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1 Introduction

Turbulence in the atmosphere is generally affected
by rotation and stratification. The combination of
these two effects endows the atmosphere with wave-
like motions, which are particularly relevant for the
mixing processes in the middle and upper atmosphere.
Gravity-waves, for instance, can transfer energy over
large distances, carrying energy from where they are
created to regions thousands of kilometers away (Fritts
and Alexander (2003)). Due to wave instabilities, they
break and induce small scale turbulence in the overall
large scale flow, thus contributing to the mixing pro-
cess. In current general circulation models, however,
small scale motion is not resolved and instead only
parametrized. Hence, understanding the breaking pro-
cess can potentially lead to improved parametrization
models and predictions.

Depending on their frequency, gravity-waves can
be classified as high-frequency gravity-waves (HGWs)
and low-frequency inertia-gravity waves IGWs). The
breaking behavior of IGWs differs fundamentally
from HGWs and must be investigated separately
(Dunkerton (1997), Achatz and Schmitz (2006), Fru-
man et al. (2014)). Given that the wave break-
ing event leads to small scale three-dimensional tur-
bulence, computational investigations must resolve a
very large range of dynamic scales of motions (Le-
long and Dunkerton (1998) and Fritts et al. (1994)).
For HGWs, three-dimensional high resolution Direct
Numerical Simulations (DNS) have already been per-
formed, for example, by Fritts et al. (2009) and
Remmler et al. (2015). For IGWs, fully three-
dimensional investigations of a IGW breaking in the
upper mesosphere were first presented by Remmler et
al. (2012) and Fruman et al. (2014).

The present work focuses on turbulence induced
by the breaking events of IGWs. We extend the work
of Remmler et al. (2012) and Fruman et al. (2014)
by performing DNS of an IGW breaking at a lower
altitude and correspondingly higher Reynolds number
typical of the middle mesosphere. Additionally, we
explain the turbulent energy transfer during breaking
events and analyze the structure of the turbulence dis-

sipation tensor. Finally, we perform Large-Eddy Sim-
ulations (LES) using different models. We compare
LES results to our DNS and asses if these models can
be used to qualitatively predict breaking events.

2 Methodology

We initially perform three-dimensional DNS of an
inertia-gravity wave breaking in the atmosphere at a
geopotential altitude of 72 km (middle mesosphere)
and 81 km (upper mesosphere) in the US standard
atmosphere. The Reynolds numbers based on the
wavelength and velocity amplitude are 43 860 (81 km,
v = 1 m?/s) and 174720 (72 km, v = 0.25 m?/s).
We solve the incompressible Navier-Stokes equations
on a f-plane together with a transport equation for the
buoyancy field (Boussinesq approximation) in a triple
periodic domain aligned with the wave. The governing
equations in vector notation read:
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Figure 1: Initial condition for the IGW breaking simulations.
Monochromatic base wave disturbed by its lead-
ing transverse normal mode and its fastest grow-
ing singular vector. Contours of the buoyancy field
and an iso-surface at b = 0 are also shown.



Here u is the velocity field, p denotes pressure, v is the
kinematic viscosity, « the thermal diffusivity and b the
buoyancy field. Additionally, f. = 2Qgsin(¢g) is
the Coriolis parameter, in which Qg is the Earth’s an-
gular velocity and ¢ is the latitude on the f-plane, N
is the Brunt-Viisild frequency and n is a unity-vector
in the direction of gravitational acceleration. As a nu-
merical scheme, we employ a pseudo-spectral method
for representing the spatial gradients, Rogallo’s inte-
grating factor for exact integration of the Coriolis and
viscous terms and a third-order Runge-Kutta scheme
for time-integration of the remaining terms.

The initial condition for the inertia-gravity wave
breaking simulations correspond to a base wave super-
imposed with a primary and secondary perturbation.
While the base wave is a statically unstable monochro-
matic IGW, the primary perturbation is its leading nor-
mal mode (NM) and the secondary perturbation is its
fastest growing singular vector (SV). The initial con-
ditions were constructed and provided by Remmler et
al. (2013) following the methodology proposed in Fru-
man and Achatz (2011). For illustration, the initial
buoyancy field is presented in Fig. 1. The monochro-
matic IGW varies in the z-direction with a wavelength
of 3000 m, the NM superimposed onto the IGW varies
in the x-direction with a wavelength of 3981 m and
the SV in the upper half of the IGW with a wave-
length of 400 m. These determine the domain size in
all three directions, i.e. £, = 3981 m, £, = 400 m
and £, = 3000 m. The Direct Numerical Simulations
are carried out with 1536 x 164 x 1152 grid points for
the 81 km case and 2048 x 196 x 1536 for the 72 km
case. These lead to grid sizes of around 2.5 and 2.0 m,
respectively, in all three spatial directions.

For the LES, the governing equations are obtained
after a spatial filter is applied to Egs. (1) to (3). The
filtering operation introduces unknowns to the sys-
tem, which are related to subgrid quantities. From
Eq (2), filtering leads to the subgrid stresses 7;; =
u;u; — Wy, and, from Eq (3) we have the subgrid

scalar flux vector h; = ulb u,b (tilde denotes filtered
quantities).

To close the subgrid stresses, we employ two dif-
ferent models. The first one is the classic dynamic
Smagorinsky model (DSM), in which the deviatoric
part of the subgrid stresses are assumed to be linearly
related to the filtered strain-rate tensor, SU,

= —2urS;;. )
The eddy viscosity vr is modeled as
vr = (CsA)?(S;55)2, )

and a dynamic procedure based on Germano’s iden-
tity is used to determine the model constant C's. The
second model is an Explicit Algebraic Subgrid Stress
Model (EASSM), similar to the one of Marstorp et al.
(2009). Within this approach, the subgrid stresses are

(a)t=0.10h

(c)t=0.42h

Figure 2: Time series of the first breaking event. Iso-
surfaces of Q = 0.03s? with contours of buoy-
ancy b in the z-z plane at y = 400 m.

projected on a tensorial basis, i.e.
78 = kags Z GO, (©6)

where G®) are coefficients and Ti(jk) are the basis ten-
sors (see Pope (1975)). Determination of the coef-
ficients G(¥) follow from the evolution equations for
Tf;- together with the weak-equilibrium assumption. In
the original model of Marstorp et al. (2009), it is as-
sumed that the production term is in balance with the
kinetic energy dissipation rate. In our version, how-
ever, we relax this assumption by considering instead
that their ratio varies slowly in time. Additionally, to
close Eq. (6), we use an evolution equation for the sub-
grid kinetic energy Ksgs.

For the subgrid scalar flux, in combination with the
DSM, we employ an eddy diffusivity model (EDM)
with constant Prandtl number (Prp = 0.4):

vrT 83
PT‘T (9332 '

hij = — @)



(@ 1.3

1.2

t [h]

Figure 3: Temporal development of the total dissipation ¢
and the non-dimensional amplitude a. Dashed line
indicates a laminar decay of the amplitude.

With the EASSM, we use a dynamic EDM (DEDM),
in which Pryp is determined dynamically (Moin et al.
(1991)).

The LES are performed in physical space using a
finite-volume solver on 128 x 32 x 96 grid points. The
numerical scheme is based on a fourth-order central
difference scheme to approximate the spatial deriva-
tives and time integration is achieved by a standard
third-order Runge-Kutta scheme. (Remmler et al.
(2015)).

3 Results

Breaking events are characterized by a sharp in-
crease in the energy dissipation rate, which is trig-
gered by the surge of turbulent flow structures. Fig-
ure 2 shows contours of the buoyancy field together
with coherent turbulent structures visualized by iso-
surfaces of the Q-criterion during the primary break-
ing event of the 72 km case. Three-dimensional struc-
tures develop from the initial disturbance of the wave
(Fig. 2a). We observe that these structures are contin-
uously transported horizontally, spread primarily over
the upper half part of the domain (Fig. 2b), and even-
tually occupy the entire domain (Fig. 2¢). As observed
by Remmler et al. (2013), the breaking events are also
followed by an increase in energy dissipation, which
mainly stems from mixing in the lower half of the do-
main. From Fig. 2, we can infer that the isopycnals
in the upper half are almost horizontally aligned and
the different buoyancy layers are therefore neatly sep-
arated from each other, while the lower half shows re-
gions of intense mixing and consequently higher gra-
dients. Turbulence is not omnipresent in the domain
but rather confined to regions where the wave breaks.

Figure 3 presents the base wave amplitude non-
dimensionalized by the static stability limit. For
the first 30 minutes, the projection onto the non-
dimensional amplitude a follows the same trend for
both cases. However, for ¢ > 0.5 h, the amplitude
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Figure 4: Diagonal components of the Reynolds stress dissi-
pation rate tensor.

decay rate of the lower altitude case slows down al-
most to the laminar rate until the wave breaks again
—when the Prandtl number is unity, a unperturbed
laminar wave decays with a(t) = a-e~¥*t (Fruman et
al. (2014)). This is an interesting observation since the
non-dimensional amplitude is still above the thresh-
old of static instability (a = 1) after the first breaking
event.

The time evolution of the total dissipation in Fig. 3
shows four distinguishable peaks for the higher alti-
tude case and two peaks for the lower altitude case.
Splitting the total energy dissipation rate into its ki-
netic and potential contributions (not shown), reveals
that the kinetic energy dissipation rate is the main
source of dissipation. Therefore, the peak events ob-
served in Fig. 3 are due to small scales in the veloc-
ity rather than in the buoyancy field. During the first
breaking event, the total dissipation evolves similarly
for both altitudes, what we attribute to the well defined
initial conditions that force the wave to break almost
immediately. After the first breaking event, both cases
show a trend towards lower dissipation levels until the
second breaking event takes place and dissipation in-
creases again.

Figure 4 shows the diagonal elements of the kinetic
energy dissipation rate €, = (511 + €r22 + €r33)/2
for the higher Reynolds case. The dissipation tensor
is highly isotropic during the first and second break-
ing event, whereas in-between these events we observe
a strongly anisotropic tensor. The same analysis has
been carried out for the higher altitude case, with sim-
ulations showing the same tendency towards isotropic
dissipation during breaking events. Nevertheless, at
higher altitudes and therefore lower Reynolds num-
bers, the degree of anisotropy in-between the breaking
events is much more pronounced. We attribute the ten-
dency towards isotropy to the strong mixing induced
by the wave breaking process and the anisotropic de-
cay to stratification effects.

Figure 5 shows the compensated spectral energy
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Figure 5: Compensated spectral energy density plotted over
the vertical wavelength at different instants of
time. (a): kinetic energy Fy; (b): potential energy
EP

density for the kinetic (Fig. 5a) and potential energy
(Fig. 5b) plotted over the vertical wavelength A,. Two
spectra are at the time of peak dissipation, t = 0.39h
and t = 4.88 h and the other two are at calmer periods,
t = 2.50h and t = 4.27h, for the 72 km case. During

the breaking event, we see a )\;5/ 3 power-law over a
wide range of wavelengths, whereas at calmer periods,
our data agrees best with a A\; 3 scaling law. These re-
sults suggest that the influence of stratification is weak
during the breaking events and that it gains importance
the calmer the flow field becomes.

Regarding the energy distribution during breaking
events, the Reynolds stress tensor shows that most
of the kinetic energy is contained in the (wu) and
(vv) components. Following their evolution over
time, we see that during breaking events energy is
not only transfered from these terms to {ww), but
also converted into potential energy, which is stored as
(bb) /N2. With respect to the off-diagonal elements,
the (uv) correlation is mostly positive but undergoes a
sign change during the second breaking event, whereas
(uw) is slightly negative throughout the whole simula-
tion; (vw) on the other hand, fluctuates weakly around
Zero.
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Figure 6: Term-by-term kinetic and potential energy budget.
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Figure 7: Schematic of the energy transfer mechanism and
the role of each term during the wave breaking
event. Line styles follow Fig. 6. Difference in the
line thickness for the pressure term indicates the
strength of the transport.

To detail the energy transfer process, we present a
kinetic and potential energy budget analysis. The evo-
lution equations for the kinetic and potential energy
are (no summation implied)

825Ek,ii = _Tcor,ii + Tadv,ii + Tpres,ii+

Touoy,is — €k, i

®)

and

atEp = Tad'u - Tbuoyfzz: - Tbuoyfy - Tbuoyfz —€&p,

®

where the terms on the right-hand side of Eqs. (8)
and (9) represent the contributions due to Coriolis
force, advection, pressure, buoyancy and dissipation.
The term-by-term energy budget of Egs. (8) and (9) is
presented in Fig. 6 for the components of the kinetic
energy (a)-(c) and the potential energy (d).

From Fig. 6 we see that during breaking events the
main energy supplier to the third component (ww) is
(uu) through the pressure transport term Tjpcs. As
the first perturbation due to the leading normal mode
is in z-direction, we attribute the energy transfer from
(uu) to (ww) to the roll-up prior to the breaking of the
wave. We also observe that (uu) transfers energy to
(vv), but this process is much weaker. Acting as the
main coupling term between the potential and kinetic
energy, Tjy,oy—. converts part of the energy gained by
(ww) into potential energy. The remaining energy in
(ww) is then either transferred back to (uw) or dissi-
pated. The Coriolis term 7T,,, on the other hand, is
responsible for the transport of energy between (vv)
and (uu). The direction of energy transfer, however,
is related to the sign of the (uv) correlation: for posi-
tive (uv), the energy flows from (vv) to (uu) and for
negative (uv), vice-versa. Finally, the distinct energy
gain by (vv) for 1.5 < ¢t < 4his found to be due to the
buoyancy transport term 73,0, —,. The entire transfer
mechanism and the role of each term is summarized in
Fig. 7.

Now we move our focus to LES and asses the per-
formance of DSM-EDM and EASSM-DEDM in pre-
dicting breaking events. Fig. 8 shows the total energy
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Figure 8: Temporal development of the total dissipation
e¢. Line colors for different sources of data:
DNS (black); DSM-EDM (red); EASSM-DEDM
(blue).
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Figure 9: Spectral energy density plotted over the vertical
wavelength at different instants of time. Line col-
ors as in Fig. 8

dissipation rate, as the wave evolves in time. By com-
paring results with the reference data, we see that both
LES models successfully represent the first breaking
event. A peak of dissipation corresponding to the sec-
ond breaking event is also reproduced with both LES
models. However, the instant of time at which it oc-
curs is better captured by the EASSM-DEDM model.
With respect to the last breaking event, both models
predict it only marginally, with the EASSM-DEDM
indicating a stronger peak of ¢j.

In Fig. 9 we present the one-dimensional energy
spectrum at three time instants and we find that nei-
ther of the models can accurately reproduce the energy
level at smaller wavelengths. A qualitative compari-
son, however, shows that EASSM-DEDM delivers a
better prediction for the slope of the energy spectrum,
as the spectra from EASSM-DEDM is roughly paral-
lel to the ones from the DNS data. The DSM-EDM,



on the other hand, shows an accumulation of energy at
small wavelengths, which ultimately leads to a wrong
power-law.

4 Conclusions

We presented results from fully resolved three-
dimensional simulations of inertia-gravity wave break-
ing at two geopotential altitudes of 72 km and 81 km.
Time evolution of the kinetic energy dissipation ten-
sor revealed a trend towards isotropy during the break-
ing events, which was attributed to the strong mix-
ing induced by the wave breaking process. At calmer
periods, i.e. in-between breaking events, the kinetic
energy dissipation tensor is strongly anisotropic. Ac-
cordingly, the vertical energy spectra showed a AZ_5/ 3
power-law at the peak of dissipation, and A2 at
calmer periods. For the lower Reynolds number case
we observed that both spectra behave in a similar fash-
ion. A term-by-term energy budget analysis for both
the kinetic and potential energy was also presented and
the role of each term was explained and summarized in
form of a diagram. Last, we discussed LES results ob-
tained with a dynamic Smagorinsky model (DSM) and
an Explicit Algebraic Subgrid Stress model (EASSM).
We obtained slightly better results with the EASMM
for the structure of breaking events and turbulence en-
ergy spectra.
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