WebHack: A Research System for Social Massive
Multiplayer Online Games

Arnoud Bakker

%
TUDelft

Delft University of Technology

System Performance of a Platform for Social
Massive Multiplayer Online Games

Master’s Thesis in Computer Engineering

Parallel and Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science
Delft University of Technology

Arnoud Bakker

16th January 2012

Author
Arnoud Bakker

Title
WebHack: A Research System for Social Massive Multiplayer Online Game

MSc presentation
20th January 2012

Graduation Committee
prof. dr. ir. D. H. J. Epema (chair) Delft University of Technology

dr. ir. A. losup (supervisor) Delft University of Technology
prof. dr. ir. S. D. Cotofana (CE) Delft University of Technology

Abstract

The most popular Facebook games are being played by millions of users; so
times only a few weeks after introduction. Although several of these gantes a
their users have been studied, there currently exists no open-sausi@wof such

a game.

In this thesis we present the design, implementation, and performanceiganalys
of WebHack, a Facebook-integrated multiplayer game. WebHack is buitt tingo
classic, but still popular, game of Nethack. We discuss the technicaludliéis
with file handles, process limits, communication networks, and handling failures

Further, we consider aspects specific to legacy applications, for exdegglle
issues and technical limitations. We propose methods to circumvent thesg issue
and show a successful integration of the legacy game Nethack into oebbdac
integrated game system.

We present the design of our system and evaluate the performance ad-the
sign in various scenarios. Among other results, we show that WebHadkigha
performance system, able to support over 300,000 concurrent gldyaardle ar-
rival rates for up to 1,750 new players per second for over 60 siscamd is able
to recover within 10 seconds from a server failure.

Preface

| want to thank my parents, employer, and supervisor.

| am not new to the subject of multiplayer games; | have hosted my own multiplayer
online RPG for over ten years. This led to the following tribute:

Rage of Vengeance masters!

Supreme Entity
Akasi Arwen Balin Foil Ignite Jrk Loesje Lucifer Vigo Zur

Posse
Fallout Mandor Morra Pygmy Sphere Summoner Uber Wacky Xenthar &typh

Arnoud Bakker

Delft, The Netherlands
16th January 2012

Vi

Contents

Preface Vv
1 Introduction 1
1.1 Background 1
111 ComputerGames 1
112 Facebook 2
1.2 ProblemStatement, . 3
1.2.1 ResearchQuestions. 3
1.2.2 Technical Objectives 4
1.3 ThesisOutline. 5
2 Related Work 7
2.1 ResearchonSocialGames 7
2.1.1 Constructing a Facebook-Integrated MMOG 7
2.1.2 Designing SocialGames 8
2.1.3 Statistics of Facebook Applications 8
214 CurrentStatus 8
2.2 Research on MMOG performance 9
2.2.1 Load Balancing in Structured P2P Systems 9
2.2.2 Modelling HTTP Network Traffic 9
2.3 Research on Game System Failures 10
3 WebHack: A Research System For SMOGs 13
3.1 Functional Description of the System 13
3.1.1 GamePlatform 13
3.1.2 ResearchSystem 14
3.1.3 Facebook Integration 15
3.2 SystemDesign 15
3.21 Nethack+ 15
3.2.2 Nethack Handler Daemon (NHD) 16
3.23 HackSite 17
324 TheBot........ 17
3.25 TheGrapher 18

3.26 TheBundler 18

3.2.7 ACompleteSystem 18
3.3 SystemImplementation 20
3.3.1 Nethack+ 20
332 NHD e 21
3.33 HackSite 24
3.3.4 Facebook Integration 25
3.3.5 HandlingLegacyCode 27
Experimental Evaluation 31
41 OVerview e 32
4.1.1 The Basic Experimental Setup 32
4.1.2 Measurements 32
413 MainFindings 33
4.2 FacebooklIntegration, 34
4.2.1 Application Construction 34
4.2.2 Facebook API Performance 34
4.3 Performance of a Single WorkerNode 35
4.3.1 ExperimentalSetup. 36
4.3.2 Nethack+ CommandDelays 36
4.3.3 HTTPSRequestDelays 36
4.3.4 Effects of a daily pattern on system performance 38
435 ProcessCreation 40
4.4 Scalability of a large-scale distributedsetup 42
441 ExperimentalSetup. 42
442 WorkerSetup 42
4.4.3 Workload Generation 43
4,44 ExperimentalResults 43
45 HandlingFailures 45
451 ExperimentalSetup. 45
452 ExperimentalResults 46
Conclusion 49
5.1 Summary 49
52 FutureWork 50
53 Finally 50

viii

Chapter 1

Introduction

1.1 Background

Gameplay is an old and important aspect of human interaction. It is so much par
of our nature that even seems to predate the existence of human culture [1]

Some games played today were also played in a similar form centuries ago,
but new games are also constantly being invented. This thesis focuseson o
of the newer forms of gameplay, which is based upon the modern invention of
social network websites. First, we give some background on comput@nga
and specifically on the game Nethack, then we discuss the Facebookmlatidr
introduce our problem statement and research questions.

1.1.1 Computer Games

Computer gameplay was made possible around 1950 and is currently arpopula
daily activity in areas where electrical power is available, although games with
boards and pieces, or with a ball or a piece of string, are also still popular

Game development followed the communication trends and multiplayer games
evolved for telephone modems, local area networks, e.g. Ethernet,aaimddimet.
Earlier Internet games often matched players with no common backgroaisag
each other. Slowly, games shifted towards a model where players carrkek
of their friends and favourite partners. This made Internet computer gaess
anonymous, and more of a social activity.

Game design was influenced by this social trend and the multiplayer online
games (MOGs) became more diverse. In a field first dominated by fastipac
aggressive, and competitive MOGs, games which were slower, more wctisr
cooperative, and narratable gained popularity [2, 3].

This research project revolves around social MOGs (or SMOGS)thipur-
pose a basic, but fully functional, SMOG system, based upon the existing g
Nethack, is designed, implemented and analysed.

Nethack

Nethack [4] is a well-known computer game. Whereas the first versiorrevas
leased in 1987, the latest functional updates were made public in 2008tedtd
support modern platforms, such as smart mobile phones, are still beiatpded.

Nethack is a turn-based single-player game. The player controls a higmano
character, which is trapped in a large dungeon. The goal is to obtain #edery
Amulet of Yendor. For this purpose, the dungeon must be explored vériltirig
off dangerous monsters and completing other challenges.

This game is the most popular and successful descendant of the tegtrodes
playing games (RPGs), a genre which started around 1975. Althouglatisition
to advanced 3D graphics has been made, modern RPGs like World ofafYaired
Runescape are functionally similar in many respects [5].

Although being old, Nethack still enjoys a cult status and it is mentioned in
many technical shows and presentations. The game is included in most Linux-
based operating systems installations. A part of the cult aspect stems feom th
ruthlessness and complexity of the game. There are around a hunderdrdif
commands, but many can be used or combined in surprising and unpréglictab
ways.

Most of the time, a single event can result in the death of the charactet whic
immediately ends the game, forcing the player to start over with a new character
This last aspect forms a bond between Nethack players, who amongstetes
seek comfort to complain about frustrating in-game deaths, but also neardel
enjoy the humour, clever design and remarkable attention to detail of this epic
game.

1.1.2 Facebook

Facebook was founded in 2004, first operating as a Harvard sitiveocial web-
site, and going open for the public in 2006 [6].

Since then its user base grew enormously. In August 2011, over 375 million
people were logging in daily, over 2.5 million websites have been integrated with
Facebook, with ten thousand more following each day [7]. These welnsitethe
integration with Facebook to track what people like, advertise, offeicsyand
study or interact with their public.

Facebook’s large collection of personal information is both a treasute din
ability, placing the company in the middle of a permanent struggle between eco-
nomic factors, privacy laws, and user satisfaction.

The popularity of Facebook and other social websites gave rise to areed bf
online multiplayer games, called social multiplayer games. Similar to normal mul-
tiplayer computer games there are played online, but instead of playing with fa
unknown players from around the world, most interaction occurs withisdleel
circle of the player. These social multiplayer games tend to be less aggressio
oriented and more aimed at cooperation.

2

1.2 Problem Statement

Although many SMOGs exist, none of them is open-source and availabte-for
search purposes. It is not a trivial task to construct a computer gastensyhat
is capable of supporting thousands of concurrent players. In anGGNH@ strong
interaction between the requests of different players creates additentadical
challenges.

Massive Multiplayer Online Games (MMOGSs) have been extensively refsed,
and this research has already produced algorithms, techniques,shich €lesigns
capable of supporting a very high number of players.

This knowledge will be used to construct an MMOG system based upombleth
integrated into the Facebook platform. We call your system WebHack, ardkew
signed it as a realistic research SMOG capable of handling a massive nafmbe
players. The design of the system is presented in Chapter 3. The expiaiing
sults are shown in Chapter 4; notably, in Section 4.4 we show that WebHakyis
a massive multiplayer game, and that WebHack is capable of handling ligrafre
thousands of players concurrently.

1.2.1 Research Questions

We focus on three main research questions. Other goals of this repeajett are
discussed afterwards and include technical challenges and a creagvef han-
dling GPL-licensed software within a larger system. We discuss the bagkd)af
the research questions, and related work, in Chapter 2.

Q1. How can massive multiplayer online games be integrated into the siat
platform Facebook?

The Facebook platform offers integrators a large and complex API,hnikic
updated regularly. One of the features, that is, the 'l Like’ button, lez®ime a
well-known concept. Many other forms of integration are possible, bstardard
best-practice method exists.

During our research a flexible method of Facebook integration is implemented
and tested. A discussion of Facebook API performance, and anafytsis mte-
gration is included in Section 4.2.

Q2. What are efficient methods in supporting social MMOGs on a heterog-
neous multi-cluster server system?

Itis technically challenging to build game systems able to handle multiple dozens
of concurrent players [8].

There are many different game system designs [9, 10, 11], and wesiriet-
ing our research to systems using a client-server model where the selevés
distributed over a cluster of machines. The server cluster is able to dyrmica
change in size. This has the advantage of being able to add resoureesnehe
are required, and being able to remove them to avoid unnecessaryigpecsts.

3

The system requires a mechanism to distribute server tasks over the lavailab
server machines. Different algorithms to determine which server handigs n
games are implemented in the research system, as described in Section 3.3.2. We
include an analysis of the performance of these methods in Chapter 4.

Q3. How can a MMOG system be made tolerant to simple system defects?
Distributed computer systems become quite fragile, if an insignificant failure
on a single node can affect the outcome of the entire system. Such a failure mig
occur in a game system when a server unexpectedly becomes discdrorechen
the server that handles all the login requests crashes.
We investigate methods to ensure continued operation of the game system, even
when such a failure occurs. This could avoid system breakdown assibploss
of income. In Section 3.2.7, we describe how a WebHack system withouéesing
points of failure can be constructed. An experiment which shows thenpeshce
during server failures, and an analysis of the results, is included in etto

1.2.2 Technical Objectives

To answer the research questions Q1-Q3, we have designed and imigldraen
SMOG system, called WebHack. In this section we describe the technical ob-
jectives of this system. The design and implementation details are presented in
Chapter 3.

T1. Construct a fully functional web-based SMOG system.

The qualify for this objective, WebHack should not only offer a fully @bie
game through a website, but also the secondary functionality of a gamitegrsys
This includes basic support for logging, maintenance, security, anddtin with
other players.

T2. Construct a system capable of running on a heterogeneous ntidcluster
server.

Achieving this technical objective means that our system is able to handle dif-
ferences in hardware, and differences between groups of machines

A heterogeneous server cluster consists of machines with differedtvhes
platforms. WebHack should not only be able to run on different typesuafiare,
but also to form one server cluster which such systems.

A large number of machines, forming a single system, is sometimes subdivided
in smaller groups, called clusters. Such a subdivision can be part ohiagaon-
vention, or be based on the network structure. This last situations mightdead
a system where there are differences between inter-cluster and ludtaracom-
munication. In many situations inter-cluster communication is slower and subject
to more access restrictions. Our system should be able to operate on dtieh mu
cluster systems.

T3. Construct a system capable of supporting over 250,000 concant play-
ers.

According to Wikipedia [12] a system has to be able to support hundneds o
thousands of concurrent players to be considered an MMOG.

Achieving this objective enables our system to qualify as a massive multiplayer
game, and even demonstrates that it is capable of handling an amount exfsplay
only found on popular SMOGs.

Legal Objectives

L1. Show a practical method of integrating legacy software into a mdern
platform.

Most software comes with a license, which determines acceptable usage. It
no surprise that users are not allowed to copy, resell or redistributesofb&are
they have payed for, but some of those restrictions also apply to fraessef

Although Nethack is freely available, the use of the source is subject tastice
If a SMOG system is constructed by expanding the original Nethack amaghe
use of the entire SMOG system would be subject to the Nethack license. We pla
to use Nethack in our SMOG system, but to minimise the effect of the license
restrictions.

There are a number of popular license schemes for free softwardwedef
which is placed in the public domain is considered to be copyright-free,amte
used for almost any purpose.

Most free software is released under a derivative of the GeneldicRLicense
(GPL). Software released under this license can be used, modifiedistriduted
free of charge. It is allowed to distribute modified version of the softwawenot
to charge for their use, or to place restrictions on access to the sowee co

By using the game of Nethack in our SMOG system, it is almost unavoidable
that a part of our source code can be considered to be deriveditéigato show
practical usage of an unmodified version of Nethack-3.4.3 in our refssgstem,
and explain the implications of this approach in Section 3.3.5.

1.3 Thesis Outline

In the next chapter we discuss the background of the research ausestio techni-
cal objectives, and talk about MMOGs, Facebook Applications, antecelaork.

In Chapter 3 we present the design and implementation of our researctsgame
tem, WebHack. Chapter 4 contains the description and results of ourirexnes.
We finish with a conclusion in Chapter 5.

Chapter 2

Related Work

In the previous chapter we defined our research questions on feécetiegra-
tion, game-system scaling, and fault tolerant game-systems. In this chegptah
discuss the background of the research questions. Some of the aspentso-
duce will be used in the design of our MMOG-system, which we introduce in the
following chapter. Others topics are here to serve as a starting pointirfief
research.

2.1 Research on Social Games

Many Facebook aspects have already been the subject of scientifarals In

the next sections we will discuss a bachelor of science project aboateb&ok

integrated shooting game, the social aspects of game design, and dmtiessfs
the statistics of Facebook Applications and their users.

2.1.1 Constructing a Facebook-Integrated MMOG

In 2010, two bachelor students F. Jutte and J. de Swart completed theé<rac
of science project on a Facebook-based MMOG at TU Delft. They dedignd
implemented a prototype of a web-based, shoot-em-up game. The game system
had a client-server architecture. Player commands and location updades digt
tributed through a messaging system.

In this approach the number of messages per second grows quadratitally
the number of players, making the system unable to support a large nuifnber o
players. Their research focused on investigating different method=dtee the
number of messages sent. The main idea was to reduce the area of themwvorld o
which the clients received updates. The part of the world a client wasgtest in
is called the Area-Of-Interest (AOI).

The mock-up game was lightly integrated into Facebook. Their thesis dekcribe
other possibilities for integration, which we further explore in this project.

7

2.1.2 Designing Social Games

Web-based games are not new, but Facebook-integration opensvymasibili-
ties. In the introduction, we already mentioned that violent and fast-pareeg
did not fit the social genre very well. By looking at the first games thatiibed
on the social websites a number of similarities appeared. At least fivediffer
design aspects [3] were found to be important for producing social gaetes:
physicality, spontaneity, sociability, narrativity and asynchronisity.

Social games contain actions which humans are physically able to do, but hide
the complexities and effort of those actions. Metaphors should be usekethea
game easy to follow. The common social relations between players are ubed in
game design. The game was designed while considering users who plebamu
of short sessions daily.

These aspects are simple to grasp. They are easy to integrate into exisigg ga
so they can serve as a guidebook for developing Facebook-integeatess.

2.1.3 Statistics of Facebook Applications

The usage of a number of different Facebook applications has besd teand
analysed [13]. This analysis gives insight into the geographical disoibof the
users, the intensity of the interaction between users, and the distributietasnk
traffic. Most of the results are representative for reasonably popplalications
studied over a long period of time. Among the important results is shown that
application interaction with Facebook can incur multi-second delays, ansewor
for more popular applications.

Because of the slow nature of most social games, such delays are imetta d
problem, but they can become a source of annoyance for the playéis mast
applications, the number of users grows at a nearly exponential raieg dioe first
days of operation, but remains fairly constant afterwards [14].

2.1.4 Current Status

Currently, the game developer Zynga is dominating the Facebook applicetiven a
[15]. The company, only 4 years old, was estimated to be worth around 7 Bil-
lion dollars. At least 25 percent of all Facebook users played onesofgames.
Their most popular game, FarmVille, services over 25 million players dailygdyn
uses both a private data centre and commercial cloud-based solutiorst théip
games. The clouds are mostly used to handle the large traffic spikes tgengya
recently introduced games.

Blizzard Entertainment still manages to attract over 11 million paying subssriber
with their 7-year-old game 'World of Warcraft’. Blizzard constructed teever
clusters out available hardware, but they are largely operated and mathtay
partners because commercial cloud computing was then still in its infancy. In
general, games which require fast responses are more commonly ruglfon s
engineered server systems, rather than clouds.

8

2.2 Research on MMOG performance

The maximum number of players in an MMOG greatly depends on the game genre
Most high-paced games, e.g., first-person shooters, are not ablpgorsmore

than several dozen players, but run into that limitation when a single ro@rear
becomes very crowded [8].

For certain subtasks a client has to consider all other nearby clientswA fe
of these tasks, e.g., path finding, collision detection, and maintaining a consiste
global state, consume an increasing amount of extra resources whgidening
an additional client. When the resources of one of the servers of arsduster
are exhausted, this can cause the game to slow down or even fail completely.

Although slower games do not suffer from the same problems, they can also
be slowed down considerably when the number of concurrent playensases.
Common limiting factors are the maximum number of database transactions per
second, and the overhead caused by locking operations.

2.2.1 Load Balancing in Structured P2P Systems

Ananth Rao e.a. [16], compared different load-balancing apprgsaicha P2P-
system where some nodes were overloaded with work, and othersduadaes to
spare. They experimented with different methods and algorithms of swaigsiks
between nodes in order to reach a state where all nodes are moderadely.loa

Their work showed that for a sufficiently large network a simple scheme, in
which each overloaded node shed tasks to the least loaded node it esas aiyw
performed amongst the best ones, while requiring the least communication.

Although the work focusses on a P2P-system which did not have gamicg fu
tionality, but instead it offered access to a database, the results coulglblye
applicable, because of the functionality agnostic nature of the load badpaigio-
rithms.

2.2.2 Modelling HTTP Network Traffic

Popular web-servers are visited daily by a large number of clients. The differ
greatly in length and number of requests. A model of such a server catrgoted
using Queueing Theory.

If the arrival of clients is modelled as a Poisson process, the systeneaashy
analysed analytically, and the model can be made to closely resemble theotraffic
an existing web-server. However, Ethernet network traces wererstmexhibit
self-similarities, a feature which can be described by the Hurst-expoitenas
shown that the self-similarities occurring in network traffic can not be axgtbby
an underlying Poisson process [18].

A difference between the Poisson model and reality is found when congparin
traffic on a single Ethernet cable with the summed traffic of a number of ¢ables
or by looking at a trace with different enlargement factors, as showigimré2.1.

9

60000+
6000+

ne Unit

@ 400004
= 4000+

Packets/Time Uit

Packes/Th

20000 s000-

r T T T T T T T T T 1 T T T T T T T T T T 1
o 100 200 300 400 500 @800 70O 8OO 000 1000 o t00 200 300 400 500 600 VOO 800 @00 1000

Time Unit = 180 Secands Time Unit = 10 Seconds
() i)

500

B0

Time Unit

400+

Packes
Packes/Tima Ut

200

r T T T T T T T T T 1 T T T T T T T T T T 1
o 100 200 200 400 500 800 70O 800 @00 1000 o 100 200 200 400 500 600 VOO 800 900 1000

Time Unit = 1 Second Time Unit= 0.1 Second
{dj

Figure 2.1: Self similar features of Ethernet traffic [17].

The Poisson-based model predicts the traffic to become more regulag wher
reality it will contain more and even higher spikes.

Various other queueing models were found to be able to produce traffiselfth
similar features. In one of our experiments we use a model based uporetheal\W
distribution. This distribution was selected over the simpler Pareto-distribution
because the heavier tail more accurately describes web-traffic.

2.3 Research on Game System Failures

To avoid the effect of failures in a distributed game system, a number ofitpem
which where developed for P2P systems can be used.
A number of algorithms, originally used for P2P systems, have been mrdpos
reduce resource requirements for MMOG-servers [19, 20]. Hewémnitations to
the trustworthiness of client-machines limit the possibilities of this approach. This
is not only a problem to P2P-based game systems, traditional client-sesed b
game systems are also vulnerable to a long list of cheating possibilities [21].
Inside a server cluster all the machines are trusted completely, which allows
P2P-techniques like Pastry and PAST [22, 23] to be used to providesesieeit
database. PAST is a file system, built on top of Pastry, a P2P-system. Tésfile

10

tem handles requests to store and retrieve files. Stored files are reptinatedti-

ple systems, allowing correct retrieval even if a small number of systensddlae
network. Requests for retrieval are routed to one of the systems holdifitettan

attribute which also services as a load-balancing mechanism.

The P2P-system Pastry is not very relevant, since it is constructedhighby
dynamic environment of average Internet users, quite unlike the dedlisateer
cluster we are using. However, a PAST-like file system could be usedwidpr
reliable data-storage for our SMOG system. With the game data stored on multiple
hosts, there are possibilities to balance the load and reduce the effetlirgf f
servers.

We implemented a number of P2P techniques in WebHack. A study into the
possibility of adding more P2P functionality can be a topic of future research

11

12

Chapter 3

WebHack: A Research System
For SMOGs

In this chapter we describe the design and implementation of our Social Multi-
player Online Game (SMOG) system, called WebHack. We first presentca fu
tional description of the system, then the overall design and several noajquoes
nents. Last, we discuss the implementation of the system.

3.1 Functional Description of the System

The WebHack system has three main functional aspects. It is a complete game
platform, it is usable for scientific research, and it has a working Fadeintegra-

tion. We discuss these aspects, and their influence on the design, in tharigllo
sections.

3.1.1 Game Platform

WebHack is a web-game platform capable of delivering the performahea o
MMOG. The platform runs on a cluster of server machines, and offerfaitiction-

ality of a game-system to its users. This is not limited to offering a fully playable
game, but also includes features like security, administration, and maingnanc
These features are not only included for their functionality, but alsod@avork-

ing with an oversimplified game-system. Measurements on a system without these
features might lead to optimistic performance estimations or unrealistic conclu-
sions.

WebHack is a large-scale system, which operates on a cluster of machines.
In Section 1.2.2 we listed the objective to make the system capable of handling
250.000 concurrent players. WebHack contains functionality to confilgrtan-
struct, configure, and modify clusters of dozens of machines, and tddistthe
workload over them.

13

Since it is impractical to require a large number of identical machines to be
available, WebHack is able to run on systems with different hardwareguoafi
tions and operating platform. WebHack can also join such systems into a single
server cluster, which is one of our technical objectives.

We operate WebHack on a cluster of machines during the experimentsnif co
ponents are placed on a single machine, they experience greatly resuau-
nication delays. Such a setup would not lead to realistic measurements.

3.1.2 Research System

WebHack is a platform for scientific research. It offers the functionadityun di-
verse and repeatable experiments on clusters of server systems. Ceogriakos
can be instrumented accurately and the system can be adapted duriatooper
handle new situations.

An experiment is created by defining an initial system state, the configuration
options, and the arriving workload. Most changes to the configuraptiores do
not affect the final state of the system, making it possible to repeat aniregoe
with different settings. The first run can be made in a slow, verbose naodk,
the second run using settings for optimal performance. The output ofrsheuin
could be used to verify the correct operation of the system. Then, tfepance
can be measured during the second run.

Repeatability requires the careful storage of random seeds, ardievestamps.
Nethack bases some of its decisions on the output of random functiogdamks
ing at the local clock. When different values are used in differers,rtire output
of the game can greatly differ. The same output can be reached whearthe r
dom values and time stamps are stored, or when they are derived in dueijbte
manner.

New situations can be handled effectively by changing the configuradiuah,
even the executable code. Most components of WebHack can be dyhlgmica
reconfigured, and large portions of the executable code can be edlegthout
losing state.

The combination of these features allows the WebHack operators to add new
configuration options within a running system and immediately start using them.
This flexibility allows investigating complex problems without having to rebuild
the conditions, by gradually adding code to first identify and later handleoto-p
lem.

The features are able to work on systems which use a large number ef serv
machines. Configuration changes can be made on groups of machinesdend
updates are distributed automatically. The measurement data for all mactenes a
collected onto a single machine, even if the server cluster suffers fidingfena-
chines. On this machine the information is combined, and further procedsed in
images, of which we show some in Chapter 4.

14

3.1.3 Facebook Integration

WebHack is a social web-game. The social aspect is integrated into ggnaqmla
into the system.

The game offers social features, such as making players able to invitglagw
ers, share items with their friends, and observe others games. The sydtects
high-scores and other accomplishments, and allows players to compasbared
this information. It is possible to add, and experiment with, new forms of iotera
tion.

On a system level, the social aspect is accomplished by registering WebHac
as a Facebook Application. It uses the Facebook API to communicate with the
Facebook platform, but is able to operate even when this communication isislow o
otherwise corrupted.

The Facebook integration makes the system part of the Facebook exjgerie
and raises the users expectation of the systems availability. WebHacKuljsace
handles sudden server failures, and is able to run multiple reachablecestain
all its components.

3.2 System Design

WebHack, our SMOG system, consists of three main components. Theofinst ¢
ponent is called Nethack+, which is a Nethack process with wrapperaroded
it. The second component is the Nethack Handler Daemon (NHD). This daemo
manages the local system and a group of Nethack+ processes. Thmthpdnent
is a website, called HackSite, which handles the communication between NHD and
the players.

The secondary components are the graphing tool called 'Graphesmauter
player called 'Bot’, and a daemon to bundle HTTPS connections, calleadBui.

3.2.1 Nethack+

WebHack builds upon the existing Nethack game. However, the game needed
be heavily adapted to suit this project, since multiplayer features and welbanteg
tion lacked. To add this functionality, a wrapper for the Nethack applicatias w
constructed.

The wrapper intercepts and handles some calls Nethack makes to the Operat-
ing System (OS) on which it runs, i.e., Linux. Some of these intercepts etthrg
input and output behaviour of Nethack, for example, the terminal meeessiare
redirected to a website with choice buttons. Other intercepts change thealntern
behaviour of Nethack, for example, when a multiplayer level is selected iber@
is donated to a player in another game.

From here onwards we refer to a wrapped Nethack process by plag@hgs-
sign after the name, referring to it as Nethack+.

15

Legend:

TCP Socket

A Server Machine

) el

Figure 3.1: Schematic overview of a NHD with several Nethack+ prosesse

Input: Player Commands
Output: Screen Updates .

3.2.2 Nethack Handler Daemon (NHD)

The NHD is a stand-alone daemon process, which is started on a numieeverf s
machines. Its primary task is communicating with Nethack+ processes, other in-
stances of NHD, the Facebook API, the website, and humans.

The communication with Nethack+ processes is shown in Figure 3.1. Besides
the communication, NHD is also responsible for creating and destroying ða
processes, handling their file access, recording their input reqesiag the cur-
rent game screen, and handling player commands.

To communicate with other instances of NHD they have to located, and con-
nections have to be set up. These connections span up a communicatiorknetw
through which all the components in the system can be contacted. We discuss
different methods to locate and connect in Section 3.3.2.

Contact with the other NHDs is used to distribute, among other things, infor-
mation about games, configurations, and statistics. Distributing game information
allows the system to handle situations where a server fails. The informatitsois a
used to assign new games to the correct NHD.

These requests have to be distributed in such a way that none of the systems
out of resources. This is complicated by the fact that due to hardwdesatites
between servers, resources on one system are not necessarilgrablago an

16

equivalent amount of resources on another system.

Distributing the knowledge of the games allows the system to handle failing
servers gracefully and find the correct place to place new games.

NHD also uses HTTPS to communicate with the Facebook API. Through this
APl it can retrieve detailed information on users and their friends, orygusates
to the public message board of users.

For operators it is also possible to interact with a NHD directly, through a termi-
nal or the network. Commands can also be forwarded by other instahisin
or through the website.

3.2.3 HackSite

HackSite is the name of the website for this system. It can be accessed directly
through the Facebook website, and can be used by both players andineagta
For direct access, the URttps://webhack.nl:21592an be used. To access the
site through the Facebook website, one has to search for the "WebHaoébook
Application.

The web pages are delivered to the clients browser by one applicatiom. Th
application uses NHDs as its information source, and is mostly responsilite-for
matting this information. It also adds web scripts to support hot keys ardldsgan
the clickable game interface.

The website itself contains no game logic and understands little of the informa-
tion it is showing to the user. For example when a player clicks on a selection bo
which is shown to him by HackSite, the mouse click is converted to a keystroke,
which is injected in a Nethack+ process. Nethack+ reports an updated ommu
taining a check mark in the selection box to NHD. NHD transfers the updated men
page to HackSite, which renders it in the player’s browser. Although thikode
requires a lot of communication steps, its generic approach makes it sudgahle f
the game screens that might arise, greatly reducing the number of game s#uatio
which have to be tested.

3.2.4 The Bot

Although WebHack is fully playable, we also created a simple computer player,
called Bot, for research and experimental purposes. By using a conpayer

we are able to create, and recreate, a wide range of input patternBoTtees not
need to be a very proficient player, as long as the workload genenat@dtoup

of bots resembles the workload created by a group of human players.

The Bot can emulate different arrival patterns for the players. We maeef
three different patterns, one where all the players arrive instanttywdrere they
arrive in a constant rate, and one where the arrival of the players mihaaiaily
pattern of an average, but somewhat simplistic, human.

Because of similarities in the communication, the robot is able to connect to a
NHD directly, or connect to the HackSite. The direct option allows speaifia-c

17

ponents of the system to be tested, and the latter setting allows for moretaccura
measurements for a complete system.

3.2.5 The Grapher

When working with a large WebHack setup, there are hundreds of irestanfc
NHD running concurrently. They send commands to hundreds of thdesain
different Nethack+ processes. Such a setup generates a hugerrafrataistics.

To gather and process all these statistics a separate component wasoteds

It is called the Grapher, and can be run both from the command line, and as a
CGil script. The last option makes it possible to refine complex graphs wittba we
browser.

The Grapher connects to a NHD and continually queries it for new evAmts.
event can signify many different things. For example it can be an erny & log
file, a number which describes CPU usage for an application, or a colleaifon
measurements from the last second. Each events is created by a NHiDeand
communicated to the other instances.

It is also possible for the Grapher to connect to multiple NHDs at the same
time. Such a setup is mostly useful for tracing WebHack while running testeewhe
systems can suffer from failures. It that case multiple connections to tkierse
cluster ensure that event information is always able to reach the Grapher

3.2.6 The Bundler

To save file descriptors on certain machines, and to allow a more conveaient
dling of internal firewalls, we created a simple connection bundling application

In Figure 3.2 we show how the Bundler is placed on the gateway and internal
machines. It is set up to bundle the incoming HTTPS connections into a single
connection. In this setup only the gateway machine, or machines, requrigtite
to receive inbound HTTPS connections from the Internet. This setup s segure
because unrestricted access from the Internet is considered éyseskir By using
this tool, the risk can be avoided for the internal machines.

The use of the Bundler reduces the resource usage on the machin@sgrun
HackSite, and makes it possible to run the WebHack system when onlyaiser a
counts with limited privileges are available on the Gateway machines.

3.2.7 A Complete System

The components described so far in Section 3 can be combined to form tie We
Hack system. A complete system requires several dedicated machinebs(eke
ways and a number of machines determined by the number of concurrentglayer
We call the last type of machin&8orkers In the following text we describe the
arrangement of components on these machines, the required netwotkrette-
tween the machines, and the steps required to activate the system.

18

(RO

| I
I B ! |
I I

J Bundled
pued Connections

Gateway

v
Machine J

- d'h'i

Internal

Machine

Figure 3.2: Schematic overview of the HTTPS-Bundler.

A WebHack system requires at least one Gateway machine; using multiple Gate
ways is preferable, since it allows to the system to function even if one of the
Gateway machines suffers a failure.

All Worker machines run an instance of NHD. Gateway machines either run
the Bundler, or the HackSite and an instance of NHD. A setup with 2 Gateway
machines which uses a Bundler is shown in Figure 3.2. At least one instédnce
HackSite is required, the use of the Bundler is optional.

To improve security, network access rights can be restricted for thersaa-
chines. Gateway machines require the rights to receive inbound HTTHRS &ad
the rights to connect to the Worker machines. Worker machines requirigttie r
to make outbound HTTPS connections to the Facebook website, and thetoights
connect to many other Worker machines. It is not required to be able taaton
all other Workers directly, as long as an indirect path from every Wdikevery
other exists.

Starting and configuring the Bundler is simple. The only configuration option
is the port number to listen on. The application is started from the command line,
and the same method applies for most other components.

The HackSite is activated by starting a HTTP-daemon application. We used a
small and simple HTTP-daemon called 'Mongoose’, which we downloaded fr

19

http://code.google.com/p/mongoogster placing the HackSite executable in the
documents directory, the website is operational. However, it will only shpage
stating that an important component could not be reached.

The NHD is bundled with a small configuration file, which is used to prevent
a NHD from starting Nethack+ processes on specific machines, andrectpr
identify broadcast addresses.

No further configuration is needed. After starting up, the NHDs automatically
locate other instances and construct a communication network. When tarecieis
of NHD on a Worker node connects to a NHD on one of the Gateway machines
the system is ready for operation. The discovery process usually aakea few
seconds.

After the system is brought online, players can connect to the systenintee
net, or a workload can be applied by running the Bot software. The &tware
runs on separate machines, which, depending on the settings, eithize ribgu
rights to set up HTTPS connections to the Gateway machines, or the rights to se
up TCP connections to the Worker nodes. The Bot accepts a numbenfajico
ration options. Among other things, they can specify the number of playats th
will be emulated, the delay between their commands, and the pattern in which the
players arrive.

If graphs are required, a separate machine can be set up to run titeeGrahis
machine requires the rights to set up TCP connections to one or more machines
running NHD. Again, there is a benefit in using multiple connections in the situa-
tion that a machine fails. The Grapher stores the trace information to a databas
which can be queried by accessing the Grapher with a web browser.

3.3 System Implementation

In this section we describe the implementation of the WebHack components, in the
order they were introduced in Section 3.2.

3.3.1 Nethack+

Nethack+ is formed by placing a wrapper around the normal Nethack appiic

In this section we first explain how the normal flow of execution is diverted to
activate our wrapper. Then we discuss the implementation of the wrapperé mo
detail and show how the dungeon map and game menus and handled.

Right after startup, Nethack uses the file system to check for the existéace
saved game. The call is intercepted by a mechanism explained in Sectiora8.5,
triggers the initialisation of the wrapper. The wrapper uses information ic@uta
in the environment variables to establish a connection to to a NHD. The dizmec
is then used to query the saved game and multiplayer status. After startup the
connection is used to transfer files, logs, information on the screen ggsttékes.

The wrapper intercepts calls to the file system, allowing the wrapper to control

20

which saved game Nethack+ uses as input. However intercepting all fiemsgs-

cess is complicated by the systems standard library, which has weakly duoeame
and complex file system requirements. These problems are avoided by ditidin
ters capable of separating file accesses made by the application andtdma sys
libraries. Calls to output characters on the terminal are intercepted by éppenr

From the location on the screen, and the contents of the process staskapper

is able to distinguish between symbols depicting the game map, showing a menu,
or displaying background narrative.

Understanding symbols on the map can be challenging. A single letter from
the alphabet can indicate the presence of both a feeble and a powerfatamo
which may or may not cause the letter to be displayed in a different coloatingd
descriptions for the known symbols would improve the understandability,dmit
stant additions would have to be made to cope with new symbols.

Our solution is to use the in-game help system for this purpose. Wheneger a n
map symbol is reported to NHD, NHD sends a batch of keystrokes to Nethack
which activate the help system and request the explanation of the symlsoteTh
quest for information, and its reply, are hidden from the player, but éiseription
of the symbol is intercepted and used in the depiction on the website.

In-game menus and prompts show an overview of the players choicealsand
list available hot keys for each option. This consistent behaviour allavgeth
include knowledge about keyboard shortcuts in the website, greatly imgrdwe
interaction.

3.3.2 NHD

The NHD is implemented as a single-threaded, high-performance, Linumatae
process. Most of the code is placed inside a library, consisting of mafer-dif
ent modules, which can be dynamically reloaded. We discuss three of the mos
complex parts of this library in the following subsections.

Connecting to Other NHDs

In the WebHack system, the NHD plays the role of communication hub. An in-
stance of NHD maintains connections to other components running on the local
machine, and communicates with the other NHD instances running on remote ma-
chines. To announce its presence, a NHD broadcasts messages D§irigalic.
When other instances are discovered, the NHD forms connections to a limited n
ber of them. The connection scheme ensures all instances form a sihgtale
which cannot be easily split.

Broadcasting functionality is not offered by all network systems, andless
use of broadcast messages can congest networks. As an altetmativadcasting,
a list of hosts running NHD could be constructed and included in sourde co
or configuration files. However, maintaining a long list of addresses woeld
cumbersome and error prone.

21

Another way of deriving the addresses automatically is by scanning the loca
network, although this option can be slow, and might require some knowtgdge
the network topology.

We chose to use small broadcast messages, and limited the number ofilsteadc
for each NHD-instance to one per second. This gives us the advarntgeato-
matic detection of new hosts, while avoiding problems with network congestion.
In Section 4.5 we analyse the behaviour of this mechanism.

After a NHD locates other instances, direct connections can be setsimple
scheme is to have one NHD instance form a connection to every other iastanc
forming a star shaped network. This structure is fragile, since a failutkeooen-
tral host cause the entire system to fail. Another simple scheme connenys eve
instance to every other, creating a full mesh. Although this construct isagile,
and messages never have to travel more than a single hop, the resmsuaep-
tion is impractical; with thousand hosts this scheme requires close to a million
connections.

NHD makes a limited number of connections, which still leads to a full mesh
with a low number of instances. With a larger number of NHD instances, each
picks its neighbours randomly from the broadcast messages recéividte rare
case this scheme leads to disconnected groups of instances, NHD itireoces-
nection limit and adds connections until all instances form a single netwark. T
avoid network structures which can be easily split NHD occasionally adds-a
nection to a host which is connected to a relatively low number of its neighbour

Distributing New Games

When a new player arrives, HackSite sends a request for a fresé gaa prede-
fined NHD. That instance of NHD might host the game itself, or relay theagiqu
to one of its neighbours. The system is capable of distributing games basifd o
ferent algorithms. A simple algorithm places new games on random hostts Hos
can also be selected in a round-robin fashion, or the least busy Imds¢ slected.
We leave the design, implementation, and evaluation of other algorithms foe futur
work.

Different methods of determining machine workload are supported. The nu
ber of active games is a good indicator for the weight of the expectedoaatk
but it ignores the difference in activity between players. Gauging the @3ige
gives insight in the summed activity of all games. Lastly, it is possible to look at
command delays or number of commands processed per second. ThesEsso
of information give insight in the performance of both the local machine aad th
individual games.

After a new game is created on a NHD, the event is broadcasted to all other
hosts. The broadcasts include the game ID and the address of the NHD ig/hic
hosting it. This information allows each NHD to deliver an overview of all exgstin
games to WebHack. The URLs in this overview encode the information, allowing
WebHack to contact the correct NHD for game interaction.

22

Handling Failures

Hosts can fail, for example because of a power failure. If a systemomassingle

host, there is little to be done but restart the system after the failure hagdseen
solved. Distributed systems have a higher probability of experiencingdailbut

also have more ways of dealing with them. This system includes several mmecha
nisms to reduce the negative effects of a failing host.

Even when one server fails, web requests are able to reach the clustdbg
through a different server. The cluster is able to communicate with all its member
regardless of the loss of a single server.

Players connect to the system with a web browser. The URL of the main site
points to multiple machines, each running WebHack. Those machines alserun th
NHD. NHD forms a communication network which cannot be split by removing a
single machine. A single failure of one of these machines does not preggrasts
from the players to reach the cluster of NHDs.

Each active game is assigned to one NHD. This NHD selects two of its neigh-
bours as its backups, and broadcasts this information. All game-relatedhant
tion, e.g., saved files, inputted commands, and the random seeds, iswliartbe
backup hosts. When input arrives, WebHack sends it to both the priNtdbyand
his backups.

Normally, the primary NHD responds quickly after input arrives with anaipd
If it does not respond in time the backup hosts notice and attempt to replace the
primary host is made. The backups recreate the game to its last known gtate, b
applying the same input. If they obtain a result before the primary hossdesd
they broadcast a message informing the cluster they are the new primaryadHD
the game. In some cases, both backup servers claim ownership, lotbegbis in
place to favour one of the claims over the other.

Performance

The performance of a NHD is important because of its central role in therays
We improved the performance of NHD over that of simple networking daetmpns
using three key features: Using asynchronous 10-functions, wgskith a single
thread, and employing zero-copy packet parsing functions.

A NHD handles network traffic asynchronously. Synchronous Iquests can
block, causing a stall in execution. A NHD uses a single execution threas, th
using synchronous networking code would cause the program to spestcf its
running time waiting for the completion of 10-requests.

Linux offers different API-calls to implement asynchronous netwonkdiiag.
We chose the more modern ’epoll’ variant, which not only made the code more
responsive, but is also able to handle a much larger number of contoomnec-
tions. Running a single-threaded daemon with one of the other asyncisroalis
results in an extra 25% CPU-usage when using over 2,000 concuormctions.
The downside of the asynchronous network code is the added complexithe

23

improvement in performance is noticeable.

NHD uses a single thread of execution. When external tools are run &y, NH
they are placed inside their own process. The single thread approadimita-
tions. Due to efficient handling of player commands and incoming packeds, an
due to delaying some tasks until the CPU is idle, only one thread is required to
perform all NHD tasks. An advantage of this approach is the lack of lgckin
Many high-performance daemons apply multiple threads in order to imprave pe
formance. Such applications also tend to require locking for correcatipe, and
to copy information between threads to separate buffers. These acioraase
them to spend a significant amount of additional resources. To hand&e then
10,000 users a single thread would not suffice. We would then need tthepdip-
eration of NHD in multiple threads, while simultaneously trying to avoid installing
locks for as long as possible.

Zero-copy packet parsing functions handle incoming packets withqytirog
them before parsing. This is accomplished by copying pointers to strimgls, a
handling substrings more efficiently. Removing the operations which copgstr
around reduces the memory usage of the application and reduces thermimbe
operations required. The usage of zero-copy packet parsingomason in tradi-
tional Linux daemons written in C, but many high-level languages do net tfe
type of control over buffers which is required to avoid making copies.

In the optimal case, an operation reads network traffic into a buffem,hac-
tions handle all the messages which are completely stored in the buffer, withou
making copies. Afterwards, the handled bytes are removed from therbuff
ring-buffers are used to store the incoming traffic, all these operatambe per-
formed without copying any memory blocks.

We developed a library to conveniently parse packets, and the struatilings
these packets. It uses specialised code to handle read-only stringalzstdngs.

All the strings and substrings derived from one network buffer poiribédosame
memory area, and only store the beginning point and length of the string. Wth th
approach, many operations are trivial to implement and do not requisencppf
memory.

3.3.3 HackSite

HackSite is a CGl-application that creates the website for this system. Tlebse w
sites allow the users to control the system, and play the game. The HackSite is
not aware of any game-information, and holds no state. To access iti@nma
HackSite queries the local NHD.

The website for the project is implemented as a CGl-application. This agproac
is not very popular anymore; most websites are implemented in a scripted lan-
guage. However, by constructing the website as an CGI application, ibean
implemented in the same programming language as the rest of the system. This
allows us to reuse many functions and use the same libraries.

24

Using compiled applications also comes with another advantage; they execute a
lot quicker than interpreted scripts.

The HackSite can also be used to navigate the system. Players can invite their
friends, see the games they played, and start new ones. Maintainersecémeu
website to view the logs, analyse system performance, or change thguratitin.

All the gameplay happens through a single page. This web page contaissijats
to make dynamic updates to the screen, and to register player input. Commands
can be issued through keystrokes and mouse clicks, and are sent tack®itd-
application inside HTTP-requests. These request occur in the bacidyemd do
not trigger a reload of the game-screen. Rebuilding the entire screeld weu
distracting to the player, and require too much time.

When the HackSite receives the HTTP-request, containing the player aunma
it sets up a connection to the correct NHD, and forward the command thkee.
website waits for a response. The response can contain error infonmatiap-
dates to game screen. If a response is received, it is returned immediately,
wise an empty response is returned after 200 ms. This limits the request duratio
and frees up resources for new commands.

When no new commands are available, the HackSite also sends requests to
HackSite. These polling requests can pick up the slower updates, aatespd
caused by other activity.

Ajax web scripts can be used to send actions to the server in small welstgque
without reloading the complete web page. The server could reply the \wekse
with a situation update, greatly reducing the amount of information transfered
However the update can be incomplete, if an action has a delayed efresutis
in an animation. To avoid missing updates the website periodically checks for
them even when no input is available. We also experimented with an alternative
method which uses a single Ajax connection for all updates. Although thaboheth
is cleaner and more responsive, it was abandoned because longotamettons
consumed an impractical amount of resources in current browser imptigtioes.

3.3.4 Facebook Integration

The Facebook integration of WebHack is implemented in two different system
components; the HackSite handles cookies and redirections from thbdekce
website, and communication with the Facebook API is handled by a NHD. We
also used the Facebook Developer website for our implementation.

Registering a Facebook Application

The Facebook Developer website offers a portal for application degedo With

the site developers can register, configure and delete their Facebptikadijpns.

The most important settings are an application name, the application secret, and a
URL for the redirection.

25

We chose the name 'WebHack’ for our Facebook Application. We usad-a r
dom application secret, and registetstd ps: // webhack. nl : 21592 as our
website. The strange port number in the URL is the result of TU Delft policies
which requires students to use ports not registered by IANA.

Implementing the Facebook Integration

When users navigate the Facebook website, a small piece of text, calle#tia,co

is placed in their browser. The cookie allows the Facebook website to remembe
which Facebook account is associated with the connection. The sameg\sigate
used with Facebook Applications.

When a Facebook user selects an application, the application website is show
inside a panel on the Facebook website. The application website is ablev® der
the Facebook identity of the user by parsing a cookie. Also included in tbideo
is a token which can be used to query the Facebook API.

The application parses the cookie by first decrypting it with a static decryptio
key. This key is only known by Facebook, and the maintainer of the Fag&ebo
Application, thus preventing others from constructing and intercepting ttmsk-
ies. The authenticity of the cookies can also be verified by looking at atraiéc
signature, another mechanism to prevent forgeries.

To simplify logging in, it is also possible to navigate to the HackSite directly.
If the user is not yet logged in to Facebook, the site shows a button. Clickéng th
button results in a Facebook login. The javascript code which is called by this
button is part of the Facebook API, and is described in detail on the Bakeb
Developer website.

Calling the Facebook API

The HackSite is able to derive the Facebook identity and an API token from a
cookie. The token is a piece of which allows access to the Facebook ARI fo
limited duration. HackSite reports the Facebook identity, and the token, to thle loc
NHD. This instance of NHD shares this information with the rest of the cluster.

The NHD handles all calls to the Facebook API. It uses the token to attemss
basic account information of the users, and to gather a list of their friemde
information is then stored in a local database.

The Facebook API calls are placed inside HTTPS requests. GET andl POS
methods are used to query and store the Facebook account informatiéb. N
spawns an external process to execute these HTTPS requests.titm 3¢z we
analyse the design, and the performance of our Facebook API irgerfac

The local database which stores the Facebook account information isoable
quickly respond to requests. In the background, the information is keb-u
date by executing Facebook API calls. This mechanism reduces the aofount
API calls, and quickly handles requests. However it may occur thatspage
constructed with outdated or missing information. As a result, pages creéiéal w

26

the first 5 seconds of using the application can fail to show the full name oftér,
and adding a new friend with the Facebook website can take up to a minute befo
being propagated to the WebHack overviews.

3.3.5 Handling Legacy Code

In this section we describe the implementation aspects of L1, as defined in Sec-
tion 1.2.2. First, we discuss the Nethack license, and its relation to the General
Public License (GPL). We then explain the license implications of various meth-
ods of modifying Nethack.

Software Licenses

The GPL is currently the most used license for open source softwanaslitre-

ated in 1989 by combining other licenses which shared a common goal. Many
prominent applications release their sources under the GPL, e.g., Fiteddxnux
kernel and MySql.

These licenses prevented companies from taking publicly available soaee
modifying the code slightly, and then selling the resulting product withoutateve
ing their changes. The GPL was updated twice to prevent certain methaois of
cumventing the license.

Nethack was released in 1987, before the first version of the GPL iwated,
and its license is based upon one of the predecessor of the GPL. Thtoimte
the license is the same. It allows sharing Nethack and making modifications, but
does not allow to hinder others who attempt to share the modified versioeifurth

When the Nethack source is modified to allow the game to be used in a SMOG,
these modifications would be subject to the license. The license would not allow
to distribute the modified version of Nethack without also allowing access to the
modified source code.

If features are added to Nethack without modifying the source code, treskc
can also apply. The license states that works that are derived fromad¥edhe only
allowed if the derived work is also subject to the same license agreement.

The situation is more complicated when considering a system which acts as a
portal to play a modified version of Nethack. If the portal is not derivedfthe
Nethack code, it can use a different software license. That license ligiv
users to be charged a fee for usage of the portal.

The updated versions of the GPL describe the allowed usage of thetprbtec
work in more detail, which prevents bypassing the GPL with such portals.

Layers of Abstraction

We mentioned the possibility of altering the behaviour of Nethack with making
modifications to the source code. This can be done by altering the envirbmmen
which the Nethack process executes.

27

The environment could be modified by a framework. Portions of the framewo
code that specifically handle Nethack would be considered to be a dieviwk.

If the framework uses a high level of abstraction, it becomes capablenafiing
similar applications, and contains less Nethack-specific source code.

Our framework intercepts calls to the terminal, the file system, and the system
library. These three subsystems are commonly used in other applicationsean
handle them in a way which is not specific to Nethack.

The code which specifically handles game information from Nethack is placed
in a separated module. If our usage of Nethack code is considered thjeets
to the software license, only this part of the code would have to be disclgsed
request. This addresses the legal challenge L1 (see Section 1.2.2).

Application

Library Call P4 Real |O-Function

System Library

Library Call > JRSERaAE Library Cail)[ESTIET

Nethack ‘

Application Preloaded

Interception
Library

System Library

Figure 3.3: Example of library preloading.

Implementation

The Nethack+ wrapper relies on a technique called 'library preloadirigs tech-
nique is available on many different platforms, including Linux-based Bystén
example of the approach is shown in Figure 3.3.

Most applications are linked to a set of libraries. When the application isdtarte
the application and the libraries are loaded into memory. The application is then
linked to certain functions which reside in the libraries, and it is executed.

28

With library preloading, functions from a library can be replaced witheut r
compiling the application or the libraries. The replaced functions can alssscc
the original functions, which makes this technique suitable for building filtees in
already existing applications.

With this technique it is possible to start an unmodified version of Nethack, while
preloading one of our libraries. The library overwrites all functions Whaccess
the terminal, the file system, and several others.

When our library is preloaded, Nethack still communicates with the player by
calling the terminal. However, the calls to the terminal are not forward to &iscre
but to a NHD, which relays them to the HackSite.

29

30

Chapter 4

Experimental Evaluation

This chapter contains a selection of experiments and their results. In the-follo
ing two sections we will describe our experiments, and present our maindgsd
Then, we present the individual experiments which show the perfornainthe
Facebook integration, the behaviour of a single Worker, the limitations kg
creation, and the behaviour of a large-scale setup. Last, we showféut @f
simple failures on performance of the system.

Legend:

TCP Socket

A Server Machine

Optional Connection

 OptoralComecton
)

2) Direct TCP

Machine 4

- MachinS(Worker y

Figure 4.1: WebHack system with one Worker node.

31

4.1 Overview

We ran a number of experiments with the WebHack system. During thosa-exper
ments, the basic system setup was similar; the number of Workers and theedepo
performance metrics varied.

4.1.1 The Basic Experimental Setup

In Figure 4.1 we show a basic WebHack setup. This setup has only oriei\Vor
but still requires four different machines. In Section 3.1.2 we descridedit is
not desirable to place all components on a single machine.

Machine 1 is dedicated to accepting HTTPS connections and routing thestequ
to the server cluster. This machine is the only one that has to be reachahle fr
the Internet, it serves as an entry point to the rest of the system. It isfdhe o
Gateway machines, as mentioned in Section 3.2.7.

Machine 2 handles the bundle of incoming connections and delivers thera to th
local HTTPS daemon, where they will be handled by the HackSite.

An instance of NHD runs on this machine, but no Nethack+ processetaated
here.

Machine 3 runs an instance of NHD, and a number of Nethack+ prace$ses
machine is called a Worker and hosts the actual games. In larger setupsathis
chine might be duplicated a number of times, to allow the system to handle more
concurrent players.

Machine 4 runs the Bot software, described in Section 3.2.4, which emulates
man players. In some experiments the Bot connects to a NHD over HTTPi§, bu
others it bypasses the HTTPS layer and communicates with a NHD directly over
TCP. The normal and direct method are numbered 1 and 2, respeciivéhe
figure.

4.1.2 Measurements

We ran a number of experiments with the basic setup we described in Sectibn 4.1
During those experiments, we took measurements which we use to showthe per
formance and correct behaviour of our SMOG system.

To evaluate the the responsiveness of the WebHack system, we metsured
delay of game commands, Facebook API calls, and HTTPS requestselBlyeod
a game command is the time between receiving the input, and receiving the first
results of the command, both measured at the NHD.

The delay of a Facebook API call is measured at NHDs, and is the time betwee
sending the HTTPS request, and receiving the complete results. In S2cti8n

32

we mentioned that the API request delays of an older version of the éalcé{|
could be significant, and average at around 1 second.

The delay of HTTPS requests is the difference between the moment dfingce
the request, and the moment HackSite is finished creating the responsepa&te e
this delay to be not much larger than 200 ms, as described in Section 3.3.3.

With a single Worker system we tested the effect of the players arrivedrpa
on the performance, and investigated the limits to the arrival rate.

To evaluate the performance of the system, we show the number of pgecess
recently updated games, and process-game pairs in the system. The mfimber
processes shows the number of Nethack+ processes; one is coeaeerf active
game. The number of recently updated games shows the number of garids, wh
received new commands during the last 10 seconds. The number eEprgame
pairs shows the number of Nethack+ processes that is attached to a game.

The combination of these three values give an impression of the res@age u
(processes) and performance (updated games). We traced the seenetbes for
a large setup with over 70 Workers.

In our final experiment, described in Section 4.5, we the effects of failone
the WebHack system, and the effect of the code that distributes the wdrkloa

4.1.3 Main Findings

Our experiments showed that WebHack is a responsive system, andlecapa
delivering a high performance. The system is capable of handling ®&0G0
concurrent players, exceeding technical challenge T1, and is abémttenfailing
servers.

The Nethack+ processes handle 95% of the game commands in 200 ms. Delays
of over 1 seconds occur, but not infrequently 0.1%). The larger delays are
masked by the GUI, which is shown by plotting the HTTPS request delays. All
HTTPS requests, even with high workloads, are handled in 200 ms, witresage
request duration of only 20 ms.

We show that the system performs well when the emulated players follow a
daily pattern, but tendency to play short games increases resoursenggtion
and could lead to performance degradation.

The system can experience minor problems, and temporary reducechpante,
if the arrival rate is raised above a certain limit. Traces of system operation
taining these temporary problems are shown in Sections 4.3.5 and 4.4.

WebHack is able to perform as a large-scale SMOG system. While using the
multi-cluster DAS-4 supercomputer with over 70 Workers, the system wadab
service 309,000 concurrent users, satisfying our technical olgscti2 and T3.

In the experiment in Section 4.5, we show that WebHack is correctly able to
function even if repeated machine failures occur. This happens withssitab
game or logging information.

33

4.2 Facebook Integration

In this section we analyse the Facebook integration of the WebHack system. W
discuss the structure of the API, and present the results of our experiwigere
we measured the API request delay.

4.2.1 Application Construction

The Facebook website offers construction guidelines and examples Vidtlea
range of website applications and programming languages. Although the info
mation is extensive, multiple versions of the API are in use, creating a divefs
options. The guidelines mostly supply small snippets of code, which canrbe co
bined to form the required website functionality. This allows developersitkiyu
build functional websites, but it lacks a structured uniform approach.

The fragmented structure of the API is partly caused by the face the iceerfa
is under constant development. One of the recent APl changes gréatiied
this project; Facebook started to require Applications to use secure cmns
rather than preferring them. These secure connections use the HToRSqh
and require SSL certificates to operate.

4.2.2 Facebook APl Performance

In a study on network footprints [13] it was shown that a Facebook Aatitin
can suffer significant delay on its requests to the Facebook API. Tiagsddiffer
between applications, and the difference is mostly related to the applicatapy's p
ularity. They show a delay of 0.6 seconds for one application, and a detaxeen
0.6 and 4 seconds for another.

The WebHack system measures the duration of the Facebook API tedues
executes. In Table 4.2.2 the distribution of the delays of basic accountiafmn
requests is shown. These requests require a single HTTPS GET opeocalie
performed. We obtained the measurements by logging all Facebook Akt dieta
several weeks.

Table 4.1: Facebook API Delay.
What Min 25% | Mean | 75% | 99% | Max
HTTPS GET-Request duration 0.693 | 0.891 | 0.983 | 1.120 | 1.219 | 1.268

With this information we confirm the notion of Nazir e.a. that these delays are
significant [13]. Their research shows that the delays are largendoe popular
Applications. Even those delays would not lead to problems in WebHack.

The main reasons for this is the fact WebHack queries the Facebook A in
background and caches the results. The HackSite constructs daofozotation

34

even when the Facebook account information is incomplete. A Faceboplk Ap
cation which does not handle the Facebook API requests asynclstgprnoould
suffer from intolerable delays.

Requiring the use of asynchronous handling of Facebook API callsshef
cryptography in the session tokens, and forcing the use of encrypté& &l con-
nections, makes implementing a high-performance Facebook Applicatior-a cha
lenging task.

4.3 Performance of a Single Worker Node

In this section we will analyse and discuss a WebHack setup which usegla sin
Worker. We first look into the duration of executing Nethack+ commandsvehd
requests in Sections 4.3.2 and 4.3.3. Then, we look into the effects of plalarh
follow a basic daily pattern in Section 4.3.4 and into the effects of high anavas

in Section 4.3.5.

T T
Quartiles — |
95 %

99 %
99.9 %
99.99 %

O X + 0O

Command delay [Seconds]

0.5 | B

0 100 200 300 400 500 600
Run time [Seconds]

Figure 4.2: Distribution of Nethack+ command delay, 1000 Users.

35

4.3.1 Experimental Setup

We used the setup described in Section 4.1.1. The Bot uses HTTPS tongét
the the first two experiments, described in Sections 4.3.2 and 4.3.3, andldiféc
connections in the other experiments.

4.3.2 Nethack+ Command Delays

The Nethack+ application executes a main loop where it repeatedly waitsrfor ¢
mands, and processes them. We measured the delay between the momevati of arr
of a command, and the moment the first updates to the game were made. Nethack+
receives the commands through a connection to an instance of NHD. Ixfigs e
iment each instance of NHD computed and stored the command delays for their
Nethack+ processes.

Game commands vary in delay and complexity. Some commands have a simple
result, e.g. a single message describing the current room. Commands @an als
have complex results which consume more resources, e.g. travelling daghnta fl
of stairs to a new level. Such a command triggers the creation of a whole new
dungeon level.

Figure 4.2 shows the distribution of the delays in a box-plot. Each boxgepts
the delays from a 10 second interval. The boxes at the bottom of the tigpiet
the first and third quartile ranges, with a bar at the mean value. The topodb
bar show the minimum and maximum value, and various symbols depict the 95%,
99%, 99.9%, and 99.99% ranges. Most commands are processed withenthve
of a second, but larger delays occur. The largest delay comes frmmmenand
which took over 1.5 second to handle. This delay is too long for comfortainteeg
play, but it only represents 0.1% of the commands which were handled ia thos
10 seconds. All other commands completed within 0.3 seconds. Large delays
only occur when one of the more complicated commands is executed on a machine
which runs many instances of Nethack+. Since the complicated commandst are n
commonly executed, and the probability of a large delay is low, the situation is
acceptable for gameplay.

4.3.3 HTTPS Request Delays

Our next measurement focusses on HTTPS requests. We measuredathefd
these requests, in order to show that the system is responds quickiywbes
handling high workloads or slow commands.

The HTTPS requests are handled by the HackSite, which functions asta fr
end to the system. It serves web pages which allow players to navigateatiebH
interact with their Facebook friends, and start new WebHack games.atleth
gameplay is also handled through the HackSite.

When a player command arrives at HackSite, the command is forwarded to an
instance of NHD. HackSite then waits for a limited amount of time. If game up-
dates arrive during this period they are immediately returned, otherwideSitac

36

"

0 100 200 300 400 500 600
Run time [Seconds]

Figure 4.3: Distribution of HTTPS request delays, with 100 Users, usBig S

returns a successful result without any updates. The complete methianike-
scribed in Sections 3.2.3 and 3.3.3.

The HackSite uses SSL, an encryption protocol which turns plain-teXtFHT
requests into encrypted HTTPS requests. Facebook requires appkcatiose
encryption, to prevent simple eavesdropping attacks from capturirsitisenn-
formation.

The usage of SSL requires the generation of cryptographic certificatdse-
quires that communication, both inbound and outbound, is translated witlusario
cryptographic operations. The cryptographic operations can regusignificant
amount of computation.

We used the setup shown in Figure 4.1.1, and emulated 100 players which exe
cuted one command per second. HackSite measured the HTTPS reqa@sndu
We show the distribution of these durations in Figure 4.3, using the method de-
scribed in Section 4.3.2.

The results show that almost all requests were handled in less than a tenth of
second. Many of the larger delays are caused by the absence tésipolat these
requests are also handled within 200 ms. This was expected, since Hamkigite
waits for a limited duration when handling game commands.

After running the system with for an hour with 100 users, we raised the aumb

37

0.3 T T T T T T
Quartiles —
%% o
NPV% +
9.9% x
0.25 | R
Stable period Adjustment Stable period
_ with 100 players period with 1000 players
g ool Il Il]
8 Arrival of
ﬁ 900 players
>
iy
L 015 F 1 R
b
()
3 E
8 - - -
© 01t petm Tttt [Tttt THETRTT |t T
E + + + 0
T o o %0y | |m oo | oo mm]
On | Pgdo | 4 0 | Qoo mi o o
0.05 | .
1 1 1 1 1 1 |
0 100 200 300 400 500 600

Run time [Seconds]

Figure 4.4: Distribution of HTTPS request delays, with up to 1000 Useiagu
SSL.

of players to 1,000 while measuring the HTTPS request duration. Thalaofi
new players places an extra burden on the system, because creatmiethack+
instance consumes more resources than normal gameplay, and beeasystdim
has to find an eligible Worker to handle the new games.

We show the HTTPS request duration in Figure 4.4, in which we annotated the
moment where the number of players changed. Right after this moment at-adju
ment period begins. During this period the delays show a much highergavera
value, but the distribution of the peaks is similar to the stable period that follows.

Raising the number of users from 100 to 1,000 causes the web-requésts to
handled slightly slower, increasing the duration to handle 95% of the rexfues
40 ms to 75 ms. However, the mean request duration remains at 20 ms, and all
requests are handled within 200 ms. This shows that WebHack remaiossasp
when handling 1,000 users which are using encrypted HTTPS connedaiwhthat
the average HTTPS request requires only very litt@@ ms) processing time.

4.3.4 Effects of a daily pattern on system performance

For this experiment we use the Bot to emulate players, as before, but inea mor
realistic manner. We added a daily rhythm and the tendency to play shorsgame

38

their behaviour.
We use the Weibull distribution, for the reasons described in Section 2.2.2, to
determine the arrival times of the players.

The Weibull distribution function in given by:
F)=1—e/®% t >0

The Weibull density function is given by:
f(t) = a.f~ Ve — (t/B8)*,t > 0

Thea parameter defines the shape of the distribution. With 1, this distribution
is a normal exponential distribution. With< 1 the weight of the function shifts to
the beginning, and with: > 1 more weight will move to the tail. Thg parameter
defines the scale. Increasing it will increase the mean value of the fupation
vice versa.

From studies on Weibull parameters for HTTP traffic [24, 25] the valuev@sg
selected for the shape parameter. The average duration of a visitleeteddo be
5 minutes, although there was no strong basis available for selecting thisgiara
Estimates for web server visits ranged from 2 to 30 minutes.

The daily rhythm of our emulated players is based upon their local timezone.
We used information of the distribution of Facebook users across the sbdd/n
in Table 4.3.4, and mapped the geographic locations upon time zones.

WebHack can be played on every moment of the day, but the emulated humans
mainly play during their evening hours. This leads to a situation where huraans c
be in three states: Sleeping, ldle, and Playing.

Table 4.2: Distribution of Facebook users across the continents. Sdbieeilly
Research.

Continent Number of users Percentage of users
North America 162.5 32.5%

Central America 6.5 1.3%

South America 46 9.2%

Europe 137.5 27.5%

Middle East / North Africa| 42.5 8.5%

Africa 9 1.6%

Asia 88.5 17.1%

Oceania 11.5 2.3%

When a human is in the playing state, it sends a command every two seconds,
the length of their games is determined by the Weibull distribution, or occasionally
on the death of their character. In order to reduce the length of theieqres we
used a virtual clock which runs 20 times faster than a normal one, leadinrdtalv
days of 4320 seconds.

In Figure 4.5, we show the number of Processes, Recently Updated Gandes

39

Overview of Total Number of Processes and Games

T T T T T I ; :
| | : : : Processes
Process/Game pairs --------

1250 Recently Updated Games ==== .

1000

750

Amount

500

2000 4000 6000 8000 10000 12000 14000 16000
Run Time [Seconds]

Figure 4.5: Daily pattern.

Hooked Processes. The number of active games in the system is roqghlte

the number of hooked processes. The number of recently updated igastigistly
lower, because players tend to play games for a short time. When they move o
WebHack receives no notification, and the game lingers for a while untiH&ek
stops the process and saves the game.

In realistic situations, only a small percentage of the user base will be Igictive
playing at a given moment. The large fraction of short games forces siters\to
allocate a substantial amount of resources to games which no longererecgiv
input.

When dealing with a large number of players which sporadically play short
games, reducing over-allocation becomes more important. The situationgsin po
bly be improved by adding a mechanism to detect when an active playeratewig
away from the website, or deselects the web browser as the active éipplica

4.3.5 Process Creation

In our next experiment we show how the WebHack system respondaigeh in
the arrival rate of new players, and in particular the problems which afisa the
arrival rate is increased too much.

In Figure 4.6 we show a trace where a WebHack system with a single Worker

40

100

Inbound Kernel
Outpound -~ User ———

CPU Usage [%]

Network Traffic [MBytes]

-
H ol L i 7 I

100 200 300 400 500 600 0 100 200 300 400 500 600
Run Time [Seconds] Run Time [Seconds]

. j Processes 3500 Number of Commands]
Recently Updated Games ——
Process/Game pairs —---
41500

7000

3000

6000

/ 2500

5000

2000

4
4000 / -/

Amount
Commands

/ / 1500
3000 /.

/ / 1000

2000
/

/ / 500 -

1000

[y < 0 i
0 100 20 30 40 50 60 0 100 20 0 0 50 60
Run Time [Seconds] Run Time [Seconds]

Figure 4.6: Using two different arrival rates with 6,000 players.

received a workload of 6,000 players. There are two runs, startiw dirst and
the 300th second. The maximum arrival rate of players is 60 playerepend in
the first two runs, and 30 per second in the last.

When a run starts the arrival rate of players is increased from zere tmaixi-
mum value over a period of ten seconds. After the initial phase the aratels
kept constant until all players are active, at which point new gamesrdyereated
when another ends.

The second run shows no problems. The number of processes, themaimb
recently updated games, and the number of processes which are teghteea
game are very close to each other. In the first run the high arrival rads ke a
slowdown, which caused some impatient players to create multiple games. After
about a minute the system stabilised. The slowdown was caused by the aignific
amount of resources required to start up a new game, however thecaxae has
not been determined.

Using the second run as a known good result, we looked back at therceso
usage of the first run. The only clue is shown in the CPU usage grapimdiro
the 150 - second mark. Time spent inside the kernel suddenly dropsyaptie
cause is not known. We speculate WebHack’s usage of kernelrcesodecreases
because the kernel is spending its resources on other tasks. The sitaatitig in
a large delay when handling game commands, which caused the Bot to meey so

41

of its operations.

4.4 Scalability of a large-scale distributed setup

In the previous section the attributes of a WebHack system with a single YWorke
were discussed. In this section we will look at a large-scale setup, tojerm

a multi-cluster supercomputer. We discuss the the arrival rates, commiayd,de
and the maximum number of concurrent players.

To scale up the system for a large amount of users, we used the DAS-4 su
percomputer, which recently achieved 14th place on the Graph500 list Tke
supercomputer is split into 6 clusters, of which we will use only two, located in
Amsterdam and Delft.

4.4.1 Experimental Setup

The setup shown in Figure 4.1 was modified slightly. For this experiment Machin
2, which serves as a distributer, was replicated 5 times, and Machine 3ptke\WV
was replicated over seventy times.

Each Bot was set up to use direct TCP connections to NHD, bypassing the
HTTPS layer. This frees up resources for gameplay, avoids the coitigdartro-
duced by the SSL layer, and works around certain problems caused fisethalls
between the DAS-4 clusters.

This setup consists of almost hundred machines, and each of the Whéekers
dled thousands of games. The number of machines was limited by availability,
not by the system. This was shown by the resource consumption levels on the
Distributer machines, which did not reach critical levels during these ewpats.

Due to fair-use policies, we limited our usage of the DAS-4 supercomputer to
two of its six clusters. We used 72 machines from the Amsterdam clés@eand
20 machines from the Delft clustdg3 The inter-cluster traffic was reduced by
allowing the Bot to directly connect to nearby NHDs.

4.4.2 Worker Setup

Workers are able to handle up to 6,000 games. At that point the OS ethliceit

on the maximum number of processes. CPU and memory usage were significan
which suggests an even higher number of games per Worker can be ossilelg

by further tweaking the OS parameters.

The maximum number of open files per user, and for a complete system, is also
limited. On our request, these limits were temporary raised for parts of theDAS-
supercomputer. The Nethack+ code was modified to use the number ofilgpen
descriptors more efficiently.

Nethack+ opens file descriptors to access files on disk, communicate to NHD,
and access the console. Although Nethack+ cannot operate withottial ¢ion-
sole, it was proven that it is able to share the virtual console with all othinadie+

42

instances. Files on disk can be virtualised in memory, and the other dessdptor
be kept open only when directly needed.

Using a combination of these techniques, the average number of open-file de
scriptors per instance of Nethack+ can even drop below 1.0, whicliqathe re-
moves the file descriptors limit as a limiting factor.

Our setup did keep the TCP connection to NHD open at all times, as well as
spending several file descriptors on file system access. One of thesgpdors
was used to open a large level datafile. By using the file system, rather #han th
wrapping layer for access, a system-wide memory cache is used. Thetfinis
only loaded into the memory once, which significantly reduces memory usage.

4.4.3 Workload Generation

In this experiment Workers were running multiple instances of NHD. Depgnd
on OS parameters either two or four instances of NHD, each with a priticess
of 1,500, were started.

The OS-parameters were related to the DAS-4 clusters. The machinethigom
Amsterdam cluster each hosted 3,000 Nethack+ games, and the machines fro
Delft hosted 6,000 games each.

The first wave of arrivals consisted of 50 machines from the Amsterdiastec,
which simulated a steady arrival rate of 1,500 new players per secdwedarfival
rate was kept constant for a period of 100 seconds, resulting in G6g@@urrent
players.

The second wave of arrivals came from 21 machines from Amsterdant,énd
from Delft. The player arrival rate was kept constant at 1,000 neweptaper
second for 153 seconds. The second wave added another 158t0@0pdayers.
This wave was handled by a smaller number of machines, which results inex high
arrival rate per machine. Also, the machines from the second waveatiached
to two different clusters from the DAS-4 and are located 70km apart.

4.4.4 Experimental Results

Figure 4.7 shows the total number of processes during the experiment iBve
stance of NHD reported its local statistics every second, and the Gramindined
those numbers into these graphs.

The first and second wave of arrivals are visible as the upward sloptbe
graph. At the start of the trace, there were already 6,000 players iry$tens.
With the 150,000 players from the first wave, and 153,000 from the se¢ha
total number of players in the system is 309,000. The graph shows a tiadizo
line at this level.

During the second wave of arrivals, the system shows signs of stubssh
can be seen as downward spikes. The spikes occur when NHDs missattiend
to report their statistics, or when the Grapher is unable to correctly idengfy th
1-second interval for a report.

43

! ! ! I Processes '
375000 | RECENHY Updated Games -------- j_
Arrival of . Arrival of Process/Game pairs === :
Amsterdam;cluster | Delft cluster | ‘ 309,000 --------]
[‘ 1 M T ‘ ‘
.................. USROS DU ORI s g 2SSO iz S
300000 | T AT AT T Y R u
\ \ Wil R
| | AT oot
; ; fr ‘
~ 225000 | e o é’ b .
: | oAl
e} ; ; 7 ;
€ : : /7
< H i 4! ! i H
: B 1t : ‘
150000 F g Stressed o Stableperiod]
— | system with 309,000 players |
- ‘ ‘ ‘ ‘
LS
P S
s
/7
75000 | e .
!
/o
YA
/
V4
O -4-.—.—‘/ 1 1 1 1 1 1
0 100 200 300 400 500 600

Run Time [Seconds]

Figure 4.7: Number of processes.

Only the correct reports are included in the summation; delayed or missing re-
ports result in a temporary drop of the totals.

Around the 300-second mark the stress caused some inpatient playezatto c
multiple games. This results in a surplus of processes spawned by the system.
After the system stabilises, the surplus processes are reused or tedninate

Atthe 425-second mark all the system is stable again. All the playerstarelac
playing, and the extra games and processes are slowly being reclaimed.

The amount of stress on the system, can be seen in Figure 4.8, whererthe co
mand delays are shown.

During the first wave of arrivals WebHack shows good performaiie extra
games are created and the command delays indicate good responsitdéoess
ever, half-way into the second wave the performance deterioratagdtingsin
larger delays for the players. After about a minute the system recaovesoatin-
ues to operate normally.

The arrival rate during the first wave was around 1,500 playersquemsl, for
a duration 100 seconds. The most popular Facebook Application todeysims
Social, received an averaged amount of 100 new users per segond the first
week of operation [27].

This experiment shows that the WebHack system is able to handle a largatamou

44

0.8

Delay [Seconds]

Arrivaliof
Amsterdam:cluster

Arrival of

Delft cluster

i
i
4
14
11
11
1
; H
]
i
Z

Averag:a Delay i
Maximum Delay -------- |

Stable period

; . Stressed
L 1 system with 309,000 players
O & [l 1 1 [l
0 100 200 300 400 500 600

Run Time [Seconds]

Figure 4.8: Command delay.

of concurrent users, and to be capable of handling high arrival, rstieh as those
seen at the introduction phase of new SMOGs.

4.5 Handling Failures

In our last experiment we look into the effects of simple failures on the WekHa
system. We used a setup with multiple Workers, and repeatedly simulated a com-
plete machine failure. Such an event triggers the functionality describedcn S
tion 3.3.2. This functionality causes a backup NHD instance to take over in the
event where the primary NHD is not responding to input quickly enough.

In the following sections we describe the experimental setup, and the results
After looking at the functional performance, we discuss the resounegummption
of the failure tolerance features.

4.5.1 Experimental Setup

We used a slightly modified version of the setup shown in Figure 4.1. We used
three Workers, and configured all of the instances of NHD to operagpei@siry
and as backup game host. The Bot emulated multiple players, and used direct

45

connections to communicate with the NHDs.

The Worker machines suffered from failures at random intervals.n/tailure
occurs, the NHD forgets all game state and stops communicating for two minutes.
At that moment it will restart, and rejoin the server cluster. After startinghugp,
rejoined server picks up new games again as they arrive.

The Bot runs on a separate machine, and emulates 100 players, whictieexe
one command per second. Two traces were collected with this setup. Insthe fir
run the failure tolerance features enabled, and servers occasioufédises from
failures. During the second trace, these features were disabled aseitiees did

not suffer from failures.

? ' ' ' I Total i
: : ‘ : Worker 4 ------- :
20 | \WWOrker 8 =i i
: 1 : ‘ Worker 2 ------- :
, ‘ Worker 1 --------
,”\" » * ; \ ‘
: R "L (T A : ‘
o 100 bk i E © R f'*‘,‘; ww W 05 "3/ A
g | o | X}ﬁ“ | ')"' 2“‘;‘ x[‘,(%~ ’&‘ |
0 K : : r . q
8 KR T R e,
° : :3!(; X:‘* i :
2 | : éjz
2 |]
> 3 i
E 1" !
[0} 1 I i
o] i v
i B {
kS i i
3 [
E 40 I~ l'(i' - b
S i ; ; ;
z Crashof Arrival of : Crash of Arrival of
Worker1 Worker 3 : Worker 2 Worker 4
i h r
0 L i 11X
0 100 200 300

Run Time [Seconds]

Figure 4.9: Number of recently updated games.

4.5.2 Experimental Results

In Figure 4.9 we show the number of recently updated games, broken plewn
Worker. We annotated the arrival and departure of the differenk@ver

At the beginning of the trace, there are two Worker machines active in te sy
tem. The functionality described in Section 3.3.2 results in a relatively equal dis
tribution of work between the two machines.

Around the 200-second mark one of the two initial Workers, Worker fieis
from a failure. Within 10 seconds Worker 2, which acts as the backup gamaer,

46

(%
(%

CPU Usage [%]

H 1 H H H H i : 1
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Run Time [Seconds] Run Time [Seconds]

]
]

[MByt
[MBytes]

Network Traffic
Network Traffic

0.1

H
0 100 200 300 400 500 600 0 100 200 300 400 500 600
Run Time [Seconds] Run Time [Seconds]

Figure 4.10: CPU Usage and Network Traffic.

replaces the failed machine, and handles the combined workload. A little @9er 3
seconds into the trace a new Worker, Worker 3, joins the cluster. ThigaNor
starts to quickly pick up new games. Since the total number of concurremrpla
remains constant, a decline of the workload handled by Worker 2 candme se
During this period Worker 3 registers itself as the backup game serviliefgames
handled on Worker 2. The effects of this can be seen at around theetsdd
mark, where Worker 2 suddenly fails. Worker 3 takes over the workéoatithe
system recovers from the failure a second time.

Due to use of clocks and the random function, as described in SectioniBig.2
not trivial to recreate games correctly on another machine. During theriexent
we traced the process which recreates the games on the backup madhmes.
verified that the random seeds and game states before, and after fertrahere
identical.

The failure tolerance features cause a large amount of extra messhgessiat.
These messages notify backup game hosts of attempts to contact the pristary ho
and transfer game information from the primary hosts to the backups. $inge
and sending these messages costs CPU and network resources.rérd-iguwe
placed the resource usage of the two runs side-by-side. The lefiggnidide show
the trace without and with the failure tolerance functionality, respectively.

The spikes in CPU and network usage during the two recovery periodbeca

a7

clearly seen in the right hand figures. The differences in resousgeuae small,
but significant. Notably the User CPU-usage and the Inbound netwdiik tee a
bit higher.

The resource costs consumed by the failure tolerance features arérsooafi-
parison with the advantages. The features allow the system to continwsinger
even when multiple failures occur. The primary game host is replaced quickly
leading only to small discomfort for the players. The inevitability of system fail-
ures, and the need for maintenance, make these features a poweiffioinaitda
game platform.

48

Chapter 5

Conclusion

In the previous chapters we discussed MMOGs, Facebook, and dahattk sys-
tem. In this chapter we will look back at our most important results and stigges
ways to expand this research in the future.

5.1 Summary

We looked into the process of integrating a MMOG into an online social platform,
specifically Facebook. Although the integration process was more comgex th
expected, a functional and expandable integration was achieved.

We built an efficient SMOG system, using a multi-cluster architecture, asyn-
chronous 10, and zero-copy packet parsing. The workload islédrid/ many
small components, which can be easily distributed over a large number ofimaach

We showed that our system is capable of functioning when sufferimg fnoil-
tiple failures. The recovery is fast and automatic, and the features roessan
insignificant amount of extra resources.

WebHack is a fully functional web-based game-system, which allows Nethac
games to be played over the web. The old game is expanded with social and multi
player features. The game platform includes important secondary dsdilke
security and maintainability.

In Section 4.4 we show the system to be capable of supporting 309,000reonc
rent players, well over our established goal of 250,000. The systeapeble of
handling the large arrival rates, which are seen when popular gamedraduced.

The system is able to operate on the DAS-4 supercomputer using dozens of
machines from multiple clusters. The maximum number of machines was limited
by the size of the supercomputer, not by our system.

We have build our social platform upon legacy software, which we intedra
in a way that allows adding support for other legacy applications, and doe
involve rewriting the program.

We did not ignore the software license restrictions of the legacy software.
stead, we reduced the size of code which is considered to be a deavkd w

49

5.2 Future Work

We created a functional, but basic SMOG system. The basic functionalitgdeav
many areas of optimisation and interesting design choices untouched.

Further research could expand the functional possibilities of the Fakebte-
gration, or provide better understanding of the effects of the diffa@eitl aspects
of the interaction.

Our MMOG system uses many different processes and file descriptopete
ate. Research into different construction methods or new techniques lsaglib
improvements in efficiency.

A study of possible improvements to workload distribution and fault tolerance
is another avenue for future research.

Although realistic scenarios were used in the experiments, some uncorfdortab
implementational issues were avoided by restricting the use of HTTPS connec
tions, and by limiting the scope of communication for certain messages. Removing
these simplifications is a topic for further research.

A number of ideas, based on P2P techniques described in Section 23)seelr
in the WebHack system. The possibility of expanding these ideas to includlg a fu
distributed database engine in the system can be researched.

5.3 Finally

We hope that in the future, WebHack allows many players to finish a game of
Nethack and become the proud owner of an Amulet of Yendor.

50

Bibliography

[1] Johan HuizingaHomo ludens(1938, publisher=Beacon Press, Boston).
[2] http://internetgames.about.com/od/gamingnews/a/trendsdecade.htm

[3] Aki Jarvinen,Game design for social networks: interaction design for play-
ful dispositions Proceedings of the 2009 ACM SIGGRAPH Symposium on
Video Games (New York, NY, USA), Sandbox '09, ACM, 2009, pp. 962.

[4] http://nethack.org

[5] Matt Barton,Dungeons and desktops: The history of computer role-playing
games(2008).

[6] http://nl.wikipedia.org/wiki/facebook
[7] https://lwww.facebook.com/press/info.php?statistics

[8] Arnoud Bakker,Survey of system challenges when increasing the amount of
players in a virtual game world2011).

[9] Schaap, Charite, Doorn, and Paisystem architectures for massively multi-
player online games - an overvie2008.

[10] van Ee, van den Heuvel, Hooikaas, and ReAssurvey of system architec-
tures for massively multiplayer online gam2609.

[11] Smit Tak, Jutte and de SwaA,survey of mmog system architectur2310.
[12] http://en.wikipedia.org/wiki/massivetultiplayeronline.game

[13] Atif Nazir, Saqib Raza, Dhruv Gupta, Chen-Nee Chuah, and Balader
Krishnamurthy,Network level footprints of facebook applicatipnsternet
Measurement Conference, 2009, pp. 63-75.

[14] Atif Nazir, Saqgib Raza, and Chen-Nee Chubmyveiling facebook: a mea-
surement study of social network based applicationternet Measurement
Comference, 2008, pp. 43-56.

[15] http://www.appdata.com

51

[16] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Rid¢tenp, and
lon Stoica,Load balancing in structured p2p systert003).

[17] W. Willinger and V. PaxsoriyWhere mathematics meets the interii&998).

[18] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wils@n
the self-similar nature of ethernet traffitEEE/ACM Transactions on Net-
working 2 (1993), 1-15.

[19] Thorsten Hampel, Thomas Bopp, and Robert Hiapeer-to-peer architec-
ture for massive multiplayer online gamedroceedings of 5th ACM SIG-
COMM workshop on Network and system support for games (New York,
NY, USA), NetGames '06, ACM, 2006.

[20] Abdennour El Rhalibi, Madjid Merabti, and Yuanyuan Sh&ojm in peer-
to-peer multiplayer online gamg®roceedings of the 2006 ACM SIGCHI
international conference on Advances in computer entertainment tegynolo
(New York, NY, USA), ACE '06, ACM, 2006.

[21] Sieteng Soh Steven Webh,survey on network game cheats and p2p solu-
tions, (2007).

[22] Antony Rowstron and Peter Drusch@astry: Scalable, decentralized ob-
ject location, and routing for large-scale peer-to-peer systetisidleware
2001 (Rachid Guerraoui, ed.), Lecture Notes in Computer Science 248, 2
2001, pp. 329-350.

[23] Peter Druschel and Antony Rowstrd®gst: A large-scale, persistent peer-to-
peer storage utility Workshop on Hot Topics in Operating Systems (2001),
0075.

[24] Hyoung-Kee Choi and J.O. Limi, behavioral model of web traffibletwork
Protocols, 1999. (ICNP '99) Proceedings. Seventh Internationafetence
on, oct.-3 nov. 1999, pp. 327 — 334.

[25] Ryen W White, Understanding web browsing behaviors through weibull
analysis of dwell timgwWork (2010), 379-386.

[26] http://www.graph500.0rg/nov2011.html

[27] http://www.allfacebook.com/sims-social-is-facebooks-fastest-growing-
application-2011-08

52

