
Faculty of Electrical Engineering, Mathematics and Computer Science

Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

CAS-2010-01

M.Sc. Thesis

Specification and Implementation of a
DMA Controller In an Embedded System

Daoxin Li B.Sc.

Abstract

The fast growing of In-Car entertainment application leads to an in-
creasing challenge for both data computation and data communica-
tion, which are managed by the microprocessor. The thesis project
is the third stage of a continuous Direct Memory Access(DMA) Con-
troller project in NXP Semiconductors for the purpose of specifying
and implementing a DMA Controller to take over data communica-
tion tasks from the microprocessor. In the first step of the thesis, a
test principle was investigated to fully test the existing results, but
the simulation results of the Core Unit did not satisfy the require-
ments. The Core Unit of the DMA Controller is responsible for the
sequential-single transfer and burst transfer involving wait states. The
existing specification and implementation were analyzed, and a num-
ber of possible approaches for improvements were identified. During
the second step, the Core Unit was re-specified according to these
approaches, and fully implemented using VHDL to fulfill the require-
ments. After the Core Unit design, the functions of Linked List trans-
fer was specified with Hatley and Pirbhai methodology. The Linked
List Unit, which manages the Linked List transfer, was specified to
support both the Static and Dynamic Linked List transfer. This spec-
ification provides an essential base for the future implementation. The
implementation of the Core Unit was tested with Simvision following
the proposed test principle. The results satisfied the function require-
ments. Thus, the specification was proved to be feasible. Additionally,
the Core Unit was synthesized using Cadence Ambit. The number of
the equivalent gates of a Core Unit Cell is 3k, which is smaller than
the currently used DMA Controller in NXP Semiconductors.

Specification and Implementation of a DMA
Controller In an Embedded System

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

MICROELECTRONICS

by

Daoxin Li B.Sc.
born in Yongchuan, China

This work was performed in:

Circuits and Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Delft University of Technology

Copyright c© 2010 Circuits and Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Specification and Implementation of a DMA Controller In an Em-
bedded System” by Daoxin Li B.Sc. in partial fulfillment of the requirements for
the degree of Master of Science.

Dated: Feb. 16th, 2010

Chairman:
Prof.Dr.Ir. Alle-Jan van der Veen

Advisor:
Dr.Ir. Rene van Leuken

Committee Members:
Dr. Sorin Cotofana

Harpreet Singh Bhullar

iv

Abstract

The fast growing of In-Car entertainment application leads to an increasing challenge
for both data computation and data communication, which are managed by the mi-
croprocessor. The thesis project is the third stage of a continuous Direct Memory
Access(DMA) Controller project in NXP Semiconductors for the purpose of specifying
and implementing a DMA Controller to take over data communication tasks from the
microprocessor.

In the first step of the thesis, a test principle was investigated to fully test the exist-
ing results, but the simulation results of the Core Unit did not satisfy the requirements.
The Core Unit of the DMA Controller is responsible for the sequential-single transfer
and burst transfer involving wait states. The existing specification and implementation
were analyzed, and a number of possible approaches for improvements were identified.
During the second step, the Core Unit was re-specified according to these approaches,
and fully implemented using VHDL to fulfill the requirements. After the Core Unit
design, the functions of Linked List transfer was specified with Hatley and Pirbhai
methodology. The Linked List Unit, which manages the Linked List transfer, was spec-
ified to support both the Static and Dynamic Linked List transfer. This specification
provides an essential base for the future implementation.

The implementation of the Core Unit was tested with Simvision following the pro-
posed test principle. The results satisfied the function requirements. Thus, the speci-
fication was proved to be feasible. Additionally, the Core Unit was synthesized using
Cadence Ambit. The number of the equivalent gates of a Core Unit Cell is 3k, which
is smaller than the currently used DMA Controller in NXP Semiconductors.

v

vi

Acknowledgments

First, I would like to thank my advisor, Dr.Ir. Rene van Leuken in TU Delft Circuit
and System group and Harpreet Singh Bhullar in NXP Semiconductors for their guid-
ance. Mr. van Leuken created my internship opportunity in NXP Semiconductors and
supported me a lot during the internship period. Mr. Bhullar continued to guide me
after my first advisor in NXP Semiconductors was laid off. He helped me to make a
suitable schedule for the last two months of my internship, and also gave me lots of
good advice in many fields.

Second, I am also grateful to Jos Teunissen and Rene van den Berg. Mr. Teunissen
was my first advisor in NXP Semiconductors. He led me into a new design methodology
and also shared his experiences to help me to fit into Dutch environments better. Mr.
van den Berg was my co-advisor together with Mr. Bhullar. His insight into the project
made me to understand my project easier.

Third, I would also like to thank Prof. Dr.Ir. Alle-Jan van der Veen. His attitude
towards his work inspirited me to continue going forward. He was always patient when
I came to him for advice.

Fourth, I want to express my appreciation to the engineers in NXP Semiconductors.
I really learned a lot from them. It’s a great experience to work with them.

Finally, during the whole periods of thesis project, my friends and my family were
always there when I needed them, and supported me without selflessly. It’s my pleasure
to have all of you in my life. Thank you all.

Daoxin Li B.Sc.
Delft, The Netherlands
Feb. 16th, 2010

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Project Motivation . 1
1.2 Project Goals . 2
1.3 Results and Contribution . 2
1.4 Thesis Organization . 3

2 Background 5
2.1 Data Communication of the Design ICs 5

2.1.1 Data Communication and Computation of the Design ICs . . . 6
2.1.2 Methods of data Streaming computation module 8
2.1.3 Comparisons of the Three Methods 11

2.2 Introduction of DMA Controller . 11
2.2.1 Architecture of A General DMA Controller 11
2.2.2 Function Descriptions of A DMA Controller 14
2.2.3 Basic Operation Modes and Transfer types 15
2.2.4 Applications and Trends of DMA Controller 17

2.3 Limitations of Currently used DMA Controllers in NXP 17
2.3.1 DMA Controller 1 used in NXP 17
2.3.2 DMA Controller 2 used in NXP 18
2.3.3 Problems of these DMA Controllers 19

2.4 Conclusions . 20

3 Problem Analysis of Existing Results 21
3.1 Introduction of Existing Results . 21
3.2 Problem Analysis of Existing Results 23

3.2.1 Test Principle Setup . 23
3.2.2 Simulation Results . 25
3.2.3 Problem Analysis . 25
3.2.4 Possible Approaches for Improvements 26

3.3 Conclusions . 28

4 Core Unit Design Implementation 29
4.1 Core Unit Conceptual Architecture Specification 29

4.1.1 Core Unit Context Diagram . 29
4.1.2 Core Unit Requirements and Constrains 30

4.2 Logical Architecture Specification and Design 31
4.2.1 Process Model Hierarchy . 31
4.2.2 Top Level Logical Architecture Specification 31

ix

4.2.3 Core Unit 1 Specification and Design 32
4.2.4 Core Unit 2 Specification and Design 34

4.3 Conclusion . 43

5 Linked List Design Implementation 45
5.1 Conceptual Architecture Specification and Design 45

5.1.1 Introduction of Linked List Transfer 45
5.1.2 Conceptual Architecture Specification and Design 47

5.2 Logical Architecture Specification and Design 49
5.2.1 Process Model Hierarchy . 49
5.2.2 Logical Architecture Specification 49

5.3 Conclusions . 59

6 Simulation and Synthesis 61
6.1 Simulation and Results . 61

6.1.1 Simulation Environment Setting 61
6.1.2 Simulation Results . 62

6.2 Synthesis Result . 63
6.3 Conclusions . 64

7 Conclusions and Future Work 65
7.1 Conclusions . 65
7.2 Future Work . 66

A Appendix 67

B Appendix 69

C Appendix 71

Bibliography 72

x

List of Figures

2.1 In-Car Entertainment System . 5
2.2 Simplified In Car Entertainment System 6
2.3 Single Entertainment Format . 6
2.4 Multiple Entertainment Format . 7
2.5 Multiple Format Separate Module . 7
2.6 Polling based data transfer . 8
2.7 Interrupt based data transfer . 9
2.8 DMA based data transfer . 10
2.9 Simple Structure of a DMA Controller 13
2.10 DMA Controller 1 . 18
2.11 Simple DMA Controller . 18
2.12 DMA Controller 2 . 19

3.1 First Stage DMA Controller Context Diagram [1] 21
3.2 Second Stage Top Level Data Flow Diagram [2] 22
3.3 Location Examples of Wait States Insertion 24
3.4 Example of Incorrect Burst Transfer 26

4.1 Core Unit Context Diagram . 30
4.2 Core Unit Process Hierarchy . 31
4.3 Core Unit 0 Data Flow Diagram . 32
4.4 Core Unit 0 Control Flow Diagram . 32
4.5 Core Unit 1 Analysis . 33
4.6 Core Unit 2 Data Flow Diagram . 35
4.7 Core Unit 2 Control Flow Diagram . 36
4.8 Core Unit 2 FSM Idle State . 37
4.9 Core Unit 2 FSM Sequential-Single Read State 38
4.10 Core Unit 2 FSM Sequential-Single Write State 39
4.11 Core Unit 2 FSM Burst Read State . 41
4.12 Core Unit 2 FSM Burst Write State . 42

5.1 Static Linked List Process [1] . 46
5.2 Dynamic Linked List Process . 46
5.3 Linked List Context DFD . 48
5.4 Linked List Context CFD . 48
5.5 Linked List Process Hierarchy . 49
5.6 Linked List Unit 0 DFD . 50
5.7 Linked List Unit 0 CFD . 50
5.8 Linked List Unit 1 DFD . 52
5.9 Linked List Unit 1 CFD . 52
5.10 Linked List Unit 2 packet example . 53
5.11 Linked List Unit 2 DFD . 53
5.12 Linked List Unit 2 CFD . 54

xi

5.13 Linked List Unit 3 DFD . 55
5.14 Linked List Unit 3 CFD . 55
5.15 Linked List Unit 4 DFD . 58
5.16 Linked List Unit 4 CFD . 58

6.1 Simulation Environment Context Diagram 61
6.2 Simulation Burst Read to Burst Write 62
6.3 Real Simulation Burst Read to Burst Write 63

A.1 Hatley and Pirbhai Elements and Symbols 67

B.1 Polling-Based Transfer . 69
B.2 Interrupt Based Transfer . 69
B.3 DMA Based Transfer-Initial DMA Operation 70
B.4 DMA Based Transfer-DMA Transfer 70

C.1 Burst Write State Transforms to Burst Read State 71
C.2 Burst Write State Transforms to Sequential-single State 71

xii

List of Tables

3.1 Testing Cases . 25
3.2 Subunit ”Manage Counter” Input Signals 26

5.1 Linked List Unit Top Level Input and Output 51
5.2 Linked List Unit 2.1 Input and Output 54
5.3 Linked List Unit 2.2 Input and Output 54
5.4 Linked List Unit 2.3 Input and Output 55
5.5 Linked List Unit 3 Input and Output 56
5.6 Linked List Unit 3 Input and Output 56
5.7 Linked List Unit 3 Input and Output 57
5.8 Linked List Unit 4 Input and Output 57
5.9 Linked List Unit 4 Input and Output 59

xiii

xiv

Introduction 1
1.1 Project Motivation

In the last ten years, with the development of consumer electronics technology and the
continuous dropping prices, people’s experiences for the entertainments at home have
been changed greatly. People are enjoying the revolution and asking for more. The
speed of the change nowadays is even faster than ever in order to fulfill the consumer’s
desire. The time line for a company to release a new product becomes shorter and
shorter. The consumer electronic products are smarter and smaller. At the same time,
more and more people choose to own a car as their main vehicle, especially in the fast
developing countries. This leads to people spending more time in their cars. They are
eager to enjoy the same experiences as they have at home wherever they happen to
be. Along with the progress on the consumer electronics, the In-car entertainments
have also come a long way from the simple AM/FM radio and tape to more diversity
functions. This situation can’t be ignored by the car manufacturers and suppliers. At
first, it’s expensive to add new entertainments into the car. However, with the rapidly
falling prices of the consumer electronics and new semiconductor technologies, a similar
revolution is taken place in the automotive entertainment markets. Of course, car is
one of them. The car entertainments not only include audio, but also video entertain-
ment. The quality of car entertainment experiences are increased dramatically with the
adoption of digital AM/FM radio, CD/DVD playback interface, gaming, hand’s free
telephony, navigation, rear-seat entertainment (including video) and personal portable
devices, like USB. In-Car Entertainment System is developed and renewing to behave
and control the entertainments in car. In-Car Entertainment System is an integrated
embedded system combined different entertainment devices in a car. The development
of integrated solutions and corresponding devices makes the adding of new functions
more advanced and sophisticated.

However, things are not as easy as we expected. The data requirements for the In-
Car Entertainment System are rising when integrating more devices. More and more
entertainment forms lead to a diversity of data formats. These data formats are required
to be processed and communicated on time to fulfill the passenger’s needs. Originally,
data computation and data communication tasks are all taken by the microproces-
sor, which is known as the Car Entertainment Processor in the In-Car Entertainment
System. Both of the computation and communication tasks occupy lots of resources
from the microprocessor. This greatly increases the load to the microprocessor and
may cause errors when the microprocessor is not able to handle all the tasks. Heat
problem is also very important for the microprocessor and the entertainment system.
It’s easy to be overheated when the microprocessor is fully running. The micropro-
cessor can be instability, as a result. Moreover, more electronic functions cause more

1

power consumption and heat dissipation. Considering the limited space in a car and
the spare parts which dissipate large amount of heat, like engine, the heat environment
for the In-Car Entertainment System and for its microprocessor, is very crucial. An-
other problem causing situation is the long lifetime of a car, which is a very basic and
important quality requirement for the car manufacturers. This also requires that the
In-Car Entertainment System should be reliable enough for the long time operation.
Therefore, a method has to be developed to offload the microprocessor from handling
both the computation task and the communication task at the same time. One option
is to design another functional unit to control the communication task instead of the
microprocessor.

1.2 Project Goals

The project is to design a DMA Controller which is suitable for the In-Car Entertain-
ment System. The YAD-C DMA Controller design project is a continuous project in
NXP Semiconductors. This thesis project is the third stage of the whole project. The
first step of this project is to test and analyze the existing results. After finding out
the limitations of the existing results, possible ways for improvements should be pro-
posed. Based on the first step, the functions of Core Unit should be re-specified and
implemented using Hatley and Pirbhai Methodology in the second step to make sure
the Core Unit can perform all the required transfer functions correctly. Simulation and
synthesis should be done to check the feasibility of the implementation. In the third
step, Linked List transfer function needs to specified.

1.3 Results and Contribution

The results of this thesis are: 1) A test principle has been investigated to test the
functions of data transfer. 2) New counter management unit has been specified and
implemented. 3) New State Machines of the Core Unit have been designed correctly to
control the data transfer processes and the corresponding behaviors, like loading the
required data. 4) The Core Unit is able to perform the sequential-single transfer and
burst transfer functions with wait states insertion correctly according to the simulation
results. 5) The Linked List Unit is specified according to the Hatley and Pirbhai
methodology. 6) The synthesis result of one Core Unit Cell is 3k equivalent gates.

The proposed test principle has included all the possible situations for the data
transfer with wait states insertion. Thus it can be used in the simulation of future
implementations to test the functions of the newly implemented data transfer types
and the corresponding function units, such as Linked List transfer and Linked List
Unit. The Core Unit Cell is easily increased or decreased, so the DMA Controller can
easily be adjusted in different application environments and different projects in NXP
Semiconductors.

2

1.4 Thesis Organization

The rest parts of the thesis are organized in the following way:
Chapter 2 introduces the background of the data communication and DMA Con-

troller. Three methods of data streaming are presented and compared. A general DMA
Controller is described here. Two currently used DMA Controllers in NXP Semicon-
ductors are introduced and the problems of these DMA Controller are discussed.

Chapter 3 gives an introduction of the existing results. A test principle is investi-
gated to test the existing results. The analysis of the existing results is discussed and
possible approaches for improvements are given.

Chapter 4 describes the specification and implementation of the Core Unit. A struc-
ture of the DMA Controller is discussed and the function requirements are presented
during the Conceptual Architecture design. In the Logical Architecture design, the
Core Unit is specified and fully implemented according to the analysis in Chapter 3.

Chapter 5 describes the Linked List Unit specification according to the principles
of Hatley and Pirbhai Method. Linked List Unit is specified into 4 subunits and some
of the subunits are further divided. Process Specifications for Linked List Unit and the
subunits are also discussed.

Chapter 6 discusses the simulation and synthesis result of the Core Unit. One use
case is chosen to explain the simulation result.

Chapter 7 concludes the results of the thesis project. Recommendations for future
work are also given.

3

4

Background 2
This chapter introduces the background of the data communication and DMA Con-
troller. Section 2.1 focuses on the three methods of data streaming. These methods are
compared based on the consumed clock cycles to transfer one data elements. In Section
2.2, the structure and functions of a general DMA Controller are introduced. The basic
operations of a DMA Controller are also presented. Based on the general module, Sec-
tion 2.3 analyzes two currently used DMA Controllers in NXP Semiconductors. The
problems of these DMA Controllers are discussed in the end.

2.1 Data Communication of the Design ICs

Figure 2.1 illustrates a modern In-Car Entertainment System:

Figure 2.1: In-Car Entertainment System

Typically today in a head-unit of a car, there is the entertainment box containing
several processing units (ICs) and different hooks towards external sources and sinks
of entertainment.

There is the traditional AM/FM reception path from the car antenna. Other radio
inputs can come from satellites in high-end car systems. Audio and video inputs gen-
erally come from either CD/DVD drive inputs, but can also come from connectivity
devices, such as USB (from iPod, for instance), SD-Card. Navigation is nowadays an
essential component in mid-end and high-end cars, and even some low-end cars. So
are the external display outputs. Some car entertainment systems support external

5

Digital-to-Analog convertors for audio sinks near the amplifiers next to the speakers.
Others expect analog input directly to the amplifiers.

The heart of the processing to be done on these radio, audio and video inputs is
what is know as the Car Entertainment Processor. It is responsible for doing all kinds of
processing from these sources. Equally important, they are also responsible to interface
with the different sources and sinks mentioned above, each of these sources and sinks
having their own interfaces and protocols running on these interfaces.

Finally, the “head” of the entertainment box is the micro-controller, that is respon-
sible to communicate with external control buses in the car (like CAN bus, MOST
bus for data), as well as for power and reset behavior of the entertainment box. It
is also responsible for controlling and providing commands to the different ICs in the
entertainment box, including to the Car Entertainment Processor.

2.1.1 Data Communication and Computation of the Design ICs

The car entertainment system typically processes the input signals or data and gener-
ates output signals or data. During its execution, the microprocessor not only executes
the computation on the inputs, but also transfers the executed inputs to the output in-
terface. Therefore, the function of the car entertainment system can be divided into two
domains. One is computation, the other one is communication domain. The process is
showed in the following Figure 2.2.

 System’s

 Memory

 Memory

 /Peripheral

 In - Car

Entertainment

 System

Input Output

Figure 2.2: Simplified In Car Entertainment System

The data format varies for different entertainment functions. In order to execute
different data formats in car entertainment system, there are a pair of corresponding In-
put and Output Interfaces. The Input Interfaces are responsible to convert a particular
input data format into a standard format that can be processed by the car entertain-
ment system. And the Output Interfaces are used to convert the standard format to
an output data format which can be recognized by the external display device. The
process is showed in Figure 2.3.

 Input

Entertainment

 Format

 Output

Entertainment

 Format

 In Car

 Entertainment

 System

 Receive

Interface

Transmit

Interface

Figure 2.3: Single Entertainment Format

6

With the development of entertainment devices, people have more entertainment
demands for In-car experiences. And more entertainment functions are also developed
to the market, such as digital radio. When transforming different input formats at the
same time, theoretically, each input signal can be transferred to any of the output in-
terfaces. (See Figure 2.4, the input of FM/AM radio signal can be transfer to any of the
four output interface.) Therefore, when different entertainment processes are execut-
ing, the car entertainment system has to handle module format transformation while
transfer the concerned input signals to the corresponding Output Interface. Thus, the
car entertainment system must spend a large number of overhead on both computation
task and communication task.

FM/AM Radio

 Program

Navigation

 USB

 Tape/CD

Electronics

Receive

Interface
Transmit

Interface

Navigator

Vedio Display

Speaker

Speaker

 In-Car

Entertainment

 System

Receive

Interface

Receive

Interface

Receive

Interface

Transmit

Interface

Transmit

Interface

Transmit

Interface

Figure 2.4: Multiple Entertainment Format

To deal with the situation above, one of the methods that nowadays industry adopts
is to separate the communication domains from the computation module. Seen in Fig-
ure 2.5. A large number of overhead on the communication domain can be released
and spend on the computation execution. The car entertainment system with a sepa-
rated communication module has less area, consumed less power and also obtain high
performance, because the system can do the data transfer while do the computation
work at the same time.

FM/AM Radio

 Program

Navigation

 USB

 Tape/CD

Electronics

Receive

Interface
Transmit

Interface

Navigator

Transmit

Interface

Vedio Display

Speaker

Speaker

Computation

Module

Communication

Module

Receive

Interface

Receive

Interface

Receive

Interface

Transmit

Interface

Transmit

Interface

Transmit

Interface

Transmit

Interface

Figure 2.5: Multiple Format Separate Module

The concept of DMA Controller is developed. ‘DMA’ means ‘Direct Memory Ac-
cess’. So the DMA Controller is use to control the communication work instead of the
microprocessor. And the DMA Controller is able to read or write the memory directly

7

without the interference of the microprocessor. This concept is widely used in the in-
dustry nowadays. And the Car Entertainment Business Line of NXP Semiconductor
also wants to design a particular DMA Controller which is able to fulfill the increasing
challenge along with the fast development of the In-Car Entertainment system.

2.1.2 Methods of data Streaming computation module

The data being fed in to an in-computation module as described in the former subsection
is mostly streaming in nature. Streaming means there are real-time constraints when
data has to arrive and sent out. For example, speech is typically constraint on 8 kHz,
uncompressed audio on 44.1 kHz or 48 kHz, etc. It is the job of the ”communication”
module” in figures above to meet these constraints of a stream of data. Looking at the
past and present embedded system, there are three methods to stream data. They are
Polling-based transfer, Interrupt-based transfer, DMA-based transfer.

Polling-Based Transfer
A Polling-based transfer continuously polls or checks the peripheral status whether

it is ready to transmit or receive data or not. In the polling-based transfer, when the
peripheral is ready, the related flag in one of its status registers is set. In order to find out
this new status, the computation module should continually checks the status registers
of the peripheral in tight polling loops. If the status shows the peripheral is ready
to transmit/receive data, the computation module should drop the loops immediately
and start to perform a data transfer. After transferring the data item, the computation
module computes new data. The microprocessor starts a new loop.

The context diagram of the polling-based system is showed in Figure 2.6.

Microprocessor

Data MemoryProgram Memory

 Bridge

(optional)

Peripheral

Local Bus (pclk)

Master clock (mclk)

Figure 2.6: Polling based data transfer

The polling-based transfer is simple and requires less hardware. But from the de-
scription of the execution, it is clear that whenever data are to be received or trans-
mitted, the status of the peripheral have to be checked first. This checking process can
consume a lot of loop executions; therefore take a large amount of time. And during
the checking execution, the computation module is not able to do anything else.

In order to understand this transfer better, a simulation is finished. The environment
of the simulation is Advanced High-performance Bus (AHB) architecture compliant
with the I2C peripherals. The data element is transferred from I2C peripheral 0 to I2C
peripheral 2.

From the simulation, the processing time of status checking execution (one check-
ing loop) was measured, as well as data transfer time to/from the receiving/sending

8

peripheral for one data element. And the total cycles that consumed during execution
is 93 master bus cycles. (1 master bus cycle = 24 ns, 1 local bus cycle =15.8 ns) The
simulation waveform can be seen in Figure B.1, Appendix B.

Interrupt-Based Transfer
An Interrupt-based transfer is to stop the current process of the computation module

with an interrupt event so that the computation module is able to participate in another
task, indicated by the event. In data handling, a peripheral interrupt is used to handle
the data transfer task with the cooperation from interrupt controller. The Interrupt-
based system context Diagram can be seen in Figure 2.7.

Program

Memory

Interrupt

Controller

 Bridge

(optional)

 Peripheral

Master Bus (mclk)

Local Bus (pclk)

Interrupt

Request

(IRQ)

Interrupt

(INT)

Interrupt

Acknowledge

(INTACK)

 Microprocessor

Figure 2.7: Interrupt based data transfer

When the peripheral indicate that it is ready for transmit/receive data, the con-
cerned peripheral sends Interrupt Request (IRQ) to the Interrupt Controller which
converts it into the corresponding Interrupt (INT) Vector. The vector is stored in the
controller so that the computation module can read directly. The controller raises the
INT signal to computation module to ask for service. On receiving the INT signal, the
computation module reacts to the controller with an Interrupt Acknowledge signal to
start the interrupt service. During the interrupt service, the computation module will
do the following operations: First, the computation module checks which device gives
the interrupt. After the sending peripheral is found, the computation module checks
the status that caused the interrupt. If the status is ready for transferring data, the
computation module starts the processes that are related to the peripheral and start
a data transfer. At the end of the data transfer, the computation module clears the
interrupt and resumes the previous process.

The interrupt-based transfer is efficient, because the processing operation of micro-
processor is only suspended during the data transfer. And it relieves the computation
module from having to continually poll for the peripheral status. But since the in-
terrupt function requires a particular hardware, which is called Interrupt Controller,
overhead of interrupt must be accepted. If it takes a long time for the computation
module to perform data transfer, other processes have to wait until the task is finished.

In order to understand this transfer better, a simulation on executing the ISR is
done. The environment of the simulation is Advanced High-performance Bus (AHB)
architecture compliant with the I2C peripherals. The data element is transferred from

9

I2C peripheral 0 to I2C peripheral 2.
During the simulation, one data element was performed during the simulation. And

it takes 217 master bus cycles to run the checking process. The data transfer of one
element consumes 40 master bus cycles. Therefore, it totally costs 257 master bus
cycles (around 260 master bus cycles) to execute the ISR for one data element. The
simulation waveform can be seen in Figure B.2, Appendix B.

DMA-Based Transfer
Direct Memory Access (DMA) is a transfer that allows devices to transfer data

from/to system memory to/from system peripheral automatically without intervention
of the computation module. When a number of data elements need to be transferred
from data memory, the computation module initiates the DMA Controller and grants
the bus access to the DMA Controller. The DMA Controller starts a data transfer over
the bus system. By the end of the transfer, DMA Controller interrupts the computation
module to inform the completion of the data transfer task. The computation module
takes control of the bus access from the DMA Controller. The block diagram of the
DMA-based transfer is shown in Figure 2.8.

Microprocessor

Program

Memory

Interrupt

Controller

 DMA

Controller

 Peripheral

Master Bus (mclk)

Local Bus (pclk)

Interrupt

Request

(IRQ)

Interrupt

(INT)

Interrupt

Acknowledge

(INTACK)

 Bridge

(optional)

 Data

Memory

Figure 2.8: DMA based data transfer

From the description above, DMA Controller is able to offload the computation
module. This provides the best efficient performance since the input and output pro-
cessing can happen in parallel with other executions. But at the same time, the system
becomes more complex.

During the simulation on DMA-based transfer, the master bus cycles that are con-
sumed in the execution are measured and calculated. The environment of the simu-
lation is Advanced High-performance Bus (AHB) architecture compliant with the I2C
peripherals. The data element is transferred from I2C peripheral 0 to I2C peripheral 2.

It takes the computation module around 1650 master bus cycles to initiate DMA
Controller, and 20 master bus cycles to transfer one data element. After the data
transfer, the hardware interrupt which is handled by the computation module costs
totally 273 master bus cycles, which contains 173 cycles to receive the ISR and 100 cycles
to execute the ISR. Therefore, the whole operation consumes 1943 master bus cycles
(around 2000 cycles). The simulation waveforms of the DMA initialization process
and DMA transfer process can be seen in Figure B.3 and Figure B.4, respectively in

10

Appendix B.

2.1.3 Comparisons of the Three Methods

The clock cycles of the above simulations can be seen in Table 2.1.

Master Polling Interrupt DMA
Cycles
1 data 93 master cycles 257 master cycles 1943 master cycles
element per 1 polling loop
10 data 930 master cycles 2570 master cycles 2123 master cycles
elements per 10 polling loops

Table 2.1 Master Cycles Consumed by Data Transfer Methods

It’s easy to see the Polling-based transfer is the worst among all the transfers.
Because when checking the devices before data are ready to transfer, a large number
of loops may be executed. And the computation module can only busy waiting and do
nothing else. This is inefficient especially for the real time embedded system which is
applicable in many designs on the market.

Comparing the interrupt-based and DMA-based transfers, one attractive advantage
of the DMA-based transfer is the computation module can be offloaded. For the clock
cycles that are consumed in execution, 10 elements were taken as an example. The total
cycles for the interrupt-based transfer are 257*10=2570 master bus cycles. And the
DMA-based transfer costs 1650+20*10+273=2123 master bus cycles. So the DMA-
based transfer takes a large advantage of the consumed cycles, especially when the
number of data elements to be transferred is large than 10.

The size of the current DMA Controller developed by NXP itself is only 30k gates.
Compared to the computation module, which is 70k gates, the power consumption of
the DMA Controller is much less than the computation module when doing the data
transfers.

Using the DMA-based transfer, a DMA Controller, which leads to extra size and
power consumption for the system, has to be introduced into the system. When there
are a large number of data elements, considering the less power consumption compared
with the computation module and the advantage of offloading the computation module,
the DMA-based transfer is the best choice among all the transfers. Otherwise, If the
amount of data elements is small (less than 10), it won’t be beneficial for the extra size.
In this situation, the interrupt-based transfer can be adopted.

2.2 Introduction of DMA Controller

2.2.1 Architecture of A General DMA Controller

2.2.1.1 Principles of DMA Controller

Stages of DMA Transfer

11

Similar to Interrupt-based transfer, the whole procedure of DMA transfer is sep-
arated into several stages. Before DMA transfer starts, users need to program DMA
Controller based on the demand of the system. This pre-programmed information con-
tains the size of the data, the source address, the destination address and some other
configuration signals. This process is called initialization of DMA Controller. When
the peripheral is ready, the DMA Controller can start to apply for the DMA transfer.

In the application stage, for a single-layer bus system, when the peripheral requests
data transfer, a request signal (DREQ) will be sent to DMA Controller. Right after
the DMA Controller accepts this request, it’ll send a bus request signal (BREQ) to the
microprocessor to ask for the occupation to the bus system. Then in the response stage,
the microprocessor checks at the end of each bus cycle to see whether the BREQ signal
is valid. As soon as the BREQ signal is ready, and at the same time, the bus system
is not locked by other masters, the microprocessor will response to the BREQ signal
and release the bus system. Thus, the DMA Controller takes over the bus system and
becomes the control unit of the system. The third stage is to perform data transfer.
The DMA Controller replies to the peripheral’s request to recognize it as the selected
peripheral for the data transfer task. On the other hand, using its bus control authority,
the DMA Controller sends the address signal to the memory, the read/write control
signal to both the memory and the peripheral, to control the data transfer and transfer
path. After the data transfer is finished, the DMA Controller turns into the last stage,
after-transfer stage. According to the pre-programmed information, when the data
elements are all transferred, the DMA Controller generates a ”‘transfer complete”’
signal for the peripheral. After receiving this signal, the peripheral cancels the DREQ
signal. In consequence, the BREQ signal becomes invalid and the DMA Controller
releases the bus system. Then the microprocessor takes over the bus again. This is the
whole procedure for one DMA transfer.

Applications of DMA Transfer
DMA method is used to enhance the data throughput of the system. It is mainly

adopted in the data transfer system which requires high speed and processes large
number of data batch, such as disk accessing, graphic processing. But compared with
other transfer method, DMA transfer utilizes extra hardware units to take over the
same function from software. This leads to an increase in the hardware flexibility and
cost of the system. In the single-layer Bus system, the DMA Controller takes over the
bus system from microprocessor. Thus, if there are some important interrupt requests
arriving during this period, the microprocessor will not be able to response in time.
Therefore, DMA method is not necessary for single-layer bus system. In multi-layer bus
system, when the DMA Controller and the microprocessor are masters of two different
layers respectively, both of the DMA Controller and the microprocessor can access to
the bus system at the same time. In this case, the utilization of the DMA Controller
makes the system more efficient.

2.2.1.2 Components of A General DMA Controller

A DMA Controller can be seen as an interface block among microprocessor, peripherals
and bus system. This interface block is a circuit of DMA transfer mechanism built on
an interrupt block. Therefore, the DMA Controller consists of an interrupt part and a

12

DMA part. Figure 2.9 shows a simple structure of the DMA Controller.

Microprocessor D
M

A
 A

ck

D
M

A
 R

eq

Address

Register

Read/Write

 Counter

Control

& States

Logics

Data

Buffer

Source

Memory

Destination

Memory

Bus

Address Line

Data Line
S

o
u
rce A

d
d
ress

update

address

update

counter

data

transfer

status

Figure 2.9: Simple Structure of a DMA Controller

Address Register

Address Register is used to store the addresses of the required data elements. Before
DMA transfer, the microprocessor must send the source address to this Address Reg-
ister. During DMA transfer, at the end of each single data element transfer, the value
of the register will increase ‘1’. Thus, the addresses are provided in a incrementation
form.

Read/Write Counter

Read/Write Counter(R/W Counter) is used to record the length of the transferred
data elements. The initial value of the counter is also set by the microprocessor before
the DMA transfer. The value equals to the length of the required data elements. During
DMA transfer, the value of the counter decrease ”‘1”’ right after one data element is
transferred. So the R/W Counter performs in a decrement form. When the counter
turns to ”‘0”’, the DMA transfer of the current data group is finished and the DMA
Controller send an interrupt signal to the microprocessor.

Data Buffer

The Data Buffer is used to temporally store one data elements. When the data
element is imported, it is transferred first from the source memory to the buffer, then
from the buffer to the system bus and finally the destination memory and vice versa.

Control and State Logics

This part of the circuit is composed of Control and Timing Logics and Status Flag.
It is used to modify the value of Address Register and R/W Counter, set read or write
process, and so on.

13

2.2.2 Function Descriptions of A DMA Controller

Basic functions of DMA Controller
According to the description of DMA transfer, some basic functions of DMA Con-

troller can be summarized. A DMA Controller can be programmed by microprocessor
in order to set the initialization information. A DMA request signal is sent to micro-
processor. After microprocessor accepts the DMA request, the DMA Controller starts
DMA operation. During the DMA operation period, the DMA Controller can send
address signals to address lines, and send read/write control signal to control lines.
The size of data elements is also controllable by the DMA Controller. When the data
transfer task is finished, the DMA Controller is able to send a complete signal and
release the bus.

Except the above basic functions, there are other functions added into some DMA
Controllers, for instance, generating interrupt request when the DMA transfer is fin-
ished; accepting new source address and the data size information in case the DMA
Controller retransfers the previous data blocks again, or connects the finished data block
with other unrequested data blocks together in the following DMA transfer; generating
2 memory addresses so as to achieve the transfer between memory and memory.

Functional Modes of DMA Controller
DMA Controller is design as a data transfer interface block between two memory

blocks. Compared with other I/O interface device, the DMA Controller is able to
perform either as the system controller or as a peripheral unit which is controlled by
microprocessor. Therefore, there are two functional modes for the DMA Controller
existing in the system. They are Active Mode and Passive Mode.

Active Mode
The active mode is the process that performs the work needed to move the data.

The active mode allows the DMA Controller can either be a data source unit or a
data destination unit. When the DMA Controller performs as a source unit of the
data transfer, data elements are written by the DMA Controller to the memory or
peripherals. When performing as a destination unit, the DMA Controller reads the
data elements from the I/O unit. Therefore, the DMA Controller in active mode is a
bus master. During the procedure of DMA transfer, the DMA Controller sends a ‘load
data read’ signal to trigger read operation and reads data elements from the memory
and then writes the data to the destination peripheral. Then the DMA Controller sends
a ‘load data write’ signal to trigger write operation and write the data elements which
is read just now to the destination peripheral.

Passive Mode
The passive mode is the process whose memories are written to or read from by

the processes in the active mode. The passive mode is not finished until all the data is
written to the DMA Controller. Before the DMA transfer, the DMA Controller is con-
trolled by the microprocessor. When the request signal is accepted, the microprocessor
pre-programs the DMA Controller. A descriptor is sent to the DMA Controller. This
descriptor consists of the initialization information, such as the source and destination
address, the size of data, and some other configuration information. When the DMA
transfer is finished, the DMA Controller halts in the passive mode and performs as a
bus slave.

14

2.2.3 Basic Operation Modes and Transfer types

When the microprocessor accepts the DMA request, the DMA Controller can operates
in three basic modes: cycle Stealing, interleaved DMA, suspend microprocessor access.
Each of them has its advantages and disadvantages.

2.2.3.1 Basic Operation Modes of DMA Controller

Cycle Stealing DMA
Cycle stealing means the DMA Controller ‘steals’ one single microprocessor clock

cycle from the microprocessor to perform DMA transfer. The system bus is needed both
by the microprocessor and the DMA Controller when they are executing instructions.
In a single-layer bus system, if the DMA Controller requests to access the system
bus, while the microprocessor is accessing the bus at the same time, executions of
instructions of the microprocessor are delayed and the DMA Controller takes over the
bus control to transfer a single byte or word. Then the DMA Controller becomes Idle
again and waits for another request from the peripheral. In fact, the DMA operation
can be seen as an insertion into the microprocessor bus cycles. Because of the insertion,
the cycle stealing DMA mode decreases the operation speed of the microprocessor. And
another limitation of cycle stealing DMA is only one byte or word data elements can be
transfer during one DMA operation. And for each cycle stealing, the DMA Controller
has to request the authority of system bus, set up bus control and release the bus to
the microprocessor. Thus, it takes more than one microprocessor clock cycles to finish
the data transfer compared with one clock cycle by microprocessor itself. Therefore,
it’s not suitable for the transaction requesting high transfer speed and large amount of
data.

Interleaved DMA
The interleaved DMA accesses the system bus only when the microprocessor is not

using it, for instance, performing an ALU operation or incrementing a program counter.
The DMA Controller chip identifies these cycles and allows transfer of data between
the memory and I/O device [3].

Suspending Microprocessor
In the suspending microprocessor method, for the single-layer bus system, the DMA

Controller takes over the authority of system bus from microprocessor to perform data
transfer. During DMA transfer, the microprocessor can execute the other operations
which do not need to access the bus. Only when the DMA operation is finished, the
microprocessor can access the system bus again. This method is popular with micro-
processors [3]. Suspending microprocessor will slow down the speed of microprocessor,
but not as much as the clock cycles microprocessor consumed in data transfer.

2.2.3.2 Transfer types of DMA Controller

There are three transfer types during the DMA transfer. They are single word transfer
type, block transfer type and demand transfer type.

Single Transfer Type

15

In single transfer mode, the DMA Controller is programmed to perform one transfer
only. Therefore, the single transfer is an inconsequential transfer, which means the
address and the control signals are not related to the signals of previous data transfer.
The read/write counter will decrease by one and the address will increase following
each transfer. After the transfer, the DMA Controller is halted and release the bus.
When next word of DMA transfer is needed, the DMA Controller has to request again.

Block Transfer Type

When the block transfer starts, an entire data block will be transferred. The DMA
Controller disables itself when the transfer is complete. During this transfer, even
though the DMA request turns to inactive, the DMA Controller still controls the system
bus and halts the DMA operation at the same time. After the DMA request becomes
active, the DMA operation continues making transfer. Block transfer is sequential.
The address signal is based on the previous transfer. The value of the address is the
previous address plus the size (by bytes). And the control signal is identical to the
previous transfer. There are two ways of block transfer type: sequential single transfer
and burst transfer.

In sequential single transfer, the DMA Controller transfers the block data elements
one by one. That means, right after one data element is read from the source, the DMA
Controller performs the write operation to send this data element to its destination.
And the read/write counter decreases one after each transfer. When the counter finally
becomes 0, the transfer is complete. Then the microprocessor takes over the system
bus.

In burst transfer mode, the DMA Controller sends a burst of data elements to
destination repeatedly. Compared to the sequential single transfer, the DMA Controller
won’t perform the write execution until all the data elements in the burst are read, and
vice versa. There are burst read/write counter to record the number of transferred
data elements, and will increase after one element is transferred. When the burst read
counter reaches the size of the burst, the DMA Controller stops the read process to write
the burst to its destination. After all the data elements in the burst are finished writing,
the next burst can start to be read. The data elements inside one burst are transferred
sequentially. And between each burst, the microprocessor is able to interleave with
the DMA operation. This leads to a capacity reduce of the microprocessor. But the
microprocessor does not need to be halted completely. The burst mode disables itself
when the transfer of the whole block is finished.

Demand Transfer Type

Demand transfer type is similar to the block transfer type, except that after each
data element is transferred, the DMA Controller checks whether the DMA request is
valid. Therefore, it’s a way of polling as well. If the request goes inactive, the DMA
Controller will release the system bus. Otherwise, the DMA Controller continues to
make transfer until the block is completely transferred. And in this case, the DMA
Controller performs as the block transfer type. Therefore, by controlling the active or
inactive of the DMA request signal, a data block can be divided into several parts, and
transferred separately each time period sequentially when the I/O device is ready.

16

2.2.4 Applications and Trends of DMA Controller

DMA Controller is responsible for the data transfer between memory and memory or
peripherals without interference from the microprocessor. This application not only
increases the data transfer rate between memories, but also frees the microprocessor
from large amounts of data transfer, collecting scattering data elements, visiting slow
devices and hence makes the microprocessor become more efficiency.

The DMA Controller nowadays is becoming more sophisticated and intelligent. The
operation of normal DMA controller involves the operation from the microprocessor.
DMA Controlled data transfer has to be established entirely by instructions of the
microprocessor. And the DMA Controller is adequate for the requirements of micro-
computers and small computers. As far as the large computer or more sophisticated
embedded systems, their CPU or microprocessor is extremely powerful and the system
bus usually attaches with a large number and varieties of peripherals. In this case, a
separate DMA Controller for each device is uneconomical [4]. Therefore, device called
Input/Output Processor (IOP) is developed.

During the operation, the microprocessor or CPU is responsible for initiating the in-
put/output program. And then the IOP fetches and executes its instruction to perform
the data transfer between peripherals and memories. At the same time, the micropro-
cessor or CPU can process data which is needed in the data computation tasks. IOP
is also need to structure the data from different peripherals or memories, because the
data formats are different among different peripherals, and between the peripherals
and the memories as well. For instance, when an IOP receives a 2 bytes input data, it
must temporally store these data and pack the format to the memory format, which is
16 bytes. After data packing, the input data is able to be transferred to the memory.
After data transfer task is finished, IOP informs CPU with an interrupt signal.

More sophisticated DMA Controller involves the scatter/gather function. This is
also known as linked list transfer, whereby a DMA Controller is able to read/write data
from/to separate locations in memories or peripherals. The transfer is arranged by a
task list which is set in a descriptor. DMA Controller is initiated by the microprocessor
according to the instructions in the descriptor. More details of the linked list transfer
will be talked about later.

2.3 Limitations of Currently used DMA Controllers in NXP

Two kinds of DMA Controllers are adopted in current projects of Car Entertainment
Business Line, NXP Semiconductors. Because of the confidential reasons, the names
of the DMA Controller will not be indicated here. Instead, they are named as DMA
Controller 1 and DMA Controller 2.

2.3.1 DMA Controller 1 used in NXP

The DMA Controller1 used in the current design is called Simple DMA Controller
(SDMA) which is a central DMA Controller that connects to the Advanced High-
performance Bus (AHB) and VPB system. A system with a central DMA Controller
consists of a processor and a DMA Controller as a master on the bus; the peripheral

17

and the memory are slaves on the bus. The system context diagram is showed in Figure
2.10.

Microprocessor

Program

Memory

 Interrupt

Controller

 DMA

Controller

 Peripheral

Multilayer AHB Bus

VPB Bus

 AHB/VPB Bridge

 (optional)

 Data

Memory
 Watchdog

VPB Bus

 AHB/VPB Bridge

 (optional)

 UART

Figure 2.10: DMA Controller 1

The system contains four parts, see Figure 2.11 [5]. The VPB interface whereby
the microprocessor can control the SDMA registers; The AHB interface whereby the
SDMA performs this DMA functionality (data transfer), DMA channels; The flow
control interface, connected to the DMA peripherals which triggers a DMA cycle; The
external DMA enable interface and interrupt interface.

 DMA

 Control

Interrupt

 Control

Scheduler

 Write

handler

 Read

 handler

AHB Bus

 Master

SDMA Register

Channel 0

Channel 1

Channel 9

Memory

Peripheral

Flow Control

VPB_Bus

IRQ

SDMA Ext Enable

SDMA Ext Enable Ack

Figure 2.11: Simple DMA Controller

The SDMA Controller provides some following functionality: APB/VPB interface
for sending control into from microprocessor to DMA; DMA cycles on the AHB bus;
Supports byte, halfword and word transfers, and correctly aligned it over the AHB bus;
Supports 31 peripherals for DMA flow control; Supports external enabling (SDMA Ext
Enable pins) of the DMA channels, so other peripherals then the microprocessor can
enable one or more DMA channels.

2.3.2 DMA Controller 2 used in NXP

The DMA Controller 2 is an Advanced Micro-controller Bus Architecture (AMBA)
compliant System-on-Chip (SOC) peripheral. The DMA Controller is an AMBA AHB

18

module, and connects to the Advanced High-performance Bus(AHB). This DMA Con-
troller contains two AHB masters. This enables, for instance, the DMA Controller to
transfer data directly between the memory and the peripheral on AHB bus. The trans-
actions which are occurred independently on AHB bus between the DMA Controller
and the APB peripheral are also possible. The system context diagram can be seen in
Figure 2.12.

Microprocessor

AHB Master2AHB Slave

 AHB Bridge

APB Bridge

Master Bus (mclk)

Local Bus (pclk)

AHB Master1

DMA Controller
Peripheral

Interrupt

 UART

Figure 2.12: DMA Controller 2

The DMA Controller offers some following features: Compliance to the AMBA
Specification for easy integration into SoC implementation; Eight DMA channels. Each
channel can support a unidirectional transfer; Single DMA and burst DMA request
signals. Each peripheral connected to the DMAC can assert either a burst DMA request
or a single DMA request; The DMA burst size can be set by programming the DMAC;
Scatter or gather DMA support through the use of static linked lists; Two AHB bus
masters for transferring data. Use these interfaces to transfer data when a DMA request
goes active.

2.3.3 Problems of these DMA Controllers

Using the DMA Controllers mentioned above, several disadvantages of those DMA
Controllers were found by NXP engineers. The schedule algorithm used in current
design is not flexible. The algorithm currently used, which is called Round Robin
schedules all active channels in equal portions and order, treating all channels equally.
After each DMA cycle, a channel switch takes place and the following active channel
will be granted to the bus system. It’s suitable for streaming data with a low latency
and small message. If a large amount of data need to be transferred through bus system,
the bus latency requires more clock cycles than channel latency.

The current DMA Controllers are also not flexible in the number of bus masters
and channels. For the microprocessor DMA Controller, the number of bus masters for
transferring data is fixed into two. The linked list transfer function provided by the
DMA Controller 2 is static linked list. The future Network-on-Chip communication
system requires the transaction of communication packets of variable size. Therefore,
a support for the dynamic linked list transfer is needed.

19

2.4 Conclusions

Among three data streaming methods, the Polling-Based transfer has the worst per-
formance. Compared with the Interrupt-Based transfer, the DMA-Based transfer is
better when the number of requested data elements is larger than 10. Therefore, the
DMA-Based transfer is the most suitable data streaming method towards the In-Car
Entertainment System. The DMA Controller is designed to perform the DMA trans-
fer functions. A DMA Controller can works in an active mode or a passive mode.
When working in the active mode, there are three modes for the operation of the DMA
Controller: Cycle Stealing DMA, Interleaved DMA and Suspending Microprocessor.
Suspending Microprocessor is the most common mode to use. When the DMA Con-
troller is triggered, there are three transfer types during DMA transfer: Single Transfer
type, Block Transfer type and Demand Transfer type. Moreover, there are two Block
Transfer modes: Sequential-single transfer and Burst transfer. The currently used DMA
Controllers in NXP Semiconductors are not flexible adopted into the future develop-
ment and research in NXP Semiconductors both in algorithm domain and architecture
domain. Therefore, a newly designed DMA Controller is requested by NXP.

20

Problem Analysis of Existing
Results 3
This chapter focuses on the introduction and analysis of the existing work and the
possible approaches for improvements. In section 3.1, the existing results are intro-
duced. Section 3.2 investigates a test principle, which is used to test the functions of
the implementation. This principle is also adopted to test the implementation of thesis
results. According to the simulation, the analysis of the existing results is discussed
and possible approaches for improvements are given.

3.1 Introduction of Existing Results

The designed DMA Controller is named ‘YAD-C’, short for ‘Yet Another DMA Con-
troller’. There have been two stages of design before and this thesis project is the third
stage. Throughout both stages, Hatley and Pirbhai methodology was used. A brief
introduction of this methodology is given in Appendix A. In the first stage, the function
requirements of the DMA Controller were specified. According to these requirements,
the DMA Controller is divided into several function units, among which the Core Unit
is the most important one. It is responsible to transfer data elements. Figure 3.1 is the
Context Diagram of the Conceptual Architecture, which shows the relations between
the DMA Controller and its surrounding function units in the system.

M
em

o
ry

P

erip
h

eral

M
em

o
ry

P

erip
h

eral

Processor

 Unit

Data Data
DMA Controller

C
o

n
tro

l

Figure 3.1: First Stage DMA Controller Context Diagram [1]

The Processor Unit triggers the DMA Controller by sending control signals; there-
after the DMA Controller starts working on data transfer task in the absence of interfer-
ence from the Processor Unit. When the transfer task is finished, the DMA Controller
inserts an interrupt signal to the Processor Unit to stop DMA operation. During DMA
operation, the DMA Controller first reads the data from the source address, which is
located in the system memory or other peripherals. Afterwards the data is written to

21

the memory or peripheral when the destination address is ready.
However, the Logical Specifications in this stage are not precise enough to describe

the operations of the DMA Controller. So the second stage is started from the re-
specification of the DMA Controller according to the Conceptual Architecture from the
first stage. The DMA Controller is divided into 8 subprocesses based on the function
requirements. Each subprocess takes responsibility for one particular function and
would be designed as a subunit of the DMA Controller. Figure 3.2 shows the Data
Flow Diagrams of the top level Logical Specification.

Interrupt

 Unit
Linked List

 Unit

 Channel

Schedule

 Peripheral

Multiplexer

 Core

 Unit

 Channel

Multiplexer

Flow Control

 Unit
 AHB Bus

 Master
Register Bank

D
escrito

rDescriptor`

lin
k
list

_
d

escrip
to

r

lin
k

list_
d

ata

address

data_write

data_read

ad
d

ress

d
ata_

w
rite

d
ata_

read

h
ad

d
r

w
d

ata

rd
ata

Figure 3.2: Second Stage Top Level Data Flow Diagram [2]

Based on the functional and operational descriptions, top level requirements are set
in order to indicate the functions that are expected for the DMA Controller. YAD-C
DMA Controller is designed to meet the requirements on: The DMA controller must
be designed in flexible units, which can be modified and extended in future; The DMA
controller could be used for Central DMA transfers; Interrupt generation when transfer
completion, or bus error during reading or writing; Multiple logical DMA channels;
Different ways for enabling a channel, which includes an enable bit put into a register
of the register bank of the DMA controller, an external enable pin [2].

The Core Unit performs the data transfer task from the source to the destination.
The AHB Master Unit controls the communication between the Core Unit and the
AHB bus system. The Channel Multiplexer is used to assign a DMA channel to AHB
Master Unit. The appropriate DMA channel for the Channel Multiplexer is determined
by the Channel Scheduler. The Linked List Unit prepares the Linked List descriptor

22

which contains the control signals for a Linked List transfer and forwards it to the Core
Unit. Then the Core Unit could perform the Linked List transfer. The Flow Control
Unit controls handshake signals for the peripherals, which is used during data transfer
between DMA controller and peripherals. The Peripheral Multiplexer is used to select
a suitable flow control signal for the Core Unit when multiple peripherals require data
transfer. The Interrupt Unit is responsible to send the interrupt signal to the Processor
Unit when the DMA operation is finished. Finally, The Register Bank is the memory
of the DMA Controller. After the specification, the Core Unit is further specified and
implemented.

The Core Unit is specified into 2 subunits. One subunit is ‘Prepare and Manage
Transfer’, which is responsible to fix the address and counter values. The other subunit
is ‘Perform Transfer’, which is used to perform data transfer task. A finite state machine
(FSM) is designed to control the read and write processes. The Core Unit is designed
to support both the sequential-single and burst transfer with wait states insertion. The
wait states are required because different components may execute at different clock
frequencies. Wait states are used to extend the current state so that the data can get
enough clock cycles to be transferred. However, wait states influence the performance
of the microprocessor owing to the clock cycles wasted in the waiting processes. The
functions that have been implemented are the sequential-single data transfer with wait
states insertion, and burst transfer without wait states insertion. Therefore, to complete
all the required data transfer functions of the Core Unit, the burst transfer with wait
states insertion and the combined data transfer (sequential-single plus burst transfer)
with wait states insertion still need to be implemented.

3.2 Problem Analysis of Existing Results

3.2.1 Test Principle Setup

Requirements Analysis
In order to fully test the required functions of the Core Unit, three factors must be

considered: 1) The inserted location of the wait states. 2) The number of requested
data elements.

The inserted location
According to the function requirements, the Core Unit must support both the

sequential-single transfer and burst transfer with wait states insertion. For the
sequential-single transfer, the wait states can be only inserted before the data element is
read or written. But for the burst transfer, the situations are more complicated. Since
one burst of data consists of four data elements, there are four possible locations to
insert wait states. According to AHB protocol, the address phase of the data transfer
comes one clock cycles before the data phase. Therefore, in a burst state, there are
four address phases as well. Thus, these locations are: 1) before data transfer, which
means the wait states are inserted before the address phase of the first data element. 2)
Between the first and the second address phases. 3) Between the second and the third
address phases. 4) Between the third and the fourth address phases. The examples can
be seen in Figure 3.3.

23

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21

Clock

channel_hready

Read_Address_Active

Current_State
Idle Burst_Read_State Burst_Write_State

Figure 3.3: Location Examples of Wait States Insertion

The T2 period is the address phase of the first data element. And the T6 period
is the address phase of the second data element. Thus, the wait states are inserted
between the first address phase and the second address phase, which is the case two
location. Other examples of inserted locations are shown in this figure as well.

The number of requested data elements

To make sure the functions are fully tested, the number of data elements is set from
0 to 23. Most of the cases are prime numbers. This is because of the requirements of
Core Unit. The Core Unit is designed to perform the burst data transfer before the
sequential-single transfer. Only when both transfer types are performed correctly, then
we can say the design is correct. One burst consists of 4 data elements. Thus, the
number of data elements for burst transfer must be a multiple of 4. In the case when
both transfer types are required in a transfer task, the number of data elements should
maximally 3 data elements larger than a multiple 4 number.

The maximum amount of data elements to test the function is set to 23. When
doing the burst transfer, the randomly inserted wait states can influence the status of
burst read and write states transition. In order to observe the transitions, two burst of
data is required. So the test can be arranged to perform the transition from the first
burst read state to the first burst write state. Then the first burst write state goes
to the second burst read state. If the possible situations of wait state insertion can
be arranged fully, two burst of data is enough to show the function. And the transfer
should also be tested when there’s no wait states occurs. Therefore, one burst of data
is required to be transfer without wait state insertion. The sequential-single transfer
after burst transfer might only perform 1 data element. Thus one burst of data with
wait state insertion should be performed before the sequential-single transfer in case
to the interaction between the states transition. Based on the above analysis, 23 data
elements can fully test the data transfer function.

Test Principle Setup

The Test Principles can be concluded as:

1) There are four possible inserted locations. In order to test all the possible cases,
first insert the wait states into one location, and change the insertion of other location.
For example, first insert wait states into the first location, so for the rest of locations,
there are 8 possible ways of insertion. For each location, the number of consumed
clock cycles for one wait state can be more than one. So there are more than 8 cases
of wait states insertion for this location. And then insert the wait states into the
second location, and ignore the wait states insertion for the first location. This progress

24

continues till the fourth location.
2) For the number of the data elements, according to the analysis, different cases

are chosen corresponding to the transfer types. And the details are listed in the Table
3.1. And for each test case, wait states are inserted as much complex as possible.

Transfer Type Number of elements Wait State
Burst 4,8,16,20 yes

Sequential-Single 0,1,2,3 0:no; Others:yes
Burst+Sequential-Single 5,6,7,17,18,19,21,22,23 yes

Table 3.1: Testing Cases

Different cases are chosen corresponding to the transfer types. The details are listed
in Table 3.1. For each test case, wait states are inserted as much complex as possible.
This is to emulate all the possible situations caused by wait states insertion. So when
the transfer contains burst state, normally three wait states are inserted in one burst
read or write process. And at least one wait state takes 2 clock cycles. The transfer
without wait states needs to be tested as well. The same principle is also used in the
simulation of this thesis project.

3.2.2 Simulation Results

The limitations of the existing work are the data transfer function was not fully accom-
plished. As mentioned in the previous section, he finished the sequential data transfer
with wait states and burst transfer without wait states. But with the same codes, the
functions which he had not accomplished, including burst data transfer and combined
data transfer with wait states, performed incorrectly. When inserting wait states during
burst transfer, problems happened either on the number of data elements transferred,
or the values of the read and write data counters, which was responsible for counting
the number of transferred data. By inserting wait states into a burst of data, the
counter was not able to be synchronized with the data transfer. And the data elements
in a data burst can’t be fully transferred. For example, in the cases shown in Figure
3.4, only three data elements in the burst are written.

3.2.3 Problem Analysis

To analyze this problem, the flow diagram of this Core Unit was redrawn according to
the control signal flow. Compared with the original flow diagram, it is clearer that there
are two counter related processes. One is Core Unit 1 (Prepare and Manage Transfer),
the other one is Core Unit 2.3 (Manage Counter). Core Unit 1 manages all the addresses
and counters values according to the initialization information in the Register Bank.
Core Unit 2.3 defines the increment, decrement of the counter. Instead of executing
the increment and decrement operation, Core Unit 2.3 triggers Core Unit 1 to control
the volume variation. Therefore, it takes 2 clock cycles to increment or decrement the
counter after loading a new data. But when wait states are inserted into a data burst,
the state machine which controls the data transfer might be unstable. Because the
state machine, in this case, was controlled by the counter. Therefore, when inserting

25

Clock

channel_hready

Read_Address_Active

Current_State

 Address

Data_Read

Data_Write

Read_Counter

Burst_Write_Counter

Write_Counter`

Idle Burst_Read_State Burst_Write_State

A0 A0 A2A1 A3 B0 B0 B1A2 B2 B2 B3 A4 A4 B4 B4

 D0 D1 D1 D2 D3

D0 D1 D1 D2

Burst_Read_Counter 0 0 1 2 3 3 3 3 0 0 0 0 0

 5 5 5 5 5 4 3 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 1 1 2 3 4

5 5 5 5 5 5 5 5 5 5 5 4 4 3 2 1

0 0 1 2 3 3 3 3 0 0 0 0 1 2 3 3 3 3 0 0 0 0 1 2 3 3 3 3 0 0 0 0 1 2 3 3 3 3 0 0 0 0 1 2 3 3 3 3 0 0 0 0 1 2 3 3 3 3 0 0 0 0 1 2 3 3 3 3 0 0 0 0 1 2 3 3 3 3 0 0 0 0 1 2 3 3 3 3 0 0 0 0 1 2 3 3 3 3 0 0 0 0 1 2 3 3 3 3 0 0 0 0 1 2 3 3 3 3 0 0 0 0 1 2 3 3 3 3 0 0 0 0 1 2 3 3 3 3 0 0

 D0 D1 D1 D2 D3 D0 D1 D1 D2 D3 D0 D1 D1 D2 D3 D0 D1 D1 D2 D3 D0 D1 D1 D2 D3 D0 D1 D1 D2 D3 D0 D1 D1 D2 D3 D0 D1 D1 D2 D3

Figure 3.4: Example of Incorrect Burst Transfer

irregular wait states into a burst of data, the transferred data might not correspond
with the counter. The number of transferred data elements in one burst fails to follow
the setting according to the information in the descriptor. In some cases, only 3 data
elements can be transferred. And in some other cases, more than 4 data elements are
transferred. On the other hand, even the wrong data elements are transferred, the
counter can’t be synchronous to the data transfer process.

3.2.4 Possible Approaches for Improvements

According to the Hatley and Pirbhai design method, the design implementation starts
from the Data and Control Flow Diagram. As mentioned above, the Core Unit 1 and
Core Unit 2.3 are responsible for the counter management process.

The burst read and write counter is not decided by whether one data element
transfer is finished or not. It’s triggered by a burst counter control signal, ‘increase
burst read/write counter’. This burst counter control signal is generated by a subunit
named ‘Manage Counter’ of the Core Unit 2. The ‘Manage Counter’ subunit defines
when the counters should be increased and decreased. In the existing solusions, several
signals are set to generate this trigger signal. These signals are listed in the Table 3.2:

Signal Description
Channel hready generate wait states

data read/write loaded finish current data elements read or write
burst read/write counter counts the number of transferred data elements in a burst

read/write counter count the number of the data elements waiting for transfer
read address active mark continuous read addresses for one read burst

data read/write memorized memorize wait state

Table 3.2: Subunit ”Manage Counter” Input Signals

‘data read/write memorized’ signals keep at ‘0’ when there’s no wait state coming.
When wait states needed to be inserted into AHB bus to slow down the data transfer

26

speed, ‘channel hready’ signal will be used. In this case, to extend the current transfer-
ring data element, ‘channel hready’ signal is driven to ‘0’. Thus, on the next cycle, ‘data
read/write memorized’ signals will becomes ‘1’. ‘data read/write memorized’ signal will
returns to ‘0’ 1 cycle after ‘channel hready’ signal returns to ‘1’ again, which means
wait states are finished. But the fact is there might be more than 1 wait state inserted
consequently, for each time different number of wait states inserted, the values of the
‘burst read/write counter’ and ‘read/write counter’ may be different either. As well
as signal ‘data read/write loaded’, because only after wait states finished, the current
data element can then be transferred into the memory or the destination peripheral.
So there are a group of different situations there. The existing results only include
the case with 1 wait state and also failed to indicate all the conditions in 1 wait state
insertion. Therefore, when the conditions came outside the box, there was an error
happened. This led to incorrect value of the values of signal ‘increase burst read/write
counter’ and ‘read/write counter’. Consequently, when the wrong trigger signals were
sent to Core Unit 1 to execute the counter increment or decrement processes, the values
of the counters were incorrect too. Furthermore, the values of the counters were also
the necessary conditions to the state machine which was responsible to perform data
transfer in Core Unit 2. As a result, the data transfer task was mistaken as well. That’s
the reason when error happened, sometimes only 3 data elements were transferred as
a burst and sometimes 5 data elements are transferred. Thus, it’s clear that to fix the
counter management process is the first task needed to be accomplished.

Besides the errors of the counter design, the mistakes may also happen in the unit
which is responsible for performing the data transfer. According to the previous stu-
dent’s specification, the unit is Core Unit 2. One of the most important input signals of
the state machine is burst counter, which included burst read counter and burst write
counter. Because of the mistake of the counter design, nearly all the subunits of Core
Unit 2 should be debugged. But the analysis is mainly focused on the state machine.
Because generally the data transfer process can be divided into 2 states: read state and
write state. Based on the data transfer types, each of these two states can be divided
into 2 substates. They are sequential-single transfer state and burst transfer state.
Taking the Idle state into account, the state machine of Core Unit 2 consists of 5 states
totally. They are Idle state, sequential-single data read state, sequential-single data
write state, burst data read state, burst data write state. Some of these states can go
to another state after their execution is finished. When the data transfer is operating
in a burst transfer mode, the number of the wait states and the location where wait
states are inserted are important factors for the state machine design. Even for multi-
ple wait states insertion, there are several different situations: continuous wait states
insertion, incontinuous wait states insertion, and the combined situation of former two
types. What’s more, each burst consists of 4 data elements, which means there can be
four possible options to insert wait states: before burst transfer, the first data elements
completed, the second and the third data element, respectively. Therefore, the state
machine should be analyze properly state to state.

27

3.3 Conclusions

In this analysis, the existing results failed to specify and implement the Core Unit
correctly. A test principle was proposed to test the existing results. The Unit 1 was
not well defined. For the Unit 2, the state machines are wrong. The wait states he
inserted only last one clock cycle. But according to the concept of the wait states, more
clock cycles can be consumed during one wait states. Based on these analyses, possible
solutions are given.

28

Core Unit Design
Implementation 4
This chapter focuses on the Core Unit specification and implementation. According
to the requirement, Hatley and Pirbhai methodology is used in this chapter. Section
4.1 describes the Conceptual Architecture of the Core Unit. A structure of the DMA
Controller based on the Core Unit Cells is proposed in this section. The function
requirements are also presented. In Section 4.2, the Logical Architecture of each subunit
is described. According to the analysis of Chapter 3, a new Address and Counter
Management Unit is specified, and the state machines of Subunit 2 are designed to
fulfill the function requirements. The Logical Architecture of the Core Unit is fully
implemented using VHDL in the end of the design.

4.1 Core Unit Conceptual Architecture Specification

4.1.1 Core Unit Context Diagram

Figure 4.1 represents a block diagram of DMA Controller. In this figure, multiple Core
Unit cells connect to different type of multiplexers. Each single Core Unit consists of
a FIFO buffer with core control hardware for a single channel. Therefore, the number
of the Core Unit cells equals to the number of DMA channels. After passing the
channel multiplexer, the data will go into the FIFO buffer which is inside the Core
Unit. After that, it will be then passed to the destination under the control of data
transfer hardware. The path to the destination peripheral is arranged by a Peripheral
Multiplexer. The data is finally transferred to destination under the control of Flow
Control Unit whereby handshake signal is provided.

The Core Unit cell here can be treated as a DMA channel. Thus, it is easier
to change the number of DMA channels by increasing or decreasing Core Unit cells.
Therefore, when the number of AHB bus masters changes, the DMA Controller does
not need to be redesigned. Using this implementation, the DMA Controller can adapt
flexibly in different application environments. This design provides much convenience
for further development in entertainment systems.

Linked List Unit is in the charge of linked list data transfer, which will be described
later. Linked List Multiplexer is used to assign a DMA channel to the internal Core
Unit cell in order to transfer linked list data in the next DMA cycle. Channel Sched-
uler makes sure that AHB bus master transfers data through the right DMA channel.
According to the programmed channel priority, for each data transfer task, DMA Mul-
tiplexer is able to change from one DMA channel to another. When one DMA channel
is selected, other DMA channels should be halted during its operation.

Since the data transfer is the most important functionality of the DMA Controller.
Thus, the design is starting from Core Unit.

29

Core

Unit

Core

Unit

Channel Multiplexer

Linked List Multiplexer

Peripheral

Multiplexer

Linked List

 Unit

 Flow

 Control

AHB

Master

AHB

Master

Channel

Scheduler

Multiple

 Cell

Figure 4.1: Core Unit Context Diagram

4.1.2 Core Unit Requirements and Constrains

4.1.2.1 Core Unit Requirements

1. Core Unit includes a corresponding Core Unit cell for each DMA channel.
The Core Unit cells are flexibly usable. During implementation, the system architect

and software programmer can decide how many Core Unit cells should be placed inside
the Core Unit.

2. Core Unit must support a sequence of DMA cycles for each clock cycle.
This DMA Controller is designed for the vehicle system. Continuous data trans-

fer is very important to the transfer speed, as well as the precision of entertainment
information, which may consist of different entertainment formats.

3. Core Unit must support both sequential-single and burst data transfer.
Burst transfer is a more efficient data transfer mode. Transferred data is normally

generated into several bursts and a maximum of 3 sequential single DMA cycles.
4. Core Unit must support wait states insertion during both sequential-single and

burst transfers.
Wait states are usually inserted into the AHB bus to balance different transfer speed

between two devices. To minimize the number of wait states, data write process should
be operated as soon as the read cycles are finished.

5. Core Unit must support Linked List transfers for scatter-gather DMA operation.
Linked list data transfer provides much convenience to collect data which is scattered

all over the memory and gather these data elements into a consequent address area.
Linked list transfer can support data blocks with different sizes, and the transfer is also
operated without the interference from the microprocessor.

6. Core Unit must support data packing for transfers among different size of data
elements.

30

Data type in the memory is usually different from the types in the microprocessor
and other peripherals. Therefore, when data is transferred from one peripheral to the
memory, for instance., data in the peripheral is firstly packed into the size of the data
type in the memory and then transferred to the destination memory.

4.1.2.2 Core Unit Constrains

Memory address space is 32 bits. Data width is max 32 bits. Data transfer length is
max 22 bits. Burst size is max 4 elements.

4.2 Logical Architecture Specification and Design

4.2.1 Process Model Hierarchy

Figure 4.2 below reflects the structure and hierarchy of the design. Each unit contains
a Data Flow Diagram (DFD) and a Control Flow Diagram (CFD). Unit 0 is the top
level specification, which describes the functions of the Core Unit. Normally, Unit 0
consists of several subunits. And the decomposition can also be seen as a function
division. Each of the subunit takes responsible for parts of the functions of Unit 0.

Context Diagram

Unit 0

Unit 2Unit 1

DFD0 / CFD0

DFD2 / CFD2DFD1 / CFD1

Context

Design

Figure 4.2: Core Unit Process Hierarchy

4.2.2 Top Level Logical Architecture Specification

According to the hierarchy diagram, the top level of the Core Unit, Unit 0, is divided
into two functional processes, namely Unit1 and Unit 2. Unit 1 is a process to manage
address and counters. It configures the address and read/write counters based on the
information in the descriptor. Unit 2 is responsible for performing the data transfer
from source address to destination address. Along with data transfer, Unit 2 triggers
Unit 1 to update the values of address and counter on time. The Data Flow Diagram
and Control Flow Diagram of Unit 0 are showed below, in Figure 4.3 and Figure 4.4,
respectively.

31

Address and

 Counter

Management

 1

 Perform

 Data Transfer

 2

Next_read_address

Next_write_address

Next_burst_read_counter

Next_burst_write_counter

Next_read_counter

Next_write_counter

read_address

write_address

burst_read_counter

burst_write_counter

read_counter

write_counter

Descriptor

data_read

data_write

(N
ex

t T
ran

sfer)

(C
u
rren

t T
ran

sfer)

Address

Figure 4.3: Core Unit 0 Data Flow Diagram

From the Data Flow Diagram, the descriptor provides the information to Unit 1,
including source address, destination address and transfer length. According to these
information, Unit 1 starts its operation by incrementing the read/write address and
decrementing the value of read/write counter until the counter turns to 0.

Address and

 Counter

Management

 1

 Perform

Data Transfer

 2

ext_enable

enable_transfer

slave_error

s_soft_reset

transfer_completed
bus_error

update_counters

_signals

update_address

_signals

ext_enable

enable_transfer

slave_error

s_soft_reset

ch
an

n
el_

sig
n
als

req
u
est

clear

load_data_read

load_data_write

Figure 4.4: Core Unit 0 Control Flow Diagram

From control flow diagram, both of the two units can be triggered by external
signals. Once the Unit 2 performs data transfer for one data item, it sends update
signals of counters and addresses to Unit 1 as soon as possible. With the new address
and counter information, Unit 2 is able to transfer the next data item.

4.2.3 Core Unit 1 Specification and Design

According to the problem analysis in Chapter 3, when inserting wait states into a burst
transfer process, the counters and the burst transfer become incorrect. The existing
results only consider the situation with one wait state insertion. However, the fact

32

is that there might be more than 1 wait state inserted into data transfer process to
balance different speed between the source peripheral and memory, and vice versa.

To emphasize the counter management process, a new Flow Diagram is redrawn
around these two units, which is shown in Figure 4.5:

AHB Master

Core Unit 1 Core Unit 2.3

FIFO Buffer

L
o

ad
_

D
ata

D
ata_

L
o

ad
ed

Read Counter -1

Burst_Read_Counter+1

Data_Read_Loaded

Data_Read_

Memorized

Counter

Increase_counter

Counter Data_Write_

Memorized

Channel_hready

Figure 4.5: Core Unit 1 Analysis

I complement all the situations of wait states insertion and all the conditions needed
to be involved as well. But later on, I find that it is hard to make it realized. As
discussed above, the number of the wait states insertion depends on the situation
of data transfer task to task, different tasks have different corresponding wait states
insertion. Moreover, it is possible to finish and figure out all the situations, a large
number of VHDL codes were required. Thus this would be a big load to the system
design and also not cost-efficient. Therefore, new method needed to be found.

Since both of Core Unit 1 and Core Unit 2.3 are responsible for the counter man-
agement, and the main goal of counter management is to update the counter as soon as
the data element is transferred, the Core Unit 2.3 can be merged into a Core Unit 1. In
this way, the new Core Unit 1 is responsible for the counter and address management,
and the new Core Unit 2, on the other hand, focuses on performing data transfer. In
this way, some signals can be neglected. Based on their functions, the new Core Unit
1 is named as ‘Address and Counter Management’ and the new Core Unit 2 is named
as ‘Perform Data Transfer’.

By analysis the mechanism of counter increment and decrement operation, the value
of the counters should be updated as soon as current data element is transferred. Using
the data transfer control related signals to generate counter trigger signals can be
taken into account. The related signals are ‘load data read/write’ and ‘data read/write
loaded’. Signal ‘load data read/write’ indicates when the read or write address are
placed on the AHB bus. Taking the read process as an example on the rising edge of

33

the clock cycle, when the read or write address is detected to be updated, the ‘load
data read’ signal becomes high. Otherwise, it will stay low. Take the And then on the
next cycle, a data element is read from the source peripheral through the data bus.
At this moment, the signal ‘data read loaded’ is raised to ‘1’ until the data element is
transferred. And then it returns to ‘0’. When there is a high ‘load data read’ signal,
a data element is ready to be read and a read process is coming on the next cycle
consequently. One data element is reading by the memory, while a ‘data read loaded’
signal is high at the same cycle. And on the next cycle, the counter will be updated.
Meanwhile, another signal ‘read address active’ is needed to distinguish the read process
out of the write process. The original signals ‘data read/write loaded’, ‘channel hready’,
‘read/write counter’ and ‘burst read/write counter’ can be neglected. Moreover, the
‘data read/write memorized’ signal is no longer useful, as well as the output signal,
‘increase burst read/write counter’, of original Core Unit 2.3. Thus, these two signals
can be removed from the design. To sum up, the new counter management design is
showed below:

Behavior Conditions
burst read counter data read loaded = ’0’ and load data read = ’0’

and read address active = ’1’
burst read counter + 1 data read loaded = ’1’

burst write counter data write loaded = ’0’ and load data write = ’0’
and read address active = ’0’

burst write counter + 1 data write loaded = ’1’
read counter - 1 data read loaded = ’1’
write counter - 1 data write loaded = ’1’
read address + 1 increase read address = ’1’
write address + 1 increase write address = ’1’

Table 4.1 New Counter Management Design

From Table 4.1, once one data element is read or written, both the read or write
counter and the burst read or write counter will be updated on the next cycle. This
takes one clock cycle, comparing with the two clock cycles in the original design. Once
one data element is loaded, on the first cycle, the ‘increase burst read/write counter’
signal will be generated and sent to the old Core Unit 1 to process the counter update
on the next cycle. No matter how many wait states are inserted, the counter increment
or decrement is able to perform correctly as long as the data transfer is correct.

4.2.4 Core Unit 2 Specification and Design

Core Unit 2 is ‘Perform Data Transfer’ unit. The function of this unit is to perform
data transfer process from source address to destination address. When the destination
address is ready to receive data, a trigger signal will be sent to this unit to start the
data transfer. After that, Core Unit 2 starts the data transfer process till all the
required data elements are completely transferred. Once the transfer task is finished, a
‘transfer completed’ signal will be triggered and the DMA Controller will halt and wait

34

for a new trigger signal to start a new transfer task. The configuration information for
the data transfer task is preset in a descriptor instruction by the microprocessor and
transferred to Core Unit 2 right before the execution. The Core Unit 2 operates along
with the address and counter updates of Core Unit 1. As soon as one data element is
transferred to its destination, a trigger signal will be sent to Core Unit 1 to update the
next destination address and the value of the counters. When the write counter turns
to 0, the whole execution of Core Unit 2 is finished.

According to the requirements of the DMA Controller, Core Unit 2 needs to support
three different types of data transfer: sequential data transfer, burst data transfer and
the combined data transfer of the former two types. Each transfer type must support
wait states insertion. Core Unit 2 must also support Linked List data transfer.

4.2.4.1 Data Flow Diagram

According to the requirements and existing specification [2], Core Unit 2 can be specified
into 5 processes. They are Core Unit 2.1 ‘Define Read’, Core Unit 2.2 ‘Define Write’,
Core Unit 2.3 ‘FIFO Buffer’, Core Unit 2.4 ‘Generate Address’ and Core Unit 2.5
‘Manage Linked List’. The Data Flow Diagram is shown in Figure 4.6.

Define Read

 2.1

Define Write

 2.2

FIFO Buffer

 2.3

 Generate

 Address

 2.4

 Manage

 LinkedList

 2.4

Descriptor
C

o
u

n
ters fo

r read
C

o
u

n
ters fo

r w
rite

read
 an

d
 w

rite ad
d

ressesAddress

Data_read

Data_write

Descriptor

Figure 4.6: Core Unit 2 Data Flow Diagram

Process description
Core Unit 2.1 Define Read
Define Read process is responsible to decide whether it’s a sequential-single read

process or a burst read process based on the signals inside descriptor instructions.
When signal ‘burst read enabled’ is ‘1’ and the transfer length is larger than or equals
to 4 data elements, which is the size of a burst of data, Core Unit 2 performs burst
read process. And when ‘Burst read enabled’ is ‘0’ and the transfer length is less than

35

4 data elements, a sequential single read process will be executed. After the type of
read process is defined, a trigger signal will be sent to the state machine.

Core Unit 2.2 Define Write

Define Write process, like Define Read process, chooses the write process mode
between a sequential-single and burst. The corresponding condition signals are ‘burst
write enabled’. A trigger signal is also generated when process is finished.

Core Unit 2.3 FIFO Buffer

FIFO Buffer is used to temporally store the read and write data. It’s implemented
with a four stages shift register [2].

Core Unit 2.4 Generate Address

Generate Address process will assign the read or write address signals to the address
bus. The signal ‘read address active’ is used to distinguish read address and write
address. When ‘read address active’ = ‘1’, read address is assigned to the address bus.
Otherwise, it’s the write address.

Core Unit 2.5 Manage Linked List

Manage Linked List process is used to forward the descriptor to the Linked List
Unit, and triggers the Linked List transfer through a ‘Enable LinkedList’ signal.

4.2.4.2 Control Flow Diagram

The Control Flow Diagram of Core Unit 2 describes the control signals among the
specified processes. And it is shown in Figure 4.7.

Define Read

 2.1

Define Write

 2.2

FIFO Buffer

 2.3

 Generate

 Address

 2.4

 Manage

 LinkedList

 2.4

Descriptor
Enable_LinkedList

process_read

_x_ena

F
S

M
 2

process_write

_x_ena

F
S

M
 2

F
S

M
 2

addressing_ena

read_address

_active

process_2_ena

channel_signals

F
S

M
 2

load_data_read

load_data_write

clear

request

Figure 4.7: Core Unit 2 Control Flow Diagram

36

4.2.4.3 State Machine Design

There are two basic types of state machine: Mealy machine and Moore machine. In
a Mealy machine, output signals of the state machine rely on both the input signals
and the present state. Thus, if the value of input signals change, the value of output
signals will be adjusted. In a Moore machine, output signals of the state machine only
depend on the present state. For each state, there are unique output values irrespective
of the inputs change. The selection of each machine will make the design different, and
it depends on different applications. In practice, mixed machine is usually adopted as
well.

As discussed in problem analysis, the state machine includes 5 states. They are Idle
state, sequential-single data read state, sequential-single data write state, burst data
read state and burst data write state. Some of the states are the following states of
others. For example, sequential-single data write state comes right after sequential-
single read state.

Idle State
The Idle State indicates that no data transfer is required. The IDLE transfer type

is used when a bus master is granted the bus, but does not wish to perform a data
transfer. DMA Controller has been holding the authority of the AHB bus, but there is
not any data transfer request. So Core Unit 2 is simply waiting for the trigger signal
to start data transfer task. The state machine can be seen in Figure 4.8.

m2m_read_single

m2m_read_burst

Idle

process_2_ena = 1 and

channle_running =1 and

channel_hready=1 and

read_counter>0 and

process_read_3_ena=1

m2m_read_single

m2m_read_burst

process_2_ena = 1 and

channle_running =1 and

channel_hready=1 and

read_counter>0 and

process_read_6_ena=1

as_reset

Figure 4.8: Core Unit 2 FSM Idle State

sequential-single data read state
The sequential-single data read state is used to read the single data element from

the source memory to the FIFO buffer inside DMA Controller. The state machine is
a Mealy machine. If read counter changes to different values, the output signal will
change correspondingly. As a consequence, the state can transit to the sequential-single

37

write state or Idle state.
Owing to different data transfer speed between the source memory and the DMA

Controller, wait states can be inserted into the read process. For each sequential sin-
gle read process, DMA Controller takes one clock cycle to transfer one data element.
Therefore, wait states can only be inserted before the transfer. Wait states are trig-
gered by signal ‘channel ready’. The signal keeps high when there’s no wait state. As
soon as the signal becomes low, wait states triggered. Different source device demands
different number of wait states. Figure 4.9 shows the case with 1 wait state insertion.
Indicated by the figure, all the processes are halted during the wait state. However,
even it’s in the read state, the signal ‘load data read’ still keeps low in wait period.
This is because the signal is used to trigger the read process. Once the signal becomes
1, on the next cycle, data will be read immediately. During the wait state, the read
process should be halted, and therefore, the signal becomes low.

m2m_read_single

m2m_write_single

Idle

Idle

m2m_write_single

as_reset

wait

channle_running =0 or

channel_hready=0 or

process_write_3_ena=0

process_2_ena = 0

process_2_ena = 1 and

channle_running =1 and

channel_hready=1 and

process_write_3_ena=1

Figure 4.9: Core Unit 2 FSM Sequential-Single Read State

The following state of the sequential data read state is sequential single write state.
To make this transition, the single write trigger signal ‘process write 3 ena’ should
be high. The condition to activate the signal is ‘burst write enabled’ signal, ‘write
counter’ and ‘burst write counter’. The ‘burst write enabled’ is used to trigger the
burst write process. Therefore, it is set to 0 as default. As mentioned before, both
Idle and burst data write state can transit to sequential single read state. The former
case represents the start of data transfer task. The value of write counter is less than
4. The latter case is the last three data elements in transfer task. Due to different
wait states insertion cases of the burst write process, the ‘process write 3 ena’ should
be triggered 2 data elements before the sequential single write process. To satisfy this,
one of the conditions is that the ‘burst write counter’ equals to 2 corresponding with
value 5 of ‘write counter’. Moreover, ‘burst write counter’ is 3 and ‘write counter’ is
4 at the same time. Once the ‘read counter’ reduce to 1, the read address should not
increase anymore. Thus, the output signal ‘increase read address’ becomes 0. When
the value of ‘read counter’ is larger than 1, the signal is 1 in order to continue the read

38

process. For both situations, the ‘load data read’ signal is set to 1. The data element
can be read during the data phase on the next clock cycle. The sequential single read
state can also transit to Idle state. However, it only occurs when Core Unit 2 fails to
be enabled.

sequential-single data write state
The sequential-single write state takes responsible for writing the data element to

the destination memory. This state is a Mealy machine. Based on different conditions,
such as read and write counter, the state can transit to sequential-single read state or
Idle state. When the state transits to the sequential-single read state, DMA Controller
starts to read the following data element. If the next state is Idle, current data transfer
task will be finished after the data element is written. And DMA Controller will send an
interrupt signal to the microprocessor to halt the DMA operation. The state machine
can be seen in Figure 4.10.

m2m_write_single

m2m_read_single

Idle

Idle

m2m_read_single

as_reset

wait

channle_running =0 or

channel_hready=0 or

process_read_3_ena=0

process_2_ena = 0 or

read_counter =0 or

(read_counter=1 and

write_counter=1)

process_2_ena = 1 and

channle_running =1 and

channel_hready=1and

process_write_3_ena=1

and read_counter>1 and

write_counter != 1

Figure 4.10: Core Unit 2 FSM Sequential-Single Write State

In the sequential single data transfer process, the sequential-single write state follows
the sequential single read process, which is finished when the data element is read into
the FIFO buffer. Under Sequential single write state, the data read control signal
should be hold to 0. Thus, during the Sequential single write state, the read address
will not be increase. New data element can’t be read until another read process happens.
According to AMBA AHB operation, the address phase of the sequential single write
process occurs during the write state, and the data phase occurs on the following
state, which is sequential-single read state or Idle state. During the address phase, the
destination address located in the memory is placed on the address bus. A data write
trigger signal ‘load data write’ and make it high to load the data from FIFO buffer.
Then, in the following data phase, the data element is transferred to the destination
address. The signal ‘data write loaded’ becomes s high to track this process. When
‘data write loaded’ returns to low, the write process is finished. On the next cycle, the
write counter subtracts 1. The burst write counter, in the sequential single write state,
counters either 1 or 0. Once the data element is written to memory, the burst write

39

counter becomes 1. When the state is sequential single read, the burst write counter is
0.

The sequential single write process performs data write process to the destination
address. The data transfer speed may be different between DMA Controller and desti-
nation memory. Therefore, wait states can be inserted into the process. The sequential
single write process takes one clock cycle because of transferring one data element.
Thus, the wait state can only take place before the transfer starts.

As we can see, all the signals are halted during wait states. As the data phase
of the sequential single read state, the data element is read during sequential single
write state. At the rising clock of the write state, the wait state trigger signal ‘channel
hready’ still keeps high before wait states occur. As a consequence, DMA Controller
starts to read the data element and the signal ‘data read loaded’ becomes high. But
right after 1 clock cycle, ‘data read loaded’ turns to low. This means DMA Controller
has already received one data element.

The DMA Controller is designed to perform both the burst and sequential single
transfer. At the same time, the burst transfer comes before the sequential single trans-
fer. Therefore, when DMA Controller stays in the sequential single state, either only
three data elements existing in the data transfer task, or it’s nearly the end of the
data transfer. The latter case means the number of the remaining data elements is
maximally only three data elements left and is not sufficient enough to create a data
burst. Therefore, sequential single write state can only transit to sequential single read
state or Idle state.

In order to transit to sequential single read state, the trigger signal ‘process read
3 ena’ must become high. The conditions are ‘read counter’ and ‘burst read enabled’
signal which is the configuration signal in descriptor instruction. As we discussed above,
the maximum number of the remaining data elements is three, so the ‘read counter’
should less than 4. Since the expecting state is sequential single read, the burst read
transfer should not be activated. As a consequence, signal ‘burst read enabled’ is low.

Based on the activated ‘process read 3 ena’ signal, if the ‘read counter’ equals to 0
or both the read and write counter is 1, the following state will be Idle. The former
condition means all the data elements have been read by DMA Controller. Thus, after
the last write process. the data transfer task can be finished. The latter condition
represents there is still one data element left. Since the current state is sequential
single write, which means DMA Controller is processing the write operation for the
last data element. And the following state will certainly be Idle state. Otherwise,
when the ‘process read 3 ena’ still keeps high, the state will transits to sequential single
read state.

Burst data read state

Burst data read state describes the burst data read process. The DMA Controller
reads a burst of data from the source memory to FIFO buffer. A burst of data consists
of four data elements. In this state, DMA Controller reads the data elements of the
burst continuously. The burst of data is firstly stored in the FIFO buffer. Then, after
all the data elements in the burst are read, the DMA Controller transits to burst data
write state. The burst data read state is a Mealy machine. Similar to the sequential
single read state, the following state of burst data read state is burst data write state

40

and Idle state. The latter case only occurs when Core Unit 2 is not enabled. The state
machine can be seen in Figure 4.11.

m2m_read_burst

m2m_write_burst

Idle

Idle

m2m_write_burst

as_reset

wait

process_2_ena = 0

channle_running =0 or

channel_hready=0 or

process_write_6_ena=0 or

(burst_read_counter<2 and

data_read_loaded=0)
process_2_ena = 1 and

channle_running =1 and

channel_hready=1 and

process_write_6_ena=1and

((burst_read_counter=2 and

data_read_loaded=1) or

burst_read_counter=3)

Figure 4.11: Core Unit 2 FSM Burst Read State

Two states can transit to burst data read state, which are Idle state and burst
data write state. Transiting from Idle state means the beginning of data transfer task.
To trigger burst read process, the signal ‘process read 6 ena’ must become high. The
condition signals are ‘burst read enabled’, ‘burst write enabled’ and ‘read counter’.
Because of 4 data elements in a burst, the ‘read counter’ must larger than or equal to
4. Certainly, the ‘burst read enabled’ must be high, as well as ‘burst write enabled’
signal. This is to make sure all the required data elements can be read throughout the
burst transfer process.

During the burst read process, the signal ‘read address active’ becomes high at
the rising edge of the clock cycle. The read address is increased and placed onto the
address bus continuously till all the four data elements is read. The write address
increment needs to be halted. And the data write process can’t be triggered as well.
Therefore, both ‘increase write address’ and ‘load data write’ signals must set to 0. On
the contrary, the ‘increase read address’ and ‘load data read’ signals should last high
consequently for 4 clock cycles. Due to operation above, the data elements can be read
continuously. As a consequence, the ‘data read loaded’ signal keeps high synchronously
with the data read process. When the signal returns to low, the burst read process is
finished.

Wait states can be inserted the burst read process. There are totally four data
elements in a burst. Therefore, it’s possible to insert wait states before the read process,
or between every two data elements. The burst read state is able to transit to burst
data write state or Idle state. During the burst data write state, the burst of data,

41

which is now stored in FIFO buffer, is written from DMA Controller to the destination
memory. The trigger signal to this transition is ‘process write 6 ena’ signal. The input
signals are ‘burst read counter’ and ‘data read loaded’. The data elements are read
during the clock cycles when ‘channel hready’ is high. The data phase occurs one clock
cycle later than the address phase. And the first clock cycle of a state is taken by the
address phase. When there’s no wait states insertion, the data phase of the last data
element transfer occurs at the first clock cycle of the following state. If the current
transfer is burst transfer mode, the corresponding value of burst counter at the rising
edge of the following state should be 3. Thus, the input ‘burst read counter’ should
equal to 3. If the wait states are inserted into the first or second data element transfer,
the corresponding burst counter may be 2. This delay comes from one of the features of
the wait state. This characteristic is to extend the transfer cycle of one data element.
In this case, the input ‘burst read counter’ should be 2. Apparently, the second data
element must also be loaded at the moment. Thus, the input ‘data read loaded’ must
be high either. Then the burst data read state can transit to burst data write state.

Burst data write state
During burst data write state, the DMA Controller writes the data burst from FIFO

buffer to the destination memory. Similar to the burst data read state, all four data
elements are written to destination address continuously. To trigger this state, the
signal ‘process write 6 ena’ must be high. Therefore, the ‘burst write enabled’ signal
must be 1 and ‘write counter’ should be larger than 4. The state machine can be seen
in Figure 4.12.

m2m_write_burst

m2m_read_burst

Idle

Idle

m2m_read_burst

as_reset

wait

channle_running =0 or

channel_hready=0 or

burst_write_counter<2 or

data_write_loaded=0 or

(process_read_3_ena=0 and

process_read_6_ena=0)

process_2_ena = 0 or

read_counter =0 or

(process_read_3_ena=1

and read_counter=0) or

(process_read_6_ena=1

and read_counter<=1)

process_2_ena = 1 and

channle_running =1 and

channel_hready=1 and

((burst_write_counter=2 and

data_write_loaded=1) or

burst_write_counter=3) and

process_read_6_ena=1 and

read_counter>1

m2m_read_single

process_2_ena = 1 and

channle_running =1 and

channel_hready=1 and

((burst_write_counter=2 and

data_write_loaded=1) or

burst_write_counter=3) and

process_read_3_ena=1 and

read_counter>0

m2m_read_single

Figure 4.12: Core Unit 2 FSM Burst Write State

The burst data write state is also a Mealy state. The output signals are ‘increase
write address’ and ‘load data write’. Their values are influenced when input signals
change. The input signals includes the ‘burst write counter’ and ‘data write loaded’.
There are three possible following states for the burst write state. They are burst data
read state, sequential single read state, Idle state. When the burst transfer continues,
the state is going to burst read process. If the number of remaining data elements
is less than 4, the burst transfer will transit to sequential single transfer. Thus, the
state is going to sequential single read state. If the number of required data elements

42

happens to be multiples of 4, the transfer will be finished right after the last burst
writes process. Then, the state will transit to Idle state. Two input signals decide the
transition. They are ‘burst write counter’ and ‘data write loaded’. The analysis of the
transition is the same as the burst data read process. Therefore, either the ‘burst write
counter’ equals to 2 and ‘data write loaded’ is 1, or ‘burst write counter’ is 3.

4.3 Conclusion

The Core Unit of the YAD-C DMA Controller is fully specified and implemented in
this chapter. The address and counter processes of the new Subunit 1 ‘Address and
Counter Management’ are fully controlled by the data read or write process. The new
specification makes sure that the address and counters can be updated following the
data transfer process closely. As long as the implementation of the data transfer func-
tions is correct, the address and counters can be updated accurately. The Subunit 2
is required to realize the both sequential-single transfer and burst transfer with wait
states insertion correctly. The data transfer functions, which are realized by the Sub-
unit2 ‘Perform data transfer’, are controlled by the state machines. There are five states
totally: Idle state, burst read state, burst write state, sequential-single read state and
sequential-single write state. The transforms among these states are fully analyzed,
especially when the wait states are inserted. Therefore, the state machines are able
to fulfill all the required data transfer functions. The Core Unit is implemented using
VHDL after the specification.

43

44

Linked List Design
Implementation 5
This chapter describes the specification of the Linked List Unit. Section 5.1 introduces
the concept of Linked List transfer and proposes the Conceptual Architecture. In this
section, the functional relation between the Linked List Unit and the Core Unit is also
discussed, and a set of requirements of the Linked List Unit is presented in the end. In
section 5.2, the Logical Architecture and its corresponding specification are described,
which is a base for the future implementation.

5.1 Conceptual Architecture Specification and Design

5.1.1 Introduction of Linked List Transfer

A linked list is a list of so-called “descriptors” that consists of the source address of data
blocks on several memory locations, destination address of each data block, transfer
length, some configuration options and the pointer to the next descriptor in the list.

5.1.1.1 Why Linked List Transfer Is Adopted

In many cases, the data elements being transferred to system memory are dispersed
into locations throughout the memory address space. Scatter-gather is a shortcut
method of input and output operation which automatically gathers/scatters data blocks
from/to non-continuous multiple memory locations to/from one continuous area in a
single procedure. Scatter-gather requires the microprocessor programs a linked list of
descriptors whereby the data elements can be scattered or gathered.

5.1.1.2 Different Types Of Linked List Transfer

There are two types of Linked List: Static Linked List and Dynamic Linked List.
Static Linked List
The descriptors of a Static Linked List are programmed in memory before the trans-

fer starts. During the transfer, the descriptors can’t be modified. When all DMA
transfers are finished, the microprocessor is notified. The process is showed in Figure
5.1.

Dynamic Linked List
The purpose of the Dynamic Linked List is to move only payload out of a frame,

which consists of a header, payload, tailer, whereby the length of the payload is variable.
This is used when the data is transferred through the network in the form of packet.
The descriptor of the Dynamic Linked List is read by the DMA Controller and it
points to the header of the next frame when one frame is transferred. The length of

45

Descriptor

 1

Descriptor

 3

Descriptor

 2

DMA Transfer 1

DMA Transfer 2

DMA Transfer 3

Source Destination

System

Memory

Figure 5.1: Static Linked List Process [1]

the payload is extracted from the header. Thereafter, from a fixed offset of the source
address, the payload is read. The process is shown in Figure 5.2.

Figure 5.2: Dynamic Linked List Process

The descriptor of Static Linked List is the same as the descriptor of normal transfer.
However, the descriptor of Dynamic Linked List is different. Table 5.1 shows the

46

structure of Dynamic Linked List descriptor and necessary description.

Instruction Explanation
Source address The source address of frame header

Destination address The address of destination memory
Transfer Length The length of frame header is offset of data field of the packet.

Dyn LinkedList ena Start Dynamic mode when ”‘1”’, Static mode when ”‘0”’
Transfer Type The format of the data element: word, byte, bit

Descriptor Length The amount of descriptors in the Linked List
Transfer Configuration Define the destination peripheral, burst read/write enable
Next Descriptor Pointer The source address of next descriptor

Table 5.1 Linked List Descriptor Structure

5.1.1.3 Advantages Of Linked List

Linked List transfer is able to realize a continuous DMA transfer in several incontinuous
memory areas. Compared with normal transfer, there are two main advantages. Firstly,
Linked List transfer makes the DMA Controller more intelligent, and increases the data
transfer speed of DMA Controller. Secondly, the descriptors can be stored in different
areas in the memory. Therefore, the number of descriptor items is not limited by its item
length. Consider the normal transfer situations for some incontinuous DMA transfers.
Once one data packet transfer is finished, the DMA Controller must sent a interrupt
signal to the microprocessor the stop DMA process. Then in order to transfer the next
data packet, DMA Controller has to be initialized again. This interrupt operation is a
software process. Thus, if the executing time of the interrupt process is slow, whereas
the second data packet requires for a quick response, errors may happen. On the other
hand, during Linked List transfer, the DMA Controller reads the descriptor from the
memory. It is a hardware process. This avoids the unnecessary delay of the software
execution. As a consequence, the data transfer speed is increased. Software execution
also occurs in the Linked List process. It is used to set the initialization information of
the DMA Controller. This information can be set at the very beginning of the transfer.
Therefore, such software execution also avoids to cause the possible errors.

5.1.2 Conceptual Architecture Specification and Design

5.1.2.1 Design Consideration

The Core Unit is responsible for the data transfer process according to the programmed
descriptor instructions. Therefore, an unit should be designed to program the Linked
List descriptor and sent it to the Core Unit before data transfer process. This unit is
Linked List Unit. The Linked List transfer can be separated into Static Linked List
transfer and Dynamic Linked List transfer. The procedures are different between each
transfer mode.

Once a Linked List transfer is triggered, the Core Unit enables the Linked List
process and transfers the descriptor to the Linked List Unit. The Linked List Unit

47

starts to read the descriptor from the source address. After reading, the Linked List
Unit programs the descriptor and creates a new Linked List descriptor, which contains
the necessary instructions to run a Linked List transfer. The Core Unit then reads the
Linked List descriptor and performs data transfer. For each transfer period, one data
packet is transferred. When transfer is finished, the above procedure is repeated till
all the data packets are transferred. Then the Linked List transfer is complete. The
whole process requires Register Bank to record the transfer status and control signals.
According to the procedure, context Diagrams can be developed. The context diagrams
can be seen in Figure 5.3 and Figure 5.4.

 Core

 Unit
Linked List

 Unit

 R
eg

ister B
an

k

descriptor

linkedlist_descriptor

descriptor_length

linkedlist_source_address

linkedlist_status

Figure 5.3: Linked List Context DFD

 Core

 Unit
Linked List

 Unit

 R
eg

ister B
an

k

linkedlist_ena

Reset

transfer_ena

Figure 5.4: Linked List Context CFD

The Data Flow Diagram consists of three processes, Each of the processes has the
following functions:

Core Unit
Core Unit Defines the Linked List transfer and perform Linked List data transfer.

The descriptor contains a ‘Linked List Transfer’ signal. When ‘Linked List Transfer’ is
true, the Core Unit must perform Linked List transfer. And the descriptor is sent to the
Linked List Unit. Core Unit is able to trigger Lined List Unit by sending a ‘linkedlist
ena’ control signal. After receiving the Linked List descriptor from the Linked List, the
Core Unit starts to transfer data packet.

Linked List Unit
Linked List Unit is responsible to configure the descriptor into Linked List descriptor

and forwards it to Core Unit. The process also reports the status of the Linked List
transfer to Register Bank. When the status is ‘1’, Linked List transfer continues. When
it’s ‘0’, the transfer is finished. When the Linked List descriptor is ready, Linked List
Unit must enable Core Unit to perform the data transfer.

Register Bank
Register Bank is a store that holds the configuration information of Linked List

Unit. ‘descriptor length’ records the number of descriptors in a Linked List transfer

48

task. ‘linkedlist source address’ is the start address of the first Linked List descriptor.
The Linked List Unit can also reset by the ”‘reset”’ control from the Register Bank.

5.1.2.2 Requirement of Linked List Unit

Linked List Unit must both support Static Linked List mode and Dynamic Linked List
mode. For Dynamic Linked List mode, the length of data field must be filtered from
the frame header. And because the information hidden in the header is on bit level.
Thus, the process must be done also on bit level. When the transfer is complete, the
next descriptor pointer must point to 0.

5.2 Logical Architecture Specification and Design

5.2.1 Process Model Hierarchy

Figure 5.5 shows the hierarchy of the logical architecture of Linked List Unit. The
logical architecture consists of 4 function units. When the function unit is complex, it
can be further divided into subunits. Each unit is specified into corresponding Data
Flow Diagram (DFD) and Control Flow Diagram (CFD).

Context Diagram

Unit 0

Unit 4Unit 3Unit 2Unit 1

DFD0 / CFD0

DFD2 / CFD2 DFD4 / CFD4DFD3 / CFD3DFD1 / CFD1

Figure 5.5: Linked List Process Hierarchy

5.2.2 Logical Architecture Specification

5.2.2.1 Data Flow Diagram and Control Flow Diagram

When a Linked List transfer is triggered, Linked List Unit must read the descriptor
from the microprocessor via Core Unit. Then the Unit judges the Linked List transfer
type to see whether the transfer is Dynamic Linked List mode or Static Linked List
mode. A Dynamic mode means a data packet which is waiting to be transferred. So
Linked List Unit should read the frame header and filter out the source address and
transfer length of the data field of the packet. After the information is ready, the unit
creates a Linked List descriptor. Then Linked List Unit finds the source address of
next descriptor and starts to read. Linked List Unit also need to trigger the Core Unit
to perform the Linked List data transfer.

49

According to the requirements and the function description above, the Data Flow
Diagram can be developed. Figure 5.6 and Figure 5.7 shows the Top Level DFD and
CFD.

Descriptor

 Define

 Dynamic

Linked List

 Creat

LinkedList

Descriptor

 Point

 to Next

 Descriptor

 Read

 Descriptor

F
ram

e H
ead

er

D
_

T
ran

sfer_
L

en
g

th

D
_

T
ran

sfer_
C

o
n

fig
u

ratio
n

D
_

T
ran

sfer_
T

y
u

p
e

D
_

D
estin

atio
n

_
A

d
d

ress

D
_

S
o

u
rce_

A
d

d
ress

Next

_Descriptor

_Pointer

Descriptor_address

LinkedList

_Sourse

_Address

LinkedList Status

L
in

k
ed

L
ist_

S
tatu

s

D
escrip

to
r_

C
o

u
n

t

D
escrip

to
r_

L
en

g
th

Dynamic

_Source

_Address

Dynamic

_Transfer

_Length

LinkedList

_descriptor

Descriptor

D
_

T
ran

sfer_
L

en
g

th

D
_

T
ran

sfer_
C

o
n

fig
u

ratio
n

D
_

T
ran

sfer_
T

y
u

p
e

D
_

D
estin

atio
n

_
A

d
d

ress

D
_

S
o

u
rce_

A
d

d
ress

N
ex

t_
D

escrip
to

r_
C

o
u

n
t

Figure 5.6: Linked List Unit 0 DFD

Descriptor

 Define

 Dynamic

Linked List

 Creat

LinkedList

Descriptor

 Point

 to Next

 Descriptor

 Read

 Descriptor
Next_Descriptor_ena

Dyn_LinkedList_enaDyn_LinkedList

_Complete

Enable_TransferLinkedList_Transfer_ena

Reset

Enable_LinkedList

Finish

_Linked

 List

Figure 5.7: Linked List Unit 0 CFD

50

Lined List Unit consists of four processes and two store. They are Unit 1 ‘Read De-
scriptor’, Unit 2 ‘Define Dynamic Linked List’, Unit 3 ‘Create Linked List Descriptor’,
Unit 4 ‘Point to Next Descriptor’ and Store ‘Descriptor’, ‘Linked List Status’. Each
component can be seen as a logical subunit. The top level DFD indicates the among
each functional subunit. The input and output data is shown in Table 5.2.

Input Output
descriptor linkedlist descriptor

linkedlist source address
frame header

Table 5.1: Linked List Unit Top Level Input and Output

‘Descriptor’ is the original data descriptor. The instructions inside linked list de-
scriptor are different from the normal descriptor. The descriptor contains ‘source
address’, ‘destination address’, ‘dyn linkedlist ena’, ‘transfer type’, ‘transfer length’,
‘transfer type’, ‘transfer configuration’ and ‘next descriptor pointer’. For Static Linked
List mode, the information inside linked list descriptor is the same as the original de-
scriptor. For Dynamic Linked List mode, the ‘source address’ is the source address of
frame header, the ‘transfer length’ is also the length of frame header.

‘linkedlist source address’ is the source address of the whole linked list, and also the
first descriptor. Linked List Unit uses this address to locate the position of the linked
list in memory.

‘frame header’ is the header of the packet which is waiting for transfer. A data
packet consists of header, data field and tailer. And the data field is the place that
stores the required data elements. The length of the data field is stored in the header
in bit level. In order to transfer the required data, the length information has to be
extracted from the header.

The output data ‘linkedlist descriptor’ contains the programmed information that
can be used by Core Unit for the data transfer. After programming, the ‘linkedlist
descriptor’ is as same as the normal transfer descriptor. Thus, the data elements can
be transferred as normal transfer process for each descriptor.

The top level CFD receives one input control signal ”‘enable linkedlist”’ and gen-
erates one output control signal ‘enable transfer’. The control signal ‘enable linkedlist’
comes from Core Unit. It is used to start the linked list process. After the ‘linkedlist
descriptor’ is programmed, control signal ‘enable transfer’ is sent to Core Unit to trigger
the data transfer process.

5.2.2.2 Linked List Subunits description

Linked List Subunit 1: Read Descriptor
This subunit is used to read the descriptor instructions from Core Unit. Since the

function of the subunit is not complex, there is no need for further function division.
The DFD and CFD of this subunit can be seen in Figure 5.8 and Figure 5.9.

This unit receives instructions one by one, and forwards to the descriptor store word
by word. After the first descriptor in the Linked List is programmed, the unit starts

51

 Read

 Descriptor

 1

Descriptor_addressDescriptor

D
_

T
ran

sfer_
L

en
g
th

D
_
T

ran
sfer_

C
o
n

fig
u

ratio
n

D
_

T
ran

sfer_
T

y
p

e

D
_
D

estin
atio

n
_

A
d

d
ress

D
_

S
o
u

rce_
A

d
d
ress

N
ex

t_
D

escrip
to

r_
P

o
in

ter

D
_

D
escrip

to
r_

L
en

g
th

Figure 5.8: Linked List Unit 1 DFD

 Read

 Descriptor

 1

Next_Descriptor_ena

Figure 5.9: Linked List Unit 1 CFD

to read the second descriptor according to the ‘descriptor address’. This process is
triggered by a ‘next descriptor ena’ control signal.

In order to distinguish the descriptor instructions from the ‘linkedlist descriptor’,
the output instructions are all added a title ‘D’, which means the original ‘descriptor’
from Core Unit. For example, the output destination address is ‘d destination address’.
The Process Specification (PSPEC) is designed.

PSPEC 1
———————————————————-
issue D SOURCE ADDRESS = DESCRIPTOR ADDRESS
issue D DESTINATION ADDRESS = DESTINATION ADDRESS
issue D TRANSFER TYPE = TRANSFER TYPE
issue D TRANSFER LENGTH = TRANSFER LENGTH
issue D NEXT DESCRIPTOR POINTER = NEXT DESCRIPTOR POINTER
issue D TRANSFER CONFIGURATION = TRANSFER CONFIGURATION
———————————————————-

Linked List Process 2: Define Dynamic Linked List

The unit ‘Define Dynamic Linked List’ is responsible to fix the start address and
length of the data field from the input ‘frame header’ when Dynamic Linked List mode
occurs. The Dynamic Linked List is triggered by descriptor instruction ‘dyn linkedlist
ena’. The example packet is showed in Figure 5.10.

According to the function description, this process can be further divided into three

52

Data Length Bits Data Length Bits

D_Source_Address

D_Transfer_Length

Data Field Data Field Data Length

D_Source_Address + D_Transfer_Length

Figure 5.10: Linked List Unit 2 packet example

subunits. They are Subunit 2.1 ‘Header Filter’, Subunit 2.2 ‘Transfer Length Buffer’,
Subunit 2.3 ‘Define Data Source’. The corresponding DFD and CFD can be seen be-
low. After the process, the Dynamic Linked List source address and Dynamic Transfer
Length will be sent to create the Linked List descriptor. The corresponding DFD and
CFD are shown in Figure 5.11 and Figure 5.12.

D
_
T

ran
sfer_

L
en

g
th

D
ata_

S
o
u
rce_

A
d
d
ress

D
_
S

o
u
rce_

A
d
ress

TransferLength

_bits

Data_Transfer

_Length

Frame

header

 Define

Data Source

 2.3

 Header

 Filter

 2.1

Transfer

 Length

 Buffer

 2.2

Figure 5.11: Linked List Unit 2 DFD

The Process Specification can be developed as below:
PSPEC 2

—————————————————————-
if Dyn LinkedList ena = 1 then
issue DATA SOURCE ADDRESS = D SOURCE ADDRESS + D TRANSFER
LENGTH
issue DATA TRANSFER LENGTH is TRANSFERLENGTH BITS
—————————————————————-

53

 Header

 Filter

 2.1

Transfer

 Length

 Buffer

 2.2

 Define

Data Source

 2.3

Dyn_LinkedList

_ena

Figure 5.12: Linked List Unit 2 CFD

Subunit 2.1 Header Filter
‘Header Filter’ is used to filter the length of the data field from frame header. The

filter can be designed as a shift circuit to shift the data length bits to ‘Transfer Length
Buffer’. The input and output signals can be seen in Table 5.3.

Input Output
Frame Header TransferLength Bits

Table 5.2: Linked List Unit 2.1 Input and Output

Subunit 2.2 ‘Transfer Length Buffer’
‘Transfer Length Buffer’ is used to store the data field length bits which is collected

from the header. When the data length information is fully extracted, the subunit
sends the data field transfer length ‘data transfer length’ to Linked List Unit 3 to
create Linked List descriptor. The input and output signals can be seen in Table 5.4.

Input Output
TransferLength Bits Data Transfer Length

Table 5.3: Linked List Unit 2.2 Input and Output

Subunit 2.3 ‘Define Data Source’
This subunit is used to find the start address of the data field of the packet. When

the Dynamic Linked List process is enabled, the subunit receives the source address
and transfers length from the descriptor. The source address here is the start address
of frame header, and the transfer length here is the header length. Based on these two
instructions, the start address of data field can be calculated, which can be seen in
PSPEC 2. The input and output signals can be seen in Table 5.5.

Linked List Process 3: Create LinkedList Descriptor
The function of the ‘Create LinkedList Descriptor’ process is to create the Linked

List descriptor. When Dynamic Linked List occurs, the transfer length should be the

54

Input Output
D Source Address Data Source Address
D Transfer Length

Table 5.4: Linked List Unit 2.3 Input and Output

length of the data field of the packet. And the source address must be also be the
start address of the data field. Otherwise, the data transfer will be wrong. When it is
Static Linked List, the source address and transfer length keeps the same as its original
setting. According to this analysis, the process can be divided into three subprocesses.
They are Subunit 3.1 ‘Define Transfer Length’, Subunit 3.2 ‘Define Source Address’.
The corresponding DFD and CFD can be seen in Figure 5.13 and Figure 5.14.

D
_

T
ran

sfer_
C

o
n

fig
u

ratio
n

D
_

T
ran

sfer_
T

y
p

e

D
_

D
estin

atio
n

_
A

d
d

ress

LinkedList

_descriptor

Source_Address

Destination_Address

Transfer_Type

Transfer_Length

Transfer_Configuration

Data_Transfer

_Length

D_Transfer

_Length

LinkedList

_Transfer

_Length

 Define

Transfer

 Length

 3.1
 Create

Descriptor

 3.3

Data_Source

_Address

D_Source

_Address Define

 Source

Address

 3.2

LinkedList

_Source

_Address

Figure 5.13: Linked List Unit 3 DFD

 Define

Transfer

 Length

 3.1

 Create

Descriptor

 3.3

Dyn_LinkedList

_ena

LinkedList

_Tranfer_ena

Reset

Enable_Transfer

 Define

 Source

Address

 3.2

Figure 5.14: Linked List Unit 3 CFD

55

When Dynamic Linked List mode occurs, the process has to operate after the ‘Data
Transfer Length’ and ‘Data Source Address’ are ready. If it is in Static Linked List
mode, this unit can process as soon as the Linked List is enabled. The input and output
can be seen in Table 5.6.

Input Output
D Source Address Source Address

Data Source Address
D Destination Address Destination Address

D Transfer Type Transfer Type
D Transfer Length Transfer Length

Data Transfer Length
D Transfer Configuration Transfer Configuration

Table 5.5: Linked List Unit 3 Input and Output

The Process Specification can also be developed according to the input and output
signals.

PSPEC 3
——————————————————–
if DYN LINKEDLIST ENA = 1 then
issue SOURCE ADDRESS = DATA SOURCE ADDRESS
issue TRANSFER LENGTH = DATA TRANSFER LENGTH
else
issue SOURCE ADDRESS = D SOURCE ADDRESS
issue TRANSFER LENGTH = D TRANSFER LENGTH
end

issue DESTINATION ADDRESS = D DESTINATION ADDRESS
issue TRANSFER TYPE = D TRANSFER TYPE
issue TRANSFER CONFIGURATION = D TRANSFER CONFIGURATION
——————————————————–

Subunit 3.1 ‘Define Transfer Length’

This subunit is used to choose a suitable transfer length for linked list transfer
based on the Linked List mode. When Dynamic Linked List occurs, the corresponding
dynamic transfer length ‘Data Transfer Length’ is chosen. The input and output signals
can be seen in Table 5.7.

Input Output
D Transfer Length linkedlist Transfer Length

Data Transfer Length

Table 5.6: Linked List Unit 3 Input and Output

Subunit 3.2 ‘Define Source Address’

56

This subunit is responsible to decide the Linked List source address. The process is
similar to the Subunit 3.1. The input and output signals can be seen in Table 5.8.

Input Output
D Source Address linkedlist Source Address

Data Source Address

Table 5.7: Linked List Unit 3 Input and Output

Subunit 3.3 ‘Create Descriptor’
This subunit is used to create the Linked List descriptor and triggers the Core Unit

to perform Linked List data transfer process. A ‘enable transfer’ signal will send to
Core Unit when the Linked List descriptor is ready.

Linked List Process 4: Point to Next Descriptor
The ‘Point to Next Descriptor’ process is designed to link the next descriptor in the

Linked List. Inside each descriptor, there is a pointer which points to the next source
address of the descriptor. Then the descriptor can be read by the Linked List Unit.
The number of the descriptors in the Linked List is fixed before the Linked List transfer
occurs. Each Linked List has its corresponding length, and the information about the
amount of descriptors is set in the descriptors. The Linked List transfer dose not stop
until the last descriptor is executed. The number of executed descriptors is counted
in the ‘Linked List Status’ store. The status is updated right after each descriptor is
executed. By comparing the descriptor length and the descriptor count, the Unit 4
decides whether the Linked List transfer continues or not. The result is recorded as
‘Linked List Status’. The input and output signals and the corresponding descriptions
can be seen in Table 5.9.

Signal Input/Output Description
LinkedList Source Address Input Start address of Linked List and first descriptor
D Next Descriptor Pointer Input Start address of next descriptor

Descriptor Count Input/Output The number of executed descriptors
D Descriptor Length Input The number of descriptors in the Linked List
LinkedList Status Input/Output Current Linked List transfer is on or off.
Descriptor Address Output Source address of the next descriptor
Enable LinkedList Input Control signal to trigger the Linked List transfer
Finish LinkedList Output Control signal to stop the Linked List transfer

Next Descriptor ena Output Control signal to read next descriptor

Table 5.8: Linked List Unit 4 Input and Output

Based on the functions of this unit, further functional division is made. The unit
is divided into 3 subunits. They are Subunit 4.1 ‘Define Next Address’, Subunit 4.2
‘Manage Descriptor Count’, Subunit 4.3 ‘Define LinkedList Status’. The DFD and
CFD is developed and can be seen in Figure 5.15 and Figure 5.16.

The operation can be described in the Process Specification.
PSPEC 4

——————————————————————————–

57

 Define

 Next

 Address

 4.1

 Define

LinkedList

 Status

 4.3

 Manage

Descriptor

 Count

 4.2

LinkedList

_Source_Address

D_Next _Descriptor

_Pointer

Descriptor

_Count

D_Descriptor

_Length

LinkedList

_Statue

LinkedList

_Statue

Descriptor

_Count

Descriptor

_Address

Figure 5.15: Linked List Unit 4 DFD

Enable

_LinkedList

Finish

_LinkedList

Next

_Descriptor_ena

 Define

 Next

 Address

 4.1

 Manage

Descriptor

 Count

 4.2

 Define

LinkedList

 Status

 4.3

Figure 5.16: Linked List Unit 4 CFD

if LINKEDLIST STATUS = FIRST DESCRIPTOR or FINISHED then
issue DESCRIPTOR COUNT = 1
else
issue DESCRIPTOR COUNT = DESCRIPTOR COUNT + 1
end

if DESCRIPTOR COUNT = 1 then
issue DESCRIPTOR ADDRESS = LINKEDLIST SOURCE ADDRESS
elseif DESCRIPTOR COUNT is larger than 1 and less than D DESCRIPTOR

58

LENGTH then
issue DESCRIPTOR ADDRESS = NEXT DESCRIPTOR POINTER
else
issue DESCRIPTOR ADDRESS = 0
end
——————————————————————————–

Subunit 4.1 ‘Define Next Address’
This subunit is designed to define the source address of the next descriptor. When

the Linked List transfer just begins, the address is the source address of the first
descriptor. Later, each descriptor contains a pointer which points to the next descriptor.
According to the requirement, the pointer in the last descriptors must be 0.

Subunit 4.2 ‘Manage Descriptor Count’
The function of this subunit is to count the number of executed descriptors. The

initial value of the descriptor count is 1. Each time a descriptor is read and executed,
the descriptor count adds 1. When the count reaches to the descriptor length, the
Linked List transfer should be finished.

Subunit 4.3 ‘Define LinkedList Status’
This subunit is responsible to record the status of the Linked List transfer. The

status includes ‘firstdescriptor’, ‘enabled’ and ‘finished’. The descriptions can be seen
in Table 5.10.

Status Description
firstdescriptor Begin of the Linked List transfer

enabled Finish the first descriptor and continue with the remaining ones
finished All the descriptors have been executed

Table 5.9: Linked List Unit 4 Input and Output

5.3 Conclusions

Once the Core Unit needs to perform Linked List transfer, the descriptor is sent to
the Linked List Unit via Core Unit. At the same time, the Core Unit triggers the
Linked List Unit to program the Linked List descriptor. The Linked List Unit must
support both the Static Linked List mode and Dynamic Linked List mode. In the
Logical Architecture, the Linked List Unit is specified into 4 subunits. If the Dynamic
Linked List mode is triggered, Subunit 2 takes responsibility to fix the start address
and length of the data field of a packet. Subunit 1 is used to read descriptor into the
descriptor store. Subunit 3 transforms the descriptor into the Linked List descriptor.
After the transform, Subunit 4 points to the address of the next descriptor. Except
Subunit1, other functional subunits are further divided to the lowest level by Data Flow
Diagram and Control Flow Diagram. And the corresponding input and output signals
are proposed. So the Linked List Unit specification is finished.

59

60

Simulation and Synthesis 6
The previous chapters present and implement the specification of the Core Unit and
the Linked List Unit. In this chapter, the simulations of the Core Unit implementation
and corresponding results are discussed first. Synthesis is also done for the Core Unit
and is presented after the simulation part.

6.1 Simulation and Results

6.1.1 Simulation Environment Setting

The implementation of Core Unit is done by VHDL programming. The simulation is
done through Cadence Simvision. A testbench is set up to take off the real situation.
The simulation focuses on the Core Unit implementation code. Since Core Unit is
used to transfer data through AHB bus system, a emulator which is able to imitate
the function of AHB master should to a certain extent should be developed. Thus, the
data can be transferred between Core Unit and the AHB master emulator. By watching
the waveforms, the correction of the implementation, as well as the RTL Code can be
checked.

The Context Diagram of the simulation environment is designed in Figure 6.1. The
descriptor is set to support the burst transfer. After reading address is forward onto the
AHB bus, the AHB Master Emulator sends the predetermined read data to Core Unit.
Then Core Unit will write the data back to destination address through the Emulator.
Control signals, such as clock and channel hready, are also sent to Core Unit to control
the data transfer process.

 Core

 Unit
AHB Master

 Emulator

Data_Write

Data_Read

Control signals

Descriptor

Read/Write Address

Figure 6.1: Simulation Environment Context Diagram

The simulation uses the test principle, which is set in Chapter 3. The clock fre-
quency is set to be 100 MHz. Since the functions only rely on the implementation, the
frequency value has nothing to do with the functions of Core Unit at all. Therefore,
other frequency values can be chosen as well. For the practical environment, the signals
will not arrive at its destination exactly on the rising edge of clock cycle. Thus, in order
to imitate the real system as much as possible, some signals will arrive a litter bit later

61

than the rising edge of the clock cycle. For instance, the data is read 1ns later than
the rising edge. Therefore, when coming to the rising edge, the signals ‘data read’ and
‘data read loaded’ is not active until 1ns later.

6.1.2 Simulation Results

From the use cases in Table 6.1 above, there are totally 17 use cases. When DMA
Controller is in the zero data element case, the wait states are meaningless. And for
the rest of use cases, wait starts can be inserted. And it’s not possible to list all the
simulation results here. So three typical use cases are chosen to be described in this
section. More simulation results can be found in the Appendix C. For each use case,
a ideal simulation waveform without time delay is drawn first. This is to show the
expected functions of the implementation and also the expected waveform from the
EDA tool. Then an analysis is given. The example use case is chosen to be Burst Read
State to Burst Write State. The ideal simulation result can be seen in Figure 6.2.

 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 T21

Clock

channel_hready

Read_Address_Active

Current_State

 Address

Data_Read

Data_Write

Read_Counter

Burst_Write_Counter

Write_Counter`

Idle Burst_Read_State Burst_Write_State

A0 A1 A1A1 A2 A3 A3 A3A1 B0 B0 B1 B1 B1 B2 B3 B3 B3

D0 D0 D0 D0 D1 D2 D2 D2 D3 D3

D0 D0 D0 D1 D2 D2 D2 D3 D3

Burst_Read_Counter 1 1 1 1 2 3 3 3 4 4 0 0 0 0 0 0 0 0 0 0 0

17 17 17 16 16 16 16 15 14 14 14 13 13 13 13 13 13 13 13 13 13

17 17 17 17 17 17 17 17 17 17 17 17 17 16 16 16 15 14 14 14 13

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 2 3 3 3 4

Figure 6.2: Simulation Burst Read to Burst Write

According to AHB protocol, the transfer starts from the address phase clock cycle
of the first data element, finished at the data phase clock cycle of the last data element.
Thus, the amount of clock cycle consumed in the transfer can be calculated. The
number of data elements in a burst is set to 4. So for the burst transfer without wait
state insertion, it takes 9 clock cycles to transfer one burst of data. When the wait
states are inserted into the state, the situation becomes complex.

The ‘channel hready’ controls the wait state. When it becomes low, the wait states
starts to be inserted into the transfer process. Wait states do not stop until the signal
returns to high again. According to AHB protocol, the ‘channel hready’ signal comes
a little bit later than the rising edge of each clock cycle. As we can see, during Burst
Read State, the ‘channel hready’ signal is high at the rising edge of T2 and T3 periods.
So the read addresses A0, A1 are forwarded to the address line continuously. And
during T2 period, the data D0 is read by Core Unit. As a consequence, the ‘burst read
counter’ and ‘read counter’ record the data transfer on the next cycle of the data phase.

62

The start value of ‘read counter’ represents the number of required data elements. And
each time when a new data is read, the value is decrease 1. On the contrary, the ‘burst
read address’ increases 1. Then at the rising edge of T4, the wait states starts to be
inserted. As a result, both the address line and data line is paused. The read address
and data stop updating during this period, as well as the counters. At the rising edge
of T7 period, the ‘channel hready’ signal is sampled to be high, and the address and
data processes starts to be updated again, as well as the counters. After all the data
elements in a burst is read, the ‘burst read counter’ returns to 0. And the ‘read counter’
keeps the value till the next data is read. The analysis can also apply to the Burst
Write State.

The wait states occurs when one device is slower than the other device. So the data
transfer process can obtain enough time to perform data transfer. And since the data is
held during the wait states, the data can avoid loosing. But the wait state also has its
drawbacks. In this use case, for instance, the clock cycles consumed by the Burst Read
State increase from 4 to 9. The speed of the system is decreased. Thus the system
becomes less efficient.

The simulation waveform with the same wait states insertion from Simvision window
can be seen in Figure 6.3.

Figure 6.3: Real Simulation Burst Read to Burst Write

6.2 Synthesis Result

A logic synthesis of Core Unit is done through Cadence Ambit. The CMOS technology
of the synthesis is 180nm. As a result, the total number of equivalent gates is around
3K. And the total active size is 37k (um2). According to the requirement, the DMA
Controller need to have 10 DMA channels. Thus, the number of equivalent gates for
10 DMA channels is 30k. Since the Core Unit is the most complex part of the DMA
Controller, so the equivalent gates of the YAD-C DMA Controller is around 50k.

63

6.3 Conclusions

During the simulation, both the sequential-single and burst transfer is check. And for
each transfer type, all the possible cases of wait states insertion are set in the testbench.
As a result, the data transfer function of the Core Unit design fulfills the corresponding
Core Unit requirements. The synthesis is also done, and the equivalent gates for one
Core Unit Cell are 3k.

64

Conclusions and Future Work 7
7.1 Conclusions

The DMA Controller takes over the data communication from microprocessor and is
responsible for the data transfer task in the In-car Entertainment system. Therefore,
the microprocessor becomes more efficient in data computation. The DMA Controller
in this project must support both normal data transfer and Linked List transfer. The
normal data transfer, sequential-single transfer and burst transfer types should be re-
alized. Meanwhile, the DMA Controller should also be flexible for different communi-
cation systems, which means the number of DMA channels can be easily increased or
decreased according to a particular system. This is realized by using a structure with
multiple Core Unit cells. The Core Unit cell is the logical implementation of the DMA
channel. Each Core Unit cell is able to perform all the required data transfer types.
When cell number changes, the surrounding units, such as channel multiplexer and
peripheral multiplexer, do not need to be redesigned. Hatley and Pirbhai methodology
is adopted to specify the DMA Controller and the subunits. Following the design flow
of this methodology, new functional requirements are proposed. These requirements
build foundation maps for the future work. My main efforts are paid on the design of
the Core Unit and Linked List unit.

For the Core Unit, the existing results failed to realize the burst transfer with wait
states insertion. By analyzing the existing results, I find that the specification of the
Core Unit was wrong. The subunit 1, which was responsible for the address and counter
management, was not well defined. Meanwhile, the state machine of subunit 2 is only
based on the one-cycle wait states insertion. In fact, wait states can last for more than
one cycle according to the conception of the wait states. I redo the specification of the
Core Unit, as well as the state machine of the subunit 2. The simulation indicates the
Core Unit is able to perform all the required transfer types, especially for the burst
transfer with multiple wait states insertion. The Core Unit cell is also synthesized and
the number of the equivalent gates for one Core Unit cell is 3k.

For the Linked List Unit, I finish the specification of the Linked List Unit for both
Static Dynamic Linked List mode. All the functional subunits are described in both
Data Flow domain and Control Flow domain. The corresponding Data Flow Diagram
and Control Flow Diagram are drawn. The input and output signals of each functional
units are indicated. Based on these signals, the process specifications are designed using
structure English. The results of all the specifications in different level provide a clear
map for the future implementation.

65

7.2 Future Work

There are several recommendations for the following internship student who decides to
continue with this project. The recommendations are divided into several sections of
the project.

Linked List Implementation
The Linked List Unit is fully specified. The process specification indicates the prin-

ciples of the state machine. Data Packing function is very important for the Dynamic
Linked List transfer because of the data formats from different peripheral.

Flow Control Unit
Flow Control Unit is responsible to control the handshake signals. This is necessary

for the DMA transfer between DMA Controller and peripherals.

66

Appendix A
Introduction of Hatley and Pirbhai Method

Hatley and Pirbhai methodology is an object-oriented hierarchical design methodol-
ogy used in the Real-Time Embedded System design. Hatley and Pirbhai methodology
starts from setting the function requirements of a system or a IP block. The require-
ments are a set of independent statements that specify the problems that the system is
going to solve. These problems can be seen as a set of independent functions required
by the system. Therefore, at the very beginning of the design, function requirements
should be specified.

Data Flow

Process

Store

Control Flow

CSPEC

Figure A.1: Hatley and Pirbhai Elements and Symbols

The highlight of Hatley and Pirbhai methodology is functional partitioning in terms
of Data Flow and Data Process. This is done by using Data Flow Diagrams (DFD). The
Data Flow represents the inputs and outputs data. And the Data Process transforms
one input into its corresponding output. In the thesis project, the Data Process is the
functional unit. The Data Flow Diagram imitates the operation of the system in terms
of a network of processes connected by a group of Data Flow. The Data Process is
built from the top level, which represents the top level function of the system. Then,
the process is partitioned into a set of subprocesses. Each process holds a simpler
subfunction. Thus, through functional partitioning, a complex system can be divided
into a set of simple function units. The design can be started from a simple function
realization. Each DFD has its own Control Flow Diagram (CFD), which is in terms
of Control Flow and Data Process. The Control Flow influence the behavior of the
Data Process by enabling or disenabling some functions. The Process Specification
(PSPEC) used in the Chapter 5, shows the transformation of Data Flows in a clear,
unambiguous and non-redundant manner [6]. The state machines can be seen as Control
Specification (CSPEC), which shows the transformation of control flows to model the

67

activation of processes on DFD/CFD [6]. Both the Data Flow Diagram and the Control
Flow Diagram consists of five elements. Some of the elements and their corresponding
symbols, which are used in the thesis project, can be seen in Figure A1. The Store
shown in Figure A1 in hardware domain can be seen as memory, which stores the
data flows. For more details, book “Strategies for Real-Time System Specification” is
recommended, which is written by Hatley, Derek J. and Pirbhai, Imtiaz A..

68

Appendix B
Simulations of Data Streaming Methods

Figure B.1: Polling-Based Transfer

Figure B.2: Interrupt Based Transfer

69

Figure B.3: DMA Based Transfer-Initial DMA Operation

Figure B.4: DMA Based Transfer-DMA Transfer

70

Appendix C
Examples of Simulation Waveforms

Figure C.1: Burst Write State Transforms to Burst Read State

Figure C.2: Burst Write State Transforms to Sequential-single State

71

72

Bibliography

[1] Maarten Scheuter, “Yad-c dma-controller functional requirement specification,”
Tech. Rep., NXP Semiconductors, 2006.

[2] Nicolas Rihet, “Design and implementation of a new dma controller,” Tech. Rep.,
NXP Semiconductors, 2008.

[3] Fundamentals of Digital Logic and Microcomputer Design, John Wiley and Sons,
Inc., 2005.

[4] An Introduction to Digital Computer Design, Prentice-hall of India Pvt Ltd., 2008.

[5] “Preliminary ic requirement specification of one chip carradio circuit,” Tech. Rep.,
NXP Semiconductors, 2006.

[6] “Structured analysis and structured design for real-time systems,” Tech. Rep.,
Philips, 1998.

73

