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Abstract
Due to the devastating consequences of earthquakes, predicting their occurrence before
the first strike has been a long standing research topic. Deep learning models have
been used to facilitate prediction, using seismograph data to attempt to classify an
earthquake right before it happens. However, this is a difficult task and research needs
to be conducted into how properties of earthquakes impact the accuracy of models.
Thus earthquake focal depth was studied as a factor in prediction accuracy, specifically
comparing deep and shallow earthquakes, split along a depth of 70km. An LSTM model
was trained using these different data sets, providing 30 seconds of seismic waveform
data and given the task to predict the occurrence of an earthquake 3 seconds in the
future. Training this model 20 times with each data set resulted in the accuracies of
0.869 for shallow earthquakes and 0.850 for deep ones. Thus the results show that both
shallow and deep earthquake trained models performed similarly well.

1 Introduction
The ability to predict earthquakes has been a long standing goal for researchers [1], as the
ability to mitigate and prevent earthquake damage has major societal implications. Predic-
tion efforts have focused on two main types of earthquake prediction, which are short-term
and long term [2]. Short-term prediction allows for early warning of an earthquake about to
happen. This type of prediction, however, has proved to be a difficult task, due to the large
number of factors that influence the generation of earthquakes [3]. To accommodate com-
plexity, machine learning models and specifically deep learning models have been studied for
their potential to learn patterns in such data. The goal of prediction using deep learning is to
classify a seismic wave moments before the strike, given some duration of preceding seismic
recordings. There have been multiple methods proposed for use in earthquake prediction,
like convolutional neural networks [4] and recurrent neural networks, which were specifically
developed to deal with sequences of data. Further research produced an improved variant
called "long-short term memories", shortened as LSTM [5]. An LSTM based model has
been able to predict the presence and location of an earthquake with 86% accuracy [6].

Focal depth is an important characteristic of earthquakes, often analyzed in geoscience.
Based on this property, earthquakes can be classified into three main groups: shallow, inter-
mediate, and deep. There are differences between these types of earthquakes [7], especially
in the received seismographic signal strength [8]. This may be a source of differences in
how well machine learning models can perform in detecting shallow or deep earthquakes.
Because earthquakes of differing depths have been shown to influence each other [9], training
models on different depth data can be useful in increasing the accuracy of overall earthquake
prediction.

There has been research conducted into how deep learning can be used for determining
the focal depth of an earthquake [10]. There is, however, no research into the topic of how
depth can influence the performance of an earthquake prediction model. Therefore this
paper will take information gathered from more distant research topics and theoretical ap-
plications from the field of geoscience. Furthermore, to train the models there is also need
for a data source, with one option being time series data at multiple measuring stations from
the GeoNet New Zealand data set [11]. This data source is free and extensive, also being
used in previous research like "Graph-Time Convolutional Neural Networks" by G. Mazzola
[12]. While the goal of this paper and model used are different, the data pre-processing and
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analysis steps that were taken in previous research can be applied to this paper.

To fill the gap in currently available research, the purpose of this research paper is to ana-
lyze the difference depth makes in earthquake prediction, with the main research question of
"Can deep learning techniques detect better shallow earthquakes or deeper ones?". To answer
this question the Geonet New Zealand data set will be used [11], with deep learning model
chosen to be LSTM [5], which is commonly used in previous research. As deep earthquakes
are harder to detect and the received seismic signal is weaker [8], a hypothesis is proposed
that a deep earthquake trained model will perform worse. The following sections of the
paper will detail how the research was conducted. Section 2 will present the process and
methods of setting up the experiment. Then in Section 3 the data set and its preprocessing
are presented, together with the architecture of the model. Further in Section 4 the results
of evaluating the model are presented, with Section 5 discussing the topic of responsible
research. Finally, in Section 6 the conclusion of the research is presented, then a discussion
the possible causes of the result, comparing to existing knowledge and expectations, then
providing possibilities and guidelines for further research.

2 Methodology
The research question will be answered by defining a model that performs short-term classi-
fication, splitting the data set based on depth, and then training a model on these different
sets. The training data will be equal for both depths, also containing an equal number of
background data, where no earthquake will happen in the near future. This will be referred
to as "normal" data. After training both models are evaluated and compared, thus deciding
if the model is better at detecting shallow or deep earthquakes. The model will be given 30
seconds of seismic waveform data before an earthquake takes place. This length was chosen
due to the sufficient amount of samples that can be attained in this period, while also not
being too far away from the earthquake happening that there is too much background noise.
The output is a binary classification of the input signal, indicating the occurrence of an
earthquake three seconds in the future.

2.1 Deep learning models
The deep learning model that will be used for training and evaluation is a "Long-Short
term memory" [5], which is a type of a Recurring neural network (RNN). RNNs differ from
regular multi-layer neural networks by taking a series of inputs, with each sample being pro-
cessed one by one. Then the output of processing one of the samples is used for calculating
the output for the next in the series. They do suffer from a problem called vanishing and
exploding gradient [13], where the parameters of the model either tend to "explode" and
attain large values or tend towards zero. This causes instability and training issues. The
model LSTM improves on this by introducing a forget gate, which limits what the model
remembers, while the cell state facilitates the propagation of long-term memories. A graph
showing the full model of an LSTM can be seen in Figure 1

Therefore, due to their ability to deal with time-series data and common use in the field
of earthquake prediction [6], this is a valid choice specifically for the task of earthquake
prediction.
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Figure 1: LSTM architecture [14]

2.2 Definition of shallow and deep earthquakes
To answer the main research question and split the data set for training models, there needs
to be a concrete definition for where the separation between deep and shallow earthquakes
is. The United States Geological Survey provides this definition, saying:

"For scientific purposes, this earthquake depth range of 0 - 700 km is divided
into three zones: shallow, intermediate, and deep. Shallow earthquakes are be-
tween 0 and 70 km deep; intermediate earthquakes, 70 - 300 km deep; and deep
earthquakes, 300 - 700 km deep." [8]

An example of these depth regions can also be seen in Figure 2.

The presented definition presents a practical problem: earthquakes below the depth of
300km are very hard to detect and are rarely recorded [7]. Confounding that, from the
available data most recorded earthquakes have a shallow depth. Due to this imbalance in
data, a comprise is made to include intermediate earthquakes as part of the "deep" earth-
quake set. Therefore, shallow earthquakes are defined as those occurring in depths of 0-70
kilometers, while earthquakes happening in the 70-700 kilometer depth range are considered
deep.

2.3 Analysis metrics
The output of the model is a binary digit, either 0 or 1, with 1 indicating the occurrence
of an earthquake and 0 not. This output model has 4 possible outcomes in regard to data
prediction:

1. True Positive(TP): the data showed an earthquake happening (1) and the model pre-
dicted 1

2. False Positive(FP): the data indicated lack of an earthquake (0), while the model
predicted 1
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Figure 2: Earthquake depth diagram [15]

3. True Negative(TN): the data and model prediction both indicated 0

4. False Negative(TN): the data showed 1, while the model predicted 0

A good model attempts to maximise both True Positives and True Negatives while mini-
mizing False Positives and False Negatives. For earthquake prediction, False Negatives is
the main focus, due to the damage that earthquake can cause if they are not prepared for.
False Positives are also of concern, as common mispredictions will create annoyance and
distrust of the detection system. Thus both measures can be considered as important for
evaluating the effectiveness of the model. Therefore, multiple metrics are used. First is
the most general purpose metric of accuracy, which considers both false predictions. It is
calculated using this formula:

Accuracy =
TP + TN

TP + TN + FP + FN

To account for False Positives and False Negatives separately, the precision and recall metrics
are used, which are calculated as such:

Precision =
TP

TP + FP
Recall =

TP

TP + FN

3 Implementation
This section will detail the data preprocessing steps taken, define variables and specify model
implementation, which is then used for evaluation.

3.1 Data preprocessing and analysis
The data source used was earthquake seismographic measurements from the New Zealand
data set [11]. This source compromises 539 stations in total, located in New Zealand. To
standardise location, a bounding box of the retrieved data was defined between the latitudes
of -47.749 and -33.779, and longitudes between 166.104 and 178.990. Default parameters
were kept for the location and channel, which were 10 and HHZ respectively. The label
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Figure 3: Locations of selected 28 stations Figure 4: Locations of selected earthquakes in the
period 2016-01-01 to 2020-01-01

HHZ is a way to encode the specific channel wanted from a data service, with this code
selecting a high broadband, high gain seismometer in the Z orientation [16]. The default
channel was kept as this paper considers seismic waveforms for prediction, while the high
broadband is used due to it having " high sensitivity over a very wide dynamic range" [17],
which allows for accurate measurement of a wide range of magnitudes and captures the
natural high frequency noise that occurs before and during earthquakes.

3.1.1 Station filtering

Due to an imbalance in where earthquakes happen (see Figure 4), different regions in New
Zealand have a larger concentration of stations. This could potentially cause imbalance
issues when training the model and there is limited use to be gained from using a signal
from very close stations. Therefore, the location code of 10 was used to retrieve a list of 91
stations, that are mostly equally distributed over New Zealand.

However, there were major differences in data integrity and signal differences. This pattern
meant that some stations performed significantly worse [18], so there had to be a second
step to identify these stations and remove them from the data set. This was achieved at
a later stage by using a basic model and training it on the stations individually. Then the
stations with close to guessing accuracy (50%-53%) were removed. This results in 28 final
stations, which can be seen displayed over a map of New Zealand in Figure 3, while a full
list of them can be seen in Appendix A.

3.1.2 Earthquake filtering and background data selection

To reduce the amount of data to a manageable number, events were taken from the pe-
riod 2016-01-01 to 2020-01-01. To ensure all earthquakes could be detected by the selected
stations, events were filtered such that they were all within 270km of one of the stations.
This leaves 99268 events. For final processing, magnitude outliers are removed, keeping only
earthquakes with magnitudes above 1 and below 3. This step was done to remove low mag-
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(a) Original waveform (b) Processed waveform

Figure 5: Comparison of two original and processed waveforms

nitudes that are barely distinguishable from background noise and to ensure a few outliers
with a significantly different magnitude do not reduce model accuracy. The final number of
events considered therefore is 88740. These final earthquakes can be seen plotted in Figure 4.

To accompany the data retrieved before earthquakes, an equal number of background noise
samples have to be retrieved. This data was downloaded by taking 30 seconds of waveforms
1000 seconds before an event, for each event. This does have a possibility of including an
earthquake in the retrieved waveform, but due to the rarity of earthquakes, it was presumed
to make a minimal impact on the data set.

3.1.3 Waveform processing

The received waveforms are the vertical velocity recording during a set period, either before
an earthquake or not close to any. The sample rate of the recording is 100HZ, meaning
a total number of discrete numbers (samples) of 3000, which is quite high quality for the
prediction workload. To reduce the impact of noise and improve model performance, down
sampling is used, specifically decimating the signal by omitting every nth sample. To retain
some noise that occurs during/before earthquakes a down-sampled rate of 50HZ was chosen.
Therefore the final number of samples per recording was 1500.

To ensure proper functioning of the model used, the data was normalized in the vertical
velocity axis. Initially, both l2 normalization and min-max scaling was used, but scaling
was found to provide significantly worse result when used for training. Therefore, only in-
dividually applied l2 normalization was used, limiting all values in the range of [-1,1]. Some
data in the downloaded waveforms was found to be corrupted, therefore waveforms con-
taining some corrupted values (-14822981 or 14822981) were removed from the final set. A
comparison of two waveforms before and after processing can be seen in Figure 5.

3.1.4 Final data set

To ensure fairness in trained model comparisons, both shallow and deep data sets should
contain an equal number of events. Due to the imbalance of depth in the data set (see
Figure 7), the smaller set was the deep one, being in total 14192 events. All earthquakes
that were classified as deep were retrieved, while only a partial number of shallow earth-
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(a) Magnitude distribution of shallow earthquakes (b) Magnitude distribution of deep earthquakes

Figure 6: Comparison of deep and shallow earthquake magnitudes

quakes were downloaded. To ensure equal date-time distribution of the limited set (shallow
earthquakes), events to be downloaded were selected randomly and uniformly over the time
window of 2016 to 2019.

No further normalisation between the data sets was performed, so imbalances in the prop-
erties of the waveforms are maintained as close to real life. An example of this difference,
showing the distribution of magnitudes of these sets, can be seen in Figure 6. It can be
noted that deep earthquakes have a much lower number of low magnitude samples. This
is due to the distance that the earthquake foci have from measuring stations, therefore the
received signal is weaker than that of a shallow earthquake.

Due to filtering processes taken and missing station data, the final amount of data used
for training was reduced by around half. Thus the number of events used for training was
8037, equal for both deep and shallow sets. The input data is also appended with an equal
number of normal data.

Figure 7: Distribution of earthquake depth in the data set
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3.2 Model
The input of the model is a two-dimensional matrix (28, 1500), containing 1500 waveform
samples for each of the 28 stations. A single layer LSTM is used, which has a hidden neuron
size of 16. The data is therefore transformed from a two-dimensional matrix into a one-
dimensional list of size 16. A ReLU activation function is used, which is then connected to
a traditional fully connected layer. This layer transforms the list of values into the same
shape as the label, which is a single digit. Then the sigmoid activation function provides
the final prediction within the range [0,1]. As the labels are binary, the predicted value of
the model was rounded to the nearest label, thus values below 0.5 were treated as 0, and
those above 0.5 were treated as 1. A visualisation of the described model used can be seen
in Figure 8.

3.2.1 Over-fitting

Due to the nature of the data used for training the model, there is a lot of noise in the
waveforms. This can cause over-fitting, where the model tries to fit the training data too
accurately. To prevent over-fitting, a dropout layer was used [19]. The dropout layer was
applied after the LSTM layer. Previous research indicates that for the probability of dropout,
values in the range 0.1 to 0.8 provide the best results. However, big values cause the model
training to take more epochs before converging, moreover the model used in this paper is
rather small. Therefore, a lower end value of 0.1 was used.

Figure 8: Model graph

4 Experimental Setup and Results
Using filtered data of both deep and shallow earthquakes, two models were trained. The
models were trained for 100 epochs, with a batch size of 32. The Adam optimiser [20] was
used, with a learning rate of 0.001.

The data was split into three parts: training, validation, and test sets. Their distribu-
tion was 70%, 10%, and 20% respectively. After each epoch, both training and validation
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set accuracy and loss of the model were reported. At the end of the training, the accuracy,
recall and precision of running the model on the test set was also tracked.

Their training history, showing accuracy and loss over time, can be seen in Figure 9 for
the shallow model, and Figure 10 for the deep model.

(a) Training and validation accuracy curve (b) Training and validation loss curve

Figure 9: Shallow earthquake learning curves for 50 epochs

(a) Training and validation accuracy curve (b) Training and validation loss curve

Figure 10: Deep earthquake learning curves for 50 epochs

To compare these models fairly and reduce randomness from the training process, each
model was trained 20 times, collecting the final test accuracy, precision, and recall. The
results of this comparison can be seen in Figure 11. Mean accuracy and standard deviation
of these runs were calculated and can be seen in Table 1.
From the multiple analysis metrics used, it can be concluded that both shallow and deep
earthquake models performed similarly well. Training history graphs in Figures 9 and 10
show no apparent difference in how the model fits the data sets. The averaged results of
multiple trained models seen in Table 1 also show a minimal difference in accuracy, with
the shallow mean having an accuracy of 0.869, compared to 0.85 of the deep mean. Recall
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Figure 11: Box plot of test accuracy, precision, and recall. Collected from the same model trained
separately 20 times.

Shallow Deep
Metric Accuracy Precision Recall Accuracy Precision Recall
Standard Deviation 0.006 0.014 0.012 0.006 0.026 0.017
Mean 0.869 0.924 0.804 0.850 0.923 0.766

Table 1: Comparison of shallow and deep model mean accuracy and standard deviation

and precision followed a similar pattern of a very slightly smaller mean for the deep data
compared to shallow. Standard deviations were also similar, with a slight relative difference.

Both models had a much higher precision compared to recall, meaning a higher number
of false negatives than false positives. This implies some of the low magnitude earthquakes
are difficult to distinguish from background noise, so given the larger number of background
noise samples compared to low magnitude events, the model is more likely to predict 0. The
models also showed a more noticeable difference between recall means, showing that deep
earthquakes are less differentiable from background noise.

5 Responsible Research
With deep learning research, it is important to consider the pitfalls of what such models can
cause. There is great benefit to be gained from the ability to accurately and reliably predict
earthquakes before they happen, so much so that this was investigated before prediction
was truly feasible [1]. However, even if it was possible, machine learning models in principle
should not be fully trusted. In nature, they are probabilistic and can often show better
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results in a controlled environment than in a realistic one. Thus, caution should be taken
when relying on these models for real world use.

The research conducted was detailed as specifically as possible, so that the results received
could be re-produced. The data used is open source and be accessed for free from the GeoNet
website [11]. The pre-processing parameters and steps are detailed in Section 3.1, while the
model is described in Section 3.2, with hyper-parameters used for obtaining the results de-
scribed in Section 4. Using these steps, a student that is familiar with machine learning,
python, and a library for using machine learning (TensorFlow, PyTorch) can also conduct
the same research. To ensure reproducibility and limit issues with specific implementation
details, the code used for this research is available online [21].

6 Conclusion and Discussion
This study analyzed the question of if shallow or deep earthquakes are better suited for
short-term deep learning prediction. Data was used and pre-processed from GeoNet, cov-
ering stations in New Zealand. Two data sets were created, separating deep and shallow
earthquakes in each, split along the depth of 70km. An LSTM model took 30 seconds of
input and tried to predict the occurrence of an earthquake 3 seconds in the future. Each
model used an equal number of active samples, with an equal number of background, non-
active samples. The models were evaluated by training them 20 times and comparing the
final mean test accuracy, recall and precision. The results showed a very similar accuracy
for both models, with an accuracy of 0.869 for the shallow one, compared to 0.850 for the
deep one. Thus, it can be concluded that deep learning techniques are similarly capable of
predicting both shallow and deep earthquakes.

The attained result was different than what was hypothesised. The original expectation
was the model trained on deep earthquake data will under perform to that of a shallow
data trained model, with actual results showing little difference. There are a few possible
explanations for why the difference observed was minimal and previous presumptions did
not hold. Firstly, the number of samples used was equal for shallow and deep earthquakes,
thus removing the real world imbalance in the number of recordings for the sets (see also
Section 3.1.4). Further, from Figure 6 it can be seen that deep earthquakes have a much
lower number of low magnitude samples. However, the magnitudes are more uniform, so
this could explain the ability of the model to find patterns similarly well between the data
sets.

The overall model accuracy attained follows in line with what was previously observed
in some research [6], but higher than what was previously achieved using an LSTM and
the same data set [18]. The mean accuracy was lower, while the maximum value attained
was quite similar to the one reported in this paper. This difference can be explained by
data processing, as the mentioned paper selected stations differently. Moreover, the model
was only trained using data from a single station at a time, thus limiting the total number
of samples per model. Finally, normalisation of waveforms was different, using min-max
scaling with a single 30-second waveform at a time, compared to l2 normalization.

The conclusions of this paper can guide further research into improving model accuracy
and the factors that influence it. Even considering the lack of difference focal depth makes
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in prediction accuracy, there is use in splitting data based on depth and training models
separately [9].

The results presented do have limitations for general conclusions for all cases. Due to
limited research in this field, different approaches have to be taken to test the generalizabil-
ity of the research. Most importantly, data from different sources and regions should also be
considered, as different earthquake prone regions contain possibly unique types of tectonic
processes. The events used were also limited to a certain magnitude range, so consider-
ing earthquakes in different magnitude ranges could reveal different patterns. Further, the
model used could also potentially have an effect on how different data is treated, thus the
method presented could be extended for use for many models. Finally, data pre-processing
is a complex matter in the field of signals, especially natural ones. Different steps taken and
values used in down sampling, normalization and could introduce more significant differences
in the signal used for final training. Finally, the preprocessing steps taken regarding station
filtering in Section 3.1.2 were done using a draft model by comparing accuracies achieved.
Therefore, this processing step is model dependent, and depending on hyper parameters and
specific deep learning model used, the final station list could be different.
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A Appendix A

Station
Code Longitude Latitude Site

BFZ 176.246245098 -40.679647283 Birch Farm
BKZ 176.492543736 -39.165665643 Black Stump Farm
DCZ 167.153533463 -45.464713192 Deep Cove
DSZ 171.804614445 -41.744960821 Denniston North
HIZ 174.855686101 -38.51292897 Hauiti
JCZ 168.785473425 -44.07321036 Jackson Bay
KHZ 173.53897 -42.41598 Kahutara
KUZ 175.720872942 -36.745228533 Kuaotunu
LBZ 170.184419859 -44.385552844 Lake Benmore
MSZ 167.92639864 -44.673333781 Milford Sound
MWZ 177.527779304 -38.334001396 Matawai
MXZ 178.306631253 -37.562258507 Matakaoa Point
NNZ 173.379476754 -41.217102661 Nelson
ODZ 170.644622213 -45.043982113 Otahua Downs
OPRZ 176.554929138 -37.844300073 Ohinepanea
OUZ 173.596133449 -35.219688708 Omahuta
PUZ 178.257209049 -38.071547867 Puketiti
PXZ 176.862145221 -40.030644463 Pawanui
QRZ 172.529147829 -40.825521618 Quartz Range
RPZ 171.053864882 -43.714607582 Rata Peaks
SYZ 169.138823018 -46.536890349 Scrubby Hill
THZ 172.905218304 -41.762474128 Top House
TOZ 175.501846822 -37.73095563 Tahuroa Road
URZ 177.110894471 -38.259249093 Urewera
VRZ 174.758452563 -39.12434088 Vera Road
WIZ 177.189301882 -37.524510539 White Island
WKZ 169.017561979 -44.827021353 Wanaka
WVZ 170.73675416 -43.074350291 Waitaha Valley

Table 2: Final list of stations used
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