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PREFACE 

This master thesis is a report of the work that I have done as a student of Materials Science at 
Delft University of Technology, in the Physical Materials Science group of Prof Dr.Ir. A. Van 
den Beukel. The project was supervised by Dr.Ir. J. Sietsma. 

The DSC measurements I have performed at the "Max-Planck-Institut tiir Metallforschung, 
Institut für Werkstoffwissenschaft" in Stuttgart, Germany. The meastorements were 
supervised by Prof Dr. F. Sommer. 

The pressure anneals on one of the two Pd4oNi4oP2o batches were performed by Dipl.Ing. P. 
Klugkist, under supervision of Prof Dr. F. Faupel and Dr. K. Ratzke at the University of Kiel, 
Germany. 

There are several ways of putting the results of our research in a scientific context. From a 
minimalistic point of view, we have made it plausible that the equilibrium structure of 
Pd4oN4oP20 depends on pressure. And for scientists who do not believe in free volume theory, 
this is the only interesting result from our research. What we shall do here, is to take some 
earlier results from free volume theory and make a few assumptions to be able to work with 
them. We then obtain our numerical result and take the remarkable internal consistency of the 
theory as a justification for our approach. Al l this is entirely in the spirit of the way we work 
at this laboratory. 



1 INTRODUCTION 

The reason for measuring the activation volume of diffusion is that we hope it will teach us 
something about the mechanism of diffusion in amorphous metals. The measurements are 
performed on amorphous Pd4oNi4oP20, which is a 80-20 metal-metalloid system. This alloy 
has over the past decennium served as a model system. It was chosen because its amorphous 
state can reach meta-stable equilibrium. 

There are still some important unsolved problems conceming the mechanism of diffusion in 
amorphous metals. In particular, there is still some controversy over the question whether 
diffusion occurs via a single-atom hopping process or via some cooperative mechanism. The 
latter possibility seems increasingly probable as research continues. The strongest indication 
for cooperative diffusion is given by the results of the isotope effect measurements. Ratzke et 
al. [1] showed that typically 10-30 atoms participate in diffusion in the well-relaxed state. The 
measurements were performed for Co-diffusion in amorphous CovyFeaNhnBy. 

Besides distinguishing between a single-atom and a cooperative mechanism for diffusion, 
there is yet another classification to be made. When diffusion is mediated through defects, the 
mechanism is called indirect (e.g. vacancy diffusion in a crystal), whereas the mechanism is 
called direct when diffusion occurs without the presence of a defect (e.g. diffusion in a liquid 
at temperatures not too close to the melting point). Up to now, there is no direct experimental 
evidence for the existence of difftision defects. The question whether the mechanism of 
diffiasion in amorphous metals is direct or indirect is not yet answered and often not even 
asked. 

The ultimate goal we are trying to achieve is to understand the mechanism of diffusion in 
amorphous metals and to find an expression for the diffusivity that matches the experimenttal 
diffusion data qualitatively. This report is set up in such a way as to emphasize the 
importance of the results with respect to the goal mentioned above. 

In Chapter I I , a few important issues are mentioned as background information. A basic idea 
is given of what the amorphous stmcture looks Hke, which is essential for understanding what 
is happening in an amorphous metal at an atomic level. Some important results obtained from 
experiment and computer simulation are given. 
In Chapter I I I , all we need to know about the theoretical background is given. The analogy 
between the equations for diffusion in amorphous and crystalline materials is emphasized by 
the set-up of the chapter. This is done for the sake of clarity. Unfortunately, this clear analogy 
inevitably entails the danger of encouraging people to think of crystals when talking about 
amorphous metals. So be it. 
Chapter IV is a report of the measurements that were performed in order to determine the 
pressure dependence of the free volume. As far as we know, this is the first time ever that this 
is measured. To account for the fact that this result has importance for the amorphous 
structure and its relaxation behavior, it is not placed within the scope of difftision until the 
next chapter. 
Chapter V: in this chapter, several aspects of the pressture dependence of diffusion in 
amorphous Pd4oNi4oP2o are discussed in terms of activation volumes. An assessment is made 
of what the results of Chapter IV, together with a previous result from our group, tell us about 
the mechanism of diffusion in amorphous Pd4oNi4oP20-
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In Chapter VI , a new type of defect is defined; we shall call these defects collective defects. 
Using the free volume model introduced in Chapter I I I , we can calculate the concentration of 
these defects as a function of their size, for any given value of the average free volume. This 
calculation can be seen as the first step on the way of finding a quantitative description of 
cooperative diffusion in amorphous metals. 
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I I THE AMORPHOUS STRUCTURE AND DIFFUSION 

2.1 Historical Retrospect 

The concept of an amorphous structure is nothing new. Many a modem day physicist, 
materials scientist or chemist would probably know that ordinary liquids, window pane glass, 
Wedgewood porcelain and many plastics have an amorphous structure. And when we look 
back at the physics commxmity before Bragg and Von Laue entered the stage, we find that 
many physicists actually believed that ordinary metals and alloys had an amorphous structure. 
Since then, diffraction techniques have established the periodicity of the atomic stmcture of 
metals. This periodicity, or franslation symmetry, has now become a key ingredient in many a 
physical description of metals. The notions of a vacancy, dislocation as well as Bloch's 
theorem are all based on the regular lattice and its periodicity. 

Seen from this perspective, it is quite understandable that the discovery of amorphous metals 
in 1959 [2] came quite as a surprise; amorphous metals almost sounded like a contradiction in 
terms. Furthermore, it added to the surprise that these amorphous metals resembled their 
crystalline counterparts in many physical properties. This pointed out that these properties 
were not so much determined by the periodicity of the stmcture as anybody brought up with 
crystals would assume. 

2.2 Production Techniques 

The technique, that was first used to obtain metals with an amorphous stmcture is splat-
quenching [2]; a droplet of liquid metal is splat between two surfaces and thus cooled from 
the melting point to room temperatiu-e in a fraction of a second. 

What normally happens, when we cool the liquid below its melting point at ordinary cooling 
rates is that, after a certain incubation time, small crystalline nuclei start to form at a rate 
mainly determined by the undercooling. Some of these nuclei then grow to become 
crystallites. When the surfaces of the crystallites meet, a boundary is formed. This process is 
finished when all liquid has crystallized, leaving behind a polycrystal consisting of crystalline 
grains, separated by so-called grain boundaries. The size of the grains decreases with 
increasing cooling rate. For metals that can be made amorphous, there exists an 
experimentally attainable critical coolmg rate above which no crystallites are formed and the 
liquid structure is quenched-in, so to speak. These metals can be cooled from their melting 
points to a temperature at which atomic mobility is too low to form nuclei, in a time shorter 
than the nucleation time. It is emphasized, that the stmcture of an amorphous metal is not just 
that of a polycrystal with very small grains. 

The technique that is nowadays most commonly used for making amorphous metals is melt 
spinning. Although similar to splat-quenching from a physical point of vieuw, the method is 
experimentally rather more elegant. The technique makes use of a copper wheel (typical 
diameter 200 mm), rotating at high speed (typical surface speed: 40 ms"'). In a small cmcible 
above the wheel, metal is melted with induction heating and a continuous stream of liquid 
metal flows on the wheel. The metal then rapidly solidifies (achievable cooling rates up to 10̂  
Ks'^) and is thrown off the wheel in the form of a thin ribbon (typically 2-20 mm wide and 
10-40 [im thick). One of the advantages of the technique is, that it is continuous in principle. 

4 



From a theoretical point of view, the solid state amorphisation reaction (discovered in 1975) 
[3], is interesting too. It was found that, under certain conditions, crystalline metal films could 
transform into a homogeneous amorphous structure by solid state diffusion. 

Other techniques that can produce amorphous materials are ball milling, vapour deposition 
and particle or laser irradiation. 

2.3 Why Applications Remained Limited up to Date 

Shortly after their discovery, when the good news about some of their properties got through, 
amorphous metals were thought to have a very promising career as ail engineering material. 
Amorphous alloys have, however, always remained very costly. Furthermore, synthesis of 
amorphous bulk material has only recently become possible. And unfortunately, the alloys 
that have critical cooling rates low enough to allow the synthesis of bulk material are even 
more expensive. 

2.4 Investigating Diffusion in Amorphous Metals 

Amorphous metals seem to be more interesting for research than for practical application. 
Amongst the most intriguing aspects of amorphous metals are: their atomic structure itself in 
a thermodynamical context, their phonon spectrum, their specific heat at cryogenic 
temperatures and the implications of the fact that some of them display superconductivity. 

Together with creep, viscous flow and structural relaxation, diffusion is one of the processes 
of which the atomic mechanism is still under investigation. And despite many years of rather 
intensive research, progress is made only slowly. From a practical point of view, problems 
first arise due to the experimental difficulties that one faces when measuring a diffusion 
coefficient: the process is very slow and the uncertainty in the measurements relatively high. 
Furthermore, the importance of many previous results has been shown to be somewhat 
limited, since the effect of structural relaxation was not accotmted for in the early days of 
research. 

The main reason for measuring the pressure dependence of diffusion is that we hope that the 
activation volume will tell us something about the mechanism of diffiision. What it exactly 
tells us is not really obvious, when it comes to amorphous metals. Hence, we have attempted 
to explain this very carefiilly (see Chapters I I I and V). 

Now, before developing the theoretical background needed for a proper understanding of 
what we are trying to measure, we shall first have a close look at the amorphous structure. 
The reason for this is that some notions or arguments later to be used may be better 
appreciated when one has some feeling for the amorphous structure. 

2.5 How to Detect Amorphicity 

Suppose we have a sample of some alloy; how do we know it is (still) amorphous? A rather 
obvious method is to directiy check i f long range order exists within the atomic structure of 
the sample, using X-ray diffraction. And so it is done in practice: the Debije-Scherrer 
technique is the most commonly used method for checking whether a metallic structure is 
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amorphous. In figure 1, two of such recordings are shown: one for crystalline and one for 
amorphous Pd4oNi4oP2o- The sharp lines in figure 1 a) indicate the presence of a crystalline 
phase. With this technique, a crystalline phase can only be detected when its makes up at least 
5% of the structure. Note, that there may be several crystalline phases present, each adding a 
set of lines to the pattem. 
When diffraction pattems would be made of a crystallising amorphous stmcture, the pattems 
would resemble figure 1 b) at the start of crystallisation and figure 1 a) when the process has 
finished. Of course, any intermediar pattem can occur, depending on the fraction of the 
material that has crystallised. 
For a polycrystalline material, a decreasing grain size broadens the diffraction lines only 
slightly. Hence, in practice, all diffraction pattems with a crystalline fraction exceeding 5% 
show lines as sharp as in figure 1 a). 
Crystallisation of an amorphous alloy normally starts at the surface of the sample. Hence, we 
can use surface techniques such as glancing-angle X-ray diffraction to see whether or not our 
amorphous sample has crystallised. 

2.6 The Radial Distribution Function 

The importance of diffraction with respect to the amorphous stmcture goes far beyond 
checking whetiier or not crystallization has occured. From a diffraction pattem, we can 
quantify the short range order that exists in the stmcture and present it in the form of a radial 
distribution function (sometimes also called the "pair correlation function"), denoted RDF. 
We will show how this is done for a monatomic stmcture (Ge, for instance, can be made 
amorphous), by presenting the essential ideas without mathematical rigour (for a rather more 
detailed freatment see [4]). 

From a diffraction pattem, we obtain the intensity I of the scattered radiation as a function of 
K, the magnitude of the difference between the wave vectors of the incoming and outgoing 
beams, k and k': K s | k-k' I . 
We represent the intensity in a normalised form, as a structure factor, defined by: 

for a monatomic stmcture contaming N atoms. The atomic form factor f, is a measure of the 
scattering power of the atom under view. 
Now, we define the radial distribution function g(r) as: 

where p(r) is the average density of all spherical shells of thickness dr at radius r around the N 
atoms in the stmcture; po is the macroscopic density of the sample. Hence, g(r) is a statistical 
measure for the number of atoms we find at a distance r from the centre of certain atom, 
picked at random. 
From diffraction theory it can be shown for an isofropic material that S(K) depends on g(r) in 
the following manner: 

S{K)^l{K)lNf^ (1) 

8{'-) = p{r)l9o (2) 

CO 

(3) 

Or, reversely, using the Fourier integral theorem, we can write: 

(4) 
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Here, we have the expression for the RDF as a function of the experimentally accessible 
structure factor. Common diffraction techniques for determining the structure factor are X-ray 
and neutron diffraction. In figure 2, an example of an RDF is shown for Pd4oNi4oP20- The 
topological short range order (TSRO) is visualised very neatly in this representation. Note 
that an RDF only provides us with statistical information about the average atom; this is a 
reflection of the statistical nature of TSRO in an amorphous metal. 
I f one is interested in the chemical short range order (CSRO) of the elements of some alloy, 
one could select any pair of chemical elements and look at their radial distribution function 
(in the case of Pd4oNi4oP20, one of the things this would tell us, is that P atoms only have Ni 
and Pd atoms as nearest neighbours). In this work, we will not look at CSRO. 

The validity of the derivation can easily be adjusted to cover crystals by incorporating the 
diffraction condition k - k - G (which is completely equivalent to the Bragg condition and the 
Von Laue equations), with G the reciprocal lattice vector. With the diffraction condition, the 
translation symmetry of the crystal enters the scene. The presence of a translation symmetry 
means that all atoms in the structure have a sparply defined coordination of nearest 
neighbours. As a result, the RDF for crystals does not just give statistical information about 
the average atom, but uniquely tells us the integer number of atoms that we will find at very 
sharply defined values for r. At 0 K, the RDF for a single-crystal would consist of delta 
ftinction peaks, broadened at higher temperatures by the thermal vibration only. Since, for a 
crystal, the unit cell directly fmds its way into the structure factor (see ref [4]), the radial 
distribution fttnctions are, as a description of the crystal, completely equivalent to the unit cell 
with its periodic lattice. 

The change in perspective is brought about by the Fourier transform, when we translate our 
information from reciprocal space to a radial view of real space. 

2.7 The Equilibrium Structure 

After preparation, the structure of most amorphous metals is kinetically stable at room 
temperature. That is to say, atomic migration is negligible on any time scale of interest. Only 
very few amorphous alloys have been shown to reach a meta-stable equilibrium with respect 
to temperature. The equilibrium is meta-stable, because the crystal is the thermodynamically 
stable structure. Throughout the rest of the text we shall simply refer to this structure as the 
"equilibrium structure", bearing in mind that this equilibrium is meta-stable. I f at all, the 
equilibrium is reached only in a temperature rage of some tens of degrees at most. To be sure 
that a structure has reached its equilibrium at a certain temperature, one should check that the 
equilibrium is reversible, for any equilibrium should be. I f the equilibrium depends on 
temperature, this can be done by verifying that the state of the structure can be reached from 
both sides on the temperature scale. Several parameters would, in principle, qualify as a 
measure for the state of the structure as a function of time and temperature. In figure 3, the 
viscosity is used to illustrate that Pd4oNi4oP2o can reach equilibrium at 563 K. 
Since the equilibrium is thermodynamic in natttre, and dependins on the intensive state 
variable T, one might expect the equilibrium also to depend on the ambient pressure p, for the 
ambient pressure is an intensive state variable too. This, we investigated and it turned out that 
the equilibrium structure indeed depends on pressure like it does on temperature (the results 
can be found in Chapter IV). 

2.8 Defects 
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Figure 3: The viscosity of amorphous Pd4oNi4oP2o during temperature cycling between 
553 and 563 K. (a) Aimealing at 563 K after pre-aimealing to equilibriimt at 553 K. 
(b) Subsequent annealing at 553 K. (c) Subsequent annealing at 563 K [6]. 



2.8.1 Can a vacancy be defined? 
The amorphous structure is a surprisingly dense structure, with a mass density comparable to 
that of crystals. Hence, one might wonder i f a vacancy can be defined in this structure. In the 
absence of a regular lattice, the only starting point seems to be the relatively well-defined 
number of nearest neighbours that the atoms have. So, what would happen i f we were to take 
one atom fi-om the structure? Would this artificially created "vacancy" be stable? Computer 
simulations at about 10 K [7] have indicated that the "vacancy" is absorbed in the structure 
after several jumps. From the finite lifetime of the vacancy, Limoge argued that vacancies 
might naturally exist in the amorphous structure. We, on the other hand, do not think that the 
evidence is very conclusive. 

But where did the artificially created vacancy go? Is it really gone, in the sense that the 
macroscopic volume of the sample decreased by one atomic volume after these few jumps? It 
seems more probable that the it just spread out over its neighbours. Hence, we must be aware 
of the possibility that defects in the amorphous structure are localised at a group of atoms. 
Note, that such a site of loose packing could be seen as a localized area of low density. 

2.8.2 Looking for defects 
The obvious method for detecting open spaces in the structure is positron annihilation, 
because it has been successful in detecting vacancies and determining their concentration. 
The technique has been used in the past to detect defects (see e.g. [8]), but did not give us 
any conclusive evidence for their existence. 

Recently, a relatively novel teclmique, the Reverse Monte Carlo (RMC) method, has yielded 
a remarkable result conceming defects. The RMC method is derived from the standard Monte 
Carlo (MC) method, which involves random movement of atoms in a box. In an MC 
simulation, one asstmies potential curves for the atoms; the change in the potential energy 
then determines the probability with which the movement is accepted. In a RMC simulation, 
not the potential energy of the system is minimalized, but the parameter x^, a measure for the 
deviation of some physical property of the stmctiu:e from the experimental value (see [9] for a 
detailed explanation of RMC). 

This RMC method was used to construct an amorphous stmcture for Pd52Ni32Pi6, fitted to an 
experimentally determined RDF [10]. When looking for open spaces between the atoms, 
"holes" were found, surrounded by about ten atoms and approximately 5.4 in size. It is 
argued that these holes may be connected to diffusion [10]. 

2.9 Vibrational Modes 

The vibrational spectrum of the amorphous stmcture has been investigated using computer 
simulations. Starting with a stmcture made with RMC, Molecular Dynamics (MD) is used to 
analyse the phonon spectmm. Some of the modes of vibration were found to be localized and 
coopertive. This vibration could sometimes be seen to result in a "chain-jump" [11,12]. The 
jump can be said to start sometimes at the first and sometimes at the last atom. The chain 
does not endlessly travel through the stmcture in procession; the cooperative mode is lost 
after the jump. 
Very recently, another type of locaHsed cooperative mode was discovered [13]. Some ten 
atoms, rather spherically arranged, were found to vibrate at a very low frequency. The 
vibration is not simple harmonic (see figure 4). By giving the atoms participating in the 
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vibrational modes. A) is a non-locahsed mode; B), C) and D) are all localized modes. 
Note that only A) is simple harmonic in good approximation [13]. 



vibration a "push", at a certain time, in the direction in which they were just moving, the 
atoms were shown to rearrange (i.e. the equihbrium position around which the atoms vibrate, 
changes permanently) when the strength of the push exceeded a certain critical value. The 
mode is kept when the push is not strong enough to initiate a rearrangement, while (as in the 
case of the chain-jump) the mode is lost after the jump. Hence, the jump is irreversible. The 
potential energy of the system before and after the jump is kept the same. 

It is noted that these simulations correspond to temperatures of the order of 10 K. Hence, it is 
not at all clear what implications these resuhs have for the mechanism of difftision at room 
temperature or near the glass transition temperature. Both the results indicate, however, that 
difftision in amorphous metals is probably collective. 
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i n THEORY OF DIFFUSION 

3.1 Boltzmann Statistics 

For some atomic processes to occur, an energy barrier must be surpassed. For a single event 
in such a process to take place, the participating atom(s) must have an energy higher than this 
energy barrier. The distribution of the thermal energies of the atoms in a crystal is given, in 
good approximation, by the Boltzmann distribution. Thus, we can calculate the fraction of 
atoms with a thermal energy higher than some critical value. When the energy barrier itself 
does not depend on temperature (which is normally the case), this fraction is given by 

expi 

where AE is the height of the energy barrier and ke is the Boltzmann constant. These fractions 
are called Boltzmann factors. 

3.1.1 The activation enthalpy 
Measured at ambient pressure, the temperature dependence of the diffusivity D is, for 
crystals, normally found to be Arrhenian over the entire experimentally accessible 
temperature range. This kind of temperature dependence is given by an Arrhenius equation: 

D{T) = D , exp 
AH 

(6) 

where Di and AH are, by definition, constant with respect to temperature. Since it appears in a 
Boltzmarm factor, AH must be interpreted as an activation enthalpy for the diffusion process 
(enthalpy, because AH is an energy defhed at constant pressure). When InD is plotted as a 
function of l/ksT, the activation enthalpy is equal to the negative slope of this line: 

(7) d { y k j ) 

3.1.2 The activation volume 

We now have characterised the mechanism of diffusion by its activation enthalpy AH. The 
mechanism can also be characterised by an activation volume, AV. It is derived in Appendix 
A that the activation volume related to the diffusion process is approximated by 

" ^ ' " ° l (8) A V -keT 
dp 

where p is the hydrostatic pressure, defmed to be positive. The expression is accurate i f the 
jump distance and the attempt frequency do not depend on pressure. For crystals, these 
conditions are fulfilled and eqn. (8) gives a good approximation of AV. When AV is found to 
be independent of pressure, we can integrate eqn. (8) to obtain the pressure dependence of the 
diffusivity: 

D[p) = D2 exp 
pAV 

ksT (9) 

where D2 is independent of pressure. Again, the exponential factor is a Boltzmann factor. For 
ambient pressure, A H « pAV, so we may take a result for AH that is found at ambient 
pressure as an approximation for the value at zero pressure, thus putting the pressure 
dependence into eqn. (9). 

3.1.3 The general expression for thermally activated diffusion 
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The last parameter to characterise the mechanism of diffusion in the same way as do AH and 
AV, is the activation entropy AS. The activation entropy enters the Boltzmann factor as -TAS. 
Putting all this together, we get the general expression for thermally activated diffusion: 

D{p,T) = D„ exp 
AS 

exp 
AH 

exp 
pAV 

I<bT , 
(10) 

For ambient pressure, p A V « keT and therefore, the last Boltzmann factor is normally 
omitted. For crystals it can be shown that - T A S « AH, so the entropy contribution to the 
activation energy is negligible. 
The pre-exponential factor can be shown to be equal to: 

D^=abk\ (11) 

where a is a geometrical factor, b is a correlation factor, X is the jump distance and v is the 
attempt frequency. In principle, X and v may depend on temperature and pressure, but this can 
be shown to be a higher order effect, at least for crystals. 

3.2 Migration and Formation 

For any indirect mechanism of diffusion, the formation as well as the migration of a defect 
play a role. Hence, the terms AS, AH and AV can all be split according to this criterium. 
Disregarding the activation entropy, we have for the activation enthalpy: 

AH^AH,+AHM (12) 

where AHp is the increase of the enthalpy upon the formation of a defect and A H m is the 
height of the enthalpy barrier for the diffusion step. Hence, we could define a rate factor k: 

Ar(r)s vexp 
kJ 

(13) 

as a measure of the number of successful jumps per unit time at ambient pressure. The 
vacancy concentration Cv at ambient pressure is equal to: 

• (14) CvacP") = exP 
I<bT J 

Similarly, we have for the activation volume 
AV=AVf +AVM (15) 

where AVp corresponds to the change in volume of the system upon the creation of a defect. 
This is illustrated in figure 7 a) for vacancy diffusion in a crystal. Note that AVp would be 
negative for an interstitial-type of defect. Now consider the configuration of all atoms 
participating in a diffusion event, at the moment when the enthalpy of the configuration is at 
the height of the enthalpy barrier (see figure 7). Then, A V m is the difference in volume of this 
configuration and the configuration before the jump (i.e. when the configuration is at its 
enthalpy minimum). This is illustrated in figure 7 b), again for vacancy diffusion in a crystal. 
Similariy to eqn.s (13) and (14), we have for the rate constant under pressure: 

k(p,T) = vexp 
ksT J 

expi 
pAV 

and for the equilibrium vacancy concentration under pressure: 
AHp 

kJ 
expi 

Like for AH and AV, we have for the activation entropy: 
AS = AS, + AS M 

(16) 

(17) 

(18) 
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but since we can not determine AS from the dependence of the diffusivity on some state 
variable, it can not be investigated. 

3.3 The Keyes Relation 

Since AH and AV characterise the same diffiision process, we would expect them to be 
correlated somehow. The relationship was first acknowledged by Keyes, some fourty years 
ago. 

3.3.1 The migration process 
The relation was first derived for interstitial diffiision of solute atoms in a crystal. The 

concentration of the solute atoms does not depend on temperature and pressure; the derivation 
applies to the migration process. Keyes took the strain energy during the migration step as a 
starting point and assumed macroscopic elastic properties to be valid at an atomic level [14]. 
The derivation yields: 

AVM^K^X^HM (19) 

where % is the compressibility of the material and K is a dimensionless proportionality factor; 
K is a material constant. 

3.3.2 The formation process 
Although derived for the migration process only, this equation was experimentally shown 
also to be valid for vacancy diffusion in crystals, which, together with eqn.s (12) and (15) 
gives us the empirical result: 

AVp=KpxAHp (20) 

Later, using a very simple energetic model with the Mie potential as the interatomic pair 
potential, Keyes gave a derivation for this result [14]. The proportionality constant K was 
shown to be of the same order of magnitude as for the migration process. 
From a more detailed derivation of eqn. (19), see [15], the similarity of eqn.s (19) and (20) 
can be understood, by recognizing that it is the same anharmonicity of the atomic interactions 
that lies at the basis of both relations. 

3.3.3 The Griineisen parameter 
Stemming from the anharmonic theory for crystal vibrations, the Griineisen parameter jk 
expresses the change of the angular frequency co of a mode with respect to the specific 
volume (see, for istance, [17]): 

' ^ ^ - 1 ^ (21) 

The overall Griineisen parameter y is defined as the average of yt, with contribution of each 
mode to the specific heat as a weight factor: 

k 
This overall Griineisen parameter can be expressed as: 

r ~ (23) 

and is only very weakly dependent on temperature. Note, however, that the molar volume Vn 
[m moF ], the thermal volume expansion coefficient ay [K" ' ] , the compressibility % [Pa"'] 
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and the specific heat at constant volume Cy [Jmol ' K ' ] , are all much more strongly 
dependent on temperature. Hence, they should all be determined at the same temperature to 
be able to calculate y. 
It can be shown that, for crystals, the proportionality factor K is a function of the overall 
Griineisen parameter only [16]: 

K = 2 y - | (24) 

From experimental results, it was observed [18] that the proportionality factor K seems to be 
determined by the packing density of the structure only. Roughly, K seems to be around 2 for 
bcc materials and 5.5 for fee materials. For Hf diffusion in amorphous Ni-Zr, a value for K 
also of arotmd 5.5 was foimd, conforming that amorphous Ni-Zr has a dense packing [18]. 
But to which extent is it justified to use eqn.s (19) and (20) for diffusion in amorphous 
metals? As long as migration and formation are thermally activated processes, the equations 
seem to hold at first sight. There is, however, a serious reservation to be made about directly 
applying eqn. (24) to amorphous metals. To illustrate why this might go wrong, let us 
consider a hypothetical case. Suppose, we have a cooperative mechanism of diffusion, based 
on the existence of the low-frequency localised mode, with wave vector k, mentioned in 
section 2.9. For this case, it is much more likely that yk is the parameter of interest and not y. 

3.4 Free Volume Theory 

3.4.1 The probability distribution function 
As Boltzmann statistics can be used to calculate a vacancy concentration in a crystal from its 
formation enthalpy (eqn. (14)), we can use free volume theory to calculate a defect 
concentration in an amorphous structure from its "volume". 
In free volume theory, every atom is ascribed a volume v', defined, for instance, as the 
volume of the Voronoï cell (a Voronoï cell is constructed like the Wigner-Seitz cell in a 
crystal). I f the volume of this cell exceeds a certain value Vc, the remaining volume is called 
free volume: 

Vf =v'-v, (25) 

Assuming the redistribution of free volume over the atoms to take place without changing the 
Helmholz free energy, Cohen and Tumbull [19] calculated the distribution function P(vf) of 
the free volume. This calculation is essentially statistic in nature and gives us the probability 
of finding an atom with a free volume between Vf and Vf+dvf to be: 

P(Vf)dVf = exp 
<Vf > 

dvf (26) 

where <Vf> is the average free volume and e is an overlap factor, whose value lies between 
0.5 and 1. 

3.4.2 The concentration of defects 
Atomic mobility is now assumed only to take place at those sites in the structure where the 
free volume of a certain atom is larger than some critical value v*. Such an atom can be seen 
to be a defect. Looking at diffiision as a form of atomic mobility, we can calculate the 
concentration of diffusion defects ca: 

c, = £ P(Vf )dvf = exp\-s (27) 

For convenience, we now define the reduced free volume x as: 

13 



X = 
<Vf > 

sv 
(28) 

Cd =exp (29) 

and hence, we have for the defect concentration: 

It is noted, that the value of v* (and thus of the defect concentration) may be different for 
other types of atomic mobility. 

3.4.3 Fulcher-Vogel temperature dependence 
The reduced free volume in the equilibrium structure is found to be given by: 

(30) 

where To [K] and B t [ K ] are constant. Hence, the defect concentration in equilibrium is given 
by: 

Crf,eq = expj 
' Br ^ 

T-T. 
(31) 

Note, that this temperature dependence is not Arrhenian; it is called a Fulcher-Vogel type of 
temperature dependence. 

The defects mentioned in the previous section are diffusion defects and not flow defects. The 
concentrations of these two types of defects are cormected by the relation Cf=Cd̂  [20]. This 
distinction between diffusion and flow defects was not made in the original free volume 
model [19]. Throughout the rest of this report we will only be considering difftision defects. 

3.4.4 The effective activation enthalpy of formation 
The temperature range over which the amorphous structure can be shown to reach 
equilibrium is some tens of K at most (for Pd4oNi4oP20, the range is about 50 K , see figure 6). 
Together with the relatively large uncertainty in a measurement of the diffusivity at 
temperatures near Tg, it is rather difficult to determine from experiment, whether the 
temperature dependence is Arrhenian or of a Fulcher-Vogel type. To illustrate this, the defect 
concentration in Pd4oNi4oP20 (eqn. (31)) is represented in an Arrhenius plot, over the range of 
temperatures where equilibrium can be reached: see figure 5. For practical purposes, we will 
now define an effective formation enthalpy at some T̂ *̂ , e.g. the midpoint of the equilibrium 
temperature range. Using eqn. (31), we have: 

^d,eq_ ^ aincrf̂ ^q dT ^ __d_ 

dT 
AH eff 

80/i<sT) dT 

= i<X T 

{ ^ 1 
I 7 - - 7 - J 

T-T„ 
at some T=T'^ (32) 

Throughout the rest of the text, we will drop the superscript "eff for convenience. 

3.4.5 The effective activation volume of formation 
In analogy to the formation enthalpy for thermally activated diffiision, we can define an 
effective value for the volume of formation as: 

^8\nc,, ' 
AVf ^-l<,T 1,eq 

dp 
-keT 

1 9 x „ 

dp 
at some p=p*'̂ . (33) 
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Again, we will drop the superscript "ef f from now on. It is noted that this effective AVp does 
not necessarily correspond to the volume of a defect. However, AVp is still the increase of the 
volume of the system upon the formation of a defect. This paradox can best be explained by a 
simple (but artificial) example. Consider the atom with the largest free volume Vf that is still 
smaller than v* (hence it is, by definition, not a defect). We now increase the free volume of 
each atom in the structure, until the atom under view has a free volume Vf>v*. Thus, we have 
created a defect, but the formation volume AVp is is not necessarily equal to v*, the volume 
of a defect. 
To determine AVp, we need to know the pressure dependence of the free volume in 
equilibrium. We have determined this for Pd4oNi4oP2o: how this is done, is described in the 
next chapter. 

3.4.6 Free volume on its wav to equilibrium 
The differential equation that describes the change of the defect concentration on its way to 
equilibrium is [21]: 

dc, 

dt 
• = -k',c,(c^ - c J ) 

where the rate factor is given by 

/ ^ r (P ' 7 " ) = v , exp exp 
kJ 

and the defect concentration in equilibrium is given by: 

Cd,eq(P.7") = exp 
( AH A / pAVA 

exp 
V ksT J 

(34) 

(35) 

(36) 

which are expressions similar to eqn.s (16) and (17), with AHp and AVp now given by eqn.s 
(32) and (33): they are effective values. 
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I V DETERMINING THE PRESSURE DEPENDENCE OF FREE VOLUME 

4.1 Introduction 

The temperature dependence of the free volume has been the subject of extensive study over 
the years. The pressure dependence, on the other hand, had not been examined before. 
Some five years before it was experimentally determined, Spaepen and Tumbull [22] 
estimated the pressure dependence of the free volume. They assumed, that the reduction of 
the equilibrium free volume with pressure is simply given by the compressibility of the bulk. 
In terms of the reduced free volume, this gives: 

—— = — ( 3 7 ) 
dp EV * '> 

where O is the atomic volume. However, this estimation soon proved to be too simple [23]. 
Limoge showed [24], that assuming a linear decrease of the free volume with pressure (as is 
eqn. (37)) results in a zero free volume, and hence a diverging activation volume, at 
experimentally accessible values of the pressure. 
He further pointed out that this divergence may result from an assumption made in the free 
volume model itself The hypothesis that free volume can be redistributed without change in 
enthalpy introduces inconsistencies with all pressure related quantities [24]. 
In the spirit of the free volume theory. Van den Beukel derived [25] that the dependence of 
the free volume with pressure should not be linear, but of the form: 

eq {p,T) = x,q(r)exp{-c'p) (38) 

where c' is a positive constant. The derivation can be found in Appendix B. This pressure 
dependence does not give rise to a diverging activation volume. 
Under the condition that p « l / c ' , we can approximate eqn. (38) by 

XeqiPT) = XeqCi^-c'p) (39) 

which is a linear pressure dependence. To emphasize the analogy between the temperature 
dependence expessed by eqn. (30) and the pressure dependence expressed by eqn. (39) we 
define Po"'=c' and Bp''sc'xeq(T) and we get 

^ e , ( p ) = ^ ^ ^ (40) 

where po [GPa] and Bp [GPa] are constant with respect to pressure. 

We have aimed to determine the pressure dependence of the free volume in amoiphous 
Pd4oNi4oP2o at 563 K. To do so, amorphous Pd4oNi4oP20 samples were first annealed 563 K at 
different pressures. Then, the glass fransition peak was measured for every sample by means 
of Differential Scanning Calorimetry (DSC). The height of the glass fransition peak can be 
related to the amount of free volume at the beginning of the DSC measurement [26,27], 
which is equal to the amount of free volume at the end of the pressure anneal. We then know 
for every sample at which pressure it has been annealed and what the corresponding amount 
of free volume is. In this way, the pressure dependence of the free volume was established. 
The implications for the diffusion process are discussed in Chapter V. 
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Figure 8: Specific heat as a function of temperature for amorphous Pd4oNi4oP20, recorded 
with a heating rate of 40 KminCp(Tg) and Cp'' are indicated. 

Prcs.surc Generntor 1 GP.t 

A A A 

A r 6 . 0 Ali.S l l e J . 7 

\ 2 5 MPa 

300 M P a 7 0 0 M P a / l G P a 

Hydraulic supply 

Unil 75 MPa 

70OMP,Vl OPa 

Figure 9: Schematic representation of the pressure equipment used for the pressure anneals. 



4.2 How to determine x at the end of a pressure anneal 

When a sample has been annealed under pressure during the time planned, it is cooled, as fast 
as the experimental conditions allow, to a temperature where the structure has become 
kinetically stable. Thus, we hope to have quenched-in the amount of tree volume at the end of 
the pressure anneal. This amount of free volume can be determined using Differential 
Scanning Calorimetry (DSC) [26]. 
In a DSC experiment, the apparent specific heat is dynamically measured as a tunction of 
temperature. The glass-liquid fransition gives rise to a peak in this dynamic Cp(T) curve. We 
here define the glass-liquid fransition temperature Tg as the temperature at which Cp has a 
maximum. We also define ACp as: 

AC,^c , ( r , ) - c ,^ (41) 
where Cp'' is the specific heat of the undercooled liquid; see figure 8. The height of the glass 
transition peak, expressed as ACp, was shown by Tuinsfra et al. [27] only to depend on the 
amount of free volume at the start of the experiment (which, in the present experiment, 
should be equal to the amount of free volume at the end of the pressure anneal). 
It was shown in reference [26] that integrating eqn. (34) under the conditions of a DSC 
experiment gives a glass fransition peak that is in good agreement with the experiment. This 
agreement is even better when the thermal lag of the DSC apparatus is taken into account: 
this was done by Tuinsfra et a l , using a simple R-C model [27]. In this work, we will use the 
values for R and C that Tuinstra determined for Pd4oNi4oP2o-measurements on a Perkin Elmer 
DSC-7. 

Using the free volume of the samples at the beginning of the DSC scan as a fit parameter, ACp 
was fitted to the experimentally obtained value. 

4.3 Experimental 

The measurements under review were performed on two different batches of amorphous 
Pd4oNi4oP2o- The two batches were annealed underpressure in two different pressure 
chambers, but measured with the same DSC apparatus. Details of the two batches wil l be 
given separately. 

4.3.1 Annealing under pressure 
Batch 1. The samples from this batch have been used to determine the pressure dependence of 
the diffusivity by Duine in 1992 [28]. Prior to the annealing freatment, the samples have been 
equilibrated at 563 K for 2h45min at ambient pressure. Then, Au atoms were implanted to a 
dose of 0.8-10'̂  at̂ cm ,̂ using a Van der Graaff implanter. Finally, the samples were annealed 
at 563.0+0.1 K for 12.0±0.1 h at several pressures up to 0.75 GPa. The samples were cooled 
down in approximately 20 min. Au concenfration profiles before and after diffiision were 
measured with Rutherford Backscattering Specfrometry (RBS). The samples have since been 
stored at room temperattire, at which atomic migration is negligible, and therefore the free 
volume was assumed to be unchanged after a period of four years. 

Batch 2. The samples of this batch have been annealed under pressure in the laboratory of 
Prof F. Faupel (see preface). No diffusion measurements have been performed on this batch. 
Also, they have not been equilibrated before the pressure anneal, histead, the as-quenched 
samples were directly annealed at 563±1 K for 12.0±0.1 h at pressures up to 0.84 GPa. 
Although cooling was considerably slower here (it took approximately 30 min for the 
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Figure 10: DSC traces of the measurements of the pressure samples of batch 1. The pressures 
at which the samples were armealed are indicated. 

Figure 11: Reproduction of the peak heights of the glass transition peak, ACp, using the free 
volume X at the beginning of the experiment as a fit parameter. 



temperature to decrease 200 K), integrating eqn. (34) for tlie conditions of cooling after the 
pressure anneal showed that the systematic error thus introduced was small compared to the 
uncertainty in the DSC measurements. 

In figure 9, a schematic representation of the pressure equipment used for batch 2 is given. 
The temperature of the samples (measured with a thermocouple contacting the sample) and 
the pressure in the pressure chamber are given as a function of aimealing time in Appendix C. 

4.3.2 Differential Scanning Calorimetry 
The DSC measurements were performed on a modified Perkin-Elmer DSC-2, in an argon 
atmosphere, as described in reference [29]. In every DSC scan, the sample was heated from 
320 K to 640 K, with a heating rate of 40 K/min. 

Batch 1. For this batch, only one DSC measurement was made for each pressure. The samples 
weighed typically 10 mg. We much rather would have made several measurements with 
samples weighing approximately 20 mg each, but this was not possible since there was not 
enough material left from the diffusion measurements (see section 4.3.1). 

Batch 2. In this case, three DSC scans were made for each pressure; the mass of the samples 
was typically 20 mg for each scan. 

The preparations and the test measurements that needed to be made were very time 
consuming; it took the author approximately four months to learn how to make DSC 
measurements that repreduced sufficiently. Normaly, a high reproducibility is achieved by 
using a high sample mass. However, this was not possible for batch 1 since we had to 
measure the samples on which the difftision measurements had been performed and there was 
not much material left. To optimize the reproducibility, the following measures were taken: 
1) The samples and the sample pans were handled with tweezers and layd down on a clean 
sheet of paper (never on the table; no tissue-paper!) to keep them free from grease and dust. 
2) The sample pans were placed exactly in the middle of the measure and reference cell. 
3) The samples were cut into small pieces with a surface area of typically 3 mm^ to be 
assured of a good heat contact at all times of the experiment; it was noted after one of the test 
measurements that the ribbon was buckled after the experiment, resulting in an inferior heat 
contact. 

4) The apparatus was not touched during a measurement. 

4.4 Results 

For both batches, the experimentally determined values of ACp are shown in table 1. The 
corresponding values of the free volume at the begiiming of the experiment are also given. 
For batch 1, the measured DSC scans are shown m figure 10. The DSC curves were corrected 
for a linear baseline drift: the values of the specific heat at the beginning and at the end of the 
DSC scan were made to fit the values found in an isothermal experiment. These values are 
Cp(320 K)=23.8 Jmof'K-' and Cp(630 K)=42.0 Jmor'K"' [30]. Note that this measure does 
not affect the height of the glass fransition peak ACp. The original DSC traces of the 
measurements on the samples of both the batches can be found in Appendix D. For batch 1 
the calculated reproductions of the DSC curves are shown in figure 11. The values of the free 
volume X at the beginning of the DSC experiment are indicated. 

18 



0.0600 

X 0.0620 f 

0.0600 J 

Figure 12: Results of the measurements of the free volume as a function of pressure for: 
a) batch 1 and b) batch 2. 



For both batches the values of x are shown as a function of pressure in table 1 and in 
figure 12. The error bars correspond to the error in the DSC measurements only. The error 
introduced by the pressure anneal is not known. The size of the error bars is estimated by the 
author on the basis of his experience with the DSC apparatus used. 

4.5 Discussion 

As can be seen from the DSC curves in figiure 13, the glass transition temperatures are 
different for both batches. We find Tg=(605+1) K for batch 1 and Tg=(612±l) K for batch 2. 
It has been shown by Tuinstra et al. [27] that Tg does not depend strongly on the amount of 
free volume at the beginning of the experiment. The difference in Tg indicates that the 
equilibrium defect concentration in batch 2 is higher than that in batch 1, that the kinetics are 
slower, or both. For practical reasons, we assume the difference to be due to slower kinetics 
only and hence we use a different activation energy in the rate factor (see eqn. (35)). 
For batch 1 Tg=605 K and we use Qr=l .65 eV/at as did Tuinstra for his DSC measurements 
on the same batch. For batch 2 Tg=612 K and we need to use Qr=l .72 eV/at to account for 
this shift in Tg. The values for Tg and Qr are also shown in table 2. 

Eqn. (34) can be integrated under the conditions of the pressure anneal. From previous 
measurements [27] we know that Vr=3.365-10^^ s"', Bt=3300 K and To=355 K . As described 
in section 4.3, the annealing time was 12 h and the annealing temperature 563 K . The 
migration volume in eqn. (35 ) and the formation volume in eqn. (36) are not known. We use 
them to fit the experimental data of figure 12. This is done in the following manner: 
1) First, AVp is estimated using eqn. (33) for p*'̂ =0 and a guess is made of the numerical 
value of A V M . 
2) For different values of the ambient pressure (p=0.1, 0 . 2 , 0 . 9 GPa), eqn. (34) is 
integrtated numerically under the conditions of the pressure anneal as mentioned above. As a 
result, a defect concentration is obtained as a ftinction of pressure. 
3) Using eqn. (29) the free volume is calculated from the defect concentration. Thus, the free 
volume is obtained as a function of pressure. 
4) The result is compared with the experimental data of figure 12. I f the fit does not look 
good, the numerical values of AVp and A V M are changed and the procedure is repeated from 
point 2). This procedure is repeated until an agreeable fit is obtained. The best fit can be 
found in figure 14 for both batches. 

Batch 1. For this batch, the value found for the formation volume is: 
AVF=(6+2) k \ 

The migration volume could not be determined in this manner because all physically realistic 
values of A V M yielded the same fit. 
The pressure dependence of the free volume is generally due to the pressure dependence of 
the equilibrium free volume and to the pressure dependence of the kinetics of the free volume 
on its way to equilibrium. The parameter that describes the pressure dependence of the 
kinetics is A V M - Since the value of A V M and thus the kinetics do not seem to influence the 
pressure dependence of the free volume in batch 1, we assume that the samples of batch 1 
were in equilibrium at the end of the pressure anneal. The pressure dependence of the free 
volume in the samples of batch 1 can well be represented by a linear relation, at least for 
pressures up to 0.75 GPa (see figure 14 a)). Hence, we have for the pressure constants of 
equation (40): 
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Figure 13: Illustration of the difference in the glass transition temperature for batch 1 
(Tg=605 K) and batch 2 (Tg=612 K). 

Table 1: Values of the peak height ACp and the free volume x at the beginning of the DSC 
scan for the different annealing pressures of a) batch 1 and b) batch 2. 

a) p (GPa) 0.02 0.23 0.43 0.75 
ACp (Jmor'K"') 26.36 29.09 31.82 35.91 
X 0.06295 0.06210 0.06153 0.06106 

b) p(GPa) 0.006 0.10 0.21 0.32 0.51 0.73 0.84 
ACp (Jmor'K"') 26.24 25.34 37.59 35.98 36.20 37.04 33.94 
X 0.06294 0.06314 0.06074 0.06102 0.06100 0.06084 0.06140 



Po=22.2 GPa and 
Bp=353 GPa. 

The errors in po and Bp are not indicated because the error in Xeq(0 GPa)=po/Bp at 563 K is 
very small, while the error in the slope 5xeq/9p is considerably larger. 
Putting the result 5xeq/öp=-l/Bp into eqn. (33) necessarily gives us back the result AVF=6 

Batch 2. The values for the formation and migration volumes for this batch are: 
AVF=(12±4)A^and 
A V M = ( 7 + 3 ) A I 

The curvature in the solid line in figiu-e 15 b) is due to the fact that batch 2 did not reach 
equilibrium under high pressures. This is due to two reasons. Firstly, the samples of batch 2 
were in the as-quenched state at the begiiming of the pressure anneal; they had not been pre-
annealed at 563 K and ambient pressure like the samples of batch 1 (see section 4.3.1). Since 
the amount of free volume in the as-quenched state is much higher (Xaq=0.082) than the 
equilibrium amount of free volume at 563 K (Xeq(563 K)=0.063), it takes much longer to 
reach the pressure dependent equilibrium from the as-quenched state. Secondly, the larger 
value of the activation energy in the rate factor (see above) makes the approach to equilibrium 
markedly slower. Equilibrium is still reached at lower pressures. Appearantly, the p A V M term 
only becomes important at pressures above, say, 0.3 GPa. Using AVM=0 or a very large 
annealing time in our calculation would yield the dashed line representing equilibrium in 
figure 14 b). The equilibrium line for batch 2 is markedly steeper. The numerical values of the 
pressure constants (see eqn. (40)) at 563 K are for batch 2: 

Po=10.5 GPa and 
Bp=167 GPa. 

The errors for po and Bp are not given for the reason mentioned when discussing batch 1. Why 
the best fit of the equilibrium line is so much steeper we do not know. Neither do we know 
why the scatter of the measurements on batch 2 is so much larger than that on batch 1 
(especially the difference between the points at p=0.10 GPa and p=0.21 GPa is rather 
striking). 

It is acknowledged that the fit of eqn. (34) to the experimental data of batch 2 is not 
satisfactory at all. One should bear this in mind when judging the importance of the resuhs 
obtained from this batch. Despite the poor agreement of the calculated curve with the 
measured points, the values found for AVp and A V M seem to be physically realistic. 

It is also acknowledged that the exponential dependence of the equilibrium free volume on 
pressure given by eqn. (38) could have been used instead of eqn. (40). However, this would 
yield quite the same result; as the exponential decreases towards x=0 at very high pressures, 
eqn. (40) is a good first order approximation of the exponential in the experimentally 
accessible range of pressures. The curvature of the solid line in figure 14 b) can not be 
described with eqn. (38), because the exponential decreases towards x=0 and not towards a 
value of the free volume around x=0.0605. 
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Figure 14: Results of the measurements of the free volume as a function of pressure for: 
a) batch 1 and b) batch 2 (after figure 12). The solid lines are fits to eqn. (38). The 
dashed line in b) is the tangent of the solid line at p=0. 



V THE IMPLICATIONS FOR THE DIFFUSION PROCESS 

5.1 The Results Concerning Diffusion Put Together 

Batch 1. On this batch Duine [28,31] has performed a set of measurements of the diffusivity 
of Au as a tunction of temperature and pressure. For the activation enthalpy was found 

AH=4.3 eV. 
Using BT=3300 K and To=355 K [27] we can calculate the formation enthalpy from eqn. (32). 
This gives: 

AHF=2.1 eV. 

Eqn. (12) then yields for the migration enthalpy: 
AHM=2.2 eV. 

The errors in A H , B T and To were not given by Duine. When necessary, we will estimate the 
relative errors in A H F and A H M to be 10%, which seems to be a realistic choice. 
For the activation volume was found (see figure 15): 

AV=(11±4) A l 

As can be foimd in section 4.5 we have found for the formation volume AVF=(6±2) A^ for 
batch 1. Eqn. (15) then yields for the migration volume: 

A V M = ( 5 ± 4 ) A I 

The activation enthalpies and volumes that we now know for batches 1 and 2 are put together 
in table 3. 

5.2 Checking the Keyes Relation 

5.2.1 The proportionality constant 
Batch 1. Using eqn. (20), we obtain for the process of formation of a defect: 

KF=(3.1+1.4) 

From eqn. (19), we get for the process of migration of a defect: 
KM=(2.5+2.0). 

The necessary data are taken from tables 3 and 4; the relative errors in AHp and A H M are 
taken to be 10% (see section 5.1). These results tell us that we have split AH in AHp and A H M 
from the temperature dependence of D and Cd in the same way as we have split AV in AVp and 
A V M from the pressure dependence of D and Cd. This result means that the way we use the 
free volume model to quantitatively describe the diffusion process, as a function of both 
temperature and pressure, is internally consistent. 

Batch 2. Since we assumed that for this batch the equilibrium free volume as a function of 
temperature is the same as for batch 1, the values of AHp are the same; see eqn. (32). The fact 
that we find different values for AVp for both batches indicates that this assumption is wrong. 
The best one could do to mend this is to assume that K , rather than AHp, is the same for both 
batches. However, there is not much to be gained from this approach and we did not persue it 
because of the practical difficulties involved. 

Since we do not know A V M for this batch, we can not check the Keyes relation for the 
migration process either. 
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Figure 15: The pressure dependence of the diffusivity of Au in amorphous Pd4oNi4oP2o at 
T=563 K. The dotted lines connect data that have been taken on a single sample [28]-

Table 2: Overview of some important temperature and pressure related parameters for 
amorphous Pd4oNi4oP2o-

T J K ) Q(eV) To(K) B T ( K ) Po(GPa) Bp (GPa) 

a) 605±1 1.65 355 3300 22.2 353 

b) 612+1 1.72 355 3300 10.5 167 

Table 3: Overview of the activation enthalpies and volumes for amorphous Pd4oNi4oP20-

A H ( e V ) A H F ( e V ) A H M ( e V ) AV(A^) A V F ( A ' ) A V M ( A ' ) 

a) 4.3 2.1 2.2 11±4 6±2 5±4 

b) — 2.1 — 12±4 7±3 

Table 4: Overview of some physical properties of amorphous Pd4oNi4oP2o at room 
temperature. The values of Cy and x are taken from Appendix E. 

M P[8] ay [31] Cy 
7^ , Y 

(gmol-') (kgm-^) (m^mol"') (K-') (Jmor'K'') (m^N"') 
72.236 9.4-10^ 7.7-10"̂  4.5-10"̂  22.5±1.0 (5.7±1.3)10''^ 2.7±0.7 

Table 5: The proportionality factor K , determined for batch 1. 

K F K M K 

3.1+1.4 2.5+2.0 4.7+1.4 



5.2.2 The Griineisen parameter 
We now check the vahdity of eqn. (24) for amorphous Pd4oNi4oP2o- Using the parameters 
from table 4, y can be calculated from eqn. (23), yielding: 

y=(2.7±0.7) 
at room temperature. The error in y is calculated by assuming a 5% error in the values of the 
parameters shown in table 4, hence the error in y is only a rough estimation. Since the 
temperature dependence of y is small in general, we expect its value to hold at 563 K as well. 
Eqn. (24) then gives us: 

K=(4.7+1.4) 

which is of the same order of magnitude as we have found experimentally for K F and K M : see 
table 4. 

It is noted that, in an amorphous struchire, the distribution of frequencies around a defect 
could be distinctly different from the average distribution. The occurrence of cooperative 
localised modes found in computer simulations is an indication that this is indeed the case. I f 
so, the overall Griineisen parameter calculated from eqn. (22) might not be the parameter of 
interst. 

5.3 Discussing the Defect Size 

The average atomic volxmie Q. of Pd4oNi4oP2o is: 
0=16Al 

Hence, the typical volume of the holes mentioned in section 2.4 is, expressed in terms of Q is: 
Vhole=0.3Q 

which is of the same order of magnitude as the activation volume of formation: 
AVF=0.4Q for batch land 
AVF=0.8i^ for batch 2. 

Relating eqn. (33) to eqn. (37), we can write for the minimal amount of free volume present 
at a defect: 

K* = V ^ - ^ (42) 

Taking 8=1, and using eqn. (30), this gives us for p^^=0 and T '̂̂ =563 K: 
Y*=2.2C1 for batch land 
v*=4.4n for batch 2. 

which seems to be too high to be physically feasible, confirming that eqn. (37) is not a good 
guess. 

In our free volume model, v* is the minimal amount of free volume present at a defect. As we 
mentioned in section 3.2, A V F corresponds to the change in volume of the structure when a 
defect is formed. Hence, we would expect v* and AVp to be correlated. It is derived in 
Appendix F that at atmospheric pressure and 563 K we should have: 

V*=3-10"^AVF. 

which seems to give a value for v* that is much too low. We have little idea about why our 
free volume model predicts a value for v* that is so physically unrealistic. Perhaps it has 
something to do with the notion of the formation of defects. We have assvuned that only 
atoms with a free volume Vf>v* are defects and that only those participate in diffusion. Now, 
consider again an atom that is nearly a defect. Not only is it unlikely that such an atom has no 
contribution to diffusion, but we can make it a defect by adding the slightest amount of free 
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volume. To say that a defect is thus created might just have more consequences than we can 
oversee. 

5.4 Which Entities Are Diffusing? 

The values of A H , A H M , A V and A V M for batch 1 (see table 3) correspond to the diffusion of 
Au in Pd4oNi4oP2o. The other values for the activation enthalpies and volumes correspond to 
the diffusion of defects in Pd4oNi4oP2o- Au is an element similar to Pd with respect to atomic 
size and mass. Therefore, we expect the values we have measured for Au diffusion to be valid 
for the diffusion of Pd atoms as well. How exactly the diffusion of defects relates to self-
diffusion is not obvious. The only reason why we do not treat them seperately is that we can 
not compare them but for one case: AVM '^"=(5±4) A^ for batch 1 and A V M ° ^ - ( 7 ± 3 ) A^ for 
batch 2. Al l we can say is that the order of magnitude is the same. 

5.5 Conclusions 

The equilibrium value of the free volume in amorphous Pd4oNi4oP2o has been shown to 
decrease with pressure. 
Whether this dependence is linear or not, we can not conclude from our measurements. 
The measurements on the two batches that have been investigated do not show the same 
results. Both the kinetics and the equilibrium properties seem to be different. Most strikingly, 
the glass transition temperatures differ 7 K. 
The activation voltmie for the formation of a defect is positive. Taking the result of the two 
batches together, we have: AVF=(0.6±0.3) Q.. 
The activation volume for migration is not zero. Again, taking the two batches together, we 
have: AVM=(0.4±0.3) Q. 
These resuhs suggest that the defects that govern diffusion are sites of loose packing (i.e. 
diffusion is indirect). However, the sites are not necessarily open spaces between the atoms of 
volume AVp. Hence, the results do not dfrectly support a vacancy-like mechanism for 
diffiision. 
The relation of Keyes was checked and found to be valid within the (rather large) tmcertainty 
limits. 

Two estimates of the minimal free volume present at a defect differ some six orders of 
magnitude. This groce inconsistency indicates that there is something wrong with our free 
volume model or with the way we use it. 
Whether the mechanism of diffusion is cooperative or single-atom can not be determined 
from the measurements we have performed. 
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VI THE CONCENTRATION DISTRIBUTION OF C O L L E C T I V E DEFECTS 

6.1 Introduction 

6. L1 Why define a collective defect? 
Measurements of the isotope effect have indicated that the mechanism of diffiision in 
amorphous metals is most probably collective; ten to thirty atoms seem to be involved in the 
difftision process. On the other hand, we have assumed that diffusion is governed by sites in 
the structure where the free volume of an atom satisfies the condition Vf>v*. We then have 
calculated the concenfration of such defects using a free volume model. Finally, we have 
simply taken the expression for the diffusivity for crystals and replaced the vacancy 
concentration by the concentration of defects that we have calculated. 

In principle, the approach is not inconsistent with the experimental observation. And what we 
are doing is not just calculating a vacancy concentration with a liquid model. Nevertheless, 
the approach is not very amorphous and this stimulated the author to defme a type of defect 
that is more collective in nature. The same free volume model was used to calculate the defect 
concentrations. 

6.1.2 Introducing an alternative notation 
Starting from eqn. (26), we defme 

(43) 
<Vf > 

in order to be able to write the free volume distribution function in a more convenient form 
for calculation: 

P{z)dz = e-'dz. (44) 
Next, we defme: 

^ c - £ — (45) 

and hence, we have for ci(zc), the probability of one atom having a free volume z>Zc: 
Ci(z.) = e-^S (46) 

which is completely equivalent with eqn. (29). Infroducing a new terminology, we say that 
eqn. (46) gives us the concenfration of defects of order 1, since we have looked at the 
probability of one atom having a free volume z>Zc. 

6.1.3 Definition of a collective defect of order n 
Let us consider an amorphous structure. We label all atoms that satisfy the condition z>Zc 

with n=l; they are the first order defects defined in the previous section. We now ask the 
question: how many pairs of the remaining atoms have a free volume of together that exceeds 
Zc? These pafrs must satisfy: 

Zi+Z2>z, . (47) 
We label all the atoms that satisfy this condition with n=2; they form second order defects. As 
with defects of order 1, their concenfration is defmed as the number of defects divided by the 
number of atoms. In this way, we continue tmtil all atoms are labeled. Note that it is inherent 
to the approach that every atom in the structure is part of some defect of some order n. 
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6.1.4 What we aimed for and what we achieved 
The original idea was to define a collective defect of order n as a group of n neighbouring 
atoms with the sum of their free volumes exceeding a critical value Zo. The critical value was 
taken to be independent of n. This assumption seemed physically plausible to us. Our 
approach immediately rose two questions: 
1) Regarding multiple counting: should we allow one particular atom to be part of two (or 
more) defects at the same time? and 
2) Regarding the geometry of a defect of order n>2: do we have to accotmt for the fact that 
defects of the same order can have different shapes? 

We decided not to allow muhiple counting. The reason for this decision is illustrated by an 
example: consider two groups of atoms, different in size, but with the same total amount of 
firee volume, exceeding Zc. We expect that the smaller group of the two is more likely to give 
a contribution to difftision than the larger group, because the packing of the group is more 
loose. For this reason we decided, as a furst order approximation, that any atom can only be 
part of one defect at a time, namely the smallest group of neighbouring atoms (of which the 
atom that we are considering is part) that has a free volume exceeding Zo. 

Finding the answer to question 2) was postponed until later. It was acknowledged that we 
could first calculate the probability for a group of n atoms to have a free volume exceeding Zc 
(without multiple cotmting) and worry about the possible shapes of this group later. The 
results of this calculation are shown in sections 6.2-6.6. However, this calculation turned out 
to be so time-consuming that when it was finished we did not have enough time left to 
consider the possible shapes of a group of n atoms. 

Along the way we realised that in our definition of a defect of order n (see section 6.1.3) we 
had not required the n atoms to be neighbours. Obviously, we should have. The problem is 
that we do not directly know how. It is expected that the average number of nearest 
neighbours will enter the calculation here. As a consolation we note that it can be done later; 
the appoach described in sections 6.2-6.6 is not affected. 

It is emphasized that the concentration distribution that we are about to calculate should later 
be modified on the two points mentioned in the last two paragraphs. 

6.2 An Exact Expression for Cn(Zc) in Integral Form 

We shall now calculate the concentration distribution Cn(zc) of collective defects. Consider a 
group of n atoms in a structure of N atoms with n « N . Now order this group according to 
their amount of free volume: 

z,>zj>--->z„. (48) 

Now define St as the largest sum of the free volumes of a selection of i atoms from the group 
of n atoms that we are considering: 

(49) 

(=1 
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There are two conditions that must be satisfied for this group to qualify as a defect of order n. 
First, we must have: 

S„>z,. (50) 

But this is not enough: there may still be an atom in this group for which Zi>Zc, and we have 
already counted these atoms as being first order defects. Since we did not allow an atom to be 
part of two defects at the same time, we must beware for this multiple counting. We must 
recognize that any selection of n-1 atoms or less poses a condition. However, the condition 
for the largest sum of n-J atoms 

S„_i = S „ < z ^ (51) 

is the strongest and it covers all others. Alternatively, we can write: 
Sn-Zc<Zn<S„ / n (52) 

where the last inequality expresses that Zn is the smallest of all Zi's. 

We have expressed all conditions in terms of the sum Sn of the free volumes of the n atoms in 
the defect and of the atom with the least free volume, Zn. 
We now calculate the probability that Sn lies between X and X+dX and, at the same time, that 
Zn lies between [i and \x+dix. This probability is given by: 

njd^ie-^^jdz.jdz^ •••jdz„_,exp{-S„_,). (53) 

The factor n in eqn. (53) accounts for the fact that we have defmed Zn to be the smallest of all 
Zi (see eqn. (48)). Incorporating the botmdary conditions imposed by eqn.s (50) and (52) into 
eqn. (53) gives us the concentration distribution we are looking for. This calculation can be 
found in Appendix F. The final result can be expressed in a relatively simple form: 

' = i ^ H - i ^ y ' (54) 

which is an exact result. 

This integral could be solved numerically, but we did not try. 

6.3 An Exact Expression for Cn(zc) as a Sommation 

Eqn. (54) can also be solved analytically. In a straightforward calculation, it is shown in 
Appendix G, that this leads to: 

c„(z,) = (n-ir 'e-^c(_i)n e x p f - ^ l - y l f - ^ y . (55) 

I n-v J 
This equation is of a rather peculiar form. The expression between braces consists of an 
exponent subtracted with its Taylor approximation of order n-1; the expression is positive 
when n is even and negative when n is odd. The term (-1)" makes Cn(zc) positive for all n. Of 
course, since Cn(Zc) is a concentration, it should be. 

We can calculate eqn. (55) with an ordinary spreadsheet programme, but only for relatively 
small n. The reason for this is that most computer programmes use a Taylor approximation 
for the exponential itself; this will instantly give Cn(zc)=0 when the Taylor approximation that 
the programme uses is of the same order as the defect of which we are trying to calculate the 
concentration. 

When we replace the exponential in eqn. (55) by its Taylor expansion around zero, we get: 
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Figure 16: Plot of the exact solution of a) Cn(12) and b) Cn(18). 



c„(z,) = (n - i r^e-^^H)" £ - 1 (56) 

This expression can also be calculated using a spreadsheet programme, but this is not very 
practical for small n; since the Taylor approximation is taken around zero, we need a lot of 
terms for an accurate result. 

hi figure 16 we have calculated Cn(Zo) with eqn. (55 ) for n<6 and we used eqn. (56) for n>6 
for two values of Zc; Zc=12 corresponds to the free volume in the as-quenched state of 
amorphous Pd4oNi4oP20 and Zc=18 corresponds to the equilibrium state at 540 K, the lower 
limit of the equilibrium temperature range. It was checked i f the numerical value of C6(12) 
was the same when calculated from eqn. (55) and from eqn. (56); this was indeed the case. 

6.4 The Tailor Approximation 

Let us consider the function 

f(z^) = exp 
n -1 

Its standard Taylor expansion of order n-1 around zero is given by: 
n-1 , 

/ •=0 ' n - 1 
+ /?n-l(^c) 

where Rn-i is the Lagrangian rest, given by: 

dz" 

with ^=^(n,Zc); ^ is defined to make eqn. (58) exact. For f(zc), we have: 
d"f{z. 

• = (-!)"• 
1 

-exp -
dz^ (n-1)" I n - 1 

and hence, we have for eqn. (59): 

V i ( ^ c ) = ( - i ) " - ^ 
nl n - 1 

exp 
n -1 

Putting eqn.s (58) and (61) into (55), we get: 
1 „ r ^ 

(n-1)n! 
z^e'^' expj 

n - 1 

which is still an exact result. It can be approximated by taking ^=0, which yields: 

(n-1)n! 

(57) 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

This approximation becomes more accurate for larger n, since we have made a Taylor 
expansion around zero. The accuracy of eqn. (63) is illustrated in figure 17, where eqn. (63) is 
compared to the exact solution of eqn. (54). 

6.5 Characteristics of the Exact Solution 

Perhaps the most striking feature of the concentration distribution is the clear maximum that 
is found for the probability of finding defects that are approximately of order 

n=Zc (64) 
According to this, the position of the maximum changes with the amount of free volume Zc. 
this is indeed the case, as is shown in figure 18. 
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Now why do we find a maximum? Obviously, the probability of two atoms having zi+Z2>Zc is 
much bigger than one atom having zi>Zc; this is inherent to the free volume distribution itself 
The reason that the probability Cn decreases for large n lies in our definition of a collective 
defect. This is most clear for a finite collection of atoms, as discussed in § 6.1. For increasing 
n, there are increasingly less atoms left to table and for some large n, we will even have Cn=0. 
In fact, we already have Cn«0 for n>2zc. 

The distribution is also surprisingly symmetrical around its maximum. The width of the peak 
is therefore a well-defmed characteristic. In this case, the most practical definition of the 
width of the curve is the distance between the points of inflection. Since n is an integer, the 
second differential of Cn(Zc) with respect to n is given by: 

= c..,(^c) - 2c„ ( z , ) + c „ _ , ( z , ) . (65) 
an 

The points of inflection are then given by: 

(^^) 

For convenience, we take the Taylor approximation for Cn(zc) and put it into eqn. (65). The 
condition (66) then gives: 

I f we take n as a continuous variable, eqn. (67) has two solutions, ni and na (we defme ni<n2), 

for every value of Zc. The distance between the points of inflection is then given by: 

An = n2 -ni . (68) 

For physically realistic values of Zc, ni and na are shown in table 6, together with An. In figure 

18 An is shown as a ftinction of Zc for the values in table 6, with a linear fit. The fit yields: 
A/7 = 0.253z^ + 4.074 . (69) 

The concentration of defects of order n is Cn(zc). Since there are n atoms in a defect of order n, 
ncn(zc) gives the concentration of atoms that are part of a defect of order n. Due to our 
definition of a defect, every atom in the structure belongs to one defect of a certain order n. 
Since the concentration of atoms must be equal to one, the concentration distribution must be 
normalised to: 

CO 
Z"^"(^c) = l. (70) 

This normalisation can be used to check the correctness of an exact solution or the accuracy 
of an approximation. 

The symmetry of the distribution around its maximum Zc=n tells us that the average defect is 
of order n«Zc. Since every atom is part of a defect, the total defect concentration must be close 
to 1/zc: 

X c „ ( z J « z ; ' (71) 
n=1 

where we have cut off the sommation at 2zc, since Cn(zo) is effectively zero for n>2zc. This 
expression may be of more practical use than eqn. (70). 
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Figure 18: Plot of the peak width as a function of Zc. 

Table 6: The peak width An as a function of Zc. 

Zc tl] n2 An 
12 6.8 13.8 7.0 
13 7.7 15.0 7.3 
14 8.5 16.1 7.6 
15 9.4 17.3 7.9 
16 10.3 18.4 8.1 
17 11.2 19.6 8.4 
18 12.1 20.7 8.6 



6.6 The Gaussian Approximation of c„(Zc) 

The shape of the concentration distribution rather resembles that of a Gaussian. Since a 
Gaussian is mathematically much more convenient to handle than our Taylor approximation, 
we shall try to fit a Gaussian to the exact solution. The general expression for a Gaussian 
concentration distribution is: 

(72) exp 
U n-n' 

2 

where A is the normalisation constant of the Gaussian, <n> is the average order of a defect 
and G is the standard deviation. A, <n> and a are calculated for the exact solution using: 

^ - i ^ n (73) 

V'i=i 

'>-<n>' 

where we have used 
00 

n=^ Vn=1 y 

(74) 

(75) 

(76) 

This yielded A=0.0903, <n>=l 1.07 and (j=3.401. In figure 19, the Gaussian approximation is 
shown for these parameters compared to the exact solution of figure 17 for Zc=12 and Zc=18. 

6.7 Discussion 

Checking the normalisation with eqn. (70) yields: 
25 

2 ] n c „ (12) = 0.99 for the e xact solution, 
n=2 
25 

^ n c „ (12) = 110 for the Taylor approximation and 
n=2 
25 

^ /7c „ (12) = 0.99 for the Gaussian approximation. 

Taking the sum over a wider range of values of n does not change the outcome significantly. 
The result indicates that the calculation that lead to the exact solution was correct and that the 
Taylor and Gaussian approximations seem to be accurate enough to be usefiil. 

It is inherent to the treatment that every atom in the structure is part of a defect and every 
atom therefore contributes to diffusion. At first sight, this concept may seem to be unrealistic. 
On second thought, however, it is not necessarily wrong. Although the meaning of the word 
defect is indeed lost, we have no strong indication that there are atoms present in the 
amorphous structure whose equilibrium positions can not change at all at any certain time. 
One may argue that too small changes in the equilibrium position do not qualify as diffusion, 
but this is only a practical matter. 

The key result of our calculation is that for Pd4oNi4oP2o, defects defmed by typically 5 to 20 
atoms in the as-quenched state and typically 10 to 25 atoms in equilibrium at 540 K have a 
concentration that is much bigger than that of any other defect size. This result seems to be in 
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Figure 19: Plot of the Gaussian approximation (solid line) of a) Cn(12) and b) Cn(18). 
The marker points represent the exact solution of figure 17. 



clear agreement with the results of the measurements of the isotope effect. It is noted, 
however, that the migration enthalpy, the attempt frequency and the jump distance may all 
depend on the order of the defect as well and these parameters determine the contribution to 
diffusion of the defects. 

In fact, at least one of these parameters must have an n-dependence to make this model agree 
with the experimental diffiision data. For i f every defect had the same contribution to 
diffusion, the only parameter of interest would be the sum of the concenfrations of all the 
defects, which is roughly Zc"', and hence the whole calculation would collapse. And this 
would be inconsistent with the experimental observation, since the diffrisivity does not 
depend linearly up on Z c ' \ 

In the past, a Gaussian distribution of migration enthalpies has been introduced by Knuyt et 
al. [35]. It has not been attempted to make a qualitative model of difftision by putting the 
resuh of the present calculation, together with a Gaussian distribution of migration enthalpies 
into a diffusion equation. Originally, this was the aim, but there was not enough time for even 
a preliminary attempt. 
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APPENDIX A 

The starting point for this derivation is the Arrhenius equation: 
f 

D(r) = D„ exp 

with 

Dq = abX'vexpl 

(A.1) 

(A.2) 

where a is a geometrical factor, b is a correlation factor, X is the jump distance, v is the 
attempt frequency and AS is the activation entropy. Combining eqn.s (A.l) and (A.2 ) and 
taking the logarithm yields: 

(A.3) ln(D) = ln(a6A,2v)-. 

We now use the thermo-djTiamical relations 
C = A7-rs 

and 

V = 
dp 

(A.4) 

(A.5) 

and putting eqn. (A.3) and eqn. (A.4) into eqn. (A.5), we get for an isothermal process: 
r . . , s -1 

AV = 'd{AH-TAS)^ 

dp 
= -kJ 

I 5p 

d\x\[abV-v) 

dp 
(A.6) 

Neglecting the pressure dependence of the jump distance and the attempt frequency gives: 
^d\nD^ 

AV =-kJ 
dp 

(A.7) 



APPENDIX B 

Derivation of Equation (38) 

The bulk modulus B is defined as: 

Consider an amorphous structure of N atoms. The volume can be thought to consist of two 
contributions: the volume of the ideally amorphous structure Vid and the free volume Vf= 
N<Vf> (where <Vf> is the average free volume per atom). Hence, we have: 

V=V;j+N<Vf> (B.2) 

From eqn.(B.l) and eqn.(B.2), we have: 

V dp V dp (^-^^ 

for which we can write: 

- ' - - ^ ^ (B.4) 

where we have used V=NQ (Q is the atomic volume) and Bg is the bulk modulus of the 
ideally amorphous structure. 

From this equation, the dependence of the free volume on pressure can be calculated. 
Measurements of Young's modulus as a function of the free volume have indicated that the 
relation between these two quantities is linear. Assuming that this is also the case for the bulk 
modulus, we have: 

B = B,-c<Vf> (B.5) 

where c is a positive constant. Putting this into eqn.(B.4), we have for the pressure 
dependence of the free volume: 

B„ 

d <Vf > Q. '' \ ^ f 

dp B, 
1 - ' 

i-(c<K, > / e j 

The approximation holds when Bo»c<Vf> . Defining c'scQ/Bo^, we have in terms of the 
reduced free volume x: 

dx 

^ = - ^ ^ (B-7) 

which we can integrate to give: 
x(pT) = x(OT)exp(-c'p) (B.8) 

23 March 1992 
A. van den Beukel 



APPENDIX C 

The Temperature and Pressure as a Function of Time 
during the Pressure Anneals 
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APPENDIX D 

The Original DSC Measurements 



Pd40Ni40P20-SF2-SR40-ESP42-27.06 
Mass = 9.341 mg Molweight = 73.466 g/moI 
Heating Rate = 40.00 K/min Cooling Rate = 40,00 K/min 
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Pd40Ni40P20-SF2-SR40-ES43-01.07 
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Pd40Ni40P20-SF2-SR40-ESP45-28.06 
Mass= 6.424 mg Molweight = 73.466 g/mol 
Heating Rates 40.00 K/min Cooling Rate = 40.00 K/min 
Tmin = 320.0 K Tmax = 840.0 K 
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Pd40Ni40P20-SF2-SR40-ESP46-28.06 
Mass = 14.446 mg Molweight = 73.466 g/mol Saphir Mass = 33.958 mg 
Heating Rates 40.00 K/min Cooling Rate = 40,00 K/min Range = 10.0 mcal/s 
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Pd40Ni40P20-SF2-SR40-ESP67-27.07 
Mass= 19.872 mg Molweight = 73.466 g/moI Saphir Mass = 33.958 mg 
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Pd40Ni40P20~SF2-SR40-ESP68-27.07 
Mass= 19.383 mg Molweighl = 73.466 g/mol Saphir Mass = 33.958 mg 
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Pd40Ni40P20-SF2-SR40-ESP62-26.07 
Masss 19.972 mg Molweight = 73.486 g/mol Saphir Mass = 33.958 mg 
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Pd40Ni40P20-SF2-SR40-ESP63-26.07 
Mass= 21.283 mg Molweight = 73.466 g/mol 
Heating Rate = 40.00 K/min Cooling Rate = 40.00 K/min 
Tmin = 320.0 K Tmax = 640.0 K 

Saphir Mass = 33.958 
Range = 10.0 mcal/s 

100 

80 F 

1-1 
' o 

s 

ff» 

a 
o 

60 F 

4 0 F 

20 

O - P — I — I — I — I — \ 1 ! I I [ • 

3 5 0 4 0 0 450 500 550 

Temperatur, K 

600 



Pd40Ni40P20-SF2-SR40-ESP64-26.07 
Mass= 24.018 mg Molweight s 73.466 g/mol 
Heating Rate = 40.00 K/min Cooling Rate = 40.00 K/min 
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Pd40Ni40P20-SF2-SR40~ESP50-22.07 
Mass = 19.206 mg Molweight = 73.466 g/mol 
Heating Rate = 40.00 K/min Cooling Rate = 40.00 K/min 
Tmin = 320.0 K Tmax = 640.0 K 
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Pd40Ni40P20-SF2-SR40-ESP51-22.07 
Mass = 20.472 mg Molweight = 73.466 g/mol 
Heating Rate = 40.00 K/min Cooling Rate = 40.00 K/min 
Tmin = 320.0 K Tmax = 640.0 K 

Saphir Mass = 33.958 mg 
Range = 10.0 mcal/s 
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Pd40Ni40P20-SF2-SR40-ESP52-23.07 
Masss 21.740 mg Molweighl = 73.466 g/mol Saphir Mass = 33.958 mg 
Healing Rale = 40.00 K/min Cooling Rate = 40.00 K/min Range = 10.0 mcal/s 
Tmin = 320.0 K Tmax = 640.0 K p . ? ZOO 4a\ 

100 I T - 1 — I — I — I — I — I — I — I — I — I — I — 1 — 1 — I — I — I — I — I — 1 — I — I — I — I — 1 — \ — 1 — I — t — T 

- Cp"" = 79.2 Jmol-'K-' 
80 -

20 h 

0 -P—J " 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 I I I I I I I I 1 L 

350 400 450 500 550 600 

Temperatur, K 



Pd40Ni40P20-SF2-SR40-ESP59-25.07 
Mass = 21.040 mg Molweight = 73.466 g/moI 
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Pd40Ni40P20-SF2-SR40-ESP60-25.07 
Mass = 20.678 mg Molweight = 73.466 g/mol Saphir Mass = 33.958 mg 
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Pd40Ni40P20-SF2-SR40-ESP61-26.07 
Mas3 = 17.466 mg Molweight = 73.466 g/mol 
Heating Rate = 40.00 K/min Cooling Rate = 40.00 K/min 
Tmin = 320.0 K Tmax = 640.0 K 

Saphir Mass = 33.958 mg 
Range = 10.0 mcal/s 
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Pd40Ni40P20~SF2~SR40-ESP56-23.07 
Mass = 20.055 mg Molweight = 73.466 g/mol Saphir Mass = 33.958 mg 
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Pd40Ni40P20-SF2-SR40-ESP57-23.07 
Mass = 21.167 mg 
Heating Rate = 40.00 K/min 
Tmin = 320.0 K 
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Pd40Ni40P20-SF2-SR40-ESP58-23.07 
Mass = 18.846 mg Molweight = 73.466 g/moI 
Heating Rate = 40;00 K/min Cooling Rate = 40.00 K/min 
Tmin = 320.0 K Tmax = 640.0 K 

Saphir Mass = 33.958 mg 
Range = 10.0 mcal/s 
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Pd40Ni40P20-SF2-SR40-ESP53-23.07 
Mass= 22.522 mg Molweight = 73.466 g/mol 
Heating Rate = 40.00 K/min Cooling Rate = 40.00 K/min 
Tmin = 320.0 K Tmax = 640.0 K 
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Pd40Ni40P20-SF2-SR40-ESP54~23.07 
Mass= 19.938 mg Molweight = 73.466 g/mol 
Heating Rate = 40.00 K/min Cooling Rate = 40.00 K/min 
Tmin = 320.0 K Tmax = 640.0 K 

Saphir Mass = 33.958 
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Pd40Ni40P20-SF2-SR40-ESP55-23.07 
Mass = 20.097 mg 
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Tmin = 320.0 K 

Molweight = 73.466 g/mol 
Cooling Rate = 40.00 K/min 
Tmax = 640.0 K 

100 r \ I — I — I — I — I — i — I — I — I — i — I — I — I — — I — r 

80 

I 

B 

o 

60 P 

4 0 P 

20 

0 

Cp-" = 81.0 Jmol-'K-

Saphir Mass = 33.958 mg 
Range = 10.0 mcal/s 

1 — I — 1 — I — \ — 1 — I — n 

J — 1 1 1 — 1 — I — I — I — I — ! — I — 1 — 1 — I — I I I I I I - J I I L 

350 400 450 500 550 

Temperatur, K 

600 



APPENDIX E 

Estimating % for Pd4oNi4oP2o at room temperature 
In order to calculate the compressibility x for Pd4oNi4oP2o at room temperature, we first 
calculate Young's modulus using the equation 

^ = 9^1 (E.l) 
and the previous results p=9.4-10^ kg m"̂  and V L ^ = ( 1 0.10+0.09) m^ s"' [8]. Assuming a 5% 
relative error in p results in E=(9.5±0.5)-10^° Pa. 
We now calculate the bulk modulus B T using the equation 

where v is Poisson's constant. Using v=0.41 [33] and assuming a 5% error in v, we have 
BT=(1.76±0.40)-10"'' Pa, which is in good agreement with the result BT=1.82*10"" Pa, found 
for PdCuSi [34]. Finally, we use 

X^Bj' (E.3) 

to obtain x=(5.7±1.3)-10"'^ m^ N"^ for Pd4oNi4oP2o at room temperature. 

Estimating Cy for Pd4oNi4oP2o at room temperature 
The specific heat at constant volume, Cy [Jmor'K''] is related to the specific heat at constant 
pressure, Cp [Jmol'^K"'] by the relation 

Cp(r) = Cy(r){l + jayT) (E.4) 

where ay [K' ' ] is the volume expansion coefficient and y is the Griineisen constant, for which 
we can write: 

^ XCy (E.5) 

where [m^mol''] is the molar volume and x [m^N''] the compressibility. From eqn.s (E.4) 
aand (E.5) we can write for Cy at room temperature: 

Cy(r,) = Cp(r,)-T, V „ 4 
(E.6) 

Cp was measured for Pd4oNi4oP2o by Zappel [30] over the temperature range 320 K-490 K and 
was found to be linearly dependent on temperature: 

Cp(r) = A + BT (E.7) 

with A=(l 7.45610.843) Jmof'K'' andB=(19.810±0.854)-10'^ Jmor'K'^. 
I f we assume eqn. (E.7) to be valid at room temperature, we get 

Cp(293 K)=(23.3±0.9) Jmol'^K''. 
With eqn. (E.6) and the values for Vm, ay and x from table 4, we obtain 

Cy(293 K)=(22.5+0.9) Jmof'K''. 
The error will be an underestimation, since eqn. (E.7) at 293 K while it is found for the 
temperature range 320 K- 490 K. We therefore increase the error from 0.9 to 1.0 (which is 
rather arbitrary); hence, we have: 

Cy(293 K)=(22.5±1.0) Jmof'K''. 



APPENDIX F 

Let us consider an amorphous structure of N atoms. The number of defects is then given by: 

Nc, = N expj sv • 

<Vf > 
(F.l) 

To create one extra defect, need to perform an amount of work against the pressure equal 
to pAVp, where AVp is equal to the increase in volume on the formation of a defect. Hence, 
due to this process, the average free volume per atom in the sample increases by AVp/N. This 
gives: 

Nc, + 1 = /V exp sv 

<Vf >+AVp / N 

Deviding eqn. E.2 by eqn. E.l gives: 

1 
• = exp sv 

1 

for which we can write: 

1 + -
1 

• = exp 

<Vf > <Vf >+AVf / N 

sv* AVp/N 

<Vf >(<Vf >+AVp / N)) 
••^ + • 

sv*AVp / N 

<Vf >{<Vf >+AVp / N) 

(F.2) 

(F.3) 

(F-4) 

where the last step is justified, because N c d » l , which means that the expression far left is 
close to zero; the argument of the exponent is then necessarily small. We have: 

<Vf>i<Vp>^AVp/N)^ <Vf>' 

sv* AVp/N sv* AVp/N 

where the last approximation is justified because ( < V f > ) » A V p / N . Hence, we have: 

sv*AVpC,=<Vf>' (F.6) 

which, using eqn.(E.l) and <Vf>=sv*x, we get: 

(F.7) sv* AVp exp — ^ \ = (sv* xV 
X 

or, in terms ofv*: 
e x p ( - 1 / x ) 

AV, 
sx 

(F.8) 

which should be independent of x. Since we have calculated our effective value of AVp at 
x=Xeq(0 Pa,563 K)=0.0629, we should take this value to check the equation. We have: 

(F.9) 



APPENDIX G 

We shall here incorporate the boundary conditions 

S„-z,<z„<SJn 

into the expression 

nd^ie-^\dz,\ dz2--- jdz„_, exp(-S„_,) (G.2) 

which will give us the concentration distribution Cn(zc). For Sn-i, we have the restriction 
X-{lx+dy.)<S,_,<{X + dk)-ix. (G.3) 

The d[i term will only give rise to a second order term, so we drop it (we will come back to 
this later) and hence we have: 

l-H<S,_,<X-ii + dk. (GA) 

Bearing this condition in mind, we substitute Sn-i=A,-|i in eqn. G.2 and get: 
00 CO 

ndixe~^ dz-f--- dz„_f 

i (G.5) 

{X-ix<S„_,<X-ix + d^i) 

where we have used that zi...Zn-i<Zn and n<Zn<\x+d\x. We can split eqn. G.5 in two parts: 
CO CO CO CO 

nd^xe~^Udz^•••jdz„_.^ - J c f e , • • • | c f e „ _ , • 

Lt> M M M J 

{S„_,<X-ix + dX) {S„_,<X-y.) 

Let us concentrate on the second term between braces for a while: 

(G.6) 

_ dz, • • • | c / z „ _ , 

{S,_,<X-^) 

and let us introduce the unit step function 9(t), defmed as: 
9(0= 0 for t<0 

1 for t > 0 

with eqn. G.8, eqn. G.7 can be written as: 
CO 00 

'dz,---jdz,_,e(X-ix-S„_,). (G.9) 

v- n 
To get rid of the lower integral boundary, we make the substitutions: 

(G.7) 

(G.8) 

(G.IO) 

V i ' = i ; ^ ; ' = 5„_i-(n-1)H 
/=i 

with eqn. G.IO, eqn. G.9 can be written as: 

^dz,' • • •Jc/z„_, ' e (^-nn-S,V) 
0 0 

This integral can be simplified dramatically. To show this, we make a small excursion. 



We now calculate the integral 
CO CO CO 

'dzJdz2\ dz^ f dz^ e(p - S 4 ) 
0 0 0 0 

bearing in mind the order of integration, we have: 

dSj =dz2 

dSj =dz^ 

dS4 =dz^ 

S,=z, 

52 = z , +Z2 

53 = Z i + Z 2 +Z3 

54 = Z , +Z2 +Z3 +Z4 

and hence, we have: 

" dS, ƒ dSj ƒ C/S3 ƒ C/S4 e(p - S4) = ƒ O'S, ƒ cyS21 <:/S3 ƒ C/S4 0(p - S3) 

0 S, Sj S3 0 5, Sj S3 

CO CO CO 00 CO p 

= _' c/s, ƒ dSa ƒ o'S3 (p - S3 )e(p - S3)=J ds, j dS2 j ds, (p - S3 )e(p - S j ) 
0 S, S2 0 S, $2 

- i P 00 00 

e(p - S2) = ƒ ds, ƒ dS2 j (p - S2) 2 e(p - S2) 

O S , 

00 CO 

j(P-S3)^ = 'dsJdS: 

0 s, 

CO p 

= • c / S , f c / S 2 - ( p - S 2 ) ' 0 ( p - S , ) = f d S , 
J J 7 J 0 

ie(p-s,) 

= JdSi I(p - Si)^e(p - S i ) = ƒ ds, I(p - s,)3 = 

so in general, we have: 
CO CO 

/ c y z , . - . J d z „ e ( p - s j = 

=-Lp^ = Pl 
24 4! 

nl 
0 0 

* * * * * * * * * * : ( : * * * * * * * * * * * * * * * * * * * * * * * * * * * * * - ) : * * * * * * ; j : : j : s ( : ^ ^ ^ ^ ^ : ^ 

and hence, we can write for eqn. G. 11: 

'c/z,' . . .Jdz„,' e(^-nn-S„,') = ̂ ^ ^ ^ ^ (G.U) 
0 0 I " 

with which we can vrate for eqn. G.6: 

which is, in first order, equal to: 

-^1 1 „..\n-2. 

n c / ^ e - ^ ^ — - 1 ) ( ^ - n^ir'dl 

"̂ ^ (G.13) 
-e~^(X,-nn)''-''c*.c/^ 

( n - 2 ) ! 

Here, we see that i f we would have kept the term d|i in eqn. G.4, all the way through to 
eqn.(E.14), it not have changed the first order approach of eqn. G.15. 

Finally, we have arrived at a point where we can comfortably incorporate the boundary 
conditions G.l and G.2. Doing so, we have: 



tc X/n / N 

= 'dK f c y ^ t - ^ e - ^ ( X - n M r ^ e P - z , -X\ (G.14) 

(G.15) 

2, X-Z^ 

Substituting u=A,-n|i, we can write: 
n 

[ 0 

n 
— 

= — ^ " d^e — inz, - (n -1)^)""' 
(n-2)! J n - r ^ 

Finally, we make the substitution v=nzc-(n-l)A,, with which we have: 

c„(^c) = 7 zr. rrexp — — z , \dvexp — /""^ (G.16) 

which is the expression we were looking for. 



APPENDIX H 

We shall here analytically solve the integral 

Taking the T' partial derivative of /gives us: 

/ = ( n - l ) e x p v"-̂  - 'dv(n-1)exp (n-1)v"-^ 
0 0 V n - V 

Taking the 2"'' partial derivative of /gives us for the integral within /: 

- ( n - 1 ) 2 e x p f ^ l ( n - 1 ) v ' n-2 

0 0 

+ Jc / \ / (n - l )^expf - -^J(n-1) (n-2)v"-^ 

(H.1) 

(H.2) 

(H.3) 

the (n-2)"' partial derivative of I adds: 

(-1)''-^(n -1)"-^ exp — in - 1)(n - 2) • • • (3)v^ 
n — 1, 

the (n-1)' partial derivative of/adds: 

(n -1)"-^ exp| |(n - 1)(n - 2) • • • {2)v 
. n - 1 

+ (-1)"-^ \dv{n -1)"-2 exp ^ (n - 1) • •. (3)(2) 
0 V n - V 

(H.4) 

and finally, the n"' partial derivative of /adds: 

( - r - \ n - r e x p | - - ^ | ( n - 1 ) - - . ( 2 ) ( 1 ) 

Putting all this together, we have for /: 

/ = 

+ (-1)"-Ucyv/(/7-r-^exp — ( n - 1 ) . . . (2)0) 

(H.5) 

(H.6) 

e x p f - ^ J { ( n - 1)v"-' - (n - 1)'(n -1)^"-^ + • • • + (-1)"-2(n - ^ - ^ n -1 ) • • • {2)v + H)"-Hn - l)''(n -1) • • • (2)(1)} 

e x p | ^ ^ J { ( n - 1 ) z r ' -(n- f { n - \)z",-' +••• + (-l)"-^(n - 1 ) " " ^ -1 ) • • • (2)z, + ( - D ' - ^ n - 1)"(n -1) • • • (2)(1)' 

+ ( - 1 ) " ( n - r ( n - 1 ) . . - ( 2 ) ( 1 ) 

(n-1)"(n-1)!exp 
n - 1 

- r exp -

(n-1)"(n-1)!exp — ^ 
n - l 

n - 1 
1 -1-

^ n - l j ^ n - l j 
+ • • • + -

( n - 1 ) ! 
(-1) 

n-1 

- r exp 
n-1 , r ^ -\ 

V n - 1 y 

For the defect concentration distribution, we had, in integral form: 

, s 1 

( n - 1 ) ( n - 1 ) ! 
exp 

and after evaluating the integral, we have: 

c „ ( z J = (n-1)"-'e-^M-1)"jexp - - ^ - ^ ^ 

which is the expression we were looking for. 

(H.7) 

(H.8) 

(H.9) 


