
Delft University of Technology

Mechanical Engineering Faculty

Reducing the Sim-to-Real Gap:

Lidar-Based 3D Static Environment

Reconstruction

by

Joost Zaalberg

to obtain the degree of

Master of Science

at the Delft University of Technology

to be defended publicly on Friday, August 23, 2024, at 10:00.

Student Number: 4464761
Submission Date: August 17, 2024
Thesis Commitee: Dr. Holger Caesar TU Delft Supervisor

Dr. Son Tong SISW, Supervisor
Dr. Michael Weinmann TU Delft

Reducing the Sim-to-Real Gap: Lidar-Based 3D Static Environment
Reconstruction

Joost Zaalberg
TU Delft

Dr. Holger Caesar
Supervisor
TU Delft

Dr. Son Tong
Company Supervisor

SISW

Abstract

This paper presents a method that shows how a lidar-
based 3D static environment can be constructed from a driv-
ing scenario and is used to aid in the creation of a digital
twin from that scenario. Built with limited computational
resources in mind, the resulting 3D static background re-
construction method is lightweight and nonetheless up to
par with similar works, proving itself to be a viable alter-
native to similar methods. It uses ground truth labels and
open-source, out-of-the-box working building blocks to cre-
ate the pipeline that filters the lidar frames, performs reg-
istration between those frames, and meshes the resulting
point cloud into a 3D mesh of the static background. We
performed experiments in the Siemens Prescan ADAS Simu-
lator of a reenactment of the traffic scenario in combination
with our 3D static background and measured the inference
domain gap using the Bidirectional Chamfer Distance and
a real-data trained object detector, comparing both the syn-
thetic and original data. Using Prescan as the simulator,
AD models van be evaluated closed-loop. This work opens
up the possibilities of applying sensor domain shifts to ex-
isting data or creating reality-based traffic scenarios from
existing traffic scenarios and their corresponding 3D static
background of edge cases that do not, or too little, exist in
real-world data.

1. Introduction

Training an Autonomous Driving (AD) model requires a
lot of data, and as the amount of data increases, so does the
reliability and safety of the model [15]. As the model needs
to be deployed in the real world, it is commonly trained us-
ing real-world data. However, not all the required data is
always available from a real-world dataset, as rare driving
scenarios are often missing, such as encountering wrong-
way drivers, being cut off dangerously or emergency vehi-
cles passing through in a hurry. It would be expensive to

reenact and gather this data in the real world, if not impos-
sible. Training and validating your AD model on such data
is important to ensure it knows how to act on all these long-
tail driving scenarios. One way of reducing this problem
is by using synthetic datasets created using a simulator. It
has been shown that using synthetic datasets can improve
the performance of these AD models. [11, 12]. Creating
these synthetic datasets brings new challenges, including
minimising the domain gap between the synthetic dataset
and the real-world data, which we will address in this paper.
Suppose the data can realistically be produced using a simu-
lator. In that case, it means that more data can be produced
for the training and validation of AD models, resulting in
higher performance due to higher generalisation [20].

Many corner-case scenarios are underrepresented or not
represented at all, which is a problem. Some corner cases
can be hazardous, such as the scenarios as mentioned above.
This problem can be reduced using synthetic datasets from
a simulator. Using a simulator, synthetic data can safely
be generated of corner cases that would otherwise be too
dangerous to reenact while keeping costs down.

Another use case of simulation are sensor domain shifts.
A dataset collected with one set of sensors is unsuitable for
training an AD model that uses another set of sensors be-
cause it suffers a severe performance drop with such cross-
domain shifts [22]. Given that vehicles and their percep-
tion equipment get more advanced, these domain shifts are
inevitable, rendering older datasets collected with the previ-
ous equipment useless. By recreating the scenarios from the
old dataset in simulation, the data can be recollected using
the new equipment’s parameters. This way, the data from
the old, real-world data set is shifted into the new domain
as a synthetic dataset, making it fit for training the AD mod-
els of new equipment.

The more the domain gap between simulation and real
data is closed, the more realistic the simulation data be-
comes. When fully closed, an AD model can be trained and
validated using a synthetic dataset, without compromising
safety and reliability. Unfortunately, this is not yet possible,

as synthetic data still differs from real data one way or an-
other. Currently, synthetic datasets can be used to improve
an AD model trained only on real-world data [11]. This pa-
per focuses on reconstructing the static environment from a
dataset scenario using mainly lidar data. This can be used
in simulation to help close the sim-to-real gap by adding
a real-world-based, and therefore more realistic, 3D mesh
background.

Contribution. (1) In this paper, we provide a method
to recreate the static environment of a driving scenario. (2)
The research shows a potentially useful method to create
synthetic lidar data using a simulation of a digital twin that
includes the static background and a Traffic Scenario re-
construction. (3) We provide a basis for developing fu-
ture methods in which users can either apply sensor domain
shifts to existing datasets or create novel driving scenarios
without the need to create one from scratch. By modify-
ing real-world scenarios, time and effort are reduced whilst
inheriting realism from the original scene.

2. Related Work
Scenario reconstruction and simulation. Various

works have been published on scenario reconstruction and
simulators of these scenarios. First, the work of Ren et al.
shows a method that only shows 3D reconstruction of a driv-
ing scenario using lidar and GPS data. It focuses on creating
a robust, fusion-based and factor graph-based mapping sys-
tem by combining local navigation information with GPS
data [13]. Most other works have published methods that
combine scenario reconstruction based on real-world data
with a matching simulator to facilitate the creation of novel
data by changing the sensor properties or the traffic sce-
narios (TS) itself. The first example of this is VISTA 2.0.
VISTA represents and simulates camera images, lidar data,
and event camera images from real-world datasets. It fo-
cuses mainly on creating novel views of non-altered TSs by
changing the sensor’s perspective, i.e. changing the ego ve-
hicle pose relative to the original location or changing the
location of the ego vehicle of the sensor. By utilising neu-
ral networks, the sensor’s data is regenerated such that it
matches the novel perspective. e.g., images are regenerated
from a RGB-D point cloud and the lidar data is resampled
such that it handles occlusions and correctly generates the
typical lidar ring patterns. It allows users to test their AD
models in a closed loop. Its downside is that it cannot han-
dle scenarios that deviate too much from the original, lim-
iting its capabilities of creating novel perspectives [1]. Sec-
ond is LiDARsim, a lidar-based scenario reconstruction and
simulator. It does not allow for closed-loop simulation, but
simulates novel scenarios to create novel data. As input,
it uses lidar point clouds with semantics. With this data,
3 libraries are created: a vehicle library, a TS library, and
a corresponding 3D map library. Using the semantics, the

TS is extracted and the actors are separated from the static
environment. The static frames are aligned and meshed to
create the 3D map to be added to the library. The points
of the dynamic actors are accumulated and aligned per in-
dividual actor. After cleaning up the combined point cloud,
it is meshed and added to the library. Both the 3D scenario
meshes and the vehicle meshes contain the average intensity
value as a mesh texture, making way for a surface material
with intensity reflection properties. Using the diverse li-
brary, novel scenarios can be created by modifying existing
scenarios using the resources from the library, e.g. by swap-
ping out the actors of other sizes. Then, the novel scenario
can be simulated to create novel lidar data, including inten-
sities. LiDARsim does not allow for closed-loop testing of
AD models [15]. Another example of a combined scenario
reconstruction and simulation method is UniSim. UniSim
takes recorded data from a dataset and creates a manipula-
ble digital twin of the scenarios. It can create novel sce-
narios by actor modification or removal, changing sensor
properties, and modification of the ego trajectory. The user
can test AD models closed-loop using UniSim. It renders
photo-realistic images of the novel scenes and simulates li-
dar sensors, using a combination of ray casting for simulat-
ing the points and a network to predict their intensities. It
reports good domain gap evaluations [21]. A major down-
side is that it is not open-source and, therefore, unusable
for the public. Contrary to the examples above, LidarDM
is and leverages a diffusion model (DM) guided by the TS
to create diverse, temporally consistent, and realistic lidar
videos. It differentiates itself by using a DM to create novel
lidar data; it does not need human assistance to create novel
scenarios, reducing the need for human input. In their pa-
per, the novel lidar data is used to increase the detection
accuracy of an AD model with a generative data augment-
ing strategy. Its use is limited by the extensive computa-
tional resources needed to create data. [23]. Another in-
teresting, network-based approach is EmerNeRF. Instead of
using lidar data to capture the scenario, it relies solely on
camera data and Neural Radiation Fields (NeRF) to capture
the scene geometry, appearance, and motion. It retrieves se-
mantics via a self-supervised bootstrapping method, which
effectively separates static background and dynamic actors.
Using these methods, the 3D static background and TS can
be extracted from a driving scene [21]. The drawbacks of
using NeRF-based scene reconstruction methods are that
they do not handle occlusions in the data well and are heav-
ily limited by the computational load required by the usage
of NeRFs, as computations could take hours to days, de-
pending on the scenarios and the resources. [10].

3. Method
Our method focuses on creating a mesh of the static en-

vironment using the point clouds of a driving scenario. We

2

Figure 1. An Overview of the Lidar-Based 3D Static Environment Reconstruction architecture.

argue that using real data to create this static background
will make the simulation more realistic. In addition, build-
ing a static background of a driving scenario (e.g. a city cen-
tre intersection) is labour-intensive when done manually; by
automating this process, we should save time and money.

3.1. Overview of the 3D Static Scenario Reconstruc-
tion

Our method of extracting the 3D mesh from the driv-
ing scenario is written in Python [18]. An overview of our
method to extract the 3D static background is shown in Fig-
ure 1. To summarise, the points of the lidar frames are fil-
tered from noise and actors; next, the frame points are reg-
istered to each other. The whole scene is then levelled and
moved to the ground plane. Finally, the 3D static scene is
meshed and ready to be used as background in a simulator.

3.2. Dataset

The dataset used is nuScenes. The dataset comprises
fully annotated 20s long driving scenes containing lidar and
camera data, the latter has mostly been useful for visuali-
sation purposes. The lidar nuScenes uses is the Velodyne
HDL32E, collecting data with a frequency of 20Hz. [2].
The code is written such that any dataset containing the
right information can be used in this pipeline: the data is
read from the dataset using the separate database reader
class, which feeds the information in the right format to the
main pipeline. If another dataset is required, one could write
its own reader class tailored to the desired dataset. For our
methods to work, the reader class needs access to: i) the raw,
per-frame lidar point cloud, ii) the corresponding bounding
box annotations of that frame, iii) the camera images if ad-

ditional visualisations are desired and iv) all the rigid trans-
formations between the annotation frame (in nuScenes case,
the world frame), the lidar frame, ego (vehicle) frame, and
if needed the camera frame.

3.3. Traffic Scenario Extraction

We started with a code basis from the previous work
of van Leuven et al., in which they extracted the TS of
the nuScenes scenarios using ScenarioNet [7]. They sup-
plied us with the TS data extracted from each scene of the
nuScenes dataset, which we used in our methods. For their
research, it was sufficient to have the data on the ground
plane, which unfortunately reflects in their TS dataset: it
contains no z-values [17]. This had implications for our
methods; the 3D reconstruction will be relocated to the
ground plane. Their contribution to our work consists of
data on the road network, vehicle type, and information
such as size and trajectory. Their supplied code helped us
import all of that into a Prescan Experiment. An in-depth
description of this process will be provided in the following
sections.

3.4. Filtering

First, let’s look at the process of creating the 3D static
mesh, summarised in the rectangle labelled as ”3D Static
Scenario Reconstruction” in Figure 1. The Database Reader
class provides the input of this whole pipeline. The other
input is the Config.yaml file, which contains configuration
settings such as verbosity, in- and output paths, and fil-
ter settings. To create a static background containing as
few artefacts as possible, the frame point clouds are filtered
of noise and dynamic actors, shown in the Figure as red

3

dots. This process starts with removing the dynamic actors,
which include, but are not limited to, cars, trucks, motor-
bikes, bicycles, and pedestrians. Note that our definition of
a dynamic actor also includes parked or non-moving actors.
For the removal of the dynamic actors, the Ground Truth
(GT) box annotations of the dataset are used. These anno-
tations are in the world frame, so to use this information,
the points of the frame are translated, via the ego frame,
into the world frame, too. Now by inflating the annotations
box by a factor of 1.4, making sure to capture all points
of the dynamic vehicle, these points can then be removed
from the point cloud. The remaining points are then trans-
lated to the ego frame. From here, more filters are applied
to reduce the noise. These are a minimum distance to the
ego vehicle filter of r > 2.7m, a maximum distance filter of
r < 33m, and a below-the-ground-plane filter of z < −0.5.
The minimum distance filter’s function is to remove points
that reflect from the ego vehicle, the maximum distance fil-
ter removes outliers and points that have decreased accu-
racy, and the below-the-ground-plane filter removes points
that appear to be under the ground plane due to errors or
reflections from the road surface. All the filtered frames are
saved for registration.

3.5. Registration

The next step is to register all the filtered scenario frames
to each other. Note that our frames are currently in the ego
vehicle frame. Registration is the process of aligning two or
more point clouds into a common coordinate system. For
this, KissICP [19] is used. As stated in their paper, their
algorithm does not need any parameter tuning to function
on specific lidar data, and thus, it is used as-is. Using the
frames in the ego frame, the KissICP algorithm outputs the
homogeneous transformations that align all the frames rel-
ative to the first frame. This returns a point cloud of the
whole scene, with dynamic actors removed and its origin
at the first frame’s origin, which is in the ego frame. This
conveniently places the origin at the same location as the
origin of the TS data. However, the axes are not aligned
yet. This misalignment will be addressed during the setup
of the Prescan experiments.

3.6. Levelling

Because the TS data is flattened to the x-y plane by the
lack of z-values, the drivable road surface of the scenario
needs to be as close to the ground plane as possible, or just
shy below it. A simple method was developed to rigidly
transform the points to the desired pose.

Our method uses lidar segmentation labels of the lidar
points to extract all the points labelled as the drivable road
surface. These points are used to fit a plane using formula
1:

ax+ by + cz + d = 0 (1)

in which the x, y, and z are the cartesian coordinates and
a, b, c and d are the parameters found from fitting a plane to
the drivable road surface points. The a, b and c parameters
are used in formulas 2 to rotate all scene points around the
origin to make the road surface parallel to the ground plane:

n⃗target = [0, 0, 1]T

n⃗plane = [a, b, c]T

v⃗rot = n⃗target × n⃗plane

θ = arccos(n⃗target · n⃗plane)

(2)

In which the normal vector n⃗target is that of the target
plane, which is the ground plane, and the normal vector
n⃗plane is that of the drivable road plane. v⃗rot and θ are the
rotation vector and angle that align the plane to the ground
surface. After rotation, the scene point cloud is translated
along the z-direction by −d to bring the levelled surface
closer to the ground plane. Note that the above plane fitting
method heavily relies on the assumption that the drivable
road surface is reasonably flat. In some cases, it turned out
that the scene was not flat enough, rendering the scenario
unusable for our method.

3.7. Meshing

The final step before exporting the mesh to a simulator
is meshing the point cloud. This is done using the Neu-
ral Kernel Surface Reconstruction (NKSR) method devel-
oped by NVIDIA. The open-source surface reconstruction
and meshing algorithm is highly generalizable and requires
a GPU, resulting in a fast and out-of-the-box solution, as it
did not need any parameter tuning. Some examples of its
performance on selected regions of the dataset can be seen
in Figure 2.

3.8. Mesh Import Preparation

A manual, intermediate step is required to import the cre-
ated mesh into Prescan. A deep dive into these necessary
steps to convert the mesh file into a file structure usable by
the Prescan simulator can be found in the Appendix, section
A. This information was not readily available and might be
of interest to those who want to reproduce this step them-
selves. These steps are necessary for Prescan to be able to
find the created 3D mesh and to ensure the synthetic lidar
sensor works properly.

4. Experiments
This section evaluates the performance of our proposed

method using experiments executed in the Siemens Pres-
can [14] simulator. Prescan is a software suite that enables

4

Figure 2. Two close-ups of the point-to-mesh process. On the left
are two points clouds, on the right have they been meshed. In the
upper example, a street corner with a building is seen. Note that
in the point cloud, there are holes at ovals 1 and 2. The rectangu-
lar holes in the point cloud result from removing parked cars, as
removing the points within the slightly inflated bounding also re-
moves the ground points. The meshing algorithm is able to fix the
holes at number 2 but not at number 1. Number 3 is a good exam-
ple of how the meshing algorithm is able to produce great detail:
all the individual steps of the stairs are there. Below is an example
of how the algorithm handles vegetation. Though the meshing al-
gorithm does not produce great details in the leaves of the trees, it
does create some irregular tree-like structures.

the development and validation of ADAS systems [16]. Its
prime interface is Matlab [5] Simulink-based, which allows
for the transfer of data extracted from the various scenes,
such as the TS, the ego vehicle’s trajectory and the 3D mesh
created in the previous section. Prescan features various
physic-based sensors, such as lidar, radar and cameras. Al-
most any parameters of these sensors can be set to values
that match the dataset vehicle car. Not only is this key for
applying future sensor domain shifts, but it is also key for
validating our methods because we need to set it to the ex-
act parameters of the original dataset. To ensure that the
sensor domain gap is as small as possible, the lidar sensor’s
parameters are set to the same value as the nuScenes ego ve-
hicle’s. By combining the TS data (that includes the ego ve-
hicle) with the previously created 3D static scene, we have
effectively created a digital twin of the scenario. By keeping
the TS the same, we can have a frame-to-frame comparison
between the original nuScenes lidar data and the synthetic
lidar data from the simulator. We will now dive into some
details on the simulation setup and how the complete, i.e.,
including fore- and background, simulations are created.

4.1. Simulation setup

Software. We conducted our experiments using Siemens
Prescan, version 2403 [14]. Using the Matlab Simulink ver-
sion 2021b [5] enabled the process of loading all the data
described in the previous section.

The Experiments. An experiment consists of a digital twin
of a single driving scene from the nuScenes dataset, reen-
acting it from the beginning to the end. In total there have
been 11 experiments performed, all of which contain about
400 lidar frames. The inputs of the experiment are two-fold:
the first input is the TS, and the second input is the 3D static
environment mesh. Let’s dive a little deeper into what in-
formation is extracted from the TS data.
Traffic Scenario. Using Leuven’s methods [17] and their
code as a basis to import the TS, the first piece of data ex-
tracted from the TS is the road network. The available road
network in the TS data covers an area proportionate to that
of a whole neighbourhood, so we have limited the road im-
port to just those roads that reach within the cartesian limits
of the 3D mesh, which most of the time contain just an in-
tersection or two. Secondly, the road network is enhanced
with features like bike lanes, crosswalks, stop signs, and
speed bumps, among others. Up until now, the imports are
visualised by the simulator instead of using the information
from the 3D mesh. The third step is importing the vehicles
and pedestrians present in the experiment’s TS. Our choice
of picking a vehicle differs from the original method of van
Leuven’s work, as their vehicles were picked from the li-
brary randomly. In our method, for every vehicle (such as
a bus, truck, car, etc.) annotated in the dataset, a model of
the same type of vehicle is picked from the Prescan vehi-
cle library by similarity with the annotation’s dimensions.
The metric used for measuring the similarity in size is by
comparing the l+ h of the annotation’s bounding box (BB)
and matching it to the closest vehicle’s l + h in the Pres-
can library. The L1 norm has been picked over the L2 norm
because it is less sensitive to the fact that vehicles are al-
ways longer than they are high, giving equal importance to
the difference in height of the original and simulated vehi-
cle and their difference in length. Some BBs from the TS
are likely wrong, e.g. a lot of lengths are below a meter.
For all those vehicles smaller than the smallest car in the
library, another random vehicle has been assigned instead.
Using the nuScenes camera footage, it was validated that
traffic cones, bikes or bicycles have never been mistaken for
cars. For pedestrians, motorbikes, and bicycles, a same-type
model from the Prescan library is picked randomly because
their dimensions are so similar. After the actor’s models
have been picked, the corresponding trajectories of the im-
ported objects, including the ego vehicle, are assigned. The
objects’s trajectories exist in the TS dataset out of discrete
points; a smooth path along these points is calculated, and
this path is assigned to the object’s trajectory. This changes
the static scene into a dynamic scene where all the actors
move smoothly and behave like in the nuScenes dataset.
3D Mesh. Next, the 3D static background mesh is im-
ported. The 3D mesh is plain white after the mesh import
preparation, due to technicalities in the software described

5

in the Appendix, section A. The alignment problem men-
tioned in 3.5 is addressed by rotating the mesh around the
z-axis by a yaw value found in the dataset i.e. the yaw value
of the 1st lidar from to the world frame. This aligns the
background mesh perfectly with the TS coordinate frame.
Sensors. The sixth and last step of setting up our experi-
ment is configuring the sensors, starting with the front cam-
era. Its pose relative to the car is saved per scenario in the
nuScenes dataset, as it can slightly differ per used car, i.e.
the data is collected in both Boston and Singapore. The
sensor poses on the different cars are close, but slightly dif-
ferent. Furthermore, the following camera parameters are
found on the nuScenes website [8] and configured in the
Prescan: Focal length, resolution, image sensor dimensions,
and its update frequency of 12Hz. Next is the Lidar sensor.
The type of simulated lidar sensor is a non-physic-based
lidar sensor, which implies, in our case, that it does not re-
turn intensity values, only the x, y, and z coordinates of
the points. The lidar’s pose is also set correctly according
to the nuScenes data. Then, the lidar’s properties are set
to match the Velodyne HDL32E’s properties, that is con-
veniently preconfigured available within Prescan. Its fre-
quency is set to 20Hz. Now, the experiment is ready to run.

4.2. Evaluation Metrics

The performance was measured by comparing the same
lidar point cloud frames of the original nuScenes data and
the synthetic data created by the simulation. The main met-
ric used for this is the mean bidirectional chamfer distance
(CD), shown below in equation 3 [22]:

CD(Ĝ,G) =
1

|Ĝ|

∑
x∈Ĝ

min
y∈G

∥x− y∥22

+
1

|G|
∑
y∈G

min
x∈Ĝ

∥y − x∥22
(3)

in which Ĝ and G are the two point clouds that are com-
pared and x and y are the respective points in these point
clouds. The miny∈G ∥x−y∥22 and minx∈Ĝ ∥y−x∥22 parts
are the individual CD for a point to the closest point in the
other point cloud. For calculating the CD’s, we have used
the Python module chamfer_distance [9]. It not only
provides the average bidirectional chamfer distance (useful
for calculating a scene-average value) but also returns the
per-point CD, which is very useful for visualising the re-
sults. This helps to evaluate the fore- and background points
separately, and is necessary to create visualisations that
point out which areas of the simulation perform well and
which do not. Only the points in the range 2.7 < r < 10
m have been evaluated so that the results can be compared
to those in the work of Rajendran et al. [12]. A value of
2.7 was picked, so the points hitting the ego car were not

included in the evaluation. The second method that is used
to quantify the quality of the simulation is a comparison be-
tween the detections of a Point Pillars [6] object detector,
implemented using the python library MMDetection3D [4],
on the real and synthesised lidar data. By comparing the de-
tections of the real and synthetic data point cloud, and treat-
ing the detections on the real dataset as the ground truth,
the similarity between the detections of both clouds can be
analysed. For this, we must first determine which BB of the
synthetic data correspond to which BB of the real data. This
is done using a greedy matching algorithm that matches the
two BBs that have combined the highest Intersection over
Union (IoU) value, if greater than the IoU threshold. Us-
ing the statistics of the matched and unmatched BB, a con-
fusion matrix can be constructed and used to calculate the
mean recall and precision scores over all frames. Because a
translation error in the data was suspected, we also present
the Average Translation Error (ATE) of the matches. Note
that because the simulation is flattened to the ground plane,
the z-values of the BB are omitted too. All the IoU and ATE
calculations are done with the 2d BBs on the ground plane.
Also note that the goal is not to measure the performance of
the object detector, but to get an indication of how similar
it performs on the real and synthetic data. If the detector
creates similar results, one cloud can be used as a proxy for
the other, meaning that the synthetic dataset can be used to
test our perception models on long-tail corner cases. Un-
fortunately, it does not mean it can be used for training, as
this does not necessarily mean it also has a small training
domain gap. By measuring the scene’s bidirectional CD
value and evaluating the performance of an object detector
on both the real and synthetic datasets, the inference domain
gap is measured [12].
To better understand how the static background performs
independently, evaluating it separately from the foreground
is crucial. This is done in a slightly new experiment setup.
Lidar point clouds are collected again in the same experi-
ment, but this time without any objects but the ego vehi-
cle. This creates a lidar point cloud of just the static scene.
The challenge is to compare this point cloud to the real
nuScenes data, but without the points caused by objects.
The second challenge is that objects in the original point
cloud data cause a lidar shadow, in which no points exist.
These two challenges are solved by removing all the points
within the GT BB and all points in the lidar shadow behind
those GT BB in both the real and synthetic data. This cre-
ates two, partly incomplete point clouds that contain only
background points, over which the average BiCD is calcu-
lated. An example of this can be found in the Appendix,
in Figure 9. The number of points in the complete simu-
lation minus the number of points in the background-only
simulation yields roughly the number of points reflected by
objects in the complete simulation, called the foreground.

6

Scene
Mean CD Real-

to-Sim [m]
Mean CD Sim-

to-Real [m]
Median

BiCD [m]
Mean

BiCD [m]
Mean BiCD

Background [m]
Mean BiCD

Foreground [m]
Foreground
points [%]

0131 0.12 0.12 0.24 0.24 0.22 0.73 7
0132 0.09 0.09 0.17 0.19 0.16 0.62 17
0164 0.14 0.13 0.29 0.28 0.21 1.1 25
0251 0.15 0.18 0.30 0.34 0.21 0.51 37
0398 0.30 0.33 0.59 0.64 0.36 0.87 48
0562 0.18 0.23 0.36 0.40 0.33 0.63 20
0663 0.19 0.21 0.28 0.35 0.29 0.74 18
0769 0.16 0.16 0.28 0.33 0.25 0.75 26
0778 0.27 0.10 0.23 0.36 0.32 0.80 13
0952 0.09 0.12 0.20 0.21 0.20 0.59 8
0955 0.14 0.18 0.29 0.32 0.32 0.47 2

overall 0.17 0.17 0.29 0.34 0.26 0.69 18

Table 1. The Chamfer Distance (CD) and Bidirectional CD (BiCD) values for all the evaluated scenes. Note how the median value is
lower than the mean value, showing that outliers in the CD values cause a higher mean value. In the most right three columns, the mean
CD values are separated into those from the background (i.e., the static scene) and those from foreground points (i.e., (dynamic) objects).
The percentage foreground points are shown in the far-right column, being a percentage of the total amount of points in the complete
simulation.

Based on these numbers, the BiCD of the foreground can be
calculated using formula 4, which is derived from the fact
that the weighted average of the BiCD of both the back- and
foreground points add up to the average BiCD:

BiCDfg =
BiCD− BiCDbg(1− ffg)

ffg
(4)

in which the subscripts bg and fg stand for back- and
foreground. The BiCD without subscript stands for the
mean BiCD of all points in the complete simulations with
objects compared to the original nuScenes data. ffg is the
fraction of foreground points in the complete simulations.

4.3. Results

Running the Experiments. The algorithm creating the
static mesh was run on a laptop with 64GB RAM and a lap-
top version NVIDIA RTX A4000 GPU, which is inferior to
the desktop version. Creating the meshes using our pipeline
took an average of 5 minutes per scene, each using around
8 million points. The Prescan experiments were run using
the same laptop, having an average runtime of 4 minutes per
scene.
Chamfer Distance. The results of the CD calculations on
the experiments’ point clouds are summarised in Table 1,
in which for every experiment, the mean CD of the real
nuScenes data to the synthetic data and the mean CD of
the synthetic data to the real nuScenes data is given. The
next two columns to the right are the corresponding me-
dian and mean bidirectional Chamfer Distance (BiCD). The
mean BiCD values are separated into the respective fore-
and background values in the three most right columns. Ap-

pendix B shows a more elaborate overview of the CD results
on a per-scene per-frame basis. In Figure reffig:hist and Ta-
ble 2, more statistics are shown on the distribution of the
CD values of the individual points.
Object detector. The results of comparing the detections of
the real and synthetic data are shown in Table 3, and an illus-
trative example of this is shown in Figure reffig:BEVdets.

5. Discussion
In this section, an analysis will be performed on the re-

sults shown in the previous section. The goal here is not
to present an optimised solution but rather to identify and
show where the digital twin underperforms and how it could
be improved.

5.1. Interpretation of Results

Evaluating the CD values presented in Table 1, the
digital twin seems to perform on par with the related work
of Rajendran et al. [12]. However, by closer inspection of
the per-frame average CD graphs in Appendix B Figure
7, it is clear that some features of the digital twin are
underperforming. These graphs give a good insight into
when the digital twin is performing well and when it is
not. The peaks in the per-frame-average CD scores mark
these moments of failure. Once identified, these frames
are closely examined to determine which areas are under-
performing compared to the other, using a visualisation in
which points are coloured by their respective CD value, as
seen in Figure 5.

There are several improvements to make in our method.

7

CD [m] <0.05 <0.1 <0.2 <0.3 <0.4 <0.5 <0.6 <0.7 <0.8 <0.9 <1.0

Real-to-Sim
Fore- and Background [%] 47.4 65.5 81.8 88.8 92.4 94.3 95.4 96.1 96.7 97.1 97.5

Sim-to-Real
Fore- and Background [%] 44.2 62.4 79.4 87.2 91.4 93.8 95.2 96.1 96.8 97.3 97.7

Real-to-Sim
Background [%] 49.2 68.8 85.7 92.6 95.8 97.4 98.1 98.6 98.9 99.1 99.2

Sim-to-Real
Background [%] 44.6 63.9 81.6 89.6 93.7 95.9 97.1 97.8 98.3 98.7 99.0

Table 2. Percentages of the total amount of Real and Simulated lidar points below a certain Chamfer Distance (CD) value. These statistics
show how the majority of points lie closely to their corresponding points cloud. Again, the background performs better than the simulation
overall.

Figure 3. A histogram of the Chamfer Distance (CD) values of all
evaluated points with a radius of 10 meters around the lidar sen-
sor for the real and synthetic data. Note the logarithmic scale on
the y-axis and how there are little to no points of synthetic lidar
points with CD > 2.5 m. The real data points contain CD values
between 0 and 9 meters. The simulation’s points behaviour can
be explained by how mesh surfaces are created. A mesh is cre-
ated where there have been a lot of points originally, creating the
surface the simulation lidar can reflect on. In this Figure, scene-
0164 has been excluded. The ’spoof’, as described in Appendix
B Figure 7c, causes individual CD values to rise up to 35 meters,
which should not be possible, and hence it has been excluded for
this figure. The spoof does not affect the results shown in Table 1.

First, there is the replacement of vehicles that do not seem
optimal; see Figure 4 and 6. The problem seems to be
twofold: First, there seems to be an error in the algorithm
placing the vehicles. A closer inspection of the vehicle
placement algorithm revealed that the vehicle’s origin in
Prescan is in the middle of the rear axle on the ground plane.
The algorithm places these origins in the middle of the GT

IoU
Treshold Precision Recall

ATE
[m]

0.5 0.45 0.40 1.9
0.3 0.59 0.51 2.6
0.1 0.72 0.61 4.9

Table 3. A comparison of the detections using the real and the
synthetic data. The values shown are the mean over all frames in
the dataset. Note that the goal is not to compare the performance of
the object detector, but to compare the similarity of their outputs.
The IoU threshold is the threshold at which two BB from real and
synthetic data are considered a match. The used IoU thresholds
are quite low (usually a IoU value of 0.5 is considered a match)
because a translation error in the TS data is suspected, hence why
the Average Translation Error (ATE) column is added to provide
additional data to underpin this hypothesis.

BB, effectively positioning the cars with an offset towards
the front of the car. This results in the rise of the ATE and
causes a lower IoU between vehicle BB that should’ve been
a match. Secondly, As mentioned in Figure 6’s caption, the
’simulation vehicle gap’ does not provide enough cars in
the l + h range between 8 and 13 meters. Both vehicle er-
rors can cause a seriously large shadow miscast, resulting
in the rise of the CD value. Also, the lower-left cluster of
points shows the many incorrect vehicle annotations in the
TS dataset. Referring to Figure 9 in the nuScenes’ publica-
tion [2], it can be seen that their annotations do not contain
these strange values. In Figure 4 and Table 3, it is clearly
shown that there exists a translational error in the vehicle’s
position, too.
Another contribution, but a lot smaller, are artefacts in the
3D mesh. Though sometimes creating inaccuracies, these
artefacts do not significantly increase the average CD value.
What is more worrying is where these occur; the CD metric
does not capture this. For example, the artefact in scene-
0251, as seen in Figure 5b and in Appendix B, Figure 8b,

8

Figure 4. A plot in BEV perspective showing the synthetic point
cloud of scene-0164 frame 380. The plot is overlaid with the BB
of the ground truth and the BB of the detections on the real and
simulation data. This frame has been picked because it clearly
shows the translation error. In the scene, the ego car drives through
a street with parked trucks. In this frame, the precision is 0.50, the
recall is 0.71, and the ATE is 5.1m.

is in the middle of the road and on the ego vehicle’s tra-
jectory. If this data were to be used in training an AD
model, it would be taught to continue to drive into an ob-
stacle. This is, of course, unacceptable, and these kinds of
artefacts should be addressed. This artefact has likely been
created due to unremoved vehicle object points, emphasis-
ing the importance of inflating the GT bounding box during
filtering large enough so that this cannot occur.

5.2. Comparison with Related Work

Our method achieves comparable mean BiCD scores to
existing methods in the literature, for example, the work
of Rajendren et al. [12], who has reported a scene aver-
age biCD of 0.3m. Interestingly, their foreground scores
are lower than their average CD, whereas, in our method,
the foreground often causes a rise in CD scores. Our back-
ground seems to outperform their work; however, a direct
comparison is not feasible due to differences in the report-
ing method. While our simulation does not reach state-of-
the-art performance, it does provide an alternative, simplis-
tic way of achieving similar results using limited computa-
tional resources [21, 23], especially if the problems related
to the foreground are resolved.

6. Conclusion
This paper shows a computationally lightweight method

of creating a 3D static background mesh from driving
scenes, which seems to be up to par with comparable works.
We also show how we made a complete digital twin of the

corresponding driving scenario in Prescan and used it to cre-
ate lidar data. After evaluation, we must conclude that the
complete simulation underperforms, mainly because the ve-
hicles are not replaced accurately enough. Nevertheless, it
shows great potential when its problems are addressed and
should serve well as a basis for future research. If only the
3D background mesh were required, this part could easily
be used independently for further research.

Limitations. A limitation of our method is the reliance
on GT labels, which may not easily be generalised to other,
more generic or in-house collected data. Although using
GT labels has been great for focusing on creating the 3D
mesh, it should not be a dependency for a final product.
Future Work. To improve the static background recon-
struction, future research should include methods to ensure
no dangerous obstacles on the ego car’s trajectory, as is seen
in Figure 8b. Also, a very informative figure that could be a
good performance indicator on the various parts of the point
cloud, is a figure that shows the average CD value per lidar
segmentation label category, such as vehicle, tree, drivable
road, etc. The nuScenes data includes lidar segmentation
labels, which could be used to calculate the real-to-sim CD
of the categories. Another future improvement could be to
include a colour texture to the mesh. This way, the use case
of the 3D mesh can be expanded to include photorealistic
camera images. To improve the quality of the lidar data,
a mesh texture of the average lidar point intensity could
also be created. This could aid in making a surface mate-
rial with intensity properties that could be used by Prescan’s
intensity-returning, physics-based lidar sensor. To improve
the scenario’s simulation as a whole, future research should
focus on improving the methods of capturing and replacing
the TS. This should include verification between the real
data’s GT bounding boxes and the GT bounding boxes ex-
tracted from the simulator to ensure the object’s positions
and dimensions are correct. Another improvement could be
made by expanding the TS and the 3D mesh to include the
3rd dimension. By including the z values, a more accu-
rate resemblance of the 3D mesh can be created in which
the vehicles drive over the 3d mesh instead of a simulated
road. This expands the set of usable scenes by those scenes
that are not flat, removing the need to level the scene to the
ground plane. Another improvement in the TS can be made
by creating a complete vehicle library that covers the Pres-
can vehicle library gap and has more diversely dimensioned
vehicles.
Acknowledgements. Special thanks to the work of Leuven
et al. for providing us with the Prescan code base and the TS
extraction. Thanks to Jasper van Leuven personally, he was
always available to debug, brainstorm, and bring methods
to the next level. Hamid Abdolhay was extremely helpful in
solving all the problems regarding the Prescan software. As
a Siemens employee working in the Prescan maintenance

9

(a) The original nuScenes data. The inaccurate replacement of the
left truck vehicle, whether it is the vehicle size or location, causes a
miscast shadow.

(b) The Prescan synthetic data. Note how the location and size of the
left truck vehicle are off, also the vehicle seems to be too small. An
artefact in the middle of the road causes the high CD value points near
the ego vehicle.

Figure 5. Frame 248 of scene-0251, two point cloud visualisations of the real and simulation data of which evaluated points are coloured
by their corresponding CD value. This is one of the many examples of how an incorrectly replaced vehicle causes a lidar shadow with
no neighbouring points. In Appendix B Figure 8, the corresponding camera images are shown for comparison’s sake, as well as the
background-only comparison in Figure 9

and development team from the same office, his quick re-
sponses and solutions never disappointed. Besides the tech-
nical support, there has always been unconditional loving
support from my partner Anouk, giving me all the much-
needed space. Special thanks to Bumi, who was always
happy to see me and eager to take me for a walk when I

Figure 6. A graph of the l + h of the original BB vs the l + h
of the imported vehicles. The points in the left cluster are all the
vehicles with presumed wrong BB dimensions, smaller than the
smallest car in the library, which has been discussed in section
4.1. These have been assigned a random car vehicle instead. Note
the ’Prescan vehicle library gap’ that runs roughly between the
simulation vehicle’s l + h of 8 and 13 meters.

needed it most. A final thanks to all those who supported
me, including my family, friends, supervisors, and doctors,
every time I got delayed by another medical situation.

References
[1] Alexander Amini, Tsun-Hsuan Wang, Igor Gilitschenski,

Wilko Schwarting, Zhijian Liu, Song Han, Sertac Karaman,
and Daniela Rus. Vista 2.0: An open, data-driven simulator
for multimodal sensing and policy learning for autonomous
vehicles, 2021. 2

[2] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving, 2020. 3, 8

[3] Blender Online Community. Blender - a 3D modelling and
rendering package. Blender Foundation, Stichting Blender
Foundation, Amsterdam, 2018. 12

[4] MMDetection3D Contributors. Mmdetection3d: Openmm-
lab next-generation platform for general 3d object detection,
2020. 6

[5] The MathWorks Inc. Matlab, 2021. 5
[6] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,

Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders
for object detection from point clouds, 2019. 6

[7] Quanyi Li, Zhenghao (Mark) Peng, Lan Feng, Zhizheng Liu,
Chenda Duan, Wenjie Mo, and Bolei Zhou. Scenarionet:
Open-source platform for large-scale traffic scenario simu-
lation and modeling. Advances in Neural Information Pro-
cessing Systems, 36:3894–3920, 12 2023. 3

[8] Motional. Nuscenes - data collection. Accesed on 01-08-
2024. 6

10

[9] Otaheri. Chamfer distance for pytorch, 2022. GitHub Repos-
itory. 6

[10] AKM Shahariar Azad Rabby and Chengcui Zhang. Beyond-
pixels: A comprehensive review of the evolution of neural
radiance fields, 6 2023. 2

[11] Vickram Rajendran, Chuck Tang, and Frits Van Paass-
chen. Improving rare classes on nuscenes lidar segmentation
through targeted domain adaptation, 2023. 1, 2

[12] Vickram Rajendran, Chuck Tang, and Frits van Paasschen.
Analyzing synthetic datasets through the training and infer-
ence domain gap, 6 2023. 1, 6, 7, 9

[13] Ruike Ren, Hao Fu, Hanzhang Xue, Zhenping Sun, Kai
Ding, and Pengji Wang. Towards a fully automated 3d re-
construction system based on lidar and gnss in challenging
scenarios, 2021. 2

[14] Siemens Digital Industries Software. Prescan, 2024. 4, 5
[15] Manivasagam Sivabalan, Wang Shenlong, Wong Kelvin,

Zeng Wenyuan, Sazanovich Mikita, Tan Shuhan, Yang Bin,
Ma Wei-Chiu, and Urtasun Raquel. Lidarsim realistic lidar
simulation by leveraging the real world - 2020, 2020. 1, 2

[16] Siemens Digital Industries Software. Simcenter Prescan
Manual, version 2403, 2024. 5, 12

[17] Jasper van Leuven. A data augmentation pipeline: Lever-
aging controllable diffusion models and automotive simula-
tion software, 2024. Master Thesis, in collaboration with
Siemens. 3, 5

[18] Guido Van Rossum and Fred L. Drake. Python 3 reference
manual, 2009. 3

[19] Ignacio Vizzo, Tiziano Guadagnino, Benedikt Mersch, Louis
Wiesmann, Jens Behley, and Cyrill Stachniss. Kiss-icp: In
defense of point-to-point icp – simple, accurate, and robust
registration if done the right way, 9 2022. 4

[20] Huazhe Xu, Yang Gao, Fisher Yu, and Trevor Darrell. Ex-
ploring the limits of weakly supervised pretraining. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 626–643, 2018. 1

[21] Jiawei Yang, Boris Ivanovic, Or Litany, Xinshuo Weng, Se-
ung Wook Kim, Boyi Li, Tong Che, Danfei Xu, Sanja Fidler,
Marco Pavone, and Yue Wang. Emernerf: Emergent spatial-
temporal scene decomposition via self-supervision, 11 2023.
2, 9

[22] Bo Zhang, Xinyu Cai, Jiakang Yuan, Donglin Yang, Jianfei
Guo, Xiangchao Yan, Renqiu Xia, Botian Shi, Min Dou, Tao
Chen, Si Liu, Junchi Yan, and Yu Qiao. Resimad: Zero-
shot 3d domain transfer for autonomous driving with source
reconstruction and target simulation, 9 2023. 1, 6

[23] Vlas Zyrianov, Henry Che, Zhijian Liu, and Shenlong Wang.
Lidardm: Generative lidar simulation in a generated world,
2024. 2, 9

11

A. Mesh Import Preparation
This section goes into some technicalities of creating an

importable and functional mesh for the Prescan simulator
that is only of interest to those familiar with the Prescan
software, who are interested in reproducing this step.
After saving the mesh at the end of the pipeline as a .ply
file of vertices and faces with normals, it is imported into
Blender (version 3.1) [3], which must be launched from the
Prescan Terminal. A material must be assigned to this mesh
to enable the Prescan to use the mesh as a reflective sur-
face. Any material will do, so just a material with a regular
base colour is used for simplicity’s sake. If a coloured mesh
were to be desired, then UV maps and textures would be
assigned. Unfortunately, the complex shapes of our static
scene meshes prevented us from finding a method that en-
abled us to create and assign these. The final step in Blender
is to export it as a .psscene file using the Prescan Blender
plugin. The next step is to import the .psscene file into the
Prescan Model Preparation Tool (MPT). This tool imports
models of scenery, vehicles, and other objects, and assigns
specific properties to them e.g., reflectance, dynamics, and
much more. These files are then saved in the ”GenericMod-
els” folder, as stated in the manual [16], and also need to be
saved in the ”UDLibElements” folder and the experiment
file’s folder, which is not stated in the manual. Performing
these steps ensures that the scene model can be found in
the Prescan model library and that the synthetic lidar sensor
works properly. When using the MPT tool, the mesh can not
keep its vertice colours, so it reverts to a white appearance.
There exists a workaround for simpler meshes where UV
maps and textures define the appearance of the mesh, but
we have not found a method that works for such complex
shapes as 3D static background meshes. This is not a prob-
lem when synthesising a lidar point cloud containing only
x, y, and z values. It is, however, visually less pleasing.

B. Supportive Visualisations
In the following pages, some figures are presented which

contain supportive visualisations of the experiments’s re-
sults. An elaborate overview of the results is given in
Figure 7, where the graphs show for every evaluated scene
the frame average CD values.

In Figure 8, a pair of camera images are shown in
addition to the information given in Figure 5

Figure 9 shows how the CD values of only the back-
ground points are calculated.

12

(a) scene-0131. Around frame 300, there is a speed bump in the real data,
but these dynamics are not included in the simulation, resulting in a different
ring pattern on the ground.

(b) scene-0132. A wrongfully cast shadow causes the peak around frame 85.
That, in turn, is caused by what seems to be cars that are misplaced too far
forward.

(c) scene-0164. Two times the ego vehicle has a wrong entry in the trajectory,
causing the vehicle to spoof to a different location, resulting in very different
point clouds.

(d) scene-0251. The many smaller peaks are caused by cars passing by that
cause small, miscast shadows. Some artefacts in the middle of the road,
together with a larger miss-cast shadow, are the cause of the big spike around
frame 350.

(e) scene-0398. Smaller miscast shadows cause the smaller spikes, but a
larger miscast is responsible for the spike around frame 285.

(f) scene-0562. More miscast shadows are causing spikes. the larger peak is
caused by a passing car that does not seem to have the right dimensions.13

(g) scene-0663. A small truck is replaced by a too-large truck that is sticking
out with its nose over the road, causing the spike around 265.

(h) scene-0796. Missized or wrongfully placed vehicles seem to be the cause
of the spike.

(i) scene-0778. Until frame 100, a semi-transparent wall is non-see-through
in simulation. In the real data, many lidar points exist behind the semi-
transparent wall.

(j) scene-0952. Small areas of mistake in the scenery cause fluctuations, and
almost no vehicles in this simulation. Nevertheless, this scene has one of the
best scores.

(k) scene-0955. Both a shadow miscast and two sceneries that do not seem to agree cause a rise in CD.

Figure 7. The per-frame average Chamfer Distance value of all the experiments performed in this research. Note the different y-axis scales
for the different scenes. Each frame corresponds to 1/20th of a second. A short analysis of the cause of the largest peak(s) is included in
the description.

14

(a) The original nuScenes data. (b) The Prescan synthetic data.

Figure 8. Camera frame 200 of scene-0251, just prior to the lidar frames shown in Figure 5. These camera images show the difference
in vehicle size clearly. In the synthetic data, the artefacts are clearly visible. These artefacts are probably a result of unremoved vehicle
points. The situation corresponds to that in Figure 9

(a) The original nuScenes data. (b) The Prescan synthetic data.

Figure 9. An example of the background-only CD comparison between two frames. Only the CD of the coloured points is calculated and
counted towards the average. The nuScenes data is the original data, but without objects, which have been removed using inflated ground
truth bounding boxes. The simulation frame is from a simulation without (dynamic) objects, and the Ground Truth bounding box has also
been removed from the scene. Of the points in the shadow of the bounding boxes, the CD is not calculated, because those points do not
appear in the nuScenes frame, which in turn would cause a high CD value in simulation points that lie in the shadow of a ground truth
bounding box. Note that the colour bar runs from zero to one, to emphasise which parts of the background are not performing well. The
situation corresponds to that in Figure 8

15

	. Introduction
	. Related Work
	. Method
	. Overview of the 3D Static Scenario Reconstruction
	. Dataset
	. Traffic Scenario Extraction
	. Filtering
	. Registration
	. Levelling
	. Meshing
	. Mesh Import Preparation

	. Experiments
	. Simulation setup
	. Evaluation Metrics
	. Results

	. Discussion
	. Interpretation of Results
	. Comparison with Related Work

	. Conclusion
	. Mesh Import Preparation
	. Supportive Visualisations

