
EE3L11: Bachelor Graduation Project
Occupancy grid mapping of ultrasound and

LIDAR data for robotics
by

G.H.P. Dohmen & T. G. Vrijenhoek
to obtain the degree of Bachelor of Science

at the Delft University of Technology,

Student numbers: 5212782 & 5450780
Project duration: March 23, 2025 – June 27, 2025
Thesis committee: Dr. G. Joseph, TU Delft, supervisor

Prof. dr. ir. L. Abelmann, TU Delft
Dr. M. Alavi, TU Delft

Abstract
This thesis presents the development of a sensor fusion framework that integrates ultrasonic sensors
with a rotating Light Detection and Ranging (LiDAR) system to generate an occupancy grid map. The
objective is to improve spatial awareness for autonomous navigation by employing an adaptive LiDAR
approach, wherein ultrasonic sensors are used to identify regions of interest for focused scanning.

The design and implementation of a test system are described, along with the development of an
occupancy grid map capable of representing data from both LiDAR and ultrasonic sensors. To enhance
the accuracy and reliability of the environmental representation, the occupancy grid map incorporates
an inverse sensor model in combination with Bayesian statistical methods.

ii

Preface
This thesis is the result of over 2 months of work in the field of sensing and mapping. Together with
2 other group members we developed an innovative system for improving a robot’s perception of the
environment around itself by adapating the spin rate of the lidar and combining several data sources.
We would like to express our gratitude to our supervisors Geethu Joseph, Nitin Meyers and Peiyuan
Zhai for their guidance and support during this project. Furthermore, we would like to thank stichting
Neobots for loaning several components necessary for our prototype. Lastly, we would like to thank
our colleagues Evert-Jan Beiboer and Jesse van der Kooij for their collaboration in this project.

G.H.P. Dohmen & T. G. Vrijenhoek
Delft, June 2025

iii

Contents

1 Introduction 1

2 Program of Requirements 3
2.1 Hardware Requirements . 3
2.2 Software Requirements . 3
2.3 Project Objectives . 4

3 Hardware Design 5
3.1 Objective of the Hardware Design . 5
3.2 The Starting Point: ELLAS . 5
3.3 Our Design Approach . 5

3.3.1 Sensor Selection . 6
3.3.2 Ultrasound Timing Analysis . 7
3.3.3 Final Design . 7

4 Software Design 9
4.1 General Project Setup . 9

4.1.1 Why Use Two Devices? . 9
4.1.2 Communication Between Devices . 9
4.1.3 GUI . 9

4.2 Occupancy grid maps . 10
4.2.1 Implementation . 10

4.3 Inverse sensor model . 11
4.3.1 Implementation . 11

4.4 Bayesian statistics . 13
4.4.1 Implementation . 14

4.5 Computational speed improvements . 15

5 Results 16

6 Conclusion and Discussion 20
6.1 Further Work & Improvements . 20

A Technical drawings 23

B Python code 30
B.1 requirements.txt . 30
B.2 constants.py . 31
B.3 main.py . 32
B.4 program.py . 32
B.5 server.py . 34
B.6 gridmap.py . 35
B.7 sensorModel.py. 39
B.8 comms.py . 41

C C++ code 44

D Test result figures 51

iv

1
Introduction

In recent years, automation and autonomous functionality have become increasingly prevalent across
various domains [1], [2], [3]. A prominent example is the modern automobile. Whilst fully autonomous
vehicles are still under development, many consumer cars already incorporate semi-autonomous features
such as lane-keeping assistance and emergency braking systems. These functions require continuous
awareness of the environment, including the positions of obstacles and navigable free space. To
achieve this, vehicles rely on an array of sensors [4], [5], [6]. One commonly used sensor type for
detecting distances to nearby objects is the LiDAR sensor [6], [7], [8].

In robotic and automotive navigation, LiDAR sensors are often mounted on mechanical rotating
platforms. As the platform rotates, the LiDAR emits laser pulses in specific directions. When these
pulses encounter an object, they are reflected and detected by the LiDAR’s receiver. By analyzing the
time of flight of the reflected signals, the system calculates the distance to the object.

Conventional spinning LiDAR systems operate at a constant rotational speed, resulting in uniformly
distributedmeasurements. While this ensures consistent spatial coverage and range, it can be inefficient.
Specifically, the system allocates equal measurement density and power to both empty space and
regions containing objects, leading to unnecessary use of the LiDAR in uninformative areas.

To address this inefficiency, research has explored adaptive spinning LiDAR systems. These
systems dynamically adjust their rotational speed and power distribution across a single revolution,
allowing them to concentrate measurement effort in regions of interest and reduce resource usage in
open areas. As a result, such systems can achieve higher data quality. The difference in these two
types of usage of LiDAR can be seen in figure 1.1.

..

Scanned profile of a standard LiDAR Scanned profile with ELLAS

Static

street map

ELLAS

algorithm

. .

(_..

Figure 1.1: Figure from [9] comparing a conventional LiDAR system (left) with an adaptive LiDAR system (right).

A key challenge for adaptive LiDAR systems is determining where to allocatemeasurement resources.
This requires prior information about the environment to identify regions of interest. Several methods

1

2 1. Introduction

for obtaining such information have been proposed, such as:

• Utilizing co-located cameras to estimate depth and detect object boundaries [10].

• Aggregating data over multiple rotations and using the previous rotation’s measurements to guide
the next [11], [12].

• Employing static topological maps to pre-allocate resources to known object locations, as demonstrated
in [9], which served as an inspiration for this research.

In contrast to these approaches, this work explores the use of ultrasonic sensors to guide the
adaptive LiDAR system. While ultrasonic sensors offer lower resolution compared to camera-based
depth estimation or LiDAR-based feedback, they require significantly less computational power and
provide useful information about free space due to the cone-shaped coverage of their emitted signals.
This makes them particularly suitable for efficiently identifying traversable regions in the environment.

The goal of this project is to develop a system that integrates both ultrasonic sensors and a spinning
LiDAR to collect environmental data. A software program is designed to control the ultrasonic sensors,
and the resulting data is used to guide the behavior of an adaptive spinning LiDAR system, which will
be implemented by the other subgroup we have worked with. An occupancy grid map is constructed to
represent the environment, providing a basis for potential path planning. Data from both sensor types
are fused into the map using an inverse sensor model and Bayesian statistics.

The remainder of this thesis is structured as follows: Chapter 2 outlines the system requirements,
separated into hardware and software components. Chapter 3 describes the hardware design, including
the rationale behind key design choices. Chapter 4 discusses the software implementation and sensor
data processing. Chapter 5 presents experimental results and analyses, including parameter tuning
and evaluation of measurements with both sensor types. Finally, Chapter 6 concludes the thesis and
discusses possible future improvements.

2
Program of Requirements

As the project encompasses both software and hardware components, separate sets of requirements
have been defined for each domain to ensure clarity and structure.

In addition to the core requirements, a number of desirable, yet non-essential, trade-off requirements
have been formulated. These features are considered beneficial but are not critical to the core functionality
of the system.

2.1. Hardware Requirements
The final hardware system must satisfy the following essential specifications:

• The localization system must provide a 360-degree field of view.

• The sensor must achieve a pointing accuracy of less than 1.5 degrees.

• The localization system must support a minimum operational range of 3 meters.

The system should ideally also meet the following trade-off specifications:

• The sensor array should complete data acquisition in under 5 seconds per sensor type.

• The sensor array should be compatible with the existing ELLAS robot frame.

2.2. Software Requirements
The software component must fulfill the following fundamental requirements:

• Sensor data acquired via the Arduino system must be transmitted to the server and represented
in a 2D point cloud format.

• The software must generate an occupancy grid map based on the combined ultrasound and
LIDAR datasets.

• The occupancy grid map must support a resolution finer than 5 centimeters per cell.

Additionally, the following trade-off requirements are considered desirable:

• A graphical user interface (GUI) should be available to visualize the system data.

• Sensor data should be processed within a maximum time frame of 2 seconds.

3

4 2. Program of Requirements

2.3. Project Objectives
The project objectives have been divided according to the two main components:

Hardware: Develop a functional prototype of an adaptive LIDAR system that integrates both ultrasound
and LIDAR sensors within a single unit. The prototype should fully comply with the defined hardware
requirements.

Software: Design and implement a software system capable of collecting data from the prototype’s
sensors and fusing this data into a coherent occupancy grid map.

In the next chapter, the design choices made for the hardware prototype are described.

3
Hardware Design

To facilitate testing of both the software developed by this subgroup (sensor fusion onto an occupancy
gridmap) and the other subgroup (adaptive spin rate of the LIDAR), a dedicated prototypewas developed.
An overview of the hardware design is presented in Figure 3.2.

3.1. Objective of the Hardware Design
The objective of the hardware design is to develop a functional prototype of an adaptive LIDAR system
that integrates both ultrasonic and LIDAR measurements into a single package. This prototype must
satisfy all the specifications outlined in the Program of Requirements.

3.2. The Starting Point: ELLAS
This project builds upon the foundation laid by the ELLAS system [9], a prototype that was available to
the team at the beginning of the project. A photograph of the ELLAS prototype is shown in Figure 3.1.
However, a decision was made to design a new hardware solution for the following reasons:

• Incompatibility with project needs: The ELLAS system was based on a single 1D LIDAR
sensor and lacked the necessary space to integrate ultrasonic sensors without significant structural
modifications. Additionally, the CADmodels of the original systemwere not available, necessitating
a full reverse-engineering effort. A complete redesign was deemed more efficient.

• Limited availability: Due to scheduling conflicts, the ELLAS system was unavailable for the final
two weeks of the project. This limitation would have placed unnecessary pressure on the team
and hindered final testing and tuning.

The original ELLAS system was mounted on a remote-controlled car using four standoffs, each 6 cm
in height, to allow space for mounting electronics beneath the sensor and motor platform.

3.3. Our Design Approach
The following design constraints guided the development of the new prototype:

• Compliance with the Program of Requirements

• Material availability: Given the limited project duration (8 weeks) and a desire to minimize costs,
off-the-shelf components and readily available materials were prioritized. This consideration
significantly influenced the selection of sensors and the choice of manufacturing methods.

• Modularity: As this prototype serves as a test platform, modularity was essential. Components
such as sensors should be easily swappable.

5

6 3. Hardware Design

Figure 3.1: ELLAS prototype. The design lacks space for easy integration of additional sensors.

Figure 3.2: Overview of the test setup design

3.3.1. Sensor Selection
The first step in the design process involved selecting suitable sensors.

LIDAR
Two LIDAR options were considered: the laser rangefinder from the original ELLAS system and a
1D laser rangefinder owned by a team member. Both options met the requirements of a sufficient
data acquisition speed and a minimum range of over 3 meters. The YDLIDAR SDM15 was ultimately
selected.

Ultrasonic Sensor
For ultrasonic sensing, two primary categories were considered: separate transmitter-receiver modules
or fully integrated sensor units. Due to availability and budget constraints, a set of hobby-grade sensors
was considered:

• HC-SR04: A generic ultrasonic sensor commonly found in hobby kits. Readily available at the
Tellegen Hall and among team members.

• HC-SR04T: A waterproof version of the HC-SR04.

• SRF05: An improved version of the HC-SR04 with a more optimized pin layout.

Each sensor had a maximum range of 4 meters, exceeding the minimum requirement of 3 meters,
as well as amaximum data acquisition rate of 20 Hz and an angular resolution of 15°. The specifications
are summarized in Table 3.1.

3.3. Our Design Approach 7

SR-04 SR-04T SRF-05
Range 4 m 4 m 4 m
Data acquisition rate 20 Hz 20 Hz 20 Hz
Angular resolution 15° 15° 15°
Availability Readily available To be ordered To be ordered

Table 3.1: Comparison of ultrasonic sensor specifications

All candidates met the system’s minimum requirements, and the HC-SR04 was selected due to its
immediate availability.

3.3.2. Ultrasound Timing Analysis
Each HC-SR04 sensor covers a 15° cone. To cover a full 360°, a total of 24 sensors (or scanning
positions) are required. Each sector measurement consists of up to five averaged measurements.
With a measurement and travel time of 0.1 s each, a single sector requires 5 ⋅ 0.1 + 0.1 = 0.6 s. Thus,
a full scan using a single sensor would take 24 ⋅ 0.6 = 14.4 s.

To achieve a sub-5-second acquisition time, four sensors were used in parallel, reducing the scan
duration to 14.4

4 = 3.6 s.

3.3.3. Final Design
The hardware design is composed of three main parts: the sensor mount, the motion system, and the
base plate. All components were designed using 3D CAD software and fabricated using 3D printing.

Sensors were connected to an Arduino UNO R3 via its GPIO pins. Since the Arduino’s 5V output
is limited to 200 mA, an external power bank was used to power the sensors and the servo motor (with
a stall current of 1 A).

Technical drawings of the final prototype are included in Appendix A.

Motion System
The motion system employs a Hitec HS-485HB servo motor. A servo was selected over alternatives
such as stepper motors due to its simplicity, team familiarity, and ease of integration.

Despite the general limitations of hobby-grade servos, such as low torque and accuracy, the HS-485HB
offers an angular accuracy of 0.3° and a gear backlash of up to 0.5°, resulting in a total pointing error
of less than 0.8°.

The servo’s native range is ±90°, but to achieve ±180°, a 2:1 gear ratio was implemented. As a
result, each degree of servo rotation produces 2° of rotation on the sensor mount.

Sensor Mount
The sensor mount accommodates:

• Four ultrasonic sensors, tomeet the acquisition time requirement while averaging threemeasurements
per sector.

• One LIDAR sensor.
To enhancemodularity, the central mounting hub (which doubles as the gear) does not contain direct

mounts for the sensors. Instead, sensor-specific mounting plates were attached to the gear using two
M3 bolts each.

Due to spatial constraints, two ultrasonic sensors were offset by an extra 30 mm from the center of
rotation. These offsets were accounted for in the Arduino’s data processing logic.

The sensor mount is shown in Figure 3.3.

Base Plate
The base plate integrates the sensor mount and motion system. The bearing for the sensor mount is
installed on the underside of the plate.

A key design constraint was compatibility with the ELLAS system’s hole pattern, enabling the new
prototype to be mounted on the same remote-controlled platform. A rendering is shown in Figure 3.4.

The next chapter details the software that is used with this hardware prototype.

8 3. Hardware Design

Figure 3.3: Sensor mount with ultrasonic and LIDAR sensors

Figure 3.4: Rendering of the base plate

4
Software Design

This chapter describes the design choices made in the software component of the project. Section 4.1
outlines the overall structure and communication protocol. Section 4.2 explains the concept of occupancy
gridmaps and their implementation. Section 4.3 introduces the inverse sensormodel and its application.
Section 4.4 discusses the use of Bayesian statistics for updating probabilities. Lastly, Section 4.5
describes optimizations that improved processing speed.

4.1. General Project Setup
The system is divided across two devices: an Arduino, which is part of the hardware setup described in
chapter 3, and a computer running a Python program (referred to as the server). The Arduino handles
sensor data collection, while the server performs computation-heavy tasks such as grid mapping and
sensor modeling.

4.1.1. Why Use Two Devices?
Integrating all functionality on the Arduino was not feasible due to its limited RAM and processing
power [13]. Using a more powerful embedded system was also impractical due to accessibility and
flexibility limitations. An efficient and simple solution was to use two devices.

4.1.2. Communication Between Devices
Communication occurs via a USB serial link, which constrains movement during testing. Data is
exchanged in CSV format, with messages initiated by the server and responded to by the Arduino.
Each message begins with a character identifier indicating the message type, as shown in Table 4.1.

Letter Sender Description
u Arduino Ultrasound data at 15°intervals
l Arduino LIDAR data at 2°intervals
a Arduino Angles of adaptive LIDAR measurements
b Arduino Values of adaptive LIDAR measurements
l Server Request basic LIDAR measurement
a Server Request adaptive LIDAR (ultrasound complement)
c Server Request adaptive LIDAR (automotive system)
u Server Request basic ultrasound measurement

Table 4.1: Overview of communication commands

4.1.3. GUI
A graphical user interface (GUI) was developed using the Python NiceGUI library. This web-based GUI
allows users to test subsystems, initialize communication, and visualize the occupancy grid map. An
example is shown in Figure 4.1.

9

10 4. Software Design

Figure 4.1: GUI with randomly generated LIDAR and ultrasonic measurements

4.2. Occupancy grid maps
An occupancy gridmap is, in its simplest form, a 2D grid of the environment around the robot. Occupancy
grid maps are widely used in several applications, such as in path planning [14] and object avoidance
[15]

An 𝑛×𝑚 grid is declared in world space. Formally, each cell 𝐶 has a discrete random state variable
𝑠(𝐶) with two possible states: A cell is either occupied (OCC) or empty (EMP). Since both states are
exclusive, for each cell the following relation holds: 𝑃[𝑠(𝐶) = 𝑂𝐶𝐶] + 𝑃[𝑠(𝐶) = 𝐸𝑀𝑃] = 1 [16].
For our implementation, the value of each cell is defined as 𝑃[𝑠(𝐶) = 𝑂𝐶𝐶] (shortened to 𝑃𝑂𝐶𝐶), the
probability that the cell is occupied. Since in the initial situation nothing is known, for each cell 𝐶 in our
occupancy grid map, the following initial condition is used: 𝑃𝑂𝐶𝐶 = 0.5. This means we are 50% sure
that the cell is occupied (and thus 50% sure that it is empty). An example of an occupancy grid map
can be found in figure 4.2.

Figure 4.2: An example of an occupancy grid map, making use of infinitesimally small rays cast from the center of the grid (the
red cross). A value of 0 indicates a cell that was detected as empty by the ray, and a value of 1 indicates an occupied cell.

4.2.1. Implementation
The occupancy grid map is implemented in code as a 2D numpy array, with the value of each cell
being a float. Seeing as our requirement specified a measurement range of 3 meters, with a center
placement of the robot, a grid of 6 by 6 meters was generated. The array size depends on the constant
gridResolution from constants.py in appendix B.2. For example, if this constant is 50, then there are
50 cells per meter, and the array would be 300 by 300 cells. The measurements are scaled with this
resolution to keep the results still in the right cell in the array. Before the grid map is plotted, it is

4.3. Inverse sensor model 11

upscaled depending on the grid resolution to ensure a map size of 6 x 6 meters.

4.3. Inverse sensor model
The inverse sensor model estimates cell occupancies based on sensor readings. The inverse part
of the inverse sensor model reverses the forward model, which, given the state of the environment,
predicts what the sensor readings will be. Thus, the inverse sensor model derives the environment
based on the sensor data [17], [18], [19].

For a certain distance measurement 𝑧 at angle 𝜃 of a sensor, the inverse sensor model returns the
probability of occupancy 𝑃𝑂𝐶𝐶,𝑛𝑒𝑤 for each cell covered by the measurement. For a LiDAR, this will be
all cells on a line along 𝜃. For an ultrasonic sensor, this will be all cells in a cone centered around 𝜃,
with an angular width equal to the Field of View of the sensor. The selected cells are categorized into
three distinct groups by the inverse sensor model.

• Occupied: The cell is close to the measurement, so 𝑃𝑂𝐶𝐶,𝑛𝑒𝑤 will be high.

• Free: The cell is before the measurement, so 𝑃𝑂𝐶𝐶,𝑛𝑒𝑤 will be low.

• Unknown: The cell is after the measurement, so 𝑃𝑂𝐶𝐶,𝑛𝑒𝑤 will be 0.5.

Figure 4.3: Example of ideal inverse sensor model with object detection at 3 meters

The categorization is dependent on the distance 𝑑 of the cell from the origin and the standard
deviation 𝜎𝑠𝑒𝑛𝑠𝑜𝑟 of the sensor. If 𝑑 < 𝑧 − 𝜎𝑠𝑒𝑛𝑠𝑜𝑟, the cell is passed through by the sensor and thus
can be assumed to be free. In the case that 𝑧 − 𝜎𝑠𝑒𝑛𝑠𝑜𝑟 < 𝑑 ≤ 𝑧 + 𝜎𝑠𝑒𝑛𝑠𝑜𝑟, the cell is at the measured
value and thus is assumed to be occupied. Lastly, in the case that 𝑑 > 𝑧 + 𝜎𝑠𝑒𝑛𝑠𝑜𝑟, the cell is beyond
the measurement, thus there is no information about this cell. Therefore, the cell is assumed to be
unknown.

4.3.1. Implementation
The model is applied in three steps:

1. Identify all cells traversed by the sensor signal.

2. Classify them into the three defined categories: occupied, free, or unknown.

3. Assign probabilities based on sensor type and confidence.

LiDAR
To select the cells on which the inverse sensor model needs to be used, a ray is cast along the direction
of the LiDAR sensor. This is done in the gridmap.py code in appendix B.6, the function can also be
seen in listing 4.1. This function adds the coordinates of cells along an imaginary line from the center
to the edge of the grid map on a given angle from the front of the localization system.

12 4. Software Design

1 def raycast(self, _angle:float):
2 ”””Casts a ray over the gridmap on a specific angle.
3

4 Args:
5 _angle (float): angle in degrees
6

7 Returns:
8 tuple[]: array of coords of the cells crossed by the ray
9 ”””

10 #assuming center starting pos, let’s get the start and end points of our line
11 _lineStartPos = [int(self.sizeX/2),int(self.sizeY/2)]
12 _lineEndPos = self.calcLineEndPos(_angle)
13

14 #calculate delta’s and set our initial x and y coords
15 _dx = int(_lineEndPos[0]-_lineStartPos[0])
16 _dy = int(_lineEndPos[1]-_lineStartPos[1])
17 _x = int(_lineStartPos[0])
18 _y = int(_lineStartPos[1])
19 #amount of cells to visit (EG: line crossings)
20 _n = np.sum([1,np.abs(_dx),np.abs(_dy)])
21 #what to increment by. Either positive or negative, dependent on the delta;.
22 _xInc = 0
23 _yInc = 0
24 if(_dx > 0):
25 _xInc = 1
26 elif (_dx < 0):
27 _xInc = -1
28 if(_dy > 0):
29 _yInc = 1
30 elif (_dy < 0):
31 _yInc = -1
32

33 _error = np.abs(_dx) - np.abs(_dy)
34 _output = []
35

36 while (_n>0):
37 if(_x >= self.sizeX):
38 #reaching out of bounds, so we should stop.
39 break
40 if(_y >= self.sizeY):
41 #reaching out of bounds, so we should stop.
42 break
43 if ((_x == _lineStartPos[0]) and (_y == _lineStartPos[1])):
44 #equals starting pos, so skip this.
45 pass
46 else:
47 _output.append([_x,_y])
48

49 if (_error > 0):
50 _x += _xInc
51 _error -= abs(_dy)
52 else:
53 _y += _yInc
54 _error += abs(_dx)
55 _n -= 1
56 return _output

Listing 4.1: Python function to select all cells hit by a raycast

After the raycast, the inverse sensor model is used to determine a new probability for the selected
cells of the occupancy grid map, as seen in listing 4.2 from sensorModel.py in appendix B.7. In this
function, the difference between the distance from the cell to the origin and the measured distance by
the LiDAR is taken. If this difference is smaller than or equal to the standard deviation of the LiDAR,
this cell is likely occupied, and a high probability is returned. If the previous argument is not true and
the distance from the cell to the origin is smaller than the measured distance, this cell is probably free,
and a low probability is returned. In the other cases, an unknown is returned.

1 def probabilityBasedOnMeasurement(self, _measurement,_distanceFromOrigin):
2 delta = abs(_distanceFromOrigin - _measurement)

4.4. Bayesian statistics 13

3 if delta <= self.stDevlidar:
4 return 0.90 # likely obstacle
5 elif _distanceFromOrigin < _measurement:
6 return 0.20 # likely free
7 else:
8 return 0.50 # unknown

Listing 4.2: Python implementing the inverse sensor model for the LiDAR

Because of the small standard deviation, as seen in appendix B.2, and the maximum relative error
of 4%, the likelihood that there is an object at the measured distance is high. To reflect this in the inverse
sensor model, the 𝑃𝑂𝐶𝐶,𝑛𝑒𝑤 of the cells classified as occupied is set to 0.9. Likewise, the 𝑃𝑂𝐶𝐶,𝑛𝑒𝑤 for
free cells should be quite low and is therefore 0.2.

Ultrasonic sensor
In case we do a raycast for the ultrasonic sensor, you would get all the cells in a cone with the angle of
the angular resolution of the sensor from the center until the edge of the grid map. However, for each
section, with the size of the angular resolution of the sensor, measurements are made. Therefore,
every cell would be selected. Thus, instead of first selecting cells, the inverse model is done for every
cell in the occupancy grid map. This can be seen in listing 4.3, which comes from sensorModel.py in
appendix B.7. This function works the same as in listing 4.2, but with other return values.

1 def probabilityBasedOnMeasurementultra(self, _measurement,_distanceFromOrigin):
2 delta = abs(_distanceFromOrigin - _measurement)
3 if delta < self.stDevultra:
4 return 0.50 # likely obstacle
5 elif _distanceFromOrigin < _measurement:
6 return 0.30 # likely free
7 else:
8 return 0.50 # unknown

Listing 4.3: Python implementing the inverse sensor model for the ultrasonic sensor

Due to the higher standard deviation for the ultrasonic sensor, as seen in appendix B.2, and no
way of knowing where on the width of the cone a detection happened, the cells within the range of the
measured distance also get 0.5 returned by this inverse sensor model.

4.4. Bayesian statistics
The probability returned by the inverse sensor model can not be directly used in the occupancy grid
map. This is because the sensors used are not noise-free, and the inverse sensor model does not take
into account the existing probabilities as is done in [18], [20]. For this, Bayes’ theorem is used:

𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡) (4.1)

For which 𝑧1, ..., 𝑧𝑡 denotes all the sensors’ measurements from time 1 until time t, and𝑚𝑥𝑦 denotes the
probability of the cell being occupied. For the next part, the functions as seen in [16] are used. For
computational efficiency, the log-odds representation is used:

𝑙𝑡𝑥𝑦 = 𝑙𝑜𝑔
𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡)

1 − 𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡)
(4.2)

From the log-odds representation 𝑙𝑇𝑥𝑦 in function 4.2 we can get the probability from function 4.1 with:

𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡) = 1 − (1 + 𝑒𝑙
𝑡𝑥𝑦)−1 (4.3)

Using Bayes’ rule on the last 𝑧𝑡 in equation 4.1 we get:

𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡) =
𝑃(𝑧𝑡|𝑧1, ..., 𝑧𝑡−1, 𝑚𝑥𝑦)𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡−1)

𝑃(𝑧𝑡|𝑧1, ..., 𝑧𝑡−1)
(4.4)

14 4. Software Design

In the static world assumption, given the knowledge of the cell 𝑚𝑥𝑦, the past sensor readings are
independent for any point in time:

𝑃(𝑧𝑡|𝑧1, ..., 𝑧𝑡−1, 𝑚𝑥𝑦) = 𝑃(𝑧𝑡|𝑚𝑥𝑦) (4.5)

Using equation 4.5 to simplify equation 4.4 and then using Bayes’ rule on 𝑃(𝑧𝑡|𝑚𝑥𝑦) gives us function
4.6 and 4.7.

𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡) =
𝑃(𝑧𝑡|𝑚𝑥𝑦)𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡−1)

𝑃(𝑧𝑡|𝑧1, ..., 𝑧𝑡−1)
(4.6)

𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡) =
𝑃(𝑚𝑥𝑦|𝑧𝑡)𝑃(𝑧𝑡)𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡−1)

𝑃(𝑚𝑥𝑦)𝑃(𝑧𝑡|𝑧1, ..., 𝑧𝑡−1)
(4.7)

The same process can be done for the probability of a cell being free instead of being occupied. If we
take �̄�𝑥𝑦 as the probability of a cell being empty, we get:

𝑃(�̄�𝑥𝑦|𝑧1, ..., 𝑧𝑡) =
𝑃(�̄�𝑥𝑦|𝑧𝑡)𝑃(𝑧𝑡)𝑃(�̄�𝑥𝑦|𝑧1, ..., 𝑧𝑡−1)

𝑃(�̄�𝑥𝑦)𝑃(𝑧𝑡|𝑧1, ..., 𝑧𝑡−1)
(4.8)

dividing equation 4.7 by 4.8:

𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡)
𝑃(�̄�𝑥𝑦|𝑧1, ..., 𝑧𝑡)

=
𝑃(𝑚𝑥𝑦|𝑧𝑡)𝑃(�̄�𝑥𝑦)𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡−1)
𝑃(�̄�𝑥𝑦|𝑧𝑡)𝑃(𝑚𝑥𝑦)𝑃(�̄�𝑥𝑦|𝑧1, ..., 𝑧𝑡−1)

(4.9)

Rewriting equation 4.9 with 𝑃(�̄�𝑥𝑦) = 1 − 𝑃(𝑚𝑥𝑦) and the same for any conditioning variable given,
gives:

𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡)
𝑃(1 − 𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡)

=
𝑃(𝑚𝑥𝑦|𝑧𝑡)

1 − 𝑃(𝑚𝑥𝑦|𝑧𝑡)
1 − 𝑃(𝑚𝑥𝑦)
𝑃(𝑚𝑥𝑦)

𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡−1)
1 − 𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡−1)

(4.10)

From this, we can write the desired log-odds equation as:

𝑙𝑜𝑔
𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡)

𝑃(1 − 𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡)
= 𝑙𝑜𝑔

𝑃(𝑚𝑥𝑦|𝑧𝑡)
1 − 𝑃(𝑚𝑥𝑦|𝑧𝑡)

+ 𝑙𝑜𝑔
1 − 𝑃(𝑚𝑥𝑦)
𝑃(𝑚𝑥𝑦)

+ 𝑙𝑜𝑔
𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡−1)

1 − 𝑃(𝑚𝑥𝑦|𝑧1, ..., 𝑧𝑡−1)
(4.11)

Finally we can substitute equation 4.2 into equation 4.11 to get:

𝑙𝑡𝑥𝑦 = 𝑙𝑜𝑔
𝑃(𝑚𝑥𝑦|𝑧𝑡)

1 − 𝑃(𝑚𝑥𝑦|𝑧𝑡)
+ 𝑙𝑜𝑔

1 − 𝑃(𝑚𝑥𝑦)
𝑃(𝑚𝑥𝑦)

+ 𝑙𝑡−1𝑥𝑦 (4.12)

Function 4.12 tells us that we can get 𝑙𝑡𝑥𝑦, from the log-odds of the new measurement, adding the
log-odds of the initial freeness of the cell and the log-odds previous value of the cell.

4.4.1. Implementation
In listing 4.4 below, a snippet of sensorModel.py from appendix B.7 is shown. In this code, the theory
of section 4.4 is implemented in Python. First, the inverse sensor model probability, in the code
_modelProbability, and the current probability of the cell in the grid map are truncated. This makes
sure that the current probability is within the range of the natural logarithm and that no division by 0
occurs. After this, the log-odds of the current probability is calculated, and the new value gets updated
by adding the log-odds of the model probability. The log-odds of the initial freeness as seen in function
4.12 is not added, seeing as the world is initially completely unknown, which gives a log-odds of 0 and
therefore has no influence. Lastly, the new log-odds of the cell gets reverted into a probability, which
can be set as the cell’s value in the grid map.

1 eps = 1e-6
2 _modelProbability = max(eps, min(1 - eps, _modelProbability))
3 _currProbability = max(eps, min(1 - eps, _currProbability))
4

5

6 #converting old probability to log-odds
7 _logProb = np.log(_currProbability / (1 - _currProbability))
8

9

4.5. Computational speed improvements 15

10 #calculate new probability
11 _logProb = _logProb + np.log(_modelProbability / (1 - _modelProbability))
12

13 #convert back to normal probability
14 _newProb = round(1 - 1/(1+math.exp(_logProb)),6)

Listing 4.4: Python code snippet where Bayesian statistics get used on the cell probabilities

4.5. Computational speed improvements
Each individual calculation that needs to be done for a new probability is, in itself, not computationally
intensive. However, calculating all values for an entire grid of 𝑛 ∗ 𝑛 cells quickly adds up to a high
execution time. To meet the requirement of a sub-2-second calculation time, several improvements
had to be made. First of all, for big lists and arrays, only numpy arrays are used because of the higher
operation speed compared to traditional Python lists.

Because of the low number of discrete outcomes of the inverse sensor model, there will also
be a low number of discrete probabilities that get calculated. In listing 4.5, a dictionary is used to
check if the combination of current and model probability has been calculated before, and if true, the
associated value is returned. Otherwise, the calculations are finished, and the combination is added
to the dictionary.

1 _dict_key = (_modelProbability,_currProbability)
2 if (_dict_key in _inverse_dict):
3 return _inverse_dict[_dict_key]

Listing 4.5: Python code snippet where a dictionary is used to skip the otherwise needed calculations

As mentioned before, if a probability of 0.5 is used for log-odds, it will return a 0. So, for the cells that
the inverse sensor model returns that lie in the region that gets classified as unknown, the functions
will return the current probability of the cell. If the cell gets checked before the function calls for if it lies
in the region beyond the measurement, the functions can be skipped and the value of the cell stays
the same. Lastly, a major improvement in execution time is accomplished by calculating the distance
from the cell to the origin, as it gets used in listing 4.2 and 4.3, for every cell beforehand. By creating
a numpy array with the distance from every cell to the origin as the value of the cells at the start of the
program, a faster execution time can be accomplished with a trade-off for a higher startup time.

5
Results

This chapter presents the results of several tests conducted to evaluate the system’s performance.
All figures shown here are also included in Appendix D, where they are displayed at a larger size for
improved readability.

The first test assesses the ultrasonic sensor’s capability to detect objects in a controlled environment.
The goal was to determine whether the ultrasonic system can generate meaningful regions of interest
for the adaptive LiDAR model. Subsequently to each ultrasonic scan, a scan using a non-adaptive
LiDAR was performed. This scan was used to generate reference lines (in dark red/black) in the maps
that illustrate the ultrasonic sensor data.

In the first set of results (Figure 5.1), the ultrasonic sensors collected one measurement per angular
sector. In the second set (Figure 5.2), three measurements were collected per sector, and the median
was used as the representative value. In the third set (Figure 5.3), five measurements were taken per
sector, with the median again used.

Across all figures, it is evident that the detected object position is slightly in front of the actual object
location. This phenomenon is likely due to the sensor’s detection region being wider than the object
itself, as discussed in Section 4.3, because of the higher standard deviation of the sensor. Additionally,
the ultrasonic sensor consistently struggles to accurately detect objects in the lower corner of the
environment. This is likely the result of suboptimal object placement relative to the sensor, causing
the ultrasonic pulse to reflect off other parts and get into that corner. Furthermore, the gap between
the two top objects is not detected in any figure, likely because the objects are too close together to be
distinguished by the ultrasonic sensor at the given distance.

(a) (b) (c)

Figure 5.1: Ultrasonic sensor test with one measurement per angular sector, including a schematic of the object placement

16

17

In Figure 5.1, most ultrasonic measurements do not intersect with objects, except for a single outlier
in Figure 5.1b. There is noticeable variation across the three subfigures, indicating sensitivity to noise
when only one measurement per sector is used. The sensor can also mistakenly detect nearby objects
slightly outside its measurement cone if they are closer than objects inside the cone. This effect
becomes more pronounced when fewer measurements are taken.

(a) (b) (c)

Figure 5.2: Ultrasonic sensor test using the median of three measurements per angular sector

The results in Figure 5.2 are comparable to those in Figure 5.1, but show improved consistency and
uniformity in object detection across the three trials.

(a) (b) (c)

Figure 5.3: Ultrasonic sensor test using the median of five measurements per angular sector

Figure 5.3 shows slightly more variation between the three tests compared to Figure 5.2. This
suggests that there may be an optimal number of measurements beyond which the accuracy does not
improve, and might even degrade. Taking too few measurements increases the likelihood of detecting
irrelevant objects outside the measuring cone. Taking too many may dilute the accuracy of the closest
measurement. Based on this evaluation, using the median of three measurements per sector was
selected as the final configuration for the ultrasonic system.

The second test focused on determining the optimal resolution for the occupancy grid map. An
object with a width of 30 cm was placed at distances of 50 cm, 100 cm, and 200 cm from the sensor.
Scans were performed using a standard LiDAR at a 2° interval over a 40° field of view. The grid map
was tested at three resolutions: 100, 50, and 25 cells per meter (corresponding to cell sizes of 1x1 cm,
2x2 cm, and 4x4 cm, respectively). The results are presented in Figure 5.4.

18 5. Results

(a) distance 50 cm and grid resolution 100 (b) distance 100 cm and grid resolution 100 (c) distance 200 cm and grid resolution 100

(d) distance 50 cm and grid resolution 50 (e) distance 100 cm and grid resolution 50 (f) distance 200 cm and grid resolution 50

(g) distance 50 cm and grid resolution 25 (h) distance 100 cm and grid resolution 25 (i) distance 200 cm and grid resolution 25

Figure 5.4: Results of testing different grid map resolutions for an object with a width of 30 cm at different distances

From the 100 cells/m resolution results, small gaps begin to appear between measurement points,
which increase with distance. At 50 cm, some gaps of approximately 1 cm are visible; at 100 cm, 2 cm
gaps; and at 200 cm, 5 cm gaps. Reducing the resolution to 50 cells/m eliminates or reduces these
gaps. At 25 cells/m, most gaps disappear entirely, but distortion becomes apparent. For example,
Figure 5.4g shows an otherwise straight object appearing slightly curved due to the coarse resolution.

Although a 5 cm gap at 200 cm appears in Figure 5.4c, such a small gap is functionally irrelevant
for typical applications, especially since the robot or vehicle is physically larger. Therefore, a lower
resolution does not hurt the functionality of the system. However, too low a resolution leads to the
aforementioned warping effect. Considering all factors, our final measurements utilized a resolution of
50 cells per meter.

19

(a) (b) (c)

Figure 5.5: Occupancy grid map updates using both ultrasonic sensor and LiDAR data

Finally, a test was conducted to evaluate the combined use of both ultrasonic and LiDAR data in
updating the occupancy grid map. After each ultrasonic scan from the first test, a standard LiDAR
scan was performed. The results are shown in Figure 5.5, using the configuration as the ultrasonic
sensors tests in Figure 5.2. As expected, the LiDAR confirmed object detections already identified by
the ultrasonic sensor and additionally captured areas that the ultrasonic system failed to detect.

Examining the occupancy grid map, it is evident that regions traversed by multiple sensor signals
tend to have values that converge toward zero, indicating high confidence in free space. This is
particularly noticeable around the center, where the density of intersecting sensor rays is highest. In
areas where only a few rays pass through, the cell values decrease but remain above zero. Lastly,
where LiDAR detects object hits, the corresponding cell values increase, representing probable obstacles.

6
Conclusion and Discussion

In this thesis, a framework was developed that enables the use of an adaptive LiDAR system, which
adjusts its behavior based on data from ultrasonic sensors. Additionally, an occupancy grid map was
implemented to process and visualize sensor data from multiple sources. The resulting environmental
map serves as a foundation for autonomous navigation, either for automotive control or routing in
environments where GPS is unavailable.

Looking back at the program of requirements, all requirements set at the beginning of the project
were met. Furthermore, the trade-off requirements were also met by the final product.

6.1. Further Work & Improvements
Several opportunities exist for further development and enhancement of the system:

• Sensor Hardware: One of the main limitations in measurement accuracy stems from the sensors
used. For this proof of concept, inexpensive and readily available components were utilized.
Replacing thesewith higher-quality sensors and using amore precise servomotor could significantly
improve both data quality and angular resolution of the rotating LiDAR system.

• Computation Speed: The number of usable data points per LiDAR rotation is currently constrained
by the speed of occupancy gridmap generation. While performance improvements were discussed
in Section 4.5, further gains might be achieved through GPU-based grid mapping methods such
as those described in [21], or by adopting raycasting-free techniques like in [22].

• Dynamic Environments: The current implementation assumes a static environment. For deployment
in real-world scenarios, the occupancy grid map must account for dynamic changes. This can be
achieved using aging or decay techniques, as explored in [20], which allow for gradual fading of
outdated occupancy information.

• Device Movement: At present, the system does not account for the movement of the sensing
device. To enable this, the position from which measurements are taken must be adjustable,
allowing the device to move within the mapped region. Another approach to handle movement
is to update the grid map dynamically: adding new unknown cells in the direction of movement,
shifting existing data accordingly, and removing outdated information that moves outside the map
boundary.

20

Bibliography
[1] Q. Zou, Q. Sun, L. Chen, B. Nie, and Q. Li, “A comparative analysis of lidar slam-based indoor

navigation for autonomous vehicles,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 7, pp. 6907–6921, 2022.

[2] Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: The principles, challenges, and trends
for automotive lidar and perception systems,” IEEE Signal Processing Magazine, vol. 37, no. 4,
pp. 50–61, 2020.

[3] J. Panchal and Z. Wang, “Design of next generation automotive systems: Challenges and
research opportunities,” Journal of Computing and Information Science in Engineering, vol. 23,
pp. 1–9, 07 2023.

[4] A. Carullo and M. Parvis, “An ultrasonic sensor for distance measurement in automotive
applications,” IEEE Sensors Journal, vol. 1, no. 2, pp. 143–, 2001.

[5] S. Campbell, N. O’Mahony, L. Krpalcova, D. Riordan, J. Walsh, A. Murphy, and C. Ryan,
“Sensor technology in autonomous vehicles : A review,” in 2018 29th Irish Signals and Systems
Conference (ISSC), pp. 1–4, 2018.

[6] A. Pandharipande, C.-H. Cheng, J. Dauwels, S. Z. Gurbuz, J. Ibanez-Guzman, G. Li, A. Piazzoni,
P. Wang, and A. Santra, “Sensing and machine learning for automotive perception: A review,”
IEEE Sensors Journal, vol. 23, no. 11, pp. 11097–11115, 2023.

[7] W. Xu, Y. Cai, D. He, J. Lin, and F. Zhang, “Fast-lio2: Fast direct lidar-inertial odometry,” 07 2021.

[8] J. Schulte-Tigges, M. Förster, G. Nikolovski, M. Reke, A. Ferrein, D. Kaszner, D. Matheis, and
T. Walter, “Benchmarking of various lidar sensors for use in self-driving vehicles in real-world
environments,” Sensors, vol. 22, no. 19, 2022.

[9] T. Rhemrev, E. De Jong, G. Van Triest, R. Kalkman, J. Pronk, A. Pandharipande, and N. Jonathan
Myers, “Ellas: Enhancing lidar perception with location-aware scanning profile adaptation,” IEEE
Sensors Journal, vol. 25, no. 5, pp. 8766–8775, 2025.

[10] F. Pittaluga, Z. Tasneem, J. Folden, B. Tilmon, A. Chakrabarti, and S. J. Koppal, “ Towards
a MEMS-based Adaptive LIDAR ,” in 2020 International Conference on 3D Vision (3DV), (Los
Alamitos, CA, USA), pp. 1216–1226, IEEE Computer Society, Nov. 2020.

[11] E. Gofer, S. Praisler, andG. Gilboa, “Adaptive lidar sampling and depth completion using ensemble
variance,” IEEE Transactions on Image Processing, vol. 30, pp. 8900–8912, 01 2021.

[12] M. A. A. Belmekki, R. Tobin, G. S. Buller, S. McLaughlin, and A. Halimi, “Fast task-based adaptive
sampling for 3d single-photon multispectral lidar data,” IEEE Transactions on Computational
Imaging, vol. 8, pp. 174–187, 2022.

[13] H. K. Kondaveeti, N. K. Kumaravelu, S. D. Vanambathina, S. E. Mathe, and S. Vappangi, “A
systematic literature review on prototyping with arduino: Applications, challenges, advantages,
and limitations,” Computer Science Review, vol. 40, p. 100364, May 2021.

[14] T. Nakahara, Y. Hara, and S. Nakamura, “Localizability based path planning on occupancy grid
maps,” Advanced Robotics, vol. 39, no. 3, p. 127–143, 2024.

[15] S. Thrun, W. Burgard, and D. Fox, “A probabilistic approach to concurrent mapping and localization
for mobile robots,” Autonomous Robots, vol. 5, no. 3-4, p. 253–271, 1998.

21

22 Bibliography

[16] S. Thrun, “Learning occupancy grid maps with forward sensor models,” Autonom. Rob., vol. 15,
11 2003.

[17] E. G. Alonso, “Lidar inverse sensor modelling for occupancy grid mapping in the context of
autonomous vehicles,” 06 2024.

[18] E. Kaufman, T. Lee, Z. Ai, and I. S. Moskowitz, “Bayesian occupancy grid mapping via an exact
inverse sensor model,” in 2016 American Control Conference (ACC), pp. 5709–5715, 2016.

[19] S. E. Hadji, T. H. Hing, M. S. M. Ali, M. A. Khattak, and S. Kazi, “2d occupancy grid mapping with
inverse range sensor model,” in 2015 10th Asian Control Conference (ASCC), pp. 1–6, 2015.

[20] G. Ferri, A. Tesei, P. Stinco, and K. D. LePage, “A bayesian occupancy grid mapping method for
the control of passive sonar robotics surveillance networks,” inOCEANS 2019 - Marseille, pp. 1–9,
2019.

[21] K. Stepanas, J. Williams, E. Hernández, F. Ruetz, and T. Hines, “Ohm: Gpu based occupancy
map generation,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11078–11085, 2022.

[22] Y. Cai, F. Kong, Y. Ren, F. Zhu, J. Lin, and F. Zhang, “Occupancy grid mapping without ray-casting
for high-resolution lidar sensors,” IEEE Transactions on Robotics, vol. 40, pp. 172–192, 2024.

A
Technical drawings

23

B
Python code

B.1. requirements.txt
All Python packages used in the project

1 aiofiles==24.1.0
2 aiohappyeyeballs==2.6.1
3 aiohttp==3.12.12
4 aiosignal==1.3.2
5 annotated-types==0.7.0
6 anyio==4.9.0
7 attrs==25.3.0
8 bidict==0.23.1
9 certifi==2025.4.26

10 charset-normalizer==3.4.2
11 click==8.2.1
12 colorama==0.4.6
13 contourpy==1.3.2
14 cycler==0.12.1
15 docutils==0.21.2
16 fastapi==0.115.12
17 fonttools==4.58.2
18 frozenlist==1.7.0
19 h11==0.16.0
20 httpcore==1.0.9
21 httptools==0.6.4
22 httpx==0.28.1
23 idna==3.10
24 ifaddr==0.2.0
25 iniconfig==2.1.0
26 itsdangerous==2.2.0
27 Jinja2==3.1.6
28 kiwisolver==1.4.8
29 markdown2==2.5.3
30 MarkupSafe==3.0.2
31 matplotlib==3.10.3
32 multidict==6.4.4
33 narwhals==1.42.0
34 nicegui==2.19.0
35 numpy==2.3.0
36 orjson==3.10.18
37 packaging==25.0
38 pandas==2.3.0
39 pillow==11.2.1
40 plotly==6.1.2
41 pluggy==1.6.0
42 propcache==0.3.2
43 pscript==0.7.7
44 pydantic==2.11.5
45 pydantic_core==2.33.2
46 Pygments==2.19.1
47 pyparsing==3.2.3

30

B.2. constants.py 31

48 pyserial==3.5
49 pytest==8.4.0
50 python-dateutil==2.9.0.post0
51 python-dotenv==1.1.0
52 python-engineio==4.12.2
53 python-multipart==0.0.20
54 python-socketio==5.13.0
55 pytz==2025.2
56 PyYAML==6.0.2
57 requests==2.32.4
58 simple-websocket==1.1.0
59 six==1.17.0
60 sniffio==1.3.1
61 starlette==0.46.2
62 typing-inspection==0.4.1
63 typing_extensions==4.14.0
64 tzdata==2025.2
65 urllib3==2.4.0
66 uvicorn==0.34.3
67 vbuild==0.8.2
68 wait-for2==0.3.2
69 watchfiles==1.0.5
70 websockets==15.0.1
71 wsproto==1.2.0
72 yarl==1.20.1

B.2. constants.py
1 class constants:
2

3 #comms
4 arduinoIp = ”http://192.168.4.1”
5 ”””IP address of the Arduino on the robot
6 ”””
7

8

9 #offsets
10 shortUltrasoundOffset = 2.47
11 ”””Offset of the short ultrasound from center of rotation of the robot. Measured in cm
12 ”””
13 longUltrasoundOffset = 4.02
14 ”””Offset of the long ultrasound from center of rotation of the robot. Measured in cm
15 ”””
16 lidarOffset = 4.55
17 ”””Offset of the lidar from center of rotation of the robot. Measured in cm
18 ”””
19

20 #sensor data
21 ultrasoundAngularResolution = 15
22 ”””Angular resolution of the ultrasound sensor. Measured in degrees.
23 ”””
24 lidarAngularResolution = 0.1
25 ”””Angular resolution of the LIDAR. Measured in degrees.
26 ”””
27 ultrasoundStDev = 2
28 ”””Standard deviation of the ultrasound sensor. Measured in cm.
29 ”””
30 lidarStDev = 0.5
31 ”””Standard deviation of the LIDAR. Measured in cm.
32 ”””
33

34 #GUI
35 windowWidth = 1200
36 ”””Width of the TKinter window in pixels
37 ”””
38 windowHeight = 800
39 ”””Height of the TKinter window in pixels
40 ”””
41 programName = ”BAP”

32 B. Python code

42 ”””Name of the program. Used as program title and in the top bar
43 ”””
44

45 #Grid
46 gridSizeX = 6
47 ”””Size of the grid in meters, x direction
48 ”””
49 gridSizeY = 6
50 ”””Size of the grid in meters, y direction
51 ”””
52 gridResolution = 50
53 ”””Number of coords per meter
54 ”””

B.3. main.py
1 from nicegui import ui
2 from program import program
3 import cProfile
4 import pstats
5

6 def main():
7 #starts the profiler to see how fast the code functions run
8 profiler = cProfile.Profile()
9 profiler.enable()

10

11 p = program()
12

13 #stops the profiler
14 profiler.disable()
15 stats = pstats.Stats(profiler)
16 stats.strip_dirs()
17 #sorts the information based on the total time of the function and makes it so only the 30 slowest get shown
18 stats.sort_stats(’tottime’)
19 stats.print_stats(30)
20

21 if __name__ in {”__main__”, ”__mp_main__”}:
22 #runs the main
23 main()

B.4. program.py
1 from nicegui import ui,app
2 from comms import comms
3 from server import server
4 import cProfile
5 import pstats
6

7

8

9 class program:
10 instance = None
11 ””” contains a reference to the only instance of this class. Init function makes sure only one program instance exists.
12 ”””
13 server = None
14 comms = None
15 plot = None
16 isCommsRunning = False
17

18

19 def gui(self):
20 with ui.row().classes(’items-stretch’):
21 with ui.card().classes(’items-center text-center’):
22 #making the left sound of the GUI with the buttons and which functions it calls
23 ui.markdown(”#Control”)
24 ui.label(”Gather data”)
25 ui.button(”Ultrasound”, on_click=self.ultrasoundDataCollection)
26 ui.button(”Basic LIDAR”, on_click=self.lidarBasicDataCollection)
27 ui.button(”Comparative LIDAR”, on_click=self.lidarCompareDataCollection)
28 ui.button(”Adaptive LIDAR UC”, on_click=self.adaptiveLidarDataCollectionUC)

B.4. program.py 33

29 ui.button(”Adaptive LIDAR AU”, on_click=self.adaptiveLidarDataCollectionAU)
30 ui.button(”Random LIDAR data”, on_click=self.randomLidarData)
31 ui.button(”Random ultra sonic sensor data”, on_click=self.randomUltraData)
32 ui.button(”Reset map”, on_click=self.mapreset)
33 ui.button(”Shutdown”, on_click=self.shutdown)
34 with ui.card().classes(’items-center text-center’):
35 #creates middle part with status information
36 ui.markdown(”#Comms”)
37 with ui.row():
38 ui.label(”COM port: ”)
39 ui.select(self.comms.listPorts()).bind_label(self.comms,’comPORT’)
40 ui.button(”Start comms”, on_click=self.startComms)
41 ui.button(”Stop Comms”, on_click=self.stopComms)
42 with ui.card().classes(”Items-center text-center”):
43 #creates right part with the grid heat map
44 ui.markdown(”#Occupancy grid map”).classes(”center”)
45 self.plot = ui.plotly(self.server.gridMap.drawPlotly()).style(”width: 600px; height: 600px;”)
46 ui.timer(0.1,self.update)
47

48

49 def ultrasoundDataCollection(self):
50 self.comms.write(”u”)
51 print(”gather ultrasound data, sent command to arduino”)
52

53 def update(self):
54 if self.isCommsRunning:
55 self.comms.update()
56

57 def lidarBasicDataCollection(self):
58 self.comms.write(”l”)
59 print(”gather lidar data basic”)
60

61 def lidarCompareDataCollection(self):
62 self.comms.write(”o”)
63 print(”gather comparative lidar data”)
64

65 def adaptiveLidarDataCollectionUC(self):
66 self.comms.write(”a”)
67 print(”gather adaptive lidar data for Ultrasound Complement system”)
68

69 def adaptiveLidarDataCollectionAU(self):
70 self.comms.write(”c”)
71 print(”gather adaptive lidar data for Automotive system”)
72 def randomLidarData(self):
73 #runs the random lidar test data, times it and shows the 30 slowest functions
74 profiler3 = cProfile.Profile()
75 profiler3.enable()
76 print(”Adding random lidar data to map”)
77 self.server.testLidarArray()
78 self.updateMap()
79 profiler3.disable()
80 stats = pstats.Stats(profiler3)
81 stats.strip_dirs()
82 stats.sort_stats(’tottime’)
83 stats.print_stats(30)
84

85 def randomUltraData(self):
86 #runs the random ultrasone test data, times it and shows the 30 slowest functions
87 profiler2 = cProfile.Profile()
88 profiler2.enable()
89

90 print(”Adding random ultra data to map”)
91 self.server.testUltra()
92 self.updateMap()
93

94 profiler2.disable()
95 stats = pstats.Stats(profiler2)
96 stats.strip_dirs()
97 stats.sort_stats(’tottime’)
98 stats.print_stats(30)
99

34 B. Python code

100 def mapreset(self):
101 #resets the map
102 print(”Reseting the map”)
103 self.server.resetgrid()
104 self.updateMap()
105

106 def stopComms(self):
107 print(”stopping comms”)
108 self.comms.stopComms()
109 self.isCommsRunning = False
110

111 def startComms(self):
112 print(”Starting comms”)
113 self.comms.startComms()
114 self.isCommsRunning = True
115

116 def shutdown(self):
117 print(”shutting down”)
118 self.comms.stopComms()
119 app.shutdown()
120

121 def updateMap(self):
122 print(”updating map”)
123 self.plot.figure = self.server.gridMap.drawPlotly()
124 self.plot.update()
125

126 def __init__(self):
127 if program.instance is not None:
128 return
129 print(”Starting server”)
130 program.instance = self
131 self.server = server()
132 self.comms = comms()
133 #ser = serial.Serial(’COM5’, 9600) # Adjust port and baud rate as needed
134 # while True:
135 # _ultrasone_data = ser.readline().decode(’utf-8’).strip()
136 # print(”here”)
137 # try:
138 # values = list(map(float, _ultrasone_data.split(’,’)))
139 # print(values)
140 # break
141 # except ValueError:
142 # print(”Corrupted line:”, _ultrasone_data)
143 self.gui()
144 #self.startCommms()
145 print(self.comms.listPorts())
146 ui.run(title=”bap”,dark=None)
147 pass

B.5. server.py
1 import random
2 from matplotlib.pylab import rand
3 from gridMap import gridMap
4 from constants import constants
5 from sensorModel import sensorModel
6 import numpy as np
7

8 class server:
9 status = None

10 gridMap = None
11 lidarSensorModel = None
12

13 def handleLidarMeasurements(self,_angles, _data):
14 ”””_summary_
15

16 Args:
17 _angles (int[]): angle for each measurement in degrees.
18 _data (int[]): distance for each measurement in cm
19 ”””

B.6. gridmap.py 35

20 _inverse_dict = {}
21 print(len(_data))
22 i=0
23 for _packet in _angles:
24 #first raycast
25 _rayResult = self.gridMap.raycast(_packet)
26 #then do sensor model.
27 self.SensorsModel.doModel(_data[i], _rayResult, _inverse_dict)
28 i+=1
29

30 def handleUltrasoundMeasurements(self, _angleArray,_dataArray):
31 _inverse_dict_2 = {}
32 self.SensorsModel.doModelultra(_dataArray, _inverse_dict_2)
33

34 def testUltra(self):
35 _inverse_dict_2 = {}
36 #create random ultrasone distance data and starts the inverse model
37 _distances = np.random.uniform(20, 300, 24)
38 self.SensorsModel.doModelultra(_distances, _inverse_dict_2)
39

40 def testLidarArray(self):
41 ”””Tests the sensor model using random data
42 ”””
43 #create random lidar distance data and starts the inverse model
44 _testangle = np.random.uniform(0, 360, 180)
45 _testData = np.random.uniform(20, 300, 180)
46 self.handleLidarMeasurements(_testangle, _testData)
47

48 def testRaycastAllQuadrants(self):
49 ”””Tests the raytracer by casting a ray in all 8 octants
50 ”””
51 _q = 0
52 while _q < 8:
53 _angle = random.randrange(44) + _q*45
54 _distance = random.randrange(300)
55 squares = self.gridMap.raycast(_angle, _distance)
56 for square in squares:
57 self.gridMap.set(square[0],square[1],0)
58 _q += 1
59

60 def resetgrid(self):
61 #resets the grid
62 _sizeX = constants.gridSizeX*constants.gridResolution
63 _sizeY = constants.gridSizeY*constants.gridResolution
64 self.gridMap._grid = np.full((_sizeX,_sizeY),0.5)
65 #set center of field to 0, since our robot is there. It’s impossible for something else to be there ;)
66 self.gridMap._grid[int(_sizeX/2),int(_sizeY/2)] = 0
67

68 def __init__(self):
69 self.gridMap = gridMap(constants.gridSizeX*constants.gridResolution,constants.gridSizeY*constants.gridResolution)
70 self.gridMap.resolution = constants.gridResolution
71 self.SensorsModel = sensorModel(constants.lidarStDev, constants.ultrasoundStDev)
72 pass

B.6. gridmap.py
1 import math
2 from matplotlib.figure import Figure
3 import numpy as np
4 import plotly.graph_objects as go
5

6

7 class gridMap:
8 ”””represents data on a 2D grid. Includes functions to transfer grid into matplotlib fig
9 ”””

10

11 sizeX = 0
12 ”””size of the grid in the X (horizontal) direction in cells.
13 ”””
14

36 B. Python code

15 sizeY = 0
16 ”””size of the grid in the Y (vertical) direction in cells.
17 ”””
18

19 _grid = None
20 ”””Should not be accessed from outside of class, should use helper functions. Holds all data.
21 ”””
22

23 resolution = None
24 ”””Resolution with which the size in m was converted to grid cells. Could be None
25 ”””
26

27

28 def distance(_point1, _point2):
29 ”””Calculates the distance between two points
30

31 Args:
32 _point1 (tuple): tuple with [0] being the x and [1] being the y coordinate of the point
33 _point2 (tuple): tuple with [0] being the x and [1] being the y coordinate of the point
34

35 Returns:
36 float: euclidian distance between the two points
37 ”””
38 return math.sqrt((abs(_point2[0] - _point1[0]))**2 + (abs(_point2[1] - _point1[1]))**2)
39

40

41 def distanceFromCenter(self, _point):
42 ”””Calculates distance from the center
43

44 Args:
45 _point (tuple): tuple with [0] being the x and [1] being the y coordinate of the point
46

47 Returns:
48 float: euclidian distance from the center
49 ”””
50 return gridMap.distance([self.sizeX/2,self.sizeY/2],_point)
51

52

53 def calcLineEndPos(self, _angle:float):
54 ”””Calculates the end position for a line, starting in the center of the gridmap
55

56 Args:
57 _angle (float): angle in degrees. 0 degrees is forward, CCW from there
58

59 Returns:
60 Tuple: (X,Y) of the end position
61 ”””
62 #get size and center point of the grid
63 _size = self.sizeX
64 _cx, _cy = self.sizeX / 2, self.sizeY / 2
65

66 #angle in radians for our system
67 _rad = math.radians(_angle + 90)
68

69 #get the vector of the direction
70 _dx = math.cos(_rad)
71 _dy = math.sin(_rad)
72

73 #normalize to grid edge
74 if abs(_dx) > abs(_dy):
75 scale = (_size / 2) / abs(_dx)
76 else:
77 scale = (_size / 2) / abs(_dy)
78

79 end_x = _cx + _dx * scale
80 end_y = _cy + _dy * scale
81

82 return (int(end_x), int(end_y))
83

84

85 def raycast(self, _angle:float):

B.6. gridmap.py 37

86 ”””Casts a ray over the gridmap on a specific angle.
87

88 Args:
89 _angle (float): angle in degrees
90

91 Returns:
92 tuple[]: array of coords of the cells crossed by the ray
93 ”””
94 #assuming center starting pos, let’s get the start and end points of our line
95 _lineStartPos = [int(self.sizeX/2),int(self.sizeY/2)]
96 _lineEndPos = self.calcLineEndPos(_angle)
97

98 #calculate delta’s and set our initial x and y coords
99 _dx = int(_lineEndPos[0]-_lineStartPos[0])

100 _dy = int(_lineEndPos[1]-_lineStartPos[1])
101 _x = int(_lineStartPos[0])
102 _y = int(_lineStartPos[1])
103 #amount of cells to visit (EG: line crossings)
104 _n = np.sum([1,np.abs(_dx),np.abs(_dy)])
105 #what to increment by. Either positive or negative, dependent on the delta;.
106 _xInc = 0
107 _yInc = 0
108 if(_dx > 0):
109 _xInc = 1
110 elif (_dx < 0):
111 _xInc = -1
112 if(_dy > 0):
113 _yInc = 1
114 elif (_dy < 0):
115 _yInc = -1
116

117 _error = np.abs(_dx) - np.abs(_dy)
118 _output = []
119

120 while (_n>0):
121 if(_x >= self.sizeX):
122 #reaching out of bounds, so we should stop.
123 break
124 if(_y >= self.sizeY):
125 #reaching out of bounds, so we should stop.
126 break
127 if ((_x == _lineStartPos[0]) and (_y == _lineStartPos[1])):
128 #equals starting pos, so skip this.
129 pass
130 else:
131 _output.append([_x,_y])
132

133 if (_error > 0):
134 _x += _xInc
135 _error -= abs(_dy)
136 else:
137 _y += _yInc
138 _error += abs(_dx)
139 _n -= 1
140 return _output
141

142

143 def get(self,_posX:int,_posY:int):
144 ”””gets a datapoint from the grid based upon a grid index
145

146 Args:
147 _posX (int): grid index to read from
148 _posY (int): grid index to read from
149

150 Returns:
151 var: Value of grid at this point
152

153 Raises:
154 IndexError: X position is out of bounds
155 IndexError: Y position is out of bounds
156 ”””

38 B. Python code

157 if(_posX > self.sizeX):
158 raise IndexError(”X position is not in this grid!”)
159 if(_posY > self.sizeY):
160 raise IndexError(”Y position is not in this grid!”)
161

162 return self._grid[_posY,_posX]
163

164

165 def set(self,_posX:int,_posY:int,_value):
166 ”””sets a datapoint of the grid to _value based upon a grid index
167

168 Args:
169 _posX (int): grid index to read from
170 _posY (int): grid index to read from
171 _value (_type_): value to set
172

173 Raises:
174 IndexError: X position is out of bounds
175 IndexError: Y position is out of bounds
176 ”””
177 if(_posX > self.sizeX):
178 raise IndexError(”X position is not in this grid!”)
179 if(_posY > self.sizeY):
180 raise IndexError(”Y position is not in this grid!”)
181

182 self._grid[_posY,_posX] = _value
183 return
184

185 def print(self):
186 ”””Prints the grid to the console
187 ”””
188 print(self._grid)
189 return
190

191

192 def draw(self, _sizeX:int, _sizeY:int, _dpi:float):
193 ”””draws a heatmap of the occupancy grid map using matplotlib
194

195 Args:
196 _sizeX (int): x dimension of the figure in pixels
197 _sizeY (int): y dimension of the figure in pixels
198 _dpi (float): pixels per inch (resolution of image)
199

200 Returns:
201 Figure: figure of the grid
202 ”””
203 _fig:Figure = Figure(figsize=(_sizeX/_dpi,_sizeY/_dpi),dpi=_dpi)
204

205 _ax = _fig.subplots(1,1)
206 _pos = _ax.imshow(self._grid)
207 _fig.colorbar(_pos)
208 _ax.invert_yaxis()
209

210 #adds a red cross to the center of the screen to indicate the robot position
211 _ax.plot((self.sizeX/2),(self.sizeY/2),”r+”)
212 return _fig
213

214

215 def drawPlotly(self):
216 ”””Draws a heatmap of the occupancy grid map using Plotly
217

218 Returns:
219 Plotly.GraphObjects.Figure: heatmap figure
220 ”””
221 for x in range(600):
222 for y in range(600):
223 self._grid2[y][x] = self._grid[int(y/2)][int(x/2)]
224 _fig = go.Figure(go.Heatmap(z=self._grid2, zmin = 0.0, zmax = 1.0))
225 #_fig.update_layout(xaxis_scaleanchor=”y”)
226 return _fig
227

B.7. sensorModel.py 39

228

229 def __init__(self, _sizeX:int, _sizeY:int):
230 ”””Constructs a grid based upon the number of cells in X and Y direction.
231

232 Args:
233 _sizeX (int): number of cells in X direction
234 _sizeY (int): number of cells in Y direction
235 ”””
236 self.sizeX = _sizeX
237 self.sizeY = _sizeY
238 self._grid = np.full((self.sizeX,self.sizeY),0.5)
239 self._grid2 = np.full((600,600),0.0)
240 #set center of field to 0, since our robot is there. It’s impossible for something else to be there ;)
241 self._grid[int(_sizeX/2),int(_sizeY/2)] = 0
242

243 self._grid_angle = np.zeros((int(_sizeX),int(_sizeY)))
244 self._grid_distance = np.zeros((int(_sizeX),int(_sizeY)))
245

246 for x in range(self.sizeX):
247 for y in range(self.sizeY):
248 #filling the angle array with all angles compared to the center
249 #also filling the distance array with all distance from that point to the center
250 dx = x - int(_sizeX/2)
251 dy = y - int(_sizeY/2)
252 self._grid_angle[x, y] = math.degrees(math.atan2(int(_sizeX/2) - x, y - int(_sizeY/2))) % 360
253 self._grid_distance[x, y] = math.hypot(dx, dy)
254

255 #convert the angle array into values of the index for which ultrasone measurement it belongs
256 self._grid_angle_index = np.mod(np.floor_divide(np.add(self._grid_angle, 7.5), 15), 24).astype(int)
257 pass

B.7. sensorModel.py
1 import math
2 import numpy as np
3 from constants import constants
4 import program
5

6 class sensorModel:
7 stDevlidar = 0
8 stDevultra = 0
9

10 def probabilityBasedOnMeasurement(self, _measurement,_distanceFromOrigin):
11 delta = abs(_distanceFromOrigin - _measurement)
12 if delta <= self.stDevlidar:
13 return 0.90 # likely obstacle
14 elif _distanceFromOrigin < _measurement:
15 return 0.20 # likely free
16 else:
17 return 0.50 # unknown
18

19 def calcNewProbability(self, _measurement, _point, _inverse_dict, _distance):
20 _currProbability = program.program.instance.server.gridMap._grid[_point[1],_point[0]]
21

22 _modelProbability = self.probabilityBasedOnMeasurement(_measurement, _distance)
23

24 #using log-odds representation, as described in Thrun Forward Sensor Models
25 _dict_key = (_modelProbability,_currProbability)
26 if (_dict_key in _inverse_dict):
27 return _inverse_dict[_dict_key]
28 else:
29 eps = 1e-6
30 _modelProbability = max(eps, min(1 - eps, _modelProbability))
31 _currProbability = max(eps, min(1 - eps, _currProbability))
32

33

34 _logProb = np.log(_currProbability / (1 - _currProbability))
35

36

37 #calculate new probability

40 B. Python code

38 _logProb = _logProb + np.log(_modelProbability / (1 - _modelProbability))
39

40 #convert back to normal probability
41 _newProb = round(1 - 1/(1+math.exp(_logProb)),6)
42 _inverse_dict.update({_dict_key : _newProb})
43 return _newProb
44

45 def doModel (self, _measurement, _gridSquares, _inverse_dict):
46 ”””Calculates the gridmap based upon a measurement and the respective gridsquare
47

48 Args:
49 _measurement (float): measurement in cm.
50 _gridSquares (tupe): gridsquares hit by the ray
51 ”””
52 _res_measurement = _measurement/100*constants.gridResolution
53 for _square in _gridSquares:
54 _distance = program.program.instance.server.gridMap._grid_distance[_square[0],_square[1]]
55 if (abs(_distance - _res_measurement) >= self.stDevlidar) and (_distance >= _res_measurement):
56 #checks of the if the point is behind the measurement and if so, continue so the functions don’t get called
57 continue
58 #calculate the new probability and setting this point in the grid to that
59 _newProb = self.calcNewProbability(_res_measurement, _square, _inverse_dict, _distance)
60 program.program.instance.server.gridMap._grid[_square[1],_square[0]] =_newProb
61

62

63 def probabilityBasedOnMeasurementultra(self, _measurement,_distanceFromOrigin):
64 delta = abs(_distanceFromOrigin - _measurement)
65 if delta < self.stDevultra:
66 return 0.50 # likely obstacle
67 elif _distanceFromOrigin < _measurement:
68 return 0.30 # likely free
69 else:
70 return 0.50 # unknown
71

72 def calcNewProbabilityultra(self, _x, _y, _inverse_dict, _measurement, _distance):
73 _currProbability = program.program.instance.server.gridMap._grid[_y,_x]
74

75 _modelProbability = self.probabilityBasedOnMeasurementultra(_measurement, _distance)
76

77 #using log-odds representation, as described in Thrun Forward Sensor Models
78 _dict_key = (_modelProbability,_currProbability)
79 if (_dict_key in _inverse_dict):
80 return _inverse_dict[_dict_key]
81 else:
82 eps = 1e-6
83 _modelProbability = max(eps, min(1 - eps, _modelProbability))
84 _currProbability = max(eps, min(1 - eps, _currProbability))
85

86

87 #converting old probability to log-odds
88 _logProb = np.log(_currProbability / (1 - _currProbability))
89

90

91 #calculate new probability
92 _logProb = _logProb + np.log(_modelProbability / (1 - _modelProbability))
93

94 #convert back to normal probability
95 _newProb = round(1 - 1/(1+math.exp(_logProb)),6)
96 _inverse_dict.update({_dict_key : _newProb})
97 return _newProb
98

99 def doModelultra (self, _measurements, _inverse_dict):
100 ”””Calculates the gridmap based upon a measurement and the respective gridsquare
101

102 Args:
103 _measurement (float): measurement in cm.
104 _gridSquares (tupe): gridsquares hit by the ray
105 ”””
106 _res_distnaces = _measurements/100*constants.gridResolution
107 print(_res_distnaces)
108 for _x in np.arange(constants.gridSizeX*constants.gridResolution):

B.8. comms.py 41

109 for _y in np.arange(constants.gridSizeY*constants.gridResolution):
110 _angle_index = program.program.instance.server.gridMap._grid_angle_index[_x,_y]
111 _measurement = _res_distnaces[_angle_index]
112 _distance = program.program.instance.server.gridMap._grid_distance[_x,_y]
113 if (abs(_distance - _measurement) >= self.stDevultra) and (_distance >= _measurement):
114 #checks of the if the point is behind the measurement and if so, continue so the functions don’t get called
115 continue
116 #calculate the new probability and setting this point in the grid to that
117 _newProb = self.calcNewProbabilityultra(_x,_y, _inverse_dict, _measurement, _distance)
118 program.program.instance.server.gridMap._grid[_y,_x] =_newProb
119

120 def __init__(self, _stDevlidar, _stDevultra):
121 self.stDevlidar = _stDevlidar
122 self.stDevultra = _stDevultra
123 pass

B.8. comms.py
1 import pandas
2 import serial
3 import serial.tools
4 import serial.tools.list_ports
5 import program
6 import io
7 import sys
8 import numpy as np
9

10 class comms:
11

12 comPORT = ”COM5”
13 baudrate = 9600
14 serialConnection = None
15 adaptiveAnglesLIDAR = None
16

17

18 def __init__(self):
19 pass
20

21 def write(self, _string):
22 if(self.serialConnection == None):
23 raise Exception(”No serial connection has started”)
24 self.serialConnection.write(_string.encode(”utf-8”))
25

26 def update(self):
27 ”””Should be called every x ms, checks if there is new data to read.
28 ”””
29 if(self.serialConnection == None):
30 raise Exception(”No serial connection has started”)
31 if(self.serialConnection.in_waiting > 0):
32 #there is something to read, so let’s attempt that
33 bytes = self.serialConnection.readline()
34 self.handleRead(bytes)
35

36 def processBasicLIDAR (self, _data):
37 ”””Processes a default LIDAR measurement. Assumes 180 measurements spread equally around 360 degrees
38 Assumes that the data is rounded values in cm
39

40 Args:
41 _data (dataFrame): pandas dataframe
42 ”””
43 print(”Received basic LIDAR data! Processing now”)
44 _angleArray = np.arange(0, 360, 2) #expects 180 datapoints, spaced every 2 degrees.
45 _dataFrameArray = np.array(_data.iloc[0])
46 #remove first element, since that indicates the type of data
47 _dataFrameArray = _dataFrameArray[1:]
48 program.program.instance.server.handleLidarMeasurements(_angleArray,_dataFrameArray)
49

50 def processAdaptiveLIDAR (self, _angles, _data):
51 ”””Processes an adaptive LIDAR measurement.”””
52 print(”Received advanced LIDAR data! Processing now”)

42 B. Python code

53 _angleArray = np.array(_angles.iloc[0])
54 _angleArray = _angleArray[1:]
55 _dataFrameArray = np.array(_data.iloc[0])
56 _dataFrameArray = _dataFrameArray[1:]
57 program.program.instance.server.handleLidarMeasurements(_angleArray,_dataFrameArray)
58

59 def processUltrasound (self, _data):
60 ”””Processes a default ultrasound measurement. Assumes 24 measurements spread equally around 360 degrees
61 Assumes that the data is rounded values in cm
62

63 Args:
64 _data (dataFrame): pandas dataframe
65 ”””
66 print(”Received Ultrasound data! Processing now”)
67 _angleArray = range(360, 15)
68 _dataFrameArray = np.array(_data.iloc[0])
69 #remove first element, since that indicates the type of data
70 _dataFrameArray = _dataFrameArray[1:]
71 program.program.instance.server.handleUltrasoundMeasurements(_angleArray,_dataFrameArray)
72

73 def handleRead(self,_buffer):
74 ”””Processes a line from the serial port into it’s subsequent processing functions
75

76 Args:
77 _buffer (byte[]): line read from serial port
78 ”””
79 print(”here”)
80 buffer_str = _buffer.decode(’utf-8’)
81 buffer_io = io.StringIO(buffer_str)
82 print(sys.getsizeof(buffer_io))
83 dataFrame = pandas.read_csv(buffer_io, header=None)
84 if dataFrame.iloc[0, 0] == ”u”:
85 #we have an ultrasound data packet
86 self.processUltrasound(dataFrame)
87 elif dataFrame.iloc[0, 0] == ”p”:
88 #arduino status packet
89 print(dataFrame.columns)
90 elif dataFrame.iloc[0, 0] == ”l”:
91 #we have a basic LIDAR data packet
92 self.processBasicLIDAR(dataFrame)
93 elif dataFrame.iloc[0, 0] == ”a”:
94 #save lidar angles for later
95 dataFrame.to_csv(”Adaptive lidar angles”, index = False)
96 self.adaptiveAnglesLIDAR = dataFrame
97 elif dataFrame.iloc[0, 0] == ”b”:
98 dataFrame.to_csv(”Adaptive lidar data”, index = False)
99 self.processAdaptiveLIDAR(self.adaptiveAnglesLIDAR, dataFrame)

100 elif dataFrame.iloc[0, 0] == ”k”:
101 old_frame = np.array(dataFrame.iloc[0, 1:])
102 new_frame = dataFrame
103 for i in range(24):
104 new_frame.iloc[0, i + 1] = old_frame[(i+18)%24]
105 print(new_frame.to_string)
106 new_frame.to_csv(”Adaptive ultrasound data”, index = False)
107 self.processUltrasound(new_frame)
108

109 program.program.instance.updateMap()
110

111 def startComms(self):
112 ”””Sets up a communication link and listening threadf
113 ”””
114 self.serialConnection = serial.Serial(port=self.comPORT,baudrate=self.baudrate)
115

116 def stopComms(self):
117 ”””Stops the current serial connection
118 ”””
119 self.serialConnection.close()
120

121 def listPorts(self):
122 ”””Sends all comports as a list of strings
123

B.8. comms.py 43

124 Returns:
125 _type_: _description_
126 ”””
127 stringPorts = []
128 for _port in serial.tools.list_ports.comports():
129 stringPorts.append(_port.name)
130 return stringPorts

C
C++ code

Below the C++ code can be found that was use to control the ultrasonic sensors and the LiDAR. In this
code the function for controlling the ultrasonic sensors and the non-adaptive LiDAR where created by
our subgroup while the code for the adaptive LiDAR was written by the other subgroup.

1 #include <string.h>
2 #include <Servo.h>
3 #include <NewPing.h>
4 #include ”SDM15.h”
5 #include <Array.h>
6

7 #define SONAR_NUM 4
8 #define MAX_DISTANCE 400
9

10 Servo myservo;
11 float pos = 0; // Variable to store the servo position
12 float distances1[3];
13 float distances2[3]; //
14 float distances3[3];
15 float distances4[3];
16 int lidardistances[180];
17 int final_distance1;
18 int final_distance2; //
19 int final_distance3;
20 int final_distance4;
21 int datapoints[24];
22 float time1;
23 float time2; //
24 float time3;
25 float time4;
26 String input = ””;
27

28

29 NewPing sonar[SONAR_NUM] = {
30 NewPing(9, 8, MAX_DISTANCE),
31 NewPing(7, 6, MAX_DISTANCE), // also used for the adaptive boy
32 NewPing(5, 4, MAX_DISTANCE),
33 NewPing(3, 2, MAX_DISTANCE)
34 };
35

36

37 SDM15 sdm15(Serial1);
38 const int MAX_ELEMENTS = 240; // Maximum Array elements for the lidar data
39 Array<float, MAX_ELEMENTS> lidar_data; // Variable Array for storing the lidar measurements
40 Array<float, MAX_ELEMENTS> lidar_angles; // Variable Array for storing the angles that belong to the lidar measurements
41 float sector_pointer = -3.75; // Variable to store the position of the start of a sector
42 float distance_array[3]; // Array to contain the three ultrasound measurements to be averaged
43 float ultrasound_data[24] = {}; // Array to cointain all final ultrasound measurements
44

45 int sub_points; // Variable to contain the amount of lidar sub points that are needed in that sector
46 int ultrasound_flag = 0; // Boolean flag for intrasector ultrasound measurement

44

45

47

48 void lidarcheck();
49 void Ultradata();
50 void Lidardata();
51 void AdaptiveLidardata();
52 void ComplementLidardata();
53

54

55 void setup() {
56 Serial.begin(9600);
57 myservo.attach(13);
58 Serial1.begin(460800);
59 lidarcheck();
60 }
61

62 void loop() {
63 input = ””;
64 pos = 0;
65 myservo.write(pos); // tell servo to go to position in variable ’pos’
66 if (Serial.available() > 0) {
67 input = Serial.readString();
68 }
69 if (input == ”u”) {
70 Ultradata();
71 }
72 if (input == ”l”) {
73 Lidardata();
74 }
75 if (input == ”a”) {
76 AdaptiveLidardata();
77 }
78 if (input == ”c”) {
79 ComplementLidardata();
80 }
81 }
82

83 int degree_to_ms(float degree) {
84 return int(degree * (1870 / 180) + 550); // heeft een gekke offset vandaar de getallen
85 }
86

87

88

89 void Ultradata() {
90 // myservo.write(0);
91 for (int j = 0; j <= 5; j++) {
92 myservo.writeMicroseconds(((j * 7.5) / 180) * 2000 + 500);
93 delay(100);
94 time1 = sonar[0].ping_median(3);
95 delay(100);
96 time2 = sonar[1].ping_median(3);
97 delay(100);
98 time3 = sonar[2].ping_median(3);
99 delay(100);

100 time4 = sonar[3].ping_median(3);
101 //Serial.println(distances1[i]);
102 final_distance1 = time1 / 58.31;
103 final_distance2 = time2 / 58.31;
104 final_distance3 = time3 / 58.31;
105 final_distance4 = time4 / 58.31;
106

107 if (final_distance1 == 0) {
108 datapoints[j] = 403;
109 } else {
110 datapoints[j] = final_distance1 + 3;
111 }
112

113 if (final_distance2 == 0) {
114 datapoints[j + 6] = 404;
115 } else {
116 datapoints[j + 6] = final_distance2 + 4;
117 }

46 C. C++ code

118

119 if (final_distance3 == 0) {
120 datapoints[j + 12] = 403;
121 } else {
122 datapoints[j + 12] = final_distance3 + 3;
123 }
124

125 if (final_distance4 == 0) {
126 datapoints[j + 18] = 404;
127 } else {
128 datapoints[j + 18] = final_distance4 + 4;
129 }
130 }
131 myservo.write(0);
132 Serial.print(”u,”);
133 for (int i = 0; i < 24; i++) {
134 Serial.print(datapoints[i]);
135 Serial.print(i < 23 ? ”,” : ”\n”);
136 datapoints[i] = 0;
137 }
138 }
139

140

141 void lidarcheck() {
142 VersionInfo info = sdm15.ObtainVersionInfo();
143

144 if (info.checksum_error) {
145 // String message = ””;
146 Serial.println(”checksum error”);
147 // for (int i = 0; i < 25; i++)
148 // message += String(info.recv[i], HEX);
149

150 // Serial.println(message);
151 }
152

153 Serial.print(”model: ”);
154 Serial.println(info.model);
155 Serial.print(”hardware_version: ”);
156 Serial.println(info.hardware_version);
157 Serial.print(”firmware_version_major: ”);
158 Serial.println(info.firmware_version_major);
159 Serial.print(”firmware_version_minor: ”);
160 Serial.println(info.firmware_version_minor);
161 Serial.print(”serial_number: ”);
162 Serial.println(info.serial_number);
163

164 // get self check test
165 TestResult test = sdm15.SelfCheckTest();
166

167 if (test.checksum_error) {
168 Serial.println(”test checksum error”);
169 }
170

171 if (test.self_check_result) {
172 Serial.println(”self check success”);
173 } else {
174 Serial.println(”self check failed”);
175 Serial.print(”error code: ”);
176 Serial.println(test.self_check_error_code);
177 return;
178 }
179 }
180

181

182

183

184 int scan(float pos) {
185 int result;
186 sdm15.StartScan();
187 ScanData data = sdm15.GetScanData();
188 if (data.checksum_error) {

47

189 // // Serial.println(”checksum error”);
190 // lidardistances[pos] = 0;
191 result = 0;
192 } else {
193 // //Serial.println(data.distance);
194 result = int(data.distance / 10) + 5;
195 };
196 // lidar_data.push_back(result);
197 // lidar_angles.push_back(pos);
198 sdm15.StopScan();
199 return result;
200 }
201

202 void Lidardata() {
203 // myservo.writeMicroseconds(500);
204 // delay(100);
205 for (int pos = 0; pos < 180; pos += 1) { // goes from 0 degrees to 360 degrees
206 //Serial.println(”here”);
207 // myservo.writeMicroseconds((pos/180)*2000 + 500);
208 //Serial.println(pos);
209 myservo.write(pos); // tell servo to go to position in variable ’pos’
210 delay(20);
211 //Serial.println(pos);
212 // scan(pos); // voert 1 scan uit
213 // int(data.distance / 10) + 5;
214 lidardistances[pos] = scan(pos);
215 //delay(10);
216 }
217 myservo.writeMicroseconds(500);
218 Serial.print(”l,”);
219 for (int i = 0; i < 180; i++) {
220 Serial.print(lidardistances[i]);
221 Serial.print(i < 179 ? ”,” : ”\n”);
222 lidardistances[i] = 0;
223 }
224 }
225

226 int calculate_sector_interest(int sector) {
227 if (sector < 6) {
228 return 6;
229 } else {
230 float edge_array[sector - 1];
231 for (int i = 0; i < sector - 1; i += 1) {
232 edge_array[i] = abs(ultrasound_data[i] - ultrasound_data[i + 1]);
233 }
234 float sum = 0;
235 for (int i = 0; i < sector - 1; i += 1) {
236 sum += edge_array[i];
237 }
238 for (int i = 0; i < sector - 1; i += 1) {
239 edge_array[i] = edge_array[i] / sum; //Normalize array
240 }
241 if (sector == 6) {
242 return round((edge_array[sector - 6] + edge_array[sector - 5]) / 2 * 6 * (sector + 1));
243 } else {
244 return round((edge_array[sector - 7] + edge_array[sector - 6] + edge_array[sector - 5]) / 3 * 6 * (sector + 1));
245 }
246 }
247 }
248

249 int calculate_sector_interest_2(int sector){
250 if(sector < 6){
251 return 6;
252 }
253 float inverse_array[sector];
254 for(int i = 0; i < sector; i += 1){
255 inverse_array[i] = 1/ultrasound_data[i];
256 }
257 float sum = 0;
258 for(int i = 0; i < sector; i += 1){
259 sum += inverse_array[i];

48 C. C++ code

260 }
261 for(int i = 0; i < sector; i += 1){
262 inverse_array[i] = inverse_array[i]/sum;
263 }
264 return round(inverse_array[sector - 6]*6*sector);
265 }
266

267

268 float average(float *array) {
269 float sum = 0L;
270 int num_of_measer = 0;
271 for (int i = 0; i < 3; i++) {
272 if (array[i] > 5) {
273 num_of_measer += 1;
274 sum += array[i];
275 }
276 }
277 return ((float)sum) / num_of_measer;
278 }
279

280

281 void AdaptiveUltrasound(int sector) {
282 for (int i = 0; i < 3; i += 1) {
283

284 time2 = sonar[1].ping_median(3);
285 final_distance2 = time2 / 58.31;
286 if (final_distance2 == 0) {
287 distance_array[i] = 404;
288 } else {
289 distance_array[i] = final_distance2 + 4;
290 }
291 }
292 ultrasound_data[sector] = average(distance_array);
293 }
294

295 void AdaptiveLidardata() {
296 // pos = 0;
297 sector_pointer = -3.75;
298 for (int sector = 0; sector < 24; sector += 1) {
299 if (sector == 0) {
300 myservo.writeMicroseconds(degree_to_ms(pos));
301 delay(10);
302 AdaptiveUltrasound(sector);
303 ultrasound_flag = 1;
304 sub_points = calculate_sector_interest(sector);
305 for (int i = 0; i < sub_points; i += 1) {
306 if (sector_pointer + 7.5 / sub_points * i < 0) {
307 pos += 7.5 / sub_points;
308 } else {
309 // scan(pos);
310 lidar_angles.push_back(pos);
311 lidar_data.push_back(scan(pos));
312 pos += 7.5 / sub_points;
313 myservo.writeMicroseconds(degree_to_ms(pos));
314 delay(5);
315 }
316 }
317 }
318

319 else {
320 sub_points = calculate_sector_interest(sector);
321 if (sub_points == 0) {
322 sub_points = 1;
323 }
324 for (int i = 0; i < sub_points; i += 1) {
325 if ((7.5 / sub_points * i > 3.75) && (ultrasound_flag == 0)) {
326 myservo.write(sector_pointer + 3.75);
327 delay(10);
328 AdaptiveUltrasound(sector);
329 ultrasound_flag = 1;
330 pos += (7.5 / sub_points);

49

331 myservo.writeMicroseconds(degree_to_ms(pos));
332 delay(5);
333 } else {
334

335 scan(pos);
336 lidar_angles.push_back(pos);
337 lidar_data.push_back(scan(pos));
338 pos += (7.5 / sub_points);
339 myservo.writeMicroseconds(degree_to_ms(pos));
340 delay(5);
341 }
342 }
343 }
344 sector_pointer += 7.5;
345 pos = sector_pointer;
346 ultrasound_flag = 0;
347 }
348

349 Serial.print(”a,”);
350 int size = lidar_angles.size();
351 for (int i = 0; i < size; i++) {
352 Serial.print(lidar_angles[0]*2);
353 Serial.print(i < (size-1) ? ”,” : ”\n”);
354 lidar_angles.remove(0);
355 // lidar_angles[i] = 0;
356 }
357 Array<float, MAX_ELEMENTS> lidar_angles; // Variable Array for storing the angles that belong to the lidar measurements
358 Serial.print(”b,”);
359 size = lidar_data.size();
360 for (int i = 0; i < size; i++) {
361 Serial.print(lidar_data[0]);
362 Serial.print(i < (size-1) ? ”,” : ”\n”);
363 lidar_data.remove(0);
364 }
365 Array<float, MAX_ELEMENTS> lidar_data; // Variable Array for storing the lidar measurements
366 Serial.print(”k,”);
367 for (int i = 0; i < 24; i++) {
368 Serial.print(ultrasound_data[i]);
369 Serial.print(i < 23 ? ”,” : ”\n”);
370 ultrasound_data[i] = 0;
371 }
372 }
373

374 void ComplementLidardata() {
375 sector_pointer = -3.75;
376 for (int sector = 0; sector < 24; sector += 1) {
377 if (sector == 0) {
378 myservo.writeMicroseconds(degree_to_ms(pos));
379 delay(10);
380 AdaptiveUltrasound(sector);
381 ultrasound_flag = 1;
382 sub_points = calculate_sector_interest(sector);
383 for (int i = 0; i < sub_points; i += 1) {
384 if (sector_pointer + 7.5 / sub_points * i < 0) {
385 pos += 7.5 / sub_points;
386 } else {
387 // scan(pos);
388 lidar_angles.push_back(pos);
389 lidar_data.push_back(scan(pos));
390 pos += 7.5 / sub_points;
391 myservo.writeMicroseconds(degree_to_ms(pos));
392 delay(5);
393 }
394 }
395 }
396

397 else {
398 sub_points = calculate_sector_interest_2(sector);
399 if (sub_points == 0) {
400 sub_points = 1;
401 }

50 C. C++ code

402 for (int i = 0; i < sub_points; i += 1) {
403 if ((7.5 / sub_points * i > 3.75) && (ultrasound_flag == 0)) {
404 myservo.write(sector_pointer + 3.75);
405 delay(10);
406 AdaptiveUltrasound(sector);
407 ultrasound_flag = 1;
408 pos += (7.5 / sub_points);
409 myservo.writeMicroseconds(degree_to_ms(pos));
410 delay(5);
411 } else {
412

413 scan(pos);
414 lidar_angles.push_back(pos);
415 lidar_data.push_back(scan(pos));
416 pos += (7.5 / sub_points);
417 myservo.writeMicroseconds(degree_to_ms(pos));
418 delay(5);
419 }
420 }
421 }
422 sector_pointer += 7.5;
423 pos = sector_pointer;
424 ultrasound_flag = 0;
425 }
426

427 Serial.print(”a,”);
428 int size = lidar_angles.size();
429 for (int i = 0; i < size; i++) {
430 Serial.print(lidar_angles[0]*2);
431 Serial.print(i < (size-1) ? ”,” : ”\n”);
432 lidar_angles.remove(0);
433 // lidar_angles[i] = 0;
434 }
435 Array<float, MAX_ELEMENTS> lidar_angles; // Variable Array for storing the angles that belong to the lidar measurements
436 Serial.print(”b,”);
437 size = lidar_data.size();
438 for (int i = 0; i < size; i++) {
439 Serial.print(lidar_data[0]);
440 Serial.print(i < (size-1) ? ”,” : ”\n”);
441 lidar_data.remove(0);
442 }
443 Array<float, MAX_ELEMENTS> lidar_data; // Variable Array for storing the lidar measurements
444 Serial.print(”k,”);
445 for (int i = 0; i < 24; i++) {
446 Serial.print(ultrasound_data[i]);
447 Serial.print(i < 23 ? ”,” : ”\n”);
448 ultrasound_data[i] = 0;
449 }
450 }

D
Test result figures

In this appendix, all the figures of chapter 5 are shown again. Here they are shown in a bigger size for
better readability.

Figure D.1: One ultrasonic measurement figure 5.1a

51

52 D. Test result figures

Figure D.2: One ultrasonic measurement figure 5.1b

Figure D.3: One ultrasonic measurement figure 5.1c

53

Figure D.4: Average three ultrasonic measurements figure 5.2a

Figure D.5: Average three ultrasonic measurements figure 5.2b

54 D. Test result figures

Figure D.6: Average three ultrasonic measurements figure 5.2c

Figure D.7: Average five ultrasonic measurements figure 5.3a

55

Figure D.8: Average five ultrasonic measurements figure 5.3b

Figure D.9: Average five ultrasonic measurements figure 5.3c

56 D. Test result figures

Figure D.10: Distance 50 cm and resolution 100 figure 5.4a

Figure D.11: Distance 100 cm and resolution 100 figure 5.4b

57

Figure D.12: Distance 200 cm and resolution 100 figure 5.4c

Figure D.13: Distance 50 cm and resolution 50 figure 5.4d

58 D. Test result figures

Figure D.14: Distance 100 cm and resolution 50 figure 5.4e

Figure D.15: Distance 200 cm and resolution 50 figure 5.4f

59

Figure D.16: Distance 50 cm and resolution 25 figure 5.4g

Figure D.17: Distance 100 cm and resolution 25 figure 5.4h

60 D. Test result figures

Figure D.18: Distance 200 cm and resolution 25 figure 5.4i

Figure D.19: Figure 5.5a

61

Figure D.20: Figure 5.5b

Figure D.21: Figure 5.5c

	Introduction
	Program of Requirements
	Hardware Requirements
	Software Requirements
	Project Objectives

	Hardware Design
	Objective of the Hardware Design
	The Starting Point: ELLAS
	Our Design Approach
	Sensor Selection
	Ultrasound Timing Analysis
	Final Design

	Software Design
	General Project Setup
	Why Use Two Devices?
	Communication Between Devices
	GUI

	Occupancy grid maps
	Implementation

	Inverse sensor model
	Implementation

	Bayesian statistics
	Implementation

	Computational speed improvements

	Results
	Conclusion and Discussion
	Further Work & Improvements

	Technical drawings
	Python code
	requirements.txt
	constants.py
	main.py
	program.py
	server.py
	gridmap.py
	sensorModel.py
	comms.py

	C++ code
	Test result figures

