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a b s t r a c t

The initial stage of the laminar–turbulent transition of semi-infinite flows can be characterized as either
an absolute or convective instability, naturally associated with localized wave packets. A convective
instability is directly linked to an absolute instability in a different reference frame. Therefore, our aim
is to determine the absolute stability of a flow in a given but arbitrary reference frame, which can
only be directly inferred from the absolute eigenvalue spectrum. If advective processes are present,
the associated absolute eigenfunctions grow exponentially in space in the advective direction. The
eigenvalue spectrum is usually computed numerically, which requires truncating the domain and
prescribing artificial boundary conditions at these truncation boundaries. For separated boundary
conditions, the resulting spectrum approaches the absolute spectrum as the domain length tends to
infinity. Since advective processes result in spatially exponentially growing eigenfunctions, it becomes
increasingly difficult to represent these functions numerically as the domain length increases. Hence,
a naive numerical implementation of the eigenvalue problem may result in a computed spectrum that
strongly deviates from the (mathematically correct) absolute spectrum due to numerical errors. To
overcome these numerical inaccuracies, we employ a weighted method ensuring the convergence to
the absolute spectrum. From a physical point of view, this method removes the advection-induced
spatial exponential growth from the eigenfunctions. The resulting (absolute) spectrum allows for a
direct interpretation of the character of the pertinent perturbations and the eigensolutions can be
used to construct and analyse the evolution of localized wave packets in an efficient way.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Classifying the growth and the character of unstable per-
turbations on wall-bounded flows is the central goal of linear
stability theory in aerospace applications. The stability methods
typically used are based on eigenvalue problems including the
classical Linear Stability Theory (LST, Mack [1]; Reed et al. [2])
for one-dimensional problems and BiGlobal stability analysis for
two-dimensional flows, see Theofilis [3].

For flows on a semi-infinite domain, the stability is assessed
via perturbations with a finite support; wave packets having a
front in the up- and downstream direction. Using these pertur-
bations, the stability of a flow can be characterized as abso-
lute or convective, see Huerre and Monkewitz [4]; Schmid and
Henningson [5]; Chomaz [6]. Absolute instability is determined
by the amplitude evolution of a wave packet whose up- and
downstream fronts propagate toward infinity in their respec-
tive direction. Note that this requires selecting a fixed reference

∗ Corresponding author.
E-mail address: k.j.groot@tudelft.nl (K.J. Groot).

frame. Using this definition of absolute instability, it follows
that, in the selected fixed reference frame, the flow is: (I) abso-
lutely unstable, if at least one such wave packet grows in time;
(II) absolutely stable, if all such wave packets decay in time;
(III) convectively unstable, if the flow is absolutely stable in the
fixed reference frame, but absolutely unstable in at least one
other reference frame; (IV) absolutely and convectively stable,
if there is no reference frame in which the flow is absolutely
unstable. From this classification, it follows that assessing the
possible absolute stability of a flow in an arbitrary reference
frame is key.

The finite support of the wave packets is required in the above
classification, because the propagation direction of fronts in the
physical domain has to be assessed and this is impossible if the
fronts are located at infinity. The LST and BiGlobal methods do not
directly give the desired information, because the eigensolutions
do not necessarily fulfil this requirement. In particular, the ap-
proaches yield, apart from possible discrete modes that do have
localized eigenfunctions, a continuous spectrum as the domain
length tends to infinity. The latter eigensolutions are referred to
as continuum modes. The eigenfunctions corresponding to these

https://doi.org/10.1016/j.physd.2019.132224
0167-2789/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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modes have an infinite support. This spatially unconfined na-
ture prohibits the physical interpretation of individual continuum
modes as convective or absolute perturbations.

The bridge to extract the stability characteristics of wave
packets from continuum modes is provided by applying Briggs’s
method, as described in the detailed treatments by Briggs [7];
Huerre and Monkewitz [8]; Brevdo [9]; Schmid and Henningson
[5]. This method constructs spatially localized wave packets by
superposing spatially unconfined continuum modes through the
inverse Fourier transform integral. This translates naturally into
interpreting a sum of modes, instead of each mode individually,
as a physically relevant perturbation. Briggs’s criterion for abso-
lute instability relies on finding a branch point in the frequency
spectrum, see §7.1.3 in Groot [10]. This point directly indicates
the absolute stability of the flow. In particular, if the branch point
lies in the (un)stable half of the complex frequency plane, the
flow is absolutely (un)stable. Kapitula and Promislow [11, def.
3.2.5] indicate that branch points belong to the so-called absolute
spectrum.

In general, no analytical expressions can be found for the
spectrum, so numerical approaches have to be resorted to. This
requires the truncation of the domain and the introduction of ar-
tificial boundary conditions. The spectrum of the resulting prob-
lem must converge as the domain length approaches infinity.
Restricting ourselves to base flows that approach their asymptotic
states in space at least exponentially, it is mathematically proven
by Sandstede and Scheel [12, th. 5], that the spectrum converges
to the absolute spectrum as the domain length tends to infinity
when imposing separated truncation boundary conditions. There-
fore, to determine the absolute stability of a flow, one has to
impose separated truncation boundary conditions. Extracting the
absolute stability information from the continuous spectrum this
way was not yet properly understood before.

Previous numerical experiments indicate, however, that do-
main length convergence studies are very challenging [13–16]. It
is even stated by Theofilis [3] that: ‘the discretized approximation
of the continuous spectrum will always be under-resolved.’

In view of the above, the aim of this paper is to accurately
determine the absolute spectrum and corresponding eigenfunc-
tions, given a reference frame. The absolute spectrum allows for
a direct identification of the most unstable or least stable wave
packet via its branch points and a direct classification of the flow
as absolutely (un)stable.

A model problem representative for flow stability analyses
is introduced in Section 2. The physical origin of the numerical
issues is identified by assessing the model problem analytically
in Section 3 and a solution method is proposed in Section 4.
The problem with constant and varying coefficients is treated
numerically in Section 5, allowing the investigation of the impli-
cations for numerical methods. The evolution of a wavepacket is
elaborated on in Section 6. The paper is concluded in Section 7.

2. Model problem

In general, incompressible flow fields are governed by the
Navier–Stokes equations. Here, the non-parallel self-similar flow
over a flat-plate (Blasius flow) is considered, that satisfies the
Navier–Stokes equations up to the boundary-layer approxima-
tions, see White [17, chapter 4] for a detailed elaboration. Let
x, y and z denote the streamwise, wall-normal and spanwise
coordinates and U , V and W the x-, y- and z-components of
the base flow velocity, respectively. The velocity components are
assumed to be functions of y only. At the flat-plate, y = 0, the
velocity components satisfy the no-slip boundary condition, i.e.
they are zero. For the Blasius problem, W (y) ≡ 0 and U(y) and
V (y) approach positive asymptotic (edge) values Ue > 0 and Ve >

Fig. 1. Definition of the velocity variables and U/Ue (black) and 10 V/Ue (red),
W ≡ 0, boundary-layer velocity profiles, see Table 1.

0 as y → ∞, see Fig. 1. The asymptotic values are approached
super-exponentially, so that the requirements for the theorems
of Sandstede and Scheel [12] are satisfied, see also Kapitula and
Promislow [11, def. 3.1.1].

A base flow solution is not necessarily stable. To determine
its stability, the base flow solution is perturbed. Perturbations are
considered whose structure is constant in z. The infinitesimal per-
turbation to the spanwise velocity component, which is denoted
by w′, is governed by the linearized Navier–Stokes z-momentum
equation. Under the aforementioned assumptions, this equation
reduces to:

L
(

−i
∂

∂x
, −i

∂

∂y
, i

∂

∂t

)
w′

=

(
∂

∂t
+ U(y)

∂

∂x
+ V (y)

∂

∂y
− ν

(
∂2

∂x2
+

∂2

∂y2

))
w′

= 0. (1)

Here, t is time and ν is the kinematic viscosity.
The following Fourier ansatz can be imposed for the temporal

and x-structure of w′:

w′(x, y, t) = eiαx
∫

∞+iγ

−∞+iγ
w̃(y; ω) e−iωt dω

2π
+ c.c., (2)

where w̃ is the perturbation amplitude, α the streamwise
wavenumber, ω the (angular) frequency, γ the distance of the
integration contour from the real ω-axis and c.c. denotes the
complex conjugate of the right hand side. The ansatz is discrete
in α and continuous in ω, prescribing a non-localized structure
in x and a localized structure (finite support) in t . A generic
perturbation structure is allowed in y.

Substituting ansatz (2) into Eq. (1) yields

L̃
(

−i
d
dy

; α, ω

)
w̃

=

(
−iω + iα U(y) + V (y)

d
dy

+ ν

(
α2

−
d2

dy2

))
w̃ = 0, (3)

a non-parallel version of the Squire equation, see Schmid and
Henningson [5, p. 57].

At y = 0, a no-slip (homogeneous Dirichlet) condition is
applied, w̃(0) = 0, consistent with the condition for the base flow.
As deduced in the introduction, the perturbation solution must
decay as y → ∞ in order to be interpreted as a physical perturba-
tion and to be used to deduce the absolute or convective instabil-
ity character of the flow in the y-direction. Every spatial direction
can be treated separately in this regard. Note that the imposed
non-localized nature of the solution in the x-direction precludes
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deducing the absolute or convective instability character of the
solution in that direction.

Analytical solutions usually cannot be found, hence numerical
approximations are constructed. This requires the truncation of
the domain at a finite length L and the introduction of an artificial
boundary condition. It can be deduced from the mathematical
literature, principally consisting of the work of Sandstede and
Scheel [12], that two kinds of boundary conditions can be distin-
guished in general: separated and periodic boundary conditions.
A separated boundary condition is a condition that does not link
solution information at opposite boundaries, such as Dirichlet,
Neumann or Robin type conditions; it specifies a relationship
for the solution evaluated at one particular boundary. Obviously,
periodic boundary conditions do link solution information at op-
posite boundaries and are an example of non-separated boundary
conditions.

Sandstede and Scheel [12] prove that the use of any type of
separated (Dirichlet, Neumann or Robin type) boundary condition
yields a spectrum that dictates the absolute stability as L → ∞.
The absolute stability of the system is of interest, therefore a homo-
geneous Neumann condition, dw̃/dy(L) = 0, is chosen, simulating
(artificial) standing wave behaviour at y = L. The theorems of
Sandstede & Scheel will now be exemplified by assessing the
constant-coefficient version of the model problem (3).

3. Algebraic spectrum analysis

As mentioned in the introduction, the current aim is to deter-
mine the absolute stability characteristics of a system based on its
continuum solutions; i.e. the solutions that belong to the continu-
ous spectrum. The Weyl essential spectrum theorem, see Kapitula
and Promislow [11, theorem 2.2.6] and Kato [18, chapter 4, the-
orem 5.35], dictates that a system’s continuum solutions depend
only on the spatial asymptotic states of the system. That is, the
continuum solutions depend on the boundary-layer edge values
only, the precise shape of the velocity profiles near the wall is
immaterial. So, it suffices to study the problem evaluated at the
constant background velocity profiles, U = Ue and V = Ve. The
resulting constant-coefficient problem can be solved analytically,
by posing a Fourier ansatz in all independent variables for w′:

w′(x, y, t) = ei(αx+ky−ωt)
+ c.c. (4)

Note that for negative (positive) ki, w′ grows (decays) in the
positive y-direction. Therefore −ki is from now on referred to as
the growth rate (as opposed to a decay rate).

Substituting ansatz (4) into Eq. (1) yields

−iω + iα Ue + i k Ve + ν(α2
+ k2) = 0,

see Bouthier [19]. Grosch and Salwen [20] considered the equiv-
alent with Ve = 0. Solving ω for given k, yields

Ω(k) = α Ue + k Ve − iν
(
α2

+ k2
)
, (5a)

and solving for k, given ω, results in

κ1,2(ω) = −i
Ve

2ν
± i

√( Ve

2ν

)2

+ ν−1
(
−iω + iα Ue + να2

)
. (5b)

For arbitrary k ∈ C, it can be shown that

κ1,2(Ω(k)) =

{
+k
−k − i Veν

−1 . (6)

This clearly shows that, for a frequency Ω(k) corresponding to a
given k ∈ C, another complex wavenumber, given by −k− i Ve/ν,
exists that belongs to a perturbation with the same frequency
Ω(k). This is demonstrated as follows:

Ω(k) = α Ue + k Ve − iν
(
α2

+ k2
)

(7)

Fig. 2. Absolute (solid) and essential (dashed) spectrum limits (k ∈ R)
corresponding to the parameters in Table 1. Branch point (•).

= α Ue − k Ve − i Ve
2 ν−1

− iν
(
α2

+ k2 + 2i k Ve ν−1
+ i2 Ve

2ν−2)

= Ω(−k − i Ve ν−1).

An eigensolution, with a specific frequency Ω(k), is constructed
by combining both homogeneous solutions corresponding to this
frequency. The combination of the two solutions has to satisfy the
boundary conditions. For k ∈ C, this results in(
A eiky + B ei(−k−iVe/ν)y

)
  

w̃(y)

ei(αx−Ω(k)t), (8)

where A and B are determined by the boundary conditions. As
can be interpreted from Sandstede and Scheel [12], one only has
to distinguish between separated and periodic boundary condi-
tions, for each case yields a different limit of the spectrum as
the domain length tends to infinity, namely the absolute and
essential spectrum. These limits are detailed in what follows,
specializing the description to the current model problem; a
second order differential equation. The definitions and theorems
directly generalize to differential equations with a higher order,
see Sandstede and Scheel [12]; Kapitula and Promislow [11].

3.1. Absolute spectrum limit

Sandstede and Scheel [12] prove (cf. theorem 5) that the
spectrum approaches the so-called absolute spectrum limit as the
domain length tends to infinity if the problem is equipped with
separated (i.e. any choice of Dirichlet, Neumann or Robin) bound-
ary conditions. This result is algebraically reproduced by Groot
[10, §8.3.1] for the current model problem. Sandstede & Scheel
define the absolute spectrum (see also Kapitula and Promislow
[11, def. 3.2.3]) as the spectrum with ω-values that satisfy

κ1,i(ω) = κ2,i(ω), (9)

where κ1,2 are defined in Eq. (5b) and κ1,i (κ2,i) refers to the imag-
inary part of κ1 (κ2). The corresponding eigenfunctions are here
referred to as the absolute eigenfunctions. It follows from Eq. (6)
that Eq. (9) holds when ki = −Ve/2ν, for all kr ∈ R. In the
ω-plane, the absolute spectrum can accordingly be expressed as:

Absolute spectrum:
(separated conditions) Ω

(
kr − i Ve/2ν

)
, for kr ∈ R.

(10)

The locus of Ω(k − i Ve/2ν) traced in the ω-plane for k ∈ R
is shown as the solid line in Fig. 2 for the parameters given in
Table 1. Shifts are applied to cancel the terms containing α.
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By substituting ki = −Ve/2ν into Eq. (8), it follows that the
absolute eigenfunctions of Eq. (3) display an exponential spatial
growth for y → ∞. An explanation for this spatial structure
of the solutions is given in Appendix A. In Section 5, it will be
illustrated that this inherent spatial growth renders numerically
resolving these solutions very challenging, especially for large L,
see Rodríguez et al. [15].

3.2. Essential spectrum limit

If periodic boundary conditions are applied, instead, Sandst-
ede and Scheel [12] prove (cf. theorem 4) that the spectrum
approaches a different limit as L → ∞: the so-called essential
spectrum (in an unweighted space). This result is also algebraically
reproduced by Groot [10, §8.3.2] for the current model problem.
The essential spectrum (see also Kapitula and Promislow [11, def.
2.2.3]) is defined by the spectrum with ω-values for which

κ1,i(ω) = 0 or κ2,i(ω) = 0. (11)

It follows from Eq. (6) that condition (11) is satisfied if ki = 0 or
ki = −Ve/ν, again for all kr ∈ R. Using Eq. (7), it follows that both
cases result in the same locus in the ω-plane:

Essential spectrum:
(periodic conditions) Ω (kr) , for kr ∈ R. (12)

This spectrum is shown as the dashed line in Fig. 2. It is important
to observe that the essential spectrum attains larger ωi-values
than those obtained in the absolute spectrum. A general property
of the absolute spectrum is its minimal extent (e.g. upwards pro-
trusion) in the ω-plane, see Kapitula and Promislow [11, lemma
3.2.4]. For example, maxkr Ωi(kr + iφ) is minimal with φ =

−Ve/2ν. This minimal extent is the property that justifies the
name ‘absolute’ [10, §7.4.2].

By substituting the values ki = 0 or ki = −Ve/ν into Eq. (8),
it follows that the spatial exponential growth rate of the eigenfunc-
tions associated to the essential spectrum is equal to zero.

3.3. Branch points

Kapitula and Promislow [11, def. 3.2.5] define branch points as
the ω-values for which

κ1(ω) = κ2(ω). (13)

As mentioned in the introduction, a branch point in the ω-plane
allows determining the absolute stability of a flow via Briggs’s cri-
teria, see §7.1.3 in Groot [10]. For the current constant-coefficient
model problem, the ω-value satisfying condition (13), denoted by
ω0, equals:

ω0 = αUe − iν

⎛⎝α2
+

(
Ve

2ν

)2
⎞⎠ . (14)

For non-zero α,Ue, Ve ∈ R and ν > 0, it follows that ω0,i < 0,
therefore the constant-coefficient model problem is absolutely
stable under those conditions. This branch point is also indicated
in Fig. 2.

Branch points are contained in the absolute spectrum, because
Eq. (13) augments Eq. (9) by additionally requiring the equal-
ity of the real parts of κ1 and κ2. As discussed in Section 3.1,
Sandstede and Scheel [12] prove that applying separated bound-
ary conditions results in the absolute spectrum. Therefore sepa-
rated boundary conditions are to be used if the absolute stability
characteristics are to be investigated.

For the current model problem with Ve ̸= 0, κ1(Ω(k)) ̸=

κ2(Ω(k)) for all k ∈ R. Hence, the essential spectrum does not

contain branch points and Briggs’s criterion cannot be applied. It
therefore does not yield direct information on the absolute stability
of the flow. Nevertheless, from the knowledge that the absolute
spectrum has a minimal extent, it follows that the essential spec-
trum cannot reach lower maximal ωi-values than the absolute
spectrum. If the essential spectrum is found to be completely
stable, therefore, the flow is absolutely stable. If the essential
spectrum protrudes into the unstable half of the frequency plane,
however, no conclusion can be drawn about the absolute stability
of the flow, see figure 7.6 of Groot [10].

It is concluded that, to assess the absolute stability of a flow un-
equivocally, one must resolve the absolute spectrum, which requires
applying separated boundary conditions.

4. Solution method: weighted formulation (symmetrization)

In approaching the problem numerically, one must resolve the
absolute eigenfunctions, which grow exponentially in space. To
circumvent the numerical problems associated with unbounded
spatial growth, the w̃ eigenfunctions are multiplied with an ex-
ponential weighting function σ = σ (y). For general V = V (y),
this weighting function reads

σ = e−
∫ y
0 V (ȳ) dȳ/2ν . (15)

The governing differential equation is retrieved by substituting
ŵ = σw̃ into Eq. (3), forming what is referred to as the conjugated
operator: σ L̃(σ−1σw̃) = σ L̃(σ−1ŵ) ≡ L̂(ŵ) (Kapitula and
Promislow [11, pp. 53–54]; Sandstede and Scheel [12]):

σ L̃(σ−1ŵ) = σ
(
−iω + iα U(y) + να2) σ−1ŵ

+ σ V (y)
dσ−1ŵ

dy
− σν

d2σ−1ŵ

dy2
= 0

L̂(ŵ) =

(
−iω + iα U(y) +

V
2
(y)

4ν
−

1
2
dV
dy

(y)

+ ν

(
α2

−
d2

dy2

))
ŵ = 0. (16)

The Neumann boundary condition transforms to

σ
dσ−1ŵ

dy

⏐⏐⏐⏐
y=L

=

(
dŵ
dy

+
V (y)
2ν

ŵ

)⏐⏐⏐⏐⏐
y=L

= 0. (17)

The eigenvalue problem for ŵ (Eq. (16)) and w̃ (Eq. (3)) with the
associated boundary conditions is referred to as the weighted and
unweighted problem, respectively.

Effectively, the advection term Vd/dy in Eq. (3) is replaced by
the reaction term (V

2
/2ν − dV/dy)/2 in Eq. (16). Removing the

former term is, in fact, the recipe to deriving the expression for
σ . The absolute (and discrete) spectrum of the operators L̂ and
L̃ is identical, see Kapitula and Promislow [11, lemma 3.2.4], and
the eigensolutions are related as ŵ = σw̃.

The weighted problem is a regular, self-adjoint Sturm–
Liouville eigenvalue problem, see Haberman [21]. The eigenfunc-
tions thus form an orthonormal basis: ⟨ŵi, ŵj⟩ = δij, where ⟨·, ·⟩ is
the L2-function inner product and δij is the Kronecker delta. This
approach is equivalent to the ‘symmetrization method’ treated
by Reddy and Trefethen [22]. As noted in the same reference, the
weighting function σ−1, signifying eigenfunction growth in space,
is the sole property that renders the eigenfunctions corresponding
to the unweighted problem, w̃, to be mutually non-orthogonal. The
direct relationship of the weighting function to the non-parallel
advection V in Eq. (15) illustrates how the non-orthogonality of
the eigenfunction basis is, in turn, directly related to advection. A
further physical interpretation of the weighted approach is given
in Appendix A.
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To illustrate that the spatial growth is cancelled from the
asymptotic behaviour of the eigensolutions, Eq. (16) can again
be considered with constant coefficients. Ansatz (4) is adapted
to yield the weighted problem by incorporating the factor σ as
follows:

w′(x, y, t) = σ−1(y) ei(αx+ky−ωt)
+ c.c. (18)

Substitution into Eq. (1) yields:

Ω̂(k) = α Ue − i
V

2
e

4ν
− iν

(
α2

+ k2
)
, (19a)

κ̂1,2(ω) = ±i

√( Ve

2ν

)2

+ ν−1
(
−iω + iα Ue + να2

)
. (19b)

A substitution reveals that κ̂1,2(Ω̂(k)) = ±k. Hence, by having
included the factor σ in the ansatz, κ̂1 and κ̂2 have the same
imaginary part only for ki = 0. Condition (9) therefore implies
that the absolute spectrum corresponds to k ∈ R and that the
spatial exponential growth rate of the ŵ-eigenfunctions is equal
to zero.

To find the spectrum in the ω-plane, one has to evaluate Ω̂(k)
for k ∈ R. By evaluating Ω(k − i Ve/2ν), it follows that:

Ω̂(k) = Ω

(
k − i

Ve

2ν

)
, (20)

i.e. the loci traced by Ω(k − i Ve/2ν) and Ω̂(k) (for all k ∈ C) are
the same. This is a demonstration of the more general fact (lemma
3.2.4 of Kapitula and Promislow [11]) that the absolute spectra
in the ω-plane corresponding to the weighted and unweighted
problems are identical.

In conclusion, both the unweighted and weighted problems result
in the same spectrum. However, numerical errors are expected to
have a dominant impact when solving the unweighted problem for
too large domain lengths. By annihilating the spatial exponential
growth with the factor σ , i.e. using a weighted approach, that
complication is entirely removed, resulting in accurate spectra and
eigenfunctions. This will be demonstrated in the next section.

5. Computational spectrum analysis for large L

The main goal of this section is to test the performance of the
method presented in Section 4 via numerical experiments. This
pertains to the second objective mentioned in the introduction: to
establish an adequate approach to numerically approximate the
absolute spectrum encoding the absolute stability characteristics
as L → ∞.

As background flow profiles, the constant-coefficient case
(Section 5.1) and non-parallel Blasius boundary-layer profile
(Section 5.2) are considered. The eigenvalue problems are dis-
cretized using Chebyshev spectral collocation in y, using the
standard cosine node distribution (see Canuto et al. [23]; Wei-
deman and Reddy [24]). There is no reason to increase the node
resolution at one boundary over that at the other in order to
accurately represent the continuum solutions. Therefore, the use
of grid mappings, such as the mapping introduced by Malik [25],
is avoided. The boundary-layer profiles are interpolated onto
these nodes using spline interpolation. The number of colloca-
tion nodes used in the interior of the domain is denoted by
N . The discretized eigenvalue problem is solved using the QZ
algorithm (see Golub and Van Loan [26]). Computed eigenvalues
obtained from the discretized versions of equations ((3), i.e. the
unweighted problem) and ((16), weighted) are denoted by ω̃ and
ω̂, respectively.

Table 1
Reference simulation parameters.

Ue (m/s) l (m) ν (m2/s) x/l = Ue l/ν Ve/Ue αl

15 8.3792 × 10−5 1.4608 × 10−5 86.040 0.01 2π

The domain length is denoted by L. The length scale used to
make lengths non-dimensional is the local Blasius length scale
and it is denoted by l. Seven domain lengths are considered: L/l =
60, 72, 90, . . . 360, according to the rule 360/5, 360/4, 360/3, . . .
360/1, and L/l = 3600 = 360/0.1. This choice follows from the
observation (shown later) that the spectra converge as 1/L. If not
indicated otherwise, the resolution is varied proportionally with
L: N = L/l.

5.1. Constant-coefficient problem

First, the problem with the coefficients U(y) = Ue and V (y) =

Ve is solved. The numerical results obtained for this constant-
coefficient case can be directly compared with the analytical
results presented in Section 3. The parameters Ue and Ve are
obtained from the edge conditions corresponding to the Blasius
boundary-layer indicated in Table 1. The parameter x/l is the
non-dimensional downstream distance from the leading edge and
αl the non-dimensional streamwise wavenumber. The particular
profile is chosen for which Ve l/ν = 1.7208/2.

5.1.1. Weighted approach
The ω̂-eigenvalues computed using the weighted problem for-

mulation for ŵ are shown as black symbols in Fig. 3 (a), i.e.
the discretized version of Eq. (16) is solved for the different
domain lengths. At the shown scale, the computed spectra are all
indistinguishable from the exact absolute spectrum (the solid red
line), given by Ω(k − i Ve/2ν) evaluated for real k, see Eq. (5a).
This includes the largest domain case, with L/l = N = 3600.
The largest departures of the computed eigenvalues from the
exact result are of O(10−13l/Ue) in absolute value, so the absolute
spectrum is approximated virtually exactly.

Next to the eigenvalue spectra, the eigenfunctions are consid-
ered. The red lines in Fig. 4 are the functions σ−1ŵ. Note that,
while ŵ itself satisfies Eq. (16), the product σ−1ŵ is an eigen-
function of Eq. (3) and therefore can be compared against the
w̃-eigenfunctions later. When graphing the eigenfunctions, the
maximum of their absolute values will always be scaled to unity.
The functions are shown on a logarithmic scale in Fig. 4, this has
the advantage that the slope of the graphs directly represents
the spatial exponential growth rate of the functions. Amongst all
available solutions, the zeroth harmonic is displayed, because it
is most representative of the amplitude distribution of the other
eigenfunctions. While having a very similar graph to the zeroth
harmonic, the magnitudes of other harmonics oscillate and they
therefore would unnecessarily complicate the figure. The eigen-
function ŵ is multiplied with the spatial growth function σ−1;
no addition is required so that no underflow errors can occur.
Hence, values smaller than 10−15 can be represented numerically.
Clearly, the considered domain lengths are so large that the
magnitude of σ−1ŵ near y = 0 is smaller than machine precision.
Due to the inherent spatial exponential growth imposed by σ−1,
the domain can always be made large enough that the function
σ−1ŵ attains much smaller magnitudes than the machine pre-
cision used. This preludes to the inherent difficulty faced when
computing the w̃-eigenfunctions directly, by discretizing Eq. (3).



6 K.J. Groot and H.M. Schuttelaars / Physica D 402 (2020) 132224

Fig. 3. Computed (a) ω̂- and (b) ω̃-spectrum for U = Ue, V = Ve (symbols), branch point (red dot). L/l = 60 (•), 72 (◦), 90 (×), 120 (▽), 180 (⋄), 360 (△), 3600 (·),
N = L/l, Ve l/ν = 1.7208/2. Algebraic essential spectrum (red dashed) and absolute spectrum (red solid). Arrows indicate the direction of increasing L. Inset in (b)
shows a zoom on the box.

Fig. 4. Computed zeroth harmonic continuum modes |w̃| (dashed black, un-
weighted approach), |σ−1ŵ| (solid red, weighted approach) relative to their
maximum absolute value, with L/l = N = 60 (•), 72 (◦), 90 (×), 120 (▽), 180
(⋄) and 360 (△), Ve l/ν = 1.7208/2.

5.1.2. Unweighted approach
The ω̃-eigenvalues computed using the unweighted approach

for w̃ are shown in Fig. 3 (b), i.e. the same domain lengths were
considered, but now solving the discretized version of Eq. (3).
Note that the ωr -axis is zoomed out with respect to that in Fig. 3
(a). For L/l = 60 (•) and 72 (◦), the ω̃-spectrum lies close to
the absolute spectrum. The pattern of these eigenvalue spectra
corresponds closely to that found by Reddy and Trefethen [22],
see their figure 6. For L/l ≥ 90 (×), the ω̃-spectrum starts to
deviate from the absolute spectrum, forming a parabolic shape.
As shown in the inset, which provides a zoom onto ω-plane
indicated with the black box directly around the branch point,
the uppermost eigenvalues have moved significantly up and away
from the branch point for L/l = 120 (▽). As L/l = N → ∞,
the spectrum approaches the curve Ω(k) evaluated for real k; the
essential spectrum.

The finding that the computed ω̃-spectrum does not approxi-
mate the absolute spectrum for too large L is an important one.
It demonstrates that the computed spectrum can no longer be

used to deduce absolute stability information for the analysed
problem.

To shed light on the behaviour of the ω̃-spectra for L/l > 72,
it is important to consider the eigenfunctions. The functions w̃

are shown as the dashed black lines in Fig. 4. The computed
unweighted w̃-eigenfunctions grow exponentially in space for
large y/l. For L/l > 72, however, their spatial growth rate is
increasingly less than the exact value −ki = Ve/2ν corresponding
to the absolute eigenfunctions. This is especially apparent when
comparing the w̃-eigenfunctions against the products σ−1ŵ in
Fig. 4, that are representative of the exact solution. The adapted
growth rate is likely caused by the fact that the eigensolver
cannot accurately represent |w̃|-values smaller than 10−12. In
particular, it is observed that the functions w̃ form approximately
linear lines between the points (y, log10 |w̃(y)|) ≈ (30l, −12)
and (L, 0). Assuming that it holds for all large enough L, this
observation implies that the spatial exponential growth rate of
the w̃-eigenfunctions decays as 1/L while increasing L. Note that
the observation is independent of the used sequence of domain
lengths for which the eigenvalue spectra were computed.

The spatial exponential growth rate of w̃-eigenfunctions is
intimately linked with the ω̃-spectrum. While the spatial growth
rate deviates from the exact value Ve/2ν corresponding to the ab-
solute eigenfunctions for large enough L, it matches with −κ1,i(ω̃).
This was numerically verified by evaluating κ1,i, see Eq. (5b), for
the computed ω̃-eigenvalues and comparing it against a mea-
surement of the growth rate of the computed w̃-eigenfunction
for large y/l. This implies that the computed eigensolutions still
satisfy the dispersion relation (5a). Reversely, the ω̃-spectrum
could therefore be determined by evaluating Ω , see Eq. (5a),
for the complex wavenumber k corresponding to the computed
w̃-eigenfunction.

The apparent satisfaction of the dispersion relation (5a) allows
explaining the observed departure of the computed ω̃-spectrum
from the absolute spectrum and its convergence to the essential
spectrum. For too large domain lengths, the growth rate of the
w̃-solutions departs from the exact value −ki = Ve/2ν and
approaches zero as 1/L. As known from the behaviour of the
function Ω(k), the growth rate −ki = Ve/2ν corresponds to the
absolute spectrum (see Section 3.1), while a neutral growth rate
corresponds to the essential spectrum (see Section 3.2). It follows
therefore logically that, as L → ∞, the ω̃-spectrum departs from
the absolute spectrum and approaches the essential spectrum as
observed in Fig. 3 (b).

Extrapolating the current findings to more complicated flow
stability analyses, the fact that the computed solutions do still
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Fig. 5. Divergence boundary where the ω̃-spectrum diverges from the absolute spectrum, if crossed towards the right. (a) Fixed Ve l/ν = 1.7208/2, cases L/l = N = 60,
72 and 90 (×). (b) Varying Ve l/ν. Numerical results (solid lines) and fits with Eq. (22) and c(L/l)1.20 (dashed lines).

respect the dispersion relation explains the consistency of LST
and PSE with BiGlobal stability results, as shown by Alizard and
Robinet [14] and Rodríguez [27]. The computed BiGlobal spectra
move upwards with L. This suggests that they have departed
from the absolute spectrum, because the latter covers a minimal
extent of the ω-plane [11, lemma 3.2.4]. Although the spectra
therefore do not represent the absolute stability characteristics,
the satisfaction of the dispersion relation allows for their use in
an eigenfunction expansion. It will be demonstrated in Section 6
that the use of the w̃-eigensolutions as an expansions basis can
perform very poorly with respect to the ŵ-eigensolutions for the
current model problem.

Reddy and Trefethen [22] link the exponential spatial growth
of the eigenfunctions to resolvent estimates (cf. theorem 7). In
turn, these estimates indicate the pseudospectrum levels, see Tre-
fethen and Embree [28] for a definition, in the direct neighbour-
hood of Ω(kr − i Ve/2ν) decay exponentially with L. The presently
computed pseudospectrum level below the branch point of the
discretized operators is quite severe: O(10−16) for L/l > 72; the
pseudospectrum pushes the spectrum away from the absolute
spectrum limit. Brynjell-Rahkola et al. [16] and Lesshafft [29]
report similar levels below their computed spectra.

5.1.3. Domain length threshold for the unweighted approach
To isolate under what conditions the ω̃-spectrum diverges

from the absolute spectrum when computed numerically, simu-
lations are performed while varying N and L independently. The
locus of the points (L/l,N) is determined where κ1,i(ω̃) deviates
more than one percent from −Ve/2ν. This reliably indicates the
deviation. The boundary in the (L/l,N)-space, to the left of which
the absolute spectrum is adequately resolved, is indicated by the
solid and dashed lines for the parameters in Table 1 in Fig. 5
(a). A clear twofold trend is observed, the first is linear on the
double logarithmic scale and the other constant in L. The values
of N and L/l used in Fig. 3 are indicated with the crosses. The
cases L/l = 60 and 72 lie to the left of the boundary. The case
L/l = 90 lies to the right, indicating the spectrum has departed
significantly from the absolute spectrum.

This numerical evidence strongly suggests that, independently
of N , the spectrum departs from the absolute spectrum if the
problem is solved with the unweighted approach and with a
domain length L larger than a certain threshold. In Fig. 5 (a),
this threshold domain length, from now on denoted by Lth, is
approximately 74l. For N smaller than 48, the spatial resolution
Nyquist limit controls the departure, resulting in a linear trend
on the double logarithmic scale, relating N ∼ (L/l)1.20. The latter
trend is expected to be dependent on the numerical discretization
scheme deployed, while the L = Lth limit is expected to be

independent of the discretization method. Fig. 5 (b) indicates that
both trends persist for other Ve-values, while keeping all other
parameters fixed. Specifically, the boundary moves to the left and
right for larger and smaller values of Ve, indicating self-similarity
with the parameter VeL/ν.

While varying Ve, the relative magnitude of the eigenfunctions
for the corresponding Lth values consistently yields:

e(Ve l/2ν)×(Lth/l)
= O(1014), (21)

which is comparable to the reciprocal of the precision of the
eigensolver ϵ∥A∥F , where ϵ is the machine precision and ∥A∥F the
Frobenius norm of the discretized operator matrix, see Anderson
et al. [30]. Using this observation, an upper bound on the domain
length, Lth, is synthesized:

Lth
l

= − ln (ϵ∥A∥F )

/Ve l
2ν

. (22)

By fitting the vertical dashed curve for the case Ve l/ν = 1.7208/2
in Fig. 5 (a), the other dashed curves in Fig. 5 (b) follow from
Eq. (22).

To summarize, for L < Lth, the absolute spectrum is retrieved
by solving the discretized version of both Eqs. (3) and (16). For
L > Lth, the spectrum computed with the unweighted approach
deviates from the absolute spectrum and approaches the essential
spectrum as L → ∞. According to theorem 5 of Sandstede and Scheel
[12], the computed spectrum should not approach the essential
spectrum limit. This indicates that the numerical approximation fails
when using the unweighted approach. The numerically infinitesimal
magnitude of the eigenfunctions for small y/l indicates that this is a
consequence of the combination of finite precision arithmetic and the
spatial exponential growth inherent to the absolute eigenfunctions.
By factoring the spatial growth, the weighted problem formulation
avoids this numerical issue entirely. Accordingly, the spectrum com-
puted with the weighted approach is found to overlap the exact
absolute spectrum to eigensolver precision for all L.

These results convincingly demonstrate that the numerical issues
encountered when computing the eigenvalue spectrum for large L
are caused by the advection-induced spatial growth of the eigen-
functions. The weighted approach resolves this issue directly and
therefore forms the method sought to fulfil the primary aim of
this paper: to accurately determine the absolute spectrum and the
corresponding eigenfunctions.

5.2. Varying-coefficient problem: Blasius boundary layer

An analytical solution was available for the constant-
coefficient problem. As mentioned in the introduction, this case is
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Fig. 6. Function (dotted, dots indicate nodes), first (dashed) and second (dash-dotted) y-derivative of (a) U(y) and (b) V (y), see Table 1 for parameter values.

Fig. 7. Computed (a) ω̂- and (b) ω̃-spectrum for U = U(y), V = V (y) (symbols), branch point (red dot). L/l = 60 (•), 72 (◦), 90 (×), 120 (▽), 180 (⋄), 360 (△), 3600
(·), N = L/l, Ve l/ν = 1.7208/2. Algebraic essential spectrum (red dashed) and absolute spectrum (red solid). Parabolic spectra excerpts for constant U, V (solid black
lines) from Fig. 3 (b). Arrows indicate the direction of increasing L. In (a), the inset shows a zoom on the values closest to the branch point, the last points belonging
to a particular computed spectrum are coloured blue. In (b), the inset shows a zoom on the box.

quite unusual. To demonstrate the applicability of the findings for
the constant-coefficient problem in a more complicated setting,
a varying-coefficient case is considered for which no analytical
solution is available.

The Blasius boundary layer provides a realistic set of inhomo-
geneous U and V profiles. The steady boundary-layer equations
were solved using second-order finite differences in x and Cheby-
shev spectral collocation in y. To be abundantly sure of having a
machine precision accurate solution, 400 nodes are used in the
wall-normal direction, deploying a mapping to densely resolve
the neighbourhood of the boundary. The equations are solved
by marching in the x-direction, starting with the Blasius self-
similar solution at x/l ≈ 1 up to x/l = Ue l/ν as given in
Table 1, yielding exactly the same parameters as for the constant-
coefficient problem. The resulting profiles are shown in Fig. 6.
The boundary-layer thickness, δ99, equals 4.92l. The same domain
lengths are used as for the constant-coefficient problem. In this
case, the spectrum consists of a continuous and discrete part. The
discrete part is treated separately in Section 5.2.3.

5.2.1. Continuous spectrum
The fact that the profiles attain the same asymptotic edge

values (super-exponentially) as y → ∞ implies that the absolute
and essential spectra are identical for the varying-coefficient
problem as for the constant-coefficient problem, by the Weyl es-
sential spectrum theorem, see Kapitula and Promislow

[11, theorem 2.2.6] and Kato [18, chapter 4, theorem 5.35]. So,
while no analytical solution exists for L < ∞, the absolute and es-
sential spectrum limits are still equal to their constant-coefficient
equivalents.

The ω̂-spectra obtained by solving the weighted problem,
Eq. (16), are shown in Fig. 7 (a). All ω̂-spectra have the shape of
a slanted line down to the Nyquist limit. Tracing the spectrum
downwards with respect to the branch point, the values of ω̂r
move in the negative direction, i.e. ω̂r < αUe. As L → ∞, the
computed spectrum converges to the absolute spectrum, ω̂r →

αUe as expected. This is directly in-line with theorem 5 of Sandst-
ede and Scheel [12]. The slanted shape of the computed spectrum
for finite L is well-known in the literature, e.g. see Antar and
Benek [31], Spalart et al. [32] and Maslowe and Spiteri [33], and
is related to the fact that U(y) < Ue as y → 0. For large but finite
domain lengths, the eigenfunctions have a small support inside
the boundary layer as opposed to that in the freestream. The value
of ω̂r relates to the advection speed that the U-profile exerts on
the perturbation. Inside the boundary layer, the flow speed is
smaller than Ue and therefore the perturbation is advected at a
slightly lower speed, resulting in a smaller ω̂r -value. As L → ∞,
the relative extent of the boundary layer diminishes and the real
part of all continuum eigenvalues approach αUe as a consequence.

The ω̃-spectra obtained by solving the unweighted problem,
Eq. (3), are shown in Fig. 7 (b), again note the different scale
for ωr (the scale is same as that in Fig. 3 (b)). The behaviour
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Fig. 8. Computed continuum modes |w̃| (solid black, unweighted approach)
and |ŵ| (solid red, weighted approach) and |σw̃| (dashed black, unweighted
approach) for comparison, fourth harmonic with L/l = N = 60 (a), 72 (b) and
90 (c), Ve l/ν = 1.7208/2, all functions are scaled with respect to their maximum
value. Boundary-layer thickness δ99 = 4.92l (dashed–dotted).

of the spectrum is very similar to what is observed for the
constant-coefficient case. For small enough L, the spectrum re-
sides closely to the analytical absolute spectrum. For larger L,
the spectrum again moves away from the absolute spectrum and
forms a parabolic shape that approaches the essential spectrum
limit. The manner in which the spectrum departs from the ab-
solute spectrum with respect to the constant-coefficient case is
investigated. This is done by showing excerpts of the parabolic
parts of the corresponding spectra in Fig. 3 (b) as the thin solid
lines in Fig. 7 (b). The width of the parabolas corresponding to the
constant-coefficient case is larger than that corresponding to the
varying-coefficient cases. For an explanation see Section 5.2.2.

With this finding, it is conclusively demonstrated that, also for the
problem with varying coefficients, the weighted problem formulation
is the appropriate approach to numerically approximate the absolute
spectrum, set out as the first objective in the introduction.

5.2.2. Continuum eigenfunctions
Whereas the σ−1ŵ products and w̃-eigenfunctions were stud-

ied for the constant-coefficient case, it is more illustrative to
consider the ŵ-eigenfunctions and σw̃ products for the varying-
coefficient case. The representative shape of the ŵ-eigenfunctions,
obtained with the weighted approach, is illustrated by consider-
ing the fourth harmonic continuum mode eigenfunctions in Fig. 8
(now on linear scale). The different panels show the results for
different domain lengths; note that the y-coordinate is scaled
with L. The solid black lines (visible only for y/L > 0.8) show the
growing character of the unweighted w̃-eigenfunctions (and the
σ−1ŵ products). The weighted eigenfunctions ŵ, shown as the
red lines, display no growth from peak to peak for y > δ99. The
function σw̃ can be directly compared with ŵ, see Section 4. For
sufficiently small L, both functions are identical, see Fig. 8 (a) and
(b). For L > Lth, the truncated magnitude of the w̃ eigenfunctions
for small y/l causes the match to fail, as represented by Fig. 8
(c). Computational noise dominates the product σw̃ for small
y, clearly exemplifying the numerical issues encountered when
solving the unweighted problem for too large domain lengths.

Inside the boundary layer (y < δ99, see the dash-dotted line in
Fig. 8), the functions |ŵ| and |σw̃| show a significant amplitude
reduction (also see Grosch and Salwen [20]; Maslowe and Spiteri
[33]). This is clearly related to the strong y-dependency of the
U- and V -profiles in this region. Therefore, one could name this
the ‘local effect’ of the varying boundary-layer profiles on the
continuum solutions. In fact, note that the use of the Dirichlet
boundary condition in the problem with constant-coefficients
mimics this behaviour; the amplitudes going to zero. Therefore,
the Dirichlet condition could be regarded as a representative
model for the local perturbation dynamics in the boundary layer.

In conclusion, the fact that the eigenfunctions approach a zero
magnitude inside the boundary layer implies that the eigenfunctions
‘see’ a smaller effective domain length with respect to the constant-
coefficient case. Therefore, when deploying the unweighted problem
formulation for the varying-coefficient case, the spectrum departs
from the analytical absolute spectrum for slightly larger L than for
the constant-coefficient case. Accordingly, the spectra corresponding
to the varying-coefficient case lie closer to the absolute spectrum
compared to those corresponding to the constant-coefficient case.
The latter problem has the largest effective domain length, so it
represents the worst case scenario.

5.2.3. Discrete solutions
The inhomogeneity of the U- and V -profile introduces δ99 as a

finite length scale. In turn, that causes the spectrum for L → ∞ to
have a discrete subset with proper eigenmodes that occupy the
interior of the boundary layer and decay exponentially for y >

δ99. The former property implies that ωr < αUe; the solutions are
advected with speeds associated with the interior of the boundary
layer. Their decay for increasing y renders them integrable and
thus they are individually interpretable as physical mode shapes.
As L → ∞, the properties of these modes converge exponentially,
see Sandstede and Scheel [12, lemma 4.3]. Here, L/l = 90 was
used to illustrate this part of the spectrum. The discrete solu-
tions require a high resolution close to the boundary at y = 0.
Usually the resolution is increased by using a mapping [25]. As
mentioned before, such grid mappings are here avoided because
the continuum solutions require both boundaries to be resolved
equally well. Therefore, the discrete solutions are underresolved
when using N = L/l = 90; so N = 1000 was used instead.

Fig. 9 (a) illustrates the complete spectrum for both problem
formulations (3) and (16). The eigenvalue errors are shown for
the converged eigenvalues with ωr l/Ue < 4, comparing the
results from the different formulations. For the higher harmonics
with larger ωr , the error increases (up to 10−4Ue/l), but remains
insignificant with respect to the change (10−1Ue/l) of the contin-
uum modes, as shown in the inset. The discrete σw̃ (in black) and
ŵ (red) eigenfunctions are shown in Fig. 9 (b). Both formulations
produce virtually identical eigenfunctions.

6. Eigenfunction representation of wave packets

It was shown in the previous section that the absolute spec-
trum cannot be resolved on too large domains with the un-
weighted approach. Nevertheless, this does not necessarily imply
that the corresponding bases cannot be used for successful eigen-
function expansions. The goal of this section is to demonstrate
that the performance of the weighted approach is superior to that
of the unweighted approach in regard to representing arbitrary
wave packets through the use of the computed bases in the
eigenfunction expansions:

w′(0, y, t) =

M∑
j=0

ãjw̃j(y)e−iω̃jt = σ−1(y)
M∑
j=0

âjŵj(y)e−iω̂jt , (23)
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Fig. 9. (a) Comparison of discrete parts of (◦) ω̃- and (×) ω̂-spectrum. N = 1000, L/l = 90, Ve l/ν = 1.7208/2. Labels indicate |ω̃ − ω̂|. Inset: zoom on continuous
branches. (b) Discrete modes for unweighted (solid black, |σw̃|) and weighted (dashed red, |ŵ|) problem. Profiles from left to right correspond to labelled modes in
(a) from left to right.

where M is the number of modes used. The assessed aspects are
the representation of the initial condition, treated in Section 6.1,
the growth rate of the wave packet as t → ∞, see Section 6.2,
and the number of modes M required in the expansion, see
Section 6.3. Inspiration is taken from Rodríguez et al. [15], who
similarly approach a two-dimensional problem.

In what follows, the non-parallel Blasius profiles will be taken
for the base flow. The unweighted and weighted problem for-
mulations, resp. Eqs. (3) and (16) and the associated boundary
conditions, will be deployed for different domain lengths. The
domain lengths L/l = 60, 72, 90, 120, 180 and 360 are considered,
as done in Section 5. The resolution N = L/l is chosen once again,
so to have an approximately equal resolution per unit of y/l for
different domain lengths.

6.1. Eigenfunction expansion of an initial condition

An initial condition is represented by setting w′(0, y, 0) =

w′

IC(y), yielding:

M∑
j= 0

ãjw̃j(y) = σ−1
M∑

j= 0

âjŵj(y) = w′

IC(y). (24)

The expansion coefficients ãj and âj are determined through the
use of the adjoint eigenfunctions for the respective bases, which
can be computed separately with the eigensolver, see Appendix B
for more information.

The product of a Gaussian and sine function is chosen as the
initial condition:

w′

IC(y) = e−
1
2

(
y−yw
∆w

)2
sin

y − yw

∆w

(25)

where ∆w = 3l is the width and yw is the location of its centre.
The main value for yw/l is set equal to L/l − 12, i.e. a specific
position that is fixed relative to the truncation boundary. That
way, the time duration for the wave packet to propagate out of
the domain is equal for all domain lengths.

First, the initial condition is reconstructed with all available
eigenmodes in a computed eigenfunction basis; i.e. M is set equal
to N . Using the bases computed with the weighted approach, the
initial condition is successfully resolved for all domain lengths,
see Fig. 10 (a). Hence the product σ−1ŵ, while growing exponen-
tially in space, can yield a localized, and therefore interpretable,
signal by superposing many such functions. The function σ−1 is
indicated with the dash-dotted line for reference.

When using bases computed with the unweighted approach,
the expansion successfully approximates the initial condition for

L < Lth = 73l, see Fig. 10 (b). The reconstructed w′-functions are
not rescaled; they are plotted as returned by the eigenfunction
expansion. A problem arises for too large domain lengths. For
L > Lth, the eigenfunction expansion diverges from the initial
condition as y → L. This part of the function is here referred to
as a divergent tail and is observed in the spatial range where the
weighting function σ−1 becomes O(1). In fact, the function σ−1

gives a good representation of the relative amplitude distribution
of the divergent tails. This suggests that the tails are caused by the
spatial growth of the w̃-eigenfunctions that, for L > Lth, cannot be
properly cancelled out, even if all computed eigenmodes are used
in the expansion. These tails are obviously problematic for the
transient behaviour of the wave packet, but the current interest
goes out to the time-asymptotic behaviour of the wave packet,
which will be investigated in the next section.

It is concluded that the weighted approach is the superior method
in representing the initial conditions, if only because it does not
produce divergent tails.

6.2. Time-asymptotic behaviour

A way of quantifying the evolution of the wave packet is to
measure its maximum amplitude inside the domain:

A(t) = max
y∈[0,L]

|w′(0, y, t)|. (26)

The function A(t) becomes very small for large t , rendering its
numerical measurement impractical. Therefore, the auxiliary am-
plitude Aaux is obtained with both weighted and unweighted
approaches as follows:

Aaux(t) = A(t) eωauxt = max
y

⏐⏐⏐⏐⏐σ−1
M∑

j= 0

âjŵj e(−iω̂j+ωaux)t

⏐⏐⏐⏐⏐
= max

y

⏐⏐⏐⏐⏐
M∑

j= 0

ãjw̃j e(−iω̃j+ωaux)t

⏐⏐⏐⏐⏐. (27)

The auxiliary growth rate ωaux is set equal to the negative
of the largest ωi-value in the computed spectrum. The function
Aaux(t) does not decay exponentially in time as t → ∞. Note
that Eq. (27) serves solely as the definition for Aaux(t) for the
different cases; the final equality is valid only if w̃ = σ−1ŵ.

The measured instantaneous exponential growth rate of the
wave packet is determined as follows:

ωm,i(t) =
d ln Aaux(t)

dt
− ωaux, (28)
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Fig. 10. Representation of the initial condition with the eigenfunction bases (symbols) computed with the (a) weighted and (b) unweighted approach for different
domain lengths. Exact initial condition (dashed line), weighting function ±σ−1 (dash-dotted line). In (b), the symbols representing the divergent tail are connected
with lines for clarity.

where the subscript m stands for measured. For large t , this
growth rate can be compared to the theoretical value provided
by Briggs’s criterion. This criterion states that the exponential
temporal growth rate of wave packets for large t is dictated by
the branch point in the absolute spectrum, i.e.:

ω0,i = −ν

⎛⎝α2
+

(
Ve

2ν

)2
⎞⎠ , (29)

for the current model problem, see Eq. (14). The quantity ω0,i
is here referred to as the absolute growth rate. The long term
solution behaviour is given by:

eω0,it

√
t

= eω0,iteln(t
−1/2)

= e
(
ω0,i−

ln(t)
2t

)
t
, (30)

for t → ∞. The term −ln(t)/2t indicates that the measured
growth rate ωm,i(t) should approach ω0,i from below as t → ∞.

The growth rate:

ωe,i = −να2, (31)

corresponds to the maximum ωi-value attained by the essential
spectrum, here referred to as the essential growth rate. It is here
defined to demonstrate that this growth rate does not have a
direct relationship with the time-asymptotic behaviour of wave
packets.

As time evolves, the wave packet diffuses and moves one
unit of l in the y-direction for every time unit ∆t = l/Ve. The
evolution of the measured growth rate ωm,i(t), computed by using
the weighted approach, is shown for t up to 300∆t in Fig. 11 (a).
There is a clear distinction between the behaviour for t < 24∆t
and t > 24∆t . For t < 24∆t , the main structure of the wave
packet is still contained in the interior of the domain. When
using the weighted approach, this evolution is identical for all
domain lengths. For t > 24∆t , ωm,i(t) decreases below ω0,i and
thereafter approaches ω0,i slowly from below, as expected in light
of Eq. (30), and thus reflects Briggs’s criterion. A well-defined
common convergent trend exists as L → ∞.

The evolution of the growth rate recovered with the un-
weighted approach over the same time range is presented in
Fig. 11 (b). The evolution for t < 24∆t differs for different domain
lengths L > Lth, as expected due to the large amplitude of the
divergent tail of the initial condition. Despite these differences,
the curves for all considered domain lengths collapse for the time
range 24 < t/∆t < 125 and they display a slow approach to

ω0,i, just as observed when using the weighted approach. For t >
125∆t , however, the curves corresponding to the largest domain
lengths (L/l = 120, 180 and 360) diverge from the common trend
formed by the smaller domain length cases (L/l = 60, 72 and 90).
It is found that the point at which the curves diverge depends
sensitively on the domain length, while being independent of
the number of modes M used in the expansion and the choice
of ωaux. This is important, for it prohibits the identification of
a common convergent trend as L → ∞. The divergence of the
curves is expected to be a numerical artefact directly associated
to the use of the spatially exponentially growing eigenfunctions
of the unweighted problem. The curves are therefore dismissed
as representing physical behaviour. This implies that the time-
asymptotic behaviour cannot be identified when the unweighted
approach is used with L > Lth.

Due to the existence of a common convergent trend when the
weighted approach is used as L → ∞, it is meaningful to assess
the behaviour of the wave packets for much larger times in that
case. The evolution of the growth rate for t up to 104∆t is shown
in Fig. 12. It is observed that ωm,i deviates from the common trend
for a given domain length for large enough times; specifically, it
saturates at the maximum ωi-value in the computed spectrum.
For larger domain lengths, the deviation becomes smaller. So,
this demonstrates that the ωm,i curves computed with the weighted
approach consistently converge to the absolute growth rate ω0,i as
L → ∞.

6.3. Required number of modes

Up to now, all N available modes have been used to repre-
sent the wave packet dynamics. Ignoring the previous negative
conclusions for the unweighted approach, the question remains
whether a different number of modes is required when using the
basis of w̃- and ŵ-solutions.

The focus is again put on the time-asymptotic behaviour. It
is deemed fairest to compare the number of modes required to
represent the wave packet behaviour in the time range 24 <
t/∆t < 125, because the behaviour is the same for all domain
lengths and the different approaches. The growth rate at the time
t = 120∆t is chosen specifically, for the common trend of ωm,i(t)
for the weighted and unweighted approaches is to tend toward
ω0,i at that time.

One would expect that the modes with the largest ωi will
dictate the time-asymptotic behaviour. Therefore, M modes with
the largest ωi-values are chosen in the expansions (24) with
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Fig. 11. Intermediate time evolution of the measured exponential growth rate of the wave packet reconstructed with bases computed with the (a) weighted and (b)
unweighted approach for different domain lengths. ω0,i (red solid line), ωe,i (red dashed line), t = 24∆t (black dashed line) and t = 125∆t (black dash-dotted line).

Fig. 12. Long time evolution of the measured exponential growth rate of the wave packet reconstructed with bases computed with the weighted approach for
different domain lengths. Maximum ωi-value attained by the computed spectrum (blue dashed lines), ω0,i (red solid line) and ωe,i (red dashed line).

M < N . The number of modes used is indicated by replacing
the argument t of ωm,i by M: ωm,i(M). The value ωm,i(N), i.e. with
M = N , is taken as the reference per domain length and method.

The resulting convergence graphs are shown in Fig. 13. Fig. 13
(a) represents the weighted problem case. For large M , the error
displays a quadratic trend on linear-logarithmic scale (see the
black dashed line). As the domain length increases, it is observed
that the curves tend toward larger M-values, indicating that more
modes are required to represent the dynamics. This is reasonable
from the perspective that the extent of the wave packet, ∆w , is
held fixed while the domain length is increased.

The convergence curves obtained when using the unweighted
approach are presented in Fig. 13 (b). The black dashed and dash-
dotted lines are the same in the subfigures 13 (a) and (b) and
clarify the relative differences. For small enough domain lengths,
i.e. L < Lth, the errors are virtually identical to those obtained
with the weighted method. For too large domain lengths, how-
ever, the situation is very different. Most important to note is
that, for M/N < 10% and large L, the convergence curve displays
a distinct plateau. This indicates that, contrary to the expectation,
the first 10% of the modes with the largest growth rates do not
contribute to the wave packet behaviour of interest. This implies
that many more modes are required to represent the wave packet up
to the same accuracy when deploying the unweighted as opposed to
the weighted approach.

In conclusion with respect to the representation of wave pack-
ets, the weighted approach enjoys a superior performance over the
unweighted approach in regard to all aspects (viz. producing the
initial condition and the time-asymptotic behaviour and the required
number of modes to do so).

7. Conclusion

The study of the linear stability of flows (e.g. solutions of
the Navier–Stokes equations) requires the solution of differential-
eigenvalue problems posed on (semi-)infinite domains. In these
eigenvalue problems, the spectrum of eigenvalues represents the
temporal character and the corresponding eigenfunctions the
spatial character of the solution. Exact solutions are seldomly
available and solutions are therefore usually approximated nu-
merically. To obtain the eigenvalues and -functions numerically,
one has to truncate the domain length L < ∞ and introduce
artificial truncation boundary conditions. Usually, separated (e.g.
Dirichlet, Neumann or Robin type) boundary conditions are con-
sidered, see Ehrenstein and Gallaire [13]; Alizard and Robinet
[14]; Åkervik et al. [34]; Rodríguez et al. [15]. Computing the
limit of the spectrum as L → ∞ is troublesome, however, if the
operator supports advective processes throughout the domain.
These processes cause the eigenfunctions to grow exponentially
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Fig. 13. Convergence of the wave packet’s growth rate at t = 120∆t with respect to the number of modes M using (a) the weighted and (b) unweighted approach.
The reference growth rate is computed per domain length and used method at t = 120∆t using M = N .

in the advection direction. Therefore, if their maximum magni-
tude is scaled to unity, the eigenfunctions attain arbitrarily small
absolute magnitudes elsewhere in the domain and this yields
numerical underflow errors. This causes the sensitivity of the
computed spectrum on the choice for the truncation boundary
conditions and domain length. Moreover, the computed spectrum
diverges from the mathematically correct limit of the spectrum as
the domain length is increased.

The main result of this paper is that:

The correct spectrum limit can be approximated numerically by
using the proposed weighted approach as L → ∞. This is crucial
for the identification of the absolute stability of a considered base
flow.

The weighted approach removes the advection-induced spatial
exponential growth from the eigenfunctions and therefore elimi-
nates the cause for the numerical underflow errors. Accordingly,
the limit of the spectrum as L → ∞ can be accurately ap-
proximated numerically. Using separated boundary conditions,
the computed spectra converge to the absolute spectrum for all
considered L → ∞, which is in accordance with theorem 5
of Sandstede and Scheel [12]. This demonstrates that the approx-
imation of the continuous spectrum does converge as L → ∞. This
directly contradicts the statement of Theofilis [3] quoted in the
introduction.

The absolute spectrum contains branch points and is therefore
interpretable in light of Briggs’s criterion for absolute instabil-
ity, i.e. the base flow supports an absolute instability only if
the absolute spectrum is unstable, see Briggs [7]; Huerre and
Monkewitz [8]; Brevdo [9]; Schmid and Henningson [5]. When
the spectrum is obtained using the unweighted approach, it tends
to the essential spectrum as L → ∞. Since this spectrum limit
does not contain branch points, the absolute stability of the base
flow cannot be deduced from the numerical results obtained with
the unweighted approach.

Concerning the representation of spatially localized wave pack-
ets, the performance of the weighted method is also superior to
that of the unweighted approach. Only when using the weighted
approach, the initial condition is accurately represented for arbi-
trary domain lengths and the long-term time evolution is consis-
tent with Briggs’s criterion. Furthermore, accurate results can be
obtained using a limited number of eigenmodes.

Appendix A. Interpretation spatial growth & symmetrization

The spatial exponential growth of the w̃-solutions suggests
that the w̃-problem is somehow ill-posed. The aim of this ap-
pendix is to point out the core of this issue and demonstrate how
symmetrization resolves it.

An eigensolution is per definition composed out of two parts:
an ‘eigenfunction part’, that represents the solution’s shape in
space, and an ‘eigenvalue part’, that scales the amplitude of the
eigenfunction in time. So, eigensolutions preserve their shape in
time.

To identify whether a system supports convectively or abso-
lutely unstable solutions, the solution must have a finite support
in space, as mentioned in the introduction. Per definition, ad-
vective processes translate any signal in the advection direction
as time evolves. Representing a translation of the finite-support
solutions of interest with eigensolutions is problematic, because a
spatial displacement cannot be represented by scaling the amplitude
of an eigenfunction with a finite support.

Advective processes can still be represented by eigensolutions
by allowing the eigenfunctions to grow exponentially in the di-
rection of the advection. This follows directly by considering the
exponential function as an example. Scaling it with any positive
constant c > 0 is equivalent to translating it in the spatial
direction:

c ey = ey+ln c, (A.1)

where c < 1 and c > 1 correspond to a shift in the positive
and negative y-direction, respectively. When advective processes
remain active infinitely far in space, the eigenfunctions must grow
indefinitely and therefore are required to have an infinite support.

By considering a specific perturbation with a finite support
that is representative of a solution of the advection–diffusion
equation, the link between the advection-induced translation
and the exponential growth of the eigensolutions can be clearly
demonstrated. Furthermore, it directly shows where the factor
ν(Ve/2ν)2 in ω0 and the weighting function σ−1(y) come from in
the case of constant coefficients, see Eqs. (29) and (15), respec-
tively.

As a specific perturbation, we can consider a wave packet with
a Gaussian shape that translates and broadens in y and whose
amplitude decays in time:

w′(0, y, t) = e−(y−Vet)2/4νt  
g(y − Vet, t)

translates and broadens in y

× e−να2t/
√
t  

d(t; α2)
constant in y

,
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Fig. B.14. Spectra colour-coded with the size of the expansion coefficients using the bases computed with the (a) weighted and (b) unweighted approaches for
different lengths: L/l = 60 (φcase = 0), 72 (1/15), 90 (2/15), 120 (1/5), 180 (4/15) and 360 (1/3). Modes that have coefficients with a magnitude smaller than 10−4

are indicated with a white cross. Absolute growth rate (dashed line).

Rewriting this expression, results in:

= eVey/2ν  
σ−1(y)

spatial growth factor

× e−y2/4νt  
g(y, t)

only broadens in y

× e−ν(α2
+(Ve/2ν)2)t/

√
t  

d(t; α2
+ (Ve/2ν)2)

constant in y

,

where the first factor, σ−1, represents the spatial exponential
growth in y, the second, g(y, t), the broadening in y and the third,
d, the amplitude decaying in time. It is very insightful to notice
that g(y, t) is ‘stationary;’ even though it broadens, the advection-
induced translation is removed. The spatially exponentially grow-
ing function σ−1(y) reinstates the advection-induced translation.
I.e. without this factor, the first expression is recovered without
the translation effect due to Ve.

When using eigenfunctions to build this particular w′, the un-
weighted or weighted approaches can be used. When considering
the weighted approach, on the one hand, one constructs the non-
translating function g(y, t)d(t; α2

+ (Ve/2ν)2) with eigenfunctions
that stay bounded in space, which are relatively easy to resolve
numerically. On the other hand, using the unweighted approach,
one has to represent the translation of the wave packet, which
requires an advection-induced spatial growth in the unweighted
eigenfunctions, which is very difficult to represent numerically.

The above very clearly illustrates the essential working princi-
ple of symmetrization. By factoring σ−1 from the eigenfunctions,
the troublesome advection-induced translation is removed and
the remaining solution dynamics can be captured effectively with
the eigensolutions.

In removing the advection-induced translation, symmetrization
is very much like transforming the problem to a moving reference
frame. It should be noted, however, that the obtained eigensolu-
tions still correspond to the stationary reference frame. Therefore,
it could be argued that symmetrization makes use of the moving
reference frame ‘under the hood’ only. It is hard to generalize the
symmetrization method to higher (differential) order problems.
Therefore, it is recommended to transform more difficult prob-
lems to a reference frame that moves with the local advection ve-
locity, i.e. following the base flow. Extra difficulties are expected

in that case, but such an approach is expected to circumvent
the dramatic numerical issues related to the spatial exponential
growth of the eigenfunctions by using the same working principle
responsible for the effectiveness of symmetrization.

A possibly unsuspected consequence of the moving-reference-
frame interpretation is the conceptual resolution of the issue
of the unknown truncation boundary condition. The truncation
boundary can be made to move with the local advection speed
exactly, because the base flow is known. If this is ensured, the
solution is expected to be a standing wave at the boundary.
This can be represented exactly by a Neumann (or Robin) type
truncation boundary condition.

Appendix B. Bi-orthogonality relationships

If the relationship w̃ = σ−1ŵ holds, then w̃j and ŵj have the
same expansion coefficient: aj = ãj = âj. An approach to de-
termining the expansion coefficients, is using the orthonormality
of the ŵ-solutions, i.e. the ŵ-solutions can be scaled such that
⟨ŵj, ŵk⟩ = δjk, where ⟨·, ·⟩ denotes the L2 inner product and δjk
the Kronecker delta. By substituting expansion (24) into the inner
product of w′

IC with ŵjσ , one finds:

⟨ŵjσ , w′

IC⟩ =

⟨
ŵj, σσ−1

M∑
k= 0

akŵk

⟩

=

M∑
k= 0

⟨ŵj, akŵk⟩ =

M∑
k= 0

akδjk = aj. (B.1)

Note that σ could be freely exchanged, because it is real-valued.
By using that ŵ = σw̃, an expression involving the w̃-solutions
follows directly from Eq. (B.1):

aj = ⟨σ 2w̃j, w
′

IC⟩. (B.2)

However, the relationship w̃ = σ−1ŵ breaks down when
the w̃-solutions are computed on a too large domain. Therefore
Eq. (B.2) cannot be used in that case and ãj is no longer equal
to âj; a different method to determine the expansion coefficients
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must be resorted to. Whereas the above equations rely upon the
orthonormality of the ŵ-solutions, every set of eigenfunctions is
bi-orthogonal to the corresponding set of adjoint eigenfunctions.
By scaling the functions properly, the bi-orthogonality condition
can be expressed as ⟨w̃

adj
j , w̃k⟩ = δjk for the w̃-solutions, here

w̃
adj
j is the adjoint function corresponding to w̃j. Note that ŵ

adj
j =

ŵj, because the problem for ŵ is self-adjoint, as mentioned in
Section 4. Expressions for the expansion coefficients involving the
adjoint eigenfunctions can be derived in a similar way as Eq. (B.1),
the final expressions read:

aj = ⟨ŵ
adj
j , σw′

IC⟩ = ⟨ ŵj, σw′

IC⟩ (B.3)

= ⟨w̃
adj
j , w′

IC⟩ = ⟨σ 2w̃j, w′

IC⟩

where the final equation, which equates w̃
adj
j = σ 2w̃j, is re-

covered numerically for small enough domain lengths only. It is
interesting to note that, in absence of numerical errors, the spatial
growth rates of w̃ and the corresponding adjoint eigenfunction
are equal, but they have the opposite sign, see Chomaz [6].

To fairly compare the performance of the weighted and un-
weighted approaches in Section 6.1, the expansion coefficients
are computed by using the adjoint eigenfunctions for both ap-
proaches.

To illustrate the behaviour of the expansion coefficients for
different domain lengths, the spectra for all cases are illustrated
in Fig. B.14, shifted in the real direction with φcase for clarity
purposes. The size of the expansion coefficients is indicated with
colour. For small enough domain lengths and large enough ωi,
the coefficients match for both approaches, while for L > Lth the
coefficients for the unweighted case deviate from those obtained
with the weighted basis.
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