
Hierarchical Reinforcement
Learning for Spatio-temporal
Planning

Shambhuraj Sawant

M
as

te
ro

fS
cie

nc
e

Th
es

is

Hierarchical Reinforcement Learning for
Spatio-temporal Planning

Master of Science Thesis

For the degree of Master of Science in Mechanical Engineering at Delft
University of Technology

Shambhuraj Sawant

September 23, 2018

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c©
All rights reserved.

Delft University of Technology
Department of

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis entitled

Hierarchical Reinforcement Learning for Spatio-temporal Planning
by

Shambhuraj Sawant
in partial fulfillment of the requirements for the degree of

Master of Science Mechanical Engineering

Dated: September 23, 2018

Supervisor(s):
dr. ir. Matthijs Spaan

Dr. Neil Yorke-Smith

Prof. dr. ir. Martijn Wisse

dr. ir. Joris Sijs

Abstract

Reinforcement learning (RL) is an area of Machine Learning (ML) concerned with learning
how a software-defined agent should act in an environment to maximize the rewards. Similar
to many ML methods, RL suffers from the curse of dimensionality, the exponential increase
in solution space with the increase in problem dimensions. Learning the hierarchy present
in underlying problems, formulated using the Markov Decision Processes (MDPs) framework,
may exploit inherent structure in the environment. Using the hierarchical structure, an MDP
can be divided into several simpler semi-MDPs (SMDPs) having temporally extended actions.
The solutions of smaller SMDPs can then be re-combined to form a solution for the original
MDP. The methods for Hierarchical Reinforcement Learning (HRL) explore ways to break down
the original problem into SMDPs while providing several opportunities for state and temporal
abstractions. A novel algorithm for learning this hierarchical structure of a discrete-state goal-
oriented Factored-MDP (FMDP) is proposed in the thesis work taking into account the causal
structure of the problem domain with the use of Dynamic Bayesian Network (DBN) model.
The proposed method autonomously learns the state and temporal abstractions in the problem
domain and constructs a hierarchy of SMDPs using them. Such a decomposition results in
decreasing the problem state dimensions to be considered for solving each SMDP and, hence,
reducing the computational complexity induced due to increased dimensionality.

Master of Science Thesis Shambhuraj Sawant

ii

Shambhuraj Sawant Master of Science Thesis

Contents

Acknowledgements vii

1 Introduction 1
1-1 Motivation . 2
1-2 Research Question . 3
1-3 Contributions . 4
1-4 Structure of the Thesis . 4

2 Technical Preliminaries 5
2-1 Markov Decision Processes . 5

2-1-1 Factored Markov Decision Processes . 6
2-2 Semi-Markov Decision Processes . 7
2-3 Reinforcement Learning . 8
2-4 Components of Hierarchical Reinforcement Learning 9

2-4-1 State and Temporal Abstraction . 10
2-4-2 Value Function Decomposition . 11
2-4-3 Optimality . 12

2-5 Related Works . 13
2-5-1 Learning Structure . 14

3 A Generic Method for HRL 17
3-1 Problem Definition and Assumptions . 17
3-2 Hierarchy Construction . 18

3-2-1 State Hierarchy Construction Scheme . 18
3-2-2 Option Discovery Scheme . 21

3-3 Action Selection Scheme . 25
3-3-1 Exploration . 27
3-3-2 Exploitation . 27

3-4 Value Update Scheme . 28
3-4-1 Model-based Techniques . 29

3-5 Pseudo-code . 30
3-6 Extensions for Different Variable Ordering . 35

Master of Science Thesis Shambhuraj Sawant

iv Contents

4 Evaluations and Discussion 36
4-1 Problem Domains . 36

4-1-1 Four-Room Task . 36
4-1-2 Key-and-Lock Task . 37

4-2 Experimental Setup . 38
4-3 Evaluations and Discussion . 40

5 Conclusion 46
5-1 Future Directions . 47

Bibliography 48

Shambhuraj Sawant Master of Science Thesis

List of Figures

3-1 The DBN model, state variable influence graph (SVIG) and influence graph (IG)
for the key-and-lock problem . 20

3-2 The state variable influence graph for key-and-lock problem for (a) variable interde-
pendence and (b) partial order planning scenarios. c) Independent state hierarchies
in the key-and-lock problem. d) A general influence graph for a problem domain with
n state variables. 20

3-3 Learned state hierarchy in terms of state variable influence graph and state transition
graph for a key-and-lock task (color-coded to represent corresponding state variables
and their instantiations) . 22

3-4 A graphical overview representing the construction of an option O for state variable S 23
3-5 A general case of a state transition for defining initation set, termination set and

termination initiation set for an option O . 24
3-6 An abstract overview of exploration-exploitation trade off in implemented action

selection schemes . 27
3-7 The domain of state variable S in state transition graph G with optimal policy for a)

deterministic transitions and b) stochastic transitions (grey edges show the transitions
with low probability of occurrence) . 30

4-1 The four-room task with: a) its DBN model and b) its problem domain [1, ch. 9] . . 37
4-2 A key-and-lock task with: a) its DBN model and b) its problem domain 37
4-3 A comparison plot of the performance of the proposed algorithm with different values

of the probability (1 − p) for selecting actions based on planning in one-key three-
room key-and-lock problem (with the numeric values in plot legends showing different
probability (1− p) values) . 40

4-4 A comparison plot of the performance of the proposed algorithm with different values
of the probability p for selecting actions based on planning in: a) one-key three-room
key-and-lock problem with 10× 10 grid-world having stochastic transitions, b) one-
key three-room key-and-lock problem with 15 × 15 grid-world having deterministic
transitions, c) two-key three-room key-and-lock problem with 10 × 10 grid-world
having deterministic transitions and d) one-key five-room key-and-lock problem with
10 × 10 grid-world having deterministic transitions (with the numeric values in plot
legends showing different probability p values) . 41

4-5 A comparison plot of the performance of the proposed algorithm with HEXQ, flat and
model-based RL learner in: a) a four-room problem with 15 × 15 grid-world having
deterministic transitions, b) a four-room problem problem with 20 × 20 grid-world
having deterministic transitions, c) a four-room problem problem with 15× 15 grid-
world having stochastic transitions and d) a four-room problem problem with 20×20
grid-world having stochastic transitions . 42

Master of Science Thesis Shambhuraj Sawant

vi List of Figures

4-6 A comparison plot of the performance of the proposed algorithm with flat and model-
based RL in one-key three-room key-and-lock problem 43

4-7 A comparison plot of the performance of the proposed algorithm, flat and Model-
based RL learner different environments as: a) for one-key three-room key-and-lock
problem with grid-world size as 1) 10×10, 2) 15×15 and 3) 20×20 with deterministic
transitions, b) for a grid-world with size 15×15 and deterministic transitions in 1) one-
key two-room 2) one-key three-room and 3) one-key five-room key-and-lock problem,
c) for a grid-world with size 10× 10 and deterministic transitions in 1) one-key two-
room and 2) two-key three-room key-and-lock problem, d) for one-key three-room
key-and-lock problem with grid-world size as 1) 10×10 and 2) 15×15 with stochastic
transitions, e) for a grid-world with size 10× 10 and stochastic transitions in 1) one-
key three-room and 2) one-key five-room key-and-lock problem, c) for a grid-world
with size 10× 10 and stochastic transitions in 1) one-key two-room and 2) two-key
three-room key-and-lock problem . 44

Shambhuraj Sawant Master of Science Thesis

Acknowledgements

I would like to acknowledge many individuals without whom this thesis would not have mate-
rialized. I would like to first express my sincere gratitude to my supervisors, dr. ir. Matthijs
Spaan and Dr. Neil Yorke-Smith, for trusting me with the freedom to explore various ideas
and showed dedicated interest in my progress. I would like to thank them for their patience,
understanding, and supervision. I would also like to thank Prof. dr. ir. Martijn Wisse and dr.
ir. Joris Sijs for their support, encouragement, and supervision.

My master’s journey in Delft, for the most part, has been shaped by my friends. I would
like to thank Janani Venkatasubramanian without whose support and encouragement my work
definitely would not have transpired. I will always cherish the discussions we had that helped
me in getting to the core of my thesis work. I would like to thank Anant Semwal and Abbas
Jhabuawala for the fun times we had together. I would also like to thank Aishwarya Karthikeyan,
Sparsh Sharma, Apourva Parthasarathy and Malvika Dixit for helping me get through this
journey especially in the last few months.

Finally, and most importantly, I would like to thank my parents and my sister for their consistent
support and tireless encouragement throughout my entire academic pursuit. They have stood
by me in my lows and highs and have always tried to inspire me to do better.

Delft, University of Technology Shambhuraj Sawant
September 23, 2018

Master of Science Thesis Shambhuraj Sawant

viii Acknowledgements

Shambhuraj Sawant Master of Science Thesis

“Somewhere, something incredible is waiting to be known.”
— Carl Sagan

Chapter 1

Introduction

The field of Artificial Intelligence is about constructing agents which can act rationally in any
given context [2]. Some of the key challenges for AI agents are about learning and representing
knowledge of the problem domain at multiple levels of abstractions. In planning problems, a
software-defined agent takes actions to maximize it’s own notion of reward. An agent is thought
to act rationally when it tries to maximize a performance measure given a set of observations
and, hence, it has to take decisions to guide itself along the highest reward path. For such
sequential decision-making problems, the paradigm of Reinforcement Learning (RL) deals with
learning policies in a problem domain using limited feedback to reinforce the optimal behavior.
However, RL suffers from the curse of dimensionality, the exponential increase in the size of
value space required for finding an optimal solution with an increase in problem dimensions.
Most real-world planning problems involve a large set of states and their complex interactions to
define dynamics needed to be considered for planning, resulting in an impasse. Fortunately, the
real world is structured with many underlying constraints resulting in independent states and
systems. Such sets of states can be decoupled and solved separately than through sheer enumer-
ation. In such systems, a hierarchy represents the inter-connected sub-systems which may have
their own sub-sub-systems, with everything together constituting the original problem. Such a
hierarchical system can be understood as a nearly decomposable system, as its intra-component
relations are generally stronger than inter-component relations [3], constituting the property of
near-decomposability. Using the near-decomposability property, a divide-and-conquer strategy
can be implemented on any complex problem to decompose it into smaller sub-problems and
so on. These sub-problems may be easily solved due to their smaller problem dimensions and
solutions can then be recombined to compute policies for the original problem. Such a decom-
position may result in reduced time and space complexity in both learning and execution phases
of the policy.
Hierarchical Reinforcement Learning (HRL) is one of the emerging areas of research in RL
which takes advantage of this divide-and-conquer strategy, by using the inherent hierarchy or
by constructing an artificial hierarchy, to learn policies effectively using the rewards given by
the problem environment. It provides opportunities for state and temporal abstractions for
scaling up RL. In HRL, low-level policies invoke primitive actions, actions extending for one
time-step available in the regular RL setting, which solve only a few parts of the overall task,
while, higher-level policies solve the overall task using only higher level observations and abstract
actions. Such a method causes the search space for a solution at each level in the hierarchy to
be greatly reduced as only a small subset of state variables needs to be considered for decision
making. Markov Decision Processes (MDPs) provide a mathematical framework for modeling

Master of Science Thesis Shambhuraj Sawant

2 Introduction

such a decision making in scenarios with stochastic outcomes and are solved using reinforcement
learning or dynamic programming techniques. When solving a planning task formulated as an
MDP using HRL methods, the agent effectively divides the problem at hand into smaller sub-
tasks which are then solved as semi-MDPs (SMDPs), thus avoiding the problem of increased
dimensionality. Furthermore, such a decomposition provides a possibility of re-using the learned
hierarchies and low-level policies in various related problems, thus allowing knowledge transfer.

HRL methods, however, require the agent to know spatial and temporal abstractions in the
problem domain and a value decomposition scheme for solving the credit assignment problem
that follows with these abstractions. Hence, building on the current HRL methods, the thesis
aims to propose a novel algorithm for learning the inherent structure in the problem domain
using the causal information of the underlying MDP and exploiting it through planning. The
following sections elaborate on the motivation for this thesis work and discuss ideas that stem
from related works. This is followed by the research question and an overview of contributions.
Finally, the structure of the thesis is provided.

1-1 Motivation

The main challenges associated with reinforcement learning methods are about scalability and
sample requirements in different problem domains arising due to the curse of dimensionality.
In RL literature, model-based and deep RL techniques are gaining a lot of attention for ad-
dressing these challenges. However, HRL methods also address these challenges by introducing
abstractions to the problem domain. Hence, it is advantageous to use both spatial and tem-
poral abstractions in tandem to make the most out of HRL paradigm. Furthermore, HRL
methods take one step closer to addressing the problem of learning and representing knowledge
by introducing some independence and modularity in the constructed state hierarchies. Such
modular hierarchies can be used to represent the knowledge learned by an agent wherein any
new concepts learned by an agent can be added on as modules.

There are two ways to construct hierarchies using these abstractions: a) by learning temporal
abstractions in terms of temporally extended actions, referred as abstract actions, and reorga-
nizing the problem domain using them, or b) by re-structuring the state space using a known
environment model and learn abstract policies to navigate in it. The first approach discovers
useful sub-policies through some predefined heuristics and, using it, the original problem is de-
composed. But, such an approach may result in constructing an artificial hierarchy, governed
implicitly by the heuristics employed for learning sub-policies. The second approach considers
the inherent hierarchies and causal relations between state variables present in the problem do-
main. The construction of hierarchies using the second approach seems more easier to generalize
for different problem domains when compared to the first which requires predefined heuristics
suitable for the current problem domain. This approach also seems natural and more similar
to how human brain learns, by learning various interactions between variables. It agrees with
the conclusions of Simon [3], Utgoff and Stracuzzi [4] that the knowledge hierarchy of an agent
evolves starting from simpler building blocks to a more complex structure. Agents build their
knowledge by moving their frontier of receptivity as they acquire new concepts by building on
earlier ones in a bottom-up manner. Once such a knowledge hierarchy is built by the agent, it
then can learn the ways to navigate this structure. It seems analogous to how humans solve the
problem of navigation in an unknown space. A map of the new environment is first learned,
albeit partially, and then efforts are aimed to travel to different regions for finding a solution.
When the intricacies and constraints of the new domain are understood, the learned knowledge
is exploited for finding optimal solutions.

The problems of scalablity and sample requirements can further be addressed using model-

Shambhuraj Sawant Master of Science Thesis

1-2 Research Question 3

based RL techniques and integration of planning with learning. Model-based techniques in
RL learn the transition probabilities and reward distributions in the problem domain and use
it to converge faster to the optimal solution. The integration of planning with learning is
interesting problem to solve as planned trajectories can take into account both intrinsic and
extrinsic rewards representing exploration and exploitation [5]. After sufficiently exploring the
problem domain, the planning phase introduces a goal directed behavior in an agent resulting
in faster convergence. In case of multi-task RL problems, with all the required low-level policies
learned in the previous problems, a planning scheme can be thought of as agent strategizing
and stitching together its known information for solving the current problem.
The agent is required to know or learn hierarchies in the problem domain for breaking down the
original task. Various methods have been proposed to learn these hierarchies using graph-based
techniques [6–8], or by identifying sub-goals with visits and rewards statistics [9–12], or by
extracting commonalities in the learned policies [13–15], or by understanding causal structure
of the problem domain [16]. Learning the structure using sub-goal identification methods may
result in an artificial hierarchy as such a hierarchy may not capture the causal interactions
in the problem domain. Similarly, hierarchies constructed using reward or visit statistics or
graph-based techniques may not reflect the underlying causal relations and constraints. Most of
these methods take decisions using the full state information and, hence, not taking a complete
advantage of the introduced state abstractions. This inefficiency needs to be addressed for
accurate decomposition of the original task. HEXQ [17], VISA [16] and Skill-Symbol loop [18,19]
methods make use of state and temporal abstractions together and plan their actions with higher
level observations. Furthermore, skill-symbol loop also combines abstract actions with planning
techniques exploiting an agent’s current knowledge of the problem domain. However, HEXQ
implements a variable change frequency heuristics which results in construction of a linear
hierarchy, VISA method requires a Dynamic Bayesian Network (DBN) model of the environment
along with the conditional probabilities describing the transition and reward functions, and Skill-
Symbol loop method assumes available of abstract actions for learning new state representations.
The heuristics used by HEXQ fails with increase in the problem state dimension as it ignores
the parallelism present in the inherent hierarchy. VISA extensively makes use of the given
conditional probability distributions which get harder to define with increase in the number of
state variables in any given problem domain. Hence, the need to address hierarchy construction
with minimal dependence on a priori knowledge.

1-2 Research Question

For planning problems, an agent using hierarchical reinforcement learning can effectively break
down the original task into smaller sub-tasks creating a hierarchy of tasks. Construction of such
a hierarchy has been achieved in previous HRL methods (viz. HEXQ [17], VISA [16], etc.) by
assuming a predefined heuristics or the knowledge of dynamics of the problem domain in terms
of conditional probability distribution. The main research question is: How should we construct
hierarchies in the problem domain without extensively depending on any given heuristics or
probabilities while still addressing the increase in problem dimensions? The research question
can further be divided into following questions:

• How should we construct state hierarchies and abstractions for a generic problem domain
with minimal dependence on a priori knowledge?

• How should we efficiently learn policies to navigate between the learned abstractions in
states and effectively decompose the value function to obtain a solution? Furthermore,
the consequences of such a value decomposition on the optimality of this solution need to
be addressed.

Master of Science Thesis Shambhuraj Sawant

4 Introduction

• How do we bootstrap value learning using the learned knowledge of the environment?
How can classical planning techniques be combined with learning abstract actions for
faster convergence of learned policies?

1-3 Contributions

The thesis work explores incrementally building up the hierarchy using the agent-environment
interactions and then inducing a goal-directed behavior in an agent via planning. A novel
algorithm combining HRL approach with planning techniques, to address scalability and sample
requirements of RL solutions, is proposed and evaluated in different problem domains. The
proposed algorithm learns a hierarchy in discrete-time factored MDP domain by inferring causal
relations from a Dynamic Bayesian Network model and makes use of model-based RL techniques
for faster convergence to a solution.

In an MDP with discrete states, state hierarchies with associated abstract actions can be con-
structed using the knowledge learned from interacting with the environment and (one-step)
causal relations given by the DBN model without the use conditional probabilities. The thesis
assumes a priori knowledge available to an agent to be the causal relations between the state
variables. For constructing state hierarchies in a discrete state domain, a method inspired from
HEXQ [17] and VISA [16] is proposed which identifies state abstractions and hierarchies using
the causal relations and learns abstract actions to navigate around while interacting with the
environment. An abstract action discovery scheme is devised to construct abstract actions for
state variables present higher in the hierarchy, i.e., having a lot of dependence on other variables,
and a complementary value update scheme similar to HEXQ [17] is used for learning the policies
for the discovered abstract actions. A simple abstract action selection scheme is proposed for
effectively combining action selection using the learned value function and classical planning
techniques at each level of the constructed hierarchy.

In the proposed method, the underlying principle is that hierarchies are learned bottom-up by
interacting with the environment while reasoning is introduced in an agent’s behavior through
planning in a top-down manner. Knowledge builds from bottom-to-top and reasoning flows from
top-to-bottom. The main contribution of the research work lies with the proposed algorithm
for constructing state hierarchies and discovering abstract actions along with the hybrid action
selection scheme. The experimentation in both deterministic and stochastic environments for
comparing the proposed method with HEXQ, flat and Model-Based RL is carried out and
discussed.

1-4 Structure of the Thesis

The structure of the thesis is as follows. Chapter 2 discusses the relevant mathematical pre-
liminaries that form an appropriate background of work related to Hierarchical Reinforcement
Learning. The topics covered in this chapter include an overview of MDP and SMDP theory
along with an introduction to Reinforcement Learning and Hierarchical Reinforcement Learning.
Chapter 2 ends with a brief summary of the related works in HRL for hierarchy construction.
Chapter 3 provides a detailed exposition of the proposed algorithm along with its pseudo-code.
The experimentation carried out for comparing the performance of the proposed algorithm with
other methods is discussed in chapter 4. Chapter 5 concludes the work discussing the research
findings and provides future research directions.

Shambhuraj Sawant Master of Science Thesis

Chapter 2

Technical Preliminaries

The chapter discusses the required background for Hierarchical Reinforcement Learning. An in-
troduction to Markov Decision Processes, Semi-Markov Decision Processes, and Reinforcement
Learning are provided in along with a summary of the components of Hierarchical Reinforcement
Learning. The chapter concludes with a discussion on related works about learning hierarchy
in Hierarchical Reinforcement Learning methods and challenges present in them.

2-1 Markov Decision Processes

In the field of machine learning, Markov Decision Processes (MDPs) are widely used for model-
ing interactions between an agent and the environment. It provides a framework for modeling
decision making in scenarios where outcomes are partly stochastic due to transitional probabil-
ities and partly under the control of an agent aiming to maximize the rewards. A discrete-time
MDP M can be formalized as a tuple M = (S,A, T,R) with a finite discrete state space S, a
finite action space A, a transition function T : S × A × S → [0, 1] as a distribution P (s′|s, a)
over next states where s′ is the new state reached after action a is performed at state s and
a reward function R : S × A × S → R indicating the reward R(s, a, s′) received by an agent
after reaching state s′ when action a is executed in state s. The outcome of a planning problem
formulated as an MDP is a policy defined by a mapping from states to actions (s → a) and
can be either deterministic or stochastic in nature. For computing optimal policies to solve an
MDP, a value function representing an estimate of how good it is for an agent to be in a certain
state is learned. It is evaluated as an expected return that can be achieved in future when a
certain policy is followed from that state. The value function V π(s) is the value of state s under
the policy π i.e. the expected return when starting in state s, following policy π thereafter with
discount factor γ. The value function V π(s) for an infinite-horizon MDP is given in equation
2-1 where Eπ denotes the expected value under policy π.

V π(s) = Eπ{
∞∑
k=0

γkrt+k|st = s} (2-1)

=
∑
s′

T (s, π(s), s′)(R(s, a, s′) + γV π(s′))

Similarly, a state-action value function, also referred as Q-function Q : S × A → R, gives the
expected reward when an agent starts from state s taking an action a and follows policy π

Master of Science Thesis Shambhuraj Sawant

6 Technical Preliminaries

thereafter. Q-function is given in equation 2-2. Q-function associates value to the state-action
pair while value function V (s) associates with the state only.

Qπ(s, a) = Eπ{
∞∑
k=0

γkrt+k|st = s, at = a} (2-2)

An optimal policy π∗ is defined as V π∗(s) ≥ V π(s) for all s ∈ S and for all policies π. Hence
the optimal solution V ∗ of any MDP is V π∗ and it satisfies,

V ∗(s) = max
a∈A

∑
s′∈S

T (s, a, s′)(R(s, a, s′) + γV ∗(s′)) (2-3)

π∗(s) = arg max
a∈A

∑
s′∈S

T (s, a, s′)(R(s, a, s′) + γV ∗(s′)) (2-4)

where, equation 2-3 is called the Bellman optimality equation. The Bellman optimality equation
states that the value of a state under an optimal policy is the expected reward for the best action
in that state. The optimal action to be selected using the optimal value function is given by
equation 2-4. This policy for greedily selecting the best action using a value function V is called
greedy policy πgreedy(V). The optimal state-action value function is given in equation 2-5 and
the greedy policy defined over it is given in equation 2-6.

Q∗(s, a) =
∑
s′∈S

T (s, a, s′)(R(s, a, s′) + γV ∗(s′)) (2-5)

where V ∗(s) = max
a

Q∗(s, a)

π∗(s) = arg max
a

Q∗(s, a) (2-6)

The advantage of using Q-function over value function V for learning an optimal policy is that
no model of the underlying MDP needs to be considered when defining the policy. As seen in
equation 2-6, a greedy policy πgreedy(Q) can solely be defined using Q-function without needing
any information of the transition and reward function probabilities. Such probabilities are
required when a policy is defined using value function V as given in equation 2-4.

The optimal solution of an MDP is obtained by computing the optimal value functions given
in equations 2-3 and 2-5. The equation 2-3, used for obtained the optimal value function
V ∗, is a system of n equations in n unknowns with n being the dimension of the state space.
Solving equation 2-3 becomes possible only when dynamics (T (s, a, s′) and R(s, a, s′)) of the
environment is known and, hence, it requires a prior knowledge of the world. The equation 2-5
used for solving optimal Q-function is a system of n× na equations in n× na unknowns where
na is the number of actions in the action set. Hence, in case of Q-function, the ease of finding
a greedy policy comes at the cost of increased computation.

2-1-1 Factored Markov Decision Processes

Factored MDPs [20] are one of the approaches for representing large, structured MDPs com-
pactly. In the FMDP representation, a state is implicitly described by an assignment to some
set of state variables. In a factored MDP, the set of states is described via a set of random
variables X = {X1, ..., Xn}, where each Xi takes on values in some finite domain domain(Xi).
A state x defines a value xi ∈ domain(Xi) for each variable Xi. A Dynamic Bayesian Net-
work [21] can then allow a compact representation of the transition model, by exploiting the
fact that the transition of a variable often depends only on a small number of other variables.
A Dynamic Bayesian Network (DBN) is a Bayesian network which relates variables to each

Shambhuraj Sawant Master of Science Thesis

2-2 Semi-Markov Decision Processes 7

other over adjacent time steps and is often referred to as a Two-Time slice Bayesian Network
(2TBN) because it says that at any point in time T , the value of a variable can be calculated
from the internal regressors and the immediate prior value (time T − 1), complimenting the
Markov property of MDPs. The momentary rewards can often also be decomposed as a sum of
rewards related to individual variables or small clusters of variables. There are two main types of
structures that can simultaneously be exploited in factored MDPs: additive and context-specific
structures [22]. Additive structure captures the fact that typical large-scale systems can often
be decomposed into a combination of locally interacting components. Such additive structure
can also be present in the reward function. Context-specific structure encodes a different type
of locality of influence: Although a part of a large system may, in general, be influenced by
the state of every other part of this system, at any given point in time only a small number of
parts may influence it directly. These structures directly signify the inter-connected and intra-
connected systems in the given problem domain. As factored MDPs exploit these structures,
learning a hierarchy in a problem domain represented using a factored MDP becomes simpler.

2-2 Semi-Markov Decision Processes

Semi-Markov Decision Processes (SMDPs) are MDPs with extended actions [23]. In an SMDP,
an abstract action can take a random number of time-steps to terminate, hence a new variable
representing the duration of execution of an abstract action is required to be introduced in the
MDP formulation. The model of an SMDP with added random variable N ≥ 1 representing the
number of time-steps an abstract action a takes to complete, starting in state s and terminating
in state s′, can be defined using the updated state transition probability and the expected reward
function. The transition function T : S×A×S×N → [0, 1] gives the probability of an abstract
action a terminating in state s′ after N time-steps, after initiating from state s, and is given as,

T (s, a, s′, N) = Pr{st+N = s′|st = s, at = a} (2-7)

The reward function R : S × A × S × N → R gives the expected discounted-sum of future
rewards when starting in state s with an abstract action a and terminating in state s′ after N
steps, and is given as,

R(s, a, s′, N) = E{
N−1∑
n=0

γnrt+n|st = s, at = a, st+N = s′} (2-8)

Similar to MDPs, the value of a state s under a policy π of an SMDP is the expected return
after starting in state s at time t and taking next abstract action according to the policy π.
Consider an abstract action a that continues for N time-steps when starting from state s, then
the value function V π(s) can be given as the sum of the rewards accumulated for the first N
steps and remainder of the series.

V π(s) = Eπ{
∞∑
k=0

γkrt+k|st = s}

= Eπ{(rt + γrt+1 + ...+ γN−1rt+N−1) + (γNrt+N + ...)|st = s}
=

∑
s′,N

T (s, π(s), s′, N)[R(s, π(s), s′, N) + γNV π(s′)] (2-9)

where, summation is taken over s′ and N using the joint transition probability and reward
function given in equation 2-7 and 2-8 respectively. Similarly, Q-function Qπ(s, a) representing
the value of taking action a in state s and following the policy π thereafter is given by,

Qπ(s, a) =
∑
s′,N

T (s, a, s′, N)[R(s, a, s′, N) + γNQπ(s′, π(s′))] (2-10)

Master of Science Thesis Shambhuraj Sawant

8 Technical Preliminaries

The optimal value and Q-function for SMDPs can be given using equations 2-9 and 2-10 as,

V ∗(s) = max
a

∑
s′,N

T (s, a, s′, N)[R(s, a, s′, N) + γNV ∗(s′)] (2-11)

Q∗(s, a) =
∑
s′,N

T (s, a, s′, N)[R(s, a, s′, N) + γNV ∗(s′)] (2-12)

where, V ∗(s′) = max
a′

Q∗(s′, a′)

In equations 2-11 and 2-12, T (s, a, s′, N) represents a joint transitional probability defined over
both the variables s′ and N , given by P (s′, N |s, a). With this joint probability distribution,
backing up of a value over the duration of execution of an abstract action becomes difficult.
This problem constitutes a temporal credit assignment problem in HRL methods and requires
a different value update scheme based on the SMDP theory when compared with the value
update scheme in MDPs.

2-3 Reinforcement Learning

The field of reinforcement learning is mainly concerned with how a software-defined agent ought
to take actions in an environment so as to maximize its notion of cumulative reward [24]. Among
the two ways of solving MDPs, the classical dynamic programming methods assume knowledge
of the environment in terms of an exact mathematical model while reinforcement learning
methods target MDPs where such exact methods become infeasible. RL methods make use of
the MDP theory and define the value function and Q-function as specified in equations 2-1 and
2-2 respectively. As discussed previously, the outcome of a planning problem is a policy defined
by a mapping from states to actions (s → a) and can be either deterministic or stochastic in
nature. In most RL methods, the policy is deterministic and is computed from optimal value
and Q-function using equation 2-4 or 2-6. There are two ways of solving equation 2-3: a) Policy
Iteration and b) Value Iteration [24]. Policy iteration consists of performing a policy evaluation,
wherein value function is iteratively computed using Bellman equation until it converges to V π,
and a policy improvement step which computes a new policy using the converged value function
V π. The policy evaluation step follows the update rule give by,

Vn+1(s) =
∑
a

Π(s, a)
∑
s′

T (s, a, s′, N)[R(s, a, s′, N) + γNV ∗(s′)]

where π denotes the deterministic policy currently being followed and Π(s, a) is a matrix with
Π(s, π(s)) = 1 and zeros elsewhere. The sequence {Vn} is guaranteed to converge to V π as
n→∞ and γ < 1. In policy improvement step, V π is used to compute the new policy greedily,

π′(s) = arg max
a

Qπ(s, a)

= arg max
a

∑
s′

T (s, a, s′, N)[R(s, a, s′, N) + γNV ∗(s′)]

Value iteration performs only one sweep over the state-space for the current policy in policy
evaluation step and then performs policy improvement similar to policy iteration. The update
rule for policy evaluation is derived from the Bellman optimality equation and is given as,

Vn+1(s) = max
a

∑
s′

T (s, a, s′, N)[R(s, a, s′, N) + γNV ∗(s′)]

Policy and value iteration methods require a model of the world to be known a priori and,
hence, are studied as a part of model-based RL techniques. If no such model is known, then

Shambhuraj Sawant Master of Science Thesis

2-4 Components of Hierarchical Reinforcement Learning 9

an agent is first required to build it and then learn a value function over it. Another way of
solving such a scenario is by using Temporal Difference (TD) methods. TD methods do not
require a model of the environment to be known and fall under the umbrella of model-free RL
methods [24]. In TD methods, an agent processes the immediate rewards it receives at each
time step, and thereby learning from each action. The three widely used implementations of
the TD method are Watkins’ Q-learning [25], SARSA [24, 26] and actor-critic RL [27]. The
thesis work makes use of Watkins’ Q-learning method for learning the optimal Q-function. In
simplest form, 1-step Q-learning is defined by,

Q(sk, ak)← Q(sk, ak) + α ∗ (rk+1 + γ ∗max
a

Q(sk+1, a)−Q(sk, ak)) (2-13)

The Curse of Dimensionality

The curse of dimensionality refers to phenomena observed when analyzing and organizing data
in high dimensional spaces wherein, as the problem dimensionality increases, the volumes of the
search space for solutions increases so fast that the available data becomes sparse resulting in
more efforts for finding an optimal solution. It can clearly be seen manifesting in RL methods
through the MDP theory. As discussed previously in section 2-1, the optimal value function
and Q-function are computed using equations 2-3 and 2-5 respectively and have n and n × na
unknowns for a problem domain having a single variable with n being its dimension and na
representing the number of actions available to an agent. As the number of state variables
increase, the sizes of value function and Q-function grow as (n1 × n2 × ...× nk) and (n1 × n2 ×
... × nk × na) where k is the number of state variables and ni, i = 1, ..., k is the state space
dimension for ith variable. As the problem dimensions increase, size of each value function
increases exponentially and rewards get sparser resulting in more computational effort for finding
optimal solution. In RL, even if few variables in the problem domain are independent from
each other, the values corresponding to them are repeatedly learned in different scenarios.
With HRL, such repetitive values collapse together and are computed only once for dependent
variables. Furthermore, value functions in HRL are learned in sections corresponding to states
which depend extensively on each other, reflecting the intra-component relations in the problem
domain. Such sections are collapsed together and further connected to other sections, reflecting
inter-component relations. A hierarchy can be seen to emerge in the ways of interaction between
these sections in the value spaces.

2-4 Components of Hierarchical Reinforcement Learning

The use of abstract actions with SMDPs lead to a hierarchical decomposition of original MDP
as abstract actions may invoke a set of different abstract actions creating levels of hierarchy.
The newly formed SMDPs, after dividing the original MDP, may have abstract actions which
are policies of smaller SMDPs such that higher SMDPs call for policies of lower ones. This
relationship between SMDPs lead to task-hierarchies [28], a directed acyclic graph where the
root node is a top-level SMDP which invokes its child nodes i.e. the smaller SMDPs. The
child nodes recursively invoke their child sub-tasks till only primitive actions are remaining.
Task hierarchies give a general flow of control that takes place when following solutions of HRL
methods i.e. hierarchical policies. With such a hierarchical structure, various state and temporal
abstraction opportunities are presented along with credit assignment problems. Hence, HRL
methods can be studied with respect to the state and temporal abstractions induced in the
problem domain, their value decomposition scheme and its consequences on the optimality of
the solution. The following sections discuss these components briefly.

Master of Science Thesis Shambhuraj Sawant

10 Technical Preliminaries

2-4-1 State and Temporal Abstraction

Any real-world planning problem formulated as an MDP is typically defined over a large state
space wherein few state variables might be independent of each other. For example, the nav-
igation policy to leave a room is independent of the color of the walls of the room. Hence,
such cases provide the opportunities for state abstractions resulting in a reduced complexity of
finding an optimal policy for the original MDP. Abstractions can be introduced in a problem
domain when: (a) there are irrelevant state variables, or (b) available abstract actions funnel
the agent through small sub-sets of states [29]. The first approach results in an organized state
space resulting in state abstraction and can be constructed using the causal structure of the
problem domain. In the first approach, abstract actions are then learned over the organized
state space. The second approach gives an opportunity to directly form abstract actions, re-
sulting in temporal abstraction. Both state and temporal abstractions can be used to reduce
the search space of a solution.

• Eliminating irrelevant state variables: If a learned skill or an abstract action is
independent of some state variables, then the skill can be learned without consideringsuch
variables and hence reducing the solution search space. In case an irrelevant variable
changes, instead of re-learning the policies every-time, they could be reused.

• Funneling: Abstract actions may guide agents from large number of initial states to
a small number of termination states. For example, in room leaving policies, an agent
beginning from any state in the room will end up at the doorway state. Hence, at the
root task, the whole room can be abstracted to just these funnel states, irrespective of
agent’s initial position.

Abstract Actions

In SMDPs, actions are allowed to extend for multiple time steps. Such temporally extended ac-
tion sequences are grouped together into a single operator referred to as an abstract action. Such
temporally extended actions result in agent skipping over some subset of the state space. Ab-
stract actions introduce temporal abstraction as until it terminates, the current SMDP doesn’t
need to take any decision i.e. the control exists with the current abstract action. Once the
abstract action is terminated, the control is given back to the current SMDP. They are simi-
lar to macros in computer science which make available a sequence of instructions as a single
programming statement. In HRL literature, there are many terms having notions similar to
temporally extended actions like skills, options, sub-policies, behaviors, partial programs or
macros.

The options formulation [30] is a widely used framework for representing abstract actions. In
the framework, an option O is formed using a tuple (I, µ, β), with the initiation set I where
option O can be initiated, a policy function µ for option O where µ(s, a) gives the preference
value given to an action a in state s and a termination function β such that β(s) gives the
probability of option O terminating in state s. The options framework makes use of the SMDP
theory for updating defined value functions. In the thesis work, options formulation is used for
representing learned abstract actions. The original actions in an MDP which extend for one
time-step are referred as primitive actions in the SMDP theory. These primitive actions can
also be included into the set of abstract actions.

By adding abstract actions to the formulation, it may seem that the complexity of the problem
has increased as the agent has more choices. However, abstract actions help in skipping over
the state space quickly without taking random actions and backing-up the value function over

Shambhuraj Sawant Master of Science Thesis

2-4 Components of Hierarchical Reinforcement Learning 11

greater distances [30]. With an appropriate abstract action, a policy of an agent is more
constrained (sub-goal-oriented), and hence it can skip over a large state space, without much
exploration, and terminates into a smaller section of the state space. Though, if the goal is
located at a certain state which is not a termination state for any abstract action, then inclusion
of primitive actions is a necessity. In such cases, inclusion of primitive actions guarantees global
optimality, but with increased storage and exploration. Furthermore, such a combination of
primitive and abstract actions lead to increase in search space of the solution. Hence, this
problem of defining the action set for an agent needs further investigation.

2-4-2 Value Function Decomposition

With a hierarchy of SMDPs, it is necessary to decompose value functions to compute optimal
value of a state at each level. In RL methods, as rewards are handled immediately, a temporal
credit assignment problem is raised because a good action taken at the beginning of a learning
episode needs to be rewarded appropriately. Furthermore, in HRL, with the introduction of
abstract actions, the value needs to be appropriately backed-up to the beginning and the good
decisions taken at the start of a learning episode. In a planning problem with a goal to reach an
exit state of a house with several rooms, the decision of which doorway to target in a particular
room depends on the current state of an agent inside the room and overall goal location with
respect to each doorway. The success of an agent in reaching the overall goal is founded in the
decision taken in the beginning and hence needing an appropriate reward.

For addressing the temporal credit assignment problem, the MAXQ approach [28] decomposed
the value function in two parts with one representing value due to termination of the current
sub-task and another one for termination of the current abstract action invoked by the current
sub task. The thesis work makes use of value decomposition similar to MAXQ, explained further
in detail, with the use of pseudo rewards. A three part decomposition of value function was
proposed by Andre and Russell [31] which also takes into account the context of an abstract
action, making solutions hierarchically optimal. It involves an added component of the value
due to termination of the overall task after the current sub-task terminates. An important
concept, here, is that the way value function is decomposed over a task hierarchy determines
the optimality of resulting solutions along with the properties of learned sub-policies. In MAXQ
approach, value decomposition only considers values until completion of the current sub-task
and neglects values due to completion of further sub-tasks or the original task. Thus, the sub-
policies learned are specific to the sub-task at hand. Such sub-policies are recursively optimal
(or optimal if only primitive actions invoked) and are context-free i.e. independent of their
parent task. Thus, such policies can be reused easily in multi-task RL problems. While, in case
of the three part decomposition by Andre and Russell, due to inclusion of value associated with
the overall task completion, learned policies are hierarchically optimal, but at the expense of
less state abstraction [1], and are context dependent i.e. specific to the parent sub-task.

The MAXQ approach uses SMDP theory and breaks down the value of a state into a sum of
sub-task completion values and the expected reward for the immediate primitive action. The
completion value is the expected cumulative reward on completion of a sub-task after executing
an abstract action. For a specific sub-task m, the state-action value function Q for an SMDP
can be given as,

Qπ(m, s, a) =
∑
s′,N

T (m, s, a, s′, N)[R(m, s, a, s′, N) + γNQπ(m, s, π(s′))]

where, the hierarchical policy π is a set of policies defined for each sub-task, an abstract action
a which for the sub-task m invokes a child sub task ma.

Master of Science Thesis Shambhuraj Sawant

12 Technical Preliminaries

The expected value for completing sub-task ma is expressed as V π(ma, s). The completion
function Cπ(m, s, a) is the expected cumulative reward after completing an abstract action a
from state s in sub-task m and backed-up to the beginning of a. It represents the expected
reward that will be obtained by following hierarchical policy π till the end of the sub-task m.

Cπ(m, s, a) =
∑
s′,N

T (m, s, a, s′, N)γNQπ(m, s′, π(s′))

Qπ(m, s, a) = V π(ma, s) + Cπ(m, s, a) (2-14)

Hence, Q-function can be expressed as a summation of the expected value of a sub-task ma and
the completion function as expressed in equation 2-14. The value of a sub-task ma is given as,

V π(ma, s) =

Qπ(ma, s, π(s)) if a is abtract∑
s′

T (s, a, s′)R(s, a, s′) if a is primitive (2-15)

For any such sub-task, the expected value can be further decomposed till a primitive action a
is executed. For example, for a root task m0, if the sub-tasks invoked are m1, ...,mk with mk

executes a primitive action and ai is an abstract action invoked in a sub-task mi governed by
the hierarchical policy π(s) then by recursively decomposing the value function V π(mi, s), the
state-action value for the root task m0 can be given as,

Qπ(m0, s, π(s)) = V π(mk, s) + Cπ(mk−1, s, ak−1) + ...+ Cπ(m1, s, a1) + Cπ(m0, s, a0) (2-16)

2-4-3 Optimality

HRL methods in general can’t guarantee the optimality of resulting solutions after the problem
decomposition. The solution depends highly on the available abstract actions, the used value
decomposition scheme and the constructed hierarchy. Hence, the optimal solutions using HRL
methods can qualitatively be described as,

• Hierarchically optimal: Such policies optimize the overall value function consistent
with the constraints imposed by the task hierarchy.

• Recursively optimal: Recursively optimal policies [28] are context-free policies i.e. they
try to reach their goal states ignoring the needs of their parent tasks.

• Hierarchical-greedy optimal: An optimal abstract action may become sub-optimal
during the course of its execution due to stochastic drift. In such cases, such a sub-
optimal action can be constantly interrupted to choose a better one. Such an optimality
is called Hierarchical Greedy optimality [28].

Consider that an MDP M is broken down into several SMDPs Mi with a hierarchical policy
defined as π = {π1, π2, ..., πn} where πi is the policy of Mi. Then for a recursively optimal
hierarchical policy, a policy πi ∈ π is optimal for an SMDP Mi given the policies of all the
child sub-tasks of Mi. Instead, hierarchically optimal policy is a hierarchical policy that is
optimal policy among all the policies that can be specified given the constraints imposed by the
hierarchy.

In simpler words, a hierarchical optimal policy for a given task hierarchy is a hierarchical policy
that has the best possible reward among all possible hierarchical policies. A hierarchical policy
π is recursively optimal if each policy πi, defined in π, is optimal given the descendants’ policies
of πi in the task hierarchy. The important distinction is that the optimality of π or πi is

Shambhuraj Sawant Master of Science Thesis

2-5 Related Works 13

defined with respect to their child tasks only without any consideration for their parent tasks.
The recursively optimal solution is arbitrarily worse than hierarchical optimal solution and the
later arbitrarily worse than global optimal solution. However, abstract actions with weaker
recursively optimality can be reused in different scenarios, making them the building blocks for
other hierarchies. Hierarchical greedy optimality is guaranteed to be no worse than hierarchical
or recursive optimality and may be considerably better. But no guarantees can be provided
about it being globally optimal as it may sometimes suffer from the constraints induced by the
task hierarchy and available abstract actions.

2-5 Related Works

The section presents the previously proposed HRL methods and discusses the challenges as-
sociated with these methods. Representing a problem in a hierarchical structure requires the
knowledge of how to decompose the problem and how to introduce abstractions to balance the
complexity against the loss in optimality. Automating this decomposition is more difficult, but
is more desirable. In real world problems, the complexity of finding an optimal solution can be
reduced by abstracting the regularities in the problem state space. The choice of variable rep-
resentation plays a large part in providing opportunities to decompose the problem and hence
many HRL methods make use of FMDP representation. Similarities in different state space
regions provide a chance of state abstraction while extended action make temporal abstraction
possible. However, for temporal abstraction, abstract actions leading only to useful sub-goals
should be learned to reduce the problem complexity. Hence, many researchers have tried to
learn the hierarchical structure by first learning the sub-goals to partition the problem into
near independent reusable sub-problems and then learning abstract actions to reach such sub-
goals. For automatically decomposing the problem, few methods look for sub-goals or landmark
states, while others look for common trajectories or region in learned policies.

The field of HRL was started with H-DYNA proposed by Singh [32] as an extension to Sutton’s
DYNA [33] wherein a hierarchy of abstract models was learned using the agent-environment
interactions. H-DYNA constructs a hierarchy of variable temporal resolution models (VTRMs),
learned over multiple related tasks having a policy module at each level of the hierarchy with a
single evaluation function module. The evaluation function modules maintains an estimate of
optimal value function for each task and gives payoff to one of the abstract model after comple-
tion of a task. A method using high reward gradient and bottleneck states to abstract features
was used by Digney [10]. But this method is highly dependent on the specified reward function.
A simpler approach for automatically determining potentially useful sub-goals by detecting re-
gions that agent visits often on successful trajectories but not on unsuccessful trajectories was
given by McGovern [34] and McGovern and Barto [11] wherein an agent learns abstract actions
to the regions which appear early in learning and persist throughout.

Learning the hierarchical decomposition of a complex task evolves from the bottom-up while
a control behavior is employed from the top-down. According to Simon [3], complex systems
will evolve from simple systems much more rapidly if there are stable intermediate forms. The
compression inherent in the progression of learning from simple to more complex tasks was
pointed out by Utgoff and Stracuzzi [4]. Their work suggests a building block approach, designed
to eliminate replication of knowledge structures. With this as motivation, the thesis work
proposes ways to construct hierarchies by building from the bottom-up by learning abstractions
present in the state space while the later part introduces reasoning from the top-down using
simple planning techniques. The following section presents the previously proposed method for
learning hierarchies.

Master of Science Thesis Shambhuraj Sawant

14 Technical Preliminaries

2-5-1 Learning Structure

Various methods for autonomously learning hierarchy have been proposed which use different
interaction information to infer the structure. Some methods learn hierarchy by identifying
bottleneck or gate-way states in the problem domain using visit statistics of a certain state
in successful trials [6, 11] or relative novelty introduced by a state [9]. Using such heuristics,
problem state space is reduced and sequences of actions are learned. Some approaches build a
linear hierarchy using predefined frequency of variable change heuristics [17,35,36], while others
leverage the model of environment by using condition probabilities [16] to plan sets of actions
beforehand. Few other methods learn useful sequences of actions satisfying predefined criteria
and chain them together to form a solution for the underlying problem [37]. In general, the
two opportunities for abstraction or creating the building blocks for hierarchy construction are
mentioned previously in section 2-4-1: Variable elimination and Funneling. Based on these two
approaches, the methods for autonomously learning hierarchy can be loosely classified in two
groups: (a) methods which start with temporal abstraction i.e. by constructing temporally
extended actions to useful states, and (b) methods which structure the state space to begin
with and then learn actions to navigate these structures. The thesis work mainly focuses on
the second approach and hence, the related methods are discussed ahead.

A simple way of modeling a state space is by using the constraints present in it. Such constraints
are further reflected in the way state variables interact with each other i.e. their causal relations.
Such constraints lead to a hierarchy and a variable order such that variables higher in hierarchy
dependent on the lower ones. For identifying such ordering of state variables, few heuristics and
assumptions are used in HRL methods discussed further in detail.

HEXQ

The HEXQ (Hierarchical exit Q-function) [17] approach is motivated from the MAXQ approach.
It constructs a hierarchy starting from base level states and primitive actions by identifying the
regions in the state space which are similar or strongly connected and learns the exit abstract
actions for such regions. Using the exit abstract actions, it recursively formulates reduced
SMDPs at higher levels. The approach relies on having a discrete state space with finitely
number of states. It exploits a factored state representation of MDPs and makes use of variable
change heuristic to order the states in a hierarchy. The reasoning behind this heuristics is that
the variables lower in hierarchy should be frequently changing. It mainly employs funnel type
state abstractions. States are included in the same regions when transitions do not change any
other variables. Whenever this condition is violated for a state transition, an exit represented by
a state-action pair (s, a) is created. If this exit cannot be reached from all states in a region, then
the region is further divided and extra exits are created, such that these exits can be reached
with probability 1. The learned exit policies are considered as abstract actions at higher levels
in hierarchy. The hierarchical policy learned by HEXQ algorithm is recursively optimal [17].
Several updates for HEXQ algorithm have been proposed to address concurrent learning and
self-repairing of hierarchies [35], partial order planning [36], safe state abstraction with updated
value decomposition formulation [38].

The value update scheme implemented in HEXQ is inspired from the MAXQ approach. HEXQ
includes the expected primitive reward immediately after the sub-task exits and the hierarchical
value of next state, but does not include any accumulated rewards while executing the sub-tasks
and hence the name: Hierarchical exit Q-function. Instead, in MAXQ, the value of a sub-task is
composed of the accumulated reward during execution of invoked sub-sub-policies, represented
using the value of its child task, and completion value of sub-task. The motivation for such a
scheme in HEXQ stems from how rewards are assigned for primitive actions wherein the value

Shambhuraj Sawant Master of Science Thesis

2-5 Related Works 15

is composed of the reward of an action obtained immediately after its execution and the value of
the next state. HEXQ extends this scheme to abstract actions resulting in recursive optimality
of the obtained solutions. In HEXQ, the recursively optimal hierarchical Q-function Q∗em(s, a)
at level e in sub-MDP m is the expected value after completing the execution of abstract action
a starting in state s and following the optimal hierarchical policy thereafter and is given by,

Q∗em(s, a) =
∑
s′

T (s, a, s′, N)[R(s, a, s′, N) + V ∗em(s′)] (2-17)

V ∗(s) = max
a

[V ∗e−1,me−1(a) +Q∗em(s, a)] (2-18)

where, s′ is the next state, me−1(a) is the sub-MDP implementing action a at the lower level
and R(s, a, s′, N) is the primitive reward after execution of action a.

VISA

The heuristics of state variable ordering used in HEXQ may have an adverse effect on learning
important abstract actions in large problem domains. In any such MDP, when an action is
executed, the resulting values of states depend on a subset of the state variables, referred to
as their contexts. In order to address the heuristics used by HEXQ, VISA (Variable Influence
Structure Analysis) algorithm by Jonsson and Barto [16] made use of the causal structure in the
problem domain, introduced using Dynamic Bayesian Networks (DBNs) [21]. VISA algorithm
makes use of a compact DBN model of a factored MDP to build a state variable influence
graph (SVIG) indicating the causal relations between state variables. In SVIG, the algorithm
determines if there are any incoming edges to a certain state variable and, if so, then defines a
set of exits. These exits are represented using their context c and an primitive action a which
causes the concerned state variable to change. VISA identifies these exits by searching in the
conditional probability trees (CPTs) of the DBN model and then introduces an abstract action
o for each exit (c, a). Any abstract action o is admissible in states from which it is possible to
reach its context c and if its associated exit causes at least one state variable to change. The
termination condition for option o is defined as when the associated context is reached or can
no longer be reached. Once an abstract action is successfully terminated i.e. context is reached
then associated action a is always executed.

Similar to HEXQ and VISA, HI-MAT (Hierarchy Induction via Models and Trajectories) algo-
rithm proposed by Mehta et al. [39] learns MAXQ task hierarchies using solved RL problems.
HI-MAT applies DBN models to a successful trajectory from the problem domain to construct
a causally annotated trajectory (CAT). In the CAT of a pruned successful trajectory, actions
are annotated with relevant state variables that are checked or changed while action execu-
tion. Guided by the causal and temporal associations between actions in the CAT, HI-MAT
recursively parses the successful trajectories to define MAXQ task hierarchy.

Issues with the Current HRL Methods

A brief overview of proposed HRL methods along with recent advancements is provided in
[40], [1, ch. 9]. Among these methods, a very few combine temporal abstraction with state
abstraction to construct a hierarchy. The approaches for temporal abstraction [13, 37, 41–
43] mainly learn sequences of actions and collapse them together to create single operators.
However, the decision making still makes use of the full state information. Most of the sub-goal
identification algorithms [6–12, 15] work along similar lines as they identify bottleneck states
with respect to a particular task and learn abstract actions to reach such states. This results
in structuring the problem domain along with temporal abstraction. But the decision making

Master of Science Thesis Shambhuraj Sawant

16 Technical Preliminaries

still takes into account the full state information. Furthermore, such identification of bottleneck
states lead to creating an artificial structure which may not reflect the inherent nature of the
problem domain and may not be transferable to other related tasks.

The HEXQ [17] and VISA [16] methods assume a factored state MDP and order the state
variables in the given FMDP for hierarchy construction. They successively construct options
to change each state higher in hierarchy and differ primarily in the method used to order the
state variables. The resulting options are hierarchical in the sense that the options for mod-
ifying higher level state variables can execute those for modifying lower-level variables. The
agent has access to all options at the same time, and at the same level, when learning to solve
the task. However, these methods require some specific necessities. Among these methods, the
updated version of HEXQ addresses partial order planning and self-repairing, but still construct
a linear hierarchy not reflecting the causal relations in the domain. VISA algorithm takes the
causal structure of the problem domain into account, but requires to have a DBN model of the
environment explaining the problem domain in great details with the use of conditional prob-
abilities. The HI-MAT algorithm makes use causal structure to construct compact hierarchies
but requires a successful RL trajectory to parse. The hierarchy is constructed in reference of
the provided successful trajectories and may not reflect the exact causal nature of the domain
with no avenues for exploration. Furthermore, the issue of defining an action set available to
an agent at each level of a hierarchy, discussed in section 2-4-1, is not addressed as in these
methods, all the learned abstract actions are made available to the agent further increasing the
complexity of finding an optimal solution. Skill-Symbol loop method proposed by Konidaris et
al. [18, 19, 44] combines temporal and state abstraction simultaneously with skill-symbol loops
and extends the use of learned abstract actions in multi-task RL problem domains by executing
both learning and planning to solve similar tasks. However, the work doesn’t explicitly consider
any structure inherently present in the problem domain which is exploited, to a certain extent,
in previous methods. In order to make the most of the HRL paradigm, state and temporal
abstractions need to be used in tandem. Hence, addressing the discussed concerns in previous
algorithms, the thesis work aims to investigate and propose an algorithm which makes use of the
inherent hierarchy present in the state space, without having a detailed model of it, and builds
temporally extended actions for navigating the learned hierarchy. The underlying motivation
of the thesis work is derived from this need to have a novel method for learning hierarchy in
most problem domains which tie in together both, state and temporal abstractions.

Shambhuraj Sawant Master of Science Thesis

Chapter 3

A Generic Method for HRL

There mainly are two ways of constructing hierarchies: a) by learning temporal abstractions in
terms of abstract actions and using them to reorganize the state space, or b) by re-structuring
the state space using a known or learned environment model and learning abstract actions to
navigate in it. The second approach considers the causal relations present in the problem do-
main and seems more similar to how human brain functions. Among the current available HRL
methods, only a few method make use of both state and temporal abstractions to reduce the
problem complexity. Sub-goal identification and skill learning methods result in an artificial
state hierarchy which may not capture the causal structure of the problem domain and may fail
to learn optimal policies appropriate for reaching goal. HEXQ and its updated versions use a
predefined heuristics resulting in a linear state hierarchy. VISA algorithm extensively makes use
of the defined transition and reward functions given by the DBN model to construct the hierar-
chies and abstract actions. HI-MAT parses successful trajectories to construct task hierarchies;
thus requiring an agent to first reach the goal before starting the hierarchy construction.

For the hierarchy construction, inferring constraints from causal structure is very useful. How-
ever, instead of using conditional probabilities, defining which gets harder with increase in the
problem dimension, we propose to use of DBN model in a minimalist sense to define only the
causal relations found in the problem domain. The thesis assumes a priori knowledge available
to an agent to be the causal relations between the state variables. Then by interacting with
the environment, an agent can simultaneously discover abstract actions and their probabilities.
Furthermore, such causal relations can also be defined by a designer with a minimal knowledge
of the problem domain. There are three different phases of the proposed algorithm: a) learning
hierarchies and abstract actions, b) selecting actions, and c) updating values of the followed
policies. The assumptions used in the thesis work and the problem definition in discussed ini-
tially. The following sections give an overview of the different phases and a pseudo-code of the
proposed algorithm.

3-1 Problem Definition and Assumptions

The thesis work assumes a usual formulation of finite goal-oriented MDPs with discrete time-
steps, states and action. A real-world MDP is naturally described in a factored form. Hence, the
FMDP representation of an underlying MDP is used and exploited for the hierarchy construc-
tion. It is assumed that the state s is defined by a vector of n state variables, s = (s1, s2, ..., sn).

Master of Science Thesis Shambhuraj Sawant

18 A Generic Method for HRL

In general, the state variables are defined using upper case letters S while its value at a par-
ticular time instance is represented using lower case letter s with a boldfaced s representing
vectors. The goal variable is assumed to be the topmost variable in the hierarchy. The learned
abstract actions are representing using the options framework. The SMDP theory [23] which
generalizes MDPs to models with variable time between decisions is used for updating values
learned abstract actions. As the problem of constructing hierarchies and discovering abstract
actions is largely orthogonal to the employed value learning scheme. Hence, a simple one-step
Q-learning value back-up is used for abstract actions defined over primitive actions while a sim-
ilar Q value update scheme from the SMDP theory is used for updating high-level abstraction
actions. The transition and reward functions in the problem domain are assumed to stay con-
stant with time and the provided DBN model representing the transition model of the problem
domain is assumed to be accurate.

The objective of the thesis work is to find a solution aimed at being recursively optimal for a
single goal-oriented MDP with discrete time-steps and states by maximizing the expected value
of the future discounted rewards. The value decomposition used is similar to that of HEXQ,
however, with the use of pseudo-rewards. The value of an abstract action is defined using
only the pseudo-reward received on successful termination. With the used value decomposition
scheme, each options are learned using defined pseudo-rewards while the extrinsic reward de-
fined by a designer is only given to the goal policy after the completion of the task. Hence, the
hierarchy and options are learned independent of the goal task resulting in a goal independent
representation of the problem domain. However, the value decomposition used in thesis can
only accommodate single extrinsic rewards as any intermediate rewards obtained for a variable
lower in hierarchy are lost and not reflected at the goal node.

The proposed algorithm only makes use of an available DBN model for inferring the causal
relations present in the problem domain of an FMDP with a single goal. Such causal relations
can even be given by a designer without having exact model of the domain. The proposed
algorithm is generic in the sense that, it does not assume or build an any environmental features.
For example, the sub-goal identification methods assume presence of certain environmental
features, skill-learning methods assume predefined heuristics are sufficient to break down the
problem. The proposed algorithm exploits the causal relations to order the variables and then,
abstract actions are learned by interacting with the environment. Such causal relations are
inherent in all the domains and if no such relations exist, then the proposed algorithm falls
back to a flat RL method.

3-2 Hierarchy Construction

The approach used in the thesis work for the hierarchy construction is to first structure the
state space and then learn the abstract actions for navigating it. The hierarchy construction
scheme is further divided into schemes for: a) constructing state hierarchy and b) discovering
options. The following subsections give a brief summary of devised state hierarchy construction
and option discovery schemes.

3-2-1 State Hierarchy Construction Scheme

The algorithm starts with inferring a variable order using the provided DBN model for the
current task. A term, influence graph, is used to represent the inferred causal relations learned
for the DBN model. Influence graph (IG) indicates which state variables affect changes in a
particular state variable and is used for understanding contexts and other relevant attributes.

Shambhuraj Sawant Master of Science Thesis

3-2 Hierarchy Construction 19

A special case of IG is also learned called State Variable Influence Graph (SVIG) similar to
SVIG from VISA algorithm. The learned SVIG is IG without the self-dependence of state
variables. The main distinction of the learned IG and SVIG from that of in VISA is in terms
of the availability of conditional probability trees. Furthermore, IG serves as a basis for all the
learned hierarchies and policies further differentiating it from SVIG form VISA.

Influence Graph, State Variable Influence Graph and Variable Order

IG captures a complete context of a state variable i.e. its dependence on itself and other state
variables. SVIG only considers dependence between state variables and is used for understand-
ing variable order without getting stuck in a loop due to self-dependence. The nodes of IG
are the state variables and the edges between them are the actions for which corresponding
variables relate to each other. The variable order VO is used for representing a variable order
when constructing hierarchy. It is learned by first identifying the variable without any outgoing
edges in SVIG and is considered as the root node (goal node) in hierarchy with level = 0.
The variables further down in SVIG are ordered by computing their farthest distance from the
root node. This farthest distance is considered as their level in the hierarchy and is used for
computing VO. In any general problem domain, following cases of variable ordering and IG
can be obtained:

• Linear variable ordering: In a linear variable ordering, VO does not have more than
one variable at each level.

• Interdependence of variables: In IG, variables may depend on each other and may not
be present at the same level in hierarchy. Such variables can be identified using strongly
connected components in IG and can be merged together to obtained a linear variable
order.

• Partial order planning: A state variable S may depend on two or more variables which
are independent of each other resulting in a having independent variables in its context.

Without any loss in generality, for further discussions, a linear variable ordering case is consid-
ered and extensions for other two cases have been proposed in section 3-6.
Influence graph serves as a knowledge base for the further routines in the proposed scheme. As
each node in IG represents a state variable from the problem domain, a modularity is added
to the learned knowledge. Hence, in related problem domains, with addition or deletion of any
state variable, the rest of IG can still be reused. Each node in IG has following attributes:

• State set: The set of states which are discovered for the current variable. Its filled in as
new states are discovered.

• Change action set: The set of primitive actions which causes the variable to change.

• Action set: The set of abstract actions defined for the current state variable.

• Primitive action set: The set of primitive actions associated with the current state vari-
able.

• Sub action set: The set of abstract actions which are supplementary to the abstract ac-
tions in Action set defined for the current state variable.

• Primitive sub action set: The set of abstract actions encapsulating a particular primitive
action and are supplementary to abstract actions in Action set defined for the current
state variable.

Master of Science Thesis Shambhuraj Sawant

20 A Generic Method for HRL

Figure 3-1: The DBN model, state variable influence graph (SVIG) and influence graph (IG) for
the key-and-lock problem

Consider a simple key-and-lock problem wherein an agent needs to collect an exit-door key
from some locations and exit the problem domain for completing the task. Figure 3-1 shows the
given DBN model of a key-and-lock problem for move actions: {north, south, east,west} and
key pickup action along with the inferred state variable influence graph and influence graph.
In figure 3-1, Sg indicates the goal variable representing whether the goal is reached by an
agent or not, Sk stands for the key variable representing whether an agent has a key or not, Sr
indicates room variable representing the current room occupied by an agent and Sp indicates
position variable representing the position of an agent in the current room. An example of IG
and SVIG for such a key-and-lock problem is shown in figure 3-1 while an influence graph for
an FMDP with n state variables is shown in figure 3-2c. The variable order inferred in this
problem domain would be {0 : [Sg], 1 : [Sk], 2 : [Sr], 3 : [Sp]} with the numerical values showing
which level of each variable in the hierarchy. In some problem instances, Sr and Sp may depend
on each other as shown in figure 3-2a or Sk might be independent of Sr as shown in figure 3-2b.
Such scenarios constitute other cases of variable ordering discussed previously. Initially, among
the state attributed of IG, only change action set and primitive action set are assigned while
others are filled when interacting with the environment.

(a) (b) (c) (d)

Figure 3-2: The state variable influence graph for key-and-lock problem for (a) variable interdepen-
dence and (b) partial order planning scenarios. c) Independent state hierarchies in the key-and-lock
problem. d) A general influence graph for a problem domain with n state variables.

Shambhuraj Sawant Master of Science Thesis

3-2 Hierarchy Construction 21

Independent State Hierarchies

Similar to influence graphs, independent state hierarchies are also inferred from the DBN model.
The term independent state hierarchies is coined to represent a hierarchy of state variables
affected by a primitive action. Such independent hierarchies have a contextual relation due
to the current definition of the problem domain. Furthermore, the advantage of defining such
hierarchies is that the corresponding primitive actions can be tied with the bottom-most state
variables leading to a concise definition of abstract actions over only required primitive actions.
For example, any key-and-lock problem has two independent hierarchies: location hierarchy
and key hierarchy corresponding to move and pickup actions, shown in figure 3-2c. Sp and
Sr together define a location hierarchy and Sk defines a key hierarchy. These hierarchies are
contextually related to each other under the problem definition i.e. the goal variable Sg. The
independence between hierarchies is as: any changes in Sp may change Sr , but will never
change Sk. Sk only changes due to pickup action which does not affect Sp and Sr . With such
an independence, any room leaving policy for Sr is defined using only the actions associates
with Sp i.e. move actions. Furthermore, only move actions are added to change action set of Sr .

Both, influence graph and state variable influence graph, represent the state hierarchy in terms
of state variables and is directly inferred from the DBN model of an FMDP, similar to VISA al-
gorithm [16]. However, unlike VISA algorithm, use of the DBN model is limited to constructing
this state hierarchy. A state hierarchy in terms of in terms of individual state variable instan-
tiations s is represented using a state transition graph G, discussed in the following section.

State Transition graph

A state transition graph G, defined as a multi-directional graph, is constructed using causal
information from IG and the agent-environment interaction. G captures the transition infor-
mation in the problem domain along with the contextual information for each transition. Figure
3-3 shows an example of state transition graph for a key-and-lock problem. All the discovered
states are added to G with connecting edges to their contexts from IG. Each newly added state
is connected to its context variables’ corresponding instantiations. Such connecting edges are
used for defining initiation set and value space of learned abstract actions and are shown as the
black colored edges in figure 3-3. Furthermore, within each state variable domain, transitions
are recorded with edges between states, shown using green or blue color in figure 3-3. These
edges further used in recording transitions for learning probabilities. With such stored transi-
tion information, a model of the problem domain is learned and used for bootstrapping value
function, discussed in detail in section 3-4-1.

3-2-2 Option Discovery Scheme

In the thesis work, abstract actions are learned to navigate the constructed state hierarchy
and are represented using the options framework [30]. These options are learned using value
update scheme of the SMDP theory, discussed in detail in section 3-4. This sections gives a
brief overview of the devised option discovery scheme for learning options in terms of a generic
influence graph (figure 3-2c) along with few examples.

Option Representation

For learning options to navigate between abstract states while avoiding replication, new options
are built only when a variable with some context changes. The reasoning is that when a

Master of Science Thesis Shambhuraj Sawant

22 A Generic Method for HRL

Figure 3-3: Learned state hierarchy in terms of state variable influence graph and state transition
graph for a key-and-lock task (color-coded to represent corresponding state variables and their
instantiations)

state variable having some context changes, these transitions depend on other variables and,
hence, the need to create an option. Furthermore, to avoid replication, the learned options are
uniquely identified using the changes induced in the problem domain. In options framework [30],
an option O is formed using a tuple (I, µ, β), with the initiation set I where option O can be
initiated, a policy function µ for option O where µ(s, a) gives the preference value given to an
action a in state s and a termination function β such that β(s) gives the probability of option
O terminating in state s. In the proposed algorithm, building on the options formulation, each
option is defined using following attributes:

• Variable: The state variable for which the option is defined.

• Next variable: The state variable over which the option is defined.

• Change: The change caused by the option in its variable.

• Initiation state: A set of initiation state of the option.

• Termination state: A set of termination states of the option.

• Termination Initiation state: A set of states from which a terminating (abstract) action
can be initiated.

• Actions: Actions (primitive and abstract) over which the option is defined.

• Value: Option’s value space used for defining its policy.

For an IG, an option O for a state variable S is defined over a state variable Si using its contexts
SIG
cont = {S, S1, S2, ..., Sk}. Such an option O is defined with variable = S and next variable = Si.

Its actions are obtained either from the set of primitive actions available for Si in IG if Si ∈ SIG
cont

and context(Si) = φ or from the set of abstract actions available for Si in IG if Si ∈ SIG
cont and

context(Si) 6= φ. Its value is defined over a cross product of states s such that s ∈ State set of Si
and s connected to initiation set of option O in G i.e. s ∈ context(initiation set)∩ domain(Si),
and its actions. The previous associations of state variables and primitive actions become
important when defining actions for an option.

Shambhuraj Sawant Master of Science Thesis

3-2 Hierarchy Construction 23

For example, in a key-and-lock problem, an option O for changing room variable Sr is defined
over Sp. If option O is defined over all the primitive actions, then it would result in the number
of actions na = 5 (move and pickup). However, due to the associations between state variables
and primitive actions, option O can be defined using only move primitive actions i.e. na = 4.
Furthermore, if value of option O is defined using the five primitive actions, then the result will
no longer be modular as its value function involves a component associated with key variable.
In the next problem instance, if instead of key variable, another state variable is introduced
then option O will no longer remain viable.

A Generic Scheme for Option Discovery

A general scheme for iteratively constructing an option O defined for a state variable S under-
going a transition with context SIG

cont is as follows:

1. Set the bottom-most variable in the context SIG
cont as current variable Scur. initiate previous

option Op, intermediate option Oi and intermediate variable Si to null.

2. Learn an option O over Scurr for reaching the current instantiation of Scurr. If an option
Op exists, then add Op to sub action set of S and to actions of option O.

3. If the primitive action a which caused the change in S belongs to primitive action set of
Scur and context(Scur) 6= φ, then define option POi(Scur) encapsulating a. Add POi to
actions of option O and primitive sub action set of S.

4. Set option Op, if exists, as Oi(Si).

5. Set option O as Op and current variable Scur as Si.

6. Set the next variable according to variable order VO in SIG
cont as Scur and go to step 2. If

no next variable exists from Scur then go to step 7.

7. Add option O to action set of S.

Figure 3-4: A graphical overview representing the construction of an option O for state variable S

Master of Science Thesis Shambhuraj Sawant

24 A Generic Method for HRL

A graphical overview of this iterative scheme is given in figure 3-4 wherein the final option O(S)
represents the abstract action available to an agent for changing variable S and all intermediate
options Oi(Si) are the supplementary options created for option O. All the options defined in
this process have variable = S signifying their association with variable S while next variable
attribute to be corresponding Si over which they are defined. The option discovery happens
while interacting with the environment and, hence, these newly discovered options need to be
added to action of all options defined over variables Sh higher in hierarchy than S if S ∈
ShIG

cont. For all the options constructed in the iterative process, initiation set, termination set
and termination initiation set need to be defined and a simple rule is discussed ahead.

Initiation, Termination and Termination-Initiation conditions

In a general case, for defining initiation set, termination set and termination initiation set of an
optionO for a transition of state variable Sc from s(c) to s′(c), let the ordered context ScIG

cont of Sc
to be {Sc, ..., Sk+1, Sk, Sk−1, ..., S1} such that level(Sk) < level(Sk−1) for all Sk, Sk−1 ∈ ScIG

cont.
Let s′ and s be the values of ScIG

cont at T +1 and T time-steps respectively with primitive action
a which causes the change in Sc. The primitive action a may not belong to primitive action set
of Sc and is assumed to be belonging primitive action set of Sk with Sk ∈ Scont. This general
case is shown in figure 3-4 and 3-5. For each intermediate option Oi defined over Si,

• Initiation set is the values of all Sj such that level(Sj) ≤ level(Si) at time instance T .

• Termination set is defined as the value of all Sj such that level(Sj) ≥ level(Si) at time
instance T + 1.

• Termination initiation set is defined as the value of all Sj such that level(Sj) ≥ level(Si)
at time instance T .

Figure 3-5: A general case of a state transition for defining initation set, termination set and
termination initiation set for an option O

A primitive action a is removed from a state variable’s change action set when a transition
is observed in the variable due to a. Furthermore, as a room can have more than one door
to go to an adjacent room, more than one termination states may need to be defined for an
option. When a transition same as the one defined in an option O is observed but for a different
termination state, this new termination condition snew

t is added to termination set of option
O if snew

t satisfies initiation conditions of any of the intermediate options of option O. Such
a check is carried out from the intermediate option defined over the lowest to the top-most
variable in the context of variable of option O. At a certain level in context of variable of
option O, if snew

t satisfies the initiation condition but doesn’t satisfy the termination condition,
then it is added to the termination set of the corresponding intermediate option and all other
options constructed after it. If the initiation condition of an intermediate option is not satisfied,
then a new intermediate option is created using a scheme similar to previous one except that
the resulting option Oi is added to actions of next intermediate option and correspondingly
termination states for all next intermediate options and option O are updated. Finally, initial
definition of option O is updated to include this new way to change its variable.

Shambhuraj Sawant Master of Science Thesis

3-3 Action Selection Scheme 25

Examples

In a key-and-lock problem, a room leaving option Or is defined for Sr when a transition is
occurred from room 0 to room 1 and having context {Sr ,Sp}. Assume that this transition
occurs due to primitive action north when Sp changes from 5 to 6. Hence, in the discussed
option discovery scheme beginning with Sp, an intermediate option Oi(Sp) is defined with
variable as Sr , next variable as Sp, initiation set as {Sr : 0}, termination set as {Sr : 1,Sp : 6},
termination initiation set as {Sr : 0,Sp : 5}, actions as {north, south, east,west} and value as a
cross product of actions of Oi(Sp) and State set of Sp. Now, as primitive action north belongs
with Sp, Oi is assigned to the room leaving option Or for Sr and is added to action set of Sr .
The option Or will have change attribute to be [0, 1] as it changes Sr from 0 to 1.

For key collecting policy Ok with change of {Sk : 0,Sr : 1,Sp : 7} to {Sk : 1,Sr : 1,Sp : 7}
for pickup action, starting with Sp, an intermediate option Oi(Sp) is defined with variable as
Sk, next variable as Sp, initiation set of {Sk : 0,Sr : 1}, termination set of {Sr : 1,Sp : 7},
termination initiation set of {Sr : 1,Sp : 7}, actions as {north, south, east,west} and value
as a cross product of actions of Oi(Sp) and state set of Sp. Similarly, an intermediate op-
tion Oi(Sr) is defined with variable as Sk, next variable as Sr , initiation set of {Sk : 0},
termination set of {Sr : 1,Sp : 7}, termination initiation set of {Sr : 1,Sp : 7}, actions as
action set of Sr along with Oi(Sp) and value as a cross product of actions of Oi(Sr) and
state set of Sr . Now, as pickup action belongs to primitive action set of Sk, a special primitive
option POsk need to be defined encapsulating pickup action. Hence, POi(Sk) is defined with
variable as Sk, next variable as Sk, initiation set of {Sk : 0,Sr : 1,Sp : 7}, termination set
of {Sk : 1,Sr : 1,Sp : 7}, termination initiation set of {Sk : 0,Sr : 1,Sp : 7}, actions as
pickup and value as 10 (predefined pseudo-reward) for pickup action for the corresponding state
in termination initiation set. Finally, Ok is defined with variable as Sk, next variable as Sk,
initiation set of {Sk : 0}, termination set of {Sk : 1,Sr : 1,Sp : 7}, termination initiation set
of {Sk : 0,Sr : 1,Sp : 7}, actions as {Oi(Sr), POi(Sk} and value as a cross product of actions
of Ok and state set of Sk. Here, as the primitive action belong with Sk, all the state variable
before Sk are unchanged and only participate in the option discovery process as context for
Sk. Thus, termination set and termination initiation set are the same for both intermediate
options Oi(Sp) and Oi(Sr).

3-3 Action Selection Scheme

The state hierarchy construction and option discovery schemes work in a bottom-up manner
while action selection scheme works in a top-down manner. In hierarchy construction, the goal
variable is not given any extra significance. It can be considered as building up the knowledge
for all the state variables in the problem domain. On the contrary, in action selection scheme,
actions are taken to discover or reach the goal location. In the proposed scheme, it is assumed
that changing the topmost variable in IG will get the agent to the goal location. If the goal
is associated with any other state variable lying anywhere below the topmost variable in IG,
then agent will still discover an extra part of the hierarchy not necessary for reaching the goal.
Hence, in the thesis work, the goal variable is assumed to be the topmost variable. In the
proposed algorithm, following action selection scheme is used:

1. If no option is currently being followed, then set the topmost node in IG as Scur and go to
step 2. If an option O is currently being followed then actions are to be chosen according
to the policy of O. In such a case, set Scur as variable of option O, current action a as
option O and go to step 3.

Master of Science Thesis Shambhuraj Sawant

26 A Generic Method for HRL

2. Using a selection criterion defined with probability w, choose whether to slide the control
down or to choose an action using available actions for Scur. The probability of selecting to
pass the control down is defined to be (1−w) and that of selecting an action is w wherein
w linearly increases from 0 to 1 as learning progresses. The choice of action selection is
only possible if an action is available to be executed from Scur.

(a) The action selection pool for choosing an action is obtained from primitive action set,
action set and change actionset of Scur. An action a is randomly chosen from this
pool. If the selected action is an abstract action, then go to step 3 else stop as
primitive action is chosen.

(b) For sliding the control down, the control of deciding an action is passed to the next
variable in VO and Scur is set to be the next variable. After passing the control to
the next variable, repeat step 2. If no state variable exists after Scur in VO, then
select an action randomly from the primitive action set of the problem domain and
stop.

3. For an abstract action a for state variable Scur, apply a selection criterion defined using
probability p for selecting whether the next action is to be selected using value function of
a or using planning. The probability of selecting an action using value function of abstract
action a is defined to be p and that of using planning is defined to be (1− p) wherein p is
kept constant throughout the learning phase.

(a) When selecting next action using value function of action a, either ε greedy or Boltz-
mann exploration criterion is used. The selected action is assigned to a. If a is a
primitive action then stop else go to step 1.

(b) When selecting next action using planning, first carry out value iteration over value
space of action a. If the termination state of action a is reachable from the current
state, then select anext using greedy policy (without any exploration) and set a =
anext, else select next action using value function of action a. If the selected action
anext is a primitive action then stop else go to step 1.

Hierarchical Policy

A hierarchical policy is a set of all policies for each sub-task. At a particular time instance T ,
an instantiation of hierarchical policy is represent using Hpolicy which details about abstract
actions currently being followed at each level in hierarchy. Any option O for state variable S
creates n intermediate options where n is the size of context(S) such that each such option is
defined over only one state variable. Due to the way options are created, at a particular time
instance, at the most one option is being followed at each level in the hierarchy which simplifies
the value update scheme. An option O is ended either successfully if an agent reaches the de-
sired termination state or unsuccessfully if an action taken by an agent inducing an undesired
change in the problem domain or violates the initiation conditions of option O or if duration of
execution of option O exceeds a predefined limit. Once an option O is terminated, successfully
or unsuccessfully, then option O and all other options invoked by O are ended and removed
from Hpolicy. The control of deciding action is given to the lowest continued option in Hpolicy.
If no such policy exists, then the action selection scheme is restarted from the root node.

When selecting action in RL methods, it is necessary to balance the trade off between explo-
ration and exploitation. In the presented action selection scheme, the schemes implemented for
addressing exploration and exploitation are discussed in the following sections.

Shambhuraj Sawant Master of Science Thesis

3-3 Action Selection Scheme 27

3-3-1 Exploration

Exploration implemented in the current scheme is carried out for: a) discovering new states
and transitions and b) learning an optimal policy. When following an option, action selection
under the influence of its policy results in learning an optimal value surface. Furthermore, it may
result in discovering new states due to exploration in the followed policy (ε greedy or Boltzmann
exploration). In the current scheme, directed exploration is implemented for discovering new
states by choosing an action from change action set for a state variable with some probability.
As learning progresses, probability assigned for the directed exploration increases. As the goal
is considered to be the topmost variable, as learning progresses, agent starts to frantically
look for changing the top variable by executing primitive actions from its change action set.
Once a transition caused due a primitive action a is observed in the topmost variable, action
a is removed from its change action set and a goal policy is formed. In beginning phases of
learning, with the discussed selection criterion, control is passed down to lower variables. As
learning progresses, variables higher in hierarchy start executing primitive actions from their
respective change action set. In later stages of learning, agent focuses more on changing the
top variable if the goal is not yet reached else the goal policy is executed.

3-3-2 Exploitation

Similar to exploration, exploitation is addressed either: a) by following value function or b)
through classical planning methods. Action selection can be done using value function (value)
of the current option O with some exploration criteria (ε greedy or Boltzmann exploration).
Such action selection scheme exploits already learned value function. Another way for exploiting
the learned knowledge is by using classical planning techniques. Here, exploitation is achieved
using value iteration method defined over the learned model (State transition graph G). The
model learned through state transition graph is used to bootstrap the value function of option
O. Starting from termination state of option O in the domain of its variable S, breadth first
search (BFS) algorithm is implemented. As each option is defined over only one state variable
and connecting edges between nodes in G encode the context transitions between states, con-
sidering only domain(S) in G is sufficient for planning and selecting abstract actions. With
the graph traversal, the corresponding Q values of states are updated in value for option O.
This results in bootstrapping the value function and helping in faster convergence. An action
is chosen according to the updated value function without any exploration probability resulting
in a (sub) goal directed behavior.

Figure 3-6: An abstract overview of exploration-exploitation trade off in implemented action selec-
tion schemes

Figure 3-6 gives an abstract overview of how exploration-exploitation trade off is handled in the
implemented action selection scheme. The probability of directed exploration increases linearly
as learning progresses and ends when a change is discovered. The probability of exploration
when selecting actions based on value function decreases linearly with learning while no explo-
ration takes place when selecting actions based on a plan. For exploitation, as probabilities of
selecting actions using value function and planning are kept constant throughout the learning

Master of Science Thesis Shambhuraj Sawant

28 A Generic Method for HRL

phase, exploitation of learned value function increases as learning progresses. The probability
of selecting actions using value function should be kept higher than that of using planning. The
reasoning is that, with an intermittent planning a goal-directed behavior would be introduced
without depriving the agent of exploration. Furthermore, with planning, values for all states of
a policy are bootstrapped which further aid action selection at the next time instance. Another
important reasoning behind having intermittent planning is that the environment model used
may not be accurate enough and hence solely relying on it could be detrimental to the agent’s
performance.

3-4 Value Update Scheme

In the thesis work, value update for an option O is carried out using the SMDP theory. Fur-
thermore, a value decomposition scheme inspired from the HEXQ and MAXQ methods is used.
All the options except for the goal option are learned using pseudo-rewards obtained after their
termination. The Q value of a certain state s and an abstract action a following a hierarchical
policy π is given in the SMDP theory (equation 2-10) as,

Qπ(s, a) =
∑
s′,N

T (s, a, s′, N)[R(s, a, s′, N) + γNQπ(s′, π(s′))] (3-1)

In the implemented value decomposition scheme, R(s, a, s′, N) represents only the reward ob-
tained after the termination and does not include any accumulated rewards obtained during
execution of abstract action a, similar to HEXQ. The value update scheme in the HEXQ ap-
proach is inspired from the MAXQ approach but differs on in the regards of how R(s, a, s′, N)
is defined. However, Q values in an option are learned using the concept of pseudo-rewards
from MAXQ approach. In the implemented value decomposition, the value of a next state s′
used for update is defined to be maxaQ(s′, a) when compared with that of the HEXQ method
(equation 2-18). Thus, each option is learned independently without any consideration for its
child or parent tasks. When an option is successfully terminated, a pseudo-reward of +10 is
given and if it is unsuccessfully terminated because of violation of its initiation condition, then
a pseudo-reward of −20 is given. The value function of an option O is only defined over its
next variable such that its initiation conditions are satisfied.

Consider an option O constructed for manipulating a state variable S and defined over state
variable Sn. A simple Q update scheme, similar to Q-learning, is used for updating a policy π
of an option O and is given as,

Qπ(s, a) = (1− α) ∗Qπ(s, a) + α ∗ (R(s, a, s′, N) + γN ∗max
a

Qπ(s′, a)) (3-2)

where a represents an abstract action in actions of an option O, s and s′ represents agent’s
states at T and T + 1 time instance respectively, γ is the discount factor and α is the learning
rate. For updating options defined over primitive actions, a simple Q value update scheme
given in equation 2-13 is used. In the implemented Q update, the discount factor γ is kept
constant through out the learning phase, however, the learning rate α is decreased linearly with
the number times an option is invoked.

As discussed previously, Hpolicy maintains a list of all policies being followed at each time
instance and is used for updating their value function. With each transition, termination con-
ditions are checked for all options in Hpolicy. If a termination condition of an option satisfied,
then the corresponding option is deemed to be successfully terminated. If an option’s initiation
conditions are no longer valid or the intended change has occurred but without satisfying its
recorded termination conditions or its duration of execution exceeds a predefined limit, then

Shambhuraj Sawant Master of Science Thesis

3-4 Value Update Scheme 29

the option is terminated and the termination is considered to be unsuccessful. If an option is
terminated, successfully or unsuccessfully, then all the options invoked by it are also terminated.
All the terminated options are removed from Hpolicy. At each time instance, options which
invoke primitive actions are updated. If an option is terminated successfully terminated then
its parent option is also updated. Such a value update is carried out after the execution of a
primitive action. However, value iteration is also carried out when selecting an action using
planning which updates Q values of an option. It requires a model of the problem domain and
is discussed in the following section.

3-4-1 Model-based Techniques

When selecting actions based on planning, value iteration is carried out over the value space
of an option O currently being executed. In any planning problem, transition functions can
either be deterministic or stochastic. Hence, agents needs to have an estimate of transitional
probabilities for primitive and abstract actions. For value iteration, the transition probabilities
of the domain of next variable of option O are learned using the state transition graph G. In
the current scheme, the probability of a certain transition is obtained by counting the number
of times a particular outcome occurs. As the policy of an option keeps on evolving in the
learning phase, a discounting is implemented using discount factor γ to weigh the current
information more than previous. This value iteration is used only as a mean to bootstrap value
function and hence, an exact estimation of probabilities is not required. In the SMDP theory,
for value update given in equation 3-1, a transition function defined using a joint probability
over both next state s′ and time of execution N is required for updating value function. For
estimating probabilities, an approximate method, discussed in next section, is devised for both
deterministic and stochastic domains. The approximate method directly updates Q values using
the estimated joint probabilities.

Approximate Method for Value Iteration

In deterministic scenario, the estimation of a value associated with a state-action pair for an
option O for state variable S is carried out by finding the shortest path between a state s and
termination state st of option O and is implemented using a breadth first search (BFS) traversal
of the domain of S. The value update scheme used for a state s is as follows:

Vn+1(s) = (1− w) ∗ Vn(s) + w ∗ γN ∗ P (s′, N |a, s) ∗ Vn+1(s′) (3-3)

where w is the weight parameter which linearly decreases with the number of times option
O is invoked, γ is the discount factor, P (s′|a, s) gives the probability of reaching next state
s′ in N time-steps after executing an action a in a state s. As the domain of S is traversed
from termination state to other states, Vn+1(s′) is used for updating Vn(s) wherein Vn(s) =
max
a

Qn(s, a). Extending this scheme for stochastic problem domain requires an additional
step. In stochastic domain, first, a shortest path to the termination state st is found using the
most probable outcome of actions. Figure 3-7b shows an example of a simple domain with 9
states wherein dark edges represent most probable outcomes of an action and grey edges show
outcomes with low probability. On the obtained shortest path, value update is carried out using
equation 3-3. In the second step, the domain of S is traversed again using BFS along the most
probable action outcomes, but the value update is only carried out for low probable incoming
edges using the following update scheme:

Vn+1(s) = Vn+1(s) + w ∗ γN ∗ P (s′, N |a, s) ∗ Vn+1(s′) (3-4)

Master of Science Thesis Shambhuraj Sawant

30 A Generic Method for HRL

Figure 3-7 shows an example both deterministic and stochastic domains and the final optimal
policy obtained. It can be observed that, in the approximate scheme, the second step only adds
value in the stochastic domain and hence, it can be used for both the domains.

(a) (b)

Figure 3-7: The domain of state variable S in state transition graph G with optimal policy for
a) deterministic transitions and b) stochastic transitions (grey edges show the transitions with low
probability of occurrence)

3-5 Pseudo-code

The proposed algorithm can be divided into: a) HRL scheme (Algorithm 1), b) Action selection
scheme (Algorithm 2), c) Option discovery scheme (Algorithm 3) and d) Value update scheme
(Algorithm 4). A brief overview and a pseudo-code of the proposed algorithm are discussed in
the following sections.

HRL Scheme

The HRL scheme represents the main algorithm wherein the required preliminaries: Influence
graph IG, state variable influence graph SVIG, variable order VO and state transition graph G,
are computed and rest of the scheme are called upon. IG serves as the grounding framework for
all the learned exit options and their value functions. VO is computed to have a loosely defined
linear hierarchy for sliding the control down from the root node. The state-transition graph G
is used primarily for constructing a compact hierarchy of the state variables in terms of their
instantiations and to record their transitions. For both deterministic and stochastic transitions,
G serves as a model of state space and can be used directly for planning.

The main HRL scheme shown in algorithm 1 gives an overall flow of the proposed algorithm.
In the beginning, all the essential parameters are computed. Each trial can be considered to
be divided in four steps: 1) Primitive action selection, 2) Action execution, 3) Inferring from
resulting environmental changes which involves option discovery, the hierarchy construction
etc. and 4) Value function update. Each of these steps, except action execution step, calls for
a routine, given in-detail in later algorithms. Step 3 checks for transitions in state variables
and compares them with IG for building or updating exit options, while step 4 considers active
options for updating their value function. Step 3 also updates the state-transition graph G
along with the addition of newly formed options to higher state variables. The initiation set of
an option O is updated over the newly discovered states in step 3 (line 10 and 34 in algorithm
1). Similarly, value of an option O is updated to include newly discovered states and the new
state values are initiated to zero (line 18 in algorithm 3).

Shambhuraj Sawant Master of Science Thesis

3-5 Pseudo-code 31

Algorithm 1: General Scheme for HRL+Planning
Data: Env, Dynamic Bayesian Network (DBN) Model

1 Initialization
2 Compute state-variable influence graph (SVIG) using DBN model
3 Compute influence graph (IG) using DBN model
4 Compute variable order (VO)
5 Initiate multi-directed state-transition graph (G)
6
7 while N_episodes > 0 do
8 Environment reset
9 Scur = Sg ; // Control is given to the root node

10 Initiate policy value function over (newly discovered) states
11 while (N_steps > 0) and (goal not reached) do
12 Compute the graph representation grep for current state s
13

// Action selection
14 Compute weight w for exploration
15 a = 0 ; // Initiate action a
16 while a is not in primitive action set do
17 if Any option a being followed then
18 (a, Scur,Hpolicy) = Action selection(grep, Scur, w,Hpolicy, a)
19 else
20 if (Selection criterion) and (action is available) then
21 (a, Scur,Hpolicy) = Action selection(grep, Scur, w,Hpolicy)
22 else
23 Scur = Variable next to Scur in VO
24 end
25 end
26 if No next variable in VO after Scurr then
27 Random action selection from the primitive action set
28 end
29 end
30

// Action execution
31 sn = take action(s, a)
32 Compute the graph representation gnrep for current state sn
33

// Checks and updates
34 Initiate policy value function over (newly discovered) states
35 G graph update(gnrep) ; // Adding new state to G
36 Option discovery(grep, gnrep, a)
37

// Value Update for HRL
38 (Scur,Hpolicy) = Value update(grep, gnrep, a, Scur,Hpolicy)
39 end
40 end

Master of Science Thesis Shambhuraj Sawant

32 A Generic Method for HRL

Algorithm 2: Action selection scheme
Data: current state var Scur, state grep, weight w, Hpolicy, current policy pol
Result: Scur, primitive action, Hpolicy

1 Identify the executable action set A from current state grep for Scur in IG
2 no_action_flag = False ; // Availability of action for current state
3 if No action available then
4 no_action_flag = True
5 end
6 no_plan_flag = Flase ; // Availability of plan to termination
7 if pol then
8 a = pol
9 else

10 a = random choice(A)
11 end
12
13 while (a is not in primitive action set) and (not no_action_flag) do
14 anext = []
15 if (Selection criterion) or (no_plan_flag) then

// Action selection based on value function
16 anext = ε greedy action selection for grep using value function of a
17 if No action available then
18 no_action_flag = True
19 Break
20 end
21 else

// Action selection based on planned path in current value function
space to the termination state

22 Value iteration on value space of a using G
23 if termination reachable from grep in G then
24 no_plan_flag = True
25 else
26 anext = arg max

a
(Qa(grep, a)) where a ∈ A

27 end
28 end
29 anext = a
30 Update policy_count for a ; // Number of times a policy is invoked
31 end
32 if no_action_flag then
33 a = Nothing
34 else
35 Update IG, , Scur, Hpolicy with actions being followed at each var level
36 end

Shambhuraj Sawant Master of Science Thesis

3-5 Pseudo-code 33

Action Selection Scheme

In the proposed action selection scheme (line 14-29 in algorithm 1), if any option is being
followed, then actions are selected according to it. If no option is currently being followed then
the selection is handled by breaking decision making process as: do nothing and do something
at a current state variable Scur. Initially, Scur is set as the goal variable or root node. When
do nothing is chosen, Scur is updated to the variable next in VO and if there are more than
one variable at the next level, then selection is done randomly among them. If do something is
selected, then an action is selected randomly (line 10 in algorithm 2) or with some heuristics
from the action set, primitive action set and change action set of state variable Scur. For the
goal variable, when the goal is reached for the first time, a goal option is created and the
corresponding primitive action is removed from change action set. Hence, in do something case,
algorithm always selects either the goal option or a primitive action from change action set at
the root node. Furthermore, when the goal option is selected, it will be terminated only when
the goal is reached, hence giving more emphasis to the goal directed behavior in the later stages
of learning. The lowest state variable in VO will not have any abstract actions and, hence, when
Scur is the lowest variable, then an action is chosen randomly from its primitive action set.

Option Discovery Scheme

The action selection scheme depends highly on how options are put together. Each variable
higher in hierarchy has some preconditions which need to be satisfied when trying to change
the variable. These are tagged as context for the changed state variable Sc and are obtained
using predecessors of the changed variable in IG. When building an option OSc for changing a
state variable Sc, options are build to reach context and are combined to form OSc.

The implemented option discovery scheme provides an ability to independently learn options,
resulting in modularity. Hence, for the next task, if the goal variable is different, policies defined
for a state variable lower in hierarchy can directly be used as they are learned without having
any dependence on previous goal variable. In the proposed scheme, any option is uniquely
defined by the change it induces on its state variable. If a certain change is not dependent of
a variable but is shown to be in the provided DBN model, then, the counter instance, when
observed, is still added to the same option (line 22-37 of algorithm 3). This routine is also useful
in identifying new termination states for an option.

Value Update Scheme

In the implemented value update scheme given in algorithm 4, Q values are updated according
to the checks of termination conditions. Options may be terminated successfully or successfully
as discussed in section 3-4. Parent options of successfully terminated options are updated. Any
option which invokes primitive actions is updated at each time instance. A simple Q update
is carried for value update (line 15 of algorithm 4) where N is the duration of execution of an
option O (N = 1 for primitive actions).

Master of Science Thesis Shambhuraj Sawant

34 A Generic Method for HRL

Algorithm 3: Option discovery scheme
Data: state grep, next state gnrep, primitive action a

1 Check changes in any state variable from grep to gnrep using IG
2 Order changed variables sc in ascending order according to VO
3 Identify context for each changed variable
4
5 for Changed variables Sc do
6 if Change in Sc is new then
7 context = context of Sc in IG
8 Initiate exit option OSc for observed change in Sc
9 Initiate option Op to null

10 while context is not empty do
11 Sd = pop(context, 0)
12 Create option O for Sd to reach the associated context
13 Assign initiation and termination criterion with option O
14 Define value function using state set and action set of Sd
15 Add Op to the action set of the newly formed option O
16 Op = O

17 end
18 OSc = Op
19 Update action set of Sc
20 Update value function of higher level options using the updated action set of Sc
21 else
22 Op = Option having same change in Sc
23 Initiate option OScur to null
24 for Scur from ordered context(Sc) do
25 a = Intermediate option corresponding to Scur defined in Op
26 if grep satisfies initiation set of a then
27 if gnrep does not satisfy termination set for a then
28 Add OScur to action set of Op and set option OScur to null
29 Update termination set of Op using gnrep
30 Update termination Initiation set of Op using gnrep
31 end
32 else
33 Define option OScur for Scur to reach the associated context
34 Assign initiation and termination criterion with option OScur

35 Define value function using state set and action set of Scur for option OScur

36 end
37 end
38 end
39 end

Shambhuraj Sawant Master of Science Thesis

3-6 Extensions for Different Variable Ordering 35

Algorithm 4: Value Update scheme
Data: state grep, next state gnrep, primitive action a, Hpolicy

1 Oup = null ; // set of options eligible for value update and corresponding
terminating child options

2 for O in Hpolicy do
3 if Termination criteria are satisfied for O then
4 Terminate O and options invoked by O
5 Update Hpolicy to reflect the termination

// If O is terminated, then abstract action which invoked O is eligible
for value update

6 Oup.append(parent(O), O)
7 end
8 if a belongs to action set of O then
9 Oup.append(O, a)

10 end
11 end
12 for Op,O in Oup do
13 Compute learning rate α using policy_count of O

// Q-function update for option Op

14 QOp(grep, O)← α ∗QOp(grep, O) + (1− α) ∗ (reward + γN max
o
QOp(gnrep, O))

15 end

3-6 Extensions for Different Variable Ordering

The proposed scheme is discussed for a problem domain with a linear variable ordering. But
it can be easily extended to two other cases of variable ordering: a) interdependence of state
variables and b) partial order planning case. The extensions required are as follows:

• Interdependence of variables case: A set of interdependent state variables S =
{S1, S2, ..., Sk} in IG can be identified using strongly connected component algorithm.
A new state variable V can be constructed by merging the interdependent variables S
such that each different S vector is mapped onto a discrete number space Z. In IG, the
new variable V replaces S inheriting their connections with remaining state variables.
With the new variable V replacing S, a linear variable ordering can be obtained.

• Partial order planning case: In partial order planning case, two or more state variables
from context of a state variable are independent of each other. In such a case, variable
order VO obtained from IG will have more than one state variable at a particular level.
The proposed extension for the implemented action selection scheme is that a state variable
is to be chosen randomly from next level (line 10 in algorithm 2) to give the control to
when sliding down in VO. For option discovery scheme, when option is to be constructed
using independent state variables, a cross product of their combined states and actions
should be taken to define the value function.

With these extensions, any general variable ordering and influence graph can be solved using the
proposed algorithm. Furthermore, with the extension proposed for partial order planning case,
an agent can even start without any knowledge of causal relations by defining value function
a cross product of all states and actions, similar to a flat RL agent, and then learn the causal
structure by interacting with the environment. Hence, in the worst case scenario, the proposed
algorithm will perform equivalent to a flat RL learner.

Master of Science Thesis Shambhuraj Sawant

Chapter 4

Evaluations and Discussion

The chapter briefly discusses the problem domains and experimental setup used for evaluating
and comparing the performance of the proposed algorithm with that of HEXQ, flat and Model-
based RL algorithm. The simulation results from the problem domains are presented and
discussed in the following sections.

4-1 Problem Domains

In HRL literature, various different problem domains like taxi domain, four-room, playroom or
robot navigation task are used for evaluating the performance of the proposed methods. In the
thesis work, two tasks: four-room and key-and-lock task, are used for evaluating and comparing
the proposed algorithm with other RL methods. The following section introduces these two
tasks in brief.

4-1-1 Four-Room Task

In the four-room task shown in figure 4-1, the goal is to leave the room by the doorway present
in North-West direction (indicated by an arrow), while the black oval gives one of the agent’s
starting locations. The problem environment is fully observable and agent can sense the room
it is in and its position inside that room (i.e. factored state representation). The agent has four
move actions: {north, sount, east,west} to move along the four directions. The underlying MDP
is representing using state variables {Sg,Sr ,Sp} where Sg indicates the goal variable represent-
ing whether the goal is reached by an agent or not, Sr indicates room variable representing the
current room occupied by an agent and Sp indicates position variable representing the position
of an agent in the current room. In a deterministic domain, an agent moves in the correspond-
ing direction after execution of an action with probability 1. In stochastic domain, an actions
moves an agent with 0.8 probability of moving in intended direction and 0.1 probability to slip
into adjacent states. It receives 0 reward for each action and 10 for achieving the goal. Also,
if the agent is to move into a wall, then it will remain in the same state. Figure 4-1 shows the
DBN model and the problem domain for a four-room task.

Shambhuraj Sawant Master of Science Thesis

4-1 Problem Domains 37

(a) (b)

Figure 4-1: The four-room task with: a) its DBN model and b) its problem domain [1, ch. 9]

4-1-2 Key-and-Lock Task

The key-and-lock task shown in figure 4-2b is an extension of the four-room task. In this
domain, few keys are added to a four-room problem domain. A key-and-lock problem domain
has an extra variable Sk representing whether an agent has a key or not and an added primitive
action: key pickup. The goal location is defined randomly in the problem domain. In this
problem domain, for reaching the goal, an agent has to first collect a key available at certain
locations in the domain and then navigate to the goal location. The transition probabilities are
the same for the four move actions. For the added pickup action, the probability of collecting
key at key locations is given to be 1 in deterministic scenario and 0.9 in stochastic scenario with
0.1 probability of an agent failing to collect the key. The reward function is kept the same as
that of the four-room task wherein an agent receives a reward of 10 for successfully reaching
the goal and 0 for taking actions. Figure 4-2 shows the DBN model and the problem domain
for a key-and-lock problem wherein locations where keys are represented by small signs. The
problem domain can easily be changed to include more number of rooms or keys resulting in
increase of problem state dimensions and, thus, is used for comparing performance of RL and
HRL methods. Figure 4-2 shows one of such problem instance with four rooms and 3 keys with
its DBN model.

(a) (b)

Figure 4-2: A key-and-lock task with: a) its DBN model and b) its problem domain

Master of Science Thesis Shambhuraj Sawant

38 Evaluations and Discussion

Both the methods are used for comparing the performance of the proposed algorithm with other
RL methods. The experimental setup used in for carrying out the simulations is discussed in
the following section.

4-2 Experimental Setup

In this section, the performance measure used to quantify the convergence of value surface and
the experimental procedure is discussed and finally, hypotheses are presented.

Performance Measure

The performance of any RL method for a goal-directed MDP is evaluated by quantifying the
convergence of the value surface. This convergence can be quantified in two ways: a) by
measuring the values of certain test states in the problem domain at the end of each episode
or b) by measuring the number of time-steps taken by an agent to reach the goal starting from
certain test states in the problem domain when following the learned policy at the end of each
episode. Here, a learning episode is considered to be made up of a certain number of time-steps
and the performance of an agent is evaluated at the end of each such learning episode.

In the thesis work, the implement value decomposition scheme does not consider extrinsic
rewards for variables lower in hierarchy. The values of states in an option are defined using the
pseudo-rewards with respect to their own termination condition without any consideration of
the overall goal task. Furthermore, a value of a state s in the goal policy learned using given
extrinsic rewards represent abstracted or averaged values of all the state underlying state s
and hence, such values cant be used to compare the evolution of the goal policy. Hence, for
evaluating the performance of the proposed algorithm, the second measure is used wherein at
the beginning of experiment few test states are randomly selected from the problem domain.
At the end of each learning episode, the time-steps taken by an agent starting from these test
states to reach the goal state following the learned goal policy is computed and used to measure
the convergence of the learned policy. As the learning progresses, the time-steps taken by an
agent for reaching the goal are expected to decrease and converge to a certain value.

Experimental Procedure

This section discusses the experimental procedure used for simulations along with used problem
domain and algorithms. For evaluating the performance of the RL algorithms, the problem
domains discussed above: the four-room task and the key-and-lock task are used with both
stochastic and deterministic transition functions. An implemented learning routine is defined
using Nepisodes number of learning episodes each having T time-steps. As the actions selected by
an agent are partly random, to get an estimate of variance in the evolution of the goal policy, 25
such learning routines are used each with Nepisodes episodes and T time-steps. For each such
episode the performance measure is obtained using a fixed set of test states. The time-steps
taken for different test states is averaged, representing an overall score obtained by the policy.
In the experiments carried out, the number of test states are assigned to be the dimension of
position variable Sp in both the problem domains and the test states are chosen randomly.
Hence, this score represents how effectively the goal policy is learned is different regions of the
state space. Median of this score is taken across the learning routines to represent the most
probable policy score and outliers present are removed by using only data lying between 25th
and 75th percentile. All the experiments are carried with a discount factor γ of 0.98.

Shambhuraj Sawant Master of Science Thesis

4-2 Experimental Setup 39

The proposed algorithm is compared against HEXQ, flat and model-based RL. In HEXQ, ini-
tially random actions are taken to obtain a variable ordering and using it, a hierarchy is con-
structed. As the proposed algorithm starts with a DBN model of the problem domain, for
fairer comparison, a linear variable ordering is given to HEXQ. The implementation of HEXQ
is carried out by giving the proposed algorithm without planning this linear variable ordering
resulting in an augmented HEXQ implementation. However, for a simple linear hierarchy, both
the algorithm are theoretically similar. Also, as key-and-lock task involves a parallel hierarchy,
such a comparison is carried out in a four-room task only. Furthermore, in HEXQ, only abstract
actions are available to the agent at higher level and these abstract actions are mainly the room
leaving policies. Hence, for successful completion of task, the goal is set as one of terminating
states of these abstract actions i.e. doorway states. A simple implementation of flat RL is used
wherein an agent follows ε greedy policy when learning with ε linearly decreasing as the learning
progresses. Model-based RL is a modified version of flat RL where the result each primitive ac-
tion is simulated and primitive action which leads to a predicted state having highest Q value is
chosen. For the proposed algorithm, initially various different values of p, probability of taking
actions based on planning, are chosen and their performance was compared. The goal policy
for all the methods during testing is obtained by following greedy policy.

Hypotheses

The thesis work is aimed to propose a novel scheme for learning inherent hierarchies in a generic
problem domain to address the increased problem dimensions. The expected outcomes of the
comparison of performance for the above mentioned algorithm are as follows:

Hypothesis 1. A lower value of probability (1− p) for selecting actions based on planning is
better due to increased exploration in different problem domains.
As discussed in section 3-3, lesser depends on planning results in more exploration and faster goal
discovery along with reduced impact of an insufficiently learned model of the problem domain.
However, in both stochastic and deterministic problem domains, intermittent planning induces
a goal-directed behavior leading to faster convergence of value surface.

Hypothesis 2. Without any planning, the proposed algorithm performs similar to HEXQ
learner. The proposed algorithm with planning outperforms HEXQ learner.
As the in a simple linear variable case, the proposed scheme and HEXQ are theoretically similar
and hence are expected to perform alike. However, with planning, the proposed algorithm should
converge faster.

Hypothesis 3. The performs of flat and model-based RL deteriorates with increase in problem
state dimension while the proposed algorithm outperforms both the methods.
As the problem state dimensions increase, the search space for solutions using RL methods
exponentially increases. With the introduction of hierarchy, the proposed scheme is expected
to outperform both the RL methods.

Hypothesis 4. The proposed algorithm handles increase in state dimensions with greater ease
than RL methods and works with a generic problem domain.
As the proposed algorithm uses an influence graph as its basis and in such a case, added state
dimensions directed get added to the domain of corresponding state variable. Extra efforts are
only required to learn the additional abstract actions over its context rather than multiplying
with all the other state variables. As an influence graph is used as a basis for all the routines
in the proposed algorithm and defining such an influence graph using the DBN model of an
FMDP is fairly simple, the proposed algorithm is expected to work with any generic problem
domain with discrete states and represented using an FMDP.

Master of Science Thesis Shambhuraj Sawant

40 Evaluations and Discussion

In the following section, the results of simulations are presented and discussed. Initially findings
regarding the probability (1 − p) for selecting actions based on planning are argued and then,
comparison is carried out between the proposed algorithm and HEXQ. Finally the results of
increased dimensionality on the proposed algorithm and flat RL methods in both deterministic
and stochastic problem domains are evaluated.

4-3 Evaluations and Discussion

The following simulations were used to test out the hypotheses:

Experiment 1

For evaluating the impact of the probability (1 − p) for selecting actions based on planning,
a comparison of the proposed algorithm with various different value of p was performed. The
probability values used were: (1 − p) = {0.9, 0.8, 0.65, 0.5, 0.25, 0} where p = 1 results in the
proposed algorithm without any planning phase. A simulation was carried out for a one-key
three-room key-and-lock problem with deterministic transitions and the size of grid-world (state
dimension of Sp) being 10× 10 for 250 episodes each going for 400 time-steps, unless the goal
is reached. The result obtained is shown in figure 4-3 wherein the 25th to 75th percentile data
is shown in shaded region.

0 50 100 150 200 250
Episodes

0

50

100

150

200

250

300

350

400

Ti
m

e
st

ep
s

HRL with planning 0.9
HRL with planning 0.8
HRL with planning 0.65
HRL with planning 0.5
HRL with planning 0.25
HRL without planning 0
flat RL

Figure 4-3: A comparison plot of the performance of the proposed algorithm with different values
of the probability (1−p) for selecting actions based on planning in one-key three-room key-and-lock
problem (with the numeric values in plot legends showing different probability (1− p) values)

No significant difference in the performance was observed in figure 4-3. Hence, further experi-
mentation was carried out for different size of the same problem and obtained results are shown
in figure 4-4. No significant performance difference was observed below the probability value of
p ≤ 0.75 and hence the hypothesis 1 was rejected. Thus, in the next experiments, the choice
between action selection using value function or planning was carried out randomly i.e. with a
probability value of 0.5.

Shambhuraj Sawant Master of Science Thesis

4-3 Evaluations and Discussion 41

0 50 100 150 200 250
Episodes

0

50

100

150

200

250

300

350

400

Ti
m

e
st

ep
s

HRL with planning 0.9
HRL with planning 0.8
HRL with planning 0.65
HRL with planning 0.5
HRL with planning 0.25
HRL without planning 0
flat RL

(a)

0 50 100 150 200 250
Episodes

0

50

100

150

200

250

300

350

400

Ti
m

e
st

ep
s

HRL with planning 0.9
HRL with planning 0.8
HRL with planning 0.65
HRL with planning 0.5
HRL with planning 0.25
HRL without planning 0
flat RL

(b)

0 50 100 150 200 250
Episodes

0

50

100

150

200

250

300

350

400

Ti
m

e
st

ep
s

HRL with planning 0.9
HRL with planning 0.8
HRL with planning 0.65
HRL with planning 0.5
HRL with planning 0.25
HRL without planning 0
flat RL

(c)

0 50 100 150 200 250
Episodes

0

50

100

150

200

250

300

350

400

Ti
m

e
st

ep
s

HRL with planning 0.9
HRL with planning 0.8
HRL with planning 0.65
HRL with planning 0.5
HRL with planning 0.25
HRL without planning 0
flat RL

(d)

Figure 4-4: A comparison plot of the performance of the proposed algorithm with different values
of the probability p for selecting actions based on planning in: a) one-key three-room key-and-lock
problem with 10× 10 grid-world having stochastic transitions, b) one-key three-room key-and-lock
problem with 15×15 grid-world having deterministic transitions, c) two-key three-room key-and-lock
problem with 10× 10 grid-world having deterministic transitions and d) one-key five-room key-and-
lock problem with 10 × 10 grid-world having deterministic transitions (with the numeric values in
plot legends showing different probability p values)

Master of Science Thesis Shambhuraj Sawant

42 Evaluations and Discussion

0 25 50 75 100 125 150 175 200
Episodes

0

50

100

150

200

250

300

350

400

Ti
m

e
st

ep
s

HRL with planning
HRL without Planning
HEXQ
flat RL
Model-based RL

(a)

0 20 40 60 80 100 120 140
Episodes

0

50

100

150

200

250

300

350

400

Ti
m

e
st

ep
s

HRL with planning
HRL without Planning
HEXQ
flat RL
Model-based RL

(b)

0 25 50 75 100 125 150 175 200
Episodes

0

50

100

150

200

250

300

350

400

Ti
m

e
st

ep
s

HRL with planning
HRL without Planning
HEXQ
flat RL
Model-based RL

(c)

0 25 50 75 100 125 150 175 200
Episodes

0

50

100

150

200

250

300

350

400

Ti
m

e
st

ep
s

HRL with planning
HRL without Planning
HEXQ
flat RL
Model-based RL

(d)

Figure 4-5: A comparison plot of the performance of the proposed algorithm with HEXQ, flat and
model-based RL learner in: a) a four-room problem with 15 × 15 grid-world having deterministic
transitions, b) a four-room problem problem with 20×20 grid-world having deterministic transitions,
c) a four-room problem problem with 15×15 grid-world having stochastic transitions and d) a four-
room problem problem with 20× 20 grid-world having stochastic transitions

Experiment 2

The comparison of the proposed algorithm with HEXQ was carried out in different four-room
environments and the obtained results are shown in figure 4-5 (All experiments carried out
for Nepisodes = 200 and 400 time-steps). Figure 4-5 shows that the performance of the pro-
posed algorithm without planning is similar to that of HEXQ learner in both deterministic and
stochastic domains and the proposed algorithm with planning outperforms both the methods.
Hence, hypothesis 2 is accepted.

Experiment 3

For comparing performance of proposed algorithm and RL methods, a simulation was carried out
in a one-key three-room key-and-lock problem with size of the grid-world as 10× 10 and results
are shown in figure 4-6. Figure 4-6 shows that proposed algorithm with planning outperforms
flat and model-based RL learner converging very quickly to its optimal solution (the optimality
of solutions is discussed further in-detail). For evaluating the performance of all these algorithms

Shambhuraj Sawant Master of Science Thesis

4-3 Evaluations and Discussion 43

as the problem dimensions increase, various experiments for increasing each state dimensions
were carried out.

0 50 100 150 200 250
Episodes

0

50

100

150

200

250

300

350

400
Ti

m
e

st
ep

s
HRL with planning
HRL without Planning
flat RL
Model-based RL

Figure 4-6: A comparison plot of the performance of the proposed algorithm with flat and model-
based RL in one-key three-room key-and-lock problem

Various experiments carried out in different problem domains are given in figure 4-7. For all
experiments, the number of episodes Nepisodes = 250 and maximum time-steps T = 400 was used
along with discount factor γ = 0.98. Each state variable in a key-and-lock problem was increased
for both deterministic and stochastic problem domains. Figure 4-7 shows the degradation in the
performance of RL methods with increase state dimensions. However, the proposed algorithm
with planning still manages to reach the optimal value surface quickly. Hence the hypothesis 3
is accepted. Still, as the problem state dimensions increase, the number of episodes taken by
the proposed algorithm to converge increases. Such an increase can be observed in figure 4-7a
where the dimensions of variable Sp are increased. In other figures, the increase in the time
taken for convergence by the proposed algorithm is not so significant because, the increase in
the value space for a hierarchical policy is smaller compared to that of RL methods. With the
addition of an extra room in figure 4-7b or an extra key in figure 4-7c only adds an extra value
space to the hierarchical policy while, in RL methods, an addition of an extra variable resulting
in multiplying the previous value space. Hence, the curse of dimensionality is not fully solved
but addressed to a degree using the proposed HRL scheme.

Optimality

The solutions obtained from the proposed scheme are recursively optimal and a weak proof for
it is discussed ahead. A given policy π is recursive optimal if π is locally optimal given its child
policies [28]. The implemented value decomposition scheme defines value using pseudo-rewards.
The Q values for options are learned over its next variable using equation 3-2 which treats
abstract actions simply as extended actions by discount the future reward appropriately. Hence,
Q values learned are optimal for reaching the termination state of the corresponding option
given its actions i.e. its policy is locally optimal given its child abstract actions. Hence, the
obtained solutions are recursively optimal. Furthermore, the solutions of HEXQ are recursive

Master of Science Thesis Shambhuraj Sawant

44 Evaluations and Discussion

0 50 100 150 200 250
Episodes

0

50

100

150

200

250

300

350

400

Ti
m

e
st

ep
s

HRL with planning in Env 1
flat RL in Env 1
Model-Based RL in Env1
HRL with planning in Env 2
flat RL in Env 2
Model-Based RL in Env2
HRL with planning in Env 3
flat RL in Env 3
Model-Based RL in Env3

(a)

0 50 100 150 200 250
Episodes

0

50

100

150

200

250

300

350

400

Ti
m

e
st

ep
s

HRL with planning in Env 1
flat RL in Env 1
Model-Based RL in Env1
HRL with planning in Env 2
flat RL in Env 2
Model-Based RL in Env2
HRL with planning in Env 3
flat RL in Env 3
Model-Based RL in Env3

(b)

0 50 100 150 200 250
Episodes

0

50

100

150

200

250

300

350

400

Ti
m

e
st

ep
s

HRL with planning in Env 1
flat RL in Env 1
Model-Based RL in Env1
HRL with planning in Env 2
flat RL in Env 2
Model-Based RL in Env2

(c)

0 50 100 150 200 250
Episodes

0

50

100

150

200

250

300

350

400

Ti
m

e
st

ep
s

HRL with planning in Env 1
flat RL in Env 1
Model-Based RL in Env1
HRL with planning in Env 2
flat RL in Env 2
Model-Based RL in Env2

(d)

0 50 100 150 200 250
Episodes

0

50

100

150

200

250

300

350

400

Ti
m

e
st

ep
s

HRL with planning in Env 1
flat RL in Env 1
Model-Based RL in Env1
HRL with planning in Env 2
flat RL in Env 2
Model-Based RL in Env2

(e)

0 50 100 150 200 250
Episodes

0

50

100

150

200

250

300

350

400

Ti
m

e
st

ep
s

HRL with planning in Env 1
flat RL in Env 1
Model-Based RL in Env1
HRL with planning in Env 2
flat RL in Env 2
Model-Based RL in Env2

(f)

Figure 4-7: A comparison plot of the performance of the proposed algorithm, flat and Model-based
RL learner different environments as: a) for one-key three-room key-and-lock problem with grid-
world size as 1) 10×10, 2) 15×15 and 3) 20×20 with deterministic transitions, b) for a grid-world
with size 15 × 15 and deterministic transitions in 1) one-key two-room 2) one-key three-room and
3) one-key five-room key-and-lock problem, c) for a grid-world with size 10× 10 and deterministic
transitions in 1) one-key two-room and 2) two-key three-room key-and-lock problem,
d) for one-key three-room key-and-lock problem with grid-world size as 1) 10× 10 and 2) 15× 15
with stochastic transitions, e) for a grid-world with size 10 × 10 and stochastic transitions in 1)
one-key three-room and 2) one-key five-room key-and-lock problem, c) for a grid-world with size
10× 10 and stochastic transitions in 1) one-key two-room and 2) two-key three-room key-and-lock
problem

Shambhuraj Sawant Master of Science Thesis

4-3 Evaluations and Discussion 45

optimal [17]. As the implemented value decomposition is modeled after that of HEXQ’s, hence,
the recursive optimality of learned solutions is supported.

As discussed previously, recursive optimality is weaker than that of global optimality. Hence,
the converged value of time-steps obtained by RL methods will be smaller than or equal to the
proposed scheme as seen in figure 4-7. This is attributed to the abstractions increased in the
problem domain, as with state abstraction, some state information is lost.

In the proposed algorithm, with the use of influence graph, the need of having both primitive
and abstract actions available to an agent is addressed as all primitive and abstract actions are
associated with corresponding state variable in the influence graph. When a certain transition
is observed, an option is created for it and added to the influence graph and when select-
ing an action at a certain level in the hierarchy, action selection pool is formed using both
primitive action set and action set. However, due to the association of actions with state vari-
ables, the choice available to an agent is decreased. Furthermore, IG can be inferred for any
generic problem domain formulated as a goal-oriented MDP with discrete time-steps and states,
represented as an FMDP using its DBN model, without any restrictions on its environmental
features or predefined heuristics. IG serves as a basis for the proposed algorithm, for all such
generic problem domain, a solution can be obtained given an accurate DBN model. Hence,
the hypothesis 4 is accepted. This is supported by that converged solutions obtained for the
discussed problems having different problem domains.

Master of Science Thesis Shambhuraj Sawant

Chapter 5

Conclusion

The main difficulties associated with reinforcement learning are about the scalability of avail-
able methods and number of samples required for such methods. Both these problems can be
addressed using hierarchical reinforcement learning. To make the most out of HRL paradigm, it
is advantageous to use both spatial and temporal abstractions in tandem. There are two ways
to construct hierarchies using these abstractions: a) by learning temporal abstractions in terms
of abstract actions and then, using it, reorganizing the state space, or b) by re-structuring the
state space using a known or learned environment model and learn abstract policies to navigate
in it. The second approach considers the inherent hierarchies present in the state space and
agrees with the conclusions of Simon [3], Utgoff and Stracuzzi [4] that the knowledge hierarchy
of an agent evolves starting from simpler building blocks to a more complex structure. Once the
knowledge hierarchy is built by an agent, it then can learn the ways to navigate this structure.

In the thesis work, a novel method for learning a hierarchy in discrete-time factored MDP
domain using the DBN model is proposed. For constructing state hierarchies, a scheme inspired
from HEXQ [17] and VISA [16] is devised. The state hierarchy is constructed along with a model
of the problem domain and then, options are learned to navigate this constructed hierarchy. A
generic option discovery scheme is proposed and a complementary value update scheme similar
to HEXQ [17] is used. An action selection scheme which efficiently combines actions selection
based on the learned value function and classical planning techniques also is formulated. The
basic principle followed is that a state hierarchy is built from bottom-up while reasoning flows in
a top-down manner. The main contribution of the research work lies with the proposed scheme
for the hierarchy construction and the option discovery. The proposed algorithm addresses the
research questions using this hierarchy construction and option discovery scheme along with the
action selection scheme. The recursive optimality of the obtained solutions is argued, but no
guarantees about the global optimality of the final solution can be given.

The hypotheses put forth regarding the performance of the proposed scheme when compared
with HEXQ and other RL methods shown to be correct using the discussed experimental results
in deterministic and stochastic problem domains. These results also help in concluding that the
proposed HRL algorithm with planning outperforms HEXQ and flat RL methods. Furthermore,
the discussed experimental results show that, with the increase in the size of the state space for
the problem domain, the performance of flat and model-based RL deteriorates. The proposed
algorithm, however, converges rapidly and hence, easily handles the added state dimension,
alleviating the curse of dimensionality to some degree.

Shambhuraj Sawant Master of Science Thesis

5-1 Future Directions 47

5-1 Future Directions

The proposed algorithm, as concluded, outperforms HEXQ and flat RL learners and also ad-
dresses the concerns of increased dimensionality. However, it doesn’t take into account any
intrinsic rewards given for exploration. A directed exploration can easily be implemented in
the proposed algorithm with the use of predefined intrinsic reward formulation, for example,
Bayesian Inference Criterion (BIC) [45]. In the action selection scheme, an agent can then plan
to explore an unknown region after weighing intrinsic and extrinsic rewards. The implemented
value function decomposition leads to a broken value function wherein the values across the
hierarchies are not related. Such a value function can be further linked together across the
hierarchy using a formulation similar to [38]. With an updated value function, a value of a state
at any level in the hierarchy can be directly compared to a value learned by a flat RL learner.
Furthermore, in the problem domain with stochastic transitions, the performance of the pro-
posed algorithm can further be improved using different model learning methods especially by
improving the probability estimation scheme.

The main prerequisite for the proposed scheme is to have a DBN model of the underlying
FMDP. However, in future research directions, such a DBN model of the problem domain can
also be learned simultaneously. Using the extensions proposed for partial-order planning case,
an agent can start learning with a value function similar to a flat RL agent and then as it
discovers the causal relations between variables, this value function can be divided or merged
together. In such a scheme, the division of value function imitates the division of the original
MDP into SMDPs.

The reasoning implemented in the proposed scheme through planning is of a causal nature.
In a certain problem domain, if more than one sequence of abstract actions exist to the goal
then temporal constraints can also be implemented taking into consideration the estimated
probabilities of the time of execution for each option. Hence, if two or more paths with different
reward distribution and time of execution exist to reach the goal, an agent can choose its actions
based on causal and temporal constraints of the problem domain. Furthermore, the proposed
scheme needs to be evaluated in multi-task RL problems to check the transferability of learned
influence graphs and options with a final aim of having a continual learning algorithm.

Master of Science Thesis Shambhuraj Sawant

Bibliography

[1] M. Wiering and M. Van Otterlo, “Reinforcement learning,” Adaptation, learning, and
optimization, vol. 12, 2012.

[2] S. Russell and P. Norvig, “Intelligent agents,” Artificial intelligence: A modern approach,
vol. 74, pp. 46–47, 1995.

[3] H. A. Simon, The sciences of the artificial. MIT press, 1996.

[4] P. E. Utgoff and D. J. Stracuzzi, “Many-layered learning,” Neural Computation, vol. 14,
no. 10, pp. 2497–2529, 2002.

[5] J. Menashe and P. Stone, “Monte carlo hierarchical model learning,” in Proceedings of the
2015 International Conference on Autonomous Agents and Multiagent Systems, pp. 771–
779, 2015.

[6] Ö. Şimşek, A. P. Wolfe, and A. G. Barto, “Identifying useful subgoals in reinforcement
learning by local graph partitioning,” in Proceedings of the 22nd international conference
on Machine learning, pp. 816–823, ACM, 2005.

[7] I. Menache, S. Mannor, and N. Shimkin, “Q-cut—dynamic discovery of sub-goals in rein-
forcement learning,” in European Conference on Machine Learning, pp. 295–306, Springer,
2002.

[8] S. Mannor, I. Menache, A. Hoze, and U. Klein, “Dynamic abstraction in reinforcement
learning via clustering,” in Proceedings of the twenty-first international conference on Ma-
chine learning, p. 71, ACM, 2004.

[9] Ö. Şimşek and A. G. Barto, “Using relative novelty to identify useful temporal abstractions
in reinforcement learning,” in Proceedings of the twenty-first international conference on
Machine learning, p. 95, ACM, 2004.

[10] B. Digney, “Emergent hierarchical control structures: Learning reactive/hierarchical rela-
tionships in reinforcement environments,” From animals to animats, vol. 4, pp. 363–372,
1996.

[11] A. McGovern and A. G. Barto, “Automatic discovery of subgoals in reinforcement learning
using diverse density,” in ICML, vol. 1, pp. 361–368, 2001.

Shambhuraj Sawant Master of Science Thesis

49

[12] Ö. Şimşek and A. G. Barto, “Skill characterization based on betweenness,” in Advances in
neural information processing systems, pp. 1497–1504, 2009.

[13] S. Thrun and A. Schwartz, “Finding structure in reinforcement learning,” in Advances in
neural information processing systems, pp. 385–392, 1995.

[14] D. Precup, Temporal abstraction in Reinforcement Learning. University of Massachusetts
Amherst, 2000.

[15] M. Pickett and A. G. Barto, “Policyblocks: An algorithm for creating useful macro-actions
in reinforcement learning,” in ICML, pp. 506–513, 2002.

[16] A. Jonsson and A. Barto, “Causal graph based decomposition of factored mdps,” Journal
of Machine Learning Research, vol. 7, no. Nov, pp. 2259–2301, 2006.

[17] B. Hengst, “Discovering hierarchy in reinforcement learning with hexq,” in ICML, vol. 2,
pp. 243–250, 2002.

[18] G. Konidaris, “Constructing abstraction hierarchies using a skill-symbol loop,” in IJCAI:
proceedings of the conference, vol. 2016, p. 1648, 2016.

[19] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “From skills to symbols: Learning
symbolic representations for abstract high-level planning,” Journal of Artificial Intelligence
Research, vol. 61, pp. 215–289, 2018.

[20] C. Boutilier, R. Dearden, and M. Goldszmidt, “Stochastic dynamic programming with
factored representations,” Artificial intelligence, vol. 121, no. 1-2, pp. 49–107, 2000.

[21] T. Dean and K. Kanazawa, “A model for reasoning about persistence and causation,”
Computational intelligence, vol. 5, no. 2, pp. 142–150, 1989.

[22] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman, “Efficient solution algorithms for
factored mdps,” Journal of Artificial Intelligence Research, vol. 19, pp. 399–468, 2003.

[23] M. L. Puterman, Markov Decision Processes: discrete stochastic dynamic programming.
John Wiley & Sons, 2014.

[24] R. S. Sutton, A. G. Barto, et al., Reinforcement learning: An introduction. MIT press,
1998.

[25] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4, pp. 279–292,
1992.

[26] G. A. Rummery and M. Niranjan, On-line Q-learning using connectionist systems, vol. 37.
University of Cambridge, Department of Engineering Cambridge, England, 1994.

[27] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in neural infor-
mation processing systems, pp. 1008–1014, 2000.

[28] T. G. Dietterich, “Hierarchical reinforcement learning with the maxq value function de-
composition,” Journal of Artificial Intelligence Research, vol. 13, pp. 227–303, 2000.

[29] T. G. Dietterich, “State abstraction in maxq hierarchical reinforcement learning,” in Ad-
vances in Neural Information Processing Systems, pp. 994–1000, 2000.

[30] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A framework for
temporal abstraction in reinforcement learning,” Artificial intelligence, vol. 112, no. 1-2,
pp. 181–211, 1999.

Master of Science Thesis Shambhuraj Sawant

50 Bibliography

[31] D. Andre and S. J. Russell, “State abstraction for programmable reinforcement learning
agents,” in AAAI/IAAI, pp. 119–125, 2002.

[32] S. P. Singh, “Reinforcement learning with a hierarchy of abstract models,” in Proceedings
of the National Conference on Artificial Intelligence, no. 10, p. 202, John Wiley & Sons
Ltd., 1992.

[33] R. S. Sutton, “Dyna, an integrated architecture for learning, planning, and reacting,” ACM
SIGART Bulletin, vol. 2, no. 4, pp. 160–163, 1991.

[34] E. A. Mcgovern and A. G. Barto, Autonomous discovery of temporal abstractions from
interaction with an environment. PhD thesis, University of Massachusetts at Amherst,
2002.

[35] D. Potts and B. Hengst, “Concurrent discovery of task hierarchies,” in AAAI Spring Sym-
posium on Knowledge Representation and Ontology for Autonomous Systems, 2004.

[36] B. Hengst, “Partial order hierarchical reinforcement learning,” in Australasian Joint Con-
ference on Artificial Intelligence, pp. 138–149, Springer, 2008.

[37] G. Konidaris and A. G. Barto, “Skill discovery in continuous reinforcement learning do-
mains using skill chaining,” in Advances in neural information processing systems, pp. 1015–
1023, 2009.

[38] B. Hengst, “Safe state abstraction and reusable continuing subtasks in hierarchical rein-
forcement learning,” in Australasian Joint Conference on Artificial Intelligence, pp. 58–67,
Springer, 2007.

[39] N. Mehta, S. Ray, P. Tadepalli, and T. Dietterich, “Automatic discovery and transfer of
maxq hierarchies,” in Proceedings of the 25th international conference on Machine learning,
pp. 648–655, ACM, 2008.

[40] A. G. Barto and S. Mahadevan, “Recent advances in hierarchical reinforcement learning,”
Discrete Event Dynamic Systems, vol. 13, no. 4, pp. 341–379, 2003.

[41] G. Konidaris and A. G. Barto, “Building portable options: Skill transfer in reinforcement
learning.,” in IJCAI, vol. 7, pp. 895–900, 2007.

[42] G. Konidaris, S. Kuindersma, R. Grupen, and A. G. Barto, “Constructing skill trees for
reinforcement learning agents from demonstration trajectories,” in Advances in neural in-
formation processing systems, pp. 1162–1170, 2010.

[43] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot learning from demonstra-
tion by constructing skill trees,” The International Journal of Robotics Research, vol. 31,
no. 3, pp. 360–375, 2012.

[44] G. Konidaris, L. P. Kaelbling, and T. Lozano-Perez, “Constructing symbolic representa-
tions for high-level planning.,” in AAAI, pp. 1932–1938, 2014.

[45] C. M. Vigorito and A. G. Barto, “Intrinsically motivated hierarchical skill learning in
structured environments,” IEEE Transactions on Autonomous Mental Development, vol. 2,
no. 2, pp. 132–143, 2010.

Shambhuraj Sawant Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	Acknowledgements

	Main Matter
	Introduction
	Motivation
	Research Question
	Contributions
	Structure of the Thesis

	Technical Preliminaries
	Markov Decision Processes
	Factored Markov Decision Processes

	Semi-Markov Decision Processes
	Reinforcement Learning
	Components of Hierarchical Reinforcement Learning
	State and Temporal Abstraction
	Value Function Decomposition
	Optimality

	Related Works
	Learning Structure

	A Generic Method for HRL
	Problem Definition and Assumptions
	Hierarchy Construction
	State Hierarchy Construction Scheme
	Option Discovery Scheme

	Action Selection Scheme
	Exploration
	Exploitation

	Value Update Scheme
	Model-based Techniques

	Pseudo-code
	Extensions for Different Variable Ordering

	Evaluations and Discussion
	Problem Domains
	Four-Room Task
	Key-and-Lock Task

	Experimental Setup
	Evaluations and Discussion

	Conclusion
	Future Directions

	Appendices
	Back Matter
	Bibliography

