
BladeSynth
Damage Detection and Assessment in
Aircraft Engines with Synthetic Data

Chengming Feng



BladeSynth
Damage Detection and Assessment in
Aircraft Engines with Synthetic Data

by

Chengming Feng
to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday August 29, 2022 at 1:30 PM.

Student Number: 5290333
Project Duration: 11, 2021 - 08, 2022
Thesis Committee: Dr. J.C. van Gemert TU Delft, Supervisor & Chair

Dr.Ir. J. Dauwels TU Delft, Core Member
Dr. N.Töman TU Delft, Core Member

An electronic version of this thesis is available at https://repository.tudelft.nl/

https://repository.tudelft.nl/




Preface
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tection in aircraft engines benefits from synthetic data. The second part is the supplemental materials
which provide the background of this thesis.
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sistance in my Master thesis project. Secondly, I would like to express my gratitude to my co-supervisor,
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working with him a lot. Thirdly, I would like to appreciate my other supervisor, Steve Nowee, for the
proficient suggestions and beneficial guidance. Then, I would like to appreciate Dr.Ir. Justin Dauwels
and Dr. Nergis Tömen for their interest in my Master thesis project and is the core member of my thesis
committee. Eventually, I want to thank my parents and friends for their heartwarming emotional support
in the journey.
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BladeSynth: Damage Detection and Assessment in Aircraft Engines with
Synthetic Data

Chengming Feng1, Steve Nowee2, Yancong Lin1, and Jan van Gemert1

Delft University of Technology1

Aiir Innovations2

Figure 1. We introduced BladeSynth, a large-scale synthetic dataset for damage detection and assessment in aircraft engines. We show
examples from the BladeSynth dataset, where each image contains one or several defects on the surface of blades. The random size, shape,
and location of damages vary across examples. In addition, we also change the texture of blades, illumination, and camera poses. The
synthetic damages are labeled with blue bounding boxes.

Abstract

Deep learning has been widely implemented in indus-
trial inspection, such as damage detection from images.
However, training deep networks requires massive data,
which is hard to collect and laborious to annotate, espe-
cially in the aviation scenario of aircraft engines. To alle-
viate the demand for annotated data, we create BladeSynth
- a large synthetic image dataset for detecting damage from
aircraft engines, and empirically evaluate the transferabil-
ity of state-of-the-art Scaled-YOLOV4 from synthetic to real
world by pre-training on synthetic data and fine-tuning on
real data. Our experiments show that pre-training on syn-
thetic data improves the performance in damage detection
in aircraft engine images.

1. Introduction
Damage detection is crucial in various industrial appli-

cations. Conventional approaches often rely on manual in-

spection. The recent advancement in deep learning-based
object detection has significantly facilitated damage detec-
tion with remarkable efficiency and accurate-detection rate
[1,22,25,30,35]. However, learning-based approaches suf-
fer from the lack of large-scale datasets, thus not applicable
in certain applications, e.g. aircraft engine inspection where
annotated data is rare.

To handle the scarcity of real-world datasets, there has
been great interest in generating synthetic data. The works
[8,12,14,15,19,24] have shown that synthetic data are com-
parable to real data in terms of the performance of object de-
tection, segmentation, and tracking. Furthermore, the syn-
thetic data has the following advantages: 1 ) low production
cost and labor; 2 ) marvelous controllability and abundant
variability; 3 ) remarkable efficiency and convenience in la-
beling. Although generating a large-scale synthetic dataset
has been proved beneficial, the domain gap between syn-
thetic and real data substantially hampers the transferability
of deep networks.

In this paper, we are interested in not only generating



large-scale, high-quality synthetic datasets but also mitigat-
ing the domain gap by pretraining on synthetic data and
fine-tuning a faction of real data. Our focus is on detect-
ing damages from images that capture aircraft engines. We
introduced BladeSynth, a synthetic dataset generator that
can automatically, efficiently, and painlessly create labeled
synthetic images of damaged turbine blades, as shown in
Fig 1. BladeSynth takes domain-randomization [27,28] into
consideration, where crucial rendering parameters: illumi-
nations, roughness, textures, and camera pose, alter in a rea-
sonable range comparing to the real data.

We evaluated BladeSynth with the state-of-the-art ob-
ject detector Scaled-YOLOV4 [29] to test the transferability
of the synthetic dataset. We first train a number of pre-
trained models on synthetic data, and then we test their
performance on real-world data by fine-tuning with a small
amount of real data. We show empirically that pre-training
on synthetic data improves the performance of damage de-
tection in aircraft engines.

In summary, the contribution of this paper is: 1 ) we
introduce a novel method to automatically and efficiently
model, generate, and label synthetic data of damages in air-
craft engines; 2 ) we demonstrate that damage detection in
aircraft engines benefits from synthetic data.

2. Related work
Synthetic Data. Generative Adversarial Networks

(GANs) [11, 23] are a common approach extensively used
in generating synthetic data [3, 7, 9, 10, 31, 33, 34]. For
instance, Siva et al. [20] used controllable GANs [18] to
create synthetic datasets with diverse properties. However,
GANs-based approaches suffer from tuning parameters
and time-consuming training. Our approach is based on
modeling software to avoid numerous hyperparameters in
deep learning.

Game engines and 3D modeling software such as CAD
and Blender are also viable solutions to generate synthetic
data. Matteo et al. applied the game engine of Grand Theft
Auto V to create a synthetic crowded pedestrian dataset
MOTSynth [8]. Eung-Joo et al. utilized the Unity game
engine to synthesize data taken from onboard Unmanned
Aerial Vehicles [15]. Xu et al. [32] used untextured CAD
models and few real images to create synthetic data. In [21],
Planche et al. introduced a framework to generate realistic
depth images from CAD models for 2.5D recognition. An-
toine et al. utilized Blender to produce synthetic data for
quality inspection [5]. Nevertheless, the game engine re-
quires a specialized simulator which is not available for air-
craft engine blades. CAD models are mainly designed for
the purpose of mechanical engineering, which is not appro-
priate in our case. In this paper, we choose Blender to gen-
erate synthetic data because of the high quality of rendering,
controllability over modeling, and simplification of manu-

facturability. With Blender Python script, we can automati-
cally and efficiently generate a large-scale synthetic dataset
with desired properties.

Synthtic to Real. The domain gap between synthetic
and real data affects the performance of deep networks in
challenging real-world scenarios. One possible solution to
bridge this gap is domain randomization. Jonathan et al.
adopted domain randomization by randomizing the number,
position, and orientation of interest objects and non-interest
objects, as well as textures [28]. Rendering is randomized
in simulators to achieve domain randomization [2, 27]. An-
other approach to bridge the domain gap is domain adap-
tation, which contributes to the domain shift of the differ-
ent distributions of the synthetic and real world [13]. In
[4,6,13,17,26], domain adaptation is applied to improve the
performance of segmentation in the medical field, vehicle,
and driving as well as the performance of action recognition
with synthetic data. In this paper, we focus on bridging the
domain gap with Domain Randomization during generating
synthetic data and fine-tuning synthetic pre-trained models
on real data.

3. Method
BladeSynthe is a large-scale synthetic dataset for dam-

age detection and assessment in an aircraft engine. The
dataset generation process is illustrated in Section 3.1. The
statistics of BladeSynthe are explained in Section 3.2.

3.1. Dataset Generation Process

To generate synthetic images of engine blades, we use
Blender, an open-source 3D modeling software that sup-
ports manual modeling and auto-modeling with Python.

Creating Blade Model. Firstly, we manually modeled
the Low-pressure Turbine (LPT) in Blender. In reality, most
defects are caused by small obstacles (e.g. stones) hitting
on the blade surface. We simulate this process to generate
synthetic damages, as shown in Fig. 2. The size, shape, and
position of synthetic damages are all randomly determined.

Boolean
computation

Figure 2. We randomly place obstacles on the surface of the blade.
The Boolean computation in Blender is applied to create defects
on the blade.

Rendering Settings. Rendering is critical for high-
quality synthetic data. The challenge is to model the light



reflection on the blade surface, as the light source inside
aircraft engines is a spotlight rather than natural sunlight.
Therefore, we control a series of rendering parameters to
achieve light reflection, including power, radius, and spec-
ular of the light source, and metallic, specular, roughness,
and color of the blade surface.

The camera poses are also important in rendering. Be-
cause the receptive field of the borescope is limited (the free
space inside an aircraft engine is constrained), we also con-
trol the receptive field of the camera in Blender to make the
synthetic data more realistic.

We sample the rendering parameters and camera poses
in reasonable ranges to accommodate diversity.

Inspection Animation. In the real-world inspection of
an aircraft engine, the borescope is always motionless,
while the blades are rotating. To simulate the trajectory of
cameras, we also fixed the camera pose initially, and ro-
tate the blade model. Additionally, we forced the camera to
track damages by moving along the y-axis to acquire more
synthetic images, where damages can be captured in diverse
positions in the camera with variational illuminations.

Labeling Defects. As shown in Fig .3, we implement
histogram backprojection to label defects with a pair of in-
spection animations: A and B. Animations A and B are the
same except the colored obstacles are remained in anima-
tion A but removed in animation B. Animation A is used
for providing the location of damages. Because colored
obstacles are tightly affixed to corresponding damages, we
acquire the location of damages from obstacles with some
modifications. And animation B is the source of synthetic
images.

Frame from animation A

Frame from animation B

Labeled image

Figure 3. We use histogram backprojection to locate the colored
obstacles in frame A. Then we translate the minimum bounding
box that encloses the obstacle to frame B on the corresponding
frame from the animation and marginally modified the bounding
box.

3.2. Dataset Statistics

BladeSynth. We created 400 pairs of animations A and
B as the source of BladeSynth. The FPS of each animation
is 30, the resolution is 896×896 pixels, and the frames vary

from 480 to 1200. To prevent repetition, in BladeSynth,
we firstly separate 400 pairs of animations by train, val, and
test as the images library of the train, val, and test set. Then,
images are randomly selected from the library to compose
the synthetic dataset. We select 20,000 images for train-
ing, 2500 image for validation, and 2500 images for testing
to compose BladeSynth-20, while BladeSynth-10 is created
with 10,000 images for training, 1250 images for validation,
and 1250 images for testing. All images are also aimlessly
chosen from the image library. BladeSynth contains both
damaged blades and healthy blades. We consider all the de-
fects in synthetic data as the same class - ’Dent’.

Real Dataset. The real dataset is provided by Aiir In-
novations1. In the Real-Old dataset, all defects are labeled
as one class - ’Dent’. In our work, all experiments are pre-
trained and fine-tuned with Real-Old. To distinguish dif-
ferent types of defects, a new dataset was upgraded from
the Real-Old. In the new dataset, the defects are labeled as
’Dent’ for small and tiny defects, and ’Missing materials’
for large defects. We separate ’Dent’ and ’Missing mate-
rials’ into two datasets, which Real-MissM stands for the
dataset of ’Missing materials’ and Real-Dent stands for the
dataset of ’Dent’. To explore how models trained on Real-
Old perform in the two classes, we also evaluate all pre-
training and fine-tuning with Real-MissM and Real-Dent.
The detailed information of synthetic and real datasets is
shown in Tab. 1.

Actually, two labeling problems exist in the real data,
which diminish the quality of the real dataset. The first
problem is most dents are labeled with large bounding
boxes, but the dents are tiny in shape. In Fig. 4a, the ground
truth of each defect is labeled with blue bounding boxes,
while the ideal ground truth is labeled with red bounding
boxes. The second problem is that a considerable amount
of dents are miss labeled. In Fig. 4b, the black bounding
boxes refer to the missing-labeled defects.

Dataset Class Frames: Train Val Test

BladeSynth-20 Dent 20k 2.5k 2.5k
BladeSynth-10 Dent 10k 1.25k 1.25k
Real-Old Dent \ \ \

Real-MissM
Missing
materials \ \ \

Real-Dent Dent \ \ \

Table 1. Detailed information about BladeSynth-20, BladeSynth-
10, Real-Old, Real-MissM, and Real-Dent. Due to confidentiality,
the statistics of real Real-Old, Real-MissM, and Real-Dent are not
available.

1Aiir Innovations: https://aiir.nl/



Ideal ground truth Actual ground truth

(a) Examples of large ground truth.

Missing ground truth

(b) Examples of missing ground truth.

Figure 4. The labeling error in the real-world dataset. A considerable number of defects are labeled with rather large bounding boxes or
completely ignored.

4. Experiments

To test whether damage detection in aircraft engines ben-
efits from BladeSynth, we conduct a number of experi-
ments on various benchmarks using the Scaled-YOLOV4-
p5 [?]. In Sec. 4.1, we first pre-train models on BladeSynth
and then test their performance on both synthetic and real-
world datasets. Sec. 4.2, we additionally fine-tuned these
pre-trained models with real data and evaluate the perfor-
mance gain on the real-world datasets. We choose Scaled-
YOLOV4-p5 for damage detection in all experiments.

Given that the annotated bounding boxes are often much
larger than the ground truth(Sec. 3.2), the Intersection over
Union (IoU) is rather low, which results in misleading re-
sults during evaluation. We, therefore, drop the IoU thresh-
old to 0.25 and calculate AP25. We also vary the IoU inter-
val from 0.25 to 0.5 and calculate AP@25:5:50 (AP).

4.1. Exp 1: Pre-training with Synthetic Data

We test two pre-training strategies: (1) training
from scratch on BladeSynth-20 or BladeSynthe-10, and
(2) initializing the models with the COCO pre-trained
weights [16] and then training them on BladeSynthe-20 or
BladeSynthe-10.

We evaluate the experiment results using AP, AP25, num-
bers of true positives (TP), false positives (FP), and false
negatives (FN). For comparison, we also show the perfor-
mance of the model trained from scratch on Real-Old (the
baseline in Tab. 2).

Domain Gap. As shown in Tab. 2, training on
BladeSynth (including both Training from scratch and fine-
tuning COCO) is able to achieve more than 90% AP on the
BladeSynth test set, while the performance on real-world
datasets (Real-Old and Real-Dent) is substantially lower
(less than 10%), indicating that there is significant domain
gap between the synthetic and real data. The main reason
is that BladeSynth can not realistically model tiny defects,
which are the majority in Real-Old and Real-Dent. Simi-

Train Test AP AP25 TP FP FN

Tr
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ra

tc
h

B
la

de
Sy

nt
h-

20

BladeSynth-20 97.9% 98.2% 2541 509 69
BladeSynth-10 \ \ \ \ \
Real-Old 5.55% 8.88% 186 4506 554
Real-MissM 30.5% 48.1% 35 82 28
Real-Dent 8.12% 13.8% 158 1302 487

B
la

de
Sy

nt
h-

10

BladeSynth-20 \ \ \ \ \
BladeSynth-10 98.2% 98.4% 1251 148 35
Real-Old 3.47% 5.25% 192 4577 548
Real-MissM 27.4% 43.9% 39 94 24
Real-Dent 7.96% 12.6% 145 843 500

Fi
ne

-t
un

in
g

C
O

C
O

B
la

de
Sy

nt
h-

20

BladeSynth-20 99.3% 99.3% 2583 234 27
BladeSynth-10 \ \ \ \ \
Real-Old 3.36% 4.46% 168 6287 572
Real-MissM 32% 59.4% 44 59 19
Real-Dent 6.5% 9.45% 147 1335 498

B
la

de
Sy

nt
h-

10

BladeSynth-20 \ \ \ \ \
BladeSynth-10 99.1% 99.1% 1264 122 22
Real-Old 3.61% 4.78% 174 5730 566
Real-MissM 30.2% 50.5% 55 60 8
Real-Dent 6.35% 9.36% 145 969 500

B
as

el
in

e

R
ea

l-
O

ld

BladeSynth-20 28.1% 41.2% 1008 817 1602
BladeSynth-10 26.8% 39.2% 469 339 817
Real-Old 53.3% 63.2% 476 482 264
Real-MissM 44.8% 70.1% 41 22 22
Real-Dent 60.1% 70.2% 428 240 217

Table 2. We train all models either from scratch or with COCO
pre-trained weights on BladeSynth-20 or BladeSynth-10. We test
all pre-trained models on the test set of BladeSynth and real-
world datasets. We also show the true positives, false positives,
and false negatives with the confidence threshold being 0.1. The
baseline model is trained from scratch on Real-Old rather than
BladeSynth. There is a significant performance decrease when
training on BladeSynth and testing on real-world datasets.

larly, we find the baseline model also shows a dramatic dif-
ference when testing on synthetic and real-world datasets,
verifying the existence of the domain gap. This is due to
the large number of False Positives generated by the mod-
els trained on BladeSynth. For example, the number of false
positives from training from scratch is 10× more than the
baseline model when testing on the Real-Old dataset.

Comparison Between Training Strategies. When
comparing training from scratch and fine-tuning COCO
with BladeSynth, we find that COCO pre-trained model



Fi
ne

-t
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on

R
ea

l-
O

ld Real-Old Real-MissM Real-Dent
Pre-train AP AP25 TP FP FN AP AP25 TP FP FN AP AP25 TP FP FN
B20 58.5% 67.5% 530 580 210 61.8% 82% 53 29 10 64.9% 73.1% 458 205 187
B10 58.4% 67.3% 525 572 215 59.1% 87.8% 55 30 8 63.7% 73% 457 272 188
C+B20 63.9% 74.4% 566 555 174 57.4% 83.8% 53 34 10 72.5% 81.4% 499 203 146
C+B10 65.5% 74.2% 557 490 193 62.5% 79% 51 31 12 71.3% 80% 482 169 163
C 62.7% 73.7% 555 424 185 59.1% 83.1% 51 33 12 67.6% 78.8% 491 214 154

Baseline 53.5% 63.2% 476 482 264 42.6% 64.1% 40 32 23 60.1% 70.2% 428 240 217

Table 3. We fine-tune various pre-trained models on Real-Old and then test on Real-Old, Real-MissM, and Real-Dent individually. The
baseline is the model trained from scratch on Real-Old. TP, FP, and TN are evaluated under a confidence threshold of 0.1. We see that
pre-training on Synthetic datasets improves detection performance on all real-world datasets.

marginally improves the detection performance on
BladeSynth and Real-MissM which contain mostly large
defects in real data, but slightly shrinks in detecting tiny
defects from Real-Old and Real-Dent.

4.2. Exp2: Transferring from Synthetic to Real

We verify the benefit of synthetic data in detecting real-
world damages by fine-tuning models which are pre-trained
on BladeSynth. The fine-tuning is conducted on the Real-
Old dataset. We report the performance AP, AP25, num-
bers of true positives (TP), false positives (FP), and false
negatives (FN). We use B20 and B10 to represent the pre-
trained model of training from scratch on BladeSynth-20
and BladeSynth-10 respectively. C+B20 indicates that the
pre-trained model is first initialized with the COCO weights
and then trained on BladeSynth-20. C+B10 indicates that
the pre-trained model is first initialized with the COCO
weights and then trained on BladeSynth-20, where C indi-
cates COCO weights. Subsequently, we use the subscript of
FT to represent fine-tuning pre-trained models on the Real-
Old dataset, where B20FT stands for fine-tuning B20 and
C+B20 stands for fine-tuning C+B20FT .

Tab. 3 shows the performance of all experiments, which
are fine-tuning all pre-trained models on Real-old as well as
the baseline that is trained from scratch on Real-Old. When
testing on Real-Old, we observe that fine-tuning leads to
better performance over the baseline. C+B10FT improves
over the baseline remarkably by +12% AP on Real-Old.

Additionally, we test the aforementioned models on
Real-MissM and Real-Dent to study their ability in detect-
ing large defects and tiny defects, respectively. The results
are shown in Tab. 3, where C+B10FT outperforms the base-
line by +19.9% AP on Real-MissM and C+B20FT outper-
forms the baseline +12.4% AP on Real-Dent, thus verifying
the assumption that real-world damage detection benefits
from pre-training on synthetic BladeSynth. However, when
comparing C+B20FT and C+B10FT , there is no more per-
formance increase, indicating adding more synthetic data
does not necessarily exemplify the advantage.

In each fine-tuning experiment, we find that the num-
ber of false positives from Real-Old is rather higher than

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Confidence

100

101

102

103

104

Nu
m

be
r o

f P
re

di
ct

io
n

Confidence Statistics (False Positives)
FP - Damaged Blades
FP - Healthy Blades

Figure 5. 33680 false positives are predicted by the best model
from fine-tuning COCO on Real-Old, where 20327 false positives
are from healthy blades and 13353 false positives from damaged
blades. We find that fine-tuned models tend to predict a large
number of false positives from healthy blades, which has a dra-
matic impact during evaluation. For example, when the confidence
threshold is 0.1, 178 false positives are from healthy blades and
218 false positives are from damaged blades.

Real-MissM and Real-Dent. This is because Real-Old is
composed of both healthy blades (without any damage) and
damaged blades, while Real-MissM and Real-Dent contain
only damagedblades. The excessive false positives in Real-
Old originate from the healthy blades as shown in Fig. 5,
where testing on healthy blades gives 178 false positives
and testing on damaged blades outputs 218 false positives
with the confidence threshold being 0.1. Similarly, we ob-
serve 58 false positives from healthy blades and 73 false
positives from damaged blades when increasing the confi-
dence threshold to 0.3. This is the primary reason why AP
on Real-Old is lower than AP on Real-MissM and Real-
Dent. And there are two factors that lead to numerous false
positives on healthy blades: 1 ) some texture on the blade
surface resembles the tiny defects, which results in wrong
detections; 2 ) there are certain unlabeled defects on the
”healthy” blades.
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(b) Statistics of false positives.
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Figure 6. We summarized the true positives, false positives, and precision of evaluating B20FT , C+B20FT , and CFT on Real-Dent. We
find that B20FT presents more true positives and false positives under a higher confidence threshold, which caused lower precision and AP.

Therefore, we encounter a class imbalance because our
network can not correctly distinguish healthy blades from
damaged blades. Unfortunately, we did not do further re-
search regarding the class imbalance.
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Figure 7. AP during Fine-tuning all synthetic pre-trained models
with Real-Old. Fine-tuning C+B20, C+B10, and C outperform
fine-tuning B20 and B10, while fine-tuning B20 and B10 outper-
form the baseline.

Another interesting observation is that fine-tuning
COCO weights not only improves the results in detect-
ing real-world damages but also outperforms fine-tuning
synthetic pre-trained models (B20 and B10) on Real-Old,
as shown in Tab. 3. However, COCO does not include
any knowledge of defects on blades, indicating that COCO
and BladeSynth enhance the performance of the fine-tuned
models from different perspectives. And the AP of fine-
tuning all pre-trained models on Real-Old is shown in
Fig. 7. We observe that fine-tuning C+B20, C+B10, and

C relatively outperform fine-tuning B20 and B10, while
fine-tuning B20 and B10 relatively outperform the baseline.
Then we ask a question, why does implementing COCO
pre-trained model work better than synthetic only?

To analyze the impact of pre-training on COCO and
BladeSynth, we analyze the statistics of predictions from
fine-tuning C+B20, B20, and COCO on Real-Old. In
Fig. 6a, we see that B20FT predicts more true positives
than CFT and C+B20FT when the confidence threshold is
higher than 0.47. And B20FT presents 95 true positives,
while CFT and C+B20FT only present 9 true positives un-
der the confidence threshold of 0.8. However, B20FT pre-
dicts significantly more false positives than C+B20FT and
CFT . For example, when the confidence threshold is higher
than 0.7, B20FT outputs 17 false positives, while CFT and
C+B20FT produce 0 false positives, as shown in Fig. 6b.
Although B20FT predicts more true positives with high
confidence, which develops the recall, more false positives
are presented as well even from a low confidence thresh-
old, which substantially weakens the precision, as shown in
Fig. 6c. We suspect the excessive false positives are the pri-
mary cause of the loss in AP, as the precision of C+B20FT

decreases dramatically from a low confidence threshold,
compared to CFT and C+B20FT .

Consequently, we explain the effect of COCO and syn-
thetic pre-trained models as follows: 1 ) fine-tuning the
pre-trained model, which is trained from scratch on syn-
thetic data, improves the detection performance by detect-
ing more true positives with high confidence. However, this
approach yields more false positives as well due to the do-
main gap between synthetic and real-world; 2 ) We reckon
that fine-tuning COCO pre-trained model with real data im-
proves the detection performance by providing a better start
point for training than training from scratch since the COCO
pre-trained model was trained for 300 epochs with normal
COCO 80-classes object detection dataset and another 200
epochs with augmented data [29].



5. Conclusions
We present a large-scale synthetic dataset for industrial

inspection, specifically for detecting defects on aircraft en-
gine blades, and evaluate the benefit of pre-training on
this synthetic data in detecting real-world damages using
Scaled-YOLOV5-P5. Experimental results on various real-
world datasets show that the proposed synthetic data is able
to boost the performance when fine-tuning with a limited
amount of real-world data.

One limitation of the proposed approach in generat-
ing data is synthesizing tiny defects, which requires high-
quality rendering engines because of the light reflection on
blades. Another limitation is the lack of diversity due to the
absence of real-world damages.

Future work will focus on collecting more real-world
samples and generating a sufficient diverse dataset. Testing
different object detectors would also be of inter also help
find the best algorithm for damage detection in aircraft en-
gines. For detecting tiny defects, it is kind of a small object
detection problem. Some modifications in the structure of
the algorithm (e.g. feature pyramid) could help improve the
detection performance of tiny defects.
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2
Deep Learning Based Object Detection

Object detection is a technology that is connected with computer vision and image processing. And
object detection is widely applied in the field of security, medical, military, transportation, facial detection,
and pedestrian detection. In recent years, with the development of deep learning, object detection
based on deep learning has achieved significant milestones. And object detection has become a hot
challenge in computer vision.
Deep learning based Object detection algorithms can be subdivided into anchor based and anchor free.
In this chapter, the concept of deep learning based object detection, anchor based object detectors, and
anchor free object detectors is introduced.

2.1. Basic Concept of Object Detection
The problem definition of object detection is to determine where objects are located in a given image
and which category each object belongs to [51]. Therefore, in the process of object detection, the
algorithm is supposed to correctly classify and localize the target of interest. As shown in Fig. 2.1, the
person, dog, and ball are correctly localized and classified.

Dog

Ball
Person

Figure 2.1: An example1of object detection. The person, ball, and dog are localized with red bounding boxes.

1Original image source: https://www.cdc.gov/healthypets/pets/dogs.html
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In the traditional approaches to object detection, the sliding window is the main tool for extracting
features. But moving sliding windows along an image suffers from heavy computation complexity and
is time-consuming. And the feature extraction is not satisfying. A vital advancement in deep learning
based object detection algorithms is the extraction of features. With the application of convolution
neural networks, the performance of feature extraction has reached a considerable degree. And the
computation burden is reduced with a variety of backbones and detection algorithms.

2.1.1. Components of Object Detection Algorithms
The structure of object detection algorithms can be subdivided into four Components, which are input,
backbone, neck, and head [4], as shown in Fig. 2.2. The input is images, patches, etc. And there are
many CNN that can be assigned as backbones, e.g., VGG [41], Densenet [25], ResNet [18], ResNeXt
[47], Mobilenets [23], and CSPDarknet [45]. The neck is used for extracting features. Because the
deepest feature map has rich semantic features for classification and layers which is slightly shallower
than the deepest feature map has abundant spatial features for localization. Usually, the neck has
multiple top-down and bottom-up paths throughmulti-level feature maps to share the context to improve
the detection of multi-scale objects. FPN [28], ASPP [7], SPP [20], PAN [31], SFAM [50], ASFF [32],
and BiFPN [42] are techniques for the neck. For heads, they can be separated into two-stage including:
Faster R-CNN [39], Cascade R-CNN [6], Mask R-CNN [19], R-FCN [9]; one-stage including: YOLOv1
[38], YOLO9000 [36], YOLOv3 [37], YOLOv4 [4], Scaled-YOLOv4 [44], RetinaNet [29], SSD [33], FCOS
[43], Cornernet [26], Centernet [11].

Figure 2.2: The structure of object detection algorithms [4]. In general, an object detection algorithm is constructed by input,
backbone, neck, and head. The input can be images or patches. The backbone is a CNN for downsampling images. The neck

is for extracting both semantic and spatial features. The head is applied to predict the bounding box and class.

2.1.2. Evaluation Metrics of Object Detection
In this section, the concept of evaluationmetrics including true positives, false positives, false negatives,
precision, recall, average precision, and mean average precision is introduced.

2.1.2.1 TP, FP, FN

To introduce the evaluation metrics of object detection, some basic component is presented first. The
prediction from an object detector can be divided into True Positives (TP), False Positives (FP), and
False Negatives (FN).

A true positive is defined as the correct prediction for both classification and localization. And the
correct prediction for localization is judged by the Intersection of Union (IoU), as shown in Fig. 2.3.
The IoU is computed between the bounding box of prediction and the ground truth by diving the area
of overlap by the area of union. And an IoU threshold is always set to judge whether the localization
of prediction is correct. If the IoU is higher than the IoU threshold, then it is a correct localization.
Otherwise, the prediction of localization is incorrect.

Then, the correct prediction for classification is judged by confidence. The network will predict a
vector of the probability of each class. For instance, in Fig. 2.4a, the class person has the highest
confidence, then the classification is a person. And practically, a confidence threshold is also applied
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IoU = =
Area of overlap

Area of union

Figure 2.3: Intersection of Union (IoU) equals the ratio between the area of overlap and the area of union between the
prediction and the ground truth

to filter the low-confidence predictions. In Fig. 2.4b, if we set the confidence threshold at 0.6, although
the class dog has the highest confidence, the detection as a dog is wrong. Therefore, only if a predic-
tion exceeds the IoU threshold and confidence threshold, the prediction is correct.

0.2 0.1 0.7

Dog Cat Person

(a) A confidence vector.

0.5 0.4 0.1

Dog Cat Person

(b) A confidence vector.

Figure 2.4: A confidence vector of three classes is shown. If we set a confidence threshold at 0.6, the vector in Fig. 2.4a gives
the prediction as a person. And the vector in Fig. 2.4b is an incorrect prediction.

A false positive is defined as a prediction that is incorrect in classification or localization. And a false
negative is defined as an ignored ground truth. In object detection, the number of true positives pluses
the number of false negatives is the number of ground truth.

2.1.2.2 Precision, Recall

Precision and recall, which are defined in Equ. 2.1 and 2.2, are crucial evaluation metrics in object
detection.

Precision =
true positives

true positives+ false positives
=

true positives

predictions
(2.1)

Recall =
true positives

true positives+ false negatives
=

true positives

ground truth
(2.2)
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As mentioned in Sec. 2.1.2.1, the confidence threshold determines the true positives significantly. If
a higher confidence threshold is set, then the network will predict fewer true positives and false positives
because the prediction with low confidence is filtered. In general, there are more true positives with
high confidence than false positives. Therefore the precision will increase but the recall will decrease.
And if a lower confidence threshold is applied, then the network will give more true positives and false
positives. In this case, numerous false positives will be given, which results in a decreasing precision
but increasing recall. To analyze the influence of the confidence threshold, the precision-recall curve is
implemented. Fig. 2.5 is the plot of precision-recall curves. The precision-recall curve is plotted under
all confidence thresholds. At the intersection of the recall-axis, the confidence threshold is 0. And from
the bottom right point to the top left point, the confidence threshold increases. When the confidence
threshold is beyond the highest confidence of false positives, then there are no false positives and the
precision is 1.

Figure 2.5: Precision-Recall curves (PR curves) are plotted under the interval of confidence threshold. Each point on a curve
corresponds to a specific confidence threshold.

2.1.2.3 Average Precision

The most common evaluation metric in object detection is average precision (AP) [34]. To compute
average precision, the interpolatedmethod introduced in PASCALVOC [12] is introduced. The common
11-interpolate method is described as: dividing the interval of recall by 0.1, then we get a 11-value
interval [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. For each value in the interval of recall, we
know the corresponding prevision P (R). But in practical, P (R̃) is replaced by the maximum precision
Pinterp(R), where R̃ ≪ any recall. Then the average of Pinterp(R) is over the 11-value recall interval
is the average precision, as shown in Equ. 2.5. Also, more interpolation can be applied to calculate
average precision. In COCO [30], 101-value interpolation is used.
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AP11 =
1

11

∑
R∈[0,0.1,...,1]

Pinterp(R)

where Pinterp(R) = max
r̃≫r

P (R̃)

(2.3)

As the IoU threshold will also influence the precision and recall, therefore, for the competition of
COCO object detection, an interval of [0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95] is set to
calculate average under different IoU threshold. Where the AP in COCO is:

AP = AP@[.5 : 0.95] =
1

10

∑
IoU∈[0.5,0.55,...,0.95]

AP@IoU (2.4)

The AP@.5 refers to the average precision under the IoU threshold of 0.5. And AP@.5 is the metric
for PASCAL VOC.

AP is evaluated in a single class, for multiple classes, the mean average precision (mAP) is pre-
sented to calculate the average AP over all classes:

mAP =
1

N

N∑
i

APi (2.5)

2.2. Anchor Based Object Detection Algorithm
The sliding window is widely used in traditional object detection algorithms to search targets. Although
the sliding window is simple to apply, this approach leads to abundant computation and complexity.
To achieve better performance, the anchor is introduced as prior to predicting the location of objects.
In general, the network will predict numerous anchors and corresponding offsets on one image as
a candidate. To modify anchors approaching the ground truth, the process is treated as regression
progress by adjusting the offsets.

Figure 2.6: Anchor in YOLOv3 [37]. The input is tx, ty , tw, th, and the corresponding coordinates of the actual bounding box
is bx, by , bw, bh. The detailed computation is shown in this figure. And σ(tx) is pass the tx into a sigmoid function.

In this section, anchor based two-stage detectors including: Faster R-CNN [39], Feature Pyramid
Network [28]; and anchor based one-stage detectors including: SSD [33], YOLOv3 and [37], Scaled-
YOLOv4 [44] are introduced in short.
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2.2.1. Two-stage Detector
The process of anchor based, two-stage object detection algorithm can be defined as firstly generating
region proposals from images, then regressing the region proposals to acquire the bounding box of the
target.

2.2.1.1 Faster R-CNN

He et.al. introduced Faster R-CNN [39] which is an end-to-end, two-stage, and anchor based object
detection algorithm. In Faster R-CNN, the pipeline of Fast R-CNN [16] is utilized. Instead of selective
search, Faster R-CNN applied Region Proposal Network (RPN) (see Fig. 2.7a) to generate region
proposals. RPN slides a small CNN over the last shared convolutional featuremap from conv layers. As
shown in Fig. 2.7b, at each position of the sliding window, K region proposals (anchors) are predicted.
And for each proposal, 4 outputs are for encoding coordinates, and 2 outputs are for estimating the
probability of a binary label, which is an object or not object. Therefore, the embedded coordinates and
scores are sent to RoI pooling for the following bounding box regression and object classification.

(a) The pipeline of Faster R-CNN.

(b) The structure of Region Proposal Network. In Fig. 2.7a, Faster R-CNN
applied Region Proposal Network to generate region proposal. In Fig. 2.7b,
Region Proposal Network predicts k anchors, 2k scores for classification, and

4k coordinates for localization.

Figure 2.7: Pipeline and Region Proposal Network of Faster R-CNN [39].

2.2.1.2 Feature Pyramid Networks

In the deep convolution neural network, the feature map in the deeper layer has abundant semantic
information but sickly spatial information, while the feature map in the shallower layer has better spa-
tial information but weaker semantic information. This character decides that deeper feature maps
are better for object classification and shallower deeper feature maps are better for object localization.
To improve both object classification and localization, Lin et.al. presented Feature Pyramid Networks
(FPN) [28] in 2017. In Fig. 2.8, Feature Pyramid Network is a top-down architecture with lateral con-
nections, which is developed for building high-level semantic feature maps at all scales [28]. And at all
levels, the architecture will predict individually. FPN significantly improved the performance of object
detection, especially for large-scale object detection. And FPN is extensively applied in the following
works of object detection [37, 4, 39, 44].

2.2.2. One-stage Detector
Differing from two-stage detectors, one-stage detectors do not need the progress of predicting region
proposals. Instead, one-stage detectors predict the object coordinate and the probability of object
classification. Generally, one-stage detectors have faster detecting speed.
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Figure 2.8: The structure of Feature Pyramid Network (FPN) [28]. FPN is an architecture composed of a top-bottom path with
lateral connections, which is developed for building high-level semantic feature maps at all scales. And at all levels, the

architecture will predict individually.

2.2.2.1 SSD

Wei et.al. presented Single Shot Detector (SSD) [33] in 2016. The previous object detectors before
2016 only used the deep branch of feature maps for detection. SSD introduced a novel method to
detect with multi branches of convolution layers to achieve detecting on multi-resolution as shown in
Fig. [33]. VGG-16 is utilized as the backbone of SSD, With the following extracting-feature layers in
multi-resolution, SSD can detect objects in multi-scales. And SSD has an advanced performance on
small object detection.

Figure 2.9: The pipeline of Single Shot Detector (SSD) [33]. SSD has multiple detection branches. Therefore, SSD can
achieve multi-resolution detection.

2.2.2.2 YOLOv3

YOLOv3 [37] is famous for its detection speed and comparable detection precision. To improve the
shortage of multi-scale context on YOLO9000 (YOLOv2)[36], YOLOv3 implemented three detection
branches with the idea of Feature Pyramid Network to achieve multi-scale object detection. Also,
YOLOv3 applied a new backbone - Darknet-53 to extract features. In Fig. 2.10 is the structure of
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Darknet-53, where the 3× 3, 1× 1 convolutional layers, and residual layer [18] are used.

During prediction, YOLOv3 predicts an objectness score for each bounding box using logistic re-
gression. Then, the biggest IoU between ground truth and prediction box is found and the prediction
box with biggset IoU is classified as a positive prediction. While inference, a threshold of confidence
is set and a Non-Maximum Suppression [21] is applied to give the final prediction result. The loss of
YOLOv3 is composed of the classification loss, the object loss (confidence loss), and the IoU loss.

Figure 2.10: The structure of Darknet-53 [37]. Darknet-53 is a fully convolutional neural network. See in this figure that there
are only convolutional and residual layers.

2.2.2.3 YOLOv4

YOLOv4 [4] implemented abundant novel technologies in deep learning to advance detection perfor-
mance. Firstly, YOLOv4 applied CSPDarknet53 [45] as the backbone. Then, for the feature extraction,
YOLOv4 implemented the structure of SPP [20] and PAN [31]. YOlOv4 took the same strategy of
YOLOv3 to predict the class and bounding box of the object. YOLOv4 also applied novel technologies
includeing: CIoU loss [52], Cross mini-Batch Normalization (CmBN) [4], Mish activation [4], etc.

2.2.2.4 Scaled-YOLOv4

In Scaled-YOLOv4 [44], Chien-Yao et.al. focused on scaling the depth, width, resolution, and structure
of the network to improve the performance of YOLOv4 [4]. Scaled-YOLOv4 has multi-scales including:
YOLOv4-tiny, YOLOv4-large, and YOLOv4-CSP as shown in Fig. 2.11. In our work, to peruse a quality
mAP and the potential demand of real-time detection, we chose YOLOv4-P5 in YOLOv4-large as the
pipeline.

2.2.3. The disadvantage of Anchor Based Object Detection Algorithm
Although anchor is widely implemented in object detection, the drawback and limitation of using anchor
are non-negligible. Firstly, the detector is sensitive to the size, length-width ratio, and quantity of an-
chors, because, for different objects, the best setting of anchors varies. Also, the setting of anchors is
an additional hyperparameter, which increases the complexity of the algorithm. Secondly, numerous
anchors will be generated during training to match the ground truth, but most anchors are predicted as
false positives, which causes an imbalance between false and true positives.
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Figure 2.11: The multi-scales of Scaled-YOLOv4 [37]. Scaled-YOLOv4 focused on scaling the depth, width, resolution, and
structure of the network.

2.3. Anchor Free Object Detection Algorithm
To overcome the disadvantage of the heavy computation complexity and abundant hyperparameters in
anchor-based object detection algorithm, anchor free object detection algorithm is presented by dividing
the images into grids or detecting with key points. In this section, anchor free one-stage object detection
algorithms including: YOLOv1 [38], Cornernet [26], and Centernet [11] are shortly introduced.

2.3.1. YOLOv1
YOlOv1 [38] is an anchor-free one-stage object detector. In Fig. 2.12, YOlOv1 firstly divides the images
into 7 grids. Then, for each grid, it will predict 2 bounding boxes, the confidence of bounding boxes,
and the classification probability. A grid will predict an object if the center of the object falls in the grid.
The disadvantage of YOLOv1 is obvious, because for each grid, it can only predict 2 objects. If centers
of three or more objects fall into the same grid, then YOLOv1 can not predict all objects. Also, the
input size and output size of YOLOv1 are fixed. Although YOLOv1 has a faster detection speed than
two-stage detection algorithms, the mAP is weaker.

2.3.2. Cornernet
Cornernet [26] implemented key points to achieve anchor free. In Fig. 2.13, Cornernet predicts the
top-left and bottom-right corner of an object. The backbone - Hourglass will predict the heatmaps of all
top-left and bottom-right corners, as well as the embedding vector and offsets for each detected corner.

Cornernet introduced a novel computation for corners, named corner pooling as shown in Fig. 2.14.
For the top-left corner, corner pooling applied the max-pooling horizontally from left to right and verti-
cally from bottom to top on two feature maps respectively. And the two feature maps are added to get
the blue point.

2.3.3. Centernet
With the foundation of Cornetnet, Centernet [11] was designed with two customized modules, center
pooling and cascade corner pooling to improve Cornernet, as shown in Fig. 2.16. Cornernet applied
center pooling to output the heatmap of center key points and cascade corner pooling to output the
heatmap of corner keypoint. The potential bounding boxes are predicted by corner key points and the
center key points decide the final bounding box as a prediction.

See Fig. 2.16a, the aim of center pooling is searching the maximum value vertically and horizon-
tally on a feature map, which is generated by the backbone, to find out if one pixel on the feature is
the keypoint or not. As Cornernet is sensitive to the information of edges, cascade corner pooling is
introduced to improve by forcing corners to extract the feature inside center regions, as shown in Fig.
2.16b.
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Figure 2.12: The process of YOLOv1 [38]. YOLOv1 divides an image into S × S grids. For each grid, it will predict 2 bounding
boxes, as well as the classification probability and the confidence of bounding boxes.

Figure 2.13: The process of Cornernet [26]. Cornernet discarded predicting by anchors but searching the top-left corners and
bottom-right corners.
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Figure 2.14: Corner pooling. [26]. For the top-left corner, corner pooling applied the max-pooling horizontally from left to right
and vertically from bottom to top on two feature maps respectively. Then the two feature maps are added to get the blue point

on the output.

Figure 2.15: The pipeline of Centernet [11]. Centernet improved Cornernet by implementing center pooling and cascade
corner pooling on two series of feature maps individually to extract more features inside the bounding box of the object.

(a) Center pooling. (b) Cascade corner pooling

Figure 2.16: The center pooling and cascade corner pooling in Centernet [39]. In Fig. 2.16a, center pooling aims at searching
the maximum value vertically and horizontally on a feature map. In Fig. 2.16b, cascade corner pooling focus on forcing corners

to extract the feature inside center regions.



3
Generating Synthetic Data

During the development of object detection, large-scale datasets are widely utilized to improve detec-
tion performance. However, the burden of labeling data is extremely heavy for creating a large-scale
dataset. Also, in some specific and unusual application scenarios like inspection of aircraft engines
and medical images of rare and orphan diseases, object detection suffers from the lack of data. To
overcome these challenges, synthetic data is introduced. Nowadays, synthetic data are extensively
implemented in object detection, segmentation, tracking, and pose estimation due to the efficiency on
generate a large-scale dataset and labeling data. In this section, several approaches to generating
synthetic data include game engines, generative adversarial nets (GANs), and 3D modeling software -
Blender.

3.1. Game engine
With the improvement of the game engine, the environment and objects in the game world are more
realistic with excellent light reflection, illuminations, and textures. And the game engine has reliable
controllability to change the property of environments and objects. Therefore, the game engine has
become a useful tool for generating synthetic data on pedestrians, vehicles, etc.

3.1.1. Grand Theft Auto V
Grand Theft Auto V (GTA V) provides a large-scale and 3-dimension open world of a city, where the
objects are modeled with authentic textures and the background contains abundant and various fea-
tures. GTA V simulates sorts of weather and the light conditions of the real world from daytime to night,
which contributes to the domain adaptation of illuminations.

Fabbri et.al created a synthetic dataset of pedestrians for detection and tracking named MOT-
Synth[13]. In 3.1, MOTSynth provides several labels including bounding boxes, pose, masks, and
depth. And MOTSynth is demonstrated to be a substitute for a real pedestrian dataset for tasks of
pedestrians of detection, segmentation, re-identification, and tracking.

Figure 3.1: The labels in MOTSynth [13]. MOTSynth contains labels including bounding boxes, poses, segmentation masks,
and depth maps of pedestrians.

GTA V is also applied to generate synthetic data of pedestrians in [8, 1, 49]

21
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In [40], Richter et.al. used GTA V to generate synthetic data and label the semantic masks, as
shown in 3.2. Hu et.al. applied GTA V to generate synthetic data for monocular 3D vehicle detection
and tracking [24], as shown in 3.3.

Figure 3.2: The left is the synthetic data from GTA V, and The right is the label for segmentation [40].

Figure 3.3: The pipeline of [24], which achieves the dynamic 3D vehicle tracking.
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3.1.2. Unity
Unity is another game engine, which is feasible to create synthetic data. In [27], Lee et.al. created
people from the view of drones, as shown in Fig. 3.4. [3, 22] also implemented unity to generate
synthetic data of pedestrians.

Figure 3.4: The synthetic data of people in Unity [27].

The game engine is ideal for generating the synthetic data of pedestrians and vehicles because they
can be simply invoked from existing packages. But when generating the synthetic data of the object
which does not exist in the game engine, we need to model the new object with the game engine, which
is a time-consuming and difficult task.

3.2. Generative adversarial nets
Generative Adversarial Networks (GANs) [17, 35] are widely implemented to generate synthetic data
[5, 10, 14, 15, 46, 48]. Differ from non-deep-learning approaches, although GANS performs well in
generating synthetic data, training GANs suffers from parameter tuning and optimization.

Figure 3.5: Synthetic faces with different ages generated by Age-cGAN [2].

3.3. Blender
Blender is an open-source 3D modeling software. Blender provides complete controllability on model-
ing and high-quality rendering. Also, Blender supports Python to automatically model objects. More-
over, Blender can output many formats of images, videos, and depth, which supports several purposes.
However, since the quality of synthetic data is decided by the quality of models and rendering, the oper-
ator should be proficient in playing Blender. So it will take some time to learn the operation in Blender.
But once the operator knows Blender well, it would be easy to model objects and modify the texture.
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