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Onerational Risk Management: A I U 

New Paradigm for Decision Making 
Giampiero E. G. Beroggi and William A. Wallace 

Abstruct-The need for more effective ways to manage the risk 
and safety of technological systems has been widely recognized 
and accepted by government and industry. Tkaditionally, risk 
analysis has been considered as part of the process of planning 
a technological system and addressed the risk inherent in its 
day-to-day operations. However, risk must also be considered 
when responding to episodic events whose uniqueness requires 
taking actions that are variants of, or different from planned 
operational procedures. The purpose of this paper is to present 
a new paradigm for real-time risk analysis that capitalizes upon 
the advances in computer power, human-machine interfaces, and 
communication technology. A new process for risk assessment 
and an appropriate reasoning algorithm for choice has been 
developed which supports the human operator in analyzing risks 
and making decisions in real-time during unexpected disruptions 
in the operations of large-scale systems. The process recognizes 
that although advances in technology may automate many tasks, 
humans will always be an integral part of managing large-scale 
systems. The practical realism of the new approach of opera- 
tional risk management is illustrated by two examples, hazardous 
material transportation and emergency management. The first 
example is discussed within the context of a prototype decision 
support system for interactive real-time risk management. 

Index Terms- Risk assessment, risk management, real-time 
operational control, ordinal analysis, decision support systems. 

I. INTRODUCTION 

ARGE-SCALE operations involving technological haz- L ards are typically managed by well formulated, predeter- 
mined procedures. These procedures (also called courses of 
action) are designed to ensure that the operations are as safe 
and as cost-effective as possible. Unfortunately, large-scale 
operations are exposed to episodic events that can threaten 
the successful completion of a planned course of action. 
Real-time decision making is needed to respond to these 
unexpected events in order to prevent or mitigate undesirable 
consequences-in terms of both safety and costs. 

Operational decision making has been addressed for various 
large-scale operational systems, such as air traffic control 
[l], vehicle navigation [2], mission planning [3], and process 
control [4], [5 ] .  The methods proposed typically focus on the 
selection and implementation of planned activities, in some 
cases, automatically. They do not address the need for revision 
of these procedures in the light of unanticipated, episodic 
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events. As noted in a handbook for chemical process safety, 
“performing high quality hazard evaluations throughout the 
lifetime of a process cannot guarantee that accidents will 
not occur” [6]. In addition, emergency procedures themselves 
are susceptible to unforseen events, e.g., a “planned for” 
emergency vehicle is not operational when needed. Also, 
dealing with the unexpected is still the province of the human 
decision maker. Therefore, technological aids for supporting 
decision makers in these typically stressful environments must 
consider the cognitive limitations of humans in dealing with 
safety and cost issues in real-time decision making. 

Sudden onset events do not necessarily have to affect present 
operations. A truck carrying hazardous materials could, for 
example, be scheduled to drive through a region where a snow 
storm is expected or already in progress. If the dispatcher 
could “see and think ahead,” he or she could assess the impact 
of such an event on the planned route and evaluate alternate 
routes, i.e., avoid the snow storm by changing the planned 
course of action. Another example is specialized equipment 
that is to be used in a final stage of an emergency response, 
but is found to be unavailable. If the on-scene manager could 
“see and think ahead,” that person could change the planned 
response to a course of action that does not need that particular 
equipment. 

However, “seeing and thinking ahead,” which is the sensing 
and reasoning needed for real-time risk analysis and decision 
making, has only just become possible because the technology 
to monitor the environment for critical events and commu- 
nication technology to support real-time reasoning are now 
available. For example, latest advances in satellite positioning 
technology and mobile communication make real-time support 
for hazardous material shipments a feasible approach [7], [8], 
and advanced monitoring devices, sensors, and forthcoming 
global mobile communications provide the basis for real- 
time support for emergency response [9]. These advances 
are permitting operators to “see” inside a damaged pressure 
vessel with micro-video, “feel” the conditions inside a burning 
container with robot devices, and “track” the dispersion of 
hazardous materials. 

This technology provides new capabilities to monitor and 
control large-scale operations. We would like to capitalize on 
these advances by a novel approach for supporting real-time 
risk analysis and decision making for large-scale operations 
so that pre-planned courses of action can be revised in real- 
time whenever a critical event occurs. Although advanced 
technology can automate many tasks, we must consider that 
humans will always be an integral part of managing large-scale 
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Fig. 1. Environment for managing large-scale operational systems in response to real-time events. 

operations and will require decision support in responding to 
episodic events with the possibility of catastrophic impact. 

n. THE REAL-TIME ENVIRONMENT 

Risk analysis and decision making in real-time can be 
described using Anthony’s decision taxonomy [ 101. Strate- 
gic planning decisions are the traditional approach in risk 
management. Operational risk management consists of the 
identification of an unexpected event, an assessment of its 
consequences and the decision to change the planned course 
of action. 

The real-time environment for managing large-scale 
systems involving hazardous operations consists of three 
major components (see Fig. 1): (1) The large-scale 
operational system where operations take place and where 
events can occur that may affect the planned course of action; 
(2) the real-time controller which senses the operation for 
accurate and timely performance and the potentially critical 
events, and reasons about whether the course of action 
should be revised; and (3) the communication links for 
data transfer between the system and the real-time controller. 
Due to advanced communication technology, the real-time 
controller does not have to be located with the operational 
system. However, we will assume that the loop between 
sensing and reasoning will always include humans. 

Real-time events (RTE’s) are occurrences which may force 
a change in the present course of action. RTE’s are unpre- 
dictable and occur without warning. Therefore, it is crucial that 
the human operator senses all RTE’s. To do this she or he must 
continuously monitor the system and its environment. Both the 
need to reevaluate a course of action and the time available for 
sensing and reasoning are event driven. A reevaluation is nec- 
essary if at least one activity is threatened by the RTE (e.g., the 
fire truck is useless for response if it is out of order). The time 
available to make decisions on a new course of action depends 
upon when the impact of the RTE effects the present course of 

action. Since the present course of action is known, this time 
interval can be estimated. To ensure safe and cost-effective op- 
erations of large-scale systems, not only must the appropriate 
course of action be selected but deadlines must be met. 

111. REASONING PRINCPLES m 
LARGE-SCALE OPERATIONAL SYSTEMS 

A. The Topological Graph Structure 

Reasoning in managing operational large-scale systems con- 
sists of assessing the consequences of RTE’s on the given 
attributes (e.& risks and costs), evaluating altemate courses 
of action, and deciding to either remain on the present or 
take a new course of action. Thus, analysis and decision 
making must be done in real-time. We presume that a human 
operator cannot both assess effects of RTE’s, and generate 
and evaluate altemate courses of action without support. 
Information technology can perform computationally inten- 
sive tasks in support of human information processing and 
reasoning. In order to successfully blend human and machine 
capabilities, a decision structure must be designed. Sage [ 113 
notes that operational decisions are more likely to be made 
within a set of guidelines than strategic planning decisions. 
Such a meta-reasoning structure must allow one to assess the 
impacts and re-evaluate a given course of action whenever 
a RTE occurs. It also must consider that humans in a real- 
time decision situation must perform under conditions of 
uncertainty and time constraints. We suggest using a graph 
theoretical approach to structure real-time risk analysis and 
decision making problems. 

A course of action consists of a temporal ordered sequence 
of decisions and concomitant selected activities. Each activity 
is preceded by a decision, which in tum leads to a new decision 
on the next activity. Some activities require that other activities 
be taken previously, others do not. The first decision to be 
made in operational risk management is to decide whether a 
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(which is a subset of the set of feasible courses of action) can 
then be determined by an appropriate algorithmical procedure. 
The most common attributes in risk management are risks 
and costs. Risks refer to human life; environmental pollution 
and destruction; property loss (also expressed in costs); loss 
of company image; etc. Costs are expenditures for a given 
activity. We assume that they can be estimated with sufficient 
accuracy to be considered deterministic. 

Fig. 2. The topological graph structure. 

significant event has occurred and to reevaluate the present 
planned course of action. The last decision is to decide if 
“normal” operation can be resumed, i.e., if the hazard is 
resolved. It is important to note that there are always several 
different ways to abate the risk for a particular RTE; i.e., there 
are different courses of actions that can abate the risk for a 
particular RTE. 

Courses of action can be represented on a graph structure. 
A graph consists of nodes (vertices) and links (edges). Nodes 
represent decisions and links are activities. An oriented link 
from decision node Di to decision node Dj indicates that 
decision D; has been made to do activity Aij which leads to 
decision Dj;  i.e., the link Aij states that there is a relation 
between the two decisions D; and Dj. Therefore, every 
activity leads to a subsequent decision, except for the last 
decision, i.e., normal operation can be resumed (see Fig. 2). 

The graph with oriented links will be called the topological 
graph structure of real-time decision making. A feasible 
course of action is a sequence of activities on the graph which 
begins at the first decision node, goes along some intermediate 
activity nodes (considering the orientation of the links), and 
ends at one of the end stages (i.e., normal operation). Selecting 
an activity Aij can also be seen as a walk on the graph 
from decision node D; to decision node Dj. A course of 
action is therefore a walk through the graph from origin (first 
node) to one of the destinations (last node). Depending on 
the graph, there might be none, one, or many such walks. 
The determination of all feasible walks (courses of action) is 
a combinatorial problem on the topological graph. Therefore, 
after each RTE, the human operator specifies all feasible walks 
through the graph (courses of action). 

The feasibility of a link (activity) can depend upon ex- 
ternal conditions or preceding courses of action. Using a 
transportation network as an example of a topological graph 
structure with the nodes being cities and the links connections 
between two cities, some roads require special permits for 
shipping hazardous materials. Thus, the feasibility of such 
roads depends on the cargo that is shipped. In emergency 
response, the feasibility of links (activities) is in most cases 
dependent upon previously taken activities. For example, the 
decision to use chemicals to extinguish a fire can only be made 
if the appropriate equipment is available. 

B. The Preference Graph 
Every activity has some expected result. This result, in turn, 

has a value which is based upon a set of attributes with 
associated preferences. The set of “best” courses of action 

Risks during operations are typically characterized by high 
uncertainty and imprecision, especially when evaluated under 
time constraints and stress. Although operational risks are non- 
deterministic, no explicit stochastic model can be postulated. 
Therefore, we consider the possibility of real-time events and 
their impacts rather then their expectation in a probabilistic 
sense [121. 

We measure the expected results of activities by specifying 
an ordered set of preference classes for the set of attributes. 
Ordinal measurement means that each attribute must be as- 
signed to one and only one class and that these classes can be 
ordered. Risk is non-commensurate among classes, Le., there 
exists no number n that can measure the risk among classes, 
but can be measured by an interval scale or cardinally within 
a class. Therefore, we are assuming that it is only possible 
to assess whether one activity is more or less dangerous than 
another one. Expressions like “more” or “less” come from 
qualitative reasoning [ 131. 

Ordinal relations will not only be used for the assessment 
of operational risks but also for the tradeoffs between risks 
and any other attributes, such as costs, benefits, or values. We 
describe here the procedure of defining the preference classes 
and their ordinal relations for the case where only the two 
attributes “cost” and “risk” have been identified. 

We assume that the human operator is faced with activities 
that must be considered as feasible, but have risks so great 
that there is no monetary equivalent. However, there are also 
risks that do not justify the expenditures needed to abate or 
avoid them. We therefore have identified three ordinal classes: 
High Risks, Costs, and Low Risks. 

Two additional classes are also introduced. Activities that 
do not have any significant risks or costs will be assigned to 
the first class (w); activities that under no circumstances are 
allowed to be engaged in will be assigned to the second class 
(a). The foregoing classes have the following ordinal relation 
(the sign “<” means “less preferred”): 

a < High Risks < Costs < Low Risks < w. 

Since an activity with only low risks and no costs is more 
preferred than an activity with high risks, the ordinal relation 
implies a lexicographic preference structure. 

Given the topological graph structure, the operator must map 
the attributes of all activities into the preference classes. Just 
like with the feasibility of activities (links), the preference 
of an activity can depend on previous courses of action. 
For example, using chemical dispersants to respond to an 
oil spill has a smaller risk (higher safety-preference) if the 
effectiveness of the dispersants has been previously tested. 
After all activities have been classified using such a preference 
structure, the graph is called a preference graph. 
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Whenever a RTE occurs, the human operator must reassess 
risks and costs of all activities affected by the RTE using the 
defined preference classes-in real-time. This amounts to reex- 
pressing the preferences of the affected activities considering 
the RTE. In order to speed up the procedure of reassessment, 
the human operator does the cognitive part and the computer 
the algorithmic part. The operator can determine the affected 
links (activities) by noting them on a graphical display. If 
the links he or she identifies affect other links in the graph, 
both the feasibility and preference of these activities must 
also be reassessed. If, for example, the R E  is “an icy road” 
then the preference of using a truck to disperse chemicals 
for fire-fighting will be lower because of the possibility of 
an accident. Therefore, the preference for using chemicals to 
fight the fire will also be lower. All the affected activities 
are presented to the operator one-by-one or grouped into 
similar operations for reassessment of the preferences. Since 
the computer does the tedious error-prone search of activities 
that have to be reassessed, the operator can concentrate fully 
on the assessment itself. This process of real-time risk analysis 
is supported by the use of interactive pictorial displays. 

After all the affected activities have been reassessed, an 
algorithm determines the necessary changes in the course of 
action. The algorithm must resolve two issues: (1) how to 
“add up” preferences of different activities in order to compute 
the overall preference of a course of action, and (2) how to 
determine which of the different feasible courses of action is 
most preferred. In so doing, it must also consider the limita- 
tions of human cognition [14]. According to the definition of 
preference classes, it is correct to “add up” preferences within 
a class but not across the classes. In addition, the principle of 
non-commensurable preference classes must hold throughout 
the decision process. To answer the second question of how 
to choose the most preferred course of action (Le., how to 
order the feasible courses of action), we will adopt a MinMax 
strategy which is a well known principle in decision making 
under uncertainty [ 151. The MinMax strategy can be easily 
incorporated into existing network algorithms. 

IV. ILLUSTRATIVE EXAMPLES 

A. Transportation of Hazardous Materials 

The dispatcher of a truck fleet monitors on a map-like screen 
the movement of the vehicles [18]. The movement can be 
seen as a walk through the road network (topological graph 
structure). Each node is a decision node, since at each node 
the dispatcher has at least two alternatives to continue the 
shipment. The dispatcher senses in real-time the environment 
for weather changes, traffic accidents, traffic congestions, 
changes in the state of the cargo, etc. The most preferred route 
under given conditions is depicted in Fig. 3 in dark. 

The dispatcher of hazardous material shipments tries to 
minimize costs without compromising safety. The highest 
priority is, therefore, to avoid road sections that are too 
dangerous or too costly (preference-class a). Among the 
remaining feasible routes, the dispatcher tries not to use roads 
in the high risk regions. Among the remaining feasible routes, 

costs have to be minimized. If any of these routes have the 
same costs, those with the lowest risk will be selected. The 
preference structure has therefore the following form: 

All links of the transportation network have been assessed 
strategically for normal conditions. To do this, the entities 
along the road network that can have an influence on safety 
and time, have been identified. Examples are bridges, tunnels, 
and urban areas. The roads have been divided into six safety- 
classes, based upon average risk values given in the literature 
[16]. These classes are highways in urban and rural areas, 
local roads in urban and rural areas, mountain roads, and road 
sections in tunnels. The costs have been computed assuming 
average transportation costs per hour and average travel speed. 
After all the links have been assessed, optimal routes can be 
determined for any origiddestination pair on the road network. 
Under normal conditions, no high-risks were present on the 
network. Therefore, the optimal routes were determined based 
solely on transportation costs. 

The optimal route for shipment 1 (dark lines in Fig. 3) 
has the following overall values: cost-preference of 305.69 
and 6 low-risk-preferences. The second best route has costs 
of 307.11 and 4 low risk values. This example shows that in 
addition to the graphical solution, the overall preference values 
should also be given. Since the cost- and risk-preferences of 
the two routes are almost the same, the operator or driver could 
decide to take the second best route. 

While the shipments are on the road, the operator monitors 
the movement on a computer display, and gathers information 
about the weather from weather stations and road conditions 
from the police. Suddenly, the message comes in that a spring 
thaw caused a large boulder to threaten the underlying road. 
The operator points on an interactive visual display to the 
links affected by this event (mouse, touch screen) and the 
system presents himher the links one-by-one for reassessment 
of the risk- and cost-preferences (Fig. 3). For this illustrative 
scenario, only one link is affected. Typically, more than one 
link is affected, and the affected links could change the 
feasibility and preferences of additional links. 

After all the affected links have been reassessed, the al- 
ternate routes are computed for all the vehicles using an 
appropriate network search algorithm. The algorithm incorpo- 
rated into the prototype decision support system in hypermedia 
[18] is based on the well known shortest path algorithm. 
The algorithm in this application optimizes preferences using 
the MinMax principle, instead of the typical minimization of 
distances. However, not all shipments must have their routes 
re-evaluated, but only those shipments that planned to drive 
through the region affected by the event. For this case, the 
operator changed the risk-preference of the affected link from 
1 low-risk to 1 high-risk. The planned route (dark) has now 
the following values: 1 high-risk-preference, cost-preference 
of 305.69, and 5 low-risk-preferences. The second best route 
under normal average conditions is now the optimal route 
(gray), since it does not have any high-risk-preferences (Fig. 
3). As final step, the operator notifies the drivers of the new 
optimal route in real-time. 
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Fig. 3. Shipment number 3 plans to drive through the area affected by the event (dark). By clicking on a link that is affected by the event, a window comes 
up on the right with the information about the link and the possibility to reassess risk- and cost-preferences. Risk-preferences can be changed by clicking on 
the appropriate box (link closed, high risk, low risk, no risk), and delays in travel time by moving the slide. After all the links affected by the event have been 
reassessed, the search algorithm determines for each vehicle the new optimal route (gray) which in turn is transferred to the drivers in real-time. 

B. Managing Emergency Response 

The second example is based upon the response to the 
Exxon Valdez oil spill in Alaska, USA [17]. Responding to 
a maritime casualty where the release of the cargo could have 
potentially catastrophic impact involves the establishment of a 
command and control center. The commander, called the on- 
scene coordinator, and his or her staff gather data, do analyses, 
make decisions and monitor their implementation. External 
events, in particular the weather, require that this monitoring 
and control be done in real-time. 

Once an accident occurs, the command and control center is 
activated. It gathers data on such factors as type of cargo, type 
of vessel, extent of the accident, and weather, and decides 
on a course of action-in a very time-constrained situation. 
The validity of the chosen course of action depends upon the 
quality of the information available. In addition, the initial 
decisions act as constraints on subsequent decisions. If, for 
example, a decision is made not to use chemical dispersants 
or burning to remove the oil in the water, booms must be 
allocated to protect vulnerable resources. The response phase 
is considered complete when there is no threat to human life 
and the vessel and its cargo are under control. 

The attributes chosen for assessing the preference of each 
action are operational risks (R) ,  operational costs (C), and 
value of the response activity (V), e g ,  the benefit of an 
activity that mitigates long term environmental damages. The 
highest priority is given to the safety of personnel on the 
vessel and in the emergency response team, and the population 
that may be affected by the release of the cargo. In the 
case of the Exxon Valdez, the humans at risk were those 
on the vessel. After the safety of personnel, the emergency 
response managers must consider environmental damage to 
the shoreline and the waters, property loss to the shipper, and 
income loss to fishermen and the tourist industry (now and in 
the future). The ability of each of the response activities to 
lesson these impacts is delineated in the class “Values.” 

An example of the oil spill response activities is shown 
in Fig. 4. The preference structure was developed using the 
classes high-risk ( k ) ,  values (w), costs (c) ,  and low-risk ( I ) ,  
where values are measured by a surrogate for positive impact 
on the environment, like barrels of oil removed from the water 
or the shore. It is based upon assessment made in anticipation 
of the event, which is part of the oil spill response plan. These 
contingency plans are developed based on an expectation 
that once the event occurs, response activities can be carried 
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Fig. 4. Topological graph of oil spill response plan. The dark lines represent the optimal course of action before the real-time event. The gray lines 
show the change in the course of action in response to the real-time event. 

out with certainty. It is our contention (and the case in the 
Exxon Valdez accident) that this expectation is unrealistic, and 
therefore we need operational risk analysis. The preference 
structure for the Exxon Valdez response is the following: 

If A and B then: {n(ERG) = 2v, c; .rr(ERI) = h, 3v, c} 
If A and C and D then: {.rr(ERG) = 12v, 5c;  .rr(E%l) = 

4v,c} 
If A and C and B then: {.rr(ERG) = 671, c; n(ER1) = v, c} 

a < RiSkShigh < Values < Costs < Risksl,, < w. 
In the previous example, we did not describe in detail 

the computations needed to arrive at the optimal course of 
action since the network was too large. For this example, 
we will illustrate both the assessment of the preferences 
and the choice process. 

The following a priori preference relations have been 
defined, where the letters refer to the circles in Fig. 4, and 
.rr(ARB) = 2c means that the preference ( K )  of the relation 
(8) or link between 'decision A and decision B corresponds 
to 2c (2 units of cleanup costs). We assign preferences for 
the activities based upon our experience planning for and 
responding to major oil spills, e g ,  Exxon Valdez [17]. 

If A and B and E then: {n(lRG) = h,2w,c} 
If A and C and B and E then: {.rr(lRG) = 4v,c} 
If A and B then: {.rr(lRG) = h,v,c} 
If A and C and B then: {.rr(IRG) = w,c} 
If A and D and E then: {.rr(lRG) = h,2v,c} 
If A and C and D and E then: {w(IRG) = 8v,c} 
If A and B and D then: {.rr(lRG) = h, w, c} 
If A and C and D then: {w(IRG) = 2w,c} 

{r(GRIH) = w) 

If I then: {.rr(GRZJ) = w, lOc, l} 
If 11 then: {.rr(GRJ) = w, 2c, I} 

{.rr(ARB) = 2c; .rr(ARC) = ~ O C ,  1; .rr(CRB) = C} {.rr(FRJ) = c , l )  

If A then: {.rr(BRD) = c; .rr(BRE) = 4c; .rr(BRZF) = h, 2w, 
5c;.rr(BRG) = w,c;n(B%H) = c ; r ( B R l )  = C} 

If A and C then: {.rr(BRD) = c;w(BRE) = 3c;r(BRZF) = 
h, 4w, 2c; .rr(BRG) = W, C; n(BRH) = C; .rr(BRH) = c} 

{n(FRH) = 1 )  
If D and G then: {.rr(HRJ) = 8w,c} 
If D and 7 G  then: {.rr(HRJ) = 4w,c} 
If 1D and G then: {.rr(HRJ) = w,c} 
If 1D and 1 G  then: {.rr(HRJ) = w,c} 

If F and 4) then: {.rr(H%ZJ) = v,c} 
If A then: {.rr(DRF) = h,2v,lOc;.rr(DRG) = v,5c; 
.rr(D%H) = 2c; r(DR1) = 2c} 
If A and C then: {?r(DRRF) = h,8w,4c;.rr(DRG) = v,5c; 
n ( D 8 H )  = 2c;r(DRI)  = ZC} 

If A and D then: {.rr(E%G) = 4v,5c; n(E%I) = h, w, 2c) 

The best response for this particular spill situation, i.e. the 
optimal path through the graph, is to close the harbor, fly in 
additional equipment, use booms, use burning agents (which 
requires the use of skimmers), and add bioagents, as shown in 
Fig. 4. The solution was determined by first enumerating the 
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6 
Fig. 5. Tree structure to enumerate paths in graph of oil spill response plan. 
The dark lines represent the optimal course of action before the real-time 
event. The gray lines show the change in the course of action in response 
to the real-time event. 

paths as shown in Fig. 5, and then “adding up” the preferences. 
Note that the benefits in terms of gallons of oil removed 

are the same whether or not we use burning agents. However, 
burning agents are more cost effective. Since this analysis is 
done in the strategic phase of planning the oil spill response, 
we can discuss whether closing the harbor was sufficient to 
remove burning from the high risk category, i.e., If A and C 
and D (harbor closed) then: {7r(ERI) = 4w, c }  versus If A 
and D (harbor open) then: {r(ERI) = h, w, 2c). 

Now let us assume that weather prevented the response 
equipment from being flown in and the skimming equipment 
on site was not operating, i. e., a real-time event. The links to 
be reassessed with their new assessment are as follows. 
If A then: {7r(BRF) = 2w, 1Oc; 7r(BRZH) = c }  
If A and C then: {.rr(BRF) = 8v,4c;7r(BRH) = c }  

{7r(FRZH) = l} 

{7r(FRJ) = l O C , l }  

If F then: {7r(H%J) = 4w,2c} 
If T F  then: {7r(HRJ) = v,c} 

The revised course of action, the new optimal path, is to 
close the harbor, and to use both chemical dispersants and 
bioagents, i.e., “use everything we’ve got”, as shown in Figs. 
4 and 5. The reason for this result is that environmental regu- 
lations prevented the use of burning agents without skimming, 
Le., that link was assessed to fall into the class a Q priori and 
is, therefore, not feasible. 

V. CONCLUDING COMMENTS 
We have proposed and illustrated a new paradigm for 

real-time risk analysis and decision making, operational risk 
management. It capitalizes upon technological advances in 

communication and computing technology, and considers lim- 
itations in human cognition. We have developed a decision 
support system [18] and conducted an assessment of this 
approach [19]. The decision logic was embedded into a 
decision support system for the monitoring and control of 
hazardous materials shipments and emergency response. The 
assessment consisted of a field experiment conducted at a 
school for truck dispatchers in Wil, Switzerland, with thirty- 
two experienced dispatchers and truck drivers. The task was 
to respond to episodic events that could increase both the 
risks and costs of truck transportation. The technology was 
designed to simulate a dispatcher’s workstation with electronic 
maps, pictures and photos, graphical displays, voice alarms, 
and mouse input, and ran on a Macintosh I1 si using Hypercard 
and Pascal. Results showed that the decision logic for real-time 
risk analysis was more accurate than a multicriteria utility 
approach in supporting the subjects in finding the optimal 
routes considering risks and costs, and required the least effort. 

We are also investigating an extension of the preference 
structure to incorporate multiple decision makers, and its 
applicability to the general problem of decision support for 
crisis managers [20]. 

The purpose of this paper is to provide a new way of 
viewing decision situations where risk analysis and decision 
making must be done in a time constrained, potentially stress- 
ful environment as described in Section 11. We recognize 
that advances in communications and computing have made 
possible real time monitoring and control of large scale, 
dispersed operational systems. Some of these systems have 
the potential for catastrophic impacts on society due to sudden 
onset events. In order to respond to these events, an operator 
needs to determine both the probability and severity of out- 
comes for these events and decide on a course of action. This 
process of risk assessment and risk management in operational 
settings is what we call operational risk management. We also 
recognize that in these settings the probability and severity 
cannot be specified in advance and a priori specification may 
not be accepted by the decision maker. Therefore, we must 
investigate alternative ways of assessing risk and preferences; 
our proposal is a lexicographic preference function embedded 
in a decision aid with an appropriate human machine interface. 
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