
D
el
ft
U
ni
ve

rs
ity

of
Te

ch
no

lo
gy

Distributed Optimisation
Using Stochastic PDMM
Convergence, transmission losses and privacy

Master Thesis
Sebastian Jordan

Distributed Optimisation
Using Stochastic PDMM
Convergence, transmission losses and privacy

by

Sebastian Jordan
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended on Thursday 7 July, 2022 at 14:00.

Student number: 4590813
Faculty: EEMCS
Master program: Electrical Engineering
Specialisation: Signals and Systems
Project Duration: November, 2021 - July, 2022
Thesis committee: Prof. dr. ir. R. Heusdens, TU Delft, supervisor

Dr. ir. R. C. Hendriks, TU Delft
Prof. dr. ir. G. J. T. Leus, TU Delft
Dr. ir. J. H. Weber, TU Delft

Cover Image: Edges of a random geometric graph, generated with Matlab.

Abstract
In recent years, the large increase in connected devices and the data that is collected by these devices
has caused a heightened interest in distributed processing. Many practical distributed networks are of
heterogeneous nature. Because of this, algorithms operating within these networks need to be simple,
robust against network dynamics and resource efficient. Additionally, if privacy preservation methods
are properly implemented, they add to the power of distributed processing by making it possible to
leverage the data of many different users, without infringing the privacy of the individuals involved.

In this study we focus on the primal-dual method of multipliers (PDMM), which is a promising dis-
tributed optimisation algorithm that seems to be suitable for distributed optimisation in heterogeneous
networks. Most theoretical work that can be found in existing literature focuses on synchronous ver-
sions of PDMM. However, in heterogeneous networks, asynchronous algorithms are favourable over
synchronous algorithms. So far, simulation results have indicated that asynchronous PDMM converges
and can even converge in the presence of transmission losses.

In this work we analyse the properties of stochastic PDMM, which is a general framework that can
model variations of PDMM such as asynchronous PDMM and PDMM with transmission losses. We
build upon previous empirical results of PDMM and formulate theoretical proofs to substantiate these
results. After defining stochastic PDMM and proving its convergence, we compare a number of PDMM
variations that have been mentioned throughout the literature. Lastly, we derive a lower bound for
the variance of the auxiliary variable in the context of stochastic PDMM, assuming uniform updating
probabilities. This lower bound indicates that subspace based privacy preservation is applicable to
certain instances of stochastic PDMM, like asynchronous PDMM.

Themain result of this work is a theoretical proof that shows that stochastic PDMMconverges almost
surely if the updating probabilities of each auxiliary variable are nonzero. Two important conclusions
that follow from this proof are the almost sure convergence of asynchronous PDMM and unicast PDMM
with transmission losses. Another useful result is the fact that subspace based privacy preservation is
effective when using asynchronous PDMM.

iii

Preface
After multiple years of studying in Delft, I am now nearing the end of my studies. Before you lies my
thesis report that dives into various aspects of distributed optimisation using stochastic PDMM. This
report was written as partial fulfilment of the degree Master of Science in Electrical Engineering at
the Delft University of Technology, in the period November 2021-July 2022. During the research for
this thesis I have studied existing literature, performed various numerical simulations and formulated
theoretical proofs regarding various stochastic implementations of PDMM. On top of that, I have had
the opportunity to present some of my results at the WIC Symposium on Information Theory and Signal
Processing in the Benelux, which was a great experience. It has been a tremendously fruitful period in
which I have developed my academic research capabilities and have managed to find some interesting
results along the way.

In general, communication and collaboration have a positive influence on achievable results, this
is also applicable to this thesis. For this reason, I would like to thank some people that helped me
throughout my graduation period and positively influenced the end result.

Firstly, I would like to extend my sincere gratitude to my thesis supervisor Richard Heusdens.
Throughout the entire process Richard has been extremely enthusiastic and supportive. At the begin-
ning of the process Richard helped me get to grips with the rather involved mathematical background
theory. During the latter stages, when I was diving into more and more sidepaths, he would help me
keep focused on the main goals of this thesis.

I would also like to thank Richard Hendriks, Jos Weber and Geert Leus for being members of my
thesis committee and showing interest in my research.

Furthermore, I would like to thank all people at CAS for providing a good atmosphere at the faculty.
A special thanks goes out to the other MSc students at CAS for keeping things fun in the office and
sparring about our research.

Lastly, I would like to thank my family and friends for being supportive throughout my studies, for
havingmuch appreciated coffee breaks and for help with my thesis, like proofreading and brainstorming.

I hope you enjoy reading this thesis!

Sebastian Jordan
Delft, June 2022

v

Contents

Abstract iii

Preface v

List of Figures ix

List of Tables xi

1 Introduction 1
1.1 Related Work . 3
1.2 Main contribution . 4
1.3 Organisation of the report . 4

2 Nomenclature 5

3 Background 7
3.1 Monotone operator theory . 7
3.2 Probability. 8
3.3 Problem statement . 8

3.3.1 Network definition . 8
3.3.2 Optimisation problem. 9

3.4 PDMM. 9
3.4.1 Derivation . 9
3.4.2 Synchronous PDMM . 10
3.4.3 PDMM variations . 11

3.5 Subspace based privacy preservation. 12
3.5.1 Adversary model . 12
3.5.2 Privacy metric. 12
3.5.3 Subspace perturbation . 13
3.5.4 Privacy preserving synchronous PDMM. 13

4 Stochastic PDMM Convergence 15
4.1 Stochastic PDMM definition . 15
4.2 Stochastic averaged PDMM convergence proof . 16
4.3 Stochastic standard PDMM convergence proof. 18
4.4 Summary . 20

5 Asynchronous PDMM Algorithms 21
5.1 Definitions. 21
5.2 Convergence . 22
5.3 z-update PDMM . 23

5.3.1 Unicast . 23
5.3.2 Broadcast . 23

5.4 λ-update PDMM . 24
5.5 Differential PDMM . 26
5.6 Broadcast analysis . 26

5.6.1 Transmission loss example . 27
5.6.2 Inconsistent initialisation . 29
5.6.3 Broadcast PDMM adaption . 29

5.7 Comparison . 29

vii

viii Contents

6 Privacy Preservation with Stochastic PDMM 31
6.1 Broadcast z-update privacy analysis . 31
6.2 Lower bound on variance . 32

7 Numerical Experiments 35
7.1 Simulation setup . 35
7.2 Averaging . 36
7.3 Broadcast with transmission losses . 37
7.4 Least squares. 38
7.5 ℓ1 norm . 38
7.6 Operator averaging and stochastic PDMM . 40
7.7 Privacy . 41
7.8 Summary . 41

8 Conclusions and Future Work 43
8.1 Future work . 44

References 47

A Monotone operator theory 51

B SITB Poster Submission 53

List of Figures

1.1 Example indicating the difference between a centralised network (a) and a distributed
network (b), consisting of a number of smart watches collecting personal health data. . 2

3.1 Example of a graph G(V, E) with V = {1, ..., 5} and E = {(1, 2), (1, 4), ..., (5, 7), (6, 7)}. . . 9

5.1 Left: Lossless asynchronous distributed network, Va = {1, 5} and Ea = E ; Middle: Lossy
synchronous distributed network, Va = {1, 5} and Ea = {(1, 2), (3, 4), (4, 5)}; Right: Leg-
end. 22

7.1 Random geometric graph that is used for simulations, N = 30, r = 50m. 36
7.2 Convergence of distributed averaging with different levels initialisation variance using

asynchronous PDMM. 37
7.3 Convergence of distributed averaging with different levels of transmission loss. Left:

asynchronous PDMM, Right: synchronous PDMM. 37
7.4 Convergence of 2-node distributed averaging, with a transmission loss at k = 1. 38
7.5 Convergence of distributed least squares with different levels of transmission loss using

asynchronous PDMM. 39
7.6 Convergence of ℓ1 norm minimisation for different θ-averaging values. 40
7.7 Convergence of ℓ1 norm minimisation for 100 Monte Carlo runs using non-averaged

asynchronous PDMM. 40
7.8 Comparison between the convergence of ℓ1 norm minimisation using synchronous and

asynchronous PDMM. Themean asynchronous data is calculated using 100Monte Carlo
runs. 41

7.9 Variance results for asynchronous distributed averaging with subspace based privacy
preservation. Left: Mean variance in subspace Ψ, Right: Mean variance in subspace Ψ⊥. 42

7.10 Variance results for asynchronous distributed averaging with subspace based privacy
preservation. Left: Mean variance in subspace Ψ⊥, Right: Variance of individual entries
of z after convergence. 42

ix

List of Tables

5.1 A list of definitions related to the PDMM algorithms. 22
5.2 Values of asynchronous unicast PDMM variables at node one and two, with a trans-

mission failure between node one and two at k = 1. Bold values are updated in the
respective iteration. 28

5.3 Values of asynchronous broadcast PDMM variables at node one and two, with a trans-
mission failure between node one and two at k = 1. Bold values have been updated in
the respective iteration. 28

5.4 Comparison between different versions of asynchronous PDMM: z-update unicast, broad-
cast and differential, and λ-update unicast and broadcast. 30

7.1 Simulation parameters. 36

xi

1
Introduction

The world around us is becoming increasingly connected. More and more electronic devices are being
used and these devices are producingmore andmore data. Many devices have the ability to (wirelessly)
connect to other devices and thus form large networks. Throughout evolution, the human species has
greatly benefited from their ability to collaborate with others. The achievements that can be reached
by many people combined surpass the sum of the individual achievements. This same philosophy can
be used to leverage the computing power and data from a network of connected devices, by means of
distributed signal processing.

Traditionally networks are structured in a centralised manner. Think of large servers that have many
different devices connected to them to access information, see Figure 1.1a for an example. There are
a number of downsides to centralised networks. The reliability is highly dependent on a single (central)
device in the network. Any error or external influence that affects this single point of failure has large
consequences for the entire network. Moreover, centralised networks are hard to scale. When the
number of devices in the network grows, the required computing power of the central device increases
because it will need to process more data. Another aspect that becomes harder when scaling up a
centralised network is the communication between the central device and all other devices. The cen-
tral device will require a high communication bandwidth to be able to connect to all devices and the
distances between the central device and other devices can become large, resulting in high communi-
cation power requirements.

In recent years, the large increase in connected devices and the data that is collected by these
devices has caused a heightened interest in distributed processing. Many practical networks are struc-
tured following a distributed network topology, see Figure 1.1b for an example. Distributed processing
could leverage the full potential of large scale distributed networks. An important aspect of these types
of networks is that they are often of heterogeneous nature, with connected devices having different com-
putation, communication and power specifications. Because of the heterogeneity of modern networks,
algorithms operating within these networks need to be:

• simple, due to the fact that many distributed algorithms are iterative and require many steps until
convergence;

• robust against network dynamics, because of the varying and heterogeneous nature of large
scale distributed networks;

• resource efficient, because it is common for some devices in the network to have limited com-
putation and power resources.

The aspects mentioned above are not achievable with centralised networks and instead require dis-
tributed solutions. When distributed networks increase in size more devices are added to the network,
but these devices also bring more (potential) computing power to the network. Because of this, dis-
tributed topologies are more scalable than centralised topologies. On top of that, distributed networks
do not have a single point of failure and communication is only needed between nearby neighbours,
thereby reducing the communication costs.

With regards to distributed algorithms, a lot of research has been done in the context of distributed
averaging consensus, where the average of noisy measurements is calculated over the entire network.

1

2 Chapter 1. Introduction

(a) Centralised network (b) Distributed network

Figure 1.1: Example indicating the difference between a centralised network (a) and a distributed network (b), consisting of a
number of smart watches collecting personal health data.

As presented in [1] gossip based algorithms are relatively simple and can be performed asynchronously.
Randomised gossip is one of these algorithms, but has relatively slow convergence rates and is not ro-
bust against transmission losses or the removal of devices in the network. In [2] network knowledge is
used to speed up convergence rates, by combining distributed averaging with geometric routing. How-
ever, this type of method is sensitive to network topology changes and transmission losses. Weighted
gossip algorithms, like the one discussed in [3], use weights to add robustness against transmission
loss. Although consensus based algorithms can in theory be applied for other distributed optimisation
problems than just averaging, most of the existing analysis is done based on distributed averaging
consensus. Furthermore, the algorithm in [3] is based on a second order Newton-Raphson scheme
and thus requires the second derivatives of the cost functions.

A more general type of distributed algorithms is the class of convex optimisation based algorithms.
One of these algorithms is the primal-dual method of multipliers (PDMM), introduced in [4]. Its conver-
gence has been proved for synchronous implementations of the algorithm in [5] and simulations show
it also converges if it is implemented asynchronously. Asynchronous PDMM has the advantage that
there is no need for clock synchronisation between the nodes, which is extremely useful in heteroge-
neous distributed networks. Asynchronous algorithms also do not require additional communication
overhead to keep the clocks synchronised and are not slowed down by the slowest device in the net-
work. Furthermore, subspace based privacy preservation, as proposed in [6] and [7], is applicable
to synchronous PDMM. In [5] it is shown that PDMM is closely related to the more commonly used
ADMM algorithm (see [8]), but can achieve faster convergence rates. Additionally, by slightly rewriting
the update equations, a broadcast implementation of PDMM was derived, instead of the usual unicast
implementation. This broadcast implementation comes with a number of benefits. For example, it
is a lot simpler to implement and requires only one transmitted message per iteration instead of one
transmitted message per neighbour of the selected node each iteration. In simulations it is seen that,
contrary to asynchronous unicast PDMM, broadcast PDMM does not converge in a situation with trans-
mission losses. For many real world implementations, the wireless link between nodes will not be ideal,
so robustness against transmission losses is an important aspect of distributed algorithms.

Privacy is another important aspect of distributed optimisation. Because of the nature of distributed
networks, many different users can be connected and exchange information. Depending on the ap-
plication, adequate measures may need to be taken in order to preserve the privacy of user data in
such networks. If privacy preservation methods are properly implemented, they add to the power of
distributed processing by making it possible to leverage the data of many different users, without in-
fringing the privacy of the individuals involved. This property is particularly interesting with data relating
to matters like health [9], financial transactions [10] and smart metering [11].

A common type of privacy preservation method is secure multiparty computation (SMPC), which
is based on cryptographic techniques. These cryptographic techniques offer privacy preservation at

1.1. Related Work 3

the cost of high computational complexity. An example of such a technique, using fully homomorphic
encryption, is presented in [12]. In some methods, like [13], a technique called secret sharing is used to
lower the computational costs. With secret sharing, the private data is shared over different parties in
the network, so that it is only possible to retrieve the private data if a sufficient number of devices com-
bine their shares of the secret. However, this is usually paired with an increase in communication cost,
which is undesirable in large scale distributed networks. Additionally, these methods are not fully de-
centralised because of the fact that a trusted third party is required during the necessary preprocessing
phase.

Another commonly used privacy preservation method, introduced in [14], is differential privacy. This
method is based on noise insertion on the messages that are shared between devices in the network.
The computational costs are lower than full encryption and comparable to secret sharing based SMPC.
In [15], differential privacy is used in the context of distributed constrained optimisation. The downside
of differential privacy is the fact that there is always a trade-off between privacy and accuracy. Other
techniques, like [16], use a differential privacy method that uses a trusted third party, thus not being
fully decentralised.

Recently a promising type of privacy preservation has been proposed that addresses some of the
downsides of SMPC and differential privacy. Subspace based privacy preservation, first proposed in
[6], uses the random initialisation in a network dependent subspace as privacy preserving noise. The
subspace in which the noise is inserted does not affect the optimisation variable. Because of this, there
is no trade-off between privacy and accuracy. Furthermore, secure encryption is only needed in the
initialisation phase of the algorithm. This means computational costs and communication costs are a
lot lower when compared to SMPC.

In this work we analyse the properties of stochastic PDMM, which is a general framework that model
variations of PDMM such as asynchronous PDMM and PDMMwith transmission losses. We build upon
previous empirical results and aim to find theoretical proofs to substantiate these results. This report
revolves around the following research question:

• Main: What influence do stochastic updates and transmission losses have on the favourable
properties of PDMM?

To address this question we focus on the following three subquestions:

• Can a proof be formulated for the convergence of stochastic PDMM?
• What is the difference between unicast and broadcast implementations and how does this effect
convergence of stochastic PDMM?

• Is subspace based privacy preservation effective in combination with stochastic PDMM imple-
mentations?

1.1. Related Work
This work builds upon the existing research regarding PDMM. The algorithm was first introduced in [4],
after which the link with monotone operator theory was made in [5]. In [5] the convergence of standard
synchronous PDMM is proved for strongly convex and differential cost functions. If the cost function
also has a Lipschitz continuous gradient a linear convergence rate is derived. It is also shown that
the averaged version of synchronous PDMM converges for arbitrary convex closed and proper cost
functions.

More recently a subspace based privacy method, that is compatible with PDMM, was presented in
[6]. This method is further analysed in [17] and [7]. So far proofs relating to subspace based privacy
preservation are based on synchronous versions of PDMM.

The background theory used for the proof of stochastic PDMM is mainly related to monotone op-
erator theory [18] and probability theory [19]. Some convergence proofs for related ADMM based
stochastic algorithms can be found in the literature. For instance the convergence of asynchronous
ADMM (1/2-averaged operator) is proved in [20] and this proof is later generalised to work with a gen-
eral θ-averaged ADMM adaptation in [21]. An alternative approach to the convergence proof of this
class of mathematical problems is given in [22]. In [23] robustness against transmission loss is explicitly
mentioned in the context of asynchronous θ-averaged ADMM.

Standard PDMM is a nonexpansive operator, which means in general it shows faster convergence
than averaged operators like ADMM. To the best of our knowledge, there does not yet exist a proof of

4 Chapter 1. Introduction

convergence for stochastic versions of nonexpansive operators, like PDMM, without the need for an
additional operator averaging step.

1.2. Main contribution
The main contribution of this work is the convergence proof of stochastic PDMM, which is a general
framework that includes asynchronous PDMM and PDMM with transmission losses. This convergence
proof is a good step towards real world applications of PDMM, which will most likely be implemented
asynchronously. The theoretical nature of this proof gives us more insight into the convergence prop-
erties of stochastic PDMM than the empirical results from the past and is a good step in the direction
of the reliable use of stochastic PDMM in critical real world applications. Additionally, to the best of the
author’s knowledge, this is the first work that analyses and compares the properties of PDMM variations
like unicast, broadcast and differential implementations. Lastly, this work provides the first analysis of
subspace based privacy preservation applied to a stochastic distributed optimisation algorithm.

1.3. Organisation of the report
The report is organised as follows:

• In Chapter 2 the general nomenclature used throughout the work is defined.
• In Chapter 3 the most relevant background information is summarised and the PDMM algorithm
is formally introduced.

• In Chapter 4 a formal proof is given for the convergence of stochastic PDMM.
• In Chapter 5 a number of PDMM variations are analysed and compared, focusing on the differ-
ences between unicast and broadcast PDMM in the presence of transmission losses.

• In Chapter 6 subspace based privacy is analysed for stochastic PDMM.
• In Chapter 7 numerical results are given to validate the statements made throughout the report.
• In Chapter 8 the conclusions of this work are summarised and recommendations are given re-
garding future work.

2
Nomenclature

The following notational conventions are used throughout this work:

• Lower case letters x are used to denote scalars, bold lowercase letters x are used to denote
vectors and bold uppercase letters X are used to denote matrices.

• Calligraphic letters X are used to denote sets.
• The powerset, 2S , is the set containing all subsets of set S, which is defined as 2S = {A|A ⊆ S}.
• Bold uppercase letters are also used to denote operators. Where an operator T on Rn is a subset
of Rn × Rn defined as T = {(x, y)|x, y ∈ Rn}. With slight abuse of notation, by T(x) and Tx we
mean the set{y|(x, y) ∈ T}. The difference between a matrix and an operator will become clear
from the context in which bold uppercase letters are used.

• I is the identity matrix of appropriate dimensions
• 1 and 0 are the all ones and all zeros vector respectively, each of appropriate dimensions.
• Uppercase letters X are used to denote a scalar random variable. Vectors and matrices consist-
ing of random variables have no explicit notation. It will be mentioned in the accompanying text
when vectors or matrices are made up of random variables.

• P{ω} is used to denote the probability that the event ω occurs and E[•] is used to denote the
statistical expectation.

• An instance of a sequence, x, at iteration number, k, is indicated as x(k).
• The notation f∗ is used to denote the conjugate of function f , defined as f∗(y) = supx(yTx−f(x)).
• To facilitate notation in this report, norms are assumed to be the two-norm, so ||x|| is used to
indicate ||x||2. Any other p-norm is denoted as ||x||p.

• We define ||a||2Q = ⟨a,Qa⟩, where ⟨•, •⟩ is used to denote the inner product.
• Given a matrix A, the range space of A is denoted by ran(A), where ∀y ∈ ran(A), ∃u | Au = y.
The kernel space of A is denoted by ker(A), where ∀y ∈ ker(A), Ay = 0.

5

3
Background

In this chapter, some relevant background theory relating to distributed optimisation is given. First,
in Section 3.1 we will state a number of useful properties from monotone operator theory that are
used throughout the rest of the report. Next, in Section 3.2 some results from probability theory are
introduced, which will be used in the stochastic convergence proof given in this report. After this, a
summary of some general aspects of distributed optimisation is given in Section 3.3. This is followed
by the derivation of PDMM and the definition of synchronous PDMM in Section 3.4. Finally, in Section
3.5 a subspace based privacy preservation method is presented that can be applied to PDMM.

3.1. Monotone operator theory
Monotone operator theory is very useful in the analysis and comparison of different optimisation algo-
rithms. Using this framework, many seemingly different optimisation algorithms can be derived and
analysed in a unified way. Furthermore, the most insightful derivation of PDMM, which is stated in [5]
and summarised in Section 3.4, is based on monotone operator theory.

It is assumed that the reader of this report has basic knowledge of monotone operator theory, so in
this section we will only state the results of monotone operator theory that are most relevant for the rest
of this report. We would like to refer to Appendix A for a more complete overview of useful definitions
and properties regarding monotone operator theory. For the interested reader, we recommend [18] and
[24] for a more exhaustive treatment of monotone operators.
Definition 3.1. If a sequence

(
x(k)

)
k∈N in R(n) possesses a subsequence that converges to a point

x∗ ∈ R(n), then x is a sequential cluster point of
(
x(k)

)
k∈N.

Definition 3.2. An operator T on Rn is nonexpansive if, for all x, y ∈ Rn, we have ||T(y) − T(x)|| ≤
||y− x||.
Definition 3.3. Let T be a nonexpansive operator and let θ ∈ (0, 1). Then T is averaged with constant
θ, or θ-averaged, if there exists a nonexpansive operator R such that T = (1− θ)I+ θR.
Definition 3.4. Let T be an operator on Rn, then, given x(0) ∈ Rn, a sequence of Banach-Picard
iterations is defined as x(k+1) = Tx(k) ∀k ∈ N.
Theorem 3.1. [18, Prop. 5.15-5.16] Krasnosel’skii-Mann iterations: Let T be an operator such that
fix (T) ̸= ∅. The sequence

x(k+1) = x(k) + λ(k)
(
T
(
x(k)

)
− x(k)

)
∀k ∈ N,

converges (weakly) to a point in fix (T) in two cases:
1. T is nonexpansive and

(
λ(k)

)
k∈N is a sequence in [0, 1] such that

∑
k∈N λ(k)(1− λ(k)) = +∞,

2. T is θ-averaged and
(
λ(k)

)
k∈N is a sequence in [0, 1/θ] such that

∑
k∈N λ(k)(1− θλ(k)) = +∞.

Theorem 3.2. [18, Lem. 2.47] Let (x(k))k∈N be a sequence in Rn and let C be a nonempty subset of
Rn. Suppose that, for every x ∈ C, (||x(k) − x||)k∈N converges and that every weak sequential cluster
point of (x(k))k∈N belongs to C. Then (x(k))k∈N converges weakly to a point in C.

7

8 Chapter 3. Background

3.2. Probability
Because asynchronous updates and transmission losses are both random processes, some results
from probability theory will be required in the related convergence proofs in this report. In this section
a few relevant results from probability theory are given. This includes the definition of a martingale and
an important related convergence theorem. We will not cover the fine details of probability theory and
martingales and for the interested reader, we recommend [19] for a more exhaustive explanation of
probability theory.

Consider a probability space (Ω,F , P), whereΩ denotes the set of all possible outcomes, F denotes
the family of all possible events and P denotes the family of probabilities for all events in F . Let
(F (k))k≥0 be an increasing sequence of σ-algebras, having the property that F (k) ⊂ F (k+1) ⊂ F , for
all k ≥ 0.

Definition 3.5. [19, Def. 23.3] Consider a random vector Y : Ω→ Rn and define B(Rn) as the Borel
σ-algebra of Rn (see [19, Thm. 2.1]). The σ-algebra generated by Y is

σ(Y) =
{
A ⊂ Ω : Y −1(B) = A, for some B ∈ B(Rn)

}
.

Definition 3.6. [19, Def. 24.1] A sequence of random variables (X(k))k≥0 is called a martingale (a
supermartingale respectively), if

1. E
[
|X(k)|

]
<∞, for each k;

2. X(k) is F (k)-measurable, for each k;
3. E

[
X(k+1)|F (k)

]
= X(k) a.s. (E

[
X(k+1)|F (k)

]
≤ X(k) a.s. respectively), for each k.

Theorem 3.3. [19, Cor. 27.1] If X(k) is a nonnegative supermartingale, then limk→∞ X(k) = X exists
a.s., and is finite a.s.

Definition 3.7. Let A(k) be a sequence of events (in A), we define lim supk→∞ A(k) = ∩∞k=1

(
∪l≥kA

(l)
)
.

The event that is described in Definition 3.7 can be interpreted probabilistically as
”A(k) occurs infinitely often”, which can be abbreviated as ”i.o.”, so lim supk→∞ A(k) = {A(k) i.o.}.

Definition 3.8. [19, Def. 23.5] Let Y ∈ L1(Ω,F , P) and let A be a sub σ-algebra of F , then the
conditional expectation of Y given A is the unique element E[Y |A] such that

E[Y Z] = E[E[Y |A]Z],

for all Z ∈ L2(Ω,A, P).

Theorem 3.4 (Jensen’s Inequality). [19, Thm. 23.9] Let φ : R→ R be a convex function and let X and
ϕ(X) be integrable random variables, for any sub σ-algebra A,

φ (E[X|A]) ≤ E [φ(X)|A] .

3.3. Problem statement
In this section we will mathematically define the problem statement of distributed optimisation. First,
we define a distributed network and after this we formulate an optimisation problem over this network.
This optimisation problem can be solved using different types of algorithms, one of which is PDMM,
which will be introduced in Section 3.4.

3.3.1. Network definition
Consider a general undirected network consisting of n nodes, see Figure 3.1 for a simple example of
such a network. The corresponding graph is described by G(V, E), where V = {1, ..., n} denotes the
set of nodes and E ⊆ V × V denotes the set of m undirected edges, so that (i, j) ∈ E if nodes i and j
share a physical connection1. Additionally we define the set of directed edges Edir as the set that has
an entry (i|j) and (j|i) for each (i, j) ∈ E and thus contains 2m directed edges.

1We assume that the tuples (i, j) are always ordered such that i < j

3.4. PDMM 9

1

64

2

5

3

7

(1,4)

(1,2)

(2,5)

(2,3)

(4,5) (5,6)

(5,7)
(6,7)

Figure 3.1: Example of a graph G(V, E) with V = {1, ..., 5} and E = {(1, 2), (1, 4), ..., (5, 7), (6, 7)}.

Furthermore, we use the following notational conventions:

• A variable xi is related to node i;
• A variable xi|j is related to directed edge (i|j);
• The neighbourhood of a node i is defined as Ni =

{
{j ∈ V | (i, j) ∈ E} ∪ {j ∈ V|(j, i) ∈ E}

}
.

• Each node i is equipped with a function fi ∈ Γ0(Hni), where each function is dependent on a
local variable xi ∈ Rni and Γ0 denotes the set of all convex, closed and proper (CCP) functions.

3.3.2. Optimisation problem
We would like to solve the following optimisation problem:

min
x

f(x) = min
xi,∀i∈V

∑
i∈V

fi(xi)

s.t. Ai|jxi + Aj|ixj = bi,j ∀(i, j) ∈ E ,
(3.1)

which is defined over the graph G with constraints between entries defined by Ai|j ∈ Rmi|j×ni and
bi|j ∈ Rmi|j . Let nV =

∑
i∈V ni and mE =

∑
(i,j)∈E mi|j . This optimisation problem is separable and

with suitable algorithms it can be solved in a distributed manner. Various techniques can be used to
solve the optimisation problem stated in (3.1). In this work we use the distributed algorithm PDMM.

For many practical use cases distributed consensus is desired. This means that for all (i, j) ∈ E the
constraints in (3.1) are defined using Ai|j = I, Aj|i = −I and bi,j = 0. Because consensus problems
are very common, throughout this report we will assume the network constraints correspond to these
consensus constraints. The results can also be extended to more general problems where this is not
the case.

3.4. PDMM
In this section we will summarise the derivation of PDMM. After this, we will state the definition of
synchronous PDMM, which is the most analysed version of PDMM so far. Finally, we briefly introduce
PDMM variations that will be discussed in detail in Chapter 5.

3.4.1. Derivation
Consider a distributed optimisation problem as defined in (3.1). The Lagrangian dual of this problem is
given by

min
νi|j ,∀(i,j)∈E

∑
i∈V

f∗
i

−∑
j∈Ni

AT
i|jνi|j

+ bTν.

10 Chapter 3. Background

We can define λ ∈ R2mE , C = [c1, c2, ..., cn] ∈ R2mE×nV and b ∈ R2mE , with the following entries for
each edge el = (i, j) ∈ E :

• ci(l) = Ai|j and cj(l +mE) = Aj|i,
• λ(l) = λi|j and λ(l +mE) = λj|i

• b(l) = b(l +mE) =
1
2bi,j .

Using the definitions above and a symmetric permutation matrix, P ∈ R2mE×2mE , that permutes the top
mE rows with the bottom mE rows, we can reformulate the Lagrangian dual problem as

min
λ

f∗(−CTλ) + dTλ

s.t. (I− P)λ = 0.
(3.2)

This is called the extended dual problem, see [5]. The constraint can be expressed by using the indicator
function of ker(I− P), denoted as ιker(I−P). A minimiser, say λ∗, to the problem stated in (3.2) is found
when

0 ∈ C∂f∗(CTλ∗)− d+ ∂ιker(I−P)(λ
∗). (3.3)

As shown in [5], by rephrasing (3.3) as a fixed point condition using Peaceman-Rachford splitting (see
Def. A.20), the PDMM operator is defined as

TP,ρ = CρT2
◦ CρT1

, (3.4)

where CρT denotes the Cayley operator of T and T1 = C∂f∗(CTλ) − d and T2 = ∂ιker(I−P). Both T1

and T2 are maximal monotone operators, so their resolvent operators are both firmly nonexpansive. It
follows that the Cayley operators are both nonexpansive, which makes TP,ρ nonexpansive.

To guarantee convergence for arbitrary CCP cost functions, we can apply operator averaging. This
results in the θ-averaged PDMM operator, which is defined as

TθP,ρ = (1− θ)I+ θCρT2
◦ CρT1

(3.5)

with θ ∈ (0, 1). Standard PDMM is equivalent to (3.5) with θ = 1. Note that standard PDMM does not
follow the definition of an averaged operator and, therefore, is at best nonexpansive.

As derived in [5], the update equations for PDMM can be made explicit by evaluating the Cayley
operators in (3.5). This leads to four update equations that can be used to implement PDMM:

x(k+1) = argmin
x

(
f(x) +

〈
CT z(k), x

〉
+

ρ

2
||Cx− d||2

)
, (3.6)

λ(k+1) = z(k) + ρ
(
Cx(k+1) − d

)
, (3.7)

y(k+1) = 2λ(k+1) − z(k), (3.8)

z(k+1) = (1− θ)z(k) + θPy(k+1). (3.9)

Throughout this report, we will refer to x as the primal variable, λ as the dual variable and y, z as
the auxiliary variables.

3.4.2. Synchronous PDMM
The update equations that were derived in the previous section are separable across the nodes. This
makes it possible to derive individual update equations, that can be performed in a distributed setting.
Furthermore, as mentioned in Section 3.3.2, we assume consensus constraints. These assumptions
hold for all numerical examples that will be included in this report. Therefore, in the remainder of the
report we will use the following properties:

• d = 0,
• Ai|j = I and Aj|i = −I, ∀(i, j) ∈ E ,
• ||Cx||2 =

∑
i∈V

∑
j∈Ni

||Ai|jxi||2 =
∑

i∈V di||xi||2, where di denotes the degree of node i,
• zTCx =

∑
i∈V

∑
j∈Ni

zTi|jAi|jxi.

3.4. PDMM 11

Algorithm 1 Synchronous θ-averaged PDMM (unicast).

1: Initialise: z(0) ∈ R2mE ▷ Initialisation
2: for k = 0, ..., do
3: for all i ∈ V do ▷ Primal update
4: x(k+1)

i = argminxi
[
fi(xi) +

∑
j∈Ni

(
(z(k)i|j)

TAi|jxi + ρ
2 ||Ai|jxi||22

)]
5: for all j ∈ Ni do ▷ Dual update
6: λ

(k+1)
i|j = z(k)i|j + ρAi|jx(k+1)

i

7: y(k+1)
i|j = 2λ

(k+1)
i|j − z(k)i|j

8: end for
9: end for

10: for all i ∈ V , j ∈ Ni do ▷ Transmit updated variables (unicast)
11: Nodej ← Nodei(y(k+1)

i|j)

12: end for

13: for all i ∈ V , j ∈ Ni do ▷ Auxiliary update
14: z(k+1)

j|i = (1− θ)z(k)j|i + θy(k+1)
i|j

15: end for
16: end for

With these properties it is possible to write out individual update equations that can be used for dis-
tributed implementations of PDMM. Algorithm 1 incorporates these individual updating equations into
the pseudocode for synchronous PDMM. In the synchronous implementation of PDMM, at every iter-
ation, all nodes perform a primal update followed by a dual and an auxiliary update. After this, the
updated auxiliary variables are transmitted to the neighbours, which can then perform their update of
z. In [5], the convergence of synchronous standard PDMM is proved for strongly convex, differential
cost functions and the convergence of synchronous θ-averaged PDMM is proved for arbitrary CCP cost
functions.

3.4.3. PDMM variations
There are a number of different implementations of PDMM that have been introduced throughout the
years. In this section we introduce the main aspects in which these variations can differ. The main up-
date equations of all of PDMM variations are the same as the update equations derived in this section.
The differences in these implementations arise from the distribution of the different parts of the algorithm
and at which point in the updating equations a message is transmitted to neighbouring nodes. So far no
in depth review of these PDMM variations has been performed and for some of these implementations
the convergence has not yet been proved. In Chapter 5 we will analyse a variety of PDMM implemen-
tations and where possible link these algorithms to the convergence proof of stochastic PDMM, that is
given in Chapter 4.

Synchronous and asynchronous algorithms
A distinction can be made between synchronous and asynchronous implementations of distributed al-
gorithms. Synchronous implementations require a global clock that all nodes in the network are synced
to. At each time slot of this global clock every node contacts its neighbours. The fact that clock synchro-
nisation is needed adds a lot of communication overhead. Furthermore, for correct synchronisation the
execution times of the computations and communication need to be known a priori and the duration of
an iteration is governed by the slowest device in the network. In large scale distributed networks this
is often hard to determine and network properties are often dynamic.

Asynchronous algorithms, on the other hand, do not require synchronisation with a global clock.
This makes them a lot more suitable for many real world distributed applications. An asynchronous
clock model is based on local clocks at each node. According to these local clocks a random node
(or a random subset of nodes) is activated and contacts its neighbours according to the algorithm in
question. Practical distributed networks are often heterogeneous and thus consist of different types

12 Chapter 3. Background

of devices. In situations with heterogeneous networks asynchronous algorithms are highly desirable,
because these algorithms do not require extra communication for synchronisation and the iteration
speed is not limited by the slowest device in the network.

Unicast and broadcast
Another aspect in which distributed algorithms can vary is the way in which data is transmitted from
node to node. In some algorithms a specific message is sent to each neighbouring node individually at
every iteration, this is called unicast. In other cases the broadcast nature of wireless communications
can be exploited. In such cases broadcast algorithms can be used, which only require the transmission
of a single universal message to all neighbouring nodes at every iteration. Because less transmissions
are required, broadcast algorithms are favourable in applications where communication costs must be
kept low.

3.5. Subspace based privacy preservation
In this section we will explain the working of subspace based privacy preservation. First we will define
the adversary model under which the method works, next we will define the privacy metric and the
concept of subspace perturbation. Finally, we will explain the working of privacy preserving PDMM.

The main idea behind subspace based privacy preservation is to use random initialisation of the
dual or auxiliary variable in a particular subspace as privacy preserving noise. This subspace does
not affect the primal variable. The method was first proposed in [6] applied to broadcast synchronous
PDMM. It is also compared to other types of privacy preservation methods in [17] and more recently
a communication efficient synchronous version is presented in [7], which uses combines differential
quantisation with subspace based privacy preservation. In this section we will summarise the main
results of these papers, some of which will be used in the analysis of subspace based privacy preser-
vation with stochastic PDMM (see Chapter 6). For simplicity we will assume that at each node the local
variable and constraint variables are one dimensional. This means that ni = 1 ∀i ∈ V and mi|j = 1
∀(i, j) ∈ E , so nV = n and mE = m. The results can be straightforwardly generalised to higher dimen-
sional variables.

3.5.1. Adversary model
Subspace based privacy preservation works in the presence of two types of adversaries. We assume
that the two types of adversaries are both present and can cooperate by sharing their gathered infor-
mation. With this information the adversaries attempt to infer the private data of honest nodes in the
network.

The first adversary type consists of corrupted nodes in the network that collude and share infor-
mation together. These corrupted nodes, known as passive adversaries, are assumed to follow the
algorithm instructions, so they do not actively sabotage the optimisation. We will use Nh and Nc, to
denote honest and corrupt nodes respectively. The honest neighbourhood of node i is defined as
Ni,h = Ni ∩Nh and the set of corrupt edges is defined as Ec = {(i, j) : (i, j) ∈ E , (i, j) /∈ Nh ×Nh}.

The other type of adversary, known as an eavesdropping adversary, can eavesdrop all messages
transmitted along edges in the network. With securely encrypted communication channels, this type of
adversary has no effect, but in the case of large scale distributed optimisation such encryption is not
feasible due to the large number of iterations needed to reach convergence.

3.5.2. Privacy metric
For this method privacy is defined using the mutual information between the private data and the data
that is observed by the adversaries. Let Si be the private continuous random variable, that relates to
node i and have variance σ2

i . Let Zi = Si + Ni be what the adversaries can observe related to Si,
where Ni is a random variable that is statistically independent of Si. Ni acts as noise masking the
private data Si. To achieve a certain privacy level δ, the mutual information between Si and Zi should
be below this value. Using I(X; Y) to denote the mutual information between random variablesX and
Y , we can define δ-level privacy as I(Si; Zi) ≤ δ. As derived in [6], under the assumption that the
random variables have Gaussian distributions, the condition for reaching δ-level privacy at node i is

σ2
Ni
≥

σ2
Si

22δ − 1
.

3.5. Subspace based privacy preservation 13

This condition shows that an arbitrarily high level of privacy (arbitrarily small mutual information) can
be achieved by making the noise variance arbitrarily large.

3.5.3. Subspace perturbation
Subspace based privacy exploits the fact that there is a subspace that does not affect the primal variable.
As discussed in [5], every two synchronous PDMM updates the auxiliary variables are only affected in
the subspace

Ψ = ran(C) + ran(PC).
The orthogonal subspace of Ψ is defined as

Ψ⊥ = ker(CT) ∩ ker((PC)T).

The auxiliary variable can be split up into z(k)Ψ = ΠΨz(k) and z(k)
Ψ⊥ = (I −ΠΨ)z(k), where ΠΨ is used

to denote the orthogonal projection onto the subspace Ψ2. By definition of the subspace Ψ⊥, we can
see that CT z(k)

Ψ⊥ = 0 and thus the components of z(k) that are in the subspace Ψ⊥ do not play a role in
updating the primal variable (see (3.6)). Because of this property, arbitrarily large noise in the subspace
Ψ⊥ will not affect primary convergence, making it possible to use noise in this subspace to mask private
data. The matrix [C PC] ∈ R2m×2n can be seen as an incidence matrix of a bipartite graph with 2n
nodes and 2m edges. As mentioned in [6], dim(Ψ) = 2n− 1 as long as m ≥ n, so that Ψ⊥ is nonempty.

3.5.4. Privacy preserving synchronous PDMM
In this section we will analyse subspace based privacy preserving synchronous PDMM. The general
idea is to randomly initialise z (or λ), so that zΨ⊥ (or λΨ⊥) is also nonzero. The two assumptions that
are required to preserve privacy are:

1. The communication channels in the network are securely encrypted when transmitting the ini-
tialised values z(0) (or λ(0));

2. Each honest node has at least one honest neighbour, so for an honest node i, Ni,h ̸= ∅.

Under these assumptions the private data is obscured by the noise of zΨ⊥ (or λΨ⊥) and thus the
adversaries never have full knowledge of the private data.

To analyse what information the adversaries can deduce, we can express the primal update equation
(3.6) as

0 ∈ ∂fi(x
(k+1)
i) +

∑
j∈Ni

Ai|jz
(k) + ρdix

(k+1)
i . (3.10)

The private data of a node is present in the local objective function fi, so the only term in (3.10) that con-
tains private data is ∂fi(x

(k+1)
i). Through knowledge of the PDMM algorithm, adversaries can use the

inclusion stated above to deduce information about the term ∂fi(x
(k+1)
i). The data that is known to the

adversaries depends on the implementation of PDMM. So far, two synchronous implementations have
been analysed. In [6] broadcast λ-update PDMM is analysed and in [7] adaptive quantised differential
PDMM is analysed. We will highlight some important results from these two papers.

In the case that broadcast synchronous λ-update PDMM is used, it is shown in [6] that, after deduc-
ing the known terms from (3.10), the adversaries can observe

∂fi

(
x
(k+1)
i

)
+
∑

j∈Ni,h

Ai|jλ
(k)
j|i .

As the iterations proceed, λ(k)
Ψ converges and thus its variance decreases to zero, making it unusable

for privacy preservation. The only part that can continuously preserve privacy by having a nonzero
variance is λ

(k)

Ψ⊥ . In the case of synchronous PDMM λ
(k)

Ψ⊥ = Pk(I−ΠΨ)λ
(0). So under the assumption

that Ni,h ̸= ∅, a sufficient condition to achieve a mutual information that is smaller than δ is

∃j ∈ Ni,h : var
([

ΠΨ⊥λ(0)
]
j|i

)
≥

var
(
∂fi(x

(k+1)
i)

)
22δ − 1

,

2The same split can be applied to λ.

14 Chapter 3. Background

assuming that the random variables have Gaussian distributions. In [7], a similar analysis can be found
for adaptive quantised differential synchronous PDMM, where the quantised difference of the auxiliary
variable z is sent to neighbouring nodes, see [25]. It is also shown that z(k)

Ψ⊥ = 1/2(I + P) + 1/2(2θ −
1)k(I − P)z(0)

Ψ⊥ , which is used to derive a closed form expression for E
[
z(k)
Ψ⊥z(k),TΨ⊥

]
. If the auxiliary

variable is randomly initialised in such a way that E
[
z(0)z(0),T

]
= σ2I, the covariance matrix of z(k)

Ψ⊥ can
be expressed as

E
[
z(k)
Ψ⊥z(k),TΨ⊥

]
= ΠΨ⊥

(
σ2

2

(
(I+ P) + |2θ − 1|2k(I− P)

))
.

This expression indicates that the variance of zΨ⊥ has a nonzero nondecreasing component that de-
pends on the initialisation variance.

4
Stochastic PDMM Convergence

In this chapter, we first define a general stochastic version of PDMM in Section 4.1. After this, we
formulate the convergence proof for stochastic θ-averaged PDMM and stochastic standard PDMM
in Sections 4.2 and 4.3 respectively. The main approach of the proof in this chapter was originally
presented in [21], but we include specific results for non-averaged PDMM. To the best of our knowledge,
this is the first convergence proof for stochastic Banach-Picard type iterations with a nonexpansive
operator, without the necessity of operator averaging. Furthermore, an earlier attempt at this proof
was made in [26] (unpublished). In this chapter we follow the main steps of this proof and add steps to
complete it. The convergence results of this chapter will be used in Chapter 5 to prove the convergence
of asynchronous PDMM and PDMM with transmission loss.

We would like to note that some of the lemmas and theorems from [18] that are used in the proof
mention weak convergence. In the case of PDMM z(k) ∈ R2mE is finite dimensional and thus by [18,
Lemma 2.51] weak convergence implies strong convergence. Thus, throughout this chapter we only
consider strong convergence.

4.1. Stochastic PDMM definition
First, we will define a stochastic Banach-Picard iteration, which forms the update equation for stochastic
PDMMwhen applied to the PDMM operator TP,ρ. Once this is defined, we state two assumptions, which
are then used to derive an expression that forms the basis of the proofs in Section 4.2 and Section 4.3.

Stochastic updates can be defined by assuming that each auxiliary variable zi|j can be updated
based on a Bernoulli random variable Ui|j ∈ {0, 1}, with mean µi|j = P{Ui|j = 1} = E[Ui|j] ∈ (0, 1).
We define the random matrix U(k) ∈ R2mE×2mE as a block diagonal matrix with entries

ui|j = Ui|j Imi,j
∀i ∈ V , j ∈ Ni,

ordered similarly as the entries of z.

Definition 4.1. For an operator T and a sequence of realisations of random updating matrices
(
U(k)

)
=

diag(u(k)), we define the stochastic Banach-Picard iteration as:

z(k+1) =
(
I− U(k+1)

)
z(k) + U(k+1)Tz(k). (4.1)

To summarise, U(k) is a random diagonal updating matrix that has zeros and ones on its diagonal.
This matrix determines which entries of z are updated in a particular iteration:

• Ui|j = 1 corresponds to updating entry zi|j using a Banach-Picard iteration of operator T,
• Ui|j = 0 corresponds to not updating entry zi|j .

15

16 Chapter 4. Stochastic PDMM Convergence

Consider a stochastic Banach-Picard sequence of operator T, see Definition 4.1, with fix(T) ̸= ∅, where
the following assumptions hold true:

Assumption 4.1.
(
U(k)

)
k∈N is a random i.i.d. sequence1.

Assumption 4.2. µi|j > 0, ∀i ∈ V , j ∈ Ni, so E[U] = Ū ≻ 0.

Now, take z∗ ∈ fix (T) and a known initialisation z(0).2 Using Assumptions 4.1 and 4.2 and the
conditional expectation with respect to the sigma-algebra F (k) = σ

(
z(0), ..., z(k)

)
, we can derive

E
[
||z(k+1) − z∗||2Ū−1 |F (k)

]
=
∑
i∈V

∑
j∈Ni

1

µi|j
E

[∥∥∥∥z(k)i|j − U
(k+1)
i|j z(k)i|j + U

(k+1)
i|j

[
Tz(k)

]
i|j
− z∗i|j

∥∥∥∥2 |F (k)

]

=
∑
i∈V

∑
j∈Ni

1

µi|j
E

[
||z(k)i|j − z∗i|j ||2 +

(
U

(k+1)
i|j

)2 ∥∥∥∥[Tz(k)]
i|j
− z(k)i|j

∥∥∥∥2

+ 2U
(k+1)
i|j

〈
z(k)i|j − z∗i|j ,

[
Tz(k)

]
i|j
− z(k)i|j

〉
|F (k)

]

=
∑
i∈V

∑
j∈Ni

1

µi|j

(
||z(k)i|j − z∗i|j ||2

+ µi|j

[[
Tz(k)

]2
i|j
−
(
z(k)i|j

)2
− 2z∗i|j

[
Tz(k)

]
i|j

+ 2z∗i|jz
(k)
i|j

])
=
∑
i∈V

∑
j∈Ni

1

µi|j

(
||z(k)i|j − z∗i|j ||2 + µi|j

[∥∥∥∥[Tz(k)]i|j − z∗i|j
∥∥∥∥2 − ||z(k)i|j − z∗i|j ||2

])

=
∑
i∈V

∑
j∈Ni

1− µi|j

µi|j
||z(k)i|j − z∗i|j ||2 +

∥∥∥∥[Tz(k)]i|j − z∗i|j
∥∥∥∥2

= ||z(k) − z∗||2Ū−1 − ||z(k) − z∗||2 + ||Tz(k) − z∗||2,
(4.2)

where the third line results from the conditioning onF (k) and the fact that U2
i|j = Ui|j , ∀i ∈ V , j ∈ Ni. It is

worth noting that the outcome of (4.2) is still a random variable and thus the related expressions include
an implicit ”almost surely” qualifier. In Sections 4.2 and 4.3 we will use (4.2) to show that stochastic
averaged PDMM and stochastic standard PDMM converge almost surely.

4.2. Stochastic averaged PDMM convergence proof
In this section, we provide a convergence proof for stochastic θ-averaged PDMM. This is a general
framework that can be used to model PDMM variations such as asynchronous PDMM and PDMM with
transmission losses. First, almost sure auxiliary convergence is proved in Theorem 4.1, for arbitrary
CCP cost functions. This proof is based on Lemmas 4.1-4.3 and Theorem 3.2. Next, it is shown that
auxiliary convergence leads to a primal optimal solution in Theorem 4.2.

Assume a sequence of stochastic Banach-Picard iterations of the θ-averaged PDMM operator TθP,ρ,
as stated in (3.5). For arbitrary CCP cost functions TP,ρ is nonexpansive and thus TθP,ρ is θ-averaged.
Consequently, we can use [18, Proposition 4.35] and (4.2) to show that

E
[
||zk+1 − z∗||2Ū−1 |F (k)

]
≤ ||z(k) − z∗||2Ū−1 −

1− θ

θ
||(I− TP,ρ)z(k)||2. (4.3)

This inequality will be used for both Lemma 4.1 and 4.3. Firstly, (4.3) shows that the sequence of
random variables ||z(k) − z∗||2Ū−1 forms a nonnegative supermartingale, see Definition 3.6. Because
the square root function is concave (on R+), Jensen’s inequality [19, Thm. 23.9] can be applied to find√

E
[
||zk+1 − z∗||2Ū−1 |F (k)

]
≥ E

[
||zk+1 − z∗||Ū−1 |F (k)

]
. (4.4)

1Note that no assumption is made on the dependence between the entries Ui|j of U(k).
2Note that z(0) and z∗ are deterministic and all other z(k)’s are random vectors.

4.2. Stochastic averaged PDMM convergence proof 17

From (4.3) we know that E
[
||zk+1 − z∗||2Ū−1 |F (k)

]
≤ ||z(k)− z∗||2Ū−1 . Using the fact that the square root

function is nondecreasing on R+ and using (4.4) we find

E
[
||zk+1 − z∗||Ū−1 |F (k)

]
≤
√
E
[
||zk+1 − z∗||2Ū−1 |F (k)

]
≤ ||z(k) − z∗||Ū−1 . (4.5)

This shows that ||z(k) − z∗||Ū−1 is also a nonnegative supermartingale. We can use this property to
prove the following lemma.

Lemma 4.1. There is a probability one set on which ||z(k) − z∗||Ū−1 converges for every z∗ ∈ fix(TP,ρ).

Proof. As shown in (4.5), for any z∗ ∈ fix(TP,ρ), ||z(k)−z∗||Ū−1 is a nonnegative supermartingale. Thus,
Theorem 3.3 can be applied to show that it converges almost surely to a random variable Z ∈ [0,∞).

For the next part of the proof, wewill use (4.3) to formulate a useful inequality involvingE
[
||zk+1 − z∗||2Ū−1

]
.

This inequality is derived in Lemma 4.2 below.

Lemma 4.2. Assume that (4.3) holds, then

E
[
||zk+1 − z∗||2Ū−1

]
≤ ||z(0) − z∗||2Ū−1 −

1− θ

θ

k∑
t=0

E
[
||(I− TP,ρ)z(t)||2

]
.

Proof. Take the expected value on both sides of (4.3) to get

E
[
||zk+1 − z∗||2Ū−1

]
≤ E

[
||z(k) − z∗||2Ū−1

]
− 1− θ

θ
E
[
||(I− TP,ρ)z(k)||2

]
. (4.6)

First, we show that the for k = 0

E
[
||z1 − z∗||2Ū−1

]
≤ E

[
||z(0) − z∗||2Ū−1

]
− 1− θ

θ
E
[
||(I− TP,ρ)z(0)||2

]
= ||z(0) − z∗||2Ū−1 −

1∑
t=0

1− θ

θ
E
[
||(I− TP,ρ)z(t)||2

]
,

where we use the fact that z(0) and z∗ are deterministic. This shows that for the base case the expres-
sion stated in the lemma holds. Next, assume that

E
[
||zk+1 − z∗||2Ū−1

]
≤ ||z(0) − z∗||2Ū−1 −

1− θ

θ

k∑
t=0

E
[
||(I− TP,ρ)z(t)||2

]
,

then by evaluating (4.6) for iteration k + 2 we get

E
[
||zk+2 − z∗||2Ū−1

]
≤ E

[
||zk+1 − z∗||2Ū−1

]
− 1− θ

θ
E
[
||(I− TP,ρ)z(k)||2

]
= ||z(0) − z∗||2Ū−1 −

1− θ

θ

k+1∑
t=0

E
[
||(I− TP,ρ)z(t)||2

]
,

which shows that the induction step is also valid. Now, by mathematical induction, we arrive at the
desired result.

Because 0 ≤ E
[
||zk+1 − z∗||2Ū−1

]
, we can reformulate the expression in Lemma 4.6 as

k∑
t=0

E
[
||(I− TP,ρ)z(t)||2

]
≤ θ

1− θ
||z(0) − z∗||2Ū−1 .

By taking the limit of t→∞ we get
∞∑
t=0

E
[
||(I− TP,ρ)z(t)||2

]
≤ θ

1− θ
||z(0) − z∗||2Ū−1 <∞, (4.7)

where the last inequality arises because ||z(0)− z∗||2Ū−1 is known and finite. We will use the result from
(4.7) to prove another lemma.

18 Chapter 4. Stochastic PDMM Convergence

Lemma 4.3. There is a probability one set on which all cluster points of
(
z(k)

)
k∈N are in fix (TP,ρ)

Proof. Using Markov’s inequality [19, Cor. 5.1] and (4.7), we can write
∞∑
k=0

P
{
||(I− TP,ρ)z(k)||2 ≥ ϵ

}
≤ 1

ϵ

∞∑
k=0

E
[
||(I− TP,ρ)z(k)||2

]
<∞ ∀ϵ > 0.

Now we can apply Borel Cantelli’s lemma [19, Thm. 10.5] and Definition 3.7 to conclude that

P
{
||(I− TP,ρ)z(k)||2 ≥ ϵ i.o.

}
= 0.

That is, there is a set of events with probability one, such that

∀ϵ ∃k0 : ||(I− TP,ρ)z(k)||2 < ϵ ∀k ≥ k0.

Hence, (I− TP,ρ)z(k) → 0 almost surely.
Consider an event in the set in which (I − TP,ρ)z(k) → 0 and take any sequential cluster point of

(z(k))k∈N, which we denote as z∗. Then, by definition of a cluster point, there exists a subsequence
f(k) (f : N → N) such that z(f(k)) → z∗. Because TP,ρ is nonexpansive, it is Lipschitz continuous and
thus continuous so that

0 = lim
k→∞

(
z(f(k)) − TP,ρ

(
z(f(k))

))
= lim

k→∞
z(f(k)) − lim

k→∞
TP,ρ

(
z(f(k))

)
= z∗ − TP,ρ(z∗),

Hence, z∗ ∈ fix(TP,ρ).

Next, we combine Lemma 4.1 and Lemma 4.3 to prove almost sure auxiliary convergence in the
following theorem.

Theorem 4.1. The sequence z(k+1) =
(
I− U(k+1)

)
z(k) + U(k+1)TθP,ρ

(
z(k)

)
converges almost surely

to a random variable z∗ that is supported by fix(TP,ρ). This will be referred to as auxiliary convergence.

Proof. Let A1 and A2 be the sets of events in which Lemma 4.1 and 4.3 hold, respectively. If we
consider an event α ∈ A1 ∩A2 we can apply Theorem 3.2 to prove that (z(k))n∈N converges to a point
in fix(TP,ρ). Because P{A1 ∩ A2} = 1, we arrive at the conclusion.

Now that we have proved the auxiliary convergence of stochastic θ-averaged PDMM, all that re-
mains is to show that auxiliary convergence also implies primal convergence. This is done in the
theorem that follows.

Theorem 4.2. Stochastic θ-averaged PDMM converges almost surely to a primal optimal point x∗.

Proof. Given any realisation of the sequence
(
z(k)

)
k∈N, we know from Theorem 4.1 that z(k) converges

almost surely to some z∗ ∈ fix(TP,ρ). As derived in [5], z∗ can be used to calculate a primal optimal
solution of (3.1) using x∗ = argminx

(
f(x) +

〈
CT z∗, x

〉
+ ρ

2 ||Cx||2
)
.

4.3. Stochastic standard PDMM convergence proof
Because the standard PDMM operator TP,ρ is nonexpansive for CCP cost functions, we can use (4.2)
to derive

E
[
||z(k+1) − z∗||2Ū−1 |F (k)

]
= ||z(k) − z∗||2Ū−1 − ||z(k) − z∗||2 + ||Tz(k) − z∗||2

= ||z(k) − z∗||2Ū−1 − ||z(k) − z∗||2 + ||Tz(k) − Tz∗||2

≤ ||z(k) − z∗||2Ū−1 .

From this inequality we can conclude that the sequence (||z(k) − z∗||2Ū−1)k∈N forms a nonnegative
supermartingale and thus by Theorem 3.3 converges almost surely to a bounded random variable.
This alone is not enough to prove convergence of stochastic standard PDMM. Contrary to θ-averaged
PDMM, in this case (4.3) does not hold. Thus, to prove the convergence of stochastic standard PDMM,
we use further assumptions on the objective f , which are stated in Lemma 4.4.

4.3. Stochastic standard PDMM convergence proof 19

Since x(k+1) minimises f(x) − z(k)TCx + c
2 ||Cx − d||2, we have that 0 ∈ ∂f(x(k+1)) − CT z(k) +

ρCT (Cx(k+1) − d). By using (3.7), this can be rewritten as

0 ∈ ∂f(x(k+1))− CTλ(k+1). (4.8)

For the remaining part of this proof we will take z∗ ∈ fix (TP,ρ) and define

x∗ = argmin
x

(
f(x) +

〈
CT z∗, x

〉
+

ρ

2
||Cx||2

)
, (4.9)

λ∗ = JρT1
(z∗) = z∗ + ρCx∗.

We would like to point out that z∗, z(0), x∗ and λ∗ are deterministic and all other z(k)’s, x(k)’s and λ(k)’s
are random vectors.

Lemma 4.4. If we assume:

1. f is differentiable,
2. f is β-strongly convex,

the following inequality holds〈
λ(k) − λ∗,Cx(k) − Cx∗

〉
=
〈
∇f(x(k))−∇f(x∗), x(k) − x∗

〉
≥ β||x(k) − x∗||2.

Proof. The equality holds because of the differentiability of f in combination with (4.8). The inequality
results from the fact that f is β-strongly convex, which implies that ∇f is β-strongly monotone.

By using (3.7)-(3.9) and the polarisation identity [18, Lemma 2.12], we have

||TP,ρ(z(k))− z∗||2 = ||z(k+1) − z∗||2

= ||P
(
2λ(k+1) − z(k) − (2λ∗ − z∗)

)
||2

= ||2λ(k+1) − z(k) − (2λ∗ − z∗)||2

= ||z(k) − z∗||2 − 4
〈
λ(k+1) − λ∗, z(k) − λ(k+1) − (z∗ − λ∗)

〉
= ||z(k) − z∗||2 − 4ρ

〈
λ(k+1) − λ∗,Cx(k+1) − Cx∗

〉
.

(4.10)

Next, utilising Lemma 4.4 and (4.10), the inequality in (4.2) can be reformulated as

0 ≤ E
[
||z(k+1) − z∗||2Ū−1 |F (k)

]
= ||z(k) − z∗||2Ū−1 − ||z(k) − z∗||2 + ||TP,ρz(k) − z∗||2

= ||z(k) − z∗||2Ū−1 − 4ρ
〈
∇f(x(k))−∇f(x∗), x(k) − x∗

〉
≤ ||z(k) − z∗||2Ū−1 − 4ρβ||x(k) − x∗||2.

(4.11)

We will utilise (4.11) in the following theorem to prove the almost sure primal convergence of stochastic
standard PDMM under the assumptions stated in Lemma 4.4.

Theorem 4.3. Stochastic standard PDMM converges almost surely to a primal optimal point x∗.

Proof. By taking the expectation on both sides of (4.11) and taking the same steps that are used in the
proof of Lemma 4.1, we arrive at

∞∑
k=0

E
[
||x(k) − x∗||2

]
≤ 1

4ρβ
||z(0) − z∗||2Ū−1 <∞,

which shows that the sum of the expected value of the primal error is bounded. Using Markov’s inequal-
ity [19, Cor. 5.1] and the equation above we get

∞∑
k=0

P
{
||x(k) − x∗||2 ≥ ϵ

}
≤ 1

ϵ

∞∑
k=0

E
[
||x(k) − x∗||2

]
<∞ ∀ϵ > 0.

20 Chapter 4. Stochastic PDMM Convergence

Now we can apply Borel Cantelli’s lemma [19, Theorem 10.5] to conclude that

P
{
||x(k) − x∗||2 ≥ ϵ i.o.

}
= 0.

So there is a set of events with probability 1 where ∀ϵ ∃k0 such that ||x(k) − x∗||2 < ϵ, ∀k ≥ k0. Hence
||x(k)− x∗||2 → 0 almost surely. Because z∗ ∈ fix (TP,ρ), x∗ is a primal optimal solution by construction,
see (4.9) and [5].

4.4. Summary
In Section 4.1 a formal definition is given of stochastic PDMM. This is a general framework which can
be used to describe various different versions of PDMM, as will be done in Chapter 5. Sections 4.2
and 4.3 state two convergence proofs related to stochastic PDMM. For both proofs it is assumed that
each edge is updated based on a Bernoulli random variable that has a nonzero mean, thus each edge
is updated with a nonzero probability. The main results of this chapter are:

• Stochastic θ-averaged PDMM converges almost surely for arbitrary CCP cost functions, see The-
orem 4.2;

• Stochastic standard PDMM converges almost surely for strongly convex and differentiable cost
functions, see Theorem 4.3.

5
Asynchronous PDMM Algorithms

In this chapter we will define and analyse various asynchronous PDMM algorithms. We will start by
giving some general definitions related to asynchronous algorithms in Section 5.1. In Section 5.2, we
discuss the link between stochastic PDMM and asynchronous PDMM in the presence of transmis-
sion loss. After this, we will analyse the pseudocode and the convergence of a number of different
asynchronous PDMM algorithms in Sections 5.3-5.5. Subsequently, we further analyse some of the
problems that occur with broadcast PDMM in Section 5.6. Finally, we compare the various algorithms
discussed throughout this chapter in Section 5.7.

5.1. Definitions
In this section we will give some definitions related to various asynchronous PDMM algorithms that are
discussed in this chapter. These definitions are summarised in Table 5.1. Asmentioned in Section 3.4.3,
a distinction can be made between a so called unicast or broadcast implementation. For asynchronous
implementations of PDMM, instead of updating all nodes in the network at each iteration k, only one
node (or a subset of nodes), V(k+1)

a ∈ 2V , is activated. In addition to the active nodes, we also define
a subset of active directive edges as E(k+1)

a ∈ 2Edir , which can be used to model transmission losses
between nodes.

The various implementations of stochastic PDMM can all be divided into the following four main
components that happen at each iteration:

1. Activation: A random subset of nodes, Va, and a random subset of edges, Ea, are made active.
Note that if Va = V and Ea = E , all nodes will perform complete updates at each iteration and the
algorithm is equivalent to the regular synchronous updating scheme.

2. Active node updates: The activated nodes perform a primal update followed by auxiliary and/or
dual updates for each of their neighbours.

3. Transmit updated variables: The updated variables are transmitted to the neighbouring nodes.
This could consist of the unicast transmission of auxiliary/dual variables or the broadcast trans-
mission of the updated primal variables.

4. Secondary node updates: Each secondary node, defined as a neighbouring node that is con-
nected to an active node by an active edge, receives an updated variable from the active node.
These secondary nodes can then execute local updates with the newly received values.

The set of active nodes, Ea, is used as an entry requirement for performing secondary node updates.
A node that is a neighbour of an active node, but has an inactive edge linking itself with the active node,
will not receive the updated variables due to transmission failure. Because of this, the local update can
not be performed at the neighbouring node and thus it will not be considered a secondary node.

To clearly visualise the effect of transmission losses on an iteration, we will give a simple example.
Consider a graph, G, with five nodes and five edges. At a particular iteration both node one and node
five are active, thus Va = {1, 5}. Figure 5.1 depicts this network in two scenarios. One where com-
munication among all edges is good and one which contains two lossy connections that form inactive

21

22 Chapter 5. Asynchronous PDMM Algorithms

1

2

3

4

5

1

2

3

4

5 Idle node
Active node
Secondary node
Lossy edge
Active edge

Figure 5.1: Left: Lossless asynchronous distributed network, Va = {1, 5} and Ea = E ; Middle: Lossy synchronous distributed
network, Va = {1, 5} and Ea = {(1, 2), (3, 4), (4, 5)}; Right: Legend.

Table 5.1: A list of definitions related to the PDMM algorithms.

Unicast A unique message is transmitted to each neighbour of an active node.
Broadcast One general message transmitted to all neighbours of an active node.
k Iteration number.
Active nodes All nodes that perform a primal update at the current iteration.
Secondary nodes All nodes that receive updated variables from an active node at the

current iteration.
Active edge A directive edge connecting two nodes that supports the transmission of

messages in both directions.
Inactive edge An edge connecting two nodes that does not support any transmission of

messages. Also referred to as lossy edge.
V(k+1)
a Set of active nodes at iteration k.
E(k+1)
a Set of active edges over which communication is possible at iteration k.

edges. When comparing the two scenarios, it can be seen that node three becomes a secondary node
in the lossless case. In the lossy case the variables at node three, relating to active node one, will not
be updated, because the updated variables from node one are never received.

5.2. Convergence
As proved in Chapter 4, stochastic PDMM converges almost surely. Asynchronous PDMM can be
seen as a specific case of stochastic PDMM where the entries of U(k) are defined as Bernoulli random
variables, Vi|j , with the following mean

vi|j = P
[{

j ∈ V(k)
a

}]
.

In some cases transmission loss can also be seen as a specific case of stochastic PDMM where a
Bernoulli random variable Ei|j , with mean

ei|j = P
[{

(i, j) ∈ E(k)a

}]
,

determines which directed edges are active. A combination of asynchronous updating and transmission
loss can be modelled with random variable

Ui|j = Vi|jEi|j ,

where we assume Vi|j and Ei|j are independent and thus E[Ui|j] = µi|j = vi|jei|j .
In applied PDMM algorithms each node has certain variables stored locally and the PDMM iteration

is divided up into multiple updating steps. The general definition of stochastic PDMM that is given in
Chapter 4, only models a complete iteration of the auxiliary variable z. So this definition is limited in the
PDMM variations it covers. For instance it does not take inconsistencies between values for the same
variable, that are stored at different nodes, into account. In the following sections we will analyse a
number of different PDMM variations to indicate which of these implementations follow the stochastic
PDMM definition and thus converge according to the proof given in Chapter 4.

5.3. z-update PDMM 23

Algorithm 2 Asynchronous θ-averaged PDMM (unicast).

1: Initialise: z(0) ∈ R2mE ▷ Initialisation
2: for k = 0, ..., do
3: Select a random subset of active nodes: V(k+1)

a ∈ 2V

4: Select a random subset of active edges: E(k+1)
a ∈ 2E

5: for i ∈ V(k+1)
a do ▷ Active node updates

6: x(k+1)
i = argminxi

[
fi(xi) +

∑
j∈Ni

(
(z(k)i|j)

TAi|jxi + ρ
2 ||Ai|jxi||22

)]
7: for all j ∈ Ni do
8: λ

(k+1)
i|j = z(k)i|j + ρAi|jx(k+1)

i

9: y(k+1)
i|j = 2λ

(k+1)
i|j − z(k)i|j

10: end for
11: end for

12: for i ∈ V(k+1)
a , j ∈ Ni do ▷ Transmit updated variables (unicast)

13: Nodej ← Nodei(y(k+1)
i|j)

14: end for

15: for i ∈ V(k+1)
a , j ∈ Ni : (i|j) ∈ E(k+1)

a do ▷ Secondary node updates
16: z(k+1)

j|i = (1− θ)z(k)j|i + θy(k+1)
i|j

17: end for
18: end for

5.3. z-update PDMM
When deriving PDMM using monotone operator theory, the most natural PDMM implementation is
based around the update of the auxiliary variable z. Each iteration of PDMM is completely characterised
by the vector z(k) and therefore only z(0) needs to be initialised. In this section we will analyse a unicast
and broadcast implementation of z-update PDMM.

5.3.1. Unicast
Algorithm 2 contains the pseudocode for asynchronous unicast PDMM. For the unicast implementation,
the auxiliary variable y(k+1)

i|j is calculated at the active node i, for each of its neighbours j ∈ Ni, and
transmitted to these neighbours in separate unicast messages. The secondary nodes can then use
their received value to calculate z(k+1)

j|i .
In a lossless case Algorithm 2 can be seen as an instance of stochastic PDMM and thus converges.

In the case of a transmission loss between active node i and secondary node j, the active node updates
are performed at node i, but the secondary node updates are not performed at node j. Because the
active node updates at node i are completely characterised by zi|j , ∀j ∈ Ni, the unnecessarily updated
variables will simply be overwritten in another iteration that node i is activated. Because of this property
and the fact that each zi|j is only required at node i, unicast z-update PDMM can be seen as a form of
stochastic PDMM and thus converges.

5.3.2. Broadcast
It is also possible to implement asynchronous PDMM using broadcast communication. The pseu-
docode for this implementation is given in Algorithm 3. The same message is broadcast from an active
node i to all of its neighbours j ∈ Ni. Upon receiving this message, the secondary nodes can perform
their necessary local updates. The common updated variable, that all neighbours j ∈ Ni can use for
their respective updates, is x(k+1)

i . This value will be broadcast to all neighbours of an active node i.
In a lossless case Algorithm 3 can be seen as an instance of stochastic PDMM and thus converges.

The convergence in the presence of transmission losses is slightly more complicated. As can be seen
from lines 17 and 19 in Algorithm 3, both zi|j and zj|i are required at node i for each j ∈ Ni. This means
that in the broadcast implementation of PDMM each variable, zi|j , is calculated at both node i and node
j using locally available variables. By inspection of (3.6)-(3.9), it can be seen that the global formulation

24 Chapter 5. Asynchronous PDMM Algorithms

Algorithm 3 Asynchronous θ-averaged PDMM (broadcast).

1: Initialise: z(0) ∈ R2mE ▷ Initialisation
2: for k = 0, ..., do
3: Select a random subset of active nodes: V(k+1)

a ∈ 2V

4: Select a random subset of active edges: E(k+1)
a ∈ 2E

5: for i ∈ V(k+1)
a do ▷ Active node updates

6: x(k+1)
i = argminxi

[
fi(xi) +

∑
j∈Ni

(
(z(k)i|j)

TAi|jxi + ρ
2 ||Ai|jxi||22

)]
7: for all j ∈ Ni do
8: λ

(k+1)
i|j = z(k)i|j + ρAi|jx(k+1)

i

9: y(k+1)
i|j = 2λ

(k+1)
i|j − z(k)i|j

10: z(k+1)
j|i = (1− θ)z(k)j|i + θy(k+1)

i|j
11: end for
12: end for

13: for all i ∈ V(k+1)
a , j ∈ Ni do ▷ Transmit updated variables (broadcast)

14: Nodej ← Nodei(x(k+1)
i)

15: end for

16: for i ∈ V(k+1)
a , j ∈ Ni : (i|j) ∈ E(k+1)

a do ▷ Secondary node updates
17: λ

(k+1)
i|j = z(k)i|j − ρAj|ix(k+1)

i

18: y(k+1)
i|j = 2λ

(k+1)
i|j − z(k)i|j

19: z(k+1)
j|i = (1− θ)z(k)j|i + θy(k+1)

i|j
20: end for
21: end for

of PDMM only allows for one value for each z entry. After a transmission loss between active node i and
secondary node j, a mismatch occurs in the stored values for variable zj|i. This prevents broadcast
z-update PDMM form converging. We will give a numerical example of this behaviour in Section 5.6.

5.4. λ-update PDMM
The non averaged version of PDMM can be easily rewritten to a form containing updates of the dual
variable λ and primal variable x only. Because the λ-update variant of PDMM is used in earlier work,
like [4] and [6], and because it could be insightful for the analysis of the dual variables, we include this
version in our analysis.

As shown in [5], the reformulation is done by using the fact that

z(k+1) = P
(
λ(k+1) + ρCx(k+1)

)
.

By using the equation above, the auxiliary variables y and z are not necessarily needed and we arrive
at the following two updating equations:

x(k+1) = argmin
x

[
f(x) + ⟨CTPλ(k), x⟩+ ρ

2
||Cx+ PCx(k)||2

]
,

λ(k+1) = Pλ(k) + ρ(Cx(k+1) + PCx(k)).

The averaging step in averaged PDMM is done at the z-update step. For the use of averaging in
the λ-update version, some rewriting is needed in order to get the correct updating equations. We will
use the following property, derived from (3.7):

z(k) = λ(k+1) − ρCx(k+1). (5.1)

5.4. λ-update PDMM 25

Algorithm 4 Asynchronous λ-update PDMM (unicast).

1: Initialise: λ(0) ∈ R2mE , x(0) ∈ RnV ▷ Initialisation
2: for k = 0, ..., do
3: Select a random subset of active nodes: V(k+1)

a ∈ 2V

4: Select a random subset of active edges: E(k+1)
a ∈ 2E

5: for i ∈ V(k+1)
a do ▷ Active node updates

6: x(k+1)
i = argminxi

[
fi(xi) +

∑
j∈Ni

(
(λ

(k)
j|i)

TAi|jxi + ρ
2 ||Ai|jxi + Aj|ix(k)j ||22

)]
7: for all j ∈ Ni do
8: λ

(k+1)
i|j = λ

(k)
j|i + ρAi|j(x(k+1)

i − x(k)j)

9: end for
10: end for

11: for i ∈ V(k+1)
a , j ∈ Ni : (i|j) ∈ E(k+1)

a do ▷ Transmit updated variables (unicast)
12: Nodej ← Nodei(x(k+1)

i)

13: Nodej ← Nodei(λ(k+1)
i|j)

14: end for
15: end for

Using (5.1), the z-update equation can be rewritten as

z(k+1) = (1− θ)z(k) + θ
(
Pz(k) + 2ρPCx(k+1)

)
= (1− θ)

(
λ(k+1) − ρCx(k+1)

)
+ θ

(
P(λ(k+1) − ρCx(k+1)) + 2ρPCx(k+1)

)
= (1− θ)

(
λ(k+1) − ρCx(k+1)

)
+ θ

(
Pλ(k+1) + ρPCx(k+1)

)
.

(5.2)

Now the λ-update equation can be written as

λ(k+1) = z(k) + ρCx(k+1)

= (1− θ)
(
λ(k) − ρCx(k)

)
+ θ

(
Pλ(k) + ρPCx(k)

)
+ ρCx(k+1)

= (1− θ)
(
λ(k) + ρ(Cx(k+1) − Cx(k))

)
+ θ

(
Pλ(k) + ρ(Cx(k+1) + PCx(k))

)
,

where (5.1) was used, followed by (5.2).
Apart from this altered λ-update equation, the x-update equation also needs to be changed to work

with θ-averaging. This leads to long expressions for both the x and λ-update, which are not very
insightful. For this reason the algorithms for λ-update PDMM are only given for non-averaged PDMM.

Following the same reasoning as in Section 5.3, the pseudocode for asynchronous λ-update PDMM
can be derived for both the unicast and the broadcast scheme. The resulting implementations are given
in Algorithms 4 and 5 respectively. These algorithms also include the possibility to model transmission
losses by defining the set of active edges Ea.

As can be seen in Algorithms 4 and 5, the primal update equation at node i requires the previous
values of the primal values of all neighbouring nodes. This means that the values of x also need
initialising and the value of each xi is not only needed at node i itself, but also at the neighbours of node
i. Furthermore, the initialisation should be shared before taking any update steps. If this is not done,
multiple different values will be stored for each xi entry. This would not match the definition of PDMM
as stated in (3.6)-(3.9) and could lead to convergence issues. Furthermore, in the case of unicast λ-
update PDMM, in addition to the unicast transmission of the dual variables, a broadcast transmission of
the primal variable is also required for λ-update PDMM. This results in more communication overhead
than z-update PDMM.

In a lossless case Algorithms 4 and 5 can be seen as an instances of stochastic PDMM and thus
converge. Following the same lines of reasoning as in Section 5.3, we conclude that unicast asyn-
chronous λ-update PDMM corresponds to the definition of stochastic PDMM and thus also converges
in the presence of transmission loss. Broadcast λ-update PDMM, however, has the same problem as

26 Chapter 5. Asynchronous PDMM Algorithms

Algorithm 5 Asynchronous λ-update PDMM (broadcast).

1: Initialise: λ(0) ∈ R2mE , x(0) ∈ RnV ▷ Initialisation
2: for k = 0, ..., do
3: Select a random subset of active nodes: V(k+1)

a ∈ 2V

4: Select a random subset of active edges: E(k+1)
a ∈ 2E

5: for i ∈ V(k+1)
a do ▷ Active node updates

6: x(k+1)
i = argminxi

[
fi(xi) +

∑
j∈Ni

(
(λ

(k)
j|i)

TAi|jxi + ρ
2 ||Ai|jxi + Aj|ix(k)j ||22

)]
7: for all j ∈ Ni do
8: λ

(k+1)
i|j = λ

(k)
j|i + ρAi|j(x(k+1)

i − x(k)j)

9: end for
10: end for

11: for i ∈ V(k+1)
a , j ∈ Ni do ▷ Transmit updated variables (broadcast)

12: Nodej ← Nodei(x(k+1)
i)

13: end for

14: for i ∈ V(k+1)
a , j ∈ Ni : (i|j) ∈ E(k+1)

a do ▷ Secondary node updates
15: λ

(k+1)
i|j = λ

(k)
j|i − ρAj|i(x(k+1)

i − x(k)j)

16: end for
17: end for

broadcast z-update PDMM. As can be seen in line 15 of Algorithm 5, for all i ∈ V and j ∈ Ni both λi|j
and λj|i are required at node i. After a transmission loss from active node i to secondary node j, a
mismatch occurs in the stored values for variable λi|j , preventing convergence. With perfect transmis-
sions, asynchronous broadcast λ-update PDMM does not have this mismatch problem and thus it has
the same convergence properties as asynchronous unicast λ-update PDMM.

5.5. Differential PDMM
In [25] an adaptive differentially quantised version of PDMM is proposed. This PDMM version reduces
transmission costs when compared to regular PDMM and is also shown to be suitable for subspace
based privacy preservation in [7]. In this section we will analyse differential PDMM. The adaptive
quantisation part as discussed in [25] is a specific extension of differential PDMM. The adaption rate of
the quantiser needs to be tuned according to the convergence rate of the problem at hand. However,
the privacy preservation capabilities presented in [7] do not rely on the quantisation. So, to keep the
analysis simple we will use non-quantised differential PDMM. For this reason we will only analyse non-
quantised differential PDMM.

Differential PDMM works by sending the difference between the updated auxiliary variable y(k+1)

and its previous value y(k). As long as the initial values y(0) are transmitted via secure encryption,
subspace privacy preservation works is effective. The pseudocode for differential PDMM is given in
Algorithm 6. In a lossless case Algorithm 6 can be seen as an instance of stochastic PDMM and
thus converges. In the presence of transmission loss, despite being a unicast type implementation,
differential PDMMhas a similar mismatch issue as the previously discussed broadcast implementations.
As can be seen in lines 9 and 10 in Algorithm 6, for all i ∈ V and j ∈ Ni, both zi|j and zj|i are needed at i.
Again this is not taken into account in the definition of stochastic PDMM and the loss of a transmission
between active node i and secondary node j, will result in a mismatch between these values and thus
prevent convergence.

5.6. Broadcast analysis
As mentioned in Section 5.3 and Section 5.4, broadcast PDMM does not seem to be robust against
transmission loss due to the resulting inconsistency between different instances of the same auxiliary or
dual variable. Interestingly, asynchronous unicast PDMM does seem to be robust against transmission
losses. In this section we give a numerical example indicating the difference between unicast and

5.6. Broadcast analysis 27

Algorithm 6 Asynchronous θ-averaged differential PDMM (unicast).

1: Initialise: z(0) ∈ R2mE ▷ Initialisation
2: for k = 1, ..., do
3: Select a random subset of active nodes: V(k+1)

a ∈ 2V

4: Select a random subset of active edges: E(k+1)
a ∈ 2E

5: for i ∈ V(k+1)
a do ▷ Active node updates

6: x(k+1)
i = argminxi

[
fi(xi) +

∑
j∈Ni

(
(z(k)i|j)

TAi|jxi + ρ
2 ||Ai|jxi||22

)]
7: for all j ∈ Ni do
8: λ

(k+1)
i|j = z(k)i|j + ρAi|jx(k+1)

i

9: y(k+1)
i|j = 2λ

(k+1)
i|j − z(k)i|j

10: z(k+1)
j|i = (1− θ)z(k)j|i + θy(k+1)

i|j

11: v(k+1)
j|i = z(k+1)

j|i − z(k)j|i
12: end for
13: end for

14: for i ∈ V(k+1)
a , j ∈ Ni do ▷ Transmit updated variables (unicast)

15: Nodej ← Nodei(v(k+1)
j|i)

16: end for

17: for i ∈ V(k+1)
a , j ∈ Ni : (i|j) ∈ E(k+1)

a do ▷ Secondary node updates
18: z(k+1)

j|i = z(k)j|i + v(k+1)
j|i

19: end for
20: end for

broadcast PDMM in the presence of transmission losses. Additionally, we discuss the initialisation of
broadcast PDMM and propose an adaption to make broadcast PDMM slightly more robust.

In Algorithm 3 it can be seen that the value of zi|j is used at both node i and node j, when using a
broadcast implementation. Because it is likely that a transmission loss will result in two different stored
values for the same variable, we use a notational convention to indicate the different versions of each
variable. We define zi|j,l as local copies of zi|j , because they are stored locally at node i and similarly
we define zi|j,r, which are remote copies of zi|j stored remotely at node j.

We only analyse the asynchronous z-update implementation of PDMM, but a similar analysis can
also be done for λ-update PDMM, differential PDMM and synchronous versions of all discussed PDMM
implementations.

5.6.1. Transmission loss example
In this section, the problem that occurs when implementing broadcast PDMM in combination with trans-
mission losses is illustrated with a simple numerical example.

Consider a network with two nodes that are connected by one edge. In this case

C =

[
A1|2 0
0 A2|1

]
=

[
1 0
0 −1

]
,

D = CTC = I.

If we consider a simple distributed averaging problem where the measurement vector is a = 1 and
ρ = 0.4, we can derive the following update equations by using (7.1):

x
(k+1)
1 =

a1 − z
(k)
1|2,l

1 + ρ
=

1− z
(k)
1|2,l

1.4
,

x
(k+1)
2 =

a2 + z
(k)
2|1,l

1 + ρ
=

1 + z
(k)
2|1,l

1.4
,

28 Chapter 5. Asynchronous PDMM Algorithms

Table 5.2: Values of asynchronous unicast PDMM variables at node one and two, with a transmission failure between node
one and two at k = 1. Bold values are updated in the respective iteration.

Node Variable k = 0 k = 1 k = 2 k = 3 ... k →∞
1 x1 - 0.7143 0.7143 1.224 1

z1|2,l 0 0 −0.5714 -0.5714 -0.4
z2|1,r 0 0.5714 0.5714 0.3265 0.4

2 x2 - 0 0.7143 0.7143 1
z1|2,r 0 0 −0.5714 -0.5714 -0.4
z2|1,l 0 0 0 0.3265 0.4

Table 5.3: Values of asynchronous broadcast PDMM variables at node one and two, with a transmission failure between node
one and two at k = 1. Bold values have been updated in the respective iteration.

Node Variable k = 0 k = 1 k = 2 k = 3 ... k →∞
1 x1 - 0.7143 0.7143 0.7143 0.7143

z1|2,l 0 0 0 0 0
z2|1,r 0 0.5714 0.5714 0.5714 0.5714

2 x2 - 0 0.7143 0.7143 0.7143
z1|2,r 0 0 −0.5714 -0.5714 -0.5714
z2|1,l 0 0 0 0 0

In the case of unicast, the z-update equations are the same for local and remote zi|j ’s, because the
value is only calculated at the active node after the primary update. The value of zi|j is then sent to the
corresponding neighbour. The z-update equations for unicast are as follows:

z
(k+1)
1|2,r = z

(k+1)
1|2,l = z

(k)
2|1,l + 2ρA2|1x

(k+1)
2 = z

(k)
2|1,l − 0.8x

(k+1)
2 ,

z
(k+1)
2|1,r = z

(k+1)
2|1,l = z

(k)
1|2,l + 2ρA1|2x

(k+1)
1 = z

(k)
1|2,l + 0.8x

(k+1)
1 .

In the case of broadcast, the z-update equations are different for local and remote zi|j ’s. This is because
they are calculated with the values that are available at the respective nodes. This leads to the following
z-update equations:

z
(k+1)
1|2,l = z

(k)
2|1,r + 2ρA2|1x

(k+1)
2 = z

(k)
2|1,r − 0.8x

(k+1)
2 ,

z
(k+1)
2|1,l = z

(k)
1|2,r + 2ρA1|2x

(k+1)
1 = z

(k)
1|2,r + 0.8x

(k+1)
1 ,

z
(k+1)
1|2,r = z

(k)
2|1,l + 2ρA2|1x

(k+1)
2 = z

(k)
2|1,l − 0.8x

(k+1)
2 ,

z
(k+1)
2|1,r = z

(k)
1|2,l + 2ρA1|2x

(k+1)
1 = z

(k)
1|2,l + 0.8x

(k+1)
1 .

Using these update equations, the PDMM variables are calculated for the first three iterates. As a
simple case we consider an asynchronous updating scheme where node one and node two are acti-
vated one by one. Furthermore, the transmission from node one to node two after the first x-update is
assumed to fail. Tables 5.2 and 5.3 show the resulting values for the first three iterates.

In Table 5.2 the results for unicast PDMM are stated. We can see that the transmission failure at
k = 1 causes a mismatch in values stored for the variable z2|1. From k = 3 this mismatch is rectified.
Assuming there are no more transmission failures, the convergence to the optimal x∗ will continue as
normal. This is possible because the value of z2|1,r, which is stored at node 1, is not needed for any
update equations. In general the remote copies zi|j,r are not used, which is also why it is not described
in Algorithm 2.

In Table 5.3 the results for broadcast PDMM are stated. We can see that within three iterations,
broadcast PDMM, in combination with a transmission loss, gets stuck in a limit cycle with x(k) = 0.7143 ·
1 ̸= 1. This shows that it reaches a fixed point of broadcast PDMM that does not coincide with the primal
optimal x∗.

5.7. Comparison 29

5.6.2. Inconsistent initialisation
From [5], it is known that PDMM converges for arbitrary initialisation of z. For broadcast PDMM, random
initialisation of z is not trivial. As described throughout this section, there are two instances of each zi|j
that are stored at node i and j respectively. Random initialisation for broadcast PDMM is possible, but
extra care needs to be taken to ensure that this initialisation is consistent. If this is not the case, the
algorithm will start with a mismatch between zl and zr and, as shown in the previous example, this can
prevent the algorithm from converging to a primal optimal point.

Throughout the rest of this report a consistent initialisation of zi|j,l and zi|j,r is assumed when using
broadcast PDMM. In a practical implementation this would require each node i to share its initialised
zi|j,l with neighbour j to initialise zi|j,r, through a reliable communication channel. In an application
where the network topology could vary during the optimisation process, this would require the reliable
exchange of dual variables after every network change, which is undesirable.

5.6.3. Broadcast PDMM adaption
A proposed adaption to broadcast PDMM is to use acknowledge messages in combination with the
possibility to revert an updated auxiliary variable at an active node. We will call this adaption ”robust
broadcast PDMM”. For this implementation, each secondary node that receives an updated x value
from an active node, should send an acknowledge statement to the active node in question. By check-
ing for these acknowledge messages, an active node i can assume the updated xi value never arrived
at a neighbour j if it has not received an acknowledge statement from this neighbour. So if, after a
predetermined acknowledge timeout, an acknowledge from neighbour j has not been received by the
active node, this active node can revert the updated auxiliary variable corresponding to this neighbour,
zj|i,r. By doing this, z(k+1)

j|i,l and z(k+1)
j|i,r will still have same value after a transmission loss.

As long as the initialisation of z(0) is consistent across nodes, meaning that z(0)l = z(0)r , robust broad-
cast PDMM is equivalent to unicast PDMMwith regards to convergence in the presence of transmission
loss.

Although this adaption may seem like a good solution, it also has a number of downsides. The
acknowledge messages obviously add extra communication cost to the algorithm. Furthermore, if an
updated variable does arrive at a secondary node j, but its acknowledge message does not arrive
at the active node i, a similar mismatch situation will occur as without the adaption. In a practical
implementation the chance of an acknowledge message transmission failure would likely be smaller
than the chance of a regular transmission failure, due to the fact that the size of acknowledge message
is probably much smaller. Nevertheless, this adaption only shifts the problem and does not provide a
completely robust solution in a practical scenario. A robust solution would most likely require the use
of a reliable communication link, for instance TCP [27].

5.7. Comparison
In this chapter a number of different PDMM implementations have been discussed. In this section these
implementations will be compared. An overview of the comparison is given in Table 5.4.

Apart from having a direct link to the dual variables of the original optimisation problem, there are
no benefits to the λ-update algorithm. There are two disadvantages to this algorithm. Firstly, more
variables need to be stored at each node and secondly the x-update step also needs changing when
implementing operator averaging.

The z-update variant has a direct interpretation in monotone operator theory, which is useful for
convergence analysis. Because of this and the previously mentioned disadvantages of the λ-update
variant, in the remainder of the report only the z-update variant will be used.

When looking at the difference between unicast and broadcast, we can see that broadcast requires
twice the amount of stored variables. This does not only increase the amount of required storage at
a node, but also links the initialisation of different nodes. With a unicast implementation, each node
can arbitrarily initialise zi|j for each of its neighbours. When this is done in the case of a broadcast
implementation, each zi|j is stored at two nodes. Because of this, the initialised values will need to be
shared reliably among neighbours to ensure there is consistency between the values that are stored
at different nodes for the same variable.

Differential PDMM has similar properties to broadcast z-update PDMM. It is not robust against trans-
mission loss, but it does lend itself to subspace based privacy preservation. If implemented correctly,

30 Chapter 5. Asynchronous PDMM Algorithms

Table 5.4: Comparison between different versions of asynchronous PDMM: z-update unicast, broadcast and differential, and
λ-update unicast and broadcast.

Unicast Broadcast

z-update
Stored variables at node i zi|j ∀j ∈ Ni zi|j , zj|i ∀j ∈ Ni

Transmitted variables (j ← i) yi|j xi
Transmissions per iteration di 1
Operator averaging Only affects z-update step Only affects z-update step
Transmission loss Converges Does not converge
Subspace based privacy Not possible Possible

λ-update
Stored variables at node i xj ,λj|i ∀j ∈ Ni xj ,λi|j ,λj|i ∀j ∈ Ni

Transmitted variables (j ← i) λi|j , xi xi
Transmissions per iteration di + 1 1
Operator averaging Affects both λ-update and Affects both λ-update and

x-update step x-update step
Transmission loss Converges Does not converge
Subspace based privacy Not possible Possible

Differential z-update
Stored variables at node i zi|j , zj|i ∀j ∈ Ni -
Transmitted variables (j ← i) vj|i -
Transmissions per iteration di -
Operator averaging Only affects z-update step -
Transmission loss Does not converge -
Subspace based privacy Possible -

adaptive quantised differential PDMM will have the lowest communication cost.

6
Privacy Preservation with Stochastic

PDMM
In this chapter we analyse subspace based privacy preservation in combination with stochastic PDMM.
We refer to Section 3.5 for background information and definitions relating to subspace based privacy
preservation. In previous work only synchronous versions of PDMM have been considered and the
steps used to prove the privacy preservation properties do not immediately hold in a stochastic setting.
Thus, we will prove the working subspace based privacy preservation with stochastic PDMM using two
steps. First, we derive the condition for privacy preservation for broadcast z-update PDMM in Section
6.1. After this, we derive a lower bound on the variance of z in the subspace Ψ⊥ in Section 6.2. This
is done under the assumption that the stochastic updating probabilities are uniform.

6.1. Broadcast z-update privacy analysis
In this section the privacy preservation properties of broadcast z-update PDMM, Algorithm 3, will be
analysed, following a similar approach as in [7] and [6]. We will derive a sufficient condition to reach
δ-level privacy, based on the variance of z(k)

Ψ⊥ .
By rewriting (3.6), for each xi the following holds:

0 ∈ ∂fi(x(k+1)
i) +

[
CT z(k)

]
i
+ ρdix(k+1)

i = ∂fi(x(k+1)
i) +

∑
j∈Ni

Ai|jz(k)i|j + ρdix(k+1)
i , (6.1)

where di is the degree of node i. Because we are considering a broadcast implementation of PDMM,
the variables that are transmitted are x(k)i , for each active node at iteration k. If there is a combination
of passive and eavesdropping adversaries present in the network, together they will have knowledge

{z(k)i|j }(i,j)∈Ec
∪ {x(k)i }i∈V .

After deducting the known variables from (6.1), what is left is

∂fi(x(k+1)
i) +

∑
j∈Ni,h

Ai|jz(k)i|j = ∂fi(x(k+1)
i) +

∑
j∈Ni,h

Ai|j

[
ΠΨz(k)

]
i|j

+
∑

j∈Ni,h

Ai|j

[
ΠΨ⊥z(k)

]
i|j

. (6.2)

As is shown in [5], ΠΨz(k) → z∗ for any z(0). Because of this the corresponding term in (6.2) will
eventually always have the same value and thus have zero variance1. Taking this into account, a
sufficient condition for δ-level privacy is

∃j ∈ Ni,h : var
([

ΠΨ⊥z(k)
]
i|j

)
≥ var(∂fi(x(k+1)

i))

22δ − 1
,

1Note that if the problem has non-unique primal optimisers there can be a small variance after convergence in the asyn-
chronous case. However, the magnitude of this variance is relatively small and is not controllable. Thus, it is not useful for
privacy preservation.

31

32 Chapter 6. Privacy Preservation with Stochastic PDMM

assuming that the random variables have Gaussian distributions and each honest node i has at least
one honest neighbour and thus Ni,h ̸= ∅. Thus, the variance of z(k)

Ψ⊥ should be sufficiently large in
order to achieve δ-level privacy.

6.2. Lower bound on variance
Deriving a bound for the variance of the auxiliary variable z in the case of stochastic PDMM is more
involved than in the synchronous case. In this section we will utilise the following three lemmas and
some properties of the conditional expectation to derive a lower bound on the variance of stochastic
PDMM.

Lemma 6.1. Let ΠΨ⊥ denote the projection onto the subspace Ψ⊥ and P denote the PDMM permuta-
tion matrix. Then

ΠΨ⊥P = PΠΨ⊥ .

Proof. See [7, Lem. 5.2].

Lemma 6.2. Let x ∈ R2mE be a random vector and let ΠΨ⊥ denote the projection onto the subspace
Ψ⊥. Then

ΠΨ⊥E[x] = E[ΠΨ⊥x].

Proof. By linearity of the expectation operator for any deterministic matrix M (of appropriate dimen-
sions)

ME[x] = E[Mx].
Applying this property with M = ΠΨ⊥ ∈ R2mE×2mE gives the desired result.

Lemma 6.3. Let ΠΨ⊥ denote the projection onto the subspace Ψ⊥. Then

ΠΨ⊥

(
PCx(k+1)

)
= 0.

Proof. SinceΨ = ran(C)+ran(PC), PCx(k+1) ∈ Ψ. BecauseΨ⊥ is orthogonal toΨ,ΠΨ⊥

(
PCx(k+1)

)
=

0.

When using subspace based privacy preservation the variance of z(k)
Ψ⊥ is used to preserve privacy.

In the case of synchrous PDMM a useful closed form expression for z(k)
Ψ⊥ can be derived, as shown in

[7]. In the case of stochastic PDMM deriving such a closed form expression is harder as we will show.
By substitution of (3.7)-(3.9) in (4.1), a stochastic PDMM iteration can be expressed as

z(k+1) =
(
I− θU(k+1)

)
z(k) + θU(k+1)

(
Pz(k) + 2ρPCx(k+1)

)
. (6.3)

When looking at the part of z in the subspace Ψ⊥, we can write

z(k+1)

Ψ⊥ = ΠΨ⊥

(
I− θU(k+1)

)
z(k) + θΠΨ⊥U(k+1)

(
Pz(k) + 2ρPCx(k+1)

)
,

which can not be further simplified because in general ΠΨ⊥U(k+1) ̸= U(k+1)ΠΨ⊥ . Moreover, because
U(k+1) can have a nonzero component in Ψ⊥,

ΠΨ⊥

(
U(k+1)PCx(k+1)

)
̸= 0.

As a result, unlike with sycnhronous PDMM, with stochastic PDMM z(k)
Ψ⊥ is dependent on x(k+1) and

thus depends on the chosen cost function. This makes it harder to evaluate the variance of zΨ⊥ for
arbitrary cost functions. Thus, to simplify the analysis, we make use of the observation that in expected
value stochastic PDMM with uniform updating probabilities is equivalent to µ-averaged PDMM. We
assume uniform updating probabilities, meaning that µi|j = µ, ∀i ∈ V , j ∈ Ni. This assumption holds
in the case of asynchronous PDMMwhere one node is selected uniformly at random and updated each
iteration, thus µi|j = 1/n, ∀i ∈ V , j ∈ Ni. The assumption also holds in the case of transmission losses
as long as the probability of an edge being (in)active is equal for all edges.

6.2. Lower bound on variance 33

By taking the conditional expectation of (6.3) with respect to a sub-σ-algebra H ⊂ F and using the
fact that U(k+1) is independent of z(k) and x(k+1), we get

E
[
z(k+1)|H

]
= E

[
z(k)|H

]
− θE

[
U(k+1)

]
E
[
z(k)|H

]
+ θE

[
U(k+1)

] (
PE
[
z(k)|H

]
+ 2ρPCE

[
x(k+1)|H

])
=
(
I− θŪ

)
E
[
z(k)|H

]
+ θŪ

(
PE
[
z(k)|H

]
+ 2ρPCE

[
x(k+1)|H

])
= (1− θµ)E

[
z(k)|H

]
+ θµ

(
PE
[
z(k)|H

]
+ 2ρPCE

[
z(k)|H

])
,

(6.4)

where for the last step we assume equal updating probabilities.
As discussed in Section 6.1, the part of z in the subspace Ψ⊥ is relevant for privacy preservation.

For a given initialisation of z(0) and sigma-algebraF (0) = σ(z(0)), we can use (6.4) and Lemmas 6.1-6.3
to write

E
[
z(k+1)

Ψ⊥ |F (0)
]
= (1− θµ)ΠΨ⊥E

[
z(k)|F (0)

]
+ θµΠΨ⊥

(
PE
[
z(k)|F (0)

]
+ 2ρPCE

[
x(k+1)|F (0)

])
= ((1− θµ) I+ θµP)E

[
z(k)
Ψ⊥ |F (0)

]
= ((1− θµ) I+ θµP)k z(0)

Ψ⊥

=
1

2

(
(I+ P) + (2(1− θµ)− 1)k(I− P)

)
z(0)
Ψ⊥ ,

(6.5)

where the last equality is proved in [7] using an eigenvalue decomposition. We will use the final expres-
sion from (6.5) in the derivation of a lower bound on the variance.

Let z(0) be initialised randomly with zero mean noise having covariance matrix E
[
z(0)z(0),T

]
= σ2I.

Now we can use the definition of conditional expectation (see Def. 3.8) and apply Jensen’s inequality
(see Thm. 3.4) to the convex function ϕ(X) = X2, to arrive at

E
[
z(k)
Ψ⊥z(k),TΨ⊥

]
(i|j),(i|j)

= E
[
([z(k)

Ψ⊥]i|j)
2
]
= E

[
E
[
(z

(k)

i,Ψ⊥)
2
∣∣∣F (0)

]]
≥ E

[(
E
[
z
(k)

i,Ψ⊥

∣∣∣F (0)
])2]

∀i ∈ V , j ∈ Ni.

(6.6)
From (6.6) we can conclude that the variance of z(k)

Ψ⊥ , corresponding to the diagonal elements of the
covariance matrix E

[
z(k)
Ψ⊥z(k),TΨ⊥

]
, is bounded below by an expression involving the entries of (6.5). We

can reformulate this as a vector inequality relating to the diagonal of the covariance matrix as follows:

diag
(
E
[
z(k)
Ψ⊥z(k),TΨ⊥

])
≥ diag

(
E
[
E
[
z(k)
Ψ⊥

∣∣∣F (0)
]
E
[
z(k)
Ψ⊥

∣∣∣F (0)
]T])

= diag
(
E
[
1

4

(
(I+ P) + (2(1− θµ)− 1)k(I− P)

)
z(0)
Ψ⊥

× z(0),T
Ψ⊥

(
(I+ P) + (2(1− θµ)− 1)k(I− P)

)T])
= diag

(
σ2

2
ΠΨ⊥

(
(I+ P) + (2(1− θµ)− 1)2k(I− P)

))
,

(6.7)

where the equality in the second line is found by filling in (6.5) and the final equality is proved in [7].
This inequality provides a lower bound for the variance of the auxiliary variable that is based on the
initialisation variance σ2. Because we are considering a broadcast implementation, the initial value
of each z(0)i|j should be known at both node i and node j. To prevent the adversaries from gaining
all knowledge after the initialisation round, the transmission of the initialised auxiliary values should
be done over a securely encrypted communication channel. Once the initialised auxiliary variables
are securely shared, only transmissions of the primal variable are needed. These transmissions do
not need to be encrypted, because the bound on the auxiliary variance prevents the adversaries from
gaining knowledge about the private data.

Summarising, we conclude that the privacy of node i can be guaranteed when using broadcast
z-update stochastic PDMM under the following assumptions:

34 Chapter 6. Privacy Preservation with Stochastic PDMM

1. The values of {z(0)i|j }j∈Ni are initialised with a sufficiently large variance.

2. The communication channels are securely encrypted when transmitting the initial values z(0).
3. Each honest node i has at least one honest neighbour.
4. The stochastic updating probabilities are uniform with probability µ, so that E[U(k)] = µI.

In the case of adaptive differential PDMM, instead of broadcast PDMM, the privacy condition can be
derived using the same steps as in [7]. The variance bound given in (6.7) is also applicable to this imple-
mentation. Thus, subspace based privacy preservation also works with stochastic adaptive differential
PDMM, under the same assumptions as stated above.

7
Numerical Experiments

In this chapter the theoretical results from this report regarding stochastic PDMM are validated through
numerical experiments. First, we will discuss the method and parameters used for the simulations in
Section 7.1. Next, we will use stochastic PDMM to solve the following three distributed optimisation
problems: distributed averaging consensus, distributed least squares (LS) minimisation and distributed
ℓ1-norm minimisation in Sections 7.2, 7.4 and 7.5, respectively. In Section 7.3, we present simulation
results showing the difference between unicast and broadcast PDMM in the presence of transmission
loss. The cost function used for these simulations is distributed averaging. In Section 7.6, we present
an empirical result indicating the equivalence between the expected value of stochastic PDMM and
averaged synchronous PDMM. Subsequently, in Section 7.7 we provide simulation results to indicate
that the variance of z(k) is bounded below and subspace based privacy is possible with stochastic
PDMM. Finally, the main results are summarised in Section 7.8.

7.1. Simulation setup
All simulations in this report were performed using Matlab. First, all experiments were performed with
an object-oriented, node based simulation. In this simulation, each node in the network is defined as
its own object, that has its own locally available variables and a list of neighbours. Each node object is
also equipped with a number of functions that can perform updates to its stored variables and transmit
variables to neighbouring nodes. By implementing PDMM in this an object-oriented way, it is straightfor-
ward to define algorithm variations such as asynchronous updating schemes and transmission losses,
whilst keeping a close resemblance to a real world distributed network. Furthermore, the equations
used for the updating functions in the node objects are equivalent to those defined in the algorithms in
Chapter 5.

Because the convergence proofs for stochastic PDMM are stated using the global matrix equations
relating to the entire network, simulations were also performed using these matrix based updating
equations. As mentioned in Section 5.6, the standard matrix equations for PDMM do not allow for
broadcast implementations with transmission loss or inconsistent initialisation, which can both happen
in real world deployments of PDMM. In the case where there are no inconsistencies between different
versions of the same variable stored at separate nodes, the object-oriented and matrix based simu-
lations are equivalent. This also indicates that the proof of convergence for stochastic PDMM holds
for practical implementations of PDMM. We will not give separate results for each simulation method,
because in most cases the results are identical.

For the simulations that are discussed in this section a random geometric graph (see [28]) was
generated, consisting of n = 30 nodes, randomly placed within an area of 100 by 100 meters. An edge
is created whenever the distance between two nodes is within the communication range, which is set
at r = 50m. The resulting network is connected with high probability. This follows from [1, Lem. 9],
where it is shown that P{”Graph connected”} ≥ 1 − 1/n2 = 99.9%, if nrd ≥ 2 ln(n)1, which holds with
the chosen values for our simulations. The resulting network is depicted in Figure 7.1.

1This equation holds for a unit cube of dimension d, so the value of r must be normalised if the area in question does a unit
cube.

35

36 Chapter 7. Numerical Experiments

0 20 40 60 80 100

y-coordinate in m

0

10

20

30

40

50

60

70

80

90

100

x
-c

o
o
rd

in
a
te

 i
n
 m

Random geometric graph with N = 30

Nodes

Edges

Figure 7.1: Random geometric graph that is used for simulations, N = 30, r = 50m.

Table 7.1: Simulation parameters.

Area 100× 100m2

Number of nodes, n 30
Wireless range of nodes, r 50m
PDMM parameter, ρ 0.4

Although the choice of PDMM parameter ρ does influence convergence speed, it was chosen to
keep this value fixed at ρ = 0.4 for the simulations in this chapter. The optimum ρ is dependent on
network topology and the problem at hand and it is not something that is further investigated in this
chapter. Unless explicitly mentioned, we use standard PDMM without operator averaging, so θ = 1.
Furthermore, we assume consensus constraints as mentioned in Section 3.4.3 and we use D = CTC
to denote the degree matrix with diagonal entries di, corresponding to the degree of each node i. The
common parameters that are used for all simulations are summarised in Table 7.1.

7.2. Averaging
Distributed averaging is a straightforward problem, where the nodes in the network each aim to calcu-
late the average value of all nodes. The related cost function is:

f(x) =
∑
i∈V

(
1

2
||xi − ai||2

)
.

By substituting this cost function into (3.6) and solving the minimisation we arrive at the following closed
form solution

xi =
ai −

∑
j∈Ni

AT
i|jz

(k)
i|j

1 + ρdi
. (7.1)

We perform distributed averaging using unicast PDMM. The values in the measurement vector a =
[a1, a2, ..., an]

T are randomly assigned wit a variance σ2 = 400 and a mean of 20. The maximum
number of iterations is set to 5000. In Figure 7.2 it can be seen that the random initialisation of z(0)
does not effect the overall rate of convergence, except for a larger initial error. For this reason, in further
simulations the z-vector is always initialised as z(0) = 0. In Figure 7.3 a comparison is made between
different methods of node activation.

7.3. Broadcast with transmission losses 37

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of iterations

10
-20

10
-10

10
0

P
ri
m

a
l
e
rr

o
r

||
x(k

) -x
*|

|2

Asynchronous distributed averaging

z(0)=0

(0)
2 = 1e2

(0)
2 = 1e6

Figure 7.2: Convergence of distributed averaging with different levels initialisation variance using asynchronous PDMM.

1000 2000 3000 4000 5000

Number of iterations

10
-20

10
-10

10
0

P
ri
m

a
l
e
rr

o
r

||
x(k

) -x
*|

|2

Asynchronous distributed averaging

Deterministic node activation

Random node activation

30% transmission loss

70% transmission loss

90% transmission loss

100 200 300 400 500

Number of iterations

10
-20

10
-10

10
0

P
ri
m

a
l
e
rr

o
r

||
x(k

) -x
*|

|2
Synchronous distributed averaging

0% transmission loss

30% transmission loss

70% transmission loss

90% transmission loss

Figure 7.3: Convergence of distributed averaging with different levels of transmission loss. Left: asynchronous PDMM, Right:
synchronous PDMM.

The following types of node activation are considered:

• Asynchronous deterministic node activation: V(K)
a = mod(k − 1, n) + 1,

• Asynchronous random node activation: V(k)
a = randi(n) (also referred to as asynchronous),

• Synchronous node activation: V(k)
a = V.

Furthermore, for the asynchronous deterministic node activation and for the synchronous node activa-
tion, a number of different transmission error probabilities were simulated using unicast PDMM.

From Figure 7.3, we can conclude that synchronous PDMM converges within the least amount of
iterations. Additionally, we can see that transmission loss does not prevent the convergence of unicast
PDMM and it only slightly effects the convergence rate in both the asynchronous and synchronous
case. Because asynchronous PDMM is more likely to be used in practical implementations and for
ease of comparison, for the rest of the simulations we will use asynchronous node activation.

7.3. Broadcast with transmission losses
In Section 5.6, we indicated the problem that occurs with broadcast PDMM in the presence of transmis-
sion loss using a simple example. We also proposed an adaption based on acknowledge messages.
Figure 7.4 shows the results for the 2-node averaging example mentioned in Section 5.6. From Figure
7.4 we can conclude that broadcast PDMM is not robust against transmission loss and the proposed

38 Chapter 7. Numerical Experiments

1 2 3 4 5 6 7 8 9 10

Number of iterations

10
-6

10
-4

10
-2

P
ri
m

a
l
e
rr

o
r

||
x(k

) -x
* ||2

Convergence results with transmission failure at k=1

Unicast

Broadcast

Robust Broadcast

Baseline (without trans. loss)

Figure 7.4: Convergence of 2-node distributed averaging, with a transmission loss at k = 1.

adaption is effective. It produces the same results as unicast PDMM in the presence of transmission
losses. As mentioned in Section 5.6.1, this adaption is only effective if it can be guaranteed that all
acknowledge messages are received properly.

7.4. Least squares
Distributed LS is a common optimisation problem, where the nodes in the network aim to calculate the
least squares solution of an overdetermined linear system of equations based on measured data. Each
node only has partial information of the system, thus collaboration is needed between the nodes in the
network. The related cost function is:

f(x) =
∑
i∈V

(
1

2
||yi −Qixi||2

)
, (7.2)

where yi ∈ Rpi are decision vectors, Qi ∈ Rpi×u contains the input observations of node i, with pi > u
because we assume an overdetermined system. After substituting (7.2) into (3.6), the minimisation
has the following closed form solution

xi = (QT
i Qi + ρdiI)†

QT
i yi −

∑
j∈Ni

AT
i|jz

(k)
i|j

 .

For our simulations we use pi = 5, ∀i ∈ V and u = 3. The primal variable xi ∈ R3 is determined
by z(0) so it does not need to be initialised. Both yi ∈ R5 and Qi ∈ R5×3 are randomly initialised
following a normal distribution with zero-mean and unit variance. As mentioned in the previous section,
the auxiliary variable is also initialised with all zeros. Figure 7.5 shows the convergence results for
distributed LS with different transmission loss probabilities. From Figure 7.5 we can conclude that
asynchronous unicast PDMM converges in the presence of transmission loss. The rate of convergence
is slightly affected by the transmission loss probability.

7.5. ℓ1 norm
In this section we investigate the effect of operator averaging in combination with stochastic PDMM.
Using synchronous standard PDMM, there is no convergence guarantee for nondifferentiable cost func-
tions and the convergence proof for stochastic standard PDMM also uses the additional assumptions
of differentiability and strong convexity.

We consider the simple nondifferentiable objective

f(x) = ||x− a||1, (7.3)

7.5. ℓ1 norm 39

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of iterations

10
-20

10
-10

10
0

P
ri
m

a
l
e
rr

o
r

||
x(k

) -x
*|

|2

Effect of transmission loss on the convergence of a distributed LS problem

Deterministic node activation

Random node activation

30% transmission loss

70% transmission loss

90% transmission loss

Figure 7.5: Convergence of distributed least squares with different levels of transmission loss using asynchronous PDMM.

where x is the vector of primal optimisation variables and a contains random measurements for each
node. By substituting (7.3) into (3.6) and setting the derivative to x equal to zero, we find

sign
(
x(k+1) − a

)
+ CT z(k) + ρDx(k+1) = 0

ρ−1sign
(
x(k+1) − a

)
+ D

(
x(k+1) − a

)
= −ρ−1CT z(k) − Da(

ρ−1sign+ I
) (

D(x(k+1) − a)
)
= −ρ−1CT z(k) − Da

x(k+1) = D−1Sρ−1

(
−ρ−1CT z(k) − Da

)
+ a,

where Sρ−1 is the element-wise soft-thresholding operator defined as

(Sc(x))i =

 xi − c, xi > c
0, |xi| < c
xi + c, xi < c.

The third line above follows from the fact that D is diagonal and positive definite, which is why
sign(x) = sign(Dx) holds. For a single node the x-update can be calculated as

x(k+1)
i = d−1

i Sρ−1

−ρ−1

∑
j∈Ni

Ai|jz(k)i|j

− diai

+ ai.

Because the ℓ1-norm is not strictly convex, the solution to this problem is in general not unique. Hence,
the primal mean squared error is not a practical measure to visualise convergence. Instead the objec-
tive error ||f(x(k)) − f(x∗)|| is used to analyse the convergence. Like in the previous simulations, the
measurement vector a is randomly initialised and z(0) is initialised with all zeros.

In Figure 7.6 we can see that without operator averaging, θ = 1, asynchronous PDMM still seems
to converge. This is an interesting result, because in the synchronous case PDMM without operator
averaging does not converge. For all θ-averaging values between zero and one, the asynchronous
algorithm also converges, but with different rates depending on the value of θ. As can be seen in
Figure 7.6, lower θ-values lead to slower convergence rates.

To further examine the behaviour of stochastic standard PDMM for nondifferential cost functions, we
performed Monte Carlo simulations with different random node activations. To decrease the simulation
time we used a network of n = 12 nodes with r = 40m. Figure 7.7 shows the results of 100 Monte Carlo
runs using random asynchronous PDMM. In Figure 7.7 it can be seen that all of the 100 Monte Carlo
runs converge, indicating that it was probably not a coincidental result depending on the specific node
selection realisation in the simulation of Figure 7.6. The red line in Figure 7.7 indicates the convergence
trajectory of the squared error of the mean primal variable, where the mean is taken over the Monte
Carlo runs.

40 Chapter 7. Numerical Experiments

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of iterations

10
-10

10
-5

10
0

O
b
je

c
ti
v
e
 e

rr
o
r

|f
(x

k
)-

f(
x*)|

2

Standard asynchronous PDMM applied to l1 minimisation

Synch. =1

Asynch. =1

Asynch. =0.8

Asynch. =0.6

Asynch. =0.4

Asynch. =0.2

Figure 7.6: Convergence of ℓ1 norm minimisation for different θ-averaging values.

Figure 7.7: Convergence of ℓ1 norm minimisation for 100 Monte Carlo runs using non-averaged asynchronous PDMM.

7.6. Operator averaging and stochastic PDMM
In this section we want to highlight an interesting interpretation of the stochastic Banach-Picard iteration.
If we assume uniform updating probabilities, ∀i ∈ V , j ∈ Ni, µi|j = µ, the expected value of z(k+1) is

E
[
z(k+1)

]
= E

[(
I− U(k+1)

)
z(k) + U(k+1)Tz(k)

]
=
(
I− Ū

)
E
[
z(k)

]
+ ŪT

(
E
[
z(k)

])
= (1− µ)E

[
z(k)

]
+ µT

(
E
[
z(k)

]) (7.4)

From this equation we can conclude that in the mean, a stochastic Banach-Picard iteration is equivalent
to a Krasnosel’skii-Mann iteration (see Thm. 3.1) with averaging parameter µ.

This could partly support the interesting convergence results for non-averaged asynchronous PDMM
that can be seen in Figures 7.6 and 7.7. In these simulations, asynchronous random node activa-
tion was used, with one active node per iteration. This corresponds to an updating probability of
µ = 1/n = 1/12 for each entry of z. In Figure 7.8 a comparison is made between 1/12-averaged
synchronous PDMM and the mean of non-averaged asynchronous PDMM, using the same simula-
tion parameters as in Section 7.5. The rates of convergence of these two cases are comparable. As
the iterations increase the similarity between the mean stochastic convergence and the averaged syn-
chronous convergence becomes slightly smaller. This could be due to the fact that the higher the
number of iterations become, the higher the number of stochastic outcomes are possible. So for more

7.7. Privacy 41

500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of iterations

10
-10

10
-5

10
0

O
b
je

c
ti
v
e
 e

rr
o
r

|f
(x

k
)-

f(
x*)|

2

Comparision between synchronous and asynchronous PDMM applied to l1 minimisation

Synch. =1/12

Synch. =1

Mean asynch. =1

Figure 7.8: Comparison between the convergence of ℓ1 norm minimisation using synchronous and asynchronous PDMM. The
mean asynchronous data is calculated using 100 Monte Carlo runs.

statistical accuracy at higher iteration numbers, more Monte Carlo runs could be beneficial. Addition-
ally, as mentioned in Section 7.5, the ℓ1 minimisation problem does not have a unique minimum. Due
to the randomness of the stochastic PDMM iterates, different primal optimal solutions are reached at
each realisation and the mean of all these optimal solutions is not necessarily the solution found by
using synchronous PDMM.

One should note that the results in this section are purely empirical and meaningful expressions for
the variance of stochastic PDMM need to be derived to justify these results from a general theoretical
perspective.

7.7. Privacy
To validate the variance bound that is derived in Chapter 6, we perform distributed averaging simulations
using asynchronous broadcast PDMM. The asynchronous node activation is performed randomly using
V(k)
a = randi(n), which results one node being activated each iteration with a probability of µ = 1/N

and E[U(k)] = µI. The values in the measurement vector a = [a1, a2, ..., an]
T are randomly assigned

with a variance σ2
a = 400 and a mean of 20. The entries of z(0) are randomly initialised with zero mean

and variance σ2
z(0) = 100. To analyse the variance of z(k) we perform 50 Monte Carlo runs with different

initialisations of z(0), for consistency the sequence of selected nodes is kept constant for each Monte
Carlo run. The maximum number of iterations in each run is set to 3000.

The left plot in Figure 7.9 shows that the variance of z(k)Ψ goes to zero as expected. The right plot
in Figure 7.9 shows that the mean variance2 of z(k)

Ψ⊥ does not go to zero and stays above the derived
bound. Thus subspace based privacy preservation is effective with asynchronous broadcast PDMM.
The left plot in Figure 7.10 is added to give a slightly more detailed view of the mean variance compared
to the derived bound. The fact that the mean variance does not go to zero does not necessarily ensure
that the variance of each entry of z(k) is nonzero. The right plot in Figure 7.10 shows that the variance
of each entry of z(k) is in fact nonzero after convergence.

7.8. Summary
Summarising, in this section we have provided numerical results to support the theoretical results from
Chapters 4-6. Simulations were performed on a random geometric graph using variations PDMM vari-
ations. None of the numerical results contradict the theoretical results and as expected both asyn-
chronous PDMM and PDMM with transmission losses converge if implemented using unicast transmis-
sions. Interestingly, the simulation results for the simple ℓ1 minimisation problem indicate that stochas-
tic PDMM can converge when using nondifferentiable non-strongly convex cost functions, without the
need for operator averaging. An interpretation of this result is given by looking at the expected value of

2Mean taken over the entries of the vector.

42 Chapter 7. Numerical Experiments

500 1000 1500 2000 2500 3000

Number of iterations

10
-20

10
-10

10
0

z
(k

)
2

Mean variance of z

500 1000 1500 2000 2500 3000

Number of iterations

45

50

55

60

65

70

75

80

85

2 z
(k

)

Mean variance of z

Monte Carlo Simulation

Lower bound

Figure 7.9: Variance results for asynchronous distributed averaging with subspace based privacy preservation. Left: Mean
variance in subspace Ψ, Right: Mean variance in subspace Ψ⊥.

10 20 30 40 50

Number of iterations

45

50

55

60

65

70

75

80

85

2 z
(k

)

Mean variance of z

Monte Carlo Simulation

Lower bound

50 100 150 200 250 300 350

Entry of z

50

60

70

80

90

100

110

120

130

140

2 z

Variance of each entry of z after convergence

Figure 7.10: Variance results for asynchronous distributed averaging with subspace based privacy preservation. Left: Mean
variance in subspace Ψ⊥, Right: Variance of individual entries of z after convergence.

asynchronous PDMM and comparing this to 1/n-averaged synchronous PDMM. Lastly, the variance
of asynchronous PDMM is analysed by means of a distributed averaging simulation. As expected, the
variance of zΨ⊥ always stays above the lower bound that was derived in Chapter 6.

8
Conclusions and Future Work

In this report the properties of stochastic PDMM are analysed. This is a general framework that can
be used to model PDMM variations like asynchronous updating and PDMM with transmission losses.
The conclusions of this work are summarised in the context of the research questions formulated in
Chapter 1.

Can a proof be formulated for the convergence of stochastic PDMM?
As proved in Chapter 4, stochastic PDMM converges almost surely to a primal optimal solution. The
only assumption required is that the updating probability of each entry of the auxiliary variable z is
nonzero. The convergence proof for stochastic θ-averaged PDMM holds for arbitrary CCP cost func-
tions and the convergence proof for stochastic standard PDMM holds for differentiable and strongly
convex cost functions.

What is the difference between unicast and broadcast implementations and how does this effect
convergence of stochastic PDMM?
In distributed PDMM implementations two locally stored versions of each variable zi|j are present for
all i ∈ V , j ∈ Ni. If these variables are initialised consistently and remain consistent throughout the iter-
ations, unicast and broadcast PDMM are identical and can be described by the definition of stochastic
PDMM. This is the case with asynchronous PDMM with consistent initialisation and perfect communi-
cation channels, where the convergence proof from Chapter 4 thus holds.

In the presence of transmission losses or inconsistent initialisation, only unicast PDMM can be
described by the definition of stochastic PDMM. This is because unicast PDMM is inherently robust,
due to sending the updated variables to neighbouring nodes at a convenient step in the algorithm.
Because of this, any inconsistencies are simply overwritten at a future iteration and thus do not have a
lasting effect on convergence. Thus, unicast PDMM converges in the presence of transmission loss.

Broadcast PDMM is not inherently robust and an inconsistency in the auxiliary variables affects the
convergence of the algorithm. The definition of stochastic PDMM does not allow for two different values
to be stored for an auxiliary variable and thus the convergence proof from Chapter 4 does not apply to
this case. When inconsistently initialised or in the presence of transmission losses broadcast PDMM
does not converge to a primal optimal solution. This same conclusion holds for differential PDMM.

Is subspace based privacy preservation effective in combination with stochastic PDMM imple-
mentations?
The privacy preservation proof given in [6] can not applied to stochastic PDMM because of the fact that
the subspace zΨ⊥ is randomly affected by stochastic updating matrix U. Under the assumption that the
stochastic updating probabilities are uniform with probability µ, a lower bound for the variance of z(k)

Ψ⊥

is derived in Chapter 6. This lower bound confirms that subspace based privacy preservation is usable
for stochastic PDMM.

43

44 Chapter 8. Conclusions and Future Work

Main: What influence do stochastic updates and transmission losses have on the favourable
properties of PDMM?
All in all, many of the properties that have previously been proved for synchronous PDMM are now also
proved for stochastic PDMM. The most important theoretical results are:

• Stochastic PDMM converges almost surely if the updating probability of each entry of z is nonzero.
The applicable cost functions are the same as in the synchronous case. Some consequences of
this result are:

– All consistent asynchronous PDMM algorithms converge for the same cost functions as syn-
chronous PDMM.

– Unicast PDMM converges in the presence of transmission losses. This result holds for syn-
chronous and asynchronous updating schemes.

• Broadcast PDMM does not converge in the presence of transmission losses due to inconsisten-
cies in stored values for the same auxiliary variable.

• Despite the fact that the privacy preserving subspace Ψ⊥ is affected by random updating matrix
U, subspace based privacy preservation still works with stochastic PDMM, assuming uniform
updating probabilities.

• In the mean, stochastic PDMM with uniform updating probability µ is equivalent to µ-averaged
synchronous PDMM.

Lastly, we would like to highlight an important empirical result. The simulations performed during this
research seem to indicate that some stochastic forms of PDMM, for example asynchronous PDMM,
converge almost surely for arbitrary CCP functions. This holds without the need for extra operator
averaging.

8.1. Future work
In addition to the results from this report that are summarised in the section above, we list a number
of suggestions for potential further research. These suggestions are based on empirical observations
and questions that arose during the work on this thesis.

Stochastic standard PDMM for arbitrary CCP cost functions
In Section 7.6 we presented an empirical result that suggests that stochastic standard PDMM con-
verges almost surely for arbitrary CCP cost functions. To justify these results from a general theoretical
perspective, meaningful expressions for the variance of stochastic PDMM need to be derived. It seems
that some statistical independence is needed between the random variables Ui|j for this result to hold
true. Intuitively this makes sense, because in the extreme case that all Ui|j are equal to the same
random variable U , each stochastic update will either correspond to a synchronous update step or to
an iteration in which nothing happens. The current convergence proofs in Chapter 4 do not make any
assumptions regarding the independence of different Ui|j variables, so a different approach may need
to taken.

Privacy preservation
In Section 6.2 we proved that subspace based privacy preservation is still effective when using stochas-
tic PDMM. We derived a lower bound for the variance of z(k) under the assumption that the updating
probabilities are uniform, soE[U] = µI. This assumption limits the applicable cases of stochastic PDMM,
so it would be useful to extend this result to be applicable to non-uniform updating probabilities.

Empirically it was found that for certain network topologies there can be zeros on the diagonal of the
projection matrixΠΨ⊥ . Let E0 denote the set of edges for which this happens, then σ2

i|j = 0, ∀(i, j) ∈ E0,
because the bound for the variance of zΨ⊥ contains a multiplication with ΠΨ⊥ , as can be seen in (6.7).
As a result, the edges in E0 will not contribute to the privacy preservation. Some preliminary simulations
seem to indicate that this problem is network dependent and nodes with a single neighbour cause this
issue. Additionally, other edges forming linear chains with a single node stub also have this problem.
It would be useful to derive the exact network conditions for which this problem occurs, so that it can
be determined which nodes are kept private if the network topology is known.

8.1. Future work 45

It was also found that when randomly determining the averaging parameter θ at each node at every
iteration, similar convergence results are attained as stochastic averaged PDMM. This could potentially
be exploited by randomly selecting a θi|j at each node at each iteration and using this randomness
to preserve privacy, without the need for broadcast or differential messaging. This would lead to an
asynchronous, private, unicast version of PDMM, making it robust against transmission loss.

Dynamic network topologies
It would be interesting to analyse the working of PDMM in combination with dynamic network topologies.
A possible method to analyse this is to define stochastic PDMM with an extended z-vector containing
two entries per theoretically possible network edge and use the stochastic updating parameter Ui|j
to determine the network topology at each iteration. In [29] a sufficient condition for convergence of
a distributed averaging consensus algorithm with a varying network topology is given. The sufficient
condition is that the network must be connected in the mean. This includes cases where the network
is not connected at each iteration. A convergence proof along these lines that applies to PDMM would
generalise our results and include asynchronous PDMM, PDMM with transmission loss, PDMM over
varying networks and PDMM over directed graphs.

This kind of general proof could also lead to a potential solution to the problems caused by transmis-
sion losses in combination with broadcast PDMM (see Chapter 5). Because not all edges are needed
at each iteration, edges could be dynamically enabled/disabled depending on their respective signal
strength. As long as the network remains connected in the mean, this algorithm should still converge.
If implemented and functioning correctly, this method could hopefully disable an edge with low signal
strength before a potential transmission loss occurs, thus preventing a mismatch in data between local
and remote versions of the same variable. Of course, this method also adds some overhead, because
of the signal strength monitoring. It also requires knowledge of the network to determine how many
edges can be disabled whilst keeping the mean network connected.

PDMM extensions
The future work recommendations that have been mentioned so far are mainly based on results and
observations related to this thesis. In this section, we list two potential extensions to PDMM that are
not closely related to this work.

A useful extension to PDMM would be a PDMM based algorithm that works with time varying objec-
tive functions. In literature these kinds of algorithms are called online algorithms. Online PDMM could
be useful in situations where a varying quantity needs to be tracked using a sensor network.

As mentioned in [30], inertial and relaxation methods for Krasnoselski-Mann iterations could be
used to speed up convergence. It would be interesting to apply these kinds of methods to PDMM so
PDMM can be used in situations where a high convergence speed is needed.

References
[1] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” en, IEEE Trans-

actions on Information Theory, vol. 52, no. 6, pp. 2508–2530, Jun. 2006, ISSN: 0018-9448. DOI:
10.1109/TIT.2006.874516.

[2] A. D. G. Dimakis, A. D. Sarwate, and M. J. Wainwright, “Geographic Gossip: Efficient Averaging
for Sensor Networks,” en, IEEE Transactions on Signal Processing, vol. 56, no. 3, pp. 1205–1216,
2008, ISSN: 1053-587X. DOI: 10.1109/TSP.2007.908946.

[3] N. Bof, R. Carli, G. Notarstefano, L. Schenato, and D. Varagnolo, “Multiagent Newton–Raphson
Optimization Over Lossy Networks,” IEEE Transactions on Automatic Control, vol. 64, no. 7,
pp. 2983–2990, Jul. 2019, ISSN: 0018-9286, 1558-2523, 2334-3303. DOI: 10.1109/TAC.2018.
2874748.

[4] G. Zhang and R. Heusdens, “Distributed Optimization Using the Primal-Dual Method of Multipli-
ers,” en, IEEE Transactions on Signal and Information Processing over Networks, vol. 4, no. 1,
pp. 173–187, Mar. 2018, ISSN: 2373-776X, 2373-7778. DOI: 10.1109/TSIPN.2017.2672403.

[5] T.W. Sherson, R. Heusdens, andW. B. Kleijn, “Derivation and Analysis of the Primal-Dual Method
of Multipliers Based onMonotoneOperator Theory,” IEEE Transactions on Signal and Information
Processing over Networks, vol. 5, no. 2, pp. 334–347, Jun. 2019, ISSN: 2373-776X, 2373-7778.
DOI: 10.1109/TSIPN.2018.2876754.

[6] Q. Li, R. Heusdens, and M. G. Christensen, “Privacy-Preserving Distributed Optimization via
Subspace Perturbation: A General Framework,” en, IEEE Transactions on Signal Processing,
vol. 68, pp. 5983–5996, 2020, ISSN: 1053-587X, 1941-0476. DOI: 10.1109/TSP.2020.3029887.

[7] Q. Li, R. Heusdens, and M. G. Christensen, “Communication efficient privacy-preserving dis-
tributed optimization using adaptive differential quantization,” en, Signal Processing, vol. 194,
p. 108 456, May 2022, ISSN: 01651684. DOI: 10.1016/j.sigpro.2022.108456.

[8] S. Boyd, “Distributed Optimization and Statistical Learning via the Alternating Direction Method
of Multipliers,” en, Foundations and Trends® in Machine Learning, vol. 3, no. 1, pp. 1–122, 2010,
ISSN: 1935-8237, 1935-8245. DOI: 10.1561/2200000016.

[9] N. A. Trayanova, D. M. Popescu, and J. K. Shade, “Machine Learning in Arrhythmia and Electro-
physiology,” en, Circulation Research, vol. 128, no. 4, pp. 544–566, Feb. 2021, ISSN: 0009-7330,
1524-4571. DOI: 10.1161/CIRCRESAHA.120.317872.

[10] V. Niranjani, V. Akshaya, V. Harish, and S. Abhishek, “Block Chaining in Finance and Accounting,”
en, in 2021 7th International Conference on Advanced Computing and Communication Systems
(ICACCS), Coimbatore, India: IEEE, Mar. 2021, pp. 2034–2037, ISBN: 978-1-66540-520-1 978-
1-66540-521-8. DOI: 10.1109/ICACCS51430.2021.9442064.

[11] G. Giaconi, D. Gunduz, and H. V. Poor, “Privacy-Aware Smart Metering: Progress and Chal-
lenges,” en, IEEE Signal Processing Magazine, vol. 35, no. 6, pp. 59–78, Nov. 2018, ISSN:
1053-5888, 1558-0792. DOI: 10.1109/MSP.2018.2841410.

[12] C. Gentry, “Fully homomorphic encryption using ideal lattices,” en, in Proceedings of the 41st
annual ACM symposium on Symposium on theory of computing - STOC ’09, Bethesda, MD,
USA: ACM Press, 2009, p. 169, ISBN: 978-1-60558-506-2. DOI: 10.1145/1536414.1536440.

[13] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty Computation from Somewhat Ho-
momorphic Encryption,” en, in Advances in Cryptology – CRYPTO 2012, R. Safavi-Naini and
R. Canetti, Eds., vol. 7417, Series Title: Lecture Notes in Computer Science, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 643–662, ISBN: 978-3-642-32008-8 978-3-642-32009-5.
DOI: 10.1007/978-3-642-32009-5_38.

47

https://doi.org/10.1109/TIT.2006.874516
https://doi.org/10.1109/TSP.2007.908946
https://doi.org/10.1109/TAC.2018.2874748
https://doi.org/10.1109/TAC.2018.2874748
https://doi.org/10.1109/TSIPN.2017.2672403
https://doi.org/10.1109/TSIPN.2018.2876754
https://doi.org/10.1109/TSP.2020.3029887
https://doi.org/10.1016/j.sigpro.2022.108456
https://doi.org/10.1561/2200000016
https://doi.org/10.1161/CIRCRESAHA.120.317872
https://doi.org/10.1109/ICACCS51430.2021.9442064
https://doi.org/10.1109/MSP.2018.2841410
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1007/978-3-642-32009-5_38

48 References

[14] C. Dwork, “Differential Privacy,” in Automata, Languages and Programming : 33rd International
Colloquium, ICALP 2006, Venice, Italy, July 10-14, 2006, Proceedings, Part II, ser. Lecture Notes
in Computer Science 1611-3349, Berlin, Heidelberg : Springer Berlin Heidelberg, 2006, pp. 1–12,
ISBN: 978-3-540-35907-4. DOI: 10.1007/11787006_1.

[15] S. Han, U. Topcu, and G. J. Pappas, “Differentially Private Distributed Constrained Optimization,”
en, IEEE Transactions on Automatic Control, vol. 62, no. 1, pp. 50–64, Jan. 2017, ISSN: 0018-
9286, 1558-2523. DOI: 10.1109/TAC.2016.2541298.

[16] M. T. Hale and M. Egerstedt, “Cloud-Enabled Differentially Private Multiagent Optimization With
Constraints,” en, IEEE Transactions on Control of Network Systems, vol. 5, no. 4, pp. 1693–1706,
Dec. 2018, ISSN: 2325-5870, 2372-2533. DOI: 10.1109/TCNS.2017.2751458.

[17] Q. Li, J. S. Gundersen, R. Heusdens, and M. G. Christensen, “Privacy-Preserving Distributed
Processing: Metrics, Bounds and Algorithms,” en, IEEE Transactions on Information Forensics
and Security, vol. 16, pp. 2090–2103, 2021, ISSN: 1556-6013, 1556-6021. DOI: 10.1109/TIFS.
2021.3050064.

[18] H. H. Bauschke and P. L. Combettes, Convex Analysis and Monotone Operator Theory in Hilbert
Spaces, en, ser. CMS Books in Mathematics. Cham: Springer International Publishing, 2017,
ISBN: 978-3-319-48311-5. DOI: 10.1007/978-3-319-48311-5.

[19] J. Jacod and P. E. Protter, Probability essentials, English. Berlin; New York: Springer, 2004,
OCLC: 780176454, ISBN: 978-3-642-55682-1.

[20] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asynchronous distributed optimization using a
randomized alternating direction method of multipliers,” en, in 52nd IEEEConference on Decision
and Control, Firenze: IEEE, Dec. 2013, pp. 3671–3676, ISBN: 978-1-4673-5717-3. DOI: 10.110
9/CDC.2013.6760448.

[21] P. Bianchi, W. Hachem, and F. Iutzeler, “A Coordinate Descent Primal-Dual Algorithm and Appli-
cation to Distributed Asynchronous Optimization,” en, IEEE Transactions on Automatic Control,
vol. 61, no. 10, pp. 2947–2957, Oct. 2016, ISSN: 0018-9286, 1558-2523. DOI: 10.1109/TAC.
2015.2512043.

[22] P. L. Combettes and J.-C. Pesquet, “Stochastic Quasi-Fejér Block-Coordinate Fixed Point Itera-
tions with Random Sweeping,” en, SIAM Journal on Optimization, vol. 25, no. 2, pp. 1221–1248,
Jan. 2015, ISSN: 1052-6234, 1095-7189. DOI: 10.1137/140971233.

[23] N. Bastianello, R. Carli, L. Schenato, and M. Todescato, “Asynchronous Distributed Optimization
Over Lossy Networks via Relaxed ADMM: Stability and Linear Convergence,” en, IEEE Transac-
tions on Automatic Control, vol. 66, no. 6, pp. 2620–2635, Jun. 2021, ISSN: 0018-9286, 1558-
2523, 2334-3303. DOI: 10.1109/TAC.2020.3011358.

[24] E. K. Ryu and S. Boyd, “A PRIMER ONMONOTONE OPERATORMETHODS,” en, APPL. COM-
PUT. MATH., p. 41, 2016. [Online]. Available: https://web.stanford.edu/~boyd/papers/pdf/
monotone_primer.pdf.

[25] J. A. Jonkman, T. Sherson, and R. Heusdens, “Quantisation Effects in Distributed Optimisa-
tion,” en, in 2018 IEEE International Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), Calgary, AB: IEEE, Apr. 2018, pp. 3649–3653, ISBN: 978-1-5386-4658-8. DOI:
10.1109/ICASSP.2018.8461782.

[26] T. Sherson, R. Heusdens, andW. B. Kleijn, “Derivation and Analysis of the Primal-Dual Method of
Multipliers Based on Monotone Operator Theory,” en, arXiv:1706.02654 [math], Nov. 2017, arXiv:
1706.02654. [Online]. Available: http://arxiv.org/abs/1706.02654.

[27] V. Cerf and R. Kahn, “A Protocol for Packet Network Intercommunication,” en, IEEE Transactions
on Communications, vol. 22, no. 5, pp. 637–648, May 1974, ISSN: 0096-2244. DOI: 10.1109/
TCOM.1974.1092259.

[28] J. Dall and M. Christensen, “Random geometric graphs,” en, Physical Review E, vol. 66, no. 1,
p. 016 121, Jul. 2002, ISSN: 1063-651X, 1095-3787. DOI: 10.1103/PhysRevE.66.016121.

[29] S. Kar and J. Moura, “Distributed Consensus Algorithms in Sensor Networks: Quantized Data and
Random Link Failures,” en, IEEE Transactions on Signal Processing, vol. 58, no. 3, pp. 1383–
1400, Mar. 2010, ISSN: 1053-587X, 1941-0476. DOI: 10.1109/TSP.2009.2036046.

https://doi.org/10.1007/11787006_1
https://doi.org/10.1109/TAC.2016.2541298
https://doi.org/10.1109/TCNS.2017.2751458
https://doi.org/10.1109/TIFS.2021.3050064
https://doi.org/10.1109/TIFS.2021.3050064
https://doi.org/10.1007/978-3-319-48311-5
https://doi.org/10.1109/CDC.2013.6760448
https://doi.org/10.1109/CDC.2013.6760448
https://doi.org/10.1109/TAC.2015.2512043
https://doi.org/10.1109/TAC.2015.2512043
https://doi.org/10.1137/140971233
https://doi.org/10.1109/TAC.2020.3011358
https://web.stanford.edu/~boyd/papers/pdf/monotone_primer.pdf
https://web.stanford.edu/~boyd/papers/pdf/monotone_primer.pdf
https://doi.org/10.1109/ICASSP.2018.8461782
http://arxiv.org/abs/1706.02654
https://doi.org/10.1109/TCOM.1974.1092259
https://doi.org/10.1109/TCOM.1974.1092259
https://doi.org/10.1103/PhysRevE.66.016121
https://doi.org/10.1109/TSP.2009.2036046

References 49

[30] Q.-L. Dong, Y. J. Cho, S. He, P. M. Pardalos, and T. M. Rassias, The Krasnosel’skiĭ-Mann Iter-
ative Method: Recent Progress and Applications, en, ser. SpringerBriefs in Optimization. Cham:
Springer International Publishing, 2022, ISBN: 978-3-030-91653-4 978-3-030-91654-1. DOI: 10.
1007/978-3-030-91654-1.

https://doi.org/10.1007/978-3-030-91654-1
https://doi.org/10.1007/978-3-030-91654-1

A
Monotone operator theory

In this appendix a list of useful definitions and properties regarding monotone operator theory are given.
We would like to refer to [18] and [24] for a more exhaustive explanation of monotone operators.

Definition A.1. A relation, mapping or operator T on Rn is a subset of Rn × Rn, defined as

T = {(x, y) | x, y ∈ Rn} .

Definition A.2. We have T(x) = {y ∈ Rn | (x, y) ∈ T} and we denote the range of T as ranT =
{y ∈ Rn | ∃x ∈ Rn : (x, y) ∈ T}, and the domain of T as domT = {x ∈ Rn |T(x) ̸= ∅} .

Definition A.3. The identity relation is defined as I = {(x, x) | x ∈ Rn}.

Definition A.4. The subdifferential relation is defined as

∂f =
{
(x,g) | x ∈ Rn, ∀y ∈ Rn f(y) ≥ f(x) + gT (y− x)

}
. (A.1)

Definition A.5. If T(x) is a singleton or empty for any x, then T is called a function or single-valued.

DefinitionA.6. The sum of two operators,A andB, is defined asA+B = {(x, y+ z) | (x, y) ∈ A, (x, z) ∈ B}.

Definition A.7. The composition of two operators, A and B, is defined as

A ◦ B = {(x, z) | ∃y ∈ Rn : (x, y) ∈ B, (y, z) ∈ A} . (A.2)

Definition A.8. The inverse of an operator T, is defined as T−1 = {(x, y) | (y, x) ∈ T}.

Definition A.9. An operator T is Lipschitz continuous with constant L ≥ 0 if we have ||T(y)−T(x)|| ≤
L||y− x||, for all x, y ∈ domT.

• If L ≤ 1, T is called nonexpansive.
• If L < 1, T is called a contraction.

Definition A.10. The fixed point set of operator T is given by fix(T) = {x ∈ Rn | x = T(x)}.

Definition A.11. The Banach-Picard iteration is an algorithm that can be used to find a point in fix(T),
defined as x(k+1) = T

(
x(k)

)
, where x(0) ∈ Rn is some starting point.

Definition A.12. Let T be a nonexpansive operator and let θ ∈ (0, 1). Then T is averaged with
constant θ, or θ-averaged, if there exists a nonexpansive operator R such that T = (1− θ)I+ θR.

Definition A.13. An operator T is called monotone if, (u− v)T (x− y) ≥ 0, for all (x,u), (y, v) ∈ T.

Definition A.14. An operator T is called strongly monotone or coercive with parameter m > 0 if,
(T(x)− T(y))T (x− y) ≥ m||x− y||2, for all x, y ∈ domT.

51

52 Appendix A. Monotone operator theory

Definition A.15. An operator T is called β-cocoercive with parameter β > 0 if (T(x)−T(y))T (x−y) ≥
β||T(x)− T(y)||2, for all x, y ∈ domT.

Definition A.16. When β = 1, cocoercivity implies that (T(x)− T(y))T (y− x) ≥ ||T(y) − T(x)||2, for
all x, y ∈ Rn, and the operator is called firmly nonexpansive.

Definition A.17. The resolvent of an operator T is defined as JρT = (I+ ρT)−1, where ρ ∈ R.

Definition A.18. The Cayley operator, reflection operator, or reflected resolvent of an operator T is
defined as CρT = 2JρT − I.

Definition A.19. An function f is strongly convex with parameter m if f(x) − m||x||2 is convex, or
equivalently if ∂f is m-strongly monotone.

Definition A.20. Peaceman-Rachford splitting is an operator splitting method that aims to find x∗
such that 0 ∈ T1(x∗) + T2(x∗), by finding a fixed point in the following iteration sequence

z(k+1) = CρT2
◦ CρT1

(z(k)), x(k) = JρT1
(z(k). (A.3)

(see [18, Chapter 26] for more information)

B
SITB Poster Submission

The poster included on the following page was presented at the 42nd WIC Symposium on Information
Theory and Signal Processing in the Benelux (SITB 2022). This symposium took place in Louvain-la-
Neuve on 1-2 June. The poster includes some preliminary results that were obtained during the work
on this thesis.

53

Convergence of Stochastic PDMM
Sebastian Jordan,∗ Richard Heusdens∗†

∗TU Delft, Circuits and Systems Group, †Netherlands Defence Academy

Email: s.o.jordan@student.tudelft.nl

Introduction
In this work, we analyse a stochastic version of the primal-dual
method of multipliers (PDMM), which is a promising algorithm
in the field of distributed optimisation. So far, its convergence
has been proven for synchronous implementations of the algo-
rithm [1],[2]. We prove the convergence of stochastic PDMM.
This is a general framework that can model many PDMM varia-
tions including asynchronous updating schemes and transmission
loss. Furthermore, we present an interesting simulation obser-
vation regarding the need for operator averaging.

The Primal-Dual Method of Multipliers
• We consider a network consisting of a set of nodes, V , con-

nected by a set of edges, E .
• Problem: minimise a convex closed and proper (CCP) sep-

arable cost function f (x) subject to edge constraints:
min

xi,∀i∈V

∑
i∈V

fi(xi) s.t. Ai|jxi + Aj|ixj = bi,j ∀(i, j) ∈ E .

• As derived in [1], the update equations for PDMM are
x(k+1) = arg min

x

(
f (x) +

〈
CTz(k), x

〉
+ ρ

2
||Cx − d||2

)
,

z(k+1) =(1 − θ)z(k) + θP
(

z(k) + 2ρ
(

Cx(k+1) − d
))

.

• A complete PDMM update can be seen as the application
of an operator TPDMM to z.

Stochastic PDMM Convergence Proof
• U(k) ∈ RME×ME is a random diagonal selection matrix with

entries based on Ui|j ∈ {0, 1}. It determines which zi|j
entries are updated. Assumption: E[U] ≻ 0.

• Stochastic PDMM is defined as:

z(k+1) =
(

I − U(k+1)
)

z(k) + U(k+1)TPDMM
(

z(k)
)

.

• Asynchronous PDMM and PDMM with transmission loss
are both specific versions of stochastic PDMM.

• Proof follows similar steps to the ones taken in [3] and builds
upon a previous unfinished proof from [4].

• Stochastic sequence E
[
||zk+1 − z∗||2Ū−1

∣∣ F (k)] is a nonneg-
ative supermartingale.

• Almost sure convergence to a value supported by
fix (TPDMM). For stochastic averaged PDMM or stochas-
tic non-averaged PDMM with strongly convex and differen-
tiable cost functions.

Simulation results
• Non-differentiable cost function f (x) = ||x − a||1.
• Synchronous non-averaged PDMM does not converge, see

Figure 1.
• Asynchronous non-averaged PDMM and synchronous 1/N -

averaged PDMM both converge with a similar convergence
rate, see Figure 1.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Iterations (k)

10
-10

10
-5

10
0

|f
(x

k
)-

f(
x*)|

2

Convergence of l1 problem

Asynchronous non-averaged

Synchronous 1/N-averaged

Synchronous non-averaged

Figure 1: Convergence results for simple ℓ1-problem in a random geometric
network with 12 nodes.

Conclusions
• Stochastic θ-averaged PDMM converges almost surely for

arbitrary CCP cost functions.
• Stochastic non-averaged PDMM converges almost surely

for differential and strongly convex CCP cost functions.
• It is observed in simulations that asynchronous PDMM, con-

trary to synchronous PDMM, does not seem to require ad-
ditional operator averaging to converge for arbitrary CCP
cost functions.

References
[1] T. W. Sherson, R. Heusdens, and W. B. Kleijn, “Derivation and Analysis of the Primal-

Dual Method of Multipliers Based on Monotone Operator Theory,” IEEE Transactions
on Signal and Information Processing over Networks, vol. 5, no. 2, pp. 334–347, Jun.
2019.

[2] G. Zhang and R. Heusdens, “Distributed Optimization Using the Primal-Dual Method
of Multipliers,” IEEE Transactions on Signal and Information Processing over Networks,
vol. 4, no. 1, pp. 173–187, Mar. 2018.

[3] P. Bianchi, W. Hachem, and F. Iutzeler, “A Coordinate Descent Primal-Dual Algo-
rithm and Application to Distributed Asynchronous Optimization,” IEEE Transactions
on Automatic Control, vol. 61, no. 10, pp. 2947–2957, Oct. 2016.

[4] T. Sherson, R. Heusdens, and W. B. Kleijn, “Derivation and Analysis of the Primal-Dual
Method of Multipliers Based on Monotone Operator Theory,” arXiv:1706.02654 [math],
Nov. 2017, arXiv: 1706.02654.

Delft University of Technology, Circuits and Systems

	Abstract
	Preface
	List of Figures
	List of Tables
	Introduction
	Related Work
	Main contribution
	Organisation of the report

	Nomenclature
	Background
	Monotone operator theory
	Probability
	Problem statement
	Network definition
	Optimisation problem

	PDMM
	Derivation
	Synchronous PDMM
	PDMM variations

	Subspace based privacy preservation
	Adversary model
	Privacy metric
	Subspace perturbation
	Privacy preserving synchronous PDMM

	Stochastic PDMM Convergence
	Stochastic PDMM definition
	Stochastic averaged PDMM convergence proof
	Stochastic standard PDMM convergence proof
	Summary

	Asynchronous PDMM Algorithms
	Definitions
	Convergence
	z-update PDMM
	Unicast
	Broadcast

	-update PDMM
	Differential PDMM
	Broadcast analysis
	Transmission loss example
	Inconsistent initialisation
	Broadcast PDMM adaption

	Comparison

	Privacy Preservation with Stochastic PDMM
	Broadcast z-update privacy analysis
	Lower bound on variance

	Numerical Experiments
	Simulation setup
	Averaging
	Broadcast with transmission losses
	Least squares
	1 norm
	Operator averaging and stochastic PDMM
	Privacy
	Summary

	Conclusions and Future Work
	Future work

	References
	Monotone operator theory
	SITB Poster Submission

