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Preface

C.J.F. van Marrewijk
Delft, June 2, 2020

This report is a MSc-thesis and is written in order to fulfill the requirements of the MSc degree in Civil Engi-
neering at the Delft University of Technology, at the faculty of Civil Engineering and Geo sciences. The track
within the MSc chosen is Hydraulic Engineering, with a specialisation in Hydraulic Structures.

The concept of a Submerged Floating Tunnel (SFT) reached my awareness during one of the MSc-courses on
bored and immersed tunnels. Especially since it has never been constructed yet, I think it is a challenging
concept. It is a typical structure which meets the different interfaces within my education so far. On the one
hand it really touches upon the hydrodynamic aspect, for which knowledge on waves, currents and their in-
teraction with structures is required. On the other hand, it includes the structural aspect as well. The SFT is
still a ’futuristic’ concept on which I hope to contribute to the eventual realization.

Although the construction of a SFT has never been constructed, the first thoughts on it originate from many
years ago. Apparently, the structure is still too challenging from a technical and a cost-effective perspective.
Despite the many thought experiments on a SFT, barely any literature is available on other cross-sections
than a circle or a rectangle. Obviously both cross-sections have their benefits, but is it the optimal one? By
understanding the current challenges in the design of a SFT, I hope to find ’the optimal cross-section’.
I started this research in September 2019 and now I can proudly present my results. In order to obtain these
results, I would like to thank the committee members. First of all I would like Bas Jonkman for being my
Chairman and guiding me through the process. Next, I would like to make a special thanks to Dirk Jan Peters
and Marcel ’t Hart, with whom this adventure started in the Summer of 2019. Next to coming up with the re-
search proposal, they helped me a lot during the process. Moreover, I would like to thank my final committee
member, Peter Eigenraam. I used software (Grasshopper) which I was not familiar with and Peter helped me
understand it. Finally, I’d like to thank Pengxu Zou who was willing to set his CFD-model available in order to
accurately analyze some of my results.

I also would like to thank my family and friends for the support throughout my entire education. I can look
back at 6 amazing years of study, for which I am very grateful. Now I am looking forward to a new episode in
my life where all this knowledge can be converted to actual ’Engineering’!
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Abstract

Although the concept of a Submerged Floating Tunnel (SFT) originates from the early 1900’s, the cross-section
has always been assumed to be circular (or rectangular). In this research, it is investigated whether this as-
sumption is valid. What is the optimal cross-section for a SFT? This optimization process is split into two
targets. The first target aims for the optimization of material use, while the second target guarantees a tensile
force in the tethers that moor the tunnel to the seabed or to pontoons at the surface.

It is not a coincidence that a circle is assumed to be the cross-section, since a circle is well known for its good
performance in absorbing large (uniform) pressures. A SFT is located at a typical depth of 20m to 30m. Hence,
large hydrostatic water pressures are expected. However, the water pressure is not uniform but increases lin-
early by depth. Therefore, a circle is not necessarily the optimal shape.
The concept of Form Finding (FF) is applied in order to find the optimal shape regarding minimal material
use. Within the FF-process, the external loads are applied on a material without any bending stiffness. The
output is a shape which absorbs these external loads axially. No shear forces or bending moments are present
in the cross-sectional plane. In this way, all fibres of the material are used equally and optimally.
The FF-process is executed in ‘Grasshopper’, which is a programming environment within the ‘Rhino’ soft-
ware. The optimal shape deviates most from a circle close to the water surface, because the relative pressure
difference between the top and the bottom of the SFT is maximal here. The output converges to an ’egg-
shape’. This ‘egg’-shape is slightly more efficient, reducing the maximum normal force by 3.7%. For increas-
ing depths, the relative pressure difference decreases. The optimal shape according to FF quickly converges
to a circle.

Secondly, the optimal shape should generate a tensile force in the tethers. Since the steel tethers have no
compressive strength, a compressive force in the tethers would result in large deformations of the structure.
This is unacceptable in terms of both comfort and safety.
The tensile force in the tethers in current design thoughts is achieved by a conservative Buoyancy Weight Ra-
tio (BWR), which means that the tunnel structure strongly wants to float (or sink). The tethers prevent this,
resulting in a high level of pretension. This is unfavourable in terms of material use for both the tethers and
the tunnel structure itself. Therefore, it is desired to keep the BWR as close to 1.0 as safely possible.
Next to the BWR, the hydrodynamic loads determine the signal of the tether force Ftether . Some more insight
is given on the fluid-structure interaction between the tunnel structure and these hydrodynamic loads. The
hydrodynamic loads considered are the currents and the waves, where the currents turn out to have the most
significant interaction with the shape of the SFT. The (horizontal) drag force and the (vertical) lift force are
evaluated by the cross-section.
A regular circle does not generate any lift force from the approaching flow, excluding the turbulent effects.
This lift force can be expressed by the lift coefficient CL , which is used to convert a flow velocity to a force. In
general, CL = 0 for a circle. Moreover, the drag force on a circle is relatively large (CD ≈ 0.6−1.0) and a lot of
turbulence can be expected at the trailing edge due to its blunt shape. Hence, some space for improvement
is visible here.

The horizontal approaching flow can generate a lift force in the desired direction, contributing to the tensile
tether force and a BWR closer to 1.0. Bernoulli’s theorem states that fluids with higher velocities have a lower
static pressure. Therefore, a differential velocity profile between SFT-top and SFT-bottom is demanded to
generate a lift force. An analogy with an aeroplane wing is made, where a more convexly shaped top yields a
positive lift force (upward). These shapes are retrieved by Form-Finding in the same Grasshopper code. The
output looks more like an ellipse, with a convexly shaped top and a flatter bottom.
Consequently, these shapes are evaluated with the Source Panel Method (SPM), which is coded in Python.
The SPM solves for the velocity potential of a uniform around a submerged body. The submerged body is
divided into a set of panels, where each panel has its own source/sink term λ. This source/sink term λ de-
scribes the geometrical influence of that panel on the flow characteristics at any arbitrary point. The output
of this part is the flow velocity profile along the SFT, which can be converted to a pressure field and a lift force.
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iv Preface

The cross-sections generated in Grasshopper can be imported into Python. The velocity and pressure field
for any random geometry can now be solved for with the SPM.
The optimal shape regarding this target looks like an aeroplane wing, symmetrical over the vertical. When the
SFT is anchored to the bottom and a positive lift force is desired, the top of the SFT is more convexly shaped.
This results in larger velocities at the top and a lower pressure. The SFT is basically ’hanging’ in the water
flow. Moreover, the shape now appears more like an ellipse, reducing the turbulence effects and reducing the
drag coefficient CD to approximately 0.1.

The ’optimal shape’ is based on two optimization targets with each its own optimal cross-section. One can
choose to optimize for both targets simultaneously by constructing a composite cross-section with an inner
concrete tube (circular) with a steel exoskeleton. The exoskeleton can be manually designed in Grasshopper.
It has got a convex shape at the top of the cross-section, when anchored to the seabed. Moreover, the bottom
of the exoskeleton is flat in order to generate maximum tension. This exoskeleton generates a lift force on the
total structure, which is calculated by running xFoil from Python. xFoil also solves for the Panel Method, but
is also able to deal with viscous flow for sharp edged structures. The lift coefficient can reach up to CL ≈ 3.5,
which is a significant amount of lift. The water pressure is absorbed by the inner tube, constructed of con-
crete.
One can also choose for a compromise between the two optimization targets. This can be achieved by Form-
Finding for both optimization targets simultaneously. This cross-section consists of a concrete tube only. The
top is still more convexly shaped to generate a lift force, but it also has some appearances of a circle. The lift
coefficient for this solution reaches up to CL ≈ 0.6.
To determine which of the two solutions presented above is ’the optimal one’, a cost-benefit analysis must be
executed. This depends per design situation.

In conclusion, with this research some insight is presented in the optimization of the cross-section of a SFT.
Especially in terms of the reduction of drag and the generation of lift, the cross-section can be improved
significantly. In further research, it is recommended to perform physical experiments with the cross-sections
presented here.
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1
Introduction

1.1. Background
Imagine yourself being on one side of a fjord, looking at your destination at the other side. The crossing covers
only a couple of 100 meters as the crow flies. The water in between you and your destination is the only obsta-
cle. There might be a ferry which offers you and your car the crossing, but this can take a significant amount
of time. Obviously, you can make the detour by following the road and driving all the way along the coastline
of the fjord. But how efficient is it to drive all this way, whereas your destination is in clear sight? Usually, in
these kinds of situations, a bridge would be present, or a submerged tunnel. However, as mentioned before,
you are at a fjord. These natural phenomena are characterised by a rocky environment including steep slopes
and deep ocean beds. The span of these coastal crossings can be quite large, which makes it unfeasible to
construct a traditional bridge. The steep slopes and deep ocean beds result in the impossibility of construct-
ing a submerged tunnel.

Therefore, a solution can be found in the form of a Submerged Floating Tunnel (SFT). This type of structure
is also known as an ’Archimedes Bridge’. A SFT is a tunnel structure submerged in water, supported by its
own buoyancy and another structure. As the name already suggests, it floats in the water column. It can
be supported in two different ways. Firstly, the tunnel can be fixed to the bottom with tethers, which are
connected to heavy anchors resting at the bottom (type A). The tunnel structure itself wants to ’float’ in this
situation, meaning that the SFT weighs less than the volume of displaced water by the SFT (Archimedes’ Law).
Secondly, the SFT can be heavier than the displaced amount of water, meaning that the structure wants to
sink (type B). In this situation, the SFT is linked to large buoys at the water surface via tethers. For an overview
of both types, see Figure 1.1.
A submerged floating tunnel is relatively expensive as well. However, a lot of others costs made by commuters,
lorries and individual people can be saved if the alternative is to make the detour. Besides, the environment
will benefit as well, since less exhaust gasses will vanish in the atmosphere. On the long term, a SFT can be a
good solution from both an economic and an environmental point of view.

Figure 1.1: The SFT type A (left) [37] and type B (right) [28]
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Either way, the tunnel is supported via tethers made of steel. Similar to a cable or a wire, a tether does not
have any compressive strength. A compressive force, possibly generated by the flow or waves in the ocean,
can easily result in large deformations of the tethers due to buckling effects. The occurrence of a compressive
force in the tethers leading to buckling is a main failure mode of a submerged floating tunnel. [27].
The compressive forces in the tethers should therefore be avoided. In current designs, the tensile force in the
tethers is guaranteed by adapting the buoyancy-weight ratio (BWR). For now, type A from figure 1.1 is consid-
ered. If the buoyancy force is much larger than the weight of the SFT, tension is present for all load situations.
This situation can be achieved by enlarging the cross-section of the SFT. Main deficits of this solution are the
larger cross-section than actually required and the large pretension in the tethers, being present all the time.
Moreover, the structural stresses in longitudinal direction reach up to outrageous magnitudes, which is un-
necessary. All of these negative effects can be prevented by looking at the dynamic interaction between SFT
and hydrodynamic loads.
The shape of the tunnel can convert the flow into tensile forces in the tethers. Contrary to its compressive
strength, the steel tethers do have a high stiffness related to tension. A large tensile force does not result in
large deformations, meaning that the tunnel compartments stay relatively close to each other. The gasket
doesn’t fail.
Finally, an optimal shape for the cross-section is desired in terms of material use. Therefore, a second op-
timization issue is related to the internal force transfer which can reduce costs for material use. For both
objectives regarding the optimization, see section 1.2.

1.2. Objective
Given the information and problem above, the objective of this research can be described as:

"Develop a parametric design method for the optimal shape of the cross-section of a Submerged Floating Tun-
nel, which:

1. Converts the external hydrodynamic forces into dominant tension forces in the tethers

2. Optimizes the material use of the SFT."

The objective consists of two parts. Both parts are related to an optimization problem.
The design should be parametric. This means that the optimal shape can be found for any situation. How-
ever, there is not one single solution, but a range of solutions to the problem. This is due to the presence of
multiple parameters and multiple optimization targets as stated above.

Some sub questions need to be answered in order to achieve the objective of this thesis.

1. What are the existing types of cross-sections and what impact do the loads have on the system?

2. What loads are acting on the Submerged Floating Tunnel system?

3. What is the influence of the shape on the lift and drag forces in both a vertical and a lateral way?

4. How to guarantee a tensile force in the tethers, given the external hydrodynamic loads? (1)

5. How are the loads optimally diverted according to a Form-Finding method, which optimizes material
use? (2)

6. Which cross-sectional shape is a compromise between the two optimization criteria 1 and 2 and what
role does the BWR play?

7. How can both optimization criteria be met for one single situation?
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1.3. Scope and limitations
Within the extent of this research, some simplifications must be made and some items must be excluded, in
order to converge to a result in an acceptable amount of time. Therefore, the following items are excluded
and/or simplified:

• The focus lies within the cross-section of the SFT. The BWR is assumed to be 1.0 at all times, to ensure
that it is purely the hydrodynamic loads which cause tension in the tethers. Obviously, this benefits for
the longitudinal direction as well. This is because the closer the BWR is to 1.0, the more economic the
design can be.

• Only the permanent loads (Hydrostatic Water Pressure and Self-Weight) and hydrodynamic loads (Cur-
rents and Waves) are included in this research. The live-loads due to traffic are not included as well as
the accidental loads due to earthquakes, anchor collision etc.

• This research does not consider the hydrodynamic loads on the tethers themselves. These are subjected
and sensible to movements and vibrations as well. Here, the focus lies on the cross-section itself.

• Within the research, no probabilistic calculations are considered. Only the deterministic values are
used to determine certain quantities. In an actual design, the failure probability must be accounted for
accordingly by applying a probabilistic design.

1.4. Outline
In Chapter 2, an analysis is made where the existing design is first described. Then, the loads and forces due
to these loads are listed and elaborated in paragraph 2.2 and 2.3. Then, the concept of Form Finding is briefly
elaborated including its history. At the end of this chapter, the software applied is listed. In Chapter 3 the
Grasshopper model is described which mainly focuses on the hydrostatic loads. This Chapter emphasizes
the optimization of material use. Chapter 4 covers the optimization criterion which demands for tension in
the tethers. First the currents are elaborated, which do determine the shape of the cross-section The waves
do exert a load on the SFT, but are not taken into account within the Form-Finding process. Consequently, in
Chapter 5, the previous two chapters are combined to come up with the optimal solution. Here, a distinction
is made between one cross-section as a compromise between the two optimization criteria and a solution
which fits both criteria well. The latter is a solution of a concrete SFT with an exoskeleton made of steel. In
Chapter 6, a test case is worked out to give an impression on what the ideal cross-section of a SFT might look
like. Finally, some conclusions and recommendations are made.





2
Analysis

In Chapter 2 an analysis is made to collect all the data and information to proceed with the actual research
on how to optimize the cross-section for a SFT. First, ’the existing situation’ is described, showing what the
current developments are in constructing a SFT and what components are present. Secondly, a more exten-
sive view is given on the loads acting on the tunnel structure. In paragraph 2.3 the interaction between these
loads and the structure is elaborated. What are the forces to be expected and how to express them? Fourthly,
some background and the definition of ’Form-Finding’ is given. It is important to understand the underlying
concepts before working with it. Then, the software used for this research is briefly listed and explained. Fi-
nally, some assumptions are shown on how the problem is simplified in order to be able to proceed with the
research.

2.1. Existing situation
In this paragraph, the existing situation regarding the submerged floating tunnel is explained more exten-
sively. What is the present situation regarding this revolutionary design? First ’the why’ is described further,
after which the support of the SFT is explained. Finally, the current ideas about a cross-section are shown.

2.1.1. Why a Submerged Floating Tunnel?
As mentioned before, the concept of the Submerged Floating Tunnel was created because of the demand of
crossing a water body, which could not be crossed by a regular immersed tunnel or a bridge. This has got to
do with the circumstances described above in Chapter 1. The crossing is too large and deep to make such a
structure feasible. Such natural environments like fjords is what Norway is well-known for, for instance. To
illustrate the issue here, see figure 2.1 [37].

Figure 2.1: The longitudinal profile of the Sogne fjord [37]

A regular fjord can reach up to a depth of 500 m and a span between 250 m and 2500 m [12]. In figure 2.1
above, the so-called ’King of the Fjords’ is shown. This is the Sognefjord in Norway with an incredible depth
of 1.300 m.
The span is too large, while there is no possibility to support the bridge halfway. The column supporting the
bridge would have to reach very deep into the ocean, being subject to all kinds of currents and wave loads.
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Besides, due to the large length of the column, it would be very sensible to dynamic vibrations and to failure
as a consequence. The large depth of such a fjord also disables the immersed and bored tunnel from being a
good alternative. The steep slopes of the fjords often exceed the maximum allowed slopes for traffic. Espe-
cially lorries would experience a lot of difficulty climbing up ’the hill’. Moreover, the steep slopes would be
unfavourable in terms of sustainability and traffic congestion as well.

Again, the submerged floating tunnel is the revolutionary solution to avoid these issues. The SFT is a struc-
ture floating at a certain immersion depth, which assures a minimal clearance to allow (navigation) vessels of
passing safely [29]. In this way, the slope of the approach structure can be made within the safety and trans-
port limits.

The demand for a SFT has got to do with both economic and environmental reasons. The transport of goods
and people requires a crossing over the water body. If the alternative is to make the detour all the way around
a fjord, a lot of time and fuel can be saved. Especially at locations where transport of goods is important, like
a harbour, the trucks can save significant amounts of time and money. Moreover, the minimization of the fuel
also reduces the amount of exhaust gases ending up in the atmosphere. Although the construction of the SFT
also induces a lot of exhaust gases, on the long term it might be beneficial in environmental terms as well.

2.1.2. Anchoring the SFT - BWR
The submerged floating tunnel can be fixed in two different ways, as shown already in figure 1.1. The tunnel
is permanently subject to the buoyancy force and to its self weight [29]. If the buoyant force exceeds the self
weight, the SFT wants to float and is attached to the bottom with anchors and steel tethers. Contrary, if the
self weight exceeds the buoyant force and the tunnel wants to sink, it is attached to the water surface with
a set of pontoons and tethers. The main disadvantage of this variant is its sensibility to the waves’ motions.
The SFT also undergoes these motions. The disadvantage of the other variant, where the SFT is attached to
the bottom, is the possible high mooring costs at a rocky seabed [11]. In current design thoughts on the SFT,
these forces (BWR) should always have a significant net force to guarantee tension in the tethers.

The BWR determines the amount of pretension in the tethers. Since the tethers do not have any compressive
strength, this pretension is very important. When no pretension would be present (BWR = 1,0), any wave
or current might result in a compressive force in the tethers for a standard cross-section. Such a compres-
sive force would result in ’dancing’ of the SFT with fatal accidents as a consequence. Hence, current designs
thoughts always have a BW R 6= 1,0. In terms of safety this is required. From an economic point of view, how-
ever, this is undesirable. The tethers are basically ’over-dimensioned’, resulting in a lot of additional costs.
This is explained further in paragraph 2.3.7.
Concluding, the guarantee of tensile forces in the tethers is in current designs achieved by ’over-dimensioning’
the SFT, which costs a lot of money. These tension forces can also be achieved by designing the cross-sectional
shape.

For an overview of the two possible anchoring methods, see figure 2.2

Figure 2.2: The two types of anchoring [35]
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The current ideas already include a certain capacity in absorbing horizontal forces by constructing the cables
under an angle (only visible at the right tunnel in figure 2.2). The tethers can only deliver a normal force
and not a shear force. By constructing the tethers under an angle, the normal force also has got a horizontal
component, which resists for the horizontal drag forces due to water flows. However, these loads can also
have a vertical component due to the oscillating behaviour of waves for instance. This may result in com-
pressive forces in the tethers and hence in large deformations. More information about these loads is given
in paragraph 2.2.5. In figure 2.3 a vector overview is shown of the situation described above.

Figure 2.3: Horizontal capacity of tether under an angle

The smaller the angle α, the lower the normal force in the tether, but the longer the tether has to be. In this
situation, a flow force with a downward vertical component can result in deformations of the tethers, de-
pending on the BWR of the SFT.
From now, the focus is on the attachment type with anchors at the bottom of the seabed. Concluding, the
aim is to find a lift force being positive (upward).

2.1.3. The Cross-Section
An SFT has to deal with high compressive forces due to the hydrostatic water pressure. A circular cross-
section is very popular as it performs well in absorbing compressive forces. However, it is not the optimal
solution regarding its ’hydrodynamics’. Later on, this is explained further.
Besides, the cross-section has to facilitate traffic and installations. A kind of flowchart is generated by Giulio
[29], which shows an iterative process in defining the cross-sectional dimensions. First, the cross-section has
to facilitate the traffic and installations, resulting in a minimal inner diameter. Accordingly, the total cross-
section can be determined based on strength calculations, depending on the materials chosen and the loads
present. The cross-section’s volume results in a certain buoyant force, according to Archimedes’ law. When
this buoyant force is subtracted by the weight of the structure including ballast and live loads, a certain net
force with a minimum upward value has to remain for a SFT anchored to the bottom. The exact value of this
’minimum’ has never been determined yet. For an overview of this flowchart, see figure 2.4.
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Figure 2.4: Flowchart in preliminary design of cross-section [29]

With this idea in mind, a first impression of the cross-section can be made. As already mentioned, the cross-
section should result in enough net buoyant force to prevent any compressive forces in the tethers. In order
to do so, one could make a conservative design by increasing the safety parameter α1, see figure 2.4. The
buoyancy force would increase more than the weight of the structure, resulting in a larger upward net force.
A downward external live load, due to waves or currents for example, would still not result in a compressive
tether force. This means that the objective is reached, where only tensile forces are present. Hence, the tunnel
structure would be stiff enough.

However, it would be optimal to keep safety factor α1 from figure 2.4 as close to 1.0 as possible. The cross-
section is, in that case, not unnecessarily large.

Types of Cross-Sections
Several types of cross-sections are possible for a SFT, according to Giulio [29]. This is mainly based on the
facilitation of the traffic and the resisting capacity against the loads. In this research, the aim is to find an op-
timum shape of the cross-section to deal with the loads and to minimize deformations of the total structure.
Before doing so, the existing thoughts on a possible cross-sectional shape are listed:

1. Circular: The advantage of a circular cross-section in SFT’s is the ability to cope with the (compressive)
hydrostatic water pressures [6]. The shape diverts the water pressures into (compressive) normal forces,
while the bending moments in the cross-sectional plane are very small. Since concrete is often used for
this type of structure and this type of environment, it is preferred to have limited bending moments.
This is because concrete has a very small tension strength compared to its compressive strength. Cracks
due to tension might endanger the water tightness of the tunnel.
A disadvantage of a circular shape is the inefficient division of space. The space required to host the
traffic has got a rather rectangular shape, which means that all the space between the circle and the
inner rectangle is ’lost’.
Finally, the circular shape does not guarantee a tension force in the tethers. If the flow is perfectly
horizontal and the tunnel is perfectly circular, the net vertical force on the tunnel would be zero in
theory. However, any deviation in either the cross-section or the flow might result in a compressive
force in the tethers. Besides, the turbulent lift coefficient C ′

L 6= 0 as becomes clear in paragraph 2.3.3.
This coefficient might cause tension in the tethers as well.

2. Rectangular: The rectangular shape is the most efficient regarding use of space. As a matter of fact,
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most immersed tunnels are rectangular. This mainly concerns situations where the external live loads
are very limited, as well as the hydrostatic water pressure [29]. These immersed tunnels are often
buried, meaning that the flows don’t act as a load on the structure. If the SFT would have a rectangular
shape, one can expect a lot of turbulent motions of the water flow resulting in a dynamic response of the
SFT. Obviously, these motions are not preferred with respect to comfort and safety. This cross-sectional
shape has the largest drag coefficient CD .

3. Elliptical in the horizontal direction elongated: This shape looks like a compromise between the cir-
cular shape and the rectangular shape. It is already more efficient in terms of use of space. This also
causes benefits regarding the material costs. However, the elliptical shape does not cope as well with
compressive forces as the circular shape would. The outer shape still guides the flow along the tunnel,
preventing heavy turbulent motions of the flow. The drag coefficient is lower, which becomes clear in
paragraph 2.3.3.

4. Double-tube circular with a streamlined cover: This final type of cross-section is very similar to the
first one, the circular shape. The main difference is the extra stiffness of the structure by connecting
both tunnels to each other via a steel truss for instance. The whole set of tubes can also be covered by
a larger structure, which should gradually divert the flow along the SFT. The cover should prevent the
flow from turbulent behaviour.

See figure 2.5 for an overview of the types.

Figure 2.5: Different types of cross-section

2.1.4. Joints
Similar to regular immersed tunnels, submerged floating tunnels also consist of elements. It would be physi-
cally impossible to construct such a tunnel as a whole for both the fabrication and the transportation. How-
ever, it is possible to make the connections monolithic afterwards as planned in the Norwegian designs for
fjord crossings. The elements are individually constructed and transported to the construction site. Conse-
quently, immersed tunnels are connected via a so-called Gina gasket [33]. The Gina gasket is a smart solution
in linking the individual elements, since it simply connects two elements by a large pressure difference. The
gaskets assure the water tightness of the tunnel. In current design thoughts, the SFT is post-tensioned where
the gaskets prevent water ingression. However, this is out of the scope of this research.
First, the element to be linked is brought in position. The water pressures left and right of the tunnel element
are in equilibrium. Then, the water in the area between the two elements, the so-called bulkhead area, is
pumped away. The water pressure at the outside (right) of the tunnel now pushes the element tightly to the
previous element. The Gina gasket is not allowed to fail due to the ’dancing’ of the SFT. Otherwise, the joint
would fail and the structure would fill up with water and sink to the bottom.
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2.2. Loads
In this paragraph, the loads acting on the submerged floating tunnel are enumerated. First, the permanent
loads are described. These include the hydrostatic water pressure and the self-weight. Secondly, the loads
due to wind and tidal currents are elaborated. Then, the wave loads are described and finally, some accidental
loads are listed. In general, the permanent loads are noted with the symbol G and the variable loads are noted
with the symbol Q.

2.2.1. Hydrostatic pressure (G)
The water imposes a permanent hydrostatic pressure on the tube of the SFT. This pressure depends linearly
on the depth. The general formulation for the hydrostatic water pressure is:

p = ρw ater · g ·d (2.1)

Where

• p = hydrostatic water pressure [ N
m2 ] or [Pa]

• ρw ater = fluid density [ kg
m3 ]

• g = 9.81 [ m
s2 ]

• d = water depth [m]

One should take a possible variation in the density into account for a stratified flow. For now, a uniform fluid
density is assumed to be valid. The hydrostatic pressure induces a stress regime in the cross-sectional plane
[29]. The load acts perpendicular to the structures’ surface.
The water pressure also acts as a buoyant force on the SFT. This is elaborated further in the next section on
the self-weight.

2.2.2. Self-weight (G)
The self-weight of the structure consists of multiple parts. First, the weight of the SFT itself obviously. But next
to that, the structure is also subject to the weight of the road, the traffic and the required installations. From
now on, this is called the functional self-weight. Finally, some marine growth can add up on the self-weight.
However, due to the fact that the SFT is not at the seabed, it is neglected. At the seabed these loads can be of
significant magnitude [42]. The total self-weight then becomes:

Gtot al =Gsel f −wei g ht +G f uncti onal (2.2)

The functional self-weight differs for each SFT and its function. The self-weight per meter length of a circular
SFT consists of the tunnel lining and the ballast. It can be calculated as follows:

Gsel f −wei g ht = ρconcr ete · g · π · (D2
ext −D2

i nt )

4
+GB all ast (2.3)

Where

• Gsel f −wei g ht = weight of the structure [kN ]

• ρconcr ete = density of concrete = 24 [kN /m3]

• Dext and Di nt = External/Internal diameter [m]

• GB all ast = Ballast load [kN ]

The ballast load GB all ast is the variable to be tweaked in order to reach a certain desired BWR. See figure 2.4
again.
As mentioned in the previous section, the buoyancy force has to be subtracted from the total self-weight.
According to Archimedes’ law, the buoyancy force is equal to the weight of the displaced amount of water:

Gbuoy anc y = ρw ater · g · π ·D2
ext

4
(2.4)
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For a total overview, see figure 2.6

Figure 2.6: An overview of the permanent loads on the SFT

Note that the ratio between GSel f −W ei g ht and GBuoy anc y is the earlier mentioned BWR and it can be reached
by adapting GB all ast .

2.2.3. Tidal currents (Q)
Tidal currents exist due to the interaction between the celestial bodies, like the earth, moon and the sun.
Depending on the location on Earth, the tidal wave has got its own amplitude a and phase φ for each tidal
constituent. Both diurnal (K1, O1) and semi-diurnal (M2, S2) tide constituents exist with each their own
frequency ω [19]. The general form of such an harmonic wave is:

η(x, t ) = a · cos(ωt −kx) (2.5)

The actual tidal wave present at a location is the sum of multiple constituents. The tidal wave induces mainly
horizontal currents which act on the SFT. The tidal waves have a relatively large period compared to wind
waves for example. This means that variations in the flow velocity over time are relatively small. Therefore,
one can model the tidal wave as a horizontal steady flow varying over depth. The deeper in the water column,
the lower the flow velocities are. An analytical expression for the flow velocity at depth z is equal to [29]:

Vt (z) =VT (0) ·
(

z +d

d

)1/7

(2.6)

Here, z is the vertical coordinate originating at the water surface and positive upward. Note that the final step
is the conversion from flow velocity to an actual force. However, since this conversion is not as easy as for the
permanent loads, a more extended view upon this conversion is given in the next section 2.3. The same holds
for the wind currents, which are discussed next.

2.2.4. Wind currents (Q)
The wind blowing over the water surface also induces a current in the water column. Due to the difference in
velocity and density between two fluids, a transfer of energy is generated [19]. Usually, the current induced
by the wind speed is of more importance than the horizontal tidal flow velocity. However, it dampens out
faster over depth than the tidal flow. Again, the current can be assumed to be horizontal with a dependence
on water depth z. The contribution of the wind speed to the flow velocity at depth z is equal to:

VW (z) =VW (0) ·
(

z +d

d

)
(2.7)
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The total current velocity due to the tidal wave and the wind induced flow can now be calculated by simply
adding up the two different components. An example of the velocity profile over a depth of 100 m looks as in
figure 2.7.

Figure 2.7: An example of the flow velocity profile over depth

2.2.5. Wave loads (Q)
Waves are the next external load on the SFT. Waves can have a significant impact on a structure and waves will
always be present, either big or small. The tidal wave acts more or less like a current due to its large period,
as explained before.
However, a lot of other types of waves exist. Mainly with a lot smaller period than the already mentioned tidal
wave. Think of swell waves, seiches, wind generated waves, internal waves etc. Despite that all these types
of waves have a different origin, they all have a similar behaviour. Waves have an oscillating character by
definition, with a velocity potential parallel to its own motion [19]. The wave particles experience an orbital
motion, which decreases in magnitude with increasing depth. See figure 2.8 left. The main question regarding
this research is how the oscillating motion affects the SFT?

Figure 2.8: The orbital motion of a wave (left) and the validity of linear wave theory (right) [19]

In order to understand what effect the waves have on the structure, it is important to understand how the
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waves themselves can be described. Linear wave theory describes the wave behaviour of surface gravity
waves quite accurate in deep and intermediate water depth. See figure 2.8 right [25]. It is plausible to think
that the SFT’s are located in these wave regimes. To describe linear wave theory, some assumptions are re-
quired. The water is assumed to be incompressible with only the Earth’s gravitation inducing the forces con-
trolling the particles’ motions. Given that waves are not too steep, it turns out this assumption is valid [19].
Besides, during the derivations it is assumed that the density is constant over space and time and that the
water has no viscosity.
The start of the derivation starts, as often, from some balance equations. Namely, the mass balance equations
and the momentum balance equation. For a volume box ∆x∆y∆z, with the mass quantity ρ, the continuity
equation can be derived as shown below.

δux

δx
+ δuy

δy
+ δuz

δz
= 0 (2.8)

In a similar way, the momentum balance equation can be derived. Note, the advective terms from the usual
equation are removed because they are quadratic, whereas this is linear wave theory. Also, friction is ignored
in the linear wave theory. The counteracting force to the momentum of the fluid is the pressure gradient. For
x, y and z-direction the momentum equation becomes:

δux

δt
=− 1

ρ
· δp

δx
(2.9)

δuy

δt
=− 1

ρ
· δp

δy
(2.10)

δuz

δt
=− 1

ρ
· δp

δz
− g (2.11)

It is assumed the reader has the basic knowledge regarding these two balance equations, meaning no further
explanation on this derivation is given.
These equations can be solved given some boundary conditions. First, it is assumed the waves have an in-
finitely long crest in the y-direction, meaning that the wave characteristics only depends on the x- and the
z-coordinate. Furthermore, the particle velocity at the surface has to be equal to the speed of the water sur-
face. Besides, the water particles at the bottom can not penetrate through the bottom itself. Finally, the
pressure at the surface is equal to the atmospheric pressure.
This set of boundary conditions, together with the balance equations listed above, can be solved with the
velocity potential function. The beauty of such a function is that only one function covers the velocities in any
direction by taking the corresponding partial derivative. Concluding, the spatial derivatives of this velocity
potential function φ(x, y, z, t ) are the water particles velocity in the direction it is derived. For example, in the
x-direction holds:

ux = δφ

δx
(2.12)

If this equation would be replaced in the continuity equation 2.8, the Laplace Equation is generated:

δ2φ

δx2 + δ2φ

δy2 + δ2φ

δz2 = 0 (2.13)

When the boundary conditions are expressed in terms of φ as well, the Laplace equation can be solved. The
analytical solution is a long-crested harmonic wave, propagating in the positive x-direction [19].

η(x, t ) = a · si n(ωt −kx) (2.14)

The velocity potential function belonging to the solution, describing the dynamic aspects of the wave be-
haviour is:

φ= φ̂ · cos(ωt −kx) (2.15)

Where

φ̂= ωa

k

cosh[k(d + z)]

si nh(kd)

The following step is to make the move from the velocity potential function to the velocity motions in x and z
direction. This can be done with equation 2.12 and equation 2.15.
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The solution for ux and uz are harmonic functions as well, since the derivative of a harmonic function is
a harmonic function itself. This follows from basic math and is in line with the expected orbital motion as
shown in figure 2.8. Below, the total expression is shown for the flow velocities in x- and z-direction. The bold
parts in equations 2.16 and 2.17 represent the amplitude of the harmonic function [19].

ux =ωa
cosh[k(d+z)]

sinh(kd)
· si n(ωt −kx) (2.16)

uz =ωa
sinh[k(d+z)]

sinh(kd)
· cos(ωt −kx) (2.17)

Now, there is a solution for the magnitude of the flow velocity due to ocean waves in x- and z-direction over
time. This solution depends on the wave characteristics at the water surface, a,ω and k, the local water depth
and the depth of the SFT which is represented by z. These are all the variables likely to be of influence. The
flow velocity uy is of a negligible importance. It was assumed that the wave crests were infinitely long in the
y-direction, resulting in zero y-velocities. Although a wave crest is not infinite in reality, a wave pattern usu-
ally has a significant length in the y-direction. This means that velocities in this direction are relatively small.
Therefore, forces in this direction have less influence on the possible failure of the SFT. Furthermore, the SFT
is likely to be located in a estuary. This means that the waves encounter the SFT perpendicular to its own
longitudinal direction due to refraction mechanisms. Hence, this is another reason to safely assume that the
wave velocities in y-direction are negligible.

Depending on the local water depth and the wave length/number at the SFT, the waves are propagating in
deep water, shallow water or in intermediate water. For both deep and shallow water, the expressions for the
amplitude of the wave velocities can be simplified. The condition for a wave to be in deep or shallow water is:

kd > 3 f or deep w ater

kd < 0.3 f or shal low w ater

When being in one of these two regimes, the expressions reduce to the following expressions below. This can
make life a bit easier.

ûx = ûz =ωaekz f or deep w ater (2.18)

ûx = ωa

kd
and ûz =ωa(1+ z

d
) f or shal low w ater (2.19)

An overview of the situation is shown in figure 2.9 below. Here, the velocities of the orbital motions are shown
in the figure. Note that these velocities need to be converted to forces yet. Besides, the governing situation
must be searched for. The total motion can be analysed with the help of Matlab as executed by Hemel [18].
This is further elaborated in Chapter 4, section 4.6.

Figure 2.9: The wave velocities acting on the SFT
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Similarly as for the current loads, the final step is the conversion from flow velocity to force. Again, this is a
rather complicated process which requires some more background. This is given in section 2.3.

2.2.6. Anchoring force
The SFT is attached to the surroundings by tethers, being either the water surface or the seabed. Note that the
anchoring force is the support reaction from the SFT to the surroundings. Therefore, it is not a typical load
on the structure. The attachment of these tethers to the structure thus induce a support reaction for a BWR
6= 1.0. Although this research focuses less on the internal forces within the longitudinal direction, it is good
to already think about them. The anchor suppport reaction in combination with the BWR always results in
bending and shear. This is explained further in paragraph 2.3.7.
The attachment is via a hook constructed in the concrete of the SFT, see figure 2.10. This anchoring force is
at a certain angle and when optimizing this angle, the tether force is within the ’centroid axis’ or neutral line
of the cross-section. This would mean that the tether force does not induce any bending moments in the
cross-section, except for the (small) effect of eccentricity of the hook.

Figure 2.10: The attachment of the tethers to the SFT [29]

If the angle α at the location of attachment is equal to the tangent of the cross-section at that location, one
can assume the anchoring force does not induce significant internal tension forces. This is not investigated
further within this research, but just a side note.

2.2.7. Accidental loads (Q)
Next to the loads which are permanent (G) or variable but likely to be present, there are also accidental loads.
These loads are, contrary to the current or wave loads, unlikely to happen. However, despite the small prob-
ability of occurring, the consequences of the accidental loads are usually quite large. Since the risk is the
multiplication of the probability and the consequences, the risk of the accidental loads can be significant.
Some examples [42]:

• Tsunamis

• Earthquakes

• Collision with a submarine

• Dropping anchor

• Sinking ship

The impact of such an accidental load is not accounted for as this goes beyond the scope of this research.
However, it is important to be aware of the presence of these types of loads in further research and design.
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2.3. Fluid-Structure interaction
As mentioned above, the hydrodynamic loads are known and expressed in terms of a velocity. Next, they have
to be converted to actual forces. This requires some additional information which is shown in this section.
First of all, an overview is given on different types of flows because they also result in different forcing. Then,
the actual forcing is described for the already known velocities from section 2.2.

2.3.1. Types of flow
Different types of flow exist which have a significant influence on the forcing of the flow on a submerged
structure. The type of flow is often characterised by the dimensionless ’Reynolds Number’ [13]. This number
represents the ratio between the inertia forces and the viscous forces, which can be seen as the load versus
the resistance respectively. The inertia force is generated by the momentum of the fluid mass, encountering
the submerged structures. The viscous force acts as resistance due to the cohesion between the fluid particles
itself. In formula, the Reynolds number looks like [4]:

Re = u ·D

ν
(2.20)

Where:

• Re = Reynolds Number [-]

• u = flow velocity [m/s]

• D = Characteristic length object [m]

• ν = Kinematic viscosity = dynamic viscosity η/mass density ρ [m2/s]

The magnitude of the Reynolds Number determines if the flow is called laminar or turbulent. The higher the
Reynolds Number, the more turbulent the flow is. In general, a flow is called turbulent if Re > 1000.
A laminar flow has got a clear stratification. The fluid particles basically only move in direction of the stream-
lines, meaning that there is no exchange of momentum perpendicular to the direction of the flow. This is
a rather simple type of flow to describe, see the bottom part of figure 2.11. For a turbulent flow it is more
complex to describe its behaviour. The water particles start moving perpendicular to the streamline and they
separate along the body. See figure 2.11 for an illustration.

Figure 2.11: The laminar and turbulent flow [7]

The location where the flow separates from the body depends on the Reynolds number for curved cross-
sections. Small differences in flow velocity can therefore result in different locations of separation. This
causes an unsteady flow. An object with sharp edges has got its separation at the location of the edges by
definition. Concluding, sharp edges are preferable regarding the prevention of an unsteady flow. In the next
section, the turbulent behaviour is explained further.

2.3.2. Flow separation and vortex induced vibrations
Vortex induced vibrations are motions exerted by the fluid that interacts with a submerged body. Fluids have,
in reality, always a certain amount of viscosity. In case of a relative velocity/acceleration between the fluid
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and the submerged body, this viscosity slows the fluid down along the surface of the body. The area, or length,
over which the fluid is slowed down but still attached to the body, is called the boundary layer. Over this area,
the pressure increases. From a certain point, the curvature of the body is too large for the fluid to follow it and
the flow separates from the body. Now, the wake region is entered, where vortices are originated. See figure
2.12 [11]. The part after the separation point is called the ’wake region’.

Figure 2.12: The turbulent flow around a submerged body [17]

At the lee side of the submerged body, an adverse pressure gradient is present which can also be seen in the
figure above. This causes a shear layer in the wake region and the boundary layer to separate from the body
[38]. The vorticity in the boundary layer is transported to the shear layer. Then this layer starts to ’roll up’ and
a vortex field is generated in the wake region. Again, this is visible in figure 2.12. These vortices can have a
significant impact on the forcing at a submerged body. Especially for a cylindrical shape, which doesn’t have
sharp edges. This is because the separation point is not predetermined. The flow separates at several loca-
tions, also causing vortices at several locations. In its turn, the vortices exert a (lift) force on the body. Since
the vortices are not necessarily symmetrically distributed over the mid-line of the cross-section, differences
in lift forces are likely to occur. This can cause unsteady forcing on the body resulting in (large) vibrations.
Therefore, they are called vortex induced vibrations [32].
Concluding, a horizontal flow over a symmetrical submerged body can still cause (vertical) lift forces due to
a turbulent flow. These forces are expressed with a turbulent lift coefficient C ′

L . This is further explained in
paragraph 2.3.3.

The turbulence at the lee side of the submerged body must be translated into a force, which depends on the
flow that encounters the body in the first place. Basically, an analogy can be made with the wind loads for
(high-rise) buildings. The ’suction force’ at the lee side of a building due to an entering wind speed is modelled
as an additional component being equal to a factor times the actual load. It is assumed to be correct when
applying this analogy for fluids. This is required to model asymmetrical flow, as becomes clear in Chapter 4.
The next question is what this factor should be. For wind loads in a similar situation, the load factor for the
’suction force’, or the turbulence in this case, can be determined as follows [36].
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Figure 2.13: The VIV-factor for wind

The expected ratio between the height of the SFT ’h’ and the width of the SFT ’d’ is expected to be in between
0,25 and 1,0, meaning that a VIV-factor of -0,4 can be assumed. However, the cross-sectional shape of the
SFT is also expected to be more curved, meaning that the ’suction force’ is expected to be lower. Finally, the
VIV-factor is set to -0,3 and assumed to be valid. Again, this is only required for asymmetrical flow. The focus
within this research lies on symmetrical flow, but an annotation on asymmetrical flow is given in Chapter 4
and Appendix C.

2.3.3. Flow to force for currents
The flow exerts a force on the submerged structure, because the flow has to curve around it. The directional
change of the flow requires a force from the body on the flow, Then, according to Newtons’ 3rd law, the flow
also excites a force on the body. This force can be decomposed in a component perpendicular to the body’s
surface and a component parallel to the body’s surface. The component perpendicular to the surface acts as
a pressure gradient p, similar to the hydrostatic water pressure. The component parallel to the surface acts as
a friction component τ0. The direction of these two forces depends on the location along the body with angle
Φ. See figure 2.14.

Figure 2.14: The forces perpendicular and parallel to a body [38].

Especially this pressure force is important regarding the Form Finding process, which is elaborated further in
section 2.4.
Then, the forces on the SFT have to be expressed. In order to do so, some general empirical formula’s are
known. The force in the horizontal direction is called the drag force, whereas the vertical component is called
the lift force. These two forces are usually expressed as follows:

FDr ag ,x = 1

2
·ρ ·D ·U 2 ·CD (2.21)

FLi f t ,z =
1

2
·ρ ·D ·U 2 ·CL (2.22)

The main deficit of these empirical formula’s are the unknown parameters CD and CL which must be deter-
mined experimentally. These values depend, among others, on the shape of the cross-section And since the
shape of the cross-section is highly variable during this research, it would be unfeasible to execute experi-
ments for all shapes found. Therefore, another method is introduced in Chapter 4. For now, it is a good first
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estimation to set CD to 1.0.
For both equations, the velocity U represents the component in the direction of the force. Since the flow is
assumed to be horizontal, as stated in paragraph 2.2.3, the velocity U only has a horizontal component. For a
symmetrical cross-section over the mid-line and a perfectly horizontal current, the lift force would be equal
to zero. However, due to asymmetrical instantaneous forces the net lift force FL is not equal to zero. [11]. See
figure 2.15 for a sketch of a graph with the development of CD and CL over time. The C ′

L coefficient represent
the turbulent behaviour for the lift force over time as described in paragraph 2.3.2. The mean lift coefficient
C L is equal to 0, since the encountering flow is horizontal.

Figure 2.15: The drag and lift coefficients over time [38].

The drag coefficient also consists of a mean part C D and a turbulent part C ′
D . The mean part is here not equal

to 0, because the flow is in the direction of the drag force. To get some insight in the magnitude of the mean
coefficient C D for different cross-sections, see figure 2.16.

Figure 2.16: Experimental results for CD for different cross-sections.

Note: the mean lift coefficient C L is equal to 0 for a horizontal flow for all cross-section shown above. This
is due to their symmetry over the horizontal. The aim of this research is to find a lift coefficient larger than
0 for a horizontal flow.

The starting point in Form Finding for the cross-sectional shape is a circle. A quick estimation of the Reynolds
number for a circle with D = 15 m and flow velocity U = 2 m/s yields:

Re = U ·D

ν
= 2.0 ·15

1.787 ·10−6 = 1.7 ·107

Resulting in a drag coefficient about equal to 1.0 for a circle. See figure 2.16. This value is used within the
Form-Finding process, which becomes clear in Chapter 4.

Now, the force from the current on the SFT can be expressed. In figure 2.17, a random segment of a discretized
circle is shown. This segment has got an angle equal to β with respect to the horizontal.
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Figure 2.17: Locations of angle β

The next step is to decompose the horizontal force FDr ag ,x into a component perpendicular to the segment
p and a component tangent to the segment τ according to figure 2.14. The tangential component does not
influence the deformations of the SFT in the FF-process. The perpendicular component however, does. This
perpendicular component is therefore inserted in the FF-model and can be calculated as:

p = FDr ag ,x · cos(β) (2.23)

The current load is now expressed in a force which is used within the Form-Finding process. To determine
the actual lift force on the structure, a more advanced method is applied as becomes clear from Chapter 4
and Appendix E.

2.3.4. Flow to force for waves
Here, the additional step is made to convert the oscillatory wave motion to a force on the SFT. Remind that
the oscillatory motion of the wave was already explained in paragraph 2.2.5.
The behaviour of a wave is different from the behaviour of a (steady) current. Therefore, the conversion from
velocity to force is different as well. The behaviour of a wave is an oscillatory motion, see figure 2.8. In order
to determine the force due to a wave, a semi-empirical function was developed by Morison [30]. Sometimes
the equation is called the ’MOJS equation’, named after all the authors Morison, O’brien, Johnson and Schaaf
[34]. This function consists of both a drag force, similar as in equation 2.21, and an inertia force. These two
parts basically represent the force exerted by the velocity and by the acceleration, respectively. It yields the
force in the in-line direction of the oscillatory flow.

Drag force component
The drag force component is similar for waves as it was for currents. The formula for the drag force compo-
nent can be seen in equation 2.21.

Inertia force component
The inertia force component consists in its turn also of two parts. The Froude-Krylov force and the hydrody-
namic mass force.
The Froude-Krylov force is caused by the dynamic pressure field, related to the undisturbed flow. This pres-
sure field would have accelerated a certain amount of water which would be displaced by the submerged
body [29]. For an overview, see figure 2.18 [11]. This dynamic pressure field can be expressed in terms of the
acceleration of the flow:

d p

d x
= ρ · du

d t

When multiplying this pressure field with the total cross-sectional area A of the submerged body, the total
force is:

FK r ylov = ρAU ′
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Figure 2.18: An undisturbed flow with a horizontal pressure field [11]

The second contribution is due to the hydrodynamic mass component, or also called the ’added mass con-
tribution’. The trajectory of the water particles is deviated due to the presence of the submerged structure.
This generates again a dynamic pressure field. The resultant of this field yields the hydrodynamic mass com-
ponent. The physical meaning of this contribution might be hard to understand, but one can understand it
better if the process is reversed [18]. If the submerged body was to accelerate in static water, the submerged
body would have to accelerate some water particles as well in order to pass them. The additional amount of
water particles to be displaced by the accelerated body is accounted for as ’added mass’ and is expressed with
a factor as shown in the formula below [9]. In formula:

FH ydr o = m′∗ du

d t

Where:

• m′ = hydr od ynami cmassper uni t leng th = ρ ·Ca · A [kg/m]

• Ca = Coefficient for added mass [-]

• A = cross-sectional area of submerged body [m2]

These two components can be added up and together they form the inertia force. Below the complete Mori-
son’s formula is shown which can be used to calculate the total force due to waves.

The Morison’s Formula
Now the two contributions to the Morison’s Formula are known, the total equation can be composed as shwon
below:

dF

d z
= p(t , z) = p I +pD =C I ·ρ · A

du

d t
+CD · 1

2
ρ ·D ·U |U | (2.24)

Where:

• p(t,z) = force on object per meter length at location z [N/m]

• p I = Inertia force component [N/m]

• pD = Drag force component [N/m]

• C I = Inertia coefficient = Ca +1 ≈ 2 [-]

• CD = Drag coefficient ≈ 1.0 for low flow velocities [-]

• u = horizontal velocity of water particles [m/s]

• du
d t = horizontal acceleration of water particles [m/s2]

The horizontal acceleration of the water particles hadn’t been derived yet. However, given the expression
for the horizontal velocity as in equation 2.16, it is an easy step to derive the term du

d t by differentiating this
equation with respect to time. The horizontal acceleration term then becomes:

du

d t
=ω2a

cosh[k(d + z)]

si nh(kd)
· cos(ωt −kx) (2.25)
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Similarly as for the flow load, note that values approximated for the coefficients C I and CD are an estimation.
In reality, these two coefficients should be determined by experiments and they depend on the surface rough-
ness, the Reynolds Number and the Keulegan-Carpenter number. This last term is a dimensionless number
describing the relative importance for the drag force over the inertia of the oscillatory flow [22]. In formula:

KC = V T

L
(2.26)

Where:

• V = amplitude of the flow velocity oscillation [m/s]

• T = period of the oscillation [s]

• L = characteristic length of the object [m]

Still, the values as approximated and shown in equation 2.24 are considered to be conservative and are used.
The total force in horizontal direction can now be calculated in preliminary design situations with [11]:

Fx = ρC I A
dux

d t︸ ︷︷ ︸
Iner t i a component

+ 1

2
ρDCD,xUx

√
U 2

x +U 2
z︸ ︷︷ ︸

Dr ag component

(2.27)

Lift force
Now, the in-line force on the submerged body for an oscillatory flow can be calculated. However, similar to
the forces due to currents, a lift force is also exerted on the submerged body. This is the force perpendicular to
the direction of the wave. In most cases, this force is of the same order of magnitude as the drag force and it is
generated by fluctuations in the vortexes around the submerged body [30]. Especially regarding this research,
the force perpendicular to the wave direction is important since this force can generate a compressive force
in the tethers. For preliminary design, this force can be approximated by:

Fz = ρC I A
duz

d t︸ ︷︷ ︸
Iner t i a component

+ 1

2
ρDCD,zUz

√
U 2

x +U 2
z︸ ︷︷ ︸

Dr ag component

(2.28)

Where:

• CD,z =CL = Lift coefficient [-]

The magnitude of CL has to be determined by experiments as well. However, for preliminary design one can
say that 0 <CL <CD . Hence, a conservative design assumes CL being equal to CD . For a circle, CD = CL = 1.0
as just concluded.

2.3.5. Net force on the structure
The shape is highly variable during this research, meaning that the coefficients CD and CL are as well. Hence,
the determination of the net force on the structure is not as easy as it seems according to the equations
above. This holds especially for the hydrodynamic loads, which must be quantified in order to assess the
optimization criterion which demands for a tensile force in the tethers. Besides, the curved flow profile along
the submerged body causes local velocity increases. The uniform flow velocity is not applicable everywhere
along the SFT.
The net forces are determined based on the pressure distribution within the fluid with the help of Bernoulli’s
principle. This principle states that the energy along a streamline is constant and can be expressed by:

H = z + p

ρg
+ u2

2g
(2.29)

Where:

• H = Energy height [m]



2.3. Fluid-Structure interaction 23

• z = Local height [m]

• p = Pressure [Pa]

• u = Flow velocity [m/s2]

A higher flow velocity causes a pressure drop in the fluid, since the total energy height [H] must remain con-
stant along the streamline. In order to solve for the velocity (and pressure) field along the SFT, the Panel
Method can be applied. This is a method solving for the velocity potential by modelling a geometry as a
set of panels with each its own source/sink terms [15]. This principle is further elaborated in Chapter 4 and
specifically in section 4.1.

2.3.6. Overview of loads
An overview of all loads acting on the SFT are graphically shown in figure 2.19. Obviously, more forces are
present during the lifetime of a SFT. Think of the accidental loads as described before. However, for this
research these are the main loads which are considered.

Figure 2.19: The main loads acting on the SFT

For the currents, an additional component at the lee-side of the structure is present as explained in paragraph
2.3.2. This component is not shown in the figure above. Moreover, note that the structure is segmented in
order to model the loads.

• Hydrostatic water pressure: FHW P = ρ · g · z · A

• Currents: Fx,D = 1
2 ·ρ ·D ·U 2 ·CD

• Waves - x: Fx = ρC I A dux
d t + 1

2ρDCD,xUx

√
U 2

x +U 2
z

• Waves - z: Fz = ρC I A duz
d t + 1

2ρDCD,zUz

√
U 2

x +U 2
z

• Self-Weight: Gtot al = ρconcr ete · g · π·(D2
ext−D2

i nt )
4 +GB all ast +G f uncti onal
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2.3.7. Tether forces
The required tension force in the tethers is in current designs achieved by a BW R 6= 1,0. In case when the SFT
is anchored to the bottom, the BWR should be larger than 1,0 for instance.
In figure 2.20 three situations are shown for the tether force Ftether over time. In figure 2.20a, the situation is
shown for a regular circular cross-section with a BWR equal to 1,0. The force signal enters the compressive
zone due to the wave load or due to the turbulent force from the currents, as just described. In figure 2.20b, the
situation is sketched for current design thoughts. The BWR > 1.0, meaning that a certain level of pretension
is present. The buoyancy exceeds the weight, resulting in a structure that strongly wants to float. Although
the waves and currents push the cross-section towards the compressive zone, the net result is still a tensile
force in the tethers. Objective achieved, one might say. However, the ’level of pretension’ is not economical
as explained in the next part. Figure 2.20c is the objective of this research. A BWR equal to 1.0, where the
external hydrodynamic loads cause tension in the tethers based on the fluid-structure interaction.

Figure 2.20: The forces in the tethers for different situations over time.

A very brief analysis is executed to show the importance of a BWR close to 1.0. The current design thoughts
include a BWR equal to 1.3 or 1

1.3 , depending on the anchoring method. Assuming a circle with radius R =
7.5 m and the corresponding BWR equal to 1.3, the net upward water pressure is equal to:

Buoy anc y =π ·R2 ·γw =π ·7.52 ·10 = 1767 kN per m leng th

W ei g ht = Buoy anc y

BW R
= 1767

1.3
= 1359 kN per m leng th

qupw ar d = Buoy anc y −W ei g ht = 1767−1359 = 408 kN /m

See figure 2.21 for a clarification. Note that qupw ar d is the resultant of the Weight and the Buoyancy.
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Figure 2.21: Sketch showing the presence of shear and bending for BW R 6= 1.0.

The span between the tethers is typically around 200 m. When this is the case, the tether forces can be calcu-
lated per support and the moments and shear forces in longitudinal direction as well. From basic mechanics:

• Ftether = q ·L = 81.6 M N

• ME d = 1
12 ql 2 = 1353 M N m

• VE d = ql
2 = 40.8 M N

Concluding, some real significant loads/stresses occur for a BWR far from 1.0. The tether diameter can be
quickly estimated, by assuming that the support reaction is absorbed via normal force only. Note that this
value becomes even larger for tethers under an angle.

σ= N

A
= 40.8 ·106

A
= 235 N /mm2

Note that each support is anchored to two tethers, meaning that the force Ftether as listed above is divided
by 2. The cross-sectional area of each tether would almost reach up to D = 500 mm, which is large. A quick
check of the reinforcement in longitudinal direction would also result in significant amounts of steel.

D tether = 2 ·
√

A

π
= 2 ·

√
40,8 ·106/235

π
= 470 mm

In the next section, the concept of Form-Finding is explained. This design process searches for a shape which
diverts the loads axially within the cross-section for a BWR equal to 1.0. It is important to understand the
difference with respect to the actual structure in 3D, because shear forces and bending moments are present
in longitudinal direction as stated by the example above. For the cross-section, just the tube is considered
without the effects of the buoyancy-weight ratio and the tether forces.
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2.4. Form finding
In this section, the concept of form finding is explained. This way of engineering is applied for the SFT in this
research. Therefore, it is important to understand the underlying thoughts. First, a brief history of the form
finding method is given where Gaudí is one of the architects who is well known for his form finding methods.
Then, an analytical view on the deformations due to hydrostatic water pressures is shown.

2.4.1. General history of Form Finding
Form finding is sometimes known as a relatively new concept, whereas it was actually applied ages ago al-
ready. Maybe one of the first engineers, or an architect actually, who got well known due to form finding was
Antoni Gaudí [20]. Form finding, or ’form follows force’, is a way of structural engineering in which the forces
acting on a structure determine the shape of the structure itself.
The idea is brilliant in its simplicity. By exerting a certain force on a structure or material without any stiff-
ness, the structure will deflect in such a way that the forces are diverted in an axial, or in-plane way [39]. This
is because the material does not have a (significant amount of) bending capacity, because it doesn’t have any
stiffness as just mentioned. This means that the forces have to be diverted axially or within the plane and
that no shear forces or bending moments can occur. Especially in the earlier times, where masonry was the
main construction element, this concept in engineering was very important. Masonry also has only a limited
amount of bending or shear capacity, whereas the axial capacity (compressive strength) is rather large. By
constructing buildings in a ’form finding’ way, the masonry was used in an optimal way. Moreover, materials
like reinforced concrete or steel were not widely available back then. This means that engineers had to find a
way to use the available materials in an ’axial way’.
As just mentioned, Antoní Gaudi was a Spanish architect who was born at the end of the 19th century. Prob-
ably, he is most famous for his design of the Sagrada Familia in Barcelona. Gaudi is sometimes called the
founder of these ’form follows force’ methods. He used items like chains to find the optimal form for his great
works. See figure 2.22

Figure 2.22: The hanging chain applied for ’Form Finding’

As visible from the figure, the chain takes forms like an arc, but upside down. This is not surprising, since
almost all (old) buildings show shapes like these. Besides, arcs are indeed well known for their ability in
diverting forces in an axial way. This was also already mentioned in section 2.1.3. In figure 2.23 a picture is
shown of the house of Milá, with the structure made of diaphragm arcs [20]. The vaults are clearly visible in
the form of the chain from figure 2.22.

Figure 2.23: The vaults with the ’form finding’ shape in one of Gaudi’s works
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Since the submerged floating tunnel has to deal with high compressive forces due to the hydrostatic water
pressure, plus other forces due to waves and currents, form finding is a good way in determining the optimal
shape. The materials are optimally used when they mainly have to transfer axial loads. Since the SFT is not
subject to a uniform hydrostatic water pressure, a circle is probably not the optimal shape.
Rhino/Grasshopper has got several packages built-in, like Karamba3D and Kangaroo, which are capable of
’form finding’. Therefore, these software programs are used in determining what is the optimal shape of a
SFT.
Concluding:

"Form-Finding is a design process where the (optimal) shape of a form-active structure is found for a static
equilibrium, in which the structure diverts the loads axially or in-plane [26]"

2.4.2. Load profile due to the Water Pressure
Here, the deformations due to hydrostatic water pressure are analytically derived. In this way, the output
of the form finding method in Grasshopper/Rhino can be verified. The tunnel structure is subject to the
hydrostatic water pressure which increases linearly over depth. The total profile over the cross-section looks
like in figure 2.6.
This water pressure can be divided into two parts. One constant part for the whole cross-section and one
variable part which differs by depth. This variable component can be expressed in terms of the radial angle
θ. In figure 2.24 an overview is shown for a situation where the top of the SFT is just below the water surface.
The first component, p0, is the water pressure at the local water depth of the center point. This means a
water depth equal to r −meter s. In case the SFT is at a deeper level, this value has to be enlarged by the
water depth between water surface and top SFT. Consequently, the variable part has to be added up to the
constant component in order to reach the total pressure at the cross-section. This pressure depends on the
cosine function of the radial angle θ, since it is only the vertical component which affects the unidirectional
water pressure.
The variable component has an amplitude equal to the radius of the SFT. The total difference in pressure
between the top and bottom of the SFT is then equal to twice the radius, which is in line with the expectations.
Also bear in mind that the variable component changes from sign at the locations where θ = 1

2π and θ = 3
2π,

as the cosine function changes from sign at these values. This is also what should happen in order to achieve
the correct water pressure distribution.

Figure 2.24: The water pressure decomposed in two parts

In formula, the water pressure distribution can now be defined as:

p(θ) = ρg · ((r +d)− r ∗ cos(θ)) (2.30)

Where:

• p = hydrostatic water pressure [Pa]

• ρ = density of fluid [kg /m3]

• g = gravitational acceleration [m/s2]
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• r = radius of the SFT [m]

• d = depth of the top of the SFT [m]

• θ = angle from the vertical along the cross-section [rad]

The hydrostatic pressure changes over depth, as can be observed by the variable component in the pressure
distribution. Due to these relative pressures, the circular cross-section wants to deform. The form finding
method lets the cross-section deform in such a way, that the shape diverts the loads in an axial way. This is
optimal because all the fibres of the material are used equally.

The shape that is expected is the one with the total load acting on it, as shown by ptot al in figure 2.24. It is this
shape since the form finding method searches for the shape defined by the load profile (form follows force).

2.5. The model and software
Several software programs and plug-ins are used to model the Form-Finding process for the SFT. In order
to understand the output of the model, it is good to know how the software programs function. The main
components are mentioned and briefly elaborated below.

2.5.1. Rhinoceros
Rhinoceros is a computer software especially designed for 3D computer programming. The link between
programming and a 3D graphical interface is a special feature of this software. Basically, Rhinoceros is the
graphical interface, where other plug-ins are responsible for the programming. It is also possible to make
3D-models or drawings in Rhinoceros itself. Consequently, these drawings or elements can be coupled to the
programming language ’Grasshopper’. However, these designs are not parametric, which is favourable in the
concept of this thesis. To make a parametric design, some programming tool is required named ’Grasshop-
per’. See the next paragraph.

2.5.2. Grasshopper
Grasshopper is the main programming ’environment’ which is used within Rhinoceros software. However,
one can hardly call it a language as it is build up like a flowchart consisting of a lot of different compo-
nents. Therefore, Grasshopper is very ’accessible’ language for beginners. Within Grasshopper, plug-ins like
Karamba and Kangaroo are available in order to make constructive calculations. It is also possible to make
FEM calculations within Grasshopper. As just mentioned, the main benefit of using Grasshopper is that it en-
ables one to make parametric designs. As an optimal shape for a random SFT is searched for in this research,
it is important to have the ability to change the input parameters.

2.5.3. Kangaroo
One of the plug-ins in Grasshopper is ’Kangaroo’. Kangaroo can be combined with any of the other compo-
nents of Grasshopper and it functions on all geometries generated in either Grasshopper or Rhinoceros. Ba-
sically, this plug-in is a live physics engine in the process of form-finding, working with discrete elements and
a local stiffness based solver [5]. A form of dynamic relaxation (DR) method for iteratively solving structural
problems is applied in this plug-in, where the forces on each node are accumulated to calculate accelerations,
velocities and displacements for each node. Basically, one can describe the Kangaroo solver as a mass-spring
like system. It is important, however, to realize that Kangaroo doesn’t work with physical quantities. A bend-
ing stiffness for instance is not described by E I with the units kN m2, but with local stiffness S. Therefore, all
deformations are relative with respect to each other, the form-found shape is in line with the actual physics.
To calculate the resulting forces on the SFT, another tool is used namely Karamba3D.

2.5.4. Karamba3D
Karamba3D is another plug-in that can be inserted into Grasshopper and which can be used for structural
engineering. Moreover, it is also fully incorporated in Grasshopper. It provides an accurate analysis on spatial
frames, trusses and shells. Moreover, Karamba3D is also able to use in a parametric design. The important
benefit of this tool is that it enables the user to work with the physical quantities as known and applied in
practice.



2.6. Assumptions 29

An overview of all software programs is shown in figure 2.25 below.

Figure 2.25: The software programs used in relation to each other

2.6. Assumptions
In this section, the assumptions made to proceed with the research are listed. At the end of the research, it is
checked whether the assumptions made are valid.

• Only the permanent loads and the hydrodynamic loads due to currents and waves are included in this
analysis. No accidental loads are included, but must be considered in further research.

• In reality, the tethers themselves would be subject to forces due to currents and waves as well. However,
since the surface of the tether is negligible compared to the surface of the SFT, these forces are not taken
into account.

• Turbulent flow around the structure can be of large importance regarding the stiffness and the stability
of the SFT. The turbulent flow causes a dynamic response of the tunnel structure, which should be
limited in amplitude to guarantee both comfort and safety. Moreover, the turbulent flow exhibits a force
on the structure that might cause torsion. Although closed cross-sections are performing generally well
on torsion, the effects have to be investigated.
The modelling of a turbulent flow is quite complicated and can barely be done by an analytical solution.
Therefore, a computational fluid dynamics (CFD) model should be inserted. The effect of turbulence is
neglected in the extent of this report. However, one should not forget these effects in reality.

• It is assumed that the accuracy of the model is high enough to analyse the hydrostatic pressure on each
segment to be linear. This also results in a hydrostatic force acting perpendicular to the tangent at this
node. This can be checked by comparing the models output with the analytical solution for the normal
forces.

• When evaluating the optimal shape for the external loads, just the tubular cross-section is considered
without the effects of the BWR or the tether forces. Besides, this is not of influence on the movement
of the SFT due to hydrodynamic loads. However, when Form-Finding for a shape which diverts the
loads axially within the cross-section, one has to remind that shear and bending are inevitable for the
3D-structure due to a BWR not equal to 1.0. See figure 2.21.





3
Model - Hydrostatic loads

In this chapter, the permanent loads are modelled and the form finding process in Grasshopper is elaborated
further. The permanent loads consist of the hydrostatic water pressure and the self-weight of the SFT. The
tether force Ftether is zero, since the BWR is taken as 1.0 in this Chapter. The main thoughts of the process
are elaborated in this Chapter of the main report, whereas the actual built-up of the model is shown more
extensively in Appendix A.
It is important to understand to which optimization target this Chapter applies. The hydrostatic pressure
is not of any influence on the dynamic behaviour of the SFT. Neither is the self-weight of the SFT. Hence,
it has got nothing to do with the optimization target which aims for tension forces in the tethers. On the
contrary, it is usually the main load acting on the structure causing structural stresses due to the large water
pressures. Especially at larger depths, the water pressure dominates over the hydrodynamic loads. Therefore,
this Chapter focuses on the second optimization target as listed in section 1.2. The optimization target:

Opti mi ze the mater i al use o f the SF T

Where the aim is to find the shape of the cross-section which absorbs the external loads most efficiently. This
implies a minimization of material use. This process is executed with the help of the ’Form-Finding princi-
ple’, as explained in section 2.4. Moreover, the cross-sectional resultant forces must be quantified.

First, a short introduction is given on the hydrostatic water pressure. Then, the variables which are desired
to be kept parametric are listed, followed by a short explanation for the model set-up in Grasshopper. Then,
the looping process is described, which is required to account for geometrical effects and rotational effects
of the segments. Fourthly, a reference case is worked out for a circle. Finally, the output of the FF-shape is
evaluated, validated and compared to the reference case.

3.1. Introduction - Hydrostatic water pressure
By analyzing the model with common physical sense, one can already validate the model until a certain ex-
tent. Since the Form Finding method, or ’Form follows Force’ method is based on deformations of the struc-
ture lead by the loads, it is expected that higher loads result in higher deformations. For a SFT being subject
to an increasing water pressure over depth, one might expect an oval rather than an usual circle for the cross-
sectional shape. The higher loads at the bottom of the SFT should result in larger deformations. See figure 2.6.
Besides, the oval shape has a larger curvature at the bottom, meaning that the normal force is more efficient
in absorbing the external water pressure. Hypotheses like this can be answered by modelling the hydrostatic
water pressure in Rhinoceros/Grasshopper.

3.2. Parameters
The design should be parametric, as was already stated by the objective of this research. Therefore, the pa-
rameters which can change for different designs have to be inventoried in advance. They are:

• Depth of the SFT [m]

31
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• Required diameter of SFT [m]

• Fluid density ρw ater [kg /m3]

Here, the depth of the SFT represents the depth on top of the SFT. Together with the diameter of the structure,
the local depth z can be calculated. The self-weight is determined by the buoyancy of the SFT. As already
mentioned in the scope of this research in section 1.3, the BWR is assumed to be 1.0 in order to focus purely
on the cross-section Eventually, the aim is to keep the BWR as close to 1.0 as possible for an economic design.
The self-weight is equally distributed over the tunnel lining. This is further elaborated in paragraph 3.3.2.

3.3. Model set-up
In this section, the model set-up is briefly described with the main underlying thoughts. For a total view on
the model set-up, one is referred to Appendix A.

3.3.1. Geometry and hydrostatic load
First, a simple circle is generated as a starting point. A circle is chosen since it is expected to be close to
the ’optimal shape’ according to FF. The circle is created within a 2 dimensional plane, with an imaginary
extrusion of 1 m in the longitudinal direction. Hence, in the remaining of this report, all loads are normalised
per meter length.
Consequently, the circle is being divided into N sections. This defines the accuracy of the model. The denser
this new ’grid’, the more accurate the results but the higher the computational time required. A polyline is
drawn through these N nodes, after which it is exploded again. The result is now a geometry consisting of ’N’
nodes and ’N’ segments. It is important to understand these definitions, as they return often in describing
and defining the model. For an overview of the nodes and the segments, see figure 3.1. Now, the starting
geometry is generated.

Figure 3.1: The definition of nodes and segments

Secondly, the force per node is calculated. This force is calculated by determining the water pressure at a
node, multiplied by the length/area of the segment which diverts its load to the node. The water pressure
is calculated according to equation 2.1, where z is the z-coordinate of the node. The segments adjacent to
each node divert half of their length to the node. For the first loop, where all segments are equally long, each
node takes one segment length. The output of this part is a list of forces per node, depending on the local
water depth and the length absorbed by the node. Note that the force is equal to the hydrostatic pressure,
multiplied by the segment length and the imaginary depth of 1m.
Thirdly, these forces are positioned correctly on the nodes. The list of forces represents the magnitude of the
vectors, because the hydrostatic water pressure is unidirectional. Therefore, the forces are acting perpendic-
ular to the circles’ surface. It is important to first generate a new plane at the nodes. Each node has got a new
local plane (u,v,w), where the w-coordinate represents the perpendicular component to the circles surface.
The creation of the new coordinate systems is rather easy for a circle in Grasshopper. First, one draws a line
from the circle centre point to each node. Then, a new local plane can be generated perpendicular to this
base line in the origin of the node. Again, see Appendix A for a more detailed view upon this.
Now, a local vector can be created with the magnitude of the force vector acting in the w-direction. For a
clarification of this local coordinate system, see figure 3.2. Note that the water pressures directed inward are
modelled as forces outward. This is because load and resistance are contrarily directed and to find the opti-
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mal shape, the opposite direction of the force has to be modelled. Again, the model is a slice of the SFT, where
all quantities are normalised ’per meter length’.

Figure 3.2: A locally generated plane, tangential to the circle

Note: theoretically the force doesn’t work perpendicular to the tangent of the circle. This would be true if the
hydrostatic pressure is uniform over the cross-section. However, as mentioned often before, the hydrostatic
pressure increases with depth. Therefore, the ’tangent of the resultant force’ is tilted a little to the deeper
parts as the pressure here is higher. Since the force acts perpendicular to this ’working line’, the force on each
node also is tilted a little to the deeper parts. This effect is ignored by increasing the accuracy of the model,
meaning that the assumption of a uniform pressure over the segments becomes more and more valid. For a
clarification of this effect, see figure 3.3.

Figure 3.3: The tilted force due to non-uniform pressures

Both the segments and the loads are inserted in the Kangaroo Plug-in within Grasshopper. The segments are
inserted into a ’Length Line’ component, meaning that is has no bending stiffness. This is required according
to the definition of Form Finding. The load vectors belonging to each node are inserted in the plug in as well.

3.3.2. Self Weight and anchor point
The anchor point is very important in the model. The model functions well as long as the loads on the geome-
try are uniform in each direction. As explained in section 2.5, the plug-in Kangaroo functions as a mass-spring
like system. Each load results in an acceleration, velocity and displacement per node according to the spring
stiffness ’S’. This means that no relative movements are present, given that the sum of all the forces is equal to
zero for each direction. Concluding, Kangaroo is holding the geometry at its original position. Once the loads
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are not uniform for each direction, the geometry starts moving because the acceleration is not zero (Newton’s
2nd law). If there is no anchor point, the geometry keeps ’falling’ in the direction of the net force. Therefore,
an anchor point is required, since the forces acting on the SFT are not uniform. This can be done in two ways,
explained in Appendix A.
Concluding from the statement in the Appendix, it is favourable to use a random point at the shapes’ surface.
The other option, an anchor point in the centre of the shape, is unfavourable because additional elements
are inserted into the model then. These additional elements require an additional loop which is unnecessary.
Applying the anchor point to a random point at the surface only requires a stabilizing force, holding the shape
at its original position but not affecting the FF-shape. See figure 3.4 for the anchor point and the stabilizing
forces shown in yellow. This additional force basically represents the self-weight of the SFT. Since it stabilizes
the vertical force from the buoyancy, it can be compared to the self-weight of the SFT in a situation where the
BWR is equal to 1.0. Note that all the self-weight is now assumed to be in the tunnel lining.

These forces do not affect the shape, but do affect the N-line as found by Karamba3D. Later on, this is ex-
plained further. In the figure below, both the hydrostatic water pressure load and the stabilizing force (self-
weight) are shown.

Figure 3.4: a) the geometry with loads, vertical stabilization loads in yellow. b) the form-found shape, scaled back in yellow

3.3.3. Loops
The next step is to loop the model in order to converge to a stable solution. Due to the deformed shape,
the nodes absorb different segment lengths (surfaces). This geometrical effect has to be taken into account.
Moreover, the orientation of the segments and nodes has changed as well, resulting in a different orientation
of the loads and the necessity of a new local plane.

Geometrical effect
For a sketch of the geometrical effect described above, see figure 3.5.
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Figure 3.5: The geometrical effect due to deformations

Here, the original circle (starting geometry) and the deformed shape (outer ’circle’) are shown. A random
node at the right top and at the right bottom are highlighted.
The N nodes of the shape each absorb the pressure forces from half the lengths of the adjacent segments.
Note that the load is a pressure, multiplied by the area of the subdivided section. This area is equal to the
length of the segment, multiplied by the (imaginary) length of 1 m. In this way, a force is generated again.
Since the plug-in ’Kangaroo’ functions as a mass-spring system, the load acting on the nodes results in a de-
formation of the node. Consequently, the area which transfers its pressure to nearest node changes as well.
This means that the total force on all of these N nodes changes. See figure 3.5. The yellow lines are the ad-
jacent segments of the marked nodes with the highlighted load vector on it. The green lines represent the
both halves, which are absorbed by the node. For the original circle (starting geometry), the green lines are
equally long. This is simply because the circle was equally subdivided into N segments. For the deformed
shape, however, this length (surface) is relatively larger for the node at the bottom than for the node at the
top. This is because of the higher pressure loads deeper in the water column. Hence, the higher loads result
in larger deformations. After the first loop, the nodes at the bottom absorb a relatively larger pressure force.
This geometrical effect has to be taken into account by looping the Form-Finding method. The form-found
shape is scaled back to its original circumference and then subjected to the loads again.

Defining new local planes
The pressure forces act perpendicular to the structures’ surface, as explained in section 3.3.1. These forces can
be modelled by introducing a new coordinate system. Defining this new plane, perpendicular to the tangent
of the shape, is rather easy for a circle. This process is already explained. Now, the shape is not a perfect circle
anymore, which complicates the process of introducing a new Cartesian coordinate system (u,v,w) at each
node in the right directions. However, another solution is found and described below. See figure 3.6 to help
understand the description.

1. Start with node ’N’

2. Select nodes ’N-1’ and ’N+1’

3. Generate a new circle through these three points

4. Select the centre of this new local circle

5. Draw a base line between this new local circle centre and node ’N’

6. Generate a new local coordinate system (u,v,w) perpendicular to the just created base line, in node ’N’

7. Repeat this process for all nodes ’N’

When executing this process, each node ’N’ has got a new local Cartesian coordinate system which allows the
user to apply a force perpendicular to the structures’ surface. Again, it is important to be able to apply such a
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pressure force on the SFT, since the water pressure is unidirectional.
The orientation of this new local plane depends on the curvature/orientation of the two adjacent segment
per node. The benefit of creating a new circle through the three points ’N’, ’N-1’ and ’N+1’ is that this circle is
generated based on the curvature/orientation of these two adjacent segments. This means that the new local
plane is always oriented by an angle, average of the two adjacent segments. This should be the case.

Figure 3.6: the underlying elements to help generating the new u,v,w, coordinate system.

The deformed geometry is now ready to be processed by an additional loop. The shape converges to a stable
solution. This is shown in the next paragraph.

3.3.4. External looping via file
The looping process is executed externally in Grasshopper, because the canvas in Grasshopper becomes
messy when looping internally. Internal looping would mean that the output of loop ’i’ is used as input
for loop ’i+1’, while the whole process mentioned above has to be copied in Grasshoppers’ canvas. Another
benefit of externally looping is the accessibility of the output of the model.
This means that a starting geometry is generated and written to an external file. A circle with radius R is cre-
ated and subdivided into N nodes, as explained before. These nodes, consisting of coordinates, are exported
to this file. Then, the same file is imported to Grasshopper again. A polyline is drawn through these coor-
dinates, yielding the starting shape of the SFT within the looping process. Consequently, the cross-section
undergoes all the steps explained before, until the deformed shape is scaled back to its original circumfer-
ence. The coordinates of the scaled geometry, again a list of N coordinates, is now written to the same file
again. Grasshopper now recognizes the new input and starts to execute the process again, until the relative
movements are practically zero again (Kangaroo’s converge demand). In this way, an automatic loop is cre-
ated. However, for every loop one has to press the ’loop’ button, which actually implies the ’write to file’
command. The renewed coordinates are then inserted in the model again. Typically, the shape is converged
after 5 to 10 loops. An overview of this process is shown in the flowchart below in figure 3.7.
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Figure 3.7: the external looping process in Grasshopper.

3.4. Reference case - Circle
Before analyzing the output of the model described above, a reference case is worked out for a circle. It is
expected that a circle already performs quite well in absorbing the hydrostatic pressures.
The normal forces acting on each node of the model should be in equilibrium with the external loads. These
external loads can be determined easily by integrating the hydrostatic water pressure over the area ’belonging’
to the node. The curvature of the deformed shape at the location of that node determines if the normal forces
can balance the external load.
The formula for the hydrostatic water pressure over the cross-section is shown in equation 2.30, as elaborated
in paragraph 2.4.2. This can be converted to a formula for the normal force (N-line) over the cross-section for
a circular cross-section, according to [33]:

N0(θ) =−ρ · g · (R +d)∗R +ρ · g ·R2 · cos(θ) (3.1)

Where:

• N0 = 1st order normal force [N]

• ρ = fluid density [kg /m3]

• g = 9.81 [m/s2]

• R = radius of SFT [m]

• d = depth on top of SFT [m]

• θ = angle from the vertical [-]

The profile of the N-line, according to the analytical solution, can be drawn for the situation where the fluid
density is equal to ρ = 1050 kg /m3, radius R = 7.5 m and depth on top of SFT d = 0 m. The accuracy of the
model here is N = 28. See figure 3.8 for the analytical N-line over the cross-section for a perfect circle.
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Figure 3.8: The N-line according to the analytical solution (left) and the equilibrium in a random node (right)

The concept where the curvature of the shape enables the equilibrium with the external forces is explained
now for this circle. On the right in the figure above, a detail is shown of the lowest node in the cross-section.
The adjacent segments of this node each have a normal force N . Since both segments are under an angle
with respect to each other, they have the ability to absorb the external load.
The external load is positioned perpendicular to the geometry’s surface, just how the pressure acts on the SFT.
The external load can be calculated with:

Fext = ρg z · A = 1050 ·9.81 ·15 ·1.68 = 260 kN

Where:

• A = 2πR/N ·1m = 2π ·7.5/28 ·1m = 1.68m2

• z = 2R +d = 2 ·7.5+0 = 15 m

The angle of the segments with respect to the tangent at the node determine the ’efficiency’ of the normal
force N to balance the external load. The higher this angle, the larger the component of the normal force
which balances the external load. The component of N which makes equilibrium with the external load is
equal to:

Neq = N · si n(θ) = N · si n(6.43)

Note that the circle is divided into N = 28 segments. The ’curvature’ or rotational angle of each segment is
then 360°

28 = 12.68°. The angle with respect to the tangent is then equal to half this curvature, namely 6.43 °.
Assuming that the external load is completely absorbed by the normal force, the load N can be calculated by:

N = Fext

2 · si n(6.43)
= 1160 kN

This is in line with the analytical solution as shown on the left in figure 3.8. Concluding, the shape absorbs
the external load indeed with the normal forces. The result is no shear or bending in the cross-section. The
maximum normal force is equal to Nmax = 1160 kN . This value must be compared with the maximum value
for the FF-shape to conclude whether the FF-shape is indeed more efficient. Now, the models’ results are
elaborated.

3.5. Output - Form Finding
The main objective of this part was to generate the most efficient shape in absorbing the external hydrostatic
water pressure. Hence, that is what is focused on in this part. In figure 3.9 below, one can see the converged
shape. This shape is the result after some loops which are required for earlier mentioned reasons. The in-
termediate results (loops) are also shown in black in figure 3.9. In green, the eventual shape is shown which
indeed start showing some appearances of an ’oval’ or an ’egg’.
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Figure 3.9: the output for the water pressure.

Now the output is known, it is possible to evaluate and compare it to the reference case as mentioned in
section 3.4.
Moreover, the influence of the starting geometry has been evaluated as well as can be read in Appendix A.7.
When starting with a rectangle as geometry and applying the same method, the same shape is the output.
Concluding, the starting geometry does not have any influence on the final shape found by Form Finding.

3.6. Validation
Here, the model described above is validated for the hydrostatic loads. According to the Form-Finding princi-
ples, the model should return a shape which diverts the external water pressure into a normal force (N) only.
No shear forces and bending moments should be present. Besides, this should be the most efficient shape in
absorbing the hydrostatic water pressure. Hence, the N-line of the FF-shape must be compared to the N-line
of the reference case, which is a circle.

The N-line for the deformed shape will be different than for a perfect circle. Therefore, a different plug-in
in Grasshopper is used to calculate the normal forces N in all segments. This plug-in is Karamba3D. When
applying the same conditions for ρ, R and d, the N-line can be calculated again. Note that the modelling
of the SFT with a stabilizing vertical force equally distributed over all N nodes does influence the N-line in
Karamba, as mentioned before in paragraph 3.3.2. Therefore, one has to be aware of this effect.
The lowest node is considered again, where the normal force according to Karamba3D is equal to:

Nl owest−node = 941.1 kN

The external load, being 413.8 kN , has to be balanced by the normal forces. Note that the external load has
increased due to geometrical effects and a larger depth. As just mentioned, the normal force should be equal
to 941.1 kN . The vertical stabilizing force due to the anchoring method affects the N-line distribution. An
overview of the loads at the lowest node is shown in figure 3.10. Here, the Form-Found shape retrieved from
Kangaroo is also visible. This is the shape inserted into Karamba3D.
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Figure 3.10: The equilibrium of the lowest node for the deformed shape

On the right, all the forces acting on the node are shown and the only unknown ’N’ has been calculated. The
forces are shown opposite to the way they act to simulate the Form-Finding principle where the loads are
reversed. The important values here are:

• Fexter nal = 413.8 kN

• Fup = 64.3 kN

• α= 10.67°

The value α is retrieved from the output in Grasshopper. According to equilibrium, the normal force in the
segments that should be present in order to absorb the external load fully axial is equal to:

N = Fext −Fup

2 · si n(α)
= 413.8−64.3

2 · si n(10.67)
= 943.8 kN (3.2)

This value is close to the value found by Karamba, which was equal to 941 kN . Hence, this proves that the
model indeed converges to a shape that absorbs the external loads via normal forces only.
However, the force Fup influences the actual value for N . Without this ’balancing’ force Fup , the normal force
would be equal to:

N = Fext

2 · si n(α)
= 413.8

2 · si n(10.67)
= 1117 kN (3.3)

This value is already relatively close to the analytical solution for a circle, which was N = 1158 kN . The Form-
Found shape is slightly more efficient in absorbing the external load due to the larger curvature at the bottom.
The order of magnitude is close to each other, which also proves that the process seems to be valid. Finally,
the shape is also slightly more efficient as was expected.

The same can be done for another node, where Fup does not have the same working line as Fext . Node 4 is
the next one to be investigated. See figure 3.11
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Figure 3.11: The equilibrium of node 4

The angles as shown in the figure are again retrieved from the output in Kangaroo. Besides, the loads are
again reversely shown as is required for the FF-method.
First, the tangent at the node has to be calculated, which is the average of the two adjacent segments. The
angles of these segments areα1 = 55.7° w.r.t. the vertical andα2 = 46.8°. These values are output of the model
in Kangaroo. This means that the angle of the tangent at node 4 is equal to the average, being αav g = 51.3°.
Then, the component of Fup in the same direction as Fext has to be found. This is shown at the left bottom of
figure 3.11. The component that has to be added up to Fext is equal to:

Fup⊥= Fup · si n(αav g °) = 64.3 · si n(51.3) = 50.1 kN

The external force at node 4 is equal to Fext = 18 kN . Now, the equilibrium in the perpendicular direction to
the tangent at node 4 requires:

Fext +Fup⊥= 2N · si n(αav g −α1)

18+50.1 = 2N · si n(4.45°)

N = 439 kN

Concluding, also for node 4 the analytical solution is very close to the output of the model N = 440 kN . But
again, this value is influenced by the stabilizing force Fup . The actual value can also be calculated by using
the same shape and angles, but without this vertical stabilizing force. The result for N is then:

N = Fext

2 · si n(αav g −α1)
= 18

2 · si n(4.45
= 116kN

Next to the N-line, Karamba3D also generates the V-line and the M-line. When the Form-Found shape of
Kangaroo is inserted into Karamba3D and the same loads are applied, the following is the result.
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Figure 3.12: The resultant forces in the form-found cross-section

Note that all these N-values still have to be corrected for the stabilizing force FUp as shown above.
The shear forces V and the bending moments M are very small compared to the normal force N . The fact that
they are not exactly equal to zero can be explained by the fact that the model with 28 nodes is not accurate
enough yet. However, it shows that the model searches for the right shape.

Finally, when the method shown above is applied for all nodes and the effect of the vertical stabilizing force
is accounted for, the actual N-line of the deformed shape can be generated. When comparing this one to the
one in figure 3.8, one can conclude that the Form-Found shape is indeed slightly more efficient in absorbing
the external load, as the maximum normal force has decreased.

Figure 3.13: The N-line in the CS for the deformed shape
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3.7. Conclusion
Concluding from this Chapter, the Form Finding method is applied for the hydrostatic water pressure. The
shape found by FF is indeed slightly more efficient in absorbing the external hydrostatic loads. The maximum
normal force for the reference shape, which is a circle, is equal to N = 1160 kN . The maximum normal force
for the FF-shape by Kangaroo is equal to N = 1117 kN . No shear forces V or bending moments M are present,
which is in line with the Form Finding definition. Note that the differences are relatively small, which can be
explained by the fact that a circle is already a good performer in absorbing pressure loads. But still, the larger
loads at the bottom of the SFT caused a higher local curvature within the FF-process. The larger curvature
enables the normal force to absorb the hydrostatic water pressure more efficiently. A larger component of the
normal force can now counteract the water pressure. So, the ideal shape for a SFT just under the water sur-
face is not a circle but an ’egg’- or an ’oval’-like shape. This effect is known from the bored-tunnels discipline,
expressed as the ovalization. The ovalization is the horizontal distance divided by the vertical distance of the
cross-section. This effect decreases by increasing depth, as turns out from figure 3.14.
The numbers mentioned above were for a SFT just below the water surface. In this situation, the relative
difference in water pressure between top SFT and bottom SFT are the largest, meaning that the largest dif-
ferences are visible for the curvature of the shape. When the SFT is located deeper and deeper, this effect
gradually vanishes out until a circle is retrieved again from the model.
Finally, one can say that a circle is not the perfect shape in absorbing the water pressure, but that the optimal
shape comes closer and closer to a circle for a deeper located SFT. See figure 3.14.

Figure 3.14: The optimal shape according to FF per depth





4
Model - Hydrodynamic loads

In this chapter, the hydrodynamic loads are elaborated. These consist of the loads due to currents and the
loads due to waves. The hydrodynamic loads are the ones causing the SFT to move in a certain direction with
consequences for FTether . Hence, this chapter concerns the 1st objective as shown in section 1.2:

Conver t the exter nal hydr od ynami c l oad s i nto tensi on i n the tether s o f the SF T.

As became clear from Chapter 2, the lift coefficient for a regular circle is equal to C L = 0, when excluding tur-
bulence effects. The goal of this Chapter is to find a shape which has a C L value larger than 0, to generate a net
vertical force from a horizontal approaching flow. This lift force must be upward in case the SFT is anchored
to the sea bed. The opposite holds for a SFT connected to buoys at the water surface.

The 2nd objective, optimizing the material use, is also influenced by the hydrodynamic loads. However, es-
pecially at larger depths, the stresses due to currents and waves are only a small fraction of the hydrostatic
water pressure. Concluding, the hydrodynamic loads are purely allocated to the 1st objective of this research
and the hydrostatic loads are allocated to the 2nd optimization target, as was done in Chapter 3.

First, Bernoulli’s principle is explained and an analogy is made with an aeroplane. This knowledge is required
to understand what cross-sectional shape is required. Then, this principle is related to a circle. Thirdly, the
actual shapes are generated for a horizontal approaching flow which meet the requirements according to
Bernoulli. The output is a cross-section depending on a Geometry Factor. Consequently, the net vertical
force must be determined. First, the lift force is determined by making use of a CFD, after which the same
process is done with the ’the Source Panel Method’. This includes an analytical solution to determine the lift
force on the SFT. Finally, some remarks are given on the wave loads.

4.1. Bernoulli’s principle
Daniel Bernoulli was a Swiss mathematician and physician, born in Groningen [8]. He is probably most
known for his theorem, which states that moving fluids and gases experience a decrease in static pressure
given an increase in flow velocity. He worked narrowly with Leonhard Euler, who is the one who eventually
derived the Bernoulli equation as we know it nowadays [21]. The Bernoulli equation, rewritten to length-
units, is:

H = h + p

ρg
+ v2

2g
(4.1)

Where:

• H = Energy height [m]

• p = pressure in the fluid [Pa]

• ρ = fluid density [kg /m3]

• v = flow velocity [m/s]

45
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Furthermore, it is stated that this energy height is constant along the streamline. This means that the velocity
of a fluid also determines the pressure within the fluid. And in its turn, the pressure determines in which
direction the submerged body is pushed or pulled. This principle is also the explanation why an aeroplane
flies. This object can be used as a reference project which might induce some first ideas on the eventual
shape. See figure 4.1 for an overview of an aeroplane’s wing and why it flies [23].

Figure 4.1: Bernoulli’s principle applied on an aeroplane

The top side of the wing has got a more convexly shape than the bottom. An air particle (or water particle
in case of the SFT) has to travel a larger distance over the top compared to the bottom. Combined with the
fact that continuity in the domain is required, this results in a larger flow velocity at the top of the wing. The
faster moving air results in a lower pressure. Hence, the lift force is directed upward and the aeroplane flies.
Concluding, a longer distance to be covered by an air/water particle results in a lower pressure.
This theory can be applied to the concept of a SFT and it already gives a first impression/hypotheses on the
eventual shape of the SFT. In case the SFT is anchored to the bottom of the seabed, it is desired to have a lift
force directed upward to generate tension in the tethers. Given a laminar flow, the top side of the SFT should
have a more convex shape in order to have faster moving water here. The higher flow velocities corresponds
to a lower fluid pressure, as stated by Bernoulli (equation 4.1). Consequently, the lower fluid pressure at the
top results in a lift force upward as is desired.

4.2. Bernoulli’s theorem for a Circle
The goal of form-finding was already stated in section 2.4, which is to find the shape that diverts the external
loads in an axial way. Obviously, this method suits well with the first optimization target in optimizing the
material use. When the loads are transferred via a normal force, all fibres of the material are loaded equally.
However, the objective of this part of the research is to guarantee tension forces in the tethers. Why can form-
finding be applied here?

According to Bernoulli’s theorem, differential flow velocities between top and bottom are required in order
to generate a certain lift force. These differential flow velocities can be achieved by moving the deflection
point of a cross-section. The deflection point separates the flow from passing the SFT via either the top or
the bottom. Hence, the deflection point directly influences the distance to be covered by a water particle. A
water particle that needs to travel a larger distance will have a lower static pressure in the fluid. This is, as
explained, due to the fact of continuity and Bernoulli’s principle.
The deflection point is the location at the geometry where the angle between the approaching flow and the
geometry’s surface is equal to 90°. For a simple circle, this point is at the midline of the circle. See figure
4.2. The flow will locally converge at the leading edge of the submerged body and diverge at the trailing edge
again. This causes a local flow increase which mainly determines the fluid pressure. Since the deflection
point is at the midline, the convergence of flow at the top and the bottom is equal. For both the top and the
bottom, a maximum flow velocity of Umax = 2 ·U f low [16]. Again, see figure 4.2. The flow velocity profile is
symmetric, meaning that the pressure distribution along the SFT is as well. Concluding, a net lift force equal
to Fl i f t = 0 kN (no turbulence accounted). This is in line with the lift coefficient C L = 0 for a circle according
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to figure 2.15.

Figure 4.2: The velocity profile of a circular tube in a flow

In order to create differential velocities between the top and the bottom of the SFT, the deflection point must
be moved. This can be done with the help of Form Finding which is explained in section 4.3.

4.3. Form Finding - Currents
In this paragraph, the form-finding method is applied for the hydrodynamic load due to currents. As men-
tioned in Chapter 2 already, the currents exert a certain flow force on the SFT, consisting of a part due to wind
currents and a part due to the tidal wave. Besides, a force at the trailing edge of the submerged body is present
as well. See paragraph 2.3.2. These flow velocities can be translated to a force by analyzing them as a drag
force on the structure. Then, the pressure component must be taken to include in the FF-process. See figure
2.14.
Before starting with the Form Finding, some boundary conditions are applied to the problem. First of all,
the (a)symmetry of the flow must be dealt with. The flow always encounters the SFT from one side at a time,
whereas it can encounter the SFT from multiple sides during its lifetime. This is due to the motion of the
tidal wave for instance. Therefore, it is desired to have a symmetrical shape of the SFT. However, since Form-
Finding is directly related to the load profile, it is impossible to demand for a symmetric shape combined with
an asymmetric load profile. Hence, the boundary conditions to the problem are:

• The flow load is applied as it would encounter the SFT from both sides simultaneously. This is done to
gain a symmetrical shape. The evaluation of the lift force is determined as if the flow approaches the
SFT from one side only, as it does in reality.

• The flow velocity is assumed to be uniform over depth. The small rate of decay over depth makes this
assumption plausible. Moreover, an uniform flow velocity is required to solve for the velocity potential
as becomes clear in section 4.5.

For some further illustrations on an asymmetrical flow profile, one is referred to Appendix C.

First, the model set-up is described. For a full elaboration on the model set-up for the current load, see Ap-
pendix B. Then, the output is analyzed and checked on validity by both a CFD and by an analytical solution
written in Python. This analytical solution is based on the Panel Method [14].

Hypotheses
Before starting with the model, it is wise to think about a possible solution applying common physical sense.
As the objective related to this part states, tension forces are required. In case of a SFT anchored to the bottom,
the structure has to be pushed ’upward’. The load profile is a horizontal flow, which is assumed to be uniform.
A possible shape which diverts the external loads into tension forces looks like the wing of an aeroplane as
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was explained in section 4.1. See figure 4.1. This is because the flow velocities at the top are expected to be
larger, resulting in a lower pressure. Concluding, a shape with a flat bottom and a convexly shaped top is
expected. Note that the use of internal space must be efficient as well, which means that the eventual shape
is expected to be less flat than an aeroplane wing.

4.3.1. Parameters
This part of the model is also parametric, meaning that the parameters are listed first. The variables which are
kept parametric are similar to the ones for the hydrostatic water pressure, supplemented by some parameters
depending on the current loads. This is the flow velocity due to the tide, due to the wind and the total depth.
Next to these parameters, the dimensionless drag coefficient CD is also a parameter to bear in mind. However,
this parameter depends on the shape of the structure. Hence, this is not a ’direct’ parameter which has to be
set in advance. It has to be changed during the form finding process, however.

4.3.2. Description of the model
Again, for a full description of the model, see Appendix B. Here, only a brief description is given on the model
for the hydrodynamic loads. The beginning of the built-up of this model is basically the same as for the
hydrostatic water pressure. The main difference is the type of load.

1. The geometry is created in the same way. A circle with a variable radius is the starting point, being
divided into ’N’ segments and nodes with index i . Note that the starting geometry is not of influence
on the final shape, as proved by figure A.12.

2. The flow velocity is assigned to each node i . Because it is uniform, no differences have to be considered
for different local depths along the SFT.

3. The loads on each node can be calculated according to the theory as described in paragraph 2.3.3.

FD,i = 1

2
·ρ ·CD ·Di ·u2

4. Each segment diverts half of its ’length’ to the adjacent node. The ’effective length’ that each node
absorbs is equal to variable Di in the equation above.

5. Finally, the total loads which are required within FF are calculated by taking the pressure component
from the horizontal drag force. See figure 2.14 and equation 2.23.

FDi ,p = FD,i · cos(β)

6. All elements are now inserted into the Kangaroo plug-in. This includes the geometry, the anchor point
and the pressure component of the flow load FDi ,p .

7. Contrary to the model from Chapter 3, loops are not executed here. This is not required due to the
different objective of this Chapter. Appendix B elaborates this further.

4.3.3. Output
First of all, the loads on the SFT can be visualized by displaying the load vectors acting on the nodes. Eventu-
ally, the shape will deform according to this load because Kangaroo functions as a mass-spring system with
equal stiffness for the segments. The shape should therefore deform likewise the load profile. An overview of
the load profile is shown in figure 4.3a.
It is clearly visible that the shape extends over its width. This is as expected, since the flow load is horizontal
and acts in the direction of the width of the cross-section. Note again that only the pressure gradient of the
horizontal drag force influences the deformed shape. The angle of rotation of each segment is of large influ-
ence on the actual load due to this drag force, as stated in equation 2.23. This results in the load profile as
shown above.

When Form Finding is applied for the Hydrodynamic flow load, an elliptical shape is the result. Notice that
the loads are reversely placed on the geometry. Since the approaching flow is assumed to be uniform, the
load profile is symmetrical over the vertical. Therefore, the deflection point is still at the midline and no
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differential velocities are expected between top and bottom SFT. The lift force is still equal to FLi f t = 0 kN .
On the contrary, the drag force (coefficient) is strongly reduced in this way. Consider the difference for CD

between a circle and a ellipse in figure 2.16.
For the load profile in Grasshoppers Kangaroo and the output of the shape, see figure 4.3 below.

Figure 4.3: a) The load vectors due to currents on the SFT - b) the form-found shape due to this load

Although the large benefits considering the drag force, this still doesn’t meet the requirements considering the
objective of this Chapter. The lift force is still equal to 0 kN as just mentioned. The flow velocities at the top
and the bottom of the SFT are equal (but lower than 2 ·U f low ), resulting in a symmetric pressure distribution
over the vertical. In the next section (section 4.4), an adapted version of this FF-process is shown which does
result in differential velocities.

4.4. Geometry factor to guarantee tension
In this section, the model as described above is manipulated in such a way that tension in the tethers is gen-
erated. The model as described above still generates a shape with a lift force FLi f t = 0 kN . However, the lift
force is desired to be larger than zero in order to generate tension in the tether. The main question is how?

This has got to do with the deflection point of the cross-section. As already explained in section 4.1, the de-
flection point determines the distance to be travelled by water particles via the top and the bottom of the SFT
respectively. Due to continuity, this distance is directly related to the velocity of the water particles. Conse-
quently, the velocity determines the static pressure in the fluid according to Bernoulli’s principle. Finally, the
pressure distribution along the SFT’s surface determines the lift force. In order to have a positive lift force,
the deflection point must be moved downward.

The load vectors manipulate the cross-section in such a way, that a state of equilibrium is reached. The larger
loads at the lower half of the (initial) circle cause larger deformations of the bottom. The deflection point
moves downward, meaning that a larger distance is to be covered by the flow passing the SFT through the
top. As a consequence, the flow velocities at the top increase and the local fluid pressure decreases.
In general, it can be said that:
A lift force directed upward is achieved by lowering the deflection point. A lift force directed downward is
achieved by heightening the deflection point. This all has got to do with the local flow velocities and corre-
sponding fluid pressures.

How this can be achieved is explained in the paragraph below.

4.4.1. Selecting the right load vectors
The load vectors that contribute to a positive lift force on the SFT can be amplified. First, these loads have to
be selected. The vectors which cause a lowering of the deflection point are the ones required.
In the case considered here, the SFT is anchored to the seabed. The pressure component of the loads at the
bottom half of the (initial) circle have a negative z-value. Hence, these loads are the ones to be amplified as
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they cause a lowering of the deflection point. The process in Grasshopper is shown in figure 4.4 below. The
load profile is as shown in figure 4.3a.

Figure 4.4: The amplification of the load vectors to move the deflection point in Grasshopper

First, the vectors are decomposed in a x-, y- and z-direction. The z-value is selected and subjected to a ’smaller
than’ gate. All vectors with a z-value smaller than ’zero’ get a value ’True’. The load vectors with positive
z-component get a ’False’ value. With the ’Dispatch’ gate, the indices of the values with a ’True-value’ are
selected. Remind that the ’True-values’ are the ones which lower the deflection point and therefore positively
contribute to the objective here. Then, these load vectors are selected and amplified with a Geometry factor
which is set to 2.0 in this case. Finally, the original load profile list is adapted by replacing the load vectors with
the ’positive’ effect by the renewed, amplified load vectors. See figure 4.5 for an overview of the manipulated
load profile.

Figure 4.5: a) the actual load profile in FF b) the manipulated load profile with factor 2.0

As just mentioned, the aim of the manipulated load profile is to move the deflection point down. In the next
figure, it is checked whether the deflection point is indeed moved downward compared to the original load
case. To have a clear visual confirmation, the geometry factor is set to 5.0.
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Figure 4.6: The deformed shapes from FF with amplification factors 1.0 (left) and 5.0 (right)

On the left an amplification factor of 1.0 is applied. In other words, this is just the original load profile as it
would converge to a lift force of 0 kN . The deflection points, marked with black crosses, are basically halfway
the vertical. This means that the flow velocity at the top and the bottom are equal. See figure 4.2.
On the right in figure 4.6 an amplification factor of 5,0 is applied. The deflection point is indeed lower than
for the base case with factor 1,0. The green line separates the vertical halfway again. Now the deflection point
is lower located within the cross-section and the water particles passing via the top require a larger velocity. A
net upward force (tension in tethers) is expected. Moreover, note that the shape starts to look like described as
in the hypotheses at the start of section 4.3. The top of the cross-section has a more convexly shape, meaning
that the flow velocities along the top are expected to be larger. This corresponds to a lower pressure and a
positive lift force.
In figure 4.7 a sketch is made which can be compared to figure 4.2. The main idea is that X > Y such that the
pressure at the top ptop < pbot tom . Therefore, a positive lift force is expected.

Figure 4.7: A sketch of the flow profile along the newly found cross-section

The magnitude of the lift force for the different geometry factors is discussed in section 4.5. But first, some
elaborations are given on asymmetrical flows and shapes.

4.4.2. Asymmetrical flow
In the paragraphs above, the flow was modelled symmetrically. This implies that the flow encounters the
submerged body from both sides simultaneously. Obviously, this cannot be the case since the water flows in
one direction. However, the flow changes in direction every now and then. Especially the flow due to the tidal
wave changes two or four times a day, depending on the location of the SFT (diurnal vs semi-diurnal tide).
Hence, it is favourable to have a cross-section which is symmetric. When this is the case, the cross-section
performs equally well on both load situations.
However, the demand of a symmetrical cross-section is prominently applicable in case of a single tube. When
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a double tube SFT is desired, the main flow does encounter the structure from one side only. The asymmet-
rical load profile, where the flow encounters the SFT from one side with a suction factor of that same load
at the lee side, might be of use then. For some additional information on the asymmetrical load profile, see
Appendix C. Another situation where the asymmetrical shape might be desired is for certain estuaries, where
a dominant flow is present from one side. The return flow can be much less significant, depending on the
geographical circumstances.

4.5. Calculation of FLi f t and CL
The next step is to determine the magnitude of the lift force on the SFT due to the flow. The velocity profile
must be determined along the cross-section, after which the pressure distribution can be calculated using
Bernoulli’s principle. By integrating the pressure over the surface, a net force (both drag and lift) can be cal-
culated.
This step can be executed in multiple ways. First of all, a CFD simulation is executed to calculate the velocity
and pressure distribution along the SFT’s surface. The results are quite accurate and give a good approxima-
tion of turbulence effects. However, the computation time is quite demanding. Therefore, a second option is
applied. This is an analytical solution with the Panel Method. This method is already mentioned in paragraph
2.3.5. A large benefit of the analytical solution is that it is modelled within the open source programming code
of Python and that it is computationally very efficient. However, the deficit of such an analytical solution is
the incapability of dealing with viscous flow.
Eventually, the analytical solution for the panel method is calibrated such that it approximates the CFD-
simulation accurately.
The shapes that are evaluated are generated by the model in Grasshopper as described in section 4.4. Again,
these cross-sections are characterised by a GF. See figure B.6 in Appendix B for a relation between the cross-
section and the GF.

4.5.1. CFD in Flow3D
First, the cross-sections are analyzed by a CFD model which has already been validated and verified. There-
fore, it is assumed that these simulations give a trustworthy representation of reality. In the next section, the
SPM is validated based on these outputs.
Concluding, this is a more advanced method to determine the lift force. But as just mentioned, the main
deficit of a CFD is that it is computationally very demanding. Therefore, it is desired to tweak the Python
script based on the CFD output. The result would be a very efficient model which approximates FLi f t and CL

accurately.
First, the CFD model must be set up which is already done by Zou. For a more detailed description of the
set-up of the CFD, one is referred to [43]. For here, the settings of the model are:

• Shape with geometry factor 5.0 (see figure 4.6b)

• Uniform flow velocity = V∞ = 2 m/s

• Turbulence model = κε-model

The κε-model is used because it is known for its wide-range applicability and good convergence properties
[41]. The output of the velocity field (figure 4.8) and the pressure field (figure 4.9) around the SFT are shown
for the CFD-simulation below:
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Figure 4.8: The velocity field from the CFD-simulation [43]

Figure 4.9: The pressure field from the CFD-simulation [43]

First of all, it is visible from figure 4.8 that the flow velocities over the top are larger than the flow velocities
over the bottom. Concluding, X > Y when making the connection to figure 4.7. It turns out that lowering
the deflection point indeed results in larger flow velocities at the top. Bernoulli’s principle, which states that
larger flow velocities result in a lower static pressure in the fluid, turns out to be applicable here as well.
When considering figure 4.9, the reference pressures at the top are indeed lower than at the bottom. The flow
is ’pulling the tunnel up’, resulting in tension in the tethers. Note that the reference pressure at the bottom
is also negative, meaning that the flow at the bottom pulls the SFT down. This is because the flow velocities
increased at the bottom as well, but in a lesser extent. Therefore, the net lift force FLi f t is still positive. See
figure 4.10. Next the to the lift force, the drag force FDr ag is shown as well. The objective of this Chapter, a
tensile force in the tethers, is achieved. Besides, the drag force is small, which is also beneficial.
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Figure 4.10: FLi f t and FDr ag from the CFD-simulation [43]

• FLi f t = 8.0 kN

• FDr ag = 2.1 kN

These values can be converted to a lift coefficient and a drag coefficient. This is done by the formula 2.21
which is applicable for both drag and lift. Note that for a circular cross-section and a horizontal approaching
flow, the (mean) lift coefficient is equal to 0.

CL = FLi f t

1
2 ·ρ ·D ·V 2∞

= 0.43 (4.2)

CD = FDr ag

1
2 ·ρ ·D ·V 2∞

= 0.11 (4.3)

Where:

• ρ = 1050 kg /m3

• D = length unit perpendicular to flow = 8.8 m

• V∞ = 2 m/s

Some additional simulations from this CFD model are available and used to validate and verify the Panel
Method in paragraph 4.5.3. If one is interested in the exact output of these CFD-simulations, see Appendix G.

4.5.2. Panel Method in Python
In this paragraph, the lift force FLi f t is determined by analytically solving the velocity potential for any ar-
bitrary point P around or along the SFT. In the main report, only the main thoughts are shown behind this
’Source Panel Method (SPM)’. In Appendix E a full derivation is given for the velocity potential.
The velocity potential is a general function which can be used to calculate the velocity in any direction, by
taking the corresponding partial derivative to this function. For instance:

φp = veloci t y potenti al

Vx = ∂φp

∂x
(4.4)
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Vy =
∂φp

∂y
(4.5)

This general velocity potential consists of multiple parts. Since all parts are linear functions, the principle of
superposition can be applied to obtain the total solution for the velocity potential. In this research, the veloc-
ity potentials are considered for the uniform flow and the submerged body. The submerged body consists of
so-called ’panels’, which can be compared to the earlier mentioned segments in the Grasshopper model. The
total velocity potential at any point p is equal to:

φp =V∞ · cos(α) · x +V∞ · si n(α) · y +
N∑

j=1

λ j

2∗π ·
∫

ln(rp j (s j ) ·d s j (4.6)

Where:

• V∞ = Uniform flow velocity

• α = angle of incoming flow w.r.t. horizontal

• λ j = source/sink term of panel j

• rp j = distance between point p and panel j

• s j = panel length of panel j

The unknowns in velocity potential equation are the source/sink terms λ j . Each panel, or segment as was
defined earlier, has got its own source/sink term. These unknowns can be solved by setting the normal veloc-
ity at each panel j to zero. This can be physically explained by the fact that the flow can not go through the
submerged body. The normal velocity at panel j can be found by taking the partial derivative of the velocity
potential w.r.t. the normal direction for each panel. Again, for the full derivation see Appendix E. The system
of equations that needs to be solved for λ j is:

Vn,i =



I11
2π

I12
2π . . . . . . I1n

2π
I21
2π

1
2

...
. . .

...
. . .

In1
2π

Inn
2π

 ·



λ1

λ2
...
...
λn

=



−V∞ · cos(β1)
−V∞ · cos(β2)

...

...
−V∞ · cos(βn)


The integrals Ii j represent the geometrical influence on the flow pattern of panel j on control point i. The
definition of these integrals is visible in Appendix E.
The output of this set of equations is a list of λ j ’s, which can consequently be used to calculate the tangential
velocity at the SFT’s surface. Besides, the velocity potential for any arbitrary point p can be solved now. Note
that these equations hold for laminar flow and do not take turbulence into account. Moreover, β is the angle
between the approaching flow and the outward normal of a panel.
The solution for Vx and Vy at point p can be calculated according to:

Vx =V∞ · cos(α)+
N∑

j=1

λ j

2π
· s j (xp −x j )

(xp −x j )2 + (yp − y j )2 (4.7)

Vy =V∞ · si n(α)+
N∑

j=1

λ j

2π
· s j (yp − y j )

(xp −x j )2 + (yp − y j )2 (4.8)

Output
The output of the analytical derivation mentioned above can be visualized with a script in Python. To have a
view upon this script, see Appendix F. The case to be visualized here is:

• Shape SFT is generated with geometry factor = 5.0

• Uniform flow velocity V∞ = 2.0 m/s
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The output for the velocity profile is:

Figure 4.11: The flow velocity quiver plot along SFT with geometry factor 5.0

What can be seen from figure 4.11 is that the boundary condition for Vn = 0 is solved correctly. The flow does
not go through the SFT as was imposed. What is also nicely visible is that the flow starts curving around the
SFT well before it ’attacks’ the structure. This is also in line with physical expectations.

Figure 4.12: The flow velocity contour plot along SFT with geometry factor 5.0

In figure 4.12, a clear flow velocity increase at the top of the SFT is visible. This is in line with the expectations
and the objective of this chapter.
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Figure 4.13: The pressure distribution contour plot along SFT with geometry factor 5.0

Finally, the reference pressure distribution can be calculated using Bernoulli’s principle as stated in equation
4.1. What becomes visible is that the higher flow velocities at the top indeed cause a larger ’under pressure’
at the top of the SFT. A positive lift force is expected.
When comparing figure 4.12 and 4.13 with figure 4.8 and 4.9 respectively, two striking things are visible. First
of all, some similarities are visible in both the magnitude and the distribution of the velocity/pressure field.
The maximum flow velocity for both models is about Vmax = 3.2 m/s and located at the top of the SFT (as
expected). Besides, the flow velocity at the bottom has increased as well, but with a lower factor. Notice that
this is the condition X > Y from figure 4.7 again. The flow velocity at the top has increased with 55% with
respect to V∞, while the velocity at the bottom has increased with 28%.
Secondly, it is clearly visible that the model in Python does not include turbulence effects. These occur at the
trailing edge of the SFT.
The lift force and the drag force is in the SPM equal to 0 kN since the flow is perfectly laminar. It doesn’t
separate from the body which is physically not the case here. However, it gives a good approximation of
the velocity/pressure field at the leading edge of the SFT. This is used in the next section where the SPM is
calibrated.

4.5.3. Application of Panel Method
In this paragraph, the SPM as written in Python is evaluated in such a way that it can be applied as a quick
and good estimation of the lift force for random geometries. First, the velocity distribution is analyzed more
accurately to see where the major differences are present between the SPM and the CFD-model. See figure
4.14 for a comparison. Note that each x-coordinate is represented twice. One time for the velocity at the top
of the SFT and one time for the velocity at the bottom. The line with the highest flow velocities corresponds
to the top of the SFT, as indicated in figure 4.14. Note that the uniform flow velocity is still V∞ = 2 m/s and
that this is still the geometry with GF = 5.0. This is a more accurate comparison between figures 4.8 and 4.12.
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Figure 4.14: The velocity profile along the SFT for SPM and CFD-model

When evaluating the leading edge of the SFT, which is the left half in figure 4.14, it can be noted that the SPM
is almost a perfect approximation of the CFD-model. Especially at the top of the SFT. Although the SPM starts
deviating from the CFD-model at the left bottom corner of the SFT, it still approximates the CFD quite well.
All values at the leading edge of the SFT, i.e. the left half, are within a 5% error margin. This is assumed to be
a valid representation. However, at the trailing edge some strange things happen. The high intensity turbu-
lence region is at the trailing edge, as could be noted from figure 4.8 as well. Since the SPM is not able to take
turbulence into account, this is where the largest deviations take place. Moreover, the laminar flow profile is
clearly visible by the symmetry of the pressure distribution for the SPM.

Concluding, the leading edge of the SPM gives trustworthy output to work further with. In the next part, the
velocity at the top of the SFT and at the bottom of the SFT is retrieved from the SPM to base the lift force on.
These values represent X and Y from figure 4.7. The ratio between the two is used to determine the lift force

VTop/VBottom to determine FLift

The ratio between the velocity at the top and the bottom respectively is used to determine the lift force. The lift
force depends quadratically on the flow velocity, which means that a quadratic relation is expected between

Vtop

Vbot tom
and CL . A typical quadratic expression has got 3 unknowns with a shape of y = a ·x2+b ·x+c. In order

to obtain the relation between FLi f t or CL and
Vtop

Vbot tom
, three equations are required. As known, the mean

lift force is equal to 0 kN for a circle. As became clear from figure 4.2 already, Vtop and Vbot tom are equal
for a circle. This equation together with two more CFD-simulations are required to obtain the relationship

between
Vtop

Vbot tom
and FLi f t . For the output of these CFD-simulations, one is referred to Appendix G. In this

Appendix, the values from table 4.1 are worked out. The ’equations’ known now are listed in table 4.1 below.
Besides, the lift coefficient is calculated as well based on equation 4.2. The force FLi f t is normalised per meter
length in the longitudinal direction.

Geometry Vtop [m/s] Vbottom [m/s] Ratio [-] Flift [kN] C_L [-]
1 (Circle) 4 4 1 0 0
2 (GF = 5) 3.10 2.56 1.21 8.0 0.43
3 (GF = 3) 2.99 2.59 1.15 5.6 0.30

Table 4.1: The three equations for the relation between Vtop /Vbot tom and CL for V∞ = 2 m/s



4.5. Calculation of FLi f t and CL 59

Here, VTop and VBot tom are calculated with the SPM at the center of the SFT. These values are assumed to be
valid as turned out by figure 4.14. The lift force is retrieved from the CFD-model, since the SPM is not able
to compute these forces. Now, three calibration points (equations) are available. Consequently, a relation
can be created between the flow velocity ratio and the lift coefficient. Again, a lift coefficient is chosen rather
than a lift force as this is applicable to multiple situations. Finally, a fourth CFD-simulation is available to
verify the relation just described. See figure 4.15 for an overview of the relation, the calibration points and the
verification point. For a full overview of all values, see Appendix G. The CFD-output of the verification point
is shown there as well.

Figure 4.15: The relation between
Vt op

Vbot tom
and CL

The polyline which is shown in figure 4.15 is based on the blue dots, which are the calibration points as shown
in table 4.1. The orange dot is a fourth point from the CFD-simulation. This point is required in order to assess
the just found relation between the velocity ratio and the lift coefficient CL . For this fourth point holds:

• VTop = 3.26 m/s

• VBot tom = 2.54 m/s

• Rati o = 1.28 [−]

• FLi f t = 11.7 kN

• CL = 0.648 [−]

The lift coefficient according to the fitted polynomial as plotted in the figure above is equal to CL = 0.622. Con-
cluding, this relation slightly underestimates the lift force. However, the differences are very small. Hence,
this method is assumed to give reliable estimations of the lift coefficient based on the ratio between the veloc-
ity at the top and bottom of the SFT. The lift force can be plotted as a function of the Geometry Factor as well.
This curve has a logarithmic character, because the shape converges to a stable solution for an increasing
Geometry Factor. See figure 4.16.
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Figure 4.16: The relation between CL and the Geometry Factor

Here, the blue dots again represent the lift coefficients as found by the CFD-simulations. As already men-
tioned, these values are assumed to be realistic since the CFD-model has been validated and verified already
by Zou, P. [43]. The blue dotted line is a fit through these results. It is expected that the lift coefficient CL for
different geometry factors is on this line. In orange, the lift coefficients are shown as calculated by the relation
found in figure 4.15. Again, for each GF the VTop and VBot tom are determined by the SPM. Then, this ratio is
plugged into the new found relation with a lift coefficient as a result. As becomes visible from figure 4.16, all
points are quite close to expected profile based on the CFD-results.

Conclusion
Concluding, the CFD-results are compared to the SPM script in Python. What became visible is that the
leading edge of the SFT is modelled quite accurately by the SPM. On the contrary, the trailing edge lacked a
lot of accuracy due to the incapability of dealing with turbulence by the SPM. Hence, it is decided to retrieve
the velocities at the top and bottom of the SFT, at the center. These values are within a 5% error margin of the
CFD.
The relation between the lift coefficient and the ratio of these velocities,

VTop

VBot tom
, is assumed to be quadratic

according to equation 4.2. Once this relation was found and calibrated, it turned out that the verification
point was valid as well. The result is a very quick estimation of CL by applying the Source Panel Method for
any random geometry.

4.6. Form Finding - Waves
Next to the hydrodynamic load due to currents, the waves also exert a dynamic force on the SFT. For a ref-
erence to the theoretical description of the wave behaviour, see section 2.3.4. With an increasing depth, the
importance of waves decreases rapidly. This has got to do with the velocity profile of an orbital wave motion
compared to the velocity profile of a flow. Compare figures 2.7 and 2.8a. However, the dynamic motion of the
SFT due to wave forces must be investigated.

4.6.1. Wave loads - FF
As was done for the flow load, the form-finding process can be executed for the wave load as well. However,
a wave load is a little more complex than a flow load.
The flow load could be modelled as a horizontal velocity profile, coming either from the left or the right in
the governing situations. Concluding, two load profiles are present and still easy to deal with. The loads were
applied on both sides of the SFT to gain a symmetric cross-section. On the contrary, the wave profile has a lot
more load situations.

When the linear wave theory as described in section 2.3.4 is solved analytically in Matlab [18], the velocity
and the acceleration profile can be generated over the cross-section. See figure 4.17 below for an overview of
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both the velocity and the acceleration at t = 0 s for a wave with characteristics:

1. Wave height H = 4 m

2. Wave period T = 7.0 s

3. Total depth d = 100 m

Note, variable k from equations 2.16 and 2.17 is solved with the dispersion relationship:

ω2 = g k · t anh(kd) (4.9)

The local depth is shown along the y-axis in the figure below.

Figure 4.17: The velocity and acceleration profile over the cross-section

For this particular situation, the cross-section can be placed in the velocity and acceleration profile. Note that
both the velocity and the acceleration have a contribution to the wave load, where the velocity is responsible
for the drag force and the acceleration for the inertia force.
The profiles are imported in Grasshopper, after which it searches for the closest velocity/acceleration vector
belonging to each node. Then, the closest vectors are used to calculated the wave loads according to equa-
tions 2.27 and 2.28. Again, only the pressure component of the loads are used in the form-finding process.
In figure 4.18 below, the vectors including the starting geometry are shown on the left. On the right, the
form-found shape is shown given the load profile.

Figure 4.18: a) The starting geometry including load profile vectors, b) The FF-shape due to the load profile

Every split-second the velocity and acceleration profile changes, until the total wave has passed. It is not
feasible to try and find an optimal shape which is suitable for the load situation which is present only a very
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small fraction of time. Hence, it is decided to exclude the wave load in the determination of the optimal cross-
sectional shape. On the contrary, the wave loads are included in the calculation of Ftether , obviously. For a
small impression of the ’optimal shape’ during a fraction of the wave with characteristics mentioned above,
see figure 4.19.

Figure 4.19: The form-found shape during several snaps of the passing wave

In the figure above, only the velocity vectors are shown.
Concluding, the wave load is not considered in the Form-Finding process for the SFT. On the contrary, it
must be considered in the determination of the lift force on the structure. The wave force consists of an
inertia component and a drag component, as was already presented by equations 2.27 and 2.28 in paragraph
2.3.4.

4.6.2. Lift force due to waves
The wave load depends among others on the cross-sectional properties. Since the (optimal) cross-section
is not known yet, the wave load can not be determined as well. However, the magnitude of the wave forces
are predominantly determined by the inertia component within the Morison equation. See equation 2.27
and 2.28. This is also visible in figure 4.21. The cross-sectional dependence within this inertia component is
the cross-sectional area A. Since this value is bound within certain limits due to the required use of internal
space, a fair estimation can be made for the order of magnitude of the wave force. Important to emphasize
here is that the wave load does not depend on the shape of the cross-section, but most dominantly on the
cross-sectional area A.
The magnitude of the wave force is required since it mainly determines the minimal required BWR. This is
explained further in section 5.1. The following situation is used.
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Figure 4.20: The situation for which the order of magnitude of the wave load is determined.

Besides, the script of Hemel [18] is used to get a first insight in the magnitude of the wave loads. Since this
script in Matlab only handles rectangular cross-sections, a rectangle is fit around the FF-cross-section from
section 4.4. The actual value for the wave load on the SFT is expected to be lower, since the cross-sectional
area of the SFT is lower and the drag coefficients are expected to be lower as well. For the rectangular shape
and the conditions shown in figure 4.20, the following is the result for the wave loads.

Figure 4.21: The wave loads on a representative rectangle at 20m depth according to Hemel [18]

The maximum vertical force on the rectangle is equal to:

• Fz,max = 52.9kN /m

Note the unity of the force is equal to kN /m, which represents the force per meter length. Moreover, the
dominance of the inertia component with respect to the drag component is strongly visible in figure 4.21.
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The inertia component is represented by the Krylov force and the inertia force.
Similarly, an estimation of the wave load for the SFT can be made by making use of equation 2.28.

Fz = ρC I A
duz

d t
+ 1

2
ρDCD,zUz

√
U 2

x +U 2
z (4.10)

Where:

• ρ = 1050 kg /m3

• ω= 2π
T = 2π

7.0 = 0.90 r ad/s

• a = H
2 = 1 m

• C I = 2.0

• A = 144.5 m2

• D = 18 m

• CD = 1.2

• d = 100 m, z =−20 m

• ux =ωa cosh[k(d+z)]
si nh(kd) · si n(ωt −kx)

• uz =ωa si nh[k(d+z)]
si nh(kd) · cos(ωt −kx)

• ∂uz
∂t =−ω2a si nh[k(d+z)]

si nh(kd) · si n(ωt −kx)

Such that:

Fz =−47.237 · si n(ωt −kx)+341 · cos(ωt −kx)[N ]

Fx = 47.237 · cos(ωt −kx)+341 · si n(ωt −kx)[N ]

When plotting this wave signal (at the same location ’x’ within the wave) over time, the following is the result
which can be compared to figure 4.21. Again, notice that the load is normalised per meter length of the SFT
in longitudinal direction.

Figure 4.22: The wave load on the SFT according to LWT at 20m depth

From the figure and formula above, the maximum (vertical) force on the SFT is equal to:

• FLi f t ,max = FDr ag ,max = 47.2 kN /m
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As expected, the maximum wave load is slightly smaller due to a smaller cross-sectional area. This has a direct
influence on the inertia component of the wave load. The order or magnitude of the wave load in this partic-
ular case is equal for both figures 4.22 and 4.21. The order of magnitude of the wave load is rather important,
as becomes clear in section 5.1 and 5.2.

Dependence on depth
The values shown above are applicable for a local depth of 20 meter on top of the SFT. However, the velocity
profile of a wave decreases strongly with depth. This is already visible in the orbital motion as shown by
figure 2.8. Therefore, it might be beneficial to locate the SFT deeper. The wave loads decrease significantly.
Contrarily, the hydrostatic water pressure increases which is unfavourable. The ideal depth of the SFT is
always a consideration to be made by the engineer. For an overview of the magnitude of the wave force over
depth, see the figure below.

Figure 4.23: The amplitude of the wave force on the SFT vs depth

Concluding, the wave load is not taken into account within the form-finding process. This can be simply
explained by the fact that the wave motion differs every split-second, meaning that the optimal shape does
as well. However, the wave load is a very important load acting on the SFT, meaning that it cannot be ignored.
The order of magnitude of the wave load can be determined per situation as shown above. The wave load
must be absorbed by the BWR to guarantee tension in the tethers, as becomes clear in section 5.1.

4.7. Conclusion
As a conclusion of this chapter, some items are summarized. The objective of this chapter was to obtain a
tension force in the tethers at all time. The hydrodynamic loads are responsible for the dynamic motion of
the SFT. Therefore, these loads directly influence the tether force and it being tensile or compressive. The
(hydro)dynamic loads taken into account in this research are the currents and the waves. The hydrostatic
water pressure is of no (direct) influence on the tether force.

Currents
The current load is assumed to be uniform and horizontal. Therefore, a horizontal flow must generate a (ver-
tical) lift force on the SFT. A comparison is made with the wing of an aeroplane, on which Bernoulli’s principle
is applicable. The idea is to generate larger flow velocities at the top of the SFT compared to the bottom of the
SFT. Consequently, the static pressure in the fluid drops more at the top than at the bottom (Bernoulli). The
result is a positive lift force.
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In order to obtain larger flow velocities at the top, the deflection point of the cross-section is lowered. In case
of a low deflection point, the water particles that travel via the top need to cover a larger distance with a lower
pressure as a consequence. This is done using a geometry factor within the Form Finding process. The larger
this GF, the lower the deflection point.

The current can encounter the SFT from both sides. Therefore, a symmetrical shape is desired. Within the
FF-process, a symmetrical shape can only be generated for a symmetrical load profile. Hence, the load profile
due to the currents is mirrored over the vertical. Note that the analysis of the drag/lift force is executed for a
flow which encounters the submerged body from only one side, as would happen in reality.

Then, the flow velocity profile along the SFT (and lift force) can be analyzed with the Panel Method which is
worked out in a Python script. Since the Panel Method only handles laminar flow, the output of the trailing
edge is unreliable. The SFT is after all in the turbulent regime. The output from the Panel Method for the

leading edge is reliable. Hence, these results are used to create a relation between the flow velocities
VTop

VBot tom
and the lift coefficient CL . This relation is calibrated and verified with CFD-results. The Panel Method can
now quickly estimate the lift force for any random geometry. An optimization process can be executed very
efficiently now.

Waves
As just mentioned, the FF-shape is directly related to the load profile. Since the wave load changes every split
second, it is found to be unfeasible to take the wave loads into account in this process. The output would be
a shape which is optimal during a very small fraction of its lifetime.
However, the wave loads can have a significant impact on the tether forces. This strongly depends on the
depth of the SFT, as becomes visible from figure 4.23.

The magnitude of the wave force at the depth of a SFT is practically solely determined by the inertia compo-
nent within the Morison equation. The cross-sectional dependence of this term becomes visible with variable
A, the cross-sectional area. This area is mainly determined by the ’use of internal space’. How many lanes
does the SFT need to accommodate? What is the minimum height required? Etc... Concluding, the wave
load is barely dependent on the shape of the SFT but rather on the total cross-sectional area. This is another
reason not to take the wave load into account during the FF-process.

However, it can not be ignored at all. The lift force due to waves determines the minimum BWR as becomes
clear in the next chapter in section 5.1.
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Combined model

In this Chapter, the two optimization targets are combined to find the optimal shape. Again, it is important
to emphasize the difference between the hydrostatic and the hydrodynamic loads which each represent an
optimization target. The hydrostatic water pressure, which is covered in Chapter3, aims for the optimization
of the material use. Since the water pressure is dominant at larger depths, this load is solely used within
this optimization target. The SFT is typically situated at depths ranging from 20 to 30 meter, making this
assumption plausible. In short, the output of Chapter 3 covers the target:

Opti mi ze use o f mater i al

On the contrary, the hydrodynamic loads are responsible for the second optimization target. This target
demands for tensile forces in the tethers at all time. The hydrostatic water pressure, as the name already
implies, doesn’t influence the dynamic movement of the SFT. Therefore, it can be excluded in this part of the
research. This was covered in Chapter 4. The loads due to currents are used within the FF-process, where a
Geometry Factor is applied to obtain differential velocities between the top and the bottom of the SFT. A lift
force being non-zero for a horizontal flow is the result. The wave loads are not included within the FF-process
due to its large variability in time. Concluding, the output of Chapter 4 covered the target:

ΣFLi f t ≥ 0

Given that the SFT is anchored to the seabed.

The output of Chapters 3 and 4 must be combined to obtain the ’optimal’ cross-section which meets both
optimization targets. This can be done in two ways:

1. Integrate the output for both targets in one solution, consisting of a concrete tube with an exoskeleton
made of steel.

2. Make a compromise between the two targets. The design consists of only a concrete tube, which’ shape
is determined by a compromise within the FF-process.

The main benefit of the first option is that both optimization targets can be fully achieved, whereas the second
option must relinquish some to both targets. The main deficit of the first option is the higher costs, since the
final design is a composite of two different structures. Obviously, this doesn’t apply for the second option
which is a benefit. What option is desired in an actual design, is cost-dependent and must be determined by
the client. In this research, both options are elaborated.
Finally, there is another requirement considering the cross-sectional shape. The SFT must be able to accom-
modate a ’x-way road’ or a railroad regarding its internal space. This last criterion can be met by scaling the
cross-section.

First, some load combinations are shown. Then, the wave loads as discussed in section 4.6 are handled and
accounted for by a minimum BWR. Consequently, the two possible solutions as just mentioned are discussed.
Finally, the cross-section is scaled considering its internal space.

67



68 5. Combined model

5.1. Load combinations
All the loads mentioned do not occur at the same time continuously. Since different loads have different
impacts on the optimization targets, it is important to create some insight in the different load combinations
and which ones are governing. In table 5.1 below, the load combinations are shown for the loads taken into
account in this research. As already mentioned in Chapter 2, the accidental loads are not taken into account
here. For further research they must be considered.

Load / Load combination 1 2 3 4
Hydrostatic Water Pressure X X X X
Currents X X
Waves X X
Accidental loads - - - -

Table 5.1: The different load combinations

The first optimization criterion mentioned at the start of this chapter, where the material use is optimized,
is mainly dependent on the hydrostatic water pressure. As becomes clear from table 5.1, this load is always
present. Note, the deeper the SFT is located, the more dominant this load is. Concluding, the optimization of
material use is assumed to be unaffected by different load combinations.
On the contrary, the optimization target forΣFz ≥ 0 is affected by the load combinations. In load combination
1, where no hydrodynamic loads are present, the net vertical force should be solely determined by the BWR.
No effects of currents or waves are expected. In load combination 2, only currents are present. As was the aim
of this research, the currents cause a tension force in the tethers. Therefore, no additional measures have to
be taken for this load combination. Load combination 4 includes both hydrodynamic forces, where the wave
load may induce a negative impact on the lift force. However, the current load is present as well, which pos-
itively contributes to the requirement of a tension force in the tethers by its shape. Hence, load combination
3 is the governing one where the load due to currents is not present, while the design wave is passing over the
SFT. The magnitude of this load can be determined according to section 4.6. In the example shown there, the
amplitude of the wave is equal to 47.2 kN /m. The motion of the wave oscillates around ’zero’, meaning that
both the maximum and the minimum are equal to plus and minus the amplitude, respectively.

5.2. Required BWR
For the situation sketched in section 4.6 with a wave with wave height H = 2 m and period T = 7.0 s, the force
is equal to a sinusoidal signal with an amplitude equal to approximately Fz,max = 47.2 kN /m. See figure 4.22.
Note that this value changes per situation, obviously. Although the cross-section is optimized to convert the
horizontal flow over the cross-section to a tension force in the tethers, this does not have any effect in this
particular load combination. Therefore, the BWR is responsible to guarantee tension in the tethers and to
prevent the SFT from making large movements. The BWR is desired to be as close to 1,0 as possible, to reduce
the amount of material needed. See paragraph 2.3.7 for more information. The minimum BWR can now
be calculated by taking the maximum wave load as a fraction of the buoyancy force, which depends on the
cross-sectional area of the SFT. For example, the situation from figure 4.20 is used with an area A = 144.5 m2.
The required BWR is then equal to:

BW Rmi n = B

W
= A ·ρw

A ·ρw −Fz,max
= 144.5 ·10

144.5 ·10−47.2
= 1.034

In this way, the minimum required BWR can be determined by first calculating the cross-sectional area of
the found cross-section and the maximum wave load acting on this cross-section The Weight of the SFT is
easily adaptable in terms of the amount of ballast. Note that the value for the BWR is still rather close to 1,0
as is desired. In current design thoughts, the BWR is approximately 1.3 (or 0.77 for the reverse anchoring
method). Still, this is a main advantage compared to the former design thoughts on Submerged Floating
Tunnels. Regardless of the solution type (option 1 or 2 from the introduction of this Chapter), the minimum
BWR must be determined according to the method shown above with the inclusion of safety parameters.
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5.3. Composite cross-section with exoskeleton
This section covers the first solution as described by the introduction of this Chapter. Both optimization
targets are solved for separately, as elaborated by Chapter 3 and 4. The optimization of material use searches
for the concrete cross-section which absorbs the water pressure axially. In this way, all fibres of the concrete
material are used equally.
The target which aims for tension in the tethers is achieved by constructing an exoskeleton. The exoskeleton
diverts the flow around the SFT, causing an under pressure at the top. A positive lift force on the exoskeleton is
the result. Note that some small holes are created in the exoskeleton, meaning that it does not need to absorb
the water pressure. These small holes are assumed to be of no influence on the flow along the SFT. The inner
tube is attached to the exoskeleton, meaning that it is pulled in the ’right’ direction. The exoskeleton can be
manually designed in Grasshopper in terms of the following parameters:

• Chord length - the length of the ’wing’

• Tip height - the height of the tips at the leading and trailing edge

• Smoothness - Determines how gradually the exoskeleton curves around the inner concrete tube.

For an overview of these parameters and some changes between them, see figure 5.1.

Figure 5.1: The definition of the parameters of the exoskeleton

The shapes as found in Chapter 4 still have blunt edges at the leading and the trailing edge. This would be
required if the cross-section was constructed out of concrete. However, the exoskeleton can be created from
steel, meaning that sharp edges are no issue. The sharp edges drastically reduce the turbulence effects, which
is beneficial for the dynamic behaviour of the SFT.
The lift force on such a composite structure can be calculated more accurately with xFoil. See the next para-
graph for the determination of the lift force over the exoskeleton.
For an overview of a total solution, see figure 5.2
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Figure 5.2: The integrated solution for both targets consisting of a concrete tube with an exoskeleton

5.3.1. xFoil - program
In this paragraph, the lift force due to the flow over the exoskeleton is calculated by applying the program
’xFoil’. The exoskeleton is of a different shape as shown in Chapter 4. The blunt edges can now be adapted to
sharp edges, since the exoskeleton is made of steel while the tube is made of concrete. The sharp edges are
desired to reduce turbulence effects and restrict the dynamic behaviour of the SFT. Moreover, it can reduce
the drag force on the SFT.

xFoil is an interactive program, firstly designed by Mark Drela at MIT, to analyze the pressure distribution over
isolated subsonic airfoils [40]. The program solves for the Panel Method as was described in paragraph 4.5.2
and Appendix E. Moreover, it can solve for the boundary layer equations by an approximation. The boundary
layer as it builds up along a rough surface was already shown in figure 2.12. These equation are required to
calculate the separation point from the flow, In this way, it can quickly estimate the pressure distribution for
viscous flow over any random geometry. This approximation for the boundary layers and the wake are based
on a two equation lagged dissipation integral and an envelope en transition [10].
Note, this approximation of the boundary layer equations is only valid for ’airfoil’ like geometries, with
sharp edges. Therefore, xFoil can not be applied to cross-sections as presented in Chapter 4.

The set-up of a xFoil model is described by Drela and Youngren [10]. The geometry of the exoskeleton can be
exported from Grasshopper. Consequently, this geometry is imported in the Python script. Note that xFoil
runs externally from Python. The ’xfoil.exe’ file must be in the same folder as the Python Notebook. Besides,
the same holds for all the files exported from grasshopper including the geometrical properties. The script to
run xFoil from Python is retrieved externally [31].
The output from the xFoil function is most importantly a pressure coefficient. This coefficient is defined as:

C P = 1− Vt

V∞

2

(5.1)
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Where:

• C P = Pressure coefficient [-]

• Vt = tangential velocity at surface panel [m/s]

• V∞ = Uniform flow velocity [m/s]

These pressure coefficients can be used to calculated the tangential velocity at the SFT’s surface. Once the
velocity is known, the pressure can be determined applying Bernoulli’s principle. The final step is to decom-
pose these pressure forces in a lift component (vertical) and a drag component (horizontal). The results are
shown in the next paragraph.

5.3.2. xFoil - Flow over exoskeleton
In the previous paragraph, some background on xFoil is given. In this paragraph, the software is applied to
the actual exoskeletons generated by Grasshopper. Moreover, it is validated to a CFD-simulation from Zou
(BRONVERMELDING). The exoskeleton shown below has relatively long chords and thin ends. This is just
for validation purposes to check whether the CFD-output and the xFoil output match. Important to note is
that xFoil also runs within a couple of seconds, whereas the CFD-model in Flow3D requires a couple of hours.
First, the output from the CFD is shown, after which the xFoil output is presented. The approaching flow is
horizontal with an uniform velocity equal to V∞ = 2 m/s.

CFD-results

Figure 5.3: CFD - results for exoskeleton - Velocity profile[43]
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Figure 5.4: CFD - results for exoskeleton - Reference pressure profile[43]

Figure 5.5: CFD - results for exoskeleton - Fdrag and Flift [43]

The first thing which becomes strongly visible is the reduction in turbulence. This was the aim of the ex-
oskeleton with sharp edges. This is visible in the velocity profile, when one compares the trailing edge from
figure 5.3 with figure 4.8. Moreover, the reduction in turbulence behaviour of the flow is also visible in figure
5.5. The forces FDr ag and FLi f t have only a small variation in time. This means that the turbulent component
of the force is relatively small. Note that this is related to coefficient C ′

L from figure 2.15.
When reading figure 5.5 above, the CFD-results for the lift force and drag force can be approximated by:

• FDr ag = 2.5 kN
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• FLi f t = 72 kN

xFoil results
As already mentioned, xFoil runs externally from the Python code. If one is interested in the set-up of the
xFoil simulation, one is referred to Appendix F. The definition of xFoil is shown in figure F.1, F.2 and F.3. In
short, the most important settings to know:

• The exoskeleton from GH is imported as geometry

• The number of panels is set to 300

• The bunching parameter is 2, which means that the leading edge and trailing edge have a denser panel
distribution.

• Viscous mode is on with Re = 1e7

• Angle of attack = 0 °

• V∞ = 2 m/s

As mentioned, the output of xFoil is a pressure coefficient per panel. The pressure coefficient can be con-
verted to a velocity magnitude by equation 5.1. Then, the velocity can be related to the reference pressure
according to Bernoulli by equation 4.1. Finally, these pressures are converted to a lift force and drag force by
multiplying the pressure with the panel length and taking the correct component for lift and drag. The output
is shown below.

Figure 5.6: xFoil output for pressure distribution
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Figure 5.7: Velocity field - Panel Method

Figure 5.8: Pressure field - Panel Method

Note that only figure 5.6 is output from xFoil. It does not solve for the velocity potential for any arbitrary
point, like the general PM does in the Python code. However, figure 5.7 and 5.8 are required to validate the
xFoil output. xFoil might give unstable solutions for certain geometries. Hence, the user must always use its
common physical sense to evaluate the xFoil output. The xFoil-results for the lift force and drag force are:

• FDr ag = 2.66 kN

• FLi f t = 69 kN

5.3.3. Conclusion
Concluding, both optimization criteria can be met by constructing a composite SFT. This composite is made
of a steel exoskeleton which is responsible for the tensile force in the tethers. Secondly, the composite is made
of a concrete tube within this exoskeleton being responsible for absorbing the water pressure and for the
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accommodation of the infrastructure. At larger depths, the optimal cross-section for the inner concrete tube
tends to converge towards a circle. This is the output from the FF-process in GH. Within GH, the exoskeleton
can be manually designed as well for parameters ’chord length’, ’tip height’ and ’smoothness’. See figure 5.1.
Consequently, the flow over this exoskeleton is calculated in a Python code which externally runs the software
xFoil. The output is a lift force and drag force which are validated with a detailed CFD-model. However,
the xFoil simulation might give errors, which is why the output must always be compared with the pressure
distribution according to the ordinary Panel Method. This can all be done within the same Python code.

5.4. Single cross-section - Combined Form Finding
In this section, the second option as mentioned in the introduction of this Chapter is worked out. The cross-
section is searched which meets both optimization criteria as good as possible while still constructing only a
concrete tube. Note that the cross-sections found in this section are always a compromise between the two
different criteria.

5.4.1. Single cross-section
Within the FF-process, both targets are included. This means that both loads are inserted into the Kangaroo
solver, which searches for a cross-section based on the deformations due to these loads. Since the water
pressure load is too dominant over the flow loads, only a fraction of the water pressure is included. This is
simply a percentage of the original water pressure load profile, where 100% is the actual load profile. The
actual load profile for the water pressure within FF is visible in figure 3.4, for example. For the optimization
target aiming for tension in the tethers, the GF is included similar to Chapter 4. Concluding, the two variables
within the FF-process for a single cross-section are:

• Fraction of water pressure [%] - Optimize material use

• Geometry Factor GF [-] - Tension in tethers

For instance, the geometry for a fraction of water pressure equal to 10 % and a GF equal to 15 looks as below.
The size of this cross-section is based on a circle with radius R = 7.5 m. The eventual FF-shape is scaled back
to the original perimeter of the starting circle.

Figure 5.9: cross-section for a combined load profile

To evaluate the lift force on the cross-section, the relation between CL and
VTop

VBot tom
is applied as shown in

Chapter 4. Note that xFoil can not be used here, since the cross-section has blunt edges. The approximation
for the boundary layer equations in xFoil does not apply for this situation. The output of the Panel Method is
as follows:
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Figure 5.10: cross-section for a combined load profile

With:

•
VTop

VBot tom
= 3.75

3.24 = 1.14

• CL = 0.286

• FLi f t = 5.22kN /m

While the cross-section still tends to be quite circular with the characteristic of performing well at the water
pressure. Hence, this might be an efficient solution as well.

The plug-in Karamba3D within GH is able to calculate the structural stresses within the cross-section Con-
sequently, it optimizes for the thickness of the concrete lining based on the water pressure loads. For the
cross-section shown above, the required thickness is equal to 82 cm. This value indicates how efficient a cer-
tain cross-section performs in terms of material use. This value can be used within an optimization process,
as executed in the next Chapter.

5.4.2. Conclusion
Concluding, a single cross-section can be generated which is a compromise between the two optimization
targets. The shape is found by form finding with the GF and a fraction of the water pressure, which represent
the generation of a lift force and the optimization of material use respectively. By analyzing the cross-section
with the panel method as coded in Python, the lift coefficient can be determined. Besides, Karamba3D is a
tool which evaluates the efficiency of the cross-section in absorbing the water pressure. The two optimization
targets can now be quantified to use in an optimization process. All of these steps can be executed within a
couple of seconds, making the optimization process efficient. This is executed in the next Chapter 6.
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Test case

In order to show what the result of a random case would be, a quick optimization process is executed here.
The input parameters are taken as realistic values to give an impression of what the ideal cross-section of an
actual SFT might look like. First, the steps to be executed are enumerated. Then, the single cross-section is
presented after which the composite cross-section is shown, as elaborated in Chapter 5. For the actual design,
a cost-benefit analysis must be executed to determine which option is ’the best’. Since this goes beyond the
scope of this research, only the cross-sections are delivered here. Finally, some impressions are shown on
what the SFT might look like in reality.

6.1. Action plan
In this section, the steps to be performed for the optimization process are listed.

1. Select input parameters, including a certain desired lift coefficient CL

2. Single cross-section

(a) Select a range for the Geometry Factors to be investigated

(b) Select the step size of the %HW P from 0% to 100%

(c) Evaluate each combination of %HW P and GF on lift coefficient CL by the Panel Method in Python

(d) Evaluate each combination of %HW P and GF on structural efficiency by Karamba3D (thickness
concrete lining)

(e) Select the optimal combination and check for use of internal space. If not sufficient, scale the
cross-section

(f) Calculate cross-sectional area A

(g) Determine maximum wave load and minimum BW Rmi n

3. Composite cross-section

(a) Loop the FF-process for the water pressure to retrieve the optimal shape of the inner concrete
tube.

(b) Manually design the exoskeleton with respect to chord length, tip height and smoothness.

(c) Evaluate the lift force in Python with xFoil. If not sufficient, manually adapt exoskeleton.

(d) Calculate cross-sectional area A

(e) Determine maximum wave load and minimum BW Rmi n

4. Perform a cost-benefit analysis to select ’the optimal solution’.
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6.2. Input parameters
The input parameters are listed below

1. The SFT must accommodate a 2-lane highway A1 CAT with 3.5m lane width. For bored tunnels, a rule
of thumb for the indicative diameter of the tunnel would be D = 11.7 m [33]. Concluding, for a circular
cross-section the Radius R = 5.9 m. This is a first indicative for the perimeter of the SFT. In the end, the
total solution might have to be scaled according the lane width and internal height. This is because the
eventual output is not necessarily a circle.

2. Fluid density ρ = 1050 kg /m3

3. The depth of the SFT is 20 meters

4. Total depth = 500 m

5. Flow velocity due to wind at surface Vw (0) = 1 m/s

6. Flow velocity due to tide at surface Vt (0) = 1 m/s

7. Maximum wave height Hmax = 4 m

8. Peak period Tp = 8 s

9. Objective: Create a cross-section with a lift coefficient CL equal to 0.3, whilst optimizing material
use

The required lift coefficient can be retrieved from a safety analysis within a probabilistic design. As already
noted in the scope (section 1.3), this research does not include probabilistic design. Hence, this value is
assumed to be within the safety limits. The value of CL = 0.3 is chosen because it is significantly larger than
the expected drag coefficient CD , which limits rotational effects of the SFT. The value of CD is expected to
be around 0.1 according to figure 2.16. Again, this case is just for illustrational purposes to show what the
optimal cross-section approximately looks like.

6.3. Single Cross-Section
First, the single cross-section is worked out as shown in section 5.4. This is a solution compromising between
the two optimization targets. These targets are the optimization of the material use and the tensile force in
the tethers, represented by the fraction of water pressure and the Geometry Factor (GF) respectively. Note
that a larger GF results in a larger CL , whereas a larger fraction of the water pressure within the FF-process
yields a more efficient shape with respect to the material use. The efficiency of material use is expressed with
the ’required thickness’ of the concrete lining. The Karamba plug-in within Grasshopper is able to calculate
the stresses on the SFT and to optimize this to the thickness of the concrete lining. This thickness is not the
’actual thickness’ required, because safety factors must be included in the design. However, it does indicate
the efficiency of the cross-section relatively. The lift coefficient CL can be calculated with the Panel Method
as explained in paragraph 4.5.2. This code runs from Python.

Within the optimization process, steps of 5 are taken between the GF’s in order to highlight the differences and
to execute the process faster. The range within this analysis between the GF’s is from 1 to 30. The fraction of
water pressure taken into account is from 0 to 100%, with steps equal to 10%. The output of the optimization
process is shown in figure 6.1 below. The CL table represents the optimization for tension in the tethers,
whereas the thickness of the SFT lining represents the use of material.
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Figure 6.1: The optimization process

First of all, note that an increasing ’fraction of HWP’ included in the FF-process results in lower concrete
thicknesses, as expected. Similarly, a larger ’GF’ yields larger lift coefficients CL . Both parameters support to
their objective.
The main demand for the cross-section is to have a lift coefficient CL equal to 0.3 at least. Given this require-
ment, only a few combinations are left. These combinations of GF and fraction of HWP are marked in green
in the top table of figure 6.1. Hence, it must be one of these combinations. Consequently, the material use
must be optimal given the lift coefficient of at least 0.3. When looking at the bottom of figure 6.1, the possible
combinations are marked in green as well. From these combinations, two of them have the lowest required
thickness of 53 cm according to the Karamba structural analysis. The one with GF = 30 and fraction of HWP
= 0.2 has the largest lift coefficient of the two, meaning that this is considered as ’the optimal’ in this case.
Obviously, both options are very similar as shown below.

Figure 6.2: The two ’optimal’ cross-sections
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Figure 6.3: The optimal cross-section with use of internal space

The internal space is enough to construct a 2 lane highway with each a lane width of 3.5 meters and 0.5
meters safety at each side. Moreover, the minimum height of 4.5 m is also achieved with the 5 meter height.
Concluding, this cross-section does not need to be scaled in order to accommodate the infrastructure for its
purpose. The velocity and pressure profile of the selected cross-section are as shown below.

Figure 6.4: The velocity profile for the single cross-section

Figure 6.5: The pressure profile for the single cross-section

The Cross-Sectional area is required in order to define the minimum BWR, as explained in section 5.2. In
order to do so, the maximum wave load is determined according to paragraph 4.6.2. The cross-sectional area
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A = 105.47 m2. This yields a wave load equal to:

Fz = ρC I A
duz

d t
+ 1

2
ρDCD,zUz

√
U 2

x +U 2
z (6.1)

Fz = 1050 ·2 ·105.5 ·0.35+ 1

2
·1050 ·11.5 ·1.0 ·0.45

√
0.452 +0.452 = 78 kN /m

For an overview of all expressions above, see equation 4.10.
This wave force can be converted to the minimum BWR, which also determines the structural stress in longi-
tudinal direction.

BW Rmi n = B

W
= A ·ρw

A ·ρw −Fz,max
= 105.5 ·10

105.5 ·10−78
= 1.08 (6.2)

Concluding, a cross-section with %HW P = 20 and GF = 30 is the optimal cross-section with a BW Rmi n =
1.08. The lift coefficient is 0.33 and the thickness of the concrete is 53 cm.

6.4. Composite Cross-Section
This solution is easier to generate, since both targets can be fully met separately. For a depth of 20 meter, the
optimal cross-section of the inner tube can be determined according the method presented in Chapter 3. For
a depth of 20 meter, the cross-section of the inner tube practically is a circle. The exoskeleton however, can
be manually adjusted to create a lift coefficient of at least CL = 0.3. Together with the maximum flow velocity,
the fluid density and the height of the cross-section of the inner tube, this can be converted to a lift force:

FLi f t =
1

2
·ρ ·CL ·D ·V 2

∞ = 1

2
·1050 ·0.3 ·11.7 ·1.952 = 7 kN /m (6.3)

Where:

• D = Diameter of tunnel = 11.7 m

• V∞ = 1.95 m/s according to equations 2.6 and 2.7 at the top of the SFT.

After tweaking the parameters for the exoskeleton, the lift force can be calculated using xFoil as explained
in paragraph 5.3.1. The lift force is desired not to be unnecessarily large. However, it obviously must be at
least the 7 kN /m as just calculated. Besides, the exoskeleton reduces the drag force on the SFT. For now, the
following cross-section is found and assumed to be sufficient regarding the requirements. If one is interested,
further tweaking can be executed from the model in Grasshopper.

Figure 6.6: The composite cross-section
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Figure 6.7: The composite cross-section and its flow profile

Figure 6.8: The velocity profile for the composite cross-section

Figure 6.9: The pressure profile for the composite cross-section
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With:

• FDr ag = 2.6 kN /m, CD = 0.11

• FLi f t = 31.6 kN /m, CL = 1.35

• Thickness concrete lining = 8 cm

Similar as for the single cross-section, the minimum BWR must be determined. This is expected to be larger
due to the larger cross-sectional area. This area includes the exoskeleton, which also experiences the inertia
force due to the waves from the Morison equation. The area of the total cross-section is Atot al = 214 m2. Note
that not all of this area experiences buoyancy. This is only the part of the inner tube. This area is required for
the BWR-calculation and equal to Ai nner = 109 m2:

Fz = 1050 ·2 ·214 ·0.35+ 1

2
·1050 ·28 ·1.0 ·0.45

√
0.452 +0.452 = 160 kN /m

BW Rmi n = B

W
= A ·ρw

A ·ρw −Fz,max
= 109 ·10

109 ·10−160
= 1.17

6.5. Conclusion
Concluding, two solutions are presented which both meet the requirements listed at the start of this Chapter.
The benefit of the first solution, the single cross-section, is the lower construction costs due to the fact that
the cross-section is made of a concrete tube only. Besides, it has a smaller BW Rmi n which is beneficial for the
structural stresses in longitudinal direction. Moreover, less tethers are required now which are expensive. The
deficit is that it does not optimize for both targets to the fullest. This is visible in the lower lift coefficient and
the larger concrete thickness compared to the composite cross-section. The second solution, the composite
cross-section, does solve for both targets to the fullest. However, it is a composite structure which might be
more expensive, despite the fact that the concrete thickness is lower. And as just mentioned, the BW Rmi n

value is larger. To determine which of the two is ’the optimal one’, a cost-benefit analysis must be performed.
This is not included within this research, but the input for a cost-benefit analysis is presented here.

Figure 6.10: The two possible solutions
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6.6. Impressions
Some general impressions of the submerged floating tunnel in its environment is shown below. Note that
cross-sections below are not identical to the ones presented above.

Figure 6.11: The composite cross-section - Impression

Figure 6.12: The single cross-section - Impression
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Conclusions and Recommendations

The concept of a Submerged Floating Tunnel (SFT) can be improved by an optimization of the cross-section.
First, a general conclusion is drawn given the objective. Then, the research questions as listed in section 1.2
are briefly answered to support this general conclusion. As elaborated in Chapter 5, two solution techniques
for ’the optimal cross-section’ are presented. In the discussion, the parametric influence on this optimal
solution is described. Finally, some recommendations are listed for further research.

7.1. Conclusions
In general, it can be concluded that a parametric model is created in Grasshopper to find the optimal cross-
section for a SFT. This optimization process is split into two targets. The first target aims for an optimization
of material use, whereas the second target guarantees a tensile force in the tethers that moor the tunnel to
the environment.
The optimization of material use yields a shape which appears like an ’egg’ or an ’oval’ close to the water sur-
face, converging towards a circle in deeper water. This can be explained by the (relative) pressure difference
between SFT-top and SFT-bottom. These shapes are obtained by Form-Finding within Grasshopper using
the ’Kangaroo’ plug-in.
Secondly, the cross-section can generate a lift force in the desired direction from the encountering flow. The
lift force contributes to the tensile force in the tethers and a BWR closer to 1.0. This is achieved by creat-
ing a differential velocity profile between SFT-top and SFT-bottom. According to Bernoulli’s theorem, these
differential velocity fields yield a lift force on the total structure. This can be assured by constructing an ex-
oskeleton. When the SFT is anchored to the sea bed, the exoskeleton has a flat bottom with a convexly shaped
top. Besides, the edges are sharp in order to reduce the drag force and the turbulent motions. The lift (and
drag) force are quantified in Python applying the Panel Method.
Ideally, both targets are fully met by constructing the SFT with a composite cross-section. This consists of
an inner (concrete) tube which absorbs the water pressure and a steel exoskeleton which generates lift and
reduces drag and turbulence. One can also choose for a compromise between the optimization targets, yield-
ing to a single cross-section. This cross-section also has a more convexly shaped top to generate a lift force,
but also has some appearances of a circle to absorb the water pressure efficiently. See section 7.2 for a more
elaborate view upon this.

1. What are the existing types of cross-sections?
Often, a regular circle is opted for. Most tunnels are constructed with a circular cross-section because
it is well known for its good performance in absorbing (uniform) pressure loads. Another cross-section
which shows up during several other researches is a rectangular shape. The rectangle is very common
within the design of a regular ’Immersed Tunnel’. It is efficient with regard to its use of internal space.
However, both solutions have some disadvantages regarding the interaction between the hydrody-
namic loads and the structure.

2. What loads are acting on the SFT?
The main loads considered are the hydrostatic water pressure (HWP), the self weight (SW), the load
due to currents and the load due to waves. Consequently, these loads are subdivided into two groups,

85



86 7. Conclusions and Recommendations

where each group was allocated to an optimization target. The two targets with their allocated loads
are:

Optimization target Load group Consists of:

1.) Optimize material use Hydrostatic loads
HWP
SW + Ballast

2.) Tension in tethers Hydrodynamic loads
Currents
Waves

Table 7.1: The optimization targets and the allocated loads

3. What is the influence of the shape on FLi f t and FDr ag ?
First, the drag force is described. As turned out from figure 2.16, a circle is not optimal considering
the fact that a low drag force is desired. From experimental data, the drag coefficient CD ≈ 1.0 varying
slightly for different Reynolds numbers. Based on the same figure, an ellipse proves to be more efficient
with a drag coefficient CD ≈ 0.1.
The static lift coefficient CL is 0 (not considering C ′

L from turbulence) for cross-sections which are sym-
metrical over the horizontal. Given the first objective as stated in section 1.2, it is desired to have a
lift coefficient which contributes to a tensile force in the tethers. According to Bernoulli’s principle, a
larger local flow velocity causes a static pressure drop in the fluid. Hence, a differential velocity pro-
file is required between SFT-top and SFT-bottom. This is achieved by moving the ’deflection point’ of
the cross-section with a Geometry Factor applied on the load profile within Form Finding. This is ex-
plained in Chapter 4. A more convexly shaped top results in larger local flow velocities and lower local
fluid pressures. The result is a lift coefficient CL > 0 to generate tension in the tethers. The magnitude

of CL can be determined with a relation found between
Vtop

Vbot tom
and CL . The ratio

Vtop

Vbot tom
is calculated

based on the Panel Method, which is coded in Python. Concluding, when one side (top or bottom) has
a more convex shape than the other, some lift FLi f t can be generated.

4. How to guarantee a tensile force in the tethers?
The BWR is responsible for the tensile force in current design thoughts. However, a BWR far from 1.0 has
tremendous consequences for the structural stresses in longitudinal direction and the tether system.
Hence, it is desired to keep the BWR as close to 1.0 as possible.
The cross-section as described in Research Question 3 can generate a lift force from a horizontal flow.
However, this flow is not always present. The governing load combination is when no flow is present,
while the design wave is passing. The (lift) force of a wave is most dominantly determined by the inertia
component within the Morison equation. The cross-sectional dependence in this inertia component is
expressed by the area A and not by the shape. Therefore, waves are not included in finding the optimal
cross-section and must be fully compensated for by the BWR to guarantee tension at all times. See
section 5.2 for a more elaborate view upon this.

5. How are the loads optimally diverted according to Form-Finding?
Form Finding applies the external loads on a material with no bending stiffness. The deformed shape
is the shape which absorbs these external loads axially. This is most efficient considering material use,
because all material fibres are used equally.
When Form-Finding is applied for the water pressure loads, as executed in Chapter 3, an ’egg’ or ’oval’
turns out to be the optimal shape. The larger curvature at the bottom of the SFT enables the cross-
section to absorb the (locally larger) external water pressure more efficiently via its normal force N . It is
slightly more efficient compared to a circle with a maximum normal force reduction of 3.7% close to the
water surface. Concluding, a circle is not ’the optimal shape’ considering material use, but a very good
approximation of ’the optimal one’. Especially at larger depths, where the optimal shape converges
towards a circle.

6. What is a compromise between the optimization targets and can they be met both?
Two solution techniques are presented for ’the optimal cross-section’. The first one is a compromise
between the two optimization targets. This shape is retrieved by Form Finding with a fraction of the
water pressure load and a Geometry Factor. These represent the optimization for material use and the
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generation of FLi f t respectively.
The second solution is to construct a composite cross-section made of a (concrete) inner tube with a
steel exoskeleton. The concrete inner tube has a cross-section based on the output from Chapter 3.
The exoskeleton can be manually created in Grasshopper. The magnitude of the lift and drag force are
evaluated by xFoil, which runs from the same python code as mentioned earlier. The benefit is that
both optimization targets are fully met.

7.2. Discussion
Here, some simplifications and assumptions are evaluated with their influence on the model output. More-
over, some expectations are given on the validity and applicability of the different types of cross-section per
situation, depending on the ’Depth of SFT’.

First of all, the cross-section is optimized in terms of material use as shown in Chapter 3. The loads acting
on the SFT are included in the FF-process to generate the shape which diverts all external loads axially. The
loads considered in this Chapter are the water pressure and the self-weight, for a BWR equal to 1.0.
The water pressure is correctly applied on the geometry. However, the self-weight is here assumed to be
equally divided over the perimeter of the SFT. In reality, this is probably not the case since some ballast is
applied at the bottom of the SFT. This yields to a different load profile within the FF-process and a different
cross-section as a result. However, at larger depths the water pressure increases. This demands for a thicker
concrete tube, making it more plausible to equally divide the self-weight over the perimeter. Hence, it is ex-
pected that this effect becomes negligible for larger depths. This is the case for a SFT.
Secondly, the lift coefficients CL and FLi f t as found by Chapter 4 are for both types of cross-section based on
approximations for the turbulent effects. Although it is expected that the order of magnitude is right for both
methods, the exact value might deviate in reality from these approximations. However, by Bernoulli’s princi-
ple it is simply impossible that the sign of the lift coefficient is estimated wrong. And since the governing load
combination does not include the flow load, these small deviations do not result in large design errors.

Figure 7.1: cross-section depending on depth

Finally, the objective of this research was to make a paramet-
ric model. Different (load)-situations results in different cross-
sections. Besides, two types of cross-sections are presented
within this research, where the optimal one must be chosen
based on an explicit cost-benefit analysis.
However, some logical thinking already gives some more in-
sight in this part. The deficit of the single cross-section
is the fact that it must relinquish some to both optimiza-
tion targets, where the optimization of material use suffers
the most. This target is most important at larger depths,
due to the larger water pressure. Concluding, the deeper
the SFT, the more beneficial the composite cross-section be-
comes.
Moreover, the deficit of the composite cross-section is the
larger cross-sectional area A. This area determines the wave
(lift) force and therefore the value for BW Rmi n . This wave (lift)
force decreases rapidly for increasing depths until a depth of
approximately 35m − 40m (figure 4.23). This deficit in terms
of the BWR vanishes out for increasing depths, which is an-
other reason to choose for the composite cross-section at larger
depths.
For an overview of what the cross-section approximately looks
like depending on the depth, see figure 7.1. Close to the sur-
face, the single cross-section is beneficial with a low value
for the fraction of water pressure included. This fraction
of water pressure increases by depth. From about 35 me-
ter, the composite cross-section is expected to be optimal,
where the area A can increase by depth to reduce drag and
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increase lift, while the consequences on BW Rmi n remain
small.
Either way, the two solutions presented are both more favourable regarding a smaller drag force FDr ag and a
larger lift force FLi f t (in the right direction) compared to a regular circle.

7.3. Recommendations
The following recommendations are made:

1. The effect of turbulence on the SFT must be investigated further with its consequences for the lift force.
Especially a relation for C ′

L is desired to know how to guarantee the tensile force in the tethers. When
the turbulent lift force dominates over the mean lift force, it can negatively contribute to the tension
force in the tethers. A different (more conservative) BW Rmi n is required then. Therefore, the C ′

L-value
is important to know. The Panel Method only deals with laminar flow.

2. Some more verification points are required to confirm the found relation between
Vtop

Vbot tom
and CL . Only

one CFD-run was available to verify the found relation.

3. The same holds for the xFoil calculations. This is verified on only one CFD-run, where more are re-
quired to confirm the correspondence. Since xFoil approximates the boundary layer equations for
sharp edges, it is also interesting to know where the limit is. How blunt can the edges of the cross-
section be for xFoil to still approximate it correctly with the en-relation?

4. The wave load must be analysed further. Here, the lift force due to waves is calculated based on the
Morison equation and fully absorbed by the pretension in the tethers. However, the Morison equa-
tion might not be applicable when the SFT becomes too wide. Some interactions can occur if the SFT
responds to the wavelength of the passing design wave.

5. An explicit cost-benefit analysis must be performed to choose whether the single cross-section is opti-
mal or the composite cross-section.

6. All calculations as shown above must be executed with safety factors or another probabilistic analysis
to come up with the actual design.

7. The rotational moments of the SFT are not accounted for in this research. A rotational moment might
generate a compressive force in the tethers as well. However, the lift coefficient CL is for most cross-
sections found significantly larger than CD . Hence, one might expect little influence of the rotational
moment on the tether forces. Nevertheless, it must be investigated further. Moreover, rotational mo-
tions might interfere with the flow oscillations.

8. The accidental loads like tsunamis, earthquakes and ship collisions must be included in the actual
design.

9. The constructability of the tunnel compartments must be taken into account for an actual design. All
different kinds of curvatures might yield complications in the production process of the concrete tunnel
compartments. It might be useful to set certain ranges of constant curvature.

10. The panel method as applied here turned out to be useful to analyze the flow behaviour around a sub-
merged body. It might be useful in other disciplines as well, like for the wind flow around high-rise
buildings. It is recommended to further explore the applications of the panel method in other disci-
plines.
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A
Hydrostatic Water pressure in

Rhino-Grasshopper

In this Appendix, the model in Grasshopper for the hydrostatic water pressure is further elaborated. This
Appendix coincides with the information presented in Chapter 3. It is assumed that the reader has the basic
background knowledge of the modules used in the programming language of ’Grasshopper’. The focus here
lies on the ’chain of modules’ in Grasshopper, which all together form the script. This script yields the output
as shown in Chapter 3. Moreover, note that the final model is folded into clusters to maintain overview. This
model is shown in Appendix D. The content of these clusters is shown here.
First, some additional explanations are given on the geometry. Then the loads are discussed, which consist
of the water pressure and the ’stabilizing force’ (self-weight). Consequently, two options for the anchor point
are elaborated. Finally, the influence per parameter on the output is considered.

A.1. Geometry
The starting geometry is a circle with a certain radius. This radius is important, since the deformed shape
as found by Kangaroo is scaled back to the original perimeter. The generated circle is divided into N nodes,
which defines the accuracy of the model. The output of this part is N coordinates, each defining a node on the
geometry. In order to be able to loop the model, these coordinates are written to a file. The looping process is
explained later on in this Appendix. Notice that the location of the external file can be manually adapted.
After that the starting geometry is written to an external file, it is imported to Grasshopper again. Then, a
polyline is drawn through the N nodes. Finally, this polyline is exploded. The result is a geometry consisting
of N nodes and N segments. The nodes and segments are identified as shown in figure 3.1. For an overview
of the script, see figure A.1.

Figure A.1: The script in GH for the generation of the geometry

Now, the starting point of the model is generated and the loads can be defined.
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A.2. Loads - Hydrostatic water pressure
Here, the loads are calculated. The hydrostatic water pressure linearly depends on the local depth z, as was
shown by equation 2.1. Therefore, the coordinates of the nodes are decomposed into a x,y and z-component.
Logically, the z-component is here of interest. Before calculating the pressure at each node, the radius R is
subtracted from the local height z. This must be done because the circle is generated around the origin of the
coordinate system. Hence, the top of the SFT now has local height +R, whereas it is desired to be 0. Moreover,
the depth on top of the SFT must be added to the local depth z. The output is now the correct local depth per
node. The final step in determining the water pressure per node is simply working out equation 2.1.
The next step is to calculate the ’effective length per node’. The effective length represents the area which
diverts its pressure to the closest node. This area is the half-length of the two adjacent segments, multiplied
by the imaginary depth of 1m. This is done in Grasshopper by constructing a domain from 0 to ’N-1’. This
domain is then converted to a range (list) with ’N-1’ steps. The output of this range module is a list which
gradually increments from 0 to ’N-1’ with steps equal to 1. This list is required to repeat a certain process.
Consequently, the length of the segments are selected with a ’Len’-module. Then, item i and item i +1 from
this length list are selected and averaged. By inserting the ’range module’ as index for the ’list item’ module,
all N nodes get an averaged length assigned. The final step is to shift this list with −1, to have the values to the
corresponding coordinates.
Finally, this effective area is multiplied with the pressure to achieve a hydrostatic force per node. The list of
forces is also shown in figure A.2

Figure A.2: The script in GH for the generation of the hydrostatic loads

A.3. Plane definition
As mentioned before, the hydrostatic pressure is unidirectional. Therefore, pressure component is equal to
the magnitude of the load itself. In order to locate the water pressure correctly, a new plane (u,v,w) must be
defined. For the starting geometry, this is rather easy. A line is drawn between the circle center and the node
(base line). Perpendicular to this base line, a new local coordinate system (u,v,w) is generated with its origin
at the node. A similar approach is applied for a geometry which is not a circle. Note that this is the case later in
the looping process. This underlying concept has already been explained in paragraph 3.3.3 and in figure 3.6.
In figure A.3 the same process is shown, but then in GH’s script. A similar range is created in order to repeat
a certain step multiple times, but now from 1 to N with steps equal to 1. For each step, node ’N-1’, node ’N’
and node ’N+1’ are selected using the ’list item’ module. For these three nodes, a new circle is generated.
The same base line is then drawn between the newly defined circle center and node ’N’. Perpendicular to this
base line, a new coordinate system is introduced. The w-component represents the magnitude of the water
pressure load. Hence, a new point is defined within the plane just created. The u and v-component are 0 and
the w-component has got the magnitude of the load as was calculated in section A.2
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Figure A.3: The script in GH for the generation of the new (u,v,w)-coordinate systems

Finally, a vector between two points is created. These two points are the origin of the new coordinate system
and the point ’w’ as described above. The hydrostatic loads are now located correctly.

A.4. Anchor point
The anchor point is very important in the model. The model functions well as long as the loads on the geome-
try are uniform in each direction. As explained in section 2.5, the plug-in Kangaroo functions as a mass-spring
system. Each load results in an acceleration, velocity and displacement per node according to the spring stiff-
ness ’S’. This means that no relative movements are present, given that the sum of all the forces is equal to
zero for each direction. Concluding, Kangaroo is holding the geometry at its original position. Once the loads
are not in equilibrium for each direction, the geometry starts moving as the acceleration is not zero (Newton’s
2nd law). If there is no anchor point, the geometry keeps ’falling’ in the direction of the net force. Therefore,
an anchor point is required, since the forces acting on the SFT are not uniform.
Below, two options are considered as anchor point. In the end, after the pros and cons are weighed against
each other, the final solution is chosen.

A.4.1. Centre point as anchor
The centre point can function as anchor point, but only once all the segments of the SFT are connected to the
anchor point. This can be done by connecting all the nodes to the centre point via a line element. Obviously,
these elements also have to be inserted into Kangaroo. Otherwise, the original segments are not connected to
the anchor point and they will start moving anyway. This option works well. However, it has got one deficit.
As mentioned before, the elements inserted in Kangaroo each have stiffness ’S’. Hence, the additional line
elements in the system also exert a certain resistance on the deformation of the geometry. The additional
force on the nodes, directed to the centre, is equal to:

Fcentr e = S · (lnew − lol d ) = S ·∆l (A.1)

This is because the rest length of a line element is by default equal to the original length of the line element.
The force is then dependent on the displacement of the node. This effect becomes stronger for the ’deeper’
nodes of the SFT. The deeper the node, the higher the loads due to hydrostatic pressures. Consequently, a
higher load results in a larger deformation. And a larger deformations means a larger additional force ac-
cording to equation A.1. See figure A.4 for an overview of the loads. In red, the deformed shape is sketched.
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Figure A.4: The additional load towards the centre

Once the shape is deformed, the additional line elements are deformed as well. This means that the spring
force in these line elements starts acting. The influence of these additional spring forces is noticeable as from
the first loop. Kangaroo applies a default value of lr est equal to the original length of each line element, as just
mentioned. This means that the force in the additional line elements is linearly dependent on its own length
variation ∆l . Concluding, the effect of the additional line elements is directly dependent on the output of the
process. The external force should be increased by:

S · (lnew − lr est )

This implies that, on top of the required loops for geometrical effects and a change of curvature, an additional
loop is required to account for the additional spring forces within this anchoring method. The output of one
loop ’i’, which is a displacement ∆l , is required in a second loop ’j’. This means that the process of Form-
Finding becomes more difficult, both physically as computationally. However, it is possible to model the SFT
with this anchoring method. To clarify the required looping processes, see figure A.5. Both loop ’i’ and ’j’ stop
when the process is converged and no relative movements are present anymore.

Figure A.5: The double looping process

A.4.2. Top point as anchor
The top point can be used as anchor point as well. Or actually, any other random point at the circles perime-
ter. For the elaboration of this method, the top point is used throughout this explanation. But note that any
other node is possible as well.
The use of the top point is beneficial, since the effect of the additional line elements can be prevented. (In-
directly), all segments are connected to the anchor point. However, a malformed shape is then the result,
because the anchor point affects the deformations with its support reaction. This can be solved by com-
pensating for the difference in forces for each direction, being only the z-direction for the hydrostatic water
pressure.
By applying an additional force, which stabilizes the vertical movement, the geometry does not float away.
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When this load is equally distributed over all the nodes, it also doesn’t affect the form-found shape. This sta-
bilizing force can be compared to the weight of the SFT in case the BWR is 1.0. The support reaction is then
equal to zero. This additional load basically is a ’rigid body displacement’. Hence, it only causes equilibrium
and not a malformed shape. The result is a FF-shape, which is not affected by the anchor point and does not
want to float away. Besides, no additional elements are required which influence the Form-Finding shape.
See figure A.6. Left, all the loads are shown. In yellow, the stabilizing vertical forces are highlighted, equally
distributed over the nodes. On the right, the form-found shape is shown with the scaled shape in yellow
again. Note: the additional loads do not influence the shape, but do influence the N-line distribution. This
effect is discussed later in paragraph 3.6 about the validation of the model.

Figure A.6: a) the geometry with loads, vertical stabilization loads in yellow. b) the form-found shape, scaled back in yellow

For now, the second method with the top point as anchor point is applied in the remainder of this research.
This is done because the modelling is easier as explained above. However, if one prefers the centre point as
anchor point, this is possible given a compensation for the additional spring forces.

The stabilizing force in GH is modelled as shown below. The water pressure loads are decomposed in a x,y and
z-direction. Since only the z-direction of the load has a net value not equal to zero, this net value is calculated.
Consequently, this net value is divided by N, resulting in an equal distribution of this ’stabilizing force’ over
all N nodes. Finally, the load is placed on each node with the just found vector.

Figure A.7: The stabilizing force in GH’s script

A.5. Kangaroo
Before starting the Form Finding process, everything is inserted into the Kangaroo plug in. This means:

• The geometry segments: Via a Length Line component, resulting in elements with no stiffness

• The anchor point: By selecting the right node (top)

• Hydrostatic Water Pressure load

• Stabilizing load

See figure A.8 for an overview in the GH’s script.
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Figure A.8: The elements inserted into the Kangaroo plug-in

Finally, the FF-shape from Kangaroo is scaled back to the original perimeter to have a usable and presentable
shape.

A.6. Model overview
For an overview of the total model described above, see figure A.9

Figure A.9: A complete overview of the water pressure model in GH.

The loops that are required to take geometrical effects and changes of curvature into account are now auto-
matically executed, since Grasshopper recognizes the renewed condition once the newly found coordinates
are written to the same external file. By simply writing the renewed coordinates to the file, the looping pro-
cess is being executed. Besides, this process is convergent meaning that one single solution is the output of
the ’optimal shape’. This shape can be seen in section 3.5.

A.7. Model output
Here, the model output is shortly described. Especially some parameter influence is elaborated. For the full
output of the water pressure model, one is referred to the main report in section 3.5. Moreover, a different
starting geometry (rectangle) is used here to evaluate whether a circular like shape is indeed optimal accord-
ing to Form Finding.

The reference situation sketched to compare changing parameters to is shown in figure A.10. The settings of
this model are:

• R = 7.5 m

• ρ = 1050 kg /m3

• Depth top SF T = 0 m
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Figure A.10: The cross-section for a SFT just below water surface

The expectations seem to be valid, considering the figure above. The deformation at the top is practically
zero, because there is no water pressure at the top of the SFT. Besides, note that the deformed shape is not
scaled back yet in figure A.10. Moreover, the relative pressure difference results in a ’water drop’ shape.
Other influences of the parameters on the cross-sectional shape are listed below, with the visual confirma-
tions of the influences in figure A.11.

• Radius: An increasing radius of the SFT should not influence the shape of the Form-Finding method
significantly. For a larger radius, the relative difference in water pressure between top and bottom also
increases slightly. Therefore, the ’water drop’ shape is exaggerated a little. However, the effects are
expected to be negligible. This is visible in figure A.11a. The shape is comparable to the one in the
reference situation.

• Depth of the SFT: An increasing depth of the SFT causes higher hydrostatic water pressures everywhere.
Firstly, this results in deformations at the top of the SFT as well since it is now subject to a hydrostatic
load. Besides, the relative water pressure difference decreases. Although the absolute pressure differ-
ence remains constant, as it depends on the tunnel diameter, the relative difference decreases. This
means that the cross-sectional shape should converge more towards a circle rather than a water drop.
Both effects are visible in figure A.11b.

• Fluid density: The fluid density results in higher pressures on the SFT. This means that a higher density
causes higher deformations. This is visible in Rhino/Grasshopper, although the changes are negligible.
Due to the higher loads, the relative difference in hydrostatic pressure increases as well. But again, the
effects are negligible.

Figure A.11: The CS-shape for a) changing radius, b) higher water depth, c) changing fluid density

These are the results for one single loop, not taking into account the geometrical effects and changes in cur-
vature yet. Now it is established that the first loop yields reasonable results, multiple loops can be generated.
The looping process should converge towards one solution. This is because the deformed shape should, ac-
cording the the Form-Finding method, be the optimal shape in diverting the loads in an axial way. If this is
the case, no deformations should be there. It is only the geometrical effects and the change in curvature that
causes small deviations. However, they should vanish during the looping process.
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The looping process, as explained by figure 3.7, is repeated 3 times for visual confirmation of the converging
iterative process. Furthermore, the starting geometry is changed from a circle to a rectangle. Although it is
well known that a circle is a well performing shape in absorbing pressures, it is checked once again to see if
the process indeed converges to a circular kind of shape. See figure A.12.

Figure A.12: The looping process with 3 loops for a circle (left) and a rectangle (right) as starting geometry

What can be concluded from the figure above is that the model indeed converges to a circular shape, inde-
pendent of the starting geometry. A striking thing is that even after 3 loops the results are already almost
identical. The geometry converges to a stable solution where the eventual shape looks more or less like a
water drop. As explained before, this is in line with the hypotheses. The next step is to validate the model
analytically and check whether all external forces are, indeed, absorbed axially. This is done in paragraph 3.6
in the main report.



B
Hydrodynamic currents in

Rhino-Grasshopper

In this Appendix, the model set-up is described further for the hydrodynamic loads due to currents in Grasshop-
per. It is assumed that the reader has basic knowledge of the modules used in Grasshopper. The underlying
concepts are explained. Besides, the flow loads are here placed symmetrically. This is done to obtain a sym-
metrical shape, which is desired since the flow may encounter the SFT from both sides. This is already ex-
plained in Chapter 4. In Appendix C, an additional view is given upon asymmetrical flow/shapes.
Similar to Chapter 4 from the main report, this Appendix governs the optimization criterion:

Conver t the exter nal hydr od ynami c l oad s i nto tensi on i n the tether s o f the SF T.

As became clear from section 4.1 and 4.2, the aim is to create differential velocities between the top of the
SFT and the bottom of the SFT. This is of influence on the corresponding pressures in the fluid according to
Bernoulli’s principle. Concluding, differential velocities result in a lift force FLi f t being non-zero. How these
differential velocities are obtained, is explained in this Appendix.
First, the additional parameters and the geometry are shown. Then, the (manipulated) loads are explained
after which some output is shown.

B.1. Input Parameters and Geometry
This part is mainly the same as section A.1. Therefore, for a more detailed view on the creation of the ge-
ometry, one is referred to Appendix A.1. In short, a circle is used as starting geometry. It is subdivided into
’N’ nodes and ’N’ segments. Variable ’N’ represents the accuracy of the model. The additional parameters
compared to water pressure model are:

• Vwi nd = flow velocity due to wind at surface

• Vt i de = flow velocity due to tidal wave at surface

• Total depth at location of SFT

Concluding, barely any differences compared to the water pressure model from Appendix A so far.

B.2. Hydrodynamic loads
Here, the loads due to the hydrodynamic current is calculated and placed on the nodes which are just created.
The magnitude of the horizontal flow load is a drag force, as expressed in equation 2.21. The equation is
shown below again:

Fx,D = 1

2
·ρ ·D ·V 2 ·CD

The pressure component of these force is required within Form Finding. See figure 2.14. Besides, note that
the flow velocity V is assumed to be uniform. Therefore, the flow velocity is not exactly calculated based
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on the profile shown in equations 2.6 and 2.7. However, the flow velocity at the top of the SFT is calculated
according the the corresponding formulas and assumed to be uniform with that magnitude. This saves a lot
of complexity within the construction of both the Panel Method and the CFD. Still, it approximates reality
quite well. See figure B.1

Figure B.1: The uniform flow velocities at each node

Here, the input is for Vt i de = 2 m/s and Vwi nd = 2 m/s. At the top of the SFT, which is 20 meter below the
water surface here, the local flow velocity is Vtot al = 3.53 m/s. The output from this part is a list of N values
with each the uniform flow velocity corresponding to the velocity at the top.

Another parameter from the equation above is the drag coefficient CD . This value depends on the shape and
continuously changes during the FF-process. Within the FF-process, the magnitude of CD is of barely any in-
fluence. A larger CD -value results in larger loads. Consequently, the larger loads result in larger deformations
in the FF-process. However, the deformed shape as found by Kangaroo is scaled back to its original perime-
ter. Concluding, the relative differences for the CD -value are practically zero. This value is set to CD = 1.0
according to figure 2.16.

The next step is to determine the pressure component of the drag force, which is required within the FF-
process. This can be calculated with equation 2.23. Moreover, the ’effective length’ absorbed by each node is
determined in the same way as done for the water pressure model. These two steps are combined and visible
in figure B.2.

Figure B.2: The calculation of the pressure component of the ’effective length’ per node

On the top left, a domain and range component are visible again. This is to create a list from 0 to ’N-1’ with
incremental steps equal to 1. This list is required to execute a loop within Grasshopper, as was explained in
Appendix A already. On the left bottom, angle β is calculated for each segment. For the definition of angle
beta, see figure 2.17. Consequently, the cosine of this angle is taken to determine the pressure component.
At the top of the figure above, a ’Len’-module is visible. This module shows the length of each segment.
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Then, both the cos(β) and the length values are selected for node ’N’ and node ’N+1’ simultaneously with
the ’List Item’ modules. This is followed by the ’Averaging per node’ module. As the name already implies,
this averages the values for the length and the cos(β) per node. Finally, this list is shifted with ’-1’ to have the
correct values with the corresponding node again. The output is shown on the right, a list of ’the pressure
component of the effective length’. This might sound like a complex term, but it is nothing more than the
length of the adjacent half lengths per node, multiplied by cos(β) to retrieve the pressure component of the
drag force. For a clarification, see figure B.3

Figure B.3: The visualization of the pressure component of the ’effective length’ per node

This ’pressure component of the effective length’ can be multiplied with the imaginary length of 1m in the
longitudinal direction, to obtain a surface area [m2]. The drag force that must be inserted into the Kangaroo
plug-in is then:

FD⊥ = p · A

Where:

• p = 1
2 ·ρ ·V 2

tot al

• A = pressure component of effective length ·1 m

Furthermore, the flow loads are placed symmetrically as mentioned in the beginning of this Appendix. Phys-
ically, this would look like the left half of the SFT being subject to a uniform flow encountering from the left
and the right half of the SFT being subject to a uniform flow from the right. This is in reality not possible, but
required in order to obtain a symmetrical output. The Form-Finding process is directly related to the load
profile, meaning that an asymmetrical load profile can never result in a symmetrical shape. Since the latter is
preferred, this unrealistic load profile is applied anyway. The drag forces must be placed perpendicular to the
structures’ surface again. In order to do so, the same process is repeated as was explained in Appendix A and
supported by figures 3.6 and A.3. The output of the FF-process as was already shown in figure 4.3 is shown
here again.

Figure B.4: The load profile and Kangaroo’s output for the hydrodynamic current

However, the load profile and the shape are still symmetrical over the horizontal. This means that no differ-
ential velocities between top SFT and bottom SFT are obtained yet. This is treated in the next paragraph.
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B.2.1. Movement of the deflection point
The model as described so far, is here manipulated in such a way that the deflection point is moved. In case
the SFT is anchored to the seabed, a positive lift force is desired. The result is a tension force in the tethers. In
order to achieve this, the deflection point must be moved downward. Then, the distance via the top increases
meaning that the flow velocities increase locally as well. This goes combined with a local pressure decrease
and a positive lift force.
The load profile from figure B.4 must be manipulated to move the deflection point downward. The loads
from figure B.4a with a negative z-component are amplified with a certain Geometry Factor. The process in
grasshopper is shown below.

Figure B.5: The amplified load profile and GH’s output

In short, the load vectors are selected and decomposed in a x,y- and z-component. When the z-component
is smaller than zero, the original load vector is selected with the ’Dispatch’ module, the ’MIndex’ module and
the ’List Item’ module. These vectors are consequently being multiplied with a Geometry Factor and replaced
in the original list of load vectors. The manipulated load profile is shown on the right in figure B.5.

B.3. Kangaroo and Output
Again, all items are inserted into the Kangaroo plug-in again, which performs the Form Finding process. This
is not shown and elaborated further, since this is already done in Appendix A. The item inserted into Kangaroo
are:

• Geometry (segments without stiffness)

• Anchor point (top point)

• Manipulated load profile as shown in figure B.5

• Stabilizing forces to compensate for anchor location and get ΣFx,y,z = 0

Note, loops are not necessarily required here because the objective was to create differential velocities be-
tween top and bottom. This is achieved by executing the process described above only once. When looping
multiple times, the consequences regarding the internal space are very unfavourable. Hence, one loop is as-
sumed to be enough here. The final step is to scale back the deformed geometry to its original perimeter. The
output of this model is a shape with differential velocities between top and bottom of the SFT, depending on
the Geometry Factor. For an overview of different shapes depending on the geometry factor, see the figure
below.
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Figure B.6: The different shapes for varying geometry factor

Concluding, the output of the model described above is a shape with differential velocities between the top of
the SFT and the bottom of the SFT, as was the objective. The magnitude of the differential velocities depends
on the Geometry Factor. This factor is an amplification of the loads that move the deflection point of the
geometry in the desired direction.
The exact difference between these velocities is calculated later on in the report. In those parts, it becomes
clear that the shapes retrieved with this model indeed result in differential velocities and with a positive lift
force FLi f t . Finally, a model overview is shown in the next section.

B.4. Model overview - currents
Here, an overview of the model described above is shown in figure B.7.

Figure B.7: A schematic overview of the hydrodynamic model for currents in Grasshopper





C
Model - Currents - Asymmetrical FF

In Chapter 4 the form-finding process for the currents is discussed. The loads are placed symmetrically, which
can never be the case in reality. Since form-finding is directly coupled to a single load situation, it is not pos-
sible to demand a symmetrical shape out of an asymmetrical load case. As mentioned before, it is desired to
have a symmetric cross-section which performs equally well for both flow directions.
However, this is the case for a single tube SFT on which the emphasis is in this research. A small ’side-road’
can be entered by looking at a double tube SFT, where the asymmetrical load profile might be useful. In case
of a double tube, each tube absorbs the main loads of the flow coming from that side. When the flow encoun-
ters from the other side, it is the other tube which has got to deal with the main load.

So what does the shape look like for an asymmetrical load profile. As stated in paragraph 2.3.2, a suction factor
of 0.3 was assumed to be valid for the load at the lee side of the SFT. This value was based on a comparison
with the factors for wind loads. For an overview of the loads acting on the starting geometry (circle), see figure
C.1 below.

Figure C.1: The load profile for currents

The loads shown in the figure above are reversed in direction within the form finding process. Moreover,
the pressure components of the drag force are shown and applied. Again, the difference in horizontal and
vertical force is compensated by equally distributing the difference over all N nodes. The result is a rigid
body displacement which keeps the shape at its original place, without influencing the shape. This step is
explained extensively throughout the report.
The shape found by Kangaroo is shown in the left figure below. The result is shown for only one iteration.
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Figure C.2: The FF-shapes for different lee factors

A striking thing happens when a lee factor of 0.30 is applied for the load situation. The shape starts to ’curl up’.
This has got to do with the numerical solver in Kangaroo. The mass-spring system can only find equilibrium
when there is tension in the members. For a factor of 0.30, the stabilizing loads (directed to the left) are too
large to guarantee tension in the members. Hence, the shape ’curls’ and reaches a state with tension again.
Obviously, this is not a shape which can be applied in practice. This is a constraint of the solver ’Kangaroo’.
In the center image of figure C.2, the boundary situation is found where the shape is an exact water drop, but
then rotated. The load in this particular situation is a horizontal flow, which can be represented by a grav-
itational force rotated with 90°. A natural phenomena is mimicked with the Kangaroo solver here. On the
right in figure C.2, a lee factor of 0.10 is applied. In this situation, no compression is found in the members
meaning that the form-finding method performs well.

The constraint of Kangaroo can be solved by implementing a certain bending stiffness in the members. Re-
member the definition of form-finding:

"Exert the loads on a material with no bending stiffness, to find the shape which diverts the loads axially or
in-plane.
This is also the reason why Kangaroo cannot solve a situation with compression in the members, since they
have no (bending) stiffness. By using rods, with a certain axial/bending stiffness, the compressive forces can
be absorbed. Although this is actually out of range for the form-finding definition, it is a solution to find a
usable shape. And since all members have the same stiffness, the differences are relative. With some stiffness
added, the FF-shape looks like in figure C.3 below. An additional note on the stiffness used is given at the end
of this chapter.

Figure C.3: The FF-shapes with added bending stiffness and lee factor = 0.30

This shape can be used in a double tube design. The shape shown is the one which should reach towards a
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net vertical force equal to zero. To guarantee tension, the load profile must be manipulated with a Geometry
Factor again, as shown in Appendix B.

C.1. Double tube design
The shape found for asymmetrical loading conditions, which is basically always the case in reality, can be
used for a double tube design. The demand for a symmetrical shape, which is desired since the flow can
encounter the SFT from both sides, can be achieved by mirroring the asymmetrical shape around the vertical.
See figure C.4 for an impression of such a double tube design.

Figure C.4: The asymmetrical shape applied in double tube design

The flow enters the submerged body from one side and it separates from the lee side on. The separating flow
loses energy meaning that the ’main load’ has already been absorbed by the structure.
However, the interaction between the flow and the ’second tube’ is dependent on the flow characteristics and
the eventual shape. This is complex and not realistic to assess without a CFD or experimental knowledge.
Hence, the application of a double tube design with asymmetrical load profiles goes beyond the extent of this
research. It is recommended to do some further research on the behaviour of such a double tube in a flow
with help of a CFD or with physical experiments.

C.2. Bending/axial stiffness
The amount of stiffness allocated to the rods strongly influences the shape. As already stated in section 2.5,
the Kangaroo solver does not work with physical quantities. Both bending and axial stiffness have got a unity
′S′, rather than ′kN /m′ for instance.
The relative stiffness might do the work. The slice of the SFT was segmented into N elements, representing
a 1 m-wide section of the actual structure. Therefore, the ratio between the bending stiffness and the axial
stiffness can be simply determined for a rectangular cross-section, i.e. a segment from the SFT.

R = E I

E A
= I

A
(C.1)

with:

I = 1

12
·b ·h3

A = b ·h

These expressions follow from basic mechanics. The eventual ratio can then be expressed as:

R =
1

12 bh3

bh
= 1

12
·h2

Still, the disadvantage of the Kangaroo solver remains, as the unity of the ratio R is in [L2]. The question
remains what the unity of this length parameter is (m, cm, mm?). When choosing for cm, the most realistic
results are the output. In the figure below, some output is given for different axial stiffnesses. The bending
stiffness is then automatically determined by the ratio shown above. The thickness of the SFT ’h’ is kept at
80 cm. See figure C.5 for the influence of different stiffnesses.
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Figure C.5: The asymmetrical shape applied in double tube designs with different stiffnesses

What can be seen from the figure is the larger the stiffness, the lower the influence of the Form Finding and
the closer the shape will remain to its starting geometry, a circle.
Concluding, the asymmetrical shape can be used in double tube design. However, it is strongly recom-
mended to do some further research with physical experiments and a CFD-simulation. Moreover, the Kanga-
roo solver might not be the right one as it does not calculate with physical units and it is hard to express the
axial/bending stiffness in a justified manner. Moreover, if a non-zero lift force is desired, apply a GF on the
load profile as discussed in Appendix B.



D
Total model in Grasshopper

In this Appendix, the complete model in Grasshopper is worked out. It is assumed that the reader has the
basic knowledge of Grasshopper, meaning that the focus is not on the individual components and their func-
tioning. On the contrary, the focus lies on the underlying thoughts and the connection between certain com-
ponents.
The canvas in Grasshopper as shown in this Appendix is rather compact, due to the fact that many com-
ponents are clustered into single ones. This is favourable in terms of the overview of the model. For most
clusters, it is not shown what is inside. First of all, because the content of most clusters is already covered in
Appendix A and B. Secondly, the aim/output of each cluster is shown in order to understand the process in
Grasshopper.
The model is split into four parts. First, the ’control center’ is shown where one can set the input for the
model and loop for the water pressure. Within this ’control center’, one also chooses for the single solution
or for the composite solution, as described in Chapter 5. For both solutions, a part of ’general attributes’ is
required. This part is covered secondly. Thirdly and fourthly, the parts are explained for the ’single solution’
and the ’composite solution’ respectively. An overview of the total model and these four parts is shown below
in figure D.1.

Figure D.1: The total model overview in GH including the four parts
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D.1. Part 1: Input and Control

In this section, the ’Input and Control’ part from figure D.1 is elaborated further. First of all, one has to select
which type of cross-section is generated. This is done by making use of a toggle, being either ’True’ or ’False’.
This component basically enables/disables certain other components within the GH canvas, resulting in the
desired output. For an overview of the toggle including the output, see figure D.2 below.

Figure D.2: The selection for the single cross-section or the composite cross-section.

The input parameters under the header ’Geometry and Loads’ are quite self-evident. The radius determines
how large the cross-section must be. Note that for the single cross-section, the shape is scaled back to the
perimeter of the starting circle with this radius R. The ’fluid density’ and ’Depth on top of SFT’ are required
to calculated the water pressure. Vwi nd (0), Vt i de (0) and the total depth are required to calculate the flow ve-
locity at the top of the SFT by equations 2.6 and 2.7. This flow velocity is taken as uniform within the Panel
Method.
Under the header ’Relation optimization target’, the GF and the fraction of water pressure is set. These values
determine the load profile which is inserted into the same Kangaroo Solver. Therefore, these settings be-
long to ’the single solution’. Concluding, the distribution of these parameters determines whether the cross-
section optimizes most for material use or for the tensile force in the tethers. This is the compromise between
the output from Chapters 3 and 4.
The next header ’Exoskeleton parameters’ is only required for the composite solution. Therefore, it is dis-
abled in figure D.3 since there is chosen for the single cross-section. However, these parameters represent
the ’chord length’, the ’smoothness’ and ’the tip height’. For the explicit definition of these parameters, one is
referred to section 5.3.
After setting all the parameters, one goes to the right part within the ’Control center’. Before starting the loop-
ing process, one can set the accuracy of the model, shown in green. The accuracy is the number of segments
and nodes in which Grasshopper divides the geometry. The larger the accuracy, the better the output but the
longer the computational time will be. Then, the ’start loop’ and ’reset’ button must be pressed, in that order.
The renewed starting geometry is now created and all loads as just defined are applied on the starting geom-
etry. Notice that only if chosen for the composite cross-section, one must press the ’Loop - HWP’ button in
order to take the geometrical effects into account. For more information, see Appendix A.
Finally, the ’write files’ button must be pressed to export all the geometrical properties. These files can be im-
ported into the Python code which determines the lift force consequently. This button works for both types
of solution.
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Figure D.3: The other input parameters

D.2. Part 2: General Attributes
In this part, some general attributes are shown which are required for both solutions. First, the starting ge-
ometry is created based on the just defined input parameters. This is a circle with radius R, being subdivided
into ’N’ nodes as defined by the accuracy. Consequently, this geometry is imported in Grasshopper again in
order to execute loops. This is similar as explained in Appendix A. The hydrostatic water pressure force is
calculated based on the local depth of a node and by the area absorbed by each node. The area absorbed by
each node is calculated within the ’geometrical effects and angles of segments’ cluster. The pressure at each
node is calculated according to equation 2.1. The water pressure is required for both solutions, which is why
it is represented in the ’General Attributes’ part.

Figure D.4: The general attributes - 1

Then, the local planes must be created in order to place the loads perpendicular to the geometry’s surface.
This is executed by generating new circles for each node, as explained in paragraph 3.3.3. Consequently, the
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water pressure-load is generated by applying the load vectors to the corresponding nodes. Now, all general
attributes are known in order to switch to the chosen solution. These attributes are applied in either the ’single
cross-section’ or the ’composite cross-section’, which are covered in the next sections. Once the geometries
are created by these parts, they are returned to the ’General Attributes’ part. Then, they are written to external
files. Moreover, some additional data is written to a file. This data includes:

• Distance D perpendicular to the flow

• The Geometry Factor

• The chosen solution: single vs composite

• The (uniform) flow velocity at the top of the SFT

This additional data is required for the Python code in order to calculate FLi f t and CL .

Figure D.5: The general attributes - 2

Finally, Karamba structural analysis is applied to calculate the stresses in the cross-section. The geometry
is converted to structural beams. Some supports are inserted in the model at any random location. Note
that the BWR is assumed to be 1.0, meaning that the location of the support is of no influence as the support
reaction is zero. Then, the water pressure loads and the ’stabilizing force’ are inserted into the model as well.
Karamba can now calculate the cross-sectional properties (N,M and V) and optimize for the thickness of the
cross-section. Moreover, the material strength can be chosen as well by setting a certain type of concrete. For
now, concrete C50/60 is chosen.

D.3. Part 3: Single cross-section
As just mentioned, some general attributes are required to obtain ’the single C.S’, like the local planes and
the water pressure. However, this solution also includes the loads due to the flow. Hence, at the beginning
of this part, the flow velocity at the top of the SFT is determined first. Consequently, these flow velocities are
converted to a load according to equation 2.21. Note that these loads are equal for the left half and the right
half in order to obtain a symmetrical cross-section. Then, some of these loads are amplified by the Geometry
Factor. All of this is exactly the same as shown in Chapter 4 and Appendix B. The (adapted) load profile due to
the loads is then used to calculate the ’stabilizing forces’. Within the latter component, also a fraction of the
water pressure is included now. Note that this is different from Chapter 4. Once the fraction of water pressure
is set to 0.0, the output is similar as for Chapter 4. For an overview of all these components, see figure D.6.
Finally, all these loads are inserted into the Kangaroo solver as becomes clear from figure D.7.
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Figure D.6: The single cross-section - 1

Then, as just mentioned, the loads and geometry are inserted into the Kangaroo solver. This solver executes
the Form Finding process. The deformed shape is scaled back to the original perimeter of the starting circle.
Then, this renewed geometry is written to external files as shown in the ’General Attributes’ part. Finally,
the water pressure loads on the renewed geometry are created in order to execute the structural analysis
in Karamba. This is no different from the water pressure loads on the starting geometry, but on a different
cross-section.

Figure D.7: The single cross-section - 2

D.4. Part 4: Composite cross-section
Similar for Part 3, some general attributes were already generated in Part 2. The water pressure load is now the
only load inserted into the Kangaroo Solver. Together with the already defined local planes, the water pressure
force can be inserted correctly. Moreover, the geometry is included with the ’Lenght (Line)’ component.
This implies that the geometry has no bending stiffness, which is by definition required for Form Finding.
Consequently, the deformed shape is scaled back to its original perimeter.
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Figure D.8: The composite cross-section - 1

Another difference between the single cross-section and the composite cross-section is that the inner tube
can be optimized with respect to the material use. Hence, the geometrical effects and changes in curvature
should be considered here. Similar as for Chapter 3, a looping process can be executed. The scaled geometry
is written to the same external file. Now Grasshopper recognizes the new output and executes the same
process again. In order to execute the loop, one must press the ’Loop - HWP’ button from the ’control center’
as shown in figure D.3.
Now, the optimal cross-section for the inner tube is generated based on the water pressure. Note that this part
is identical to the model as described in Chapter 3. Secondly, the exoskeleton is created. This exoskeleton can
be manually adapted from the control center. Finally, when pressing the ’write to file’ button, the exoskeleton
is exported. Now, the Python code can be used to quickly estimate the lift force generated by the exoskeleton.
Depending on the requirements, one can decide to accept the shape of the exoskeleton or to manually adapt
it.

Figure D.9: The composite cross-section - 2



E
Analytical derivation of velocity potential

The flow around a submerged body can be determined using a CFD. However, this requires often a lot of
computational time whereas it is desired to have a quick view upon the flow velocities around the submerged
body for an optimization process. The flow velocities around the submerged body determine the local fluid
pressure. The fluid pressure is required to calculate the lift force on the submerged body.
In order to calculate the flow around a submerged body, the velocity potential can be used. The velocity
potential was first introduced by Joseph Louis Lagrange [3]. The velocity potential φp is a general equation
which describes a scalar potential of the potential flow. To start, it is important to understand that the equa-
tions hold for a 2D-situation where the x-coordinate represents the horizontal direction and the y-coordinate
represents the vertical direction. Note that this is different from the rest of the report, where the z-coordinate
represents the vertical direction. The equation has got the following characteristics for any point.

φp = veloci t y potenti al

Vx = ∂φp

∂x
(E.1)

Vy =
∂φp

∂y
(E.2)

The velocity potential can be derived for any situation to calculate the velocity at any arbitrary point P. Some
general expressions for this velocity potential are known for a cylinder [16]. For now, no further elaboration is
given on the derivation of this velocity potential since it will not be used in this research. However, it is used
as a first validation of the Panel Method which is discussed in the rest of this Appendix. In figure E.1 the flow
velocity around a cylinder is shown based on polar coordinates.

Figure E.1: The analytical flow velocity around a cylinder [16]

115



116 E. Analytical derivation of velocity potential

The flow velocity at the top and the bottom of the cylinder is equal to 2 ·u and the flow velocity right at the
leading and the trailing edge are equal to zero. These values are kept in mind for now.

The main difference is that the desired geometry is not a perfect cylinder as shown in Chapter 4. The desired
higher velocities at the top of the SFT require a more convexly shaped geometry at the top. See figure 4.6b for
instance. Furthermore, it is now difficult to apply polar coordinates since the radius R has become a function
of angle θ.
In the rest of this Appendix, the velocity potential is derived for a uniform flow over an arbitrary shape (airfoil)
using the panel method. Note that the equations are linear, meaning that superposition can be applied here.
The total result is the sum of the individual results.

E.1. Velocity potential - SFT in a Uniform Flow
In this section, the velocity potential for a uniform flow flowing over the SFT is derived. First, the velocity
potential for a uniform flow is shown after which the same is done for the SFT. Finally, the velocity potential
is elaborated and solved in terms of an actual velocity.

E.1.1. Uniform flow
For uniform flow, the velocity potential is rather easy to generate. When no submerged body would be
present, the flow velocity at point P is equal to the incoming flow velocity at the boundary of the domain.
Since the flow velocity in both x- and y- direction are the derivative of the velocity potential, the function can
be written as:

φu,p =V∞ · cos(α) · x +V∞ · si n(α) · y (E.3)

Where:

• V∞ = uniform flow velocity

• α = angle between flow and horizontal

This is a rather simple equation and represents the input of flow in the ’domain’. When taking the derivative
of the velocity potential to x and y, Vx and Vy are retrieved respectively.

E.1.2. SFT - Panel Method Geometry
The next part of the total velocity potential function is due to the submerged body. The submerged body
functions as a source/sink term to the local flow velocity. However, the submerged body can not be modelled
as one point source, since it would not be able to describe the flow close to the structure accurately. Hence,
the panel method is applied here [14] [1].
The idea is to discretize the geometry into sections, just as was done for the SFT before in Chapter 3 and 4.
The earlier called segments are here called ’Panels’. Hence, this method is called the ’Panel Method’.
The velocity of a point source can be described as [2] [24]:

φp,poi nt = λ

2∗π · ln(rp ) (E.4)

The velocity potential of such a panel must be described differently. The length of the panel should be in-
cluded by integrating the term over the length of the panel s. This results in the source/sink term for a panel
being equal to:

φp,panel =
∫

λ

2π
· ln(rp ) ·d s (E.5)

Where:

• λ = source/sink constant of the panel

• rp = distance between point p and the panel

• s = length of the panel
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Since the geometry consists of multiple panels and the velocity potential functions are still linear, the total
source term can be described as a summation of all the individual panels. Moreover, the source/sink term λ

is a constant for each panel and not dependent on distance along the panel (s j ). This means that this term
can be excluded from the integral. Concluding, the velocity potential for the submerged body is:

φp,panel s =
N∑

j=1

λ j

2∗π ·
∫

ln(rp j (s j ) ·d s j (E.6)

Where:

• j = index of panel

• N = amount of panels (accuracy of the geometry)

Now, the total velocity potential is known for a uniform flow over the SFT. This is equal to:

φp =V∞ · cos(α) · x +V∞ · si n(α) · y +
N∑

j=1

λ j

2∗π ·
∫

ln(rp j (s j ) ·d s j (E.7)

E.1.3. Solving the velocity potential
The function shown in equation E.7 now must be solved. This can be done for any arbitrary point P to calcu-
late the local flow velocity. However, there are still some unknowns in the equation above, namely the set of
λ′s. When these values are not solved correctly, the flow would be able to go straight through the structure,
which is physically impossible or at least undesirable. Hence, the panels each have a boundary condition.
The flow velocity right at the surface can not have a normal component, because it would then flow through
the submerged body. The tangential flow velocity at the surface is a certain constant C. The boundary condi-
tions applicable for each panel is:

Vn = 0 m/s

Where n is the component normal to the panel’s surface. Again, the benefit of the general expression for the
velocity potential can be used to find the normal velocity component at the panels’ surface.
Now, there are N unknowns and N boundary conditions, meaning that the set of equations is determinant
and can be solved.

Vn,i = ∂φi

∂ni
=V∞ · cos(α) · ∂xi

∂n︸ ︷︷ ︸
1

+V∞ · si n(α) · ∂yi

∂n︸ ︷︷ ︸
2

+
N∑

j=1

λ j

2∗π ·
∫

∂

∂ni
(ln(rp j (s j )) ·d s j︸ ︷︷ ︸
3

= 0 (E.8)

Concluding, the unknown set of λ’s is solved by evaluating the velocity in the normal direction at the panels’
surface. This is done later on in this section.
Note, in the exact same manner the tangential velocity at the surface can be determined. The right-hand side
of the equation is not zero then, but the required λ′s are known now. Therefore, that expression can be solved
too.

Vt ,i = ∂φi

∂ti
=V∞ · cos(α) · ∂xi

∂t︸ ︷︷ ︸
1

+V∞ · si n(α) · ∂yi

∂t︸ ︷︷ ︸
2

+
N∑

j=1

λ j

2∗π ·
∫

∂

∂ti
(ln(rp j (s j )) ·d s j︸ ︷︷ ︸
3

=C (E.9)

Geometry definitions
Before actually solving the equations above, it is necessary to show some definitions which repeatedly show
up during the derivation. Especially have a careful look at the definition of the control points xi , yi , which
are located at the middle of the panel and the starting points of the panel x j , y j . It is important to make a
distinction between the control points index i and the panel index j . The normal flow velocity at each panel
i must be equal to zero according to the boundary condition. However, all panels j have an influence on the
normal velocity component at control point i . Hence, a double loop is required later on and it is important
to identify the panels with the two different indices during this double loop. Moreover, the definition of the
angles is also important. See figure E.2
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Figure E.2: The geometry definitions during the derivation

Finally, it is important to loop clockwise when going from index j to index j +1. This has got to do with the
definition of angles and the outward normal on a panels surface.

Normal velocity
Now, the equations can be solved. As might become clear from equations E.8 and E.9, it is term 3 in both
equations which causes some trouble. The terms 1 and 2 can be easily combined into one single expression
depending on angle β. As shown in figure E.2, angle β is the angle between the outward normal vector of the
panel and the free stream. When solving terms 1 and 2, the intermediate result for the solved equation is:

Vn,i =V∞ · cos(βi )︸ ︷︷ ︸
1 and 2

+Ii , j

Vt ,i =V∞ · si n(βi )︸ ︷︷ ︸
1 and 2

+Ji , j

Where:

• Ii , j = term 3 in equation E.8

• Ji , j = term 3 in equation E.9

Now, the summation of the integral terms is evaluated in order to solve for the normal and tangential velocity
components. The summation term Σ can be simply ’solved’ in the end by adding up the solution for the
integral for all panels j . Hence, the integral needs to be solved first. Note that this integral solely depends

on the panel geometry. The integral to be solved in the following is shown below. Besides, the constant
λ j

2π is
excluded for the derivation and added in the end again.

Ii , j =
∫

j

∂

∂ni
ln(ri , j ) ·ds j

Where:

• ri , j =
√

(xi −x j )2 + (yi − y j )2 = distance between control point i and panel coordinate j

Moreover, the control points of the panels are now used as the earlier mentioned ’arbitrary points’ to solve
for the boundary condition. Applying the chain rule and the derivative for the natural logarithm yields:

Ii , j =
∫

j

∂ri , j

∂ni

1

ri , j
·ds j
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The next step is to find the derivative of distance ri , j to the normal direction n.

∂ri , j

∂ni
= 1

2
· [(xi −x j )2 + (yi − y j )2)

]−0.5 ·
[

2(xi −x j )
∂xi

∂ni
+2(yi − y j )

∂yi

∂ni

]
When bringing down the first term in the expression above, because of the power ’-0.5’, and multiplying this
with 1

ri , j
, the square roots of ri , j are multiplied with each other which means they cancel each other out.

Moreover, the 1
2 -term and the 2 from the expression above cancel each other out as well. The following is the

result:

1

ri , j

∂ri , j

∂ni
=

(xi −x j ) · ∂xi
∂ni

+ (yi − y j ) · ∂yi
∂ni

(xi −x j )2 + (yi − y j )2

The next step is to eliminate the partial derivatives of xi and yi over ni . For a clarification, see figure E.3. The
partial derivatives can be solved applying simple trigonometry.

Figure E.3: The partial derivatives of xi and yi over ni

This leads to:

• ∂xi
∂ni

= cos(δi )

• ∂yi
∂ni

= si n(δi )

• δi =φi +90°

And finally a total intermediate result equal to:

Ii , j =
∫

j

(xi −x j ) · cos(δi )+ (yi − y j ) · si n(δi )

(xi −x j )2 + (yi − y j )2 ·d s j (E.10)

The next step is to define x j and y j as a function along the panels length s j . In order to do so, the starting
point of the panel is defined as X j and Y j . Note the difference in the capital X and Y.

Figure E.4: The definition of xi and yi along panel length s j

With:

• x j = X j + s j · cos(φi )

• y j = Y j + s j · si n(φi )
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Consequently, the new expressions for x j and y j are inserted in equation E.10. Moreover, the new expression
for δi is used in the following. For the full derivation, see [14]. The result for the numerator of the fraction in
the integral is equal to:

si n(φi −φ j ) · s j − (xi −X j ) · si n(φi )+ (yi −Y j ) · cos(φi )

Which can be written as:
numer ator =C · s j +D

With:

• C = si n(φi −φ j )

• D =−(xi −X j ) · si n(φi )+ (yi −Y j ) · cos(φi )

Now the same can be done for the denominator. First, the terms are expanded which means the parentheses
are worked out. Secondly, the new expressions for x j and y j are inserted resulting in the following. Again, for
the full derivation see [14]. The result is an expression for the denominator in a quadratic form in terms of
variable s j . Note, this is important since the total term has to be integrated with respect to variable s j . The
result is:

denomi nator = s2
j +2 · s j

[−(xi −X j ) · cos(φ j )− (yi −Y j ) · si n(φ) j )
]+ [

(xi −X j )2 + (yi −Y j )2]
Again, mind the difference between indices i and j and the difference between capital X,Y and small x,y. Now,
each term is ready to be integrated over variable s j . This term can be rewritten in the form of:

denumer ator = s2
j + A · s j +B

Where:

• A =−(xi −X j ) · cos(φ j )− (yi −Y j ) · si n(φ j )

• B = (xi −X j )2 + (yi −Y j )2

The following is now the intermediate result for the integral Ii , j

Ii , j =
∫ s j

0

C · s j +D

s2
j +2A · s j +B

(E.11)

With A, B, C and D as mentioned above.
Now, another substitution is executed for convenience purposes. The denominator can be rewritten as:

s2
j +2A · s j +B = (s j + A)2 + (B − A2)

With additional parameter E =
p

B − A2 which yields:

Ii , j =
∫ s j

0

C · s j +D

(s j + A)2 +E 2

Then, after some substitutions in the derivation of this integral the result is an expression for Ii , j without
any difficult terms to solve. Since the derivation is just math and does not include any fundamental steps in
defining some variables or terms, it is excluded here. For the full derivation, again see [14]. The result for the
integral is:

Ii , j = C

2
· ln

[
s2

j +2As j +B

B

]
+ D − AC

E

[
t an−1(

s j + A

E
)− t an−1(

A

E
)

]
(E.12)

With:

• A =−(xi −X j ) · cos(φ j )− (yi −Y j ) · si n(φ j )

• B = (xi −X j )2 + (yi −Y j )2

• C = si n(φi −φ j )
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• D =−(xi −X j ) · si n(φi )+ (yi −Y j ) · cos(φi )

• E =
p

B − A2

The final step in solving the integral is adding up all the different panels which influence the velocity potential
at an arbitrary point p.

Ii , j =
N∑

j=1

(
λ j

2∗π · C

2
· ln

[
s2

j +2As j +B

B

]
+ D − AC

E

[
t an−1(

s j + A

E
)− t an−1(

A

E
)

])

Now the difficult term 3 from equation E.8 is solved, the total normal velocity at the panels’ surface can be ex-
pressed and set to zero. The N equations and N unknowns can be solved for unknown λ, which is the source
term for each panel. Remind that this solves for a situation where the flow can not pass through the body.

An additional explanation for the physical meaning of integral Ii , j is: the geometrical influence of panel j on
control point i . Concluding, all N panels have an influence on the normal velocity at control point i . So I2,5

would show the geometrical influence of panel 5 on the normal velocity at panel 2. Since all panels j have an
influence on the normal velocity at panel i, the I-terms are written in matrix shape. The total set of equations
looks as:

Vn,i =



I11
2π

I12
2π . . . . . . I1n

2π
I21
2π

1
2

...
. . .

...
. . .

In1
2π

Inn
2π

 ·



λ1

λ2
...
...
λn

=



−V∞ · cos(β1)
−V∞ · cos(β2)

...

...
−V∞ · cos(βn)


Note that the diagonal has got a value of 1

2 . This is in line with mathematical theory which is not elaborated
further here. The diagonal represents the influence of a panel on its own normal velocity.
The output is now a set of λ′s belonging to the panel geometry.

Tangential velocity
The next step is to calculate the tangential velocity at the surface, since this is of interest when determining
the net lift force on the structure. A similar-like derivation can be done in determining the integral Ji , j which
is required for the tangential velocity. This derivation is not shown here. The output is:

Ji , j = C

2
· ln

[
s2

j +2As j +B

B

]
+ D − AC

E

[
t an−1(

s j + A

E
)− t an−1(

A

E
)

]
(E.13)

With:

• A =−(xi −X j ) · cos(φ j )− (yi −Y j ) · si n(φ j )

• B = (xi −X j )2 + (yi −Y j )2

• C =−cos(φi −φ j )

• D = (xi −X j ) · cos(φi )+ (yi −Y j ) · si n(φi )

• E =
p

B − A2

Note that only the expressions for C and D are slightly different. The tangential velocity at the panels surface
can now be calculated by:

Vt ,i =



J11
2π

J12
2π . . . . . . J1n

2π
J21
2π 0
...

. . .
...

. . .
Jn1
2π

Jnn
2π

 ·



λ1

λ2
...
...
λn

+



V∞ · si n(β1)
V∞ · si n(β2)

...

...
V∞ · si n(βn)
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Velocity potential at arbitrary point P
In order to calculate the total velocity profile throughout the cross-section, the original velocity potential
must be solved as was shown in equations E.7. The horizontal and vertical velocities can be retrieved by
differentiating the velocity potential to the corresponding direction, as stated in the start of this Appendix.
This is done in a similar way as for the normal and tangential velocity. However, this derivation is easier since
the terms can be simply derived to the Cartesian coordinate system.

Vx,p = ∂φp

∂x
=V∞ · cos(α)+ λ j

2π

N∑
j=1

∂

∂x

∫
j

ln(rp j (s j )) ·d s j (E.14)

With:

• rp j =
√

(xp −x j )2 + (yp − y j )2

Assuming that the partial lengths are relatively small, which is the case for the SFT as the accuracy is set to a
large number, the distance along the panel to arbitrary point P is averaged. This means that variables x j and
y j are independent of s j . The integral term then simply becomes:∫

j
ln(rp j ) ·d s j = ln(rp j ) · s j

The next step is to take the partial derivative of this term to x. When applying the derivative rule for the natural
log and applying the chain rule (2 times), the result is:

∂

∂x
ln(

√
(xp −x j )2 + (yp − y j )2) · s j =

s j√
(xp −x j )2 + (yp − y j )2

· 1

2 ·
√

(xp −x j )2 + (yp − y j )2
·2(xp −x j ) =

s j (xp −x j )

(xp −x j )2 + (yp − y j )2

This results in the total expression for Vx at point P being equal to:

Vx =V∞ · cos(α)+
N∑

j=1

λ j

2π
· s j (xp −x j )

(xp −x j )2 + (yp − y j )2 (E.15)

The same thing can be done for the vertical velocity at point P, which results in:

Vy =V∞ · si n(α)+
N∑

j=1

λ j

2π
· s j (yp − y j )

(xp −x j )2 + (yp − y j )2 (E.16)

Conclusion
Concluding, the total velocity field can now be solved by means of the velocity potential. First, the unknown
source/sink terms of the submerged geometry are solved by setting a boundary condition at the geometry’s
surface. The normal velocity must be zero, meaning that the flow can not flow through the body. This is also
physically understandable. After the source/sink terms (λ) are solved, the tangential velocity at the surface
can be calculated as well as the velocity at any arbitrary point. The output is shown in section E.2.

E.2. Velocity potential - Total result
Some results of the analytical derivation of the flow along a geometry are shown in this section. First, a circular
cross-section is tested in order to check the theory as was shown in figure E.1. Here, it was predicted that the
flow velocity at the top and the bottom of a cylinder is equal to 2 ·U or in this case 2 ·V∞. The case tested here
is:

• V∞ = 2 m/s

• ρ = 1050 kg /m3
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Figure E.5: The flow profile along a cylinder for V∞ = 2 m/s

Right, the tangential velocity is shown along the structures’ surface. It is visible that it is approximately zero at
the leading and the trailing edge. When the normal velocity would be plotted, it is indeed zero. At the left, the
total velocity profile is plotted. Note that some numerical errors exist due to the inaccurate grid. However,
if the grid would become too dense, the plot would not be readable anymore. What is visible is that the flow
starts to curve around the cylinder already before it reaches the structure. This is in line with expectations.
Besides, the boundary condition is achieved as well, which stated that the flow can not go through the sub-
merged body. It nicely streams along the cylinder.
Furthermore, when looking at the array at the bottom of figure E.5 the flow velocities can be seen. It starts at
the top of the circle and goes all the way around in clockwise direction. The flow velocity at the top and the
bottom is 3.99 m/s, which is basically twice the uniform flow velocity. This is in line with the general theory
presented at the start of this Appendix.
In figure E.6, the velocity and pressure contour plot is shown for the velocity profile shown above. The pres-
sure is calculated using Bernoulli’s principle. See equation 4.1. Again, note that some numerical errors are
visible due to the ’inaccuracy’ of the grid.
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Figure E.6: The velocity and pressure profile

The script coded in Python can execute this Panel Method for any random geometry. The geometry is gener-
ated and exported from Grasshopper. The output data from GH for the geometry to be analysed by the code
is:

• Control coordinates (xi , yi )

• Boundary coordinates (X j ,Y j )

• Panel length s j

• Angle β between freestream and outward normal

• Angle phii



F
Panel Method in Python

In this Chapter, the code in Python is shown. This code is linked with the results found in Grasshopper/Rhinoceros
via external files. One must press the ’write to file’ button in Grasshopper. Make sure that this Python Note-
book is in the same folder as the data which is written to the external file. Otherwise, Python can not import
them and work out the Panel Method.
Moreover, when the ’exoskeleton’ is switched on in Grasshopper, Python will evaluate the panel method with
xFoil. This programme ’xFoil.exe’ must also be within the same folder as the Python Notebook. xFoil is an
external software program which also executes the Panel Method. In addition, it is capable of analyzing vis-
cous flow by making an approximation for the boundary layer equations. These approximations only hold
for ’airfoil like’ structures, with a sharp tip at the leading edge and trailing edge. For more information, see
the main report. Behind most parts of the code, some explanation is given.

Figure F.1: The python script - 1

125
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Figure F.2: The python script - 2

Figure F.3: The python script - 3
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Figure F.4: The python script - 4

Figure F.5: The python script - 5
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Figure F.6: The python script - 6

Figure F.7: The python script - 7
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Figure F.8: The python script - 8

Figure F.9: The python script - 9
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Figure F.10: The python script - 10

Figure F.11: Output of Python script - with exoskeleton and xFoil analysis



G
CFD-Results

In section 4.5, the calculation of the lift force is described. Two methods are presented there. The lift forces
are evaluated for the different cross-sections as found and described by section 4.4.
The first option is to simulate a CFD-model, which is accurate but very time consuming (BRON). Often, at
early stages within the design process, a quick estimation of FLi f t is desired instead of a detailed analysis
with a complicated model. The second option is to apply the Source Panel Method (SPM). The Panel Method
has been elaborated in Appendix E and coded in Appendix F. This method is computationally very efficient
and gives accurate results for the leading edge. The trailing edge is where turbulent phenomena occur which
cannot be modelled by the SPM. This method only handles laminar flow, which results in zero drag and lift
for any shape. This is not realistic, so a compromise between the two options is searched for.

The velocity at the top and bottom of the SFT, VTop and VBot tom are found to be within an acceptable error
margin from the CFD results and therefore assumed to be realistic. Therefore, these values are used to find a
relation between the shape and the lift force/coefficient. The relation between the flow velocity, or the flow
velocity ratio, and the lift coefficient is assumed to be quadratic according to:

CL = FLi f t

1
2 ·ρ ·D ·V 2

To find this relation, three ’equations’ or points on the curve are required to fit a curve through. These three
’calibration points’ are first shown, after which a verification point is shown as well. The outputs from these
simulations is further elaborated in section 4.5.

G.1. Calibration point 1 - Circle

The first point follows from simple theory. A shape which is symmetric over the horizontal, like a circle, has

zero lift and a ratio
VTop

VBot tom
equal to 1.0. The flow velocities solved by the SPM for a simple circle in an uniform

flow equal to 2 m/s is shown in figure G.1.
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Figure G.1: The velocity profile for a circle in V∞ = 2 m/s based on SPM

As turns out from this SPM, the flow velocities at the top and bottom are equal to 4 m/s. Note that this is in
line with theory as presented in figure E.1 already. The first point is equal to:

• Ratio =
VTop

VBot tom
= 4.0

4.0 = 1.0

• CL = 0.0 (Theory)

G.2. Calibration point 2 - GF = 3.0
Here, the cross-section with geometry factor 3.0 is evaluated with the CFD-model. For the definition of this
GF, one is referred to section 4.4. The cross-section looks as below in figure G.2:

Figure G.2: The cross-section with GF = 3.0

The ratio
VTop

VBot tom
is again determined based on the Panel Method. This ratio is the same as for the CFD-output

or within an acceptable error margin.
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Figure G.3: The flow velocity profile for cross-section with GF = 3.0

The output from the SPM, more accurately retrieved from the Python script itself, is:

• VTop = 2.99 m/s

• VBot tom = 2.59 m/s

The ratio between the flow velocities is known. The lift force and lift coefficient can be determined based on
the CFD. As mentioned before, the SPM is unable to calculated these forces. Therefore, the CFD-simulation
is required. For the output of the CFD, see the figures below.

Figure G.4: The velocity field for cross-section with GF = 3.0 and V∞ = 2 m/s [43]
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Figure G.5: The pressure field for cross-section with GF = 3.0 and V∞ = 2 m/s [43]

Figure G.6: The drag and lift force for cross-section with GF = 3.0 and V∞ = 2 m/s [43]

The lift coefficient can now be calculated:

CL = FLi f t

1
2 ·ρ ·D ·V 2∞

= 5.600
1
2 ·1050 ·8.9 ·22

= 0.30

Which leads to the second calibration point to find the relation:
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• Ratio =
VTop

VBot tom
= 2.99

2.59 = 1.15

• CL = 0.30

G.3. Calibration point 3 - GF = 5.0
This CFD output of this calibration point was already shown in the main report. For the shape of the cross-
section, one is referred to figure 4.6b. In paragraph 4.5.1 the CFD output is shown in figures 4.8, 4.9 and 4.10.
The velocity field as calculated by the SPM in Python is described in paragraph 4.5.2 and shown in figure 4.12.
This all led to the following calibration point:

• Ratio =
VTop

VBot tom
= 3.10

2.56 = 1.21

• CL = 0.43

G.4. Verification point - GF = 15.0
With the three points above, enough information is available to fit a quadratic curve which shows the relation

between
VTop

VBot tom
and CL . To see if this relation is actually valid, an additional situation is required to verify.

This is done for a Geometry Factor equal to 15. The shape looks as in figure G.7

Figure G.7: The cross-section for Geometry Factor = 15.0

The ratio
VTop

VBot tom
is again determined based on the Panel Method. This ratio is practically the same as for the

CFD-output.

Figure G.8: The flow velocity profile for cross-section with GF = 15.0

The output from the SPM, more accurately retrieved from the Python script itself, is:

• VTop = 3.26 m/s
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• VBot tom = 2.54 m/s

The ratio between the flow velocities is known. The lift force and lift coefficient can be determined based
on the CFD results. As mentioned before, the SPM is unable to calculated these forces. Therefore, the CFD-
simulation is required. For the output of the CFD, see the figures below.

Figure G.9: The velocity field for cross-section with GF = 15.0 and V∞ = 2 m/s [43]

Figure G.10: The pressure field for cross-section with GF = 15.0 and V∞ = 2 m/s [43]
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Figure G.11: The drag and lift force for cross-section with GF = 15.0 and V∞ = 2 m/s[43]

The lift coefficient can now be calculated:

CL = FLi f t

1
2 ·ρ ·D ·V 2∞

= 11.700
1
2 ·1050 ·8.6 ·22

= 0.648

Which leads to the verification point to establish and check the relation:

• Ratio =
VTop

VBot tom
= 3.26

2.54 = 1.28

• CL = 0.648

Again, the further processing of all this output to a relation between the ratio of the flow velocities and a lift
coefficient is further executed in paragraph 4.5.3.
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