
 
 

Delft University of Technology

Automated discovery of interpretable hyperelastic material models for human brain tissue
with EUCLID

Flaschel, Moritz; Yu, Huitian; Reiter, Nina; Hinrichsen, Jan; Budday, Silvia; Steinmann, Paul; Kumar,
Siddhant; De Lorenzis, Laura
DOI
10.1016/j.jmps.2023.105404
Publication date
2023
Document Version
Final published version
Published in
Journal of the Mechanics and Physics of Solids

Citation (APA)
Flaschel, M., Yu, H., Reiter, N., Hinrichsen, J., Budday, S., Steinmann, P., Kumar, S., & De Lorenzis, L.
(2023). Automated discovery of interpretable hyperelastic material models for human brain tissue with
EUCLID. Journal of the Mechanics and Physics of Solids, 180, Article 105404.
https://doi.org/10.1016/j.jmps.2023.105404
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.jmps.2023.105404
https://doi.org/10.1016/j.jmps.2023.105404


J. Mech. Phys. Solids 180 (2023) 105404

A
0
(

A
f
M
P
a

b

c

A

D

K
C
H
B
I
S

1

o

h
R

Contents lists available at ScienceDirect

Journal of the Mechanics and Physics of Solids

journal homepage: www.elsevier.com/locate/jmps

utomated discovery of interpretable hyperelastic material models
or human brain tissue with EUCLID
oritz Flaschel a,1, Huitian Yu a,1, Nina Reiter b, Jan Hinrichsen b, Silvia Budday b,

aul Steinmann b, Siddhant Kumar c, Laura De Lorenzis a,∗

Department of Mechanical and Process Engineering, ETH Zürich, 8092 Zürich, Switzerland
Department of Mechanical Engineering, Friedrich-Alexander-Universität of Erlangen–Nürnberg, 91058 Erlangen, Germany
Department of Materials Science and Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands

R T I C L E I N F O

ataset link: https://euclid-code.github.io/

eywords:
onstitutive models
yperelasticity
rain tissue
nterpretable models
parse regression

A B S T R A C T

We propose an automated computational algorithm for simultaneous model selection and
parameter identification for the hyperelastic mechanical characterization of biological tissue and
validate it on experimental data stemming from human brain tissue specimens. Following the
motive of the recently proposed computational framework EUCLID (Efficient Unsupervised Con-
stitutive Law Identification and Discovery) and in contrast to conventional parameter calibration
methods, we construct an extensive set of candidate hyperelastic models, i.e., a model library
including popular models known from the literature, and develop a computational strategy for
automatically selecting a model from the library that conforms to the available experimental
data while being represented as an interpretable symbolic mathematical expression. This
computational strategy comprises sparse regression, i.e., a regression problem that is regularized
by a sparsity promoting penalty term that filters out irrelevant models from the model library,
and a clustering method for grouping together highly correlated and thus redundant features in
the model library. The model selection procedure is driven by data stemming from mechanical
tests under different deformation modes, i.e., uniaxial compression/tension and simple torsion.
The data is acquired through conventional mechanical tests that deliver labeled one-dimensional
data pairs, and thus the method can be interpreted as a supervised counterpart to the originally
proposed EUCLID that is informed by full-field displacement data and global reaction forces. The
proposed method is verified on synthetical data with artificial noise. In addition, we present
for the first time an experimental investigation of the EUCLID framework by validating the
proposed method on experimental data acquired through mechanical tests of human brain
specimens, proving that the method is capable of discovering hyperelastic models that exhibit
both high fitting accuracy to the data as well as concise and thus interpretable mathematical
representations.

. Introduction

Despite extensive research over the past decades, the characterization of the mechanical response of biological tissues like those
f the human brain remains an active field with many open questions, see the review article by Budday et al. (2020). The amount
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of data is usually limited by ethical restrictions and by the availability of only few specimens with short durability (Faber et al.,
2022). The general objective is therefore to leverage these limited data in an efficient manner to discover an adequate mathematical
description of the tissue response. The conventional strategy is to a priori assume a constitutive model and to calibrate the tunable
model parameters by means of the experimental measurements. However, the a priori choice of the constitutive model is driven by
human experience and intuition; thus, this classical strategy is highly susceptible to introducing modeling errors that lead to poor
fitting accuracy and/or the need for tedious and time-consuming iterative model correction procedures. Data-driven methods and
machine learning approaches promise a powerful remedy. In this work, one of such methods, which falls under the umbrella of
methods denoted as EUCLID (Efficient Unsupervised Constitutive Law Identification and Discovery) (Flaschel et al., 2021), is used
for automatically discovering symbolic expressions of hyperelastic material models for human brain tissue based on experimental
measurements.

The general idea behind machine-learning-based material modeling is to choose a model ansatz that exhibits a high expressiveness
wing to a vast amount of tunable parameters, and to calibrate these parameters by leveraging the available data. Popular examples
f versatile machine-learning-based material models include neural networks (Ghaboussi et al., 1991), splines (Sussman and Bathe,
009), Gaussian processes (Frankel et al., 2020), and neural ordinary differential equations (Tac et al., 2022). In the context of
yperelasticity, these methods can be used to learn the characteristic strain energy density function while special attention needs
o be attributed to not violating physical constraints like objectivity or (poly-)convexity of the strain energy density function (As’ad
t al., 2022; Klein et al., 2022a,b; Kalina et al., 2022; Thakolkaran et al., 2022; Chen and Guilleminot, 2022; Linka and Kuhl, 2022;
s’ad and Farhat, 2022; Tac et al., 2022). Until now, the majority of the proposed machine learning models for hyperelasticity
re informed by artificially generated data, e.g., data generated through simulations at the microscopic level. Exceptions are for
xample the works by Linka et al. (2021, 2023), who train neural networks based on real experimental data for the characterization
f human brain tissue. In contrast to machine-learning-based approaches stand model-free data-driven methods (Kirchdoerfer and
rtiz, 2016; Ibañez et al., 2018), which seek to avoid the formulation of a material model altogether by solving forward problems

hat are directly informed by the data.
Both the previously mentioned machine-learning-based approaches as well as model-free data-driven methods have in common

hat the constitutive behavior is encoded in a black box that does not allow for physical interpretation, e.g., it is difficult to
nterpret the meaning of the many functions and parameters that compose models encoded in machine learning tools like neural
etworks. Furthermore, these methods typically rely on a vast amount of labeled data pairs that are not available under experimental
onditions. The recognition of these issues motivated the development of the EUCLID method, which aims to leverage sparse
egression (Frank and Friedman, 1993; Tibshirani, 1996; Efron et al., 2004; Friedman et al., 2010) to discover interpretable symbolic
xpressions of material models using only experimentally available data like displacement fields and global reaction forces. Initially
pplied to hyperelasticity (Flaschel et al., 2021; Joshi et al., 2022) (see also the related and independent work by Wang et al. (2021)),
he framework was later extended to viscoelasticity (Marino et al., 2023), elastoplasticity (Flaschel et al., 2022), and generalized
tandard materials (Flaschel et al., 2023), see Flaschel (2023) for an overview. Recently, discovering symbolic expressions for
aterial models is gaining more and more attention in the field, see, e.g., the works by Bomarito et al. (2021), Kabliman et al.

2021), Park and Cho (2021), Abdusalamov et al. (2023), Meyer and Ekre (2023), Linka et al. (2023) and St. Pierre et al. (2023).
imilar to the philosophy of EUCLID, the recent works by Linka et al. (2023) and St. Pierre et al. (2023) combine the ideas of versatile
eural networks with a sparsity promoting regularization term for learning strain energy density functions of hyperelastic tissue with
small amount of nonzero parameters. These authors treat the problem with gradient-based optimizers that are commonly used to

rain neural networks, and hence do not utilize highly efficient solvers for sparse regression problems as those proposed by Efron
t al. (2004) and Friedman et al. (2010).

In this work, EUCLID is used to automatically discover hyperelastic strain energy density functions for describing the mechanical
ehavior of human brain tissue. The idea is to construct a set of candidate material models called the model library, which can
e assembled for example from the vast available literature on hyperelastic material models (see the non-comprehensive list of
eviewing articles by Boyce and Arruda (2000), Marckmann and Verron (2006), Steinmann et al. (2012), Dal et al. (2021) and He
t al. (2021)), and to use a specifically designed algorithm, based on sparse regression (Tibshirani, 1996) and feature clustering, to
elect from the library a material model which is encoded by an interpretable, simple mathematical expression and which is able
o well capture the mechanical behavior observed in the experimental data. Unlike in previously proposed sparse-regression-based
ethods in the field (Flaschel et al., 2021; Wang et al., 2021), here the library of material models also contains models that depend
onlinearly on the material parameters. Due to the wet and shiny surface of brain tissues, displacement field data are difficult to
cquire; thus, against the original philosophy of EUCLID (Flaschel, 2023), the method in this paper is not informed by full-field
isplacement and global reaction force data. Instead, we rely here on one-dimensional labeled data pairs stemming from uniaxial
ompression/tension and simple torsion tests of human brain tissue specimens.

The paper is organized as follows: In Section 2, we construct the model library in which EUCLID searches for a suitable material
odel. In Section 3, the proposed algorithm for model selection is discussed in detail. Subsequently, the method is tested on artificial
ata and actual experimental data in Sections 4 and 5, respectively, and conclusions are drawn in Section 6.
Notation: Tensors and matrices may appear in compact or index notation, e.g., 𝐅 or 𝐹𝑖𝑗 , respectively. In compact notation,

irst-order tensors (vectors) and second-order tensors are denoted by bold letters, e.g., 𝐅. The transpose of a tensor is denoted by
𝑇 . When appearing in index notation, the order of the tensor equals the number of the indices. If not stated otherwise, the Einstein

onvention for summation over repeated indices is used in equations appearing in index notation, e.g., 𝑎𝑖𝑏𝑖 =
∑

𝑖 𝑎𝑖𝑏𝑖. Inner products
re denoted by ⋅, e.g., 𝒂 ⋅ 𝒃 = 𝑎𝑖𝑏𝑖, and outer products by ⊗, e.g., {𝒂⊗ 𝒃}𝑖𝑗 = 𝑎𝑖𝑏𝑗 . If no operation is indicated between two tensors,
he juxtaposition implies tensor contraction, e.g., {𝐅𝑇𝐅}𝑖𝑗 = 𝐹𝑘𝑖𝐹𝑘𝑗 . The trace of a tensor is denoted by tr(□), e.g., tr(𝐂) = 𝐶𝑖𝑖, the
2

olumetric part by vol(□), the deviatoric part by dev(□), and the determinant by det(□).
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2. Model library

2.1. Strain energy density

The constitutive response of a hyperelastic material is completely characterized by the material strain energy density function. In
he spirit of EUCLID, we construct a material model library, i.e., a large set of potential candidate material models, by introducing
general parametric ansatz for the unknown strain energy density. Under the assumption of incompressibility, the strain energy

ensity 𝑊 of a hyperelastic material is postulated as (Holzapfel, 2000)

𝑊 = �̃� (𝐅) − 𝑝 ⋅ (𝐽 − 1), (1)

where 𝐅 is the deformation gradient, 𝑝 is a scalar Lagrange multiplier that can be physically interpreted as the hydrostatic (or
olumetric) pressure, and 𝐽 = det 𝐅

!
= 1 is the determinant of the deformation gradient. A sufficient condition to satisfy the objectivity

requirement for the material model is that 𝑊 depends on 𝐅 through the right Cauchy–Green tensor 𝐂 = 𝐅𝑇𝐅, i.e. �̃� (𝐅) = �̂� (𝐂).
ssuming furthermore isotropic material behavior, the contribution �̂� can be expressed as a function of the invariants of 𝐂, defined
s 𝐼1 = tr(𝐂), 𝐼2 = 1

2 (tr
2(𝐂) − tr(𝐂2)) and 𝐼3 = det(𝐂). An equally objective possibility for isotropic hyperelasticity is to express the

strain energy density as a function of the principal stretches 𝜆1, 𝜆2, 𝜆3 defined as the eigenvalues of the right stretch tensor 𝐔,
which in turn is defined through the polar decomposition 𝐅 = 𝐑𝐔 (Holzapfel, 2000). As we seek to avoid a priori assumptions on
the material response, we do not limit ourselves to a strain energy density that depends solely on the strain invariants or solely
on the principal stretches, but instead consider the general case in which the strain energy density includes a contribution �̃�𝐼 that
depends on the strain invariants and a contribution �̃�𝜆 that depends on the principal stretches

𝑊 = �̃�𝐼 (𝐼1, 𝐼2, 𝐼3) + �̃�𝜆(𝜆1, 𝜆2, 𝜆3) − 𝑝 ⋅ (𝐽 − 1). (2)

By doing so, we obtain a highly general expression for the strain energy density that encompasses many well-known hyperelastic
constitutive models e.g. of the Mooney–Rivlin or Ogden types.

To introduce a general parametric ansatz for �̃�𝐼 , we assume that it can be expressed as a linear combination of a priori chosen
nonlinear feature functions

�̃�𝐼 (𝐼1, 𝐼2, 𝐼3) = 𝜽𝐼 ⋅𝑸𝐼 (𝐼1, 𝐼2, 𝐼3), (3)

where the nonlinear feature functions have been collected in the vector 𝑸𝐼 and 𝜽𝐼 is a vector of unknown real-valued material
parameters. We construct the feature vector 𝑸𝐼 such that it contains features of the generalized Mooney–Rivlin model (Rivlin,
1947) and a logarithmic feature as it appears in the Gent-Thomas model (Gent and Thomas, 1958)

𝑸𝐼 (𝐼1, 𝐼2, 𝐼3) =
[

(𝐼1 − 3)𝑚(𝐼2 − 3)𝑛−𝑚 ∶ 𝑛 ∈ {1,… , 𝑁Mooney}, 𝑚 ∈ {0,… , 𝑛}
]𝑇

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
generalized Mooney–Rivlin features

⊕
[

log
(

𝐼2∕3
)]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
logarithmic feature

, (4)

where ⊕ denotes vector concatenation and the choice of 𝑁Mooney dictates the size of the feature vector. This selection of feature
functions was proven in Flaschel et al. (2021) to have a high approximation power. We choose 𝑁Mooney = 3 in this work, such that
𝜽𝐼 comprises 10 unknown parameters.

To obtain a general parametric ansatz for the principal stretch dependent contribution �̃�𝜆, we consider the generalized Ogden
model (Ogden, 1972)

�̃�𝜆(𝜆1, 𝜆2, 𝜆3) =
𝑁Ogden
∑

𝑖=1

2𝜇𝑖
𝛼2𝑖

(

𝜆𝛼𝑖1 + 𝜆𝛼𝑖2 + 𝜆𝛼𝑖3 − 3
)

, (5)

where 𝜇𝑖 and 𝛼𝑖 are unknown real-valued material parameters and 𝑁Ogden is the number of considered terms in the generalized
Ogden model. In contrast to the model library chosen in Eq. (3), the strain energy density of the generalized Ogden model
depends nonlinearly on the unknown material parameters. In general, this complicates the inference of the material parameters
from experimental measurements. Therefore, we assume in the following an a priori fixed set of 𝑁Ogden distinct candidate values of
𝛼𝑖. By choosing 𝑁Ogden sufficiently large, it is expected that this assumption does not significantly restrict the versatility of the model
library. In Appendix C, we show numerical evidence that the expressiveness of the model library increases upon increasing 𝑁Ogden.
We further show in Appendix C that choosing 𝑁Ogden = 2 ⋅ 104 values of 𝛼𝑖 evenly distributed between −100 and 100 excluding
zero, i.e., 𝛼𝑖 ∈ {−100,−99.99,… ,−0.01, 0.01,… , 99.99, 100}, provides a sufficiently fine realization of the candidate values of 𝛼𝑖. With
this assumption, 𝜇𝑖 remain the only unknowns in the model ansatz for �̃�𝜆 which can now be written as a linear combination of
nonlinear feature functions

�̃�𝜆(𝜆1, 𝜆2, 𝜆3) = 𝜽𝜆 ⋅𝑸𝜆(𝜆1, 𝜆2, 𝜆3), (6)

where the nonlinear feature functions have been collected in the vector 𝑸𝜆 with components
{

𝑄𝜆(𝜆1, 𝜆2, 𝜆3)
}

𝑖 = 𝜆𝛼𝑖1 + 𝜆𝛼𝑖2 + 𝜆𝛼𝑖3 − 3, (7)
{ } 2
3

and 𝜽𝜆 is a vector of unknown real-valued material parameters that are related to the parameters 𝜇𝑖 through 𝜃𝜆 𝑖 = 2𝜇𝑖∕𝛼𝑖 .
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By defining

𝜽 =
[

𝜽𝐼
𝜽𝜆

]

, 𝑸 =
[

𝑸𝐼 (𝐼1, 𝐼2, 𝐼3)
𝑸𝜆(𝜆1, 𝜆2, 𝜆3)

]

, (8)

the model library for the strain energy density can be written as

𝑊 = 𝜽 ⋅𝑸 − 𝑝 ⋅ (𝐽 − 1). (9)

To ensure that the strain energy density describes physically meaningful material behavior, we assume that 𝜃𝑖 ≥ 0 for all 𝑖. The
non-negativity of the material parameters is a sufficient (but not necessary) requirement for stability, see Hartmann (2001).

2.2. Stress–strain relation

After having defined the strain energy density, a bijective relation between the kinematic state and the stress state of the
material is obtained through its differentiation. Specifically, the Piola stress 𝐏 is computed by differentiating 𝑊 with respect to
the deformation gradient

𝐏 = 𝜕𝑊
𝜕𝐅

= 𝜕�̃�
𝜕𝐅

− 𝑝𝐅−𝑇 , (10)

here we used 𝜕𝐽
𝜕𝐅 = 𝐽𝐅−𝑇 . Noting that �̃� = 𝜽 ⋅𝑸 = 𝜽𝐼 ⋅𝑸𝐼 + 𝜽𝜆 ⋅𝑸𝜆, we apply the chain rule to obtain

𝜕�̃�
𝜕𝐹𝑖𝑗

= 𝜽𝐼 ⋅
(

𝜕𝑸𝐼
𝜕𝐼𝑎

𝜕𝐼𝑎
𝜕𝐹𝑖𝑗

)

+ 𝜽𝜆 ⋅
(

𝜕𝑸𝜆
𝜕𝜆𝑏

𝜕𝜆𝑏
𝜕𝐹𝑖𝑗

)

. (11)

The derivatives of the strain invariants and of the principal stretches are provided in Appendices A.1 and A.2, respectively. The
derivatives of the feature vectors follow in Appendix A.3. The Cauchy stress 𝐓 is calculated from the Piola stress as 𝐓 = 𝐏𝐅𝑇 .

.2.1. Uniaxial compression and tension
Experimental measurements of cylindrical specimens under uniaxial compression and tension deliver labeled data pairs in the

orm (𝑢UT, 𝐹 ), where 𝑢UT is the longitudinal displacement at the displacement controlled end of the specimen and 𝐹 is the resulting
orce. Data pairs of the form (𝜆UT, 𝑃11), where 𝜆UT is the longitudinal stretch applied to the specimen and 𝑃11 is the longitudinal
ormal component of the Piola stress, are obtained through

𝜆UT =
𝑢UT + ℎ

ℎ
, 𝑃11 =

𝐹
𝜋𝑟2out

, (12)

here ℎ and 𝑟out are the height and the outer radius of the undeformed specimen, respectively. The previously introduced material
odel library can be used to derive a relation 𝑃11(𝜆UT;𝜽) that links the experimental inputs 𝜆UT and outputs 𝑃11 depending on the
aterial parameters 𝜽.

Applying a longitudinal stretch 𝜆UT to the specimen implies that 𝐹11 = 𝜆UT and, due to symmetry, 𝐹22 = 𝐹33. As a result of the
incompressibility assumption det 𝐅

!
= 1, the deformation gradient under uniaxial compression/tension must hence be

𝐅UT =

⎡

⎢

⎢

⎢

⎣

𝜆UT 0 0
0 1

√

𝜆UT
0

0 0 1
√

𝜆UT

⎤

⎥

⎥

⎥

⎦

. (13)

he kinematic state is thus completely determined by the applied longitudinal stretch.
To obtain the relationship 𝑃11(𝜆UT;𝜽), the unknown hydrostatic pressure 𝑝 in Eq. (10) needs to be computed. As the material is

allowed to freely deform in the 𝑥2- and 𝑥3-directions, it is 𝑃22 = 𝑃33
!
= 0. This condition is used along with Eq. (10)

𝑃33 =
𝜕�̃�
𝜕𝐹33

− 𝑝𝐹−1
33

!
= 0, (14)

o find the hydrostatic pressure

𝑝 = 𝜕�̃�
𝜕𝐹33

𝐹33. (15)

We hence obtain the desired relationship by substituting the pressure in Eq. (10)

𝑃11(𝜆UT;𝜽) =
𝜕�̃�
𝜕𝐹11

− 𝑝𝐹−1
11 = 𝜕�̃�

𝜕𝐹11
−
𝐹33
𝐹11

𝜕�̃�
𝜕𝐹33

= 𝜽 ⋅
(

𝜕𝑸
𝜕𝐹11

−
𝐹33
𝐹11

𝜕𝑸
𝜕𝐹33

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑸′

UT(𝜆UT)

, (16)

here we denoted all the terms that depend on the longitudinal stretch as 𝑸′
UT(𝜆UT). This can be interpreted as a feature function

erivative vector whose scalar product with the material parameters computes the longitudinal normal component of the Piola
′

4

tress. More information for computing 𝑸UT(𝜆UT) is provided in Appendix A.4.



Journal of the Mechanics and Physics of Solids 180 (2023) 105404M. Flaschel et al.

d
t
𝜏

r

T
o

w

W

w
p

3

o
p
m
E
b
t
b
i

3

t
n

N

w

2.2.2. Simple torsion
Now we consider a cylindrical specimen in a cylindrical coordinate system (𝑟, 𝜗, 𝑧), where 𝑟 is the radial coordinate, 𝜗 is the

polar angle, and 𝑧 is the longitudinal coordinate. Assuming the specimen to undergo simple torsion around the 𝑧-axis, experimental
measurements on specimens under simple torsion deliver labeled data pairs in the form (𝜙,𝑀), where 𝜙 is the applied angle of
eformation at the sheared end of the specimen and 𝑀 is the resulting torque. The twist 𝜓 of the specimen can be deduced from
he applied angle of deformation through 𝜓 = 𝜙∕ℎ. The data is transformed into data pairs of the form (�̃� , 𝜏), where �̃� = 𝑟out𝜓 and
=𝑀∕𝑟3out are respectively a normalized twist and normalized torque.

After normalizing the radial coordinate through 𝜌 = 𝑟∕𝑟out, the deformation gradient in the cylindrical coordinate system then
eads (Hartmann, 2001)

𝐅ST =
⎡

⎢

⎢

⎣

𝐹𝑟𝑟 𝐹𝑟𝜗 𝐹𝑟𝑧
𝐹𝜗𝑟 𝐹𝜗𝜗 𝐹𝜗𝑧
𝐹𝑧𝑟 𝐹𝑧𝜗 𝐹𝑧𝑧

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1 0 0
0 1 𝜌�̃�
0 0 1

⎤

⎥

⎥

⎦

, (17)

he material model library can be used to derive a relation 𝜏(�̃� ;𝜽) that links the experimental inputs �̃� and outputs 𝜏 depending
n the material parameters 𝜽.

The normalized torque is given by

𝜏 = ∫

1

0
2𝜋𝜌2𝑇𝜗𝑧 d𝜌, (18)

here the component of the Cauchy stress 𝑇𝜗𝑧 is, due to Eq. (17),

𝑇𝜗𝑧 = 𝑃𝜗𝑖𝐹𝑧𝑖 = 𝑃𝜗𝑧. (19)

ith reference to Eq. (10), we notice that there is no hydrostatic pressure contribution to 𝑃𝜗𝑧 under simple torsion, such that

𝑇𝜗𝑧 =
𝜕𝑊
𝜕𝐹𝜗𝑧

= 𝜕�̃�
𝜕𝐹𝜗𝑧

= 𝜽 ⋅
𝜕𝑸
𝜕𝐹𝜗𝑧

. (20)

We finally obtain the desired relationship 𝜏(�̃� ;𝜽) by substituting Eq. (20) in Eq. (18)

𝜏(�̃� ;𝜽) = 𝜽 ⋅ ∫

1

0
2𝜋𝜌2 𝜕𝑸

𝜕𝐹𝜗𝑧
d𝜌

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑸′

ST(�̃�)

, (21)

where we denoted all the terms that depend on the twist as 𝑸′
ST(�̃�). This can be interpreted as a feature function derivative vector

hose scalar product with the material parameters computes the normalized torque. More information for computing 𝑸′
ST(�̃�) is

rovided in Appendix A.5.

. Model discovery

After having defined the material model library, i.e., a versatile ansatz for the hyperelastic strain energy density, we seek an
ptimal choice of the material model parameters 𝜽. Specifically, in the spirit of EUCLID — see Flaschel et al. (2021) — we seek a
arameter vector 𝜽 which leads at the same time to a small mismatch between the material model predictions and the experimental
easurements, and to a simple discovered material model, i.e., one with a small number of terms. Unlike in the original work on
UCLID (Flaschel et al., 2021), in which the model selection was driven by a physics-informed optimization problem that was fed
y unlabeled data, in this paper, labeled data pairs (i.e., stress versus strain data pairs under uniaxial compression/tension, and
wist versus torque data pairs under simple torsion) are available to drive the model selection. Thus, the method proposed here can
e interpreted as a supervised counterpart to the originally proposed EUCLID. The proposed algorithm for inferring 𝜽 is described
n the following and a step-by-step overview is provided in Appendix B, see Fig. B.10.

.1. Model-data mismatch

First, a quantitative measure of the mismatch between the material model predictions and the experimental measurements needs
o be introduced. In the case of uniaxial compression/tension, the measurements are provided in the form of pairs (𝜆(𝑙)UT, 𝑃

(𝑙)
11 ) for a

umber of load steps 𝑙 = 1,… , 𝑛UT. Eq. (16) provides a mapping between the input and output data, thus leading to 𝑛UT equations

𝑃11(𝜆
(𝑙)
UT;𝜽) = 𝑃 (𝑙)

11 . (22)

oting that each of the equations above depends linearly on 𝜽, we write them as a linear system of equations

𝐀UT𝜽 = 𝒃UT, (23)

ith

𝐀UT =

⎡

⎢

⎢

⎢

⎢

(

𝑸′
UT(𝜆

(1)
UT)

)𝑇

⋮
(

𝑸′ (𝜆(𝑛UT))
)𝑇

⎤

⎥

⎥

⎥

⎥

, 𝒃UT =

⎡

⎢

⎢

⎢

⎣

𝑃 (1)
11
⋮

𝑃 (𝑛UT)
11

⎤

⎥

⎥

⎥

⎦

. (24)
5

⎣ UT UT ⎦
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Analogously, in the case of simple torsion, the measurements are provided in the form of pairs (�̃� (𝑙), 𝜏(𝑙)) for a number of load steps
𝑙 = 1,… , 𝑛ST. Eq. (21) provides a mapping between the input and output data, thus leading to 𝑛ST equations

𝜏(�̃� (𝑙);𝜽) = 𝜏(𝑙). (25)

hich can be expressed once again as a linear system of equations

𝐀ST𝜽 = 𝒃ST, (26)

ith

𝐀ST =

⎡

⎢

⎢

⎢

⎣

(

𝑸′
ST(�̃�

(1))
)𝑇

⋮
(

𝑸′
ST(�̃�

(𝑛ST))
)𝑇

⎤

⎥

⎥

⎥

⎦

, 𝒃ST =
⎡

⎢

⎢

⎣

𝜏(1)

⋮
𝜏(𝑛ST)

⎤

⎥

⎥

⎦

. (27)

he linear systems in Eqs. (23) and (26) are concatenated to the system 𝐀𝜽 = 𝒃 with

𝐀 =
[

𝑟UT𝐀UT
𝑟ST𝐀ST

]

, 𝒃 =
[

𝑟UT𝒃UT
𝑟ST𝒃ST

]

, (28)

here 𝑟UT > 0 and 𝑟ST > 0 scale the contributions of the uniaxial compression/tension data and the simple torsion data, respectively.
uring the experimental investigations conducted in the context of this work (see, e.g., Section 5), the chosen range of applied
eformation in uniaxial compression/tension and simple torsion led to measurements 𝒃UT and 𝒃ST, respectively, that were different

in magnitude. Choosing 𝑟UT = 0.3 and 𝑟ST = 1 was found to result in a proper scaling of the contributions from uniaxial
compression/tension and simple torsion, leading to similar maximum absolute entries in the scaled measurements 𝑟UT𝒃UT and 𝑟ST𝒃ST.
Finally, the total mismatch between the material model prediction and the experimental measurements is quantified by computing
the mean squared error MSE of the residuals of the linear system of equations

MSE(𝜽) = 1
𝑛UT + 𝑛ST

‖𝐀𝜽 − 𝒃‖22. (29)

3.2. Feature scaling

To obtain a system of equations with dimensionless parameters and system coefficients, we standardize the system of equations.
Defining the mean and standard deviation of a vector 𝒙 ∈ R𝑛 as

Mean(𝒙) = 1
𝑛
∑

𝑖
𝑥𝑖, Std(𝒙) =

√

1
𝑛
∑

𝑖

(

𝑥𝑖 −Mean(𝒙)
)2, (30)

the standardized system of equations reads

�̄��̄� = �̄� (31)

with

�̄�𝑖𝑗 =
𝐴𝑖𝑗

Std(𝑨𝑗 )
, �̄�𝑖 =

𝑏𝑖
Std(𝒃)

, �̄�𝑗 =
Std(𝑨𝑗 )
Std(𝒃)

𝜃𝑗 , (32)

where we defined 𝑨𝑗 as the 𝑗th column of 𝐀. The mean squared error of the residuals of the standardized linear system of equations
s defined as

MSE(�̄�) = 1
𝑛UT + 𝑛ST

‖�̄��̄� − �̄�‖22. (33)

.3. Optimization problem

Our objectives are to calibrate the unknown material parameters such that the material model is in agreement with the
xperimental data, and to discard those terms in the model ansatz which have a minor influence on the fitting accuracy by setting
heir corresponding parameters to zero. To this end, we solve an 𝐿1-regularized optimization problem (also denoted as sparse
egression problem) of the form

�̄�opt = arg min
�̄�≥𝟎

( 1
2

MSE(�̄�) + 𝜆𝑝‖�̄�‖1
)

, (34)

where MSE(�̄�) is the previously introduced mean squared error function that quantifies the mismatch between the material model
redictions and the experimental data, and ‖�̄�‖1 =

∑

𝑖 |�̄�𝑖| is an 𝐿1-regularization term, also denoted as Lasso (least absolute shrinkage
nd selection operator). This term was first used for model selection by Frank and Friedman (1993) and Tibshirani (1996) and later
pplied to problems in dynamics by Brunton et al. (2016). It can be interpreted as a convex and continuous approximation of
he non-convex and non-continuous operator that counts the number of nonzero entries in the material parameter vector (usually
enoted as ‖�̄�‖0). Thus, adding the 𝐿1-regularization term to the minimization problem promotes sparsity of the material parameter
ector. In previous works (Flaschel et al., 2021, 2022), the more general 𝐿 -regularization term ‖�̄�‖𝑝 =

∑

|�̄� |𝑝 with 0 < 𝑝 ≤ 1 was
6
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Fig. 1. Qualitative illustration of the Pareto analysis for selecting an appropriate value of 𝜆𝑝.

adopted to promote sparsity in the solution vector. The 𝐿𝑝 term has the advantage that it converges to the operator that counts the
number of nonzero entries in the material parameter vector as 𝑝 approaches zero. Thus, it can be considered as a better measure of
sparsity than the 𝐿1-regularization term. However, the 𝐿𝑝 term is non-convex for 𝑝 < 1; this implies that the optimization problem
becomes non-convex and thus multiple solutions are to be expected, corresponding to local minima of the objective function. In
our previous papers (Flaschel et al., 2021, 2022), this issue was addressed by solving the optimization problem multiple times and
selecting the minimum of the computed local minima, which obviously increases the computational complexity and cost of the
minimization problem. In this work, we rely on the 𝐿1-regularization term and thus solve a convex minimization problem which
thus admits a unique solution. The influence of the regularization is governed by the choice of the weighting factor 𝜆𝑝 ≥ 0. As
proposed in Flaschel et al. (2022, 2023) and Marino et al. (2023), an appropriate choice of 𝜆𝑝 for striking a balance between fitting
accuracy and mathematical complexity of the material model is obtained through a Pareto analysis (see Section 3.5).

3.4. Solver

To solve the problem in Eq. (34), we leverage a coordinate descent algorithm as proposed by Friedman et al. (2010). In
comparison to the fixed-point iteration used in our previous work on hyperelastic material model discovery (Flaschel et al., 2021)
in which a nonconvex optimization problem was solved, the coordinate descent algorithm is computationally more efficient as it
makes use of the fact that the 𝐿1-regularized problem is convex. The coordinate descent algorithm is implemented in the Lasso
subroutine of the open-source Python library sklearn. The subroutine takes �̄� and �̄� as well as the value of 𝜆𝑝 as input and returns
the sparse solution vector �̄� (for each value of 𝜆𝑝) whose entries are constrained to be greater than or equal to zero. The intercept
in the Lasso subroutine is turned off and the maximum number of iterations is set to 104.

3.5. Pareto analysis

The solution of the problem in Eq. (34) is highly dependent on the choice of 𝜆𝑝. As qualitatively illustrated in Fig. 1, a small
value of 𝜆𝑝 yields a dense solution vector and therefore a complex expression for the material model that is in general associated
with a high fitting accuracy, i.e., a small mean squared error. Increasing the value of 𝜆𝑝 results in a sparser solution vector and thus
a simpler expression for the material model at the cost of a reduced fitting accuracy with a larger mean squared error. In the limit
of very large values of 𝜆𝑝, the optimization problem returns a solution vector with only zero entries and the mean squared error
saturates.

To strike a balance between the accuracy and the complexity of the material model, a Pareto analysis is applied to the problem.
To this end, the problem in Eq. (34) is solved multiple times using a set of different 𝜆𝑝 values, leading to a solution vector �̄� for
every choice of 𝜆𝑝. Here, we choose 41 values of 𝜆𝑝 that are evenly distributed on a logarithmic scale between 10−2 and 102. Our
objective now is to select from all solutions the one that exhibits an optimal combination of high fitting accuracy and high sparsity.
To this end, the mean squared error and the 𝐿1-norm of the solution vector are computed for each solution. The minimum and
maximum mean squared errors among all solutions are denoted as MSEmin and MSEmax, respectively. Further, we define a threshold
mean squared error (see Fig. 1) as

MSEth = MSEmin + 𝑟𝜆(MSEmax − MSEmin), (35)

where 𝑟𝜆 is a small positive scalar, 0 < 𝑟𝜆 ≪ 1. All solutions for which the mean squared errors are greater than this threshold
are expected to exhibit a low fitting accuracy and are thus discarded. From the remaining solutions, i.e., those for which the mean
squared error is below MSEth, we select the sparsest one, i.e., the solution with the lowest value of the 𝐿1-norm term (see Fig. 1). In
this way, a sparse solution with a low mean squared error is obtained, whereby the amount of sparsity is dictated by the user-defined
hyperparameter 𝑟 . In this work we set 𝑟 = 0.02 and keep it constant throughout the analyses.
7
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Fig. 2. Qualitative illustration of the feature clustering.

3.6. Thresholding

The solution vector �̄� selected in Section 3.5 may contain values that are close to zero. As these material parameters and their
corresponding features have a vanishing effect on the model response, they are set to zero. Specifically, we define a threshold value
�̄�th (here chosen as �̄�th = 0.01) and we set �̄�𝑖 = 0 if �̄�𝑖 < �̄�th for all 𝑖.

3.7. Feature clustering

Due to the fine discretization of the chosen range of 𝛼𝑖 values (see Section 2), the feature library contains Ogden features with
very similar values of 𝛼𝑖, which in turn results in a high correlation between these features. While the solution vector obtained
by solving the optimization problem with Lasso regularization already exhibits a high degree of sparsity, the sparsity and thus
interpretability of the material model can be further improved by grouping together highly correlated features in the solution.
To this end, we leverage a clustering algorithm that automatically groups together similar 𝛼𝑖 values, as qualitatively illustrated in
Fig. 2. For a similar clustering strategy that was used to group together similar Maxwell elements in viscoelastic constitutive laws
discovered with EUCLID, the interested reader is referred to Marino et al. (2023).

In this paper, we adopt the clustering method DBSCAN (Density-Based Spatial Clustering of Applications with Noise) (Ester et al.,
1996) as implemented in the Python library sklearn. DBSCAN assigns each 𝛼𝑖 whose corresponding {�̄�𝜆}𝑖 is non-zero to a cluster.
This is done in such a way that for each 𝛼𝑖 in a cluster there exists at least one value 𝛼𝑗 (with 𝑖 ≠ 𝑗) in the same cluster such that their
distance |𝛼𝑖 − 𝛼𝑗 | is smaller than or equal to a predefined value, here chosen as 0.01. The advantage over the k-means clustering
algorithm used in Marino et al. (2023) is that the needed number of clusters is obtained automatically. After grouping the 𝛼𝑖 values
into a set of clusters, an averaged value �̄� is computed for each cluster as

�̄� =
∑

𝑘 𝛼𝑘{�̄�𝜆}𝑘
∑

𝑘{�̄�𝜆}𝑘
, (36)

where 𝑘 ranges over all elements in the considered cluster. Afterwards, �̄� is rounded to the closest original value of 𝛼𝑖 contained in
the material model library (see Section 2). Thus, we identify for each cluster one value of 𝛼𝑖 for which the corresponding coefficient
in �̄�𝜆 is non-zero, while all other entries in �̄�𝜆 are set to zero.

3.8. Final regression without regularization

By solving the sparse regression problem and applying the clustering method, a small number of relevant features are
automatically selected from the originally large library of candidate features. In a final step, all features corresponding to parameters
that have been identified as zero are disregarded from the library by removing the corresponding columns from the matrix �̄�, thus
obtaining a reduced system matrix �̄�red. Afterwards, the reduced regression problem is solved for the remaining non-zero parameters
�̄�red, but this time without introducing any regularization term (i.e., we solve Eq. (34) with 𝜆𝑝 = 0).

The motivation behind this last step is twofold. First, while the regularization term in Eq. (34) forces unneeded parameters to
zero, it simultaneously shrinks the absolute value of the relevant parameters. Solving the regression problem without regularization
for the small number of selected features leads to material parameters that are not affected by such shrinkage. And second, after
applying the clustering method, most entries in �̄�𝜆 have been identified as zero, while the remaining non-zero parameters in �̄�𝜆
are still unknown. The final regression problem without regularization is used to calibrate those non-zero parameters. Finally, the
original parameters 𝜽 can be recovered from the scaled parameters �̄� using Eq. (32).
8
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Table 1
Strain energy density functions of the true and discovered material models and MSE of predictions.

Benchmarks Strain energy density �̃� [Pa] MSE [Pa2] MSE [−]

MR1 Truth 40.00
(

𝐼1 − 3
)

+ 20.00
(

𝐼2 − 3
)

– –

𝜎 = 0 40.00
(

𝐼1 − 3
)

+ 20.00
(

𝐼2 − 3
)

0.0000 0.0000

𝜎 = 5 Pa 41.25
(

𝐼1 − 3
)

+ 17.71
(

𝐼2 − 3
)

13.4120 0.0022

𝜎 = 10 Pa 42.51
(

𝐼1 − 3
)

+ 15.42
(

𝐼2 − 3
)

53.6481 0.0090

O1 Truth 2.00
(

𝜆−10.001 + 𝜆−10.002 + 𝜆−10.003 − 3
)

– –

𝜎 = 0 1.97
(

𝜆−10.031 + 𝜆−10.032 + 𝜆−10.033 − 3
)

0.1815 0.0000

𝜎 = 5 Pa 1.94
(

𝜆−10.051 + 𝜆−10.052 + 𝜆−10.053 − 3
)

13.5305 0.0001

𝜎 = 10 Pa 1.91
(

𝜆−10.081 + 𝜆−10.082 + 𝜆−10.083 − 3
)

53.8606 0.0006

O2 Truth 16.00
(

𝜆−5.001 + 𝜆−5.002 + 𝜆−5.003 − 3
)

+ 8.00
(

𝜆5.001 + 𝜆5.002 + 𝜆5.003 − 3
)

– –

𝜎 = 0 13.50
(

𝜆−5.251 + 𝜆−5.252 + 𝜆−5.253 − 3
)

+ 11.79
(

𝜆4.431 + 𝜆4.432 + 𝜆4.433 − 3
)

0.2936 0.0000

𝜎 = 5 Pa 13.29
(

𝜆−5.261 + 𝜆−5.262 + 𝜆−5.263 − 3
)

+ 11.79
(

𝜆4.441 + 𝜆4.442 + 𝜆4.443 − 3
)

13.7349 0.0002

𝜎 = 10 Pa 13.16
(

𝜆−5.261 + 𝜆−5.262 + 𝜆−5.263 − 3
)

+ 11.75
(

𝜆4.451 + 𝜆4.452 + 𝜆4.453 − 3
)

54.0784 0.0007

MR2O1 Truth 30.00
(

𝐼2 − 3
)2 + 2.00

(

𝜆−10.001 + 𝜆−10.002 + 𝜆−10.003 − 3
)

– –

𝜎 = 0 29.25
(

𝐼2 − 3
)2 + 1.97

(

𝜆−10.041 + 𝜆−10.042 + 𝜆−10.043 − 3
)

0.3179 0.0000

𝜎 = 5 Pa 31.69
(

𝐼2 − 3
)2 + 1.91

(

𝜆−10.071 + 𝜆−10.072 + 𝜆−10.073 − 3
)

13.7564 0.0002

𝜎 = 10 Pa 34.16
(

𝐼2 − 3
)2 + 1.86

(

𝜆−10.101 + 𝜆−10.102 + 𝜆−10.103 − 3
)

53.9747 0.0007

4. Numerical verification

4.1. Synthetical data

Before applying the proposed method for material model discovery to experimental data, we verify the method on synthetically
enerated data without and with artificially added noise. Such data are obtained by assuming different hyperelastic material models
nd generating labeled data pairs under the assumption of uniaxial compression/tension and simple torsion. Specifically, we consider
he four material models whose strain energy density functions are provided in Table 1:

• first-order Mooney–Rivlin model (MR1)
• one-term Ogden model (O1)
• two-term Ogden model (O2)
• combination of second-order Mooney–Rivlin model and one-term Ogden model (MR2O1)

The chosen material models are used to generate 𝑛UT = 60 pairs of data for uniaxial compression/tension, i.e., (𝜆(𝑙)UT, 𝑃
(𝑙)
11 ), where

he values of 𝜆(𝑙)UT are equally spaced between 𝜆(1)UT = 0.7 and 𝜆(𝑛UT)
UT = 1.3, and 𝑛ST = 60 pairs of data for simple torsion, i.e., (�̃� (𝑙), 𝜏(𝑙)),

here the values of �̃� (𝑙) are equally spaced between �̃� (1) = −1 and �̃� (𝑛ST) = 1.
To emulate real experimental data, the generated data are perturbed by artificial noise by considering noisy data pairs

𝜆(𝑙)UT, 𝑃
(𝑙)
11 + 𝜀(𝑙)UT) and (�̃� (𝑙), 𝜏(𝑙) + 𝜀(𝑙)ST), where 𝜀(𝑙)UT ∼ 

(

0, 𝜎2
)

and 𝜀(𝑙)ST ∼ 
(

0, 𝜎2
)

is random noise that is drawn independently
rom a Gaussian distribution with zero mean and standard deviation 𝜎. Here, we consider (beside the noiseless case) two different
evels of noise, i.e., 𝜎 ∈ {0 Pa, 5 Pa, 10 Pa}.

.2. Results and discussion

The synthetically generated data serve as input for the proposed algorithm for material model discovery. Testing the method on
ynthetical data has the advantage that the discovered material models can be compared to the ‘‘ground truth’’ (in machine learning
argon), i.e., to the material models that were assumed during data generation. Table 1 shows the expressions of the discovered strain
nergy density functions in comparison with the true ones. It is observed that the correct mathematical form of the strain energy
ensity function is recovered for each test case. Table 1 further provides the mean squared errors that quantify the mismatch between
he data and the predictions of the discovered models. As expected, the MSE increases for increasing level of noise.

For the benchmark case MR1, the material coefficients in the strain energy density function are exactly recovered for the noiseless
ase. The deviation between the true and identified parameters increases for increasing noise, as expected. For the benchmark
ases O1 and MR2O1, the true and discovered parameters are in excellent agreement. However, the material parameters are not
xactly recovered even in the noiseless case. The reason for this is that computing the averaged values �̄� after the feature clustering
Section 3.7) cannot exactly recover the ground truth exponents in the Ogden terms, which leads to small deviations in the identified
arameters. For the benchmark case O2, the true and identified parameters exhibit slightly larger deviations. One explanation for
9

hese deviations could be that the model library comprises many material models and many combinations of material parameters
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that are equally suited to describe the material response. The proposed algorithm does not guarantee to find exactly the same model
and parameters that were assumed during data generation, but may instead provide an adequate surrogate model that is equally
suited to predict the data. We emphasize that, although the true and identified material parameters show some deviations, the MSE
for the benchmark case O2 is similar to the MSE for the other benchmarks. Thus, the deviation in the model parameters does not
seem to seriously affect the fitting accuracy of the model.

Fig. 3 illustrates the material response of the discovered material models in direct comparison with the synthetically generated
ata for the case with the highest level of noise, revealing an excellent agreement.

In the following, we discuss in more detail some of the intermediate steps in the sparsity promoting algorithm for material model
iscovery (see Steps 3–8 in Fig. B.10) in the context of benchmark case MR2O1 with noise level 𝜎 = 10 Pa. Fig. 4 illustrates the

Pareto analysis, which is leveraged for the choice of the hyperparameter 𝜆𝑝 in the sparse regression problem. It can be seen that the
mean squared error MSE increases and the 𝐿1-norm of the material parameter vector ‖�̄�‖1 decreases for increasing values of 𝜆𝑝. For
values of 𝜆𝑝 exceeding approximately 1, the material parameter vector obtained from the solution of the sparse regression problem
contains all zeros, so that its 𝐿1-norm remains constant at zero and the corresponding MSE saturates. Using the method described
n Section 3.5, the appropriate value of 𝜆𝑝 is chosen such that the selected model exhibits both a high fitting accuracy and a low
odel complexity. Note also that for values of 𝜆𝑝 lower than the chosen one, the MSE is very weakly sensitive to the specific choice

f 𝜆𝑝.
In Fig. 5, the effect of the clustering algorithm (see Section 3.7) is illustrated. Before applying the clustering method, many values

f 𝛼𝑖 are zero while some non-zero values agglomerate in a small region near the ground truth value (equal to 10, see Table 1).
he clustering algorithm identifies these values as one cluster. Afterwards, the values of 𝛼𝑖 belonging to the cluster are averaged,
uch that the discovered material model exhibits only one Ogden term as the ground truth model, and the feature coefficients are
alibrated, as illustrated in Section 3.8.

. Experimental validation

.1. Experimental data

In the context of this work, we use multi-modal large-strain mechanical testing data from 81 cylindrical specimens extracted
rom three different human brains. The data acquisition and preprocessing are briefly described in the following. For details, the
eader is referred to Hinrichsen et al. (2022).

81 cylindrical specimens from different regions of the brain are prepared. Each specimen is labeled by a brain number and a
pecimen number as HBE_⟨brain no.⟩_⟨specimen no.⟩. The specimens have a radius of approximately 𝑟out ≈ 4 mm. The heights of

the specimens and the region that they stem from are recorded in Table D.3.
Fig. 6 shows one of the human brains and an exemplary cylindrical sample before and after mounting it to the rheometer for the

mechanical testing. Each loading mode (compression/tension and torsional shear) consists of three cycles. Here, we use the data from
the third cycle representing the preconditioned material response as brain tissue was found to show substantial pre-conditioning
behavior (Budday et al., 2017). We limit ourselves to hyperelastic material models (neglecting poro- and viscoelastic effects). The
strain rates needed to obtain a purely hyperelastic response are (in theory infinitely) high or low and therefore not feasible in actual
experiments. Thus, the experimental data obtained from the rheometer shows a considerable hysteresis (see Fig. 6) and we extract
the hyperelastic response through a preprocessing procedure. First, a moving average as well as a low pass filter is applied to reduce
high frequency noises. Afterwards, the hyperelastic response is approximated by the averaged loading and unloading curves (see
also Budday et al., 2017). The raw data and the extracted hyperelastic response are illustrated in Fig. 6. To reduce the dimensionality
of the data while still preserving the characteristic shape of the curve, we reduce the points per deformation mode to 60.

This finally leads to a number of 𝑛UT = 60 data pairs (𝜆(𝑙)UT, 𝑃
(𝑙)
11 ) and 𝑛ST = 60 data pairs (�̃� (𝑙), 𝜏(𝑙)) acquired from the mechanical

tests under uniaxial compression/tension and simple torsion, respectively. The values of 𝜆(𝑙)UT are uniformly distributed between
𝜆(1)UT = 0.85 and 𝜆(𝑛UT)

UT = 1.15 and the values of �̃� (𝑙) are uniformly distributed between �̃� (1) = −0.3 and �̃� (𝑛ST) = 0.3.

5.2. Results and discussion

The proposed algorithm for material model discovery is applied to all experimentally acquired data sets, keeping all hyperparam-
eters and algorithmic settings constant. The resulting material parameters are listed in Tables E.5 and E.6. Many material parameters
are identified as zero, meaning that the discovered expressions of the strain energy density functions are concise and interpretable.
The material model discovered for most of the specimens (i.e., about 60% of the specimens) is the one-term Ogden model, which
has also previously been used to fit human brain tissue data (Budday et al., 2017, 2020; Hinrichsen et al., 2022). Further models
that were identified are the two-term Ogden model (about 32% of the specimens), and combinations of the one-term Ogden model
with a Mooney–Rivlin term (about 7% of the specimens).

To measure the ability of the discovered material models to fit the given experimental data, the mean squared errors MSE and
MSE are provided in Tables E.5 and E.6. The scaled mean squared error MSE ranges from a minimum value of 0.01 to a maximum
alue of 0.71, and the average MSE over all experimental data sets is 0.17.

Fig. 7 shows the stress versus stretch response under uniaxial compression/tension and torque versus normalized twist response
under simple torsion of a discovered material model for which the value of MSE is small in comparison to the other experiments.
10
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Fig. 3. Stretch versus stress response under uniaxial compression/tension and (normalized) twist versus torque response under simple torsion of the discovered
material models in comparison with the synthetical data (noise level 𝜎 = 10 Pa).

t is evident that the discovered material model is very well suited to describe the given data. Fig. 8 shows the same plots for
iscovered material models for which the values of MSE are close to the average value of MSE over all experiments. The models are
n qualitative agreement with the data. However, especially for the response under uniaxial compression/tension, the models are not
apable to precisely match the given data. These deviations could possibly be attributed to modeling assumptions that do not hold
11
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Fig. 4. Illustration of the Pareto analysis for benchmark case MR2O1 (noise level 𝜎 = 10 Pa).

Fig. 5. Illustration of the feature clustering for benchmark case MR2O1 (noise level 𝜎 = 10 Pa).
12
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Fig. 6. Experimental setup and data preprocessing. Cylindrical samples (b) are extracted from multiple locations within the human brains (a) and then mounted
to the rheometer (c). The raw data from the rheometer (blue) is preprocessed to obtain the hyperelastic response (orange) (see (d) and (e)). This is exemplarily
shown for a specimen from the motor cortex (HBE_1_8). First, the noise is reduced using a moving average as well as a lowpass filter. Subsequently, the
hyperelastic response is obtained by averaging the loading and unloading curve.

Fig. 7. Stress versus stretch response under uniaxial compression/tension and torque versus (normalized) twist response under simple torsion of a discovered
material model in comparison with the experimental data. The mean squared error MSE = 0.0091 is the smallest in the data set.

true during the mechanical experiments. For example, the geometries of some of the specimens were not ideally cylindrical, because
the softer specimens deformed under their own weight. Further, it was assumed throughout the derivations in this paper that the
strain state in the specimens is homogeneous under uniaxial compression/tension, and it was assumed that the specimens are fixed in
longitudinal direction at the boundaries, but free to move in the transversal directions. During the experiments, however, both ends
of the specimens were glued, meaning that the cross-sectional area of the specimens remained unchanged at the glued boundaries.
Therefore, the sides of the cylindrical specimens bulged into a barrel shape, resulting in non-homogeneous strain states in the
specimens. The constraint that the specimens are fixed in both longitudinal and transversal directions may add additional stiffness
to the experimentally measured stress versus stretch response, which could explain the underestimated stress by the discovered
material models during uniaxial compression/tension in Fig. 8. Another source for the disagreement between the discovered models
and the data could be that only isotropic material behavior has been included in the material model library. Thus, possible effects
from material anisotropy in the experimental data cannot be predicted by the discovered models.

Finally, Fig. 9 shows the stretch versus stress and normalized twist versus torque plots of discovered material models for which
the value of MSE is large in comparison to the other experiments. As the large mean squared error indicates, the mismatch between
the discovered model and the data is significant. Such large discrepancies are exceptional for the considered experimental data
13



Journal of the Mechanics and Physics of Solids 180 (2023) 105404M. Flaschel et al.

m
H

Fig. 8. Stress versus stretch response under uniaxial compression/tension and torque versus (normalized) twist response under simple torsion of a discovered
aterial model in comparison with the experimental data. The mean squared errors (MSE = 0.1657, MSE = 0.1671, MSE = 0.1664 for HBE_01_29, HBE_02_15,
BE_03_15, respectively) are close to the average MSE in the data set.

sets (see Tables E.5 and E.6). For cyclic shear tests, the reason for the large deviation between the model and the data could be
erroneous experimental measurements: the two shown samples were not loaded symmetrically during cyclic shear tests but were
already twisted before the shear test started. This can happen when a torque is induced during axial loading (for example due to
inhomogeneous microstructure of the sample). In this case, the rheometer applies a deformation until the torque goes back to zero.
The non-monotonic stress versus stretch response under uniaxial compression/tension in Fig. 9(a) could be a consequence of a low
signal-to-noise ratio since this sample is very soft. The non-increasing constant stress plateau under uniaxial compression/tension
in Fig. 9(c) could indicate a failure of the glue that connects the specimen with the testing machine.

6. Conclusion

EUCLID, a recently proposed computational framework for automatically discovering constitutive models as interpretable
symbolic mathematical expressions, was formulated in this work in a supervised setting and validated on the mechanical testing
data of human brain specimens. It was shown that the proposed model selection strategy, which comprises sparse regression and
feature clustering, is able to automatically discover interpretable constitutive models with satisfactory fitting accuracy to the given
uniaxial compression/tension and simple torsion data. In contrast to previous works on discovering hyperelastic material models
through sparse regression, the proposed method is able to discover models that depend nonlinearly on the material parameters like
14



Journal of the Mechanics and Physics of Solids 180 (2023) 105404M. Flaschel et al.
Fig. 9. Stress versus stretch response under uniaxial compression/tension and torque versus (normalized) twist response under simple torsion of discovered
material models in comparison with the experimental data. The mean squared errors (MSE = 0.7064, MSE = 0.6107 for HBE_01_24, HBE_01_30, respectively) are
the largest in the data set.

the Ogden model. This increases the expressiveness of the model library and thus the generalizability of the method to different
materials. In fact, the most commonly discovered model in this work was the one-term Ogden model, which has also previously been
widely used to fit human brain tissue data. The presented results constitute the first experimental validation of EUCLID. However,
several aspects of the proposed method may be improved or extended in future studies. For example, the method proposed in
this work is informed by labeled data pairs due to the limited access to full-field displacement data for human brain tissues. The
experimental validation of EUCLID driven by unlabeled data, i.e., full-field displacement and net reaction force data (see Flaschel
(2023)), is the subject of ongoing research. Moreover, we restricted the model library in which EUCLID searches for a model to the
class of isotropic hyperelastic models. As the tissue response is in fact not just hyperelastic but affected by dissipative effects as well
as possibly not perfectly isotropic, an important future study could be to further generalize the model library, such that EUCLID
can not only select a constitutive model for the human brain tissue within a predefined class of models, but further distinguish
between different modeling classes (such as hyperelasticity, viscoelasticity, elastoplasticity), as shown by Flaschel et al. (2023) for
synthetical data, as well as automatically detect possible anisotropies and identify the corresponding parameters.
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Appendix A. Derivatives

A.1. Derivatives of the strain invariants

The derivatives of the strain invariants with respect to the deformation gradient are
𝜕𝐼1
𝜕𝐅

= 2𝐅,
𝜕𝐼2
𝜕𝐅

= 2𝐼1𝐅 − 2𝐅𝐂. (A.1)

A.2. Derivatives of the principal stretches

The derivatives of the principal directions depend on the eigenvectors of 𝐂 = 𝐅𝑇𝐅, denoted by 𝑵 𝑖, and the eigenvectors of
𝒃 = 𝐅𝐅𝑇 , denoted by 𝒏𝑖. Under the assumption 𝜆1 ≠ 𝜆2 ≠ 𝜆3 ≠ 𝜆1, it is (see Holzapfel (2000))

𝜕𝜆1
𝜕𝐅

= 𝒏1 ⊗𝑵1,
𝜕𝜆2
𝜕𝐅

= 𝒏2 ⊗𝑵2,
𝜕𝜆3
𝜕𝐅

= 𝒏3 ⊗𝑵3. (A.2)

A.3. Derivatives of the feature vectors

The derivatives of the feature vector 𝑸𝐼 with respect to the strain invariants are
𝜕𝑸𝐼
𝜕𝐼1

=
[

𝑚(𝐼1 − 3)𝑚−1(𝐼2 − 3)𝑛−𝑚 ∶ 𝑛 ∈ {1,… , 𝑁Mooney}, 𝑚 ∈ {0,… , 𝑛}
]𝑇 ⊕ [ 0 ] ,

𝜕𝑸𝐼
𝜕𝐼2

=
[

(𝑛 − 𝑚)(𝐼1 − 3)𝑚(𝐼2 − 3)𝑛−𝑚−1 ∶ 𝑛 ∈ {1,… , 𝑁Mooney}, 𝑚 ∈ {0,… , 𝑛}
]𝑇 ⊕

[

1∕𝐼2
]

,
(A.3)

which can be used to calculate the derivatives of the strain energy density contribution �̃�𝐼 with respect to the strain invariants,
i.e.,

𝜕�̃�𝐼
𝜕𝐼𝑎

= 𝜽𝐼 ⋅
𝜕𝑸𝐼
𝜕𝐼𝑎

. (A.4)

The components of the feature vector 𝑸𝜆 are defined as
{

𝑄𝜆(𝜆1, 𝜆2, 𝜆3)
}

𝑖 = 𝜆𝛼𝑖1 + 𝜆𝛼𝑖2 + 𝜆𝛼𝑖3 − 3. (A.5)

Assuming incompressibility 𝜆1𝜆2𝜆3
!
= 1, the components of the feature vector 𝑸𝜆 can be written as

{

𝑄𝜆(𝜆1, 𝜆2)
}

𝑖 = 𝜆𝛼𝑖1 + 𝜆𝛼𝑖2 + 𝜆−𝛼𝑖1 𝜆−𝛼𝑖2 − 3. (A.6)

Thus, the derivatives of the components of the feature vector 𝑸𝜆 with respect to the principal stretches are

𝜕
{

𝑄𝜆(𝜆1, 𝜆2)
}

𝑖
𝜕𝜆1

= 𝛼𝑖
(

𝜆𝛼𝑖−11 − 𝜆−𝛼𝑖−11 𝜆−𝛼𝑖2

)

,

𝜕
{

𝑄𝜆(𝜆1, 𝜆2)
}

𝑖
𝜕𝜆2

= 𝛼𝑖
(

𝜆𝛼𝑖−12 − 𝜆−𝛼𝑖1 𝜆−𝛼𝑖−12

)

,

(A.7)

which can be used to calculate the derivatives of the strain energy density contribution �̃�𝜆 with respect to the principal stretches,
.e.,

𝜕�̃�𝜆 = 𝜽𝜆 ⋅
𝜕𝑸𝜆 . (A.8)
16
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Fig. B.10. Step-by-step description of the sparsity promoting algorithm for material model discovery.

Fig. C.11. Relation between the choice of 𝑁Ogden and the MSE.

.4. Derivatives for uniaxial compression and tension

In the following, we seek to simplify the expression for 𝑃11(𝜆UT;𝜽) (see Eq. (16)) by leveraging the characteristics of the kinematic
17

tate under uniaxial compression and tension. Considering such kinematic state, the deformation gradient and the resulting right
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Table C.2
Effect of the choice of 𝑁Ogden on the solution of the inverse problem.

𝑁Ogden MSE [Pa2] Time [s] 𝛼 𝜇

Truth – – −12.1351 147.2617
2 ⋅ 102 21.30679 120.6681 −12 153.411
2 ⋅ 103 4.844132 171.5938 −12.2 144.3845
2 ⋅ 104 0.713393 708.2161 −12.16 146.1534
2 ⋅ 105 0.89581 6107.209 −12.163 146.0201
2 ⋅ 106 0.91519 60 267.82 −12.1633 146.0068

Table D.3
Heights and regions of the brain tissue specimens.

HBE Region ℎ [mm] HBE Region ℎ [mm] HBE Region ℎ [mm] HBE Region ℎ [mm]

01_03 C 4.89159 02_01 CR 2.9083 03_01 BS 6.1803 03_21 CC 4.32991
01_04 BG 4.44005 02_02 C 4.36397 03_02 BS 5.17463 03_22 CC 3.91166
01_05 CR 4.64004 02_03 C 3.56882 03_03 BS 6.52776 03_23 CR 5.91647
01_06 CR 4.19198 02_04 CR 3.70545 03_04 Am 4.04604 03_25 C 4.7642
01_07 BG 3.86355 02_05 CC 3.71248 03_05 M 5.39193 03_26 Am 4.79861
01_08 C 5.1278 02_06 CC 4.27716 03_06 M 5.20739 03_27 BG 5.46595
01_09 BG 3.6299 02_07 CC 3.8597 03_07 CC 3.7975 03_28 BG 5.80823
01_10 CR 3.79468 02_08 CC 4.0629 03_08 CC 4.29526 03_29 CR 5.61761
01_12 CC 4.29779 02_09 M 5.16654 03_09 BG 5.64718 03_30 CR 4.97806
01_13 CR 3.89796 02_10 BG 4.00143 03_10 BG 4.96097 03_31 C 4.68306
01_14 C 4.59097 02_13 M 5.28094 03_11 CC 5.15737 03_32 CR 4.01945
01_21 C 4.42721 02_14 BG 4.84645 03_12 BG 5.96805 03_33 CR 6.07937
01_22 CR 3.7167 02_15 BG 4.69894 03_13 CC 3.27287 03_34 CR 4.66727
01_23 C 3.78048 02_16 CR 4.96181 03_14 CB 6.77129 03_35 CR 5.81572
01_24 CR 2.79804 02_17 C 4.63 03_15 CB 6.74769 03_36 C 3.8775
01_25 BS 3.61422 02_18 BG 3.91647 03_16 CB 6.40546 03_37 M 5.80837
01_26 BS 4.11383 02_19 C 4.79345 03_17 CB 5.18112 03_38 M 6.11145
01_27 CB 4.9045 02_20 BS 5.41687 03_18 CR 6.19653 03_39 C 4.75102
01_28 CB 4.6799 02_21 BS 4.36067 03_19 C 4.86192 03_40 CR 5.26147
01_29 M 3.121 02_22 CB 5.37975 03_20 BG 6.97399 03_41 C 4.96854
01_30 M 4.74689

Table D.4
Abbreviations and full names of the brain regions.

Am Amygdala BG Basal ganglia BS Brain stem C Cortex

CB Cerebellum CC Corpus callosum CR Corona radiata M Midbrain

Cauchy–Green strain tensor read

𝐅 =

⎡

⎢

⎢

⎢

⎣

𝜆UT 0 0
0 1

√

𝜆UT
0

0 0 1
√

𝜆UT

⎤

⎥

⎥

⎥

⎦

, 𝐂 =

⎡

⎢

⎢

⎢

⎣

𝜆2UT 0 0
0 1

𝜆UT
0

0 0 1
𝜆UT

⎤

⎥

⎥

⎥

⎦

. (A.9)

Thus, the strain invariants simplify to

𝐼1 = 𝜆2UT + 2
𝜆UT

, 𝐼2 = 2𝜆UT + 1
𝜆2UT

, (A.10)

and the principal stretches simplify to

𝜆1 = 𝜆UT, 𝜆2 = 𝜆3 =
1

√

𝜆UT
. (A.11)

The simple structure of the kinematic state is used to simplify the feature vector 𝑸. The feature vectors 𝑸𝐼 and 𝑸𝜆 are

𝑸𝐼 (𝜆UT) =

[

(

𝜆UT − 3
)𝑚

(

2𝜆UT + 1
𝜆2UT

− 3

)𝑛−𝑚

∶ 𝑛 ∈ {1,… , 𝑁Mooney}, 𝑚 ∈ {0,… , 𝑛}

]𝑇

⊕

[

log

(

2
3
𝜆UT + 1

3𝜆2UT

)]

, (A.12)

and

{

𝑄𝜆(𝜆UT)
}

𝑖 = 𝜆𝛼𝑖UT + 2

(

1
√

)𝛼𝑖

− 3, (A.13)
18
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Table E.5
Material parameters, mean squared errors and time to solution for the material model discovery from experimental data — brain no. 01 and 02. Note that model
parameters that are zero throughout all experiments are not shown in the table. All material parameters are in Pa, except for the dimensionless parameters 𝛼𝑖.

HBE Material parameters MSE MSE Time

𝜇1 𝛼1 𝜇2 𝛼2 𝐼2 − 3
(

𝐼2 − 3
)2 (

𝐼2 − 3
) (

𝐼1 − 3
) (

𝐼1 − 3
)2 [Pa2] [−] [s]

01_03 29.85 −38.84 – – – – – – 1364.68 0.26 688
01_04 125.13 −21.14 – – – – – – 260.16 0.08 713
01_05 0.13 −68.28 6.64 −33.86 – – – – 373.01 0.51 718
01_06 – – – – 33.50 – – – 189.60 0.50 638
01_07 7.38 −49.08 69.29 −25.57 – – – – 2861.05 0.27 719
01_08 350.45 −18.80 – – – – – – 1327.16 0.07 741
01_09 122.55 −25.75 – – – – – – 878.70 0.14 715
01_10 1.80 −57.89 – – – – – – 1027.67 0.43 666
01_12 33.75 −20.06 – – – – – – 16.97 0.09 680
01_13 0.85 −54.19 49.02 −23.15 – – – – 251.27 0.18 670
01_14 274.80 −21.10 – – – – – – 606.65 0.04 680
01_21 2.09 −54.38 10.20 −24.62 – – – – 872.84 0.49 675
01_22 2.46 −45.70 45.62 −25.99 – – – – 291.84 0.16 674
01_23 35.76 −36.88 – – – – – – 983.44 0.23 790
01_24 16.35 −20.05 – – – – – – 140.42 0.71 684
01_25 0.10 −70.62 62.52 −25.82 – – – – 540.38 0.18 717
01_26 207.64 −24.58 – – – 392.93 – – 136.29 0.01 758
01_27 2.37 −52.66 64.85 −24.86 – – – – 970.58 0.23 708
01_28 119.72 −18.48 – – – 160.40 – – 46.12 0.02 727
01_29 0.01 −78.58 90.36 −28.71 – – – – 1138.84 0.17 781
01_30 55.97 −28.04 – – – – – – 3227.89 0.61 743
02_01 6.03 −51.39 – – – – – – 1499.17 0.35 816
02_02 1.37 −51.25 76.88 −22.85 – – – – 275.26 0.11 816
02_03 56.66 −34.54 – – – – – – 1369.33 0.20 750
02_04 9.11 −46.83 – – – – – – 1014.31 0.32 767
02_05 1.06 −51.48 16.30 −21.06 – – – – 64.85 0.20 700
02_06 0.37 −46.55 16.32 −24.76 – – – – 26.25 0.18 686
02_07 53.93 −18.72 – – – – – – 20.69 0.05 710
02_08 0.49 −50.67 42.52 −10.72 – – – – 42.58 0.18 730
02_09 134.96 −25.83 – – – 280.13 – – 211.21 0.03 763
02_10 7.25 −47.26 – – – – – – 808.74 0.34 692
02_13 0.94 −51.11 72.32 −25.43 – – – – 272.57 0.10 746
02_14 92.21 −24.97 – – – – – – 166.90 0.06 766
02_15 2.21 −52.14 58.47 −26.20 – – – – 591.73 0.17 837
02_16 3.88 −46.16 19.90 −28.55 – – – – 334.23 0.24 723
02_17 7.69 −44.42 19.19 −29.34 – – – – 1013.33 0.34 692
02_18 88.59 −22.14 – – – – – – 92.16 0.06 732
02_19 28.46 −37.27 – – – – – – 746.94 0.23 754
02_20 4.99 −46.94 18.22 −25.82 – – – – 363.63 0.22 784
02_21 73.98 −24.99 – – – – – – 117.98 0.07 751
02_22 2.96 −48.92 25.56 −24.22 – – – – 298.52 0.24 731

whose derivatives with respect to 𝜆UT are trivial. We finally obtain the following expression for the feature vector derivative
in Eq. (16)

𝑸′
UT(𝜆UT) =

𝜕𝑸(𝜆UT)
𝜕𝜆UT

, (A.14)

which after substitution in Eq. (16) results in a simplified expression for 𝑃11(𝜆UT;𝜽).

.5. Derivatives for simple torsion

In the following, we seek to simplify the expression for 𝜏(�̃� ;𝜽) (see Eq. (21)) by leveraging the characteristics of the kinematic
tate under simple torsion. Considering simple torsion, the deformation gradient and the resulting right Cauchy–Green strain tensor
ead

𝐅 =
⎡

⎢

⎢

⎣

1 0 0
0 1 𝐹𝜗𝑧
0 0 1

⎤

⎥

⎥

⎦

, 𝐂 =
⎡

⎢

⎢

⎣

1 0 0
0 1 𝐹𝜗𝑧
0 𝐹𝜗𝑧 1 + 𝐹 2

𝜗𝑧

⎤

⎥

⎥

⎦

, (A.15)

here 𝐹𝜗𝑧 = 𝜌�̃� . Thus, the strain invariants simplify to

𝐼 = 𝐼 = 𝐹 2 + 3. (A.16)
19
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Table E.6
Material parameters, mean squared errors and time to solution for the material model discovery from experimental data — brain no. 03. Note that model
parameters that are zero throughout all experiments are not shown in the table. All material parameters are in Pa, except for the dimensionless parameters 𝛼𝑖.

HBE Material parameters MSE MSE Time

𝜇1 𝛼1 𝜇2 𝛼2 𝐼2 − 3
(

𝐼2 − 3
)2 (

𝐼2 − 3
) (

𝐼1 − 3
) (

𝐼1 − 3
)2 [Pa2] [−] [s]

03_01 4.13 −46.12 43.08 −26.43 – – – – 548.09 0.20 703
03_02 38.05 −19.71 – – – – – – 9.05 0.04 694
03_03 33.32 −30.51 – – – – – – 105.64 0.11 793
03_04 4.24 −43.24 63.20 −23.46 – – – – 241.05 0.10 753
03_05 85.82 −22.43 – – – – – – 77.84 0.05 710
03_06 71.81 −28.86 – – – – – – 123.95 0.04 717
03_07 0.53 −50.57 12.87 −22.03 – – – – 19.29 0.16 709
03_08 0.97 −48.88 12.33 −17.28 – – – – 30.73 0.22 711
03_09 95.08 −20.61 – – – – – – 33.18 0.02 726
03_10 22.46 −30.21 – – – – – – 58.02 0.13 776
03_11 52.98 −16.10 – – – – – – 4.30 0.02 708
03_12 55.48 −29.03 – – – – – – 183.62 0.09 744
03_13 8.98 −11.23 – – – – 41.30 – 3.30 0.04 685
03_14 5.19 −41.87 – – – – – – 86.43 0.30 767
03_15 52.15 −29.04 – – – – – – 344.86 0.17 702
03_16 4.14 −42.41 – – – – – – 77.03 0.33 697
03_17 22.37 −34.83 – – – – – – 212.28 0.18 700
03_18 52.44 −18.07 – – – – – – 7.86 0.02 725
03_19 35.71 −27.60 – – – – – – 76.98 0.11 708
03_20 69.96 −24.83 – – – – – – 181.74 0.11 719
03_21 6.67 −33.26 – – – – – – 8.02 0.12 748
03_22 23.35 −19.87 – – – – – 102.69 7.63 0.05 781
03_23 4.50 −46.22 11.66 −26.94 – – – – 295.75 0.26 737
03_25 63.51 −29.29 – – – – – – 366.86 0.13 795
03_26 62.21 −20.92 – – – – – – 45.17 0.06 770
03_27 68.54 −23.96 – – – – – – 70.19 0.05 764
03_28 191.05 −18.54 – – – – – – 50.77 0.01 740
03_29 1.84 −51.56 28.07 −19.34 – – – – 388.02 0.35 693
03_30 58.05 −21.27 – – – – – – 28.16 0.04 688
03_31 15.53 −40.39 – – – – – – 478.73 0.25 728
03_32 32.07 −25.14 – – – – – – 23.06 0.06 730
03_33 54.99 −23.71 – – – – – – 45.31 0.05 745
03_34 1.21 −48.04 42.59 −24.79 – – – – 115.99 0.12 742
03_35 29.28 −25.46 – – – – – – 28.11 0.09 775
03_36 34.02 −32.20 – – – – – – 345.65 0.21 760
03_37 105.48 −23.43 – – – – – – 131.43 0.05 766
03_38 81.85 −22.01 – – – – – – 49.05 0.03 725
03_39 83.47 −26.77 – – – – – – 237.35 0.08 693
03_40 42.47 −23.87 – – – – – – 22.89 0.05 692
03_41 2.90 −41.58 46.88 −29.99 – – – – 365.95 0.13 677

Average 399.57 0.17 729

Defining the auxiliary variable �̄� = 1 + 1
2𝐹

2
𝜗𝑧, the eigenvalues of 𝐂 (which are the squares of the principal stretches) read

𝜆21 = �̄� −
√

�̄�2 − 1, 𝜆22 = 1, 𝜆23 = �̄� +
√

�̄�2 − 1, (A.17)

which results in the principal stretches

𝜆1 =
√

�̄� −
√

�̄�2 − 1, 𝜆2 = 1, 𝜆3 =
√

�̄� +
√

�̄�2 − 1. (A.18)

The simple structure of the kinematic state is used to simplify the feature vector 𝑸. The feature vector 𝑸𝐼 is

𝑸𝐼 (𝐹𝜗𝑧) =
[

𝐹 2𝑛
𝜗𝑧 ∶ 𝑛 ∈ {1,… , 𝑁Mooney}, 𝑚 ∈ {0,… , 𝑛}

]𝑇 ⊕
[

log
(

𝐹 2
𝜗𝑧∕3 + 1

)]

, (A.19)

whose derivative with respect to 𝐹𝜗𝑧 is trivial, and the feature vector 𝑸𝜆 is

{

𝑄𝜆(�̄�)
}

𝑖 =

(

√

�̄� −
√

�̄�2 − 1

)𝛼𝑖

+

(

√

�̄� +
√

�̄�2 − 1

)𝛼𝑖

− 2, (A.20)

whose derivative with respect to 𝐹𝜗𝑧 can be computed using the chain rule

𝜕𝑸𝜆 =
𝜕𝑸𝜆 𝜕�̄� =

𝜕𝑸𝜆 𝐹𝜗𝑧. (A.21)
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Thus, the derivative 𝜕𝑸
𝜕𝐹𝜗𝑧

is known and it depends on 𝜌 and �̃� through �̄� = 1+ 1
2𝐹

2
𝜗𝑧 and 𝐹𝜗𝑧 = 𝜌�̃� . With reference to Eq. (21), it is

𝑸′
ST (�̃�) = ∫

1

0
2𝜋𝜌2 𝜕𝑸

𝜕𝐹𝜗𝑧
d𝜌, (A.22)

where the integral over 𝜌 can be computed through numerical quadrature.

Appendix B. Algorithm

Fig. B.10 provides a step-by-step description of the proposed algorithm for material model discovery.

Appendix C. Effect of the choice of candidate values of 𝜶𝒊 on the expressiveness of the model library

In the following, we numerically investigate the effect of the choice of candidate values of 𝛼𝑖 on the expressiveness of the
model library. To this end, we generate synthetical data for the one-term Ogden model, 𝑊 = 2 𝜇

𝛼2
(

𝜆𝛼1 + 𝜆
𝛼
2 + 𝜆

𝛼
3 − 3

)

, as described
Section 4. Note that in contrast to Section 4, we purposefully choose non-integer numbers for the ground truth parameters,
i.e., 𝜇 = 147.2617Pa and 𝛼 = −12.1351. Afterwards, the effect of the choice of candidate values of 𝛼𝑖 on the inverse problem is
studied by solving the inverse problem (see Section 3) for different choices of candidate values of 𝛼𝑖. As in Section 2, we choose
𝑁Ogden values of 𝛼𝑖 evenly distributed between −100 and 100 excluding zero and solve the problem for different choices of 𝑁Ogden,
i.e., 𝑁Ogden ∈ {2 ⋅ 102, 2 ⋅ 103, 2 ⋅ 104, 2 ⋅ 105, 2 ⋅ 106}. After solving each inverse problem, the corresponding MSE (see Section 3) is
computed.

Fig. C.11 shows the relation between the choice of 𝑁Ogden and the MSE. As we have chosen non-integer numbers for the ground
truth parameters, the ground truth value of 𝛼 is not contained in the constructed sets of candidate values of 𝛼𝑖 if 𝑁Ogden is small.
Thus, the MSE is large if 𝑁Ogden is small. As expected, the MSE decreases upon increasing 𝑁Ogden. The MSE reaches a plateau
at 𝑁Ogden = 2 ⋅ 104, which indicates that adding more than 𝑁Ogden = 2 ⋅ 104 candidate values of 𝛼𝑖 to the model library does not
noticeably increase the expressiveness of the model library. Table C.2 shows the MSE and the computing times of the inverse problem
for the different choices of the model library. Considering that the computing time increases upon increasing 𝑁Ogden, we observe
that choosing 𝑁Ogden = 2 ⋅ 104 provides a good compromise between the expressiveness of the model library and the computational
cost.

Appendix D. Specimen information

The corresponding heights and regions of the different specimens are recorded in Table D.3, while the radius of each specimen
is 𝑟out ≈ 4 mm. Table D.4 lists the abbreviations of the brain regions and their meaning (see Hinrichsen et al. (2022)).

Appendix E. Material parameters

The discovered material models and the corresponding parameters are reported in Tables E.5 and E.6. The tables further record
different measures for the fitting accuracy of the discovered models as well as the computational time needed for the discovery
process.
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