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A Generalized Class of Dynamic Translinear Circuits

J. Mulder, W. A. Serdijn, A. C. van der Woerd, and
A. H. M. van Roermund

Abstract—This brief proposes a generalization of the class of “dynamic
translinear,” or “exponential state-space,” circuits. As an illustration of the
proposed general class of dynamic translinear circuits, the brief describes
the design of a second-order translinear filter that does not fit into the ex-
isting classification of exponential state-space filters. The externally linear
behavior of the designed filter is demonstrated by means of simulations.

Index Terms—Companding filters, translinear circuits.

I. INTRODUCTION

In the area of analog continuous-time filters, the design of dynamic
translinear (DTL) andlog-domain circuits has become a definite (aca-
demic) trend [1]–[17]. Translinear (TL) filters were originally intro-
duced by Adams in 1979 [1] and independently by Seevinck in 1990
[2]. The log-domain filters presented by Adams and Seevinck were
first-order. The interest in TL filters really started to increase from
1993, when Frey published a synthesis method enabling the design
of higher orderlog-domain filters. Furthermore, Frey recognized that
log-domain filters only constitute a subset of a more general class of
“exponential state-space” (ESS) filters [18], [19]. In particular, Frey
described the subsets oftanh andsinh filters.

The aim of this brief is to show that the “general” class of ESS or
DTL filters proposed in [18], [19] can be generalized even further. As
an illustration, the brief describes the design of a second-order TL filter
that does not fit into the framework suggested in [18], [19].

Section II first provides a short review of the static translinear (STL)
and dynamic translinear principles. Next, Section III treats the gener-
alization of the class of DTL and ESS circuits. The generalization is
addressed both in terms of currents and in terms of voltages, as both
the current-mode and the voltage-mode approach are used in the lit-
erature. A circuit design example is described in Section IV. Finally,
Section V presents the conclusions.

II. TRANSLINEAR PRINCIPLES

Translinear circuits can be divided into two major groups: STL
and DTL circuits. Static TL circuits realize static transfer functions,
both linear and nonlinear; DTL circuits realize frequency-dependent
(transfer) functions, i.e., differential equations (DEs). The underlying
principles of STL and DTL circuits are reviewed in this section.
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Fig. 1. A four-transistor translinear loop.

Fig. 2. Principle of dynamic translinear circuits.

A. Static Translinear Principle

Translinear circuits are based on the exponential relation between
voltage and current, characteristic for the bipolar transistor and the
MOS transistor in the weak inversion region. The STL principle ap-
plies to loops of semiconductor junctions. A TL loop is characterized
by an even number of junctions [20], [21]. The number of devices with a
clockwise orientation equals the number of counterclockwise-oriented
devices. An example of a four-transistor TL loop is shown in Fig. 1. It
is assumed that the transistors are somehow biased at the collector cur-
rentsI1 throughI4. When all devices operate at the same temperature,
this yields the familiar representation of TL loops in terms of products
of currents

I1I3 = I2I4: (1)

This generic TL loop equation is the basis for a wide variety of static
electronic functions, which are theoretically temperature and process
independent.

B. Dynamic Translinear Principle

The DTL principle can be explained with reference to the subcir-
cuit shown in Fig. 2. Using the current-mode approach, this circuit is
characterized by the relation between the collector currentIC and the
capacitance currentIcap flowing through the capacitanceC. Note that
the dc voltage sourceVconst does not affectIcap. The expression for
Icap is easily found to be given by [21], [22]

Icap = CUT

_IC

IC
(2)

whereUT is the thermal voltage and the dot represents differentiation
with respect to time.

Equation (2) shows thatIcap is a nonlinear function ofIC and its
time derivative_IC. A better understanding of (2) is obtained by slightly
rewriting it as

CUT _IC = IcapIC: (3)
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Equation (3) directly states the DTL principle:A time derivative of a
current can be mapped onto a product of currents. Now, the product
of currents on the right-hand side of (3) can be realized very elegantly
by means of the STL principle. In other words, the implementation of
(part of) a DE becomes equivalent to the implementation of a product
of currents.

III. GENERALIZATION

The specific characteristics of each subset within the class of ESS
filters (e.g.,log-domain,tanh andsinh filters) can be described either
in terms of voltages [19] or in terms of currents [10], [23].

Using the voltage-mode approach, the capacitancevoltages
VC are chosen to represent the memory of a filter circuit, where
i 2 [1; . . . ; n], andn denotes the order of the filter. In DTL circuits,
the capacitance voltages arenonlinearly related to the linear state
variablesxi. For the class of ESS filters, the relations between the
variablesxi andVC are given by [19]

xi = fi (VC ) (4)

where the functionsfi are transcendental and have to be strictly mono-
tonic. Different subclasses of ESS filters result from different choices
for the functionsfi. The functions proposed in literature areexp; tanh,
andsinh [19]. The transcendental nature of these functions reveals the
internally nonlinear behavior of ESS filters.

Alternatively, using the current-mode approach, thecurrentsIx are
chosen to represent the state of a TL filter [10], [23]. The currentsIx
are linearly related to the state variablesxi. The internally nonlinear
behavior of DTL circuits is now revealed by the equations for the ca-
pacitance currentsIC . The current-mode equivalent of (4) is given by

IC = gi Ix ; _Ix : (5)

Different choices for the nonlinear functionsgi result either inlog-do-
main,tanh or sinh filters. For example, note that (2) is a special case
of (5). Obviously, there exists a very tight correspondence between the
functionsfi andgi.

In (5), each capacitance currentIC is a function of onlyonestate
currentIx and its first-order derivative. This restriction to a depen-
dence on one state current only is not fundamental. Equation (5) can
be generalized by allowing each capacitance currentIC to be a func-
tion of all state variables and their first-order derivatives, which are
represented by the vectors~Ix and _~Ix, respectively. This yields

IC = gi ~Ix;
_~Ix : (6)

Equation (6) constitutes a class of DTL circuits more general than the
class of ESS filters proposed in [18], [19]. The voltage-mode equivalent
of (6) is given by

xi = fi ~VC (7)

where~VC is the vector of capacitance voltagesVC .
As an example, consider the definitions of two capacitance currents

IC andIC , given by

IC =CUT

_Ix
Ix

+
_Iout
Iout

(8)

IC =CUT

_Ix
Ix

�
_Iout
Iout

(9)

where the currentsIx andIout are (strictly positive) linear state vari-
ables. It is easily seen that (8) and (9) do not fit into the framework

Fig. 3. Two capacitance current definitions.

suggested by (5), as bothIC andIC are functions of both state cur-
rentsIx andIout.

The voltage-mode equivalents of (8) and (9) are given by

VC =UT ln
IxIout
I2s

(10)

VC =UT ln
Ix
Iout

(11)

whereIs is the saturation current of the bipolar transistor. Note that
(10) and (11) do not fit into the general ESS framework of (4).

A possible implementation of (8) and (9) is depicted in Fig. 3(b)
and (a), respectively. It is assumed that the transistors are somehow
properly biased at the currentsIx andIout. These subcircuits can be
used as parts of a complete TL filter implementation.

IV. DESIGN EXAMPLE

As an illustration of the proposed generalization, we now describe
the design of a second-order TL filter, based on (8) and (9). Starting
with a suitable DE, the current-mode synthesis path of DTL circuits
comprises the following design steps: definition of capacitance cur-
rents, translinear decomposition and hardware implementation [23].

A possible state-space description of a second-order Butterworth
low-pass filter is given by

2CUT
_Iout = Io(Ix � 2Iout) (12a)

CUT
_Ix = Io(Iin � Iout) (12b)

whereIo is a dc current,Iin is the input current andIout is the output
current. The (linear) state variables areIx andIout. The filter cutoff
frequency!c equalsIo=(

p
2CUT ).

A. Definition of Capacitance Currents

The first step toward the TL implementation of (12a) and (12b) is the
definition of two capacitance currents. These capacitance currents are
used to implement the derivatives_Iout and _Ix. We use (8) and (9) to ob-
tain a circuit that is not a member of the class of ESS filters. These defi-
nitions are valid ifIx andIout are class-A biased, i.e., if they are strictly
positive. Assume thatIin contains a dc componentIin; dc. Then, as a
result,Iout andIx contain dc components equal toIin;dc and2Iin;dc,
respectively. Consequently, for a sufficiently “small” ac signal swing
�Iin of Iin (i.e.,j�Iinj < Iin; dc), Iout andIx are strictly positive and
can be implemented by collector currents (see Fig. 3).

Solving (8) and (9) for _Iout and _Ix and substitution in (12a) and
(12b) yields two current-mode polynomials

Iout(IC � IC ) = Io(Ix � 2Iout) (13a)

Ix(IC + IC ) = 2Io(Iin � Iout): (13b)

B. Translinear Decomposition

To implement (13a) and (13b) using STL circuit techniques, suitable
TL decompositions have to be derived, resulting in TL loop [21], [23].
In principle, many TL decompositions exist for (13a) and (13b). The
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Fig. 4. A Butterworth second-order low-pass filter.

solution described below is only one of many possibilities and not nec-
essarily the best or most simple one.

First, we derive a TL decomposition for (13a). Addition of a redun-
dant term2IoIout to both sides of (13a) directly yields a valid TL loop
equation

Iout(2Io + IC � IC ) = IoIx: (14a)

Note that all linear factors in (14a) are strictly positive. Hence, they can
be mapped directly onto collector currents; compare Fig. 1 and (1).

A second TL decomposition, for (13b), can be derived by adding a
term2IoIx to both sides of (13b). This yields

Ix(2Io + IC + IC ) = 2Io(Iin � Iout + Ix): (14b)

All factors in (14b) are again strictly positive making (14b) a valid TL
loop equation.

C. Hardware Implementation

Next, (14a) and (14b) have to be mapped on TL loops and a proper
biasing scheme has to be designed. This step requires quite a bit of
heuristics and the implementation depicted in Fig. 4 is again only one
of many possible implementations. The only aim here is to demonstrate
the existence of a more general class of DTL circuits.

Equation (8) forIC is implemented byQ6; Q7, and C1. The
collector currents of these two transistors are the state variables, i.e.,
IC;Q = Iout andIC; Q = Ix. Note that the loopQ6–Q7–C1 is
identical to the subcircuit shown in Fig. 3(b).

The second capacitance current is implemented in a different way.
Combining (9) and (14a), an alternative expression forIC is obtained

IC = CUT
_IC �

_IC
2Io + IC � IC

: (15)

Equation (15) is implemented by the loopQ1–Q2–C2, where the col-
lector current ofQ2 equalsIC; Q = 2Io+IC �IC . Note that the dc

bias current ofQ1, IC; Q = Io, does not affectIC ; compareVconst
shown in Fig. 2.

Translinear loop (14a) is implemented by transistors
Q6–Q10–Q9–Q8–Q2–Q1, whereIC; Q = Io; IC; Q9 = Io, and
IC; Q = Ix. The second TL loop, (14b), is not implemented
directly. Instead, combining (14a) and (14b) results in an alternative
second TL loop equation, given by

Iout(2Io+IC �IC )(2Io+IC +IC ) = 2I2o (Iin�Iout+Ix): (16)

This third-order loop is implemented by transistors
Q1–Q2–Q3–Q4–Q5–Q6, whereIC; Q = 2Io + IC + IC ; IC; Q
= Io, andIC; Q = Iin � Iout + Ix. The factor 2 at the right-hand
side of (16) is realized by the scale factor ofQ3. All unnumbered
n-p-n transistors (and alsoQ8 andQ9) constitute simple level shifts
and nullor implementations, required for biasing purposes. The p-n-p
transistors implement a current mirror, which is also used for biasing
the TL loops. Note that the subtraction ofIC; Q andIC; Q equals
2IC , and the addition ofIC; Q and IC; Q , implemented by the
p-n-p mirror, equals2(2Io + IC ).

The output currentIout of the filter is the collector current ofQ6. A
copy of Iout can be obtained by connecting an additional n-p-n tran-
sistor in parallel withQ6.

D. Simulation Results

Correct operation of the circuit was verified by means of simulations,
using realistic transistor models. In the simulations, the dc currentIdc
equals 0.5�A. The supply voltages are+2/�1.3 V. Fig. 5 shows a
transient simulation at 40 kHz. The amplitude of the input signal is
90% of Iin;dc, which equals 1�A. With C = C1 = C2 = 100 pF,
UT = 26 mV andIo = 1 �A, !c equals 43.3 kHz.

Fig. 5 clearly shows that the relation betweenIin andIout is linear.
Hence, the circuit is externally linear [24]. However, internally, the
filter is strongly nonlinear, which is evidenced by the wave forms of
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Fig. 5. Transient simulation of the Butterworth filter.

IC andIC . Internally nonlinear behavior is a general characteristic
of companding filters [24].

V. CONCLUSION

This brief has described a class of dynamic translinear circuits, or
exponential state-space circuits, that is more general than the existing
classification found in literature. The proposed generalization has been
articulated both in terms of voltages and in terms of currents. As an
example, a second-order translinear filter has been designed, that fits
only into the generalized class of dynamic translinear circuits.
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Active- Design Using CFOA-Poles: New Resonators,
Filters, and Oscillators

Abdhesh K. Singh and Raj Senani

Abstract—Recently, the active- circuits utilizing the current feedback
op–amps (CFOA)-pole have been shown to be superior alternatives to the
active- circuits designed using the compensation–poles of the traditional
voltage-mode op-amps. The object of this brief, is to present some new
CFOA-pole-based active- circuits which employ a very small number of
active and passive components, and yet, offer features which have not been
attained simultaneously from any of the previously known active- circuits
using CFOA-poles such as, noninteracting controls of parameters, and the
availability of the intended properties, in spite of the presence and consid-
eration of all the parasitics (even other than those forming CFOA-pole).
The workability of the proposed circuits has been confirmed by PSPICE
simulations and hardware implementations based on AD844 type CFOAs.

Index Terms—Active filters, active- circuits, current feedback
op-amps, gyrators, resonators, sinusoidal oscillators.

I. INTRODUCTION

The transimpedance op–amps, popularly known as current feedback
op–amps (CFOAs), are receiving growing attention as alternative
building blocks for analog circuit design, because they offer several
advantages over the traditional voltage–mode op–amps (VOAs).
These advantages include, wider bandwidth (relatively independent
of the closed loop gain), very high slew rates, and ease of realizing
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