condition, without any applied masking.
Figures (a) and (c) show the results from using the index finger, with and without an applied perturbation
respectively. Similarly, figures (b) and (d) show the results of using the ring finger. Figures are accompanied by a
color bar indicating the strength of the localized sources. Highly-active sources are indicated with a brighter color.
Source power values are shown in a.u.
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