
WebHack: A Research System for Social Massive
Multiplayer Online Games

Arnoud Bakker

System Performance of a Platform for Social
Massive Multiplayer Online Games

Master’s Thesis in Computer Engineering

Parallel and Distributed Systems group
Faculty of Electrical Engineering, Mathematics, and Computer Science

Delft University of Technology

Arnoud Bakker

16th January 2012

Author
Arnoud Bakker

Title
WebHack: A Research System for Social Massive Multiplayer Online Games.

MSc presentation
20th January 2012

Graduation Committee
prof. dr. ir. D. H. J. Epema (chair) Delft University of Technology
dr. ir. A. Iosup (supervisor) Delft University of Technology
prof. dr. ir. S. D. Cotofana (CE) Delft University of Technology

Abstract

The most popular Facebook games are being played by millions of users, some-
times only a few weeks after introduction. Although several of these games and
their users have been studied, there currently exists no open-source version of such
a game.

In this thesis we present the design, implementation, and performance analysis
of WebHack, a Facebook-integrated multiplayer game. WebHack is built upon the
classic, but still popular, game of Nethack. We discuss the technical difficulties
with file handles, process limits, communication networks, and handling failures.

Further, we consider aspects specific to legacy applications, for examplelegal
issues and technical limitations. We propose methods to circumvent these issues,
and show a successful integration of the legacy game Nethack into our Facebook-
integrated game system.

We present the design of our system and evaluate the performance of thede-
sign in various scenarios. Among other results, we show that WebHack is ahigh-
performance system, able to support over 300,000 concurrent players, handle ar-
rival rates for up to 1,750 new players per second for over 60 seconds, and is able
to recover within 10 seconds from a server failure.

iv

Preface

I want to thank my parents, employer, and supervisor.

I am not new to the subject of multiplayer games; I have hosted my own multiplayer
online RPG for over ten years. This led to the following tribute:

Rage of Vengeance masters!

Supreme Entity
Akasi Arwen Balin Foil Ignite Jrk Loesje Lucifer Vigo Zur

Posse
Fallout Mandor Morra Pygmy Sphere Summoner Uber Wacky Xenthar Xypher

Arnoud Bakker

Delft, The Netherlands
16th January 2012

v

vi

Contents

Preface v

1 Introduction 1
1.1 Background . 1

1.1.1 Computer Games . 1
1.1.2 Facebook . 2

1.2 Problem Statement . 3
1.2.1 Research Questions . 3
1.2.2 Technical Objectives . 4

1.3 Thesis Outline . 5

2 Related Work 7
2.1 Research on Social Games . 7

2.1.1 Constructing a Facebook-Integrated MMOG 7
2.1.2 Designing Social Games 8
2.1.3 Statistics of Facebook Applications 8
2.1.4 Current Status . 8

2.2 Research on MMOG performance 9
2.2.1 Load Balancing in Structured P2P Systems 9
2.2.2 Modelling HTTP Network Traffic 9

2.3 Research on Game System Failures 10

3 WebHack: A Research System For SMOGs 13
3.1 Functional Description of the System 13

3.1.1 Game Platform . 13
3.1.2 Research System . 14
3.1.3 Facebook Integration . 15

3.2 System Design . 15
3.2.1 Nethack+ . 15
3.2.2 Nethack Handler Daemon (NHD) 16
3.2.3 HackSite . 17
3.2.4 The Bot . 17
3.2.5 The Grapher . 18

vii

3.2.6 The Bundler . 18
3.2.7 A Complete System . 18

3.3 System Implementation . 20
3.3.1 Nethack+ . 20
3.3.2 NHD . 21
3.3.3 HackSite . 24
3.3.4 Facebook Integration . 25
3.3.5 Handling Legacy Code 27

4 Experimental Evaluation 31
4.1 Overview . 32

4.1.1 The Basic Experimental Setup 32
4.1.2 Measurements . 32
4.1.3 Main Findings . 33

4.2 Facebook Integration . 34
4.2.1 Application Construction 34
4.2.2 Facebook API Performance 34

4.3 Performance of a Single Worker Node 35
4.3.1 Experimental Setup . 36
4.3.2 Nethack+ Command Delays 36
4.3.3 HTTPS Request Delays 36
4.3.4 Effects of a daily pattern on system performance 38
4.3.5 Process Creation . 40

4.4 Scalability of a large-scale distributed setup 42
4.4.1 Experimental Setup . 42
4.4.2 Worker Setup . 42
4.4.3 Workload Generation . 43
4.4.4 Experimental Results . 43

4.5 Handling Failures . 45
4.5.1 Experimental Setup . 45
4.5.2 Experimental Results . 46

5 Conclusion 49
5.1 Summary . 49
5.2 Future Work . 50
5.3 Finally . 50

viii

Chapter 1

Introduction

1.1 Background

Gameplay is an old and important aspect of human interaction. It is so much part
of our nature that even seems to predate the existence of human culture [1].

Some games played today were also played in a similar form centuries ago,
but new games are also constantly being invented. This thesis focuses on one
of the newer forms of gameplay, which is based upon the modern invention of
social network websites. First, we give some background on computer gaming,
and specifically on the game Nethack, then we discuss the Facebook platform and
introduce our problem statement and research questions.

1.1.1 Computer Games

Computer gameplay was made possible around 1950 and is currently a popular
daily activity in areas where electrical power is available, although games with
boards and pieces, or with a ball or a piece of string, are also still popular.

Game development followed the communication trends and multiplayer games
evolved for telephone modems, local area networks, e.g. Ethernet, and the Internet.
Earlier Internet games often matched players with no common background against
each other. Slowly, games shifted towards a model where players can keep track
of their friends and favourite partners. This made Internet computer gaming less
anonymous, and more of a social activity.

Game design was influenced by this social trend and the multiplayer online
games (MOGs) became more diverse. In a field first dominated by fast-paced,
aggressive, and competitive MOGs, games which were slower, more constructive,
cooperative, and narratable gained popularity [2, 3].

This research project revolves around social MOGs (or SMOGs). For this pur-
pose a basic, but fully functional, SMOG system, based upon the existing game of
Nethack, is designed, implemented and analysed.

1

Nethack

Nethack [4] is a well-known computer game. Whereas the first version wasre-
leased in 1987, the latest functional updates were made public in 2009. Updates to
support modern platforms, such as smart mobile phones, are still being developed.

Nethack is a turn-based single-player game. The player controls a humanoid
character, which is trapped in a large dungeon. The goal is to obtain the legendary
Amulet of Yendor. For this purpose, the dungeon must be explored while fending
off dangerous monsters and completing other challenges.

This game is the most popular and successful descendant of the text based role
playing games (RPGs), a genre which started around 1975. Although the transition
to advanced 3D graphics has been made, modern RPGs like World of Warcraft and
Runescape are functionally similar in many respects [5].

Although being old, Nethack still enjoys a cult status and it is mentioned in
many technical shows and presentations. The game is included in most Linux-
based operating systems installations. A part of the cult aspect stems from the
ruthlessness and complexity of the game. There are around a hundred different
commands, but many can be used or combined in surprising and unpredictable
ways.

Most of the time, a single event can result in the death of the character, which
immediately ends the game, forcing the player to start over with a new character.
This last aspect forms a bond between Nethack players, who amongst themselves
seek comfort to complain about frustrating in-game deaths, but also marveland
enjoy the humour, clever design and remarkable attention to detail of this epic
game.

1.1.2 Facebook

Facebook was founded in 2004, first operating as a Harvard university social web-
site, and going open for the public in 2006 [6].

Since then its user base grew enormously. In August 2011, over 375 million
people were logging in daily, over 2.5 million websites have been integrated with
Facebook, with ten thousand more following each day [7]. These websitesuse the
integration with Facebook to track what people like, advertise, offer services, and
study or interact with their public.

Facebook’s large collection of personal information is both a treasure and a li-
ability, placing the company in the middle of a permanent struggle between eco-
nomic factors, privacy laws, and user satisfaction.

The popularity of Facebook and other social websites gave rise to a new breed of
online multiplayer games, called social multiplayer games. Similar to normal mul-
tiplayer computer games there are played online, but instead of playing with fairly
unknown players from around the world, most interaction occurs within thesocial
circle of the player. These social multiplayer games tend to be less aggression-
oriented and more aimed at cooperation.

2

1.2 Problem Statement

Although many SMOGs exist, none of them is open-source and available forre-
search purposes. It is not a trivial task to construct a computer game system that
is capable of supporting thousands of concurrent players. In an SMOG, the strong
interaction between the requests of different players creates additionaltechnical
challenges.

Massive Multiplayer Online Games (MMOGs) have been extensively researched,
and this research has already produced algorithms, techniques, and system designs
capable of supporting a very high number of players.

This knowledge will be used to construct an MMOG system based upon Nethack,
integrated into the Facebook platform. We call your system WebHack, and we de-
signed it as a realistic research SMOG capable of handling a massive number of
players. The design of the system is presented in Chapter 3. The experimental re-
sults are shown in Chapter 4; notably, in Section 4.4 we show that WebHack istruly
a massive multiplayer game, and that WebHack is capable of handling hundreds of
thousands of players concurrently.

1.2.1 Research Questions

We focus on three main research questions. Other goals of this researchproject are
discussed afterwards and include technical challenges and a creativeway of han-
dling GPL-licensed software within a larger system. We discuss the background of
the research questions, and related work, in Chapter 2.

Q1. How can massive multiplayer online games be integrated into the social
platform Facebook?

The Facebook platform offers integrators a large and complex API, which is
updated regularly. One of the features, that is, the ’I Like’ button, has become a
well-known concept. Many other forms of integration are possible, but nostandard
best-practice method exists.

During our research a flexible method of Facebook integration is implemented
and tested. A discussion of Facebook API performance, and analysis of the inte-
gration is included in Section 4.2.

Q2. What are efficient methods in supporting social MMOGs on a heteroge-
neous multi-cluster server system?

It is technically challenging to build game systems able to handle multiple dozens
of concurrent players [8].

There are many different game system designs [9, 10, 11], and we arerestrict-
ing our research to systems using a client-server model where the serverrole is
distributed over a cluster of machines. The server cluster is able to dynamically
change in size. This has the advantage of being able to add resources when more
are required, and being able to remove them to avoid unnecessary operating costs.

3

The system requires a mechanism to distribute server tasks over the available
server machines. Different algorithms to determine which server handles new
games are implemented in the research system, as described in Section 3.3.2. We
include an analysis of the performance of these methods in Chapter 4.

Q3. How can a MMOG system be made tolerant to simple system defects?
Distributed computer systems become quite fragile, if an insignificant failure

on a single node can affect the outcome of the entire system. Such a failure might
occur in a game system when a server unexpectedly becomes disconnected or when
the server that handles all the login requests crashes.

We investigate methods to ensure continued operation of the game system, even
when such a failure occurs. This could avoid system breakdown and possibly loss
of income. In Section 3.2.7, we describe how a WebHack system without single
points of failure can be constructed. An experiment which shows the performance
during server failures, and an analysis of the results, is included in Section 4.5.

1.2.2 Technical Objectives

To answer the research questions Q1-Q3, we have designed and implemented a
SMOG system, called WebHack. In this section we describe the technical ob-
jectives of this system. The design and implementation details are presented in
Chapter 3.

T1. Construct a fully functional web-based SMOG system.
The qualify for this objective, WebHack should not only offer a fully playable

game through a website, but also the secondary functionality of a gaming system.
This includes basic support for logging, maintenance, security, and interaction with
other players.

T2. Construct a system capable of running on a heterogeneous multi-cluster
server.

Achieving this technical objective means that our system is able to handle dif-
ferences in hardware, and differences between groups of machines.

A heterogeneous server cluster consists of machines with different hardware
platforms. WebHack should not only be able to run on different types of hardware,
but also to form one server cluster which such systems.

A large number of machines, forming a single system, is sometimes subdivided
in smaller groups, called clusters. Such a subdivision can be part of a naming con-
vention, or be based on the network structure. This last situations might leadto
a system where there are differences between inter-cluster and intra-cluster com-
munication. In many situations inter-cluster communication is slower and subject
to more access restrictions. Our system should be able to operate on such multi-
cluster systems.

4

T3. Construct a system capable of supporting over 250,000 concurrent play-
ers.

According to Wikipedia [12] a system has to be able to support hundreds or
thousands of concurrent players to be considered an MMOG.

Achieving this objective enables our system to qualify as a massive multiplayer
game, and even demonstrates that it is capable of handling an amount of players
only found on popular SMOGs.

Legal Objectives

L1. Show a practical method of integrating legacy software into a modern
platform.

Most software comes with a license, which determines acceptable usage. Itis
no surprise that users are not allowed to copy, resell or redistribute most software
they have payed for, but some of those restrictions also apply to free software.

Although Nethack is freely available, the use of the source is subject to a license.
If a SMOG system is constructed by expanding the original Nethack program, the
use of the entire SMOG system would be subject to the Nethack license. We plan
to use Nethack in our SMOG system, but to minimise the effect of the license
restrictions.

There are a number of popular license schemes for free software. Software
which is placed in the public domain is considered to be copyright-free, and can be
used for almost any purpose.

Most free software is released under a derivative of the General Public License
(GPL). Software released under this license can be used, modified, anddistributed
free of charge. It is allowed to distribute modified version of the software,but not
to charge for their use, or to place restrictions on access to the source code.

By using the game of Nethack in our SMOG system, it is almost unavoidable
that a part of our source code can be considered to be derived. We attempt to show
practical usage of an unmodified version of Nethack-3.4.3 in our research system,
and explain the implications of this approach in Section 3.3.5.

1.3 Thesis Outline

In the next chapter we discuss the background of the research questions and techni-
cal objectives, and talk about MMOGs, Facebook Applications, and related work.
In Chapter 3 we present the design and implementation of our research gamesys-
tem, WebHack. Chapter 4 contains the description and results of our experiments.
We finish with a conclusion in Chapter 5.

5

6

Chapter 2

Related Work

In the previous chapter we defined our research questions on Facebook integra-
tion, game-system scaling, and fault tolerant game-systems. In this chapterwe will
discuss the background of the research questions. Some of the aspectswe intro-
duce will be used in the design of our MMOG-system, which we introduce in the
following chapter. Others topics are here to serve as a starting point for further
research.

2.1 Research on Social Games

Many Facebook aspects have already been the subject of scientific research. In
the next sections we will discuss a bachelor of science project about a Facebook
integrated shooting game, the social aspects of game design, and discuss some of
the statistics of Facebook Applications and their users.

2.1.1 Constructing a Facebook-Integrated MMOG

In 2010, two bachelor students F. Jutte and J. de Swart completed their bachelor
of science project on a Facebook-based MMOG at TU Delft. They designed and
implemented a prototype of a web-based, shoot-em-up game. The game system
had a client-server architecture. Player commands and location updates where dis-
tributed through a messaging system.

In this approach the number of messages per second grows quadraticallywith
the number of players, making the system unable to support a large number of
players. Their research focused on investigating different methods to reduce the
number of messages sent. The main idea was to reduce the area of the world on
which the clients received updates. The part of the world a client was interested in
is called the Area-Of-Interest (AOI).

The mock-up game was lightly integrated into Facebook. Their thesis described
other possibilities for integration, which we further explore in this project.

7

2.1.2 Designing Social Games

Web-based games are not new, but Facebook-integration opens up new possibili-
ties. In the introduction, we already mentioned that violent and fast-paced games
did not fit the social genre very well. By looking at the first games that flourished
on the social websites a number of similarities appeared. At least five different
design aspects [3] were found to be important for producing social webgames:
physicality, spontaneity, sociability, narrativity and asynchronisity.

Social games contain actions which humans are physically able to do, but hide
the complexities and effort of those actions. Metaphors should be used to make the
game easy to follow. The common social relations between players are used inthe
game design. The game was designed while considering users who play a number
of short sessions daily.

These aspects are simple to grasp. They are easy to integrate into existing games,
so they can serve as a guidebook for developing Facebook-integratedgames.

2.1.3 Statistics of Facebook Applications

The usage of a number of different Facebook applications has been traced and
analysed [13]. This analysis gives insight into the geographical distribution of the
users, the intensity of the interaction between users, and the distribution of network
traffic. Most of the results are representative for reasonably popular applications
studied over a long period of time. Among the important results is shown that
application interaction with Facebook can incur multi-second delays, and worsen
for more popular applications.

Because of the slow nature of most social games, such delays are not a direct
problem, but they can become a source of annoyance for the players. With most
applications, the number of users grows at a nearly exponential rate during the first
days of operation, but remains fairly constant afterwards [14].

2.1.4 Current Status

Currently, the game developer Zynga is dominating the Facebook application arena
[15]. The company, only 4 years old, was estimated to be worth around 7 Bil-
lion dollars. At least 25 percent of all Facebook users played one of their games.
Their most popular game, FarmVille, services over 25 million players daily. Zynga
uses both a private data centre and commercial cloud-based solutions to host their
games. The clouds are mostly used to handle the large traffic spikes generated by
recently introduced games.

Blizzard Entertainment still manages to attract over 11 million paying subscribers
with their 7-year-old game ’World of Warcraft’. Blizzard constructed the server
clusters out available hardware, but they are largely operated and maintained by
partners because commercial cloud computing was then still in its infancy. In
general, games which require fast responses are more commonly run on self-
engineered server systems, rather than clouds.

8

2.2 Research on MMOG performance

The maximum number of players in an MMOG greatly depends on the game genre.
Most high-paced games, e.g., first-person shooters, are not able to support more
than several dozen players, but run into that limitation when a single room orarea
becomes very crowded [8].

For certain subtasks a client has to consider all other nearby clients. A few
of these tasks, e.g., path finding, collision detection, and maintaining a consistent
global state, consume an increasing amount of extra resources when considering
an additional client. When the resources of one of the servers of a server cluster
are exhausted, this can cause the game to slow down or even fail completely.

Although slower games do not suffer from the same problems, they can also
be slowed down considerably when the number of concurrent players increases.
Common limiting factors are the maximum number of database transactions per
second, and the overhead caused by locking operations.

2.2.1 Load Balancing in Structured P2P Systems

Ananth Rao e.a. [16], compared different load-balancing approaches in a P2P-
system where some nodes were overloaded with work, and others had resources to
spare. They experimented with different methods and algorithms of swapping tasks
between nodes in order to reach a state where all nodes are moderately loaded.

Their work showed that for a sufficiently large network a simple scheme, in
which each overloaded node shed tasks to the least loaded node it was aware of,
performed amongst the best ones, while requiring the least communication.

Although the work focusses on a P2P-system which did not have gaming func-
tionality, but instead it offered access to a database, the results could be equally
applicable, because of the functionality agnostic nature of the load balancing algo-
rithms.

2.2.2 Modelling HTTP Network Traffic

Popular web-servers are visited daily by a large number of clients. The visits differ
greatly in length and number of requests. A model of such a server can constructed
using Queueing Theory.

If the arrival of clients is modelled as a Poisson process, the system can be easily
analysed analytically, and the model can be made to closely resemble the trafficof
an existing web-server. However, Ethernet network traces were shown to exhibit
self-similarities, a feature which can be described by the Hurst-exponent.It was
shown that the self-similarities occurring in network traffic can not be explained by
an underlying Poisson process [18].

A difference between the Poisson model and reality is found when comparing
traffic on a single Ethernet cable with the summed traffic of a number of cables,
or by looking at a trace with different enlargement factors, as shown in Figure 2.1.

9

Figure 2.1: Self similar features of Ethernet traffic [17].

The Poisson-based model predicts the traffic to become more regular where in
reality it will contain more and even higher spikes.

Various other queueing models were found to be able to produce traffic withself-
similar features. In one of our experiments we use a model based upon the Weibull
distribution. This distribution was selected over the simpler Pareto-distribution
because the heavier tail more accurately describes web-traffic.

2.3 Research on Game System Failures

To avoid the effect of failures in a distributed game system, a number of techniques
which where developed for P2P systems can be used.

A number of algorithms, originally used for P2P systems, have been proposed to
reduce resource requirements for MMOG-servers [19, 20]. However, limitations to
the trustworthiness of client-machines limit the possibilities of this approach. This
is not only a problem to P2P-based game systems, traditional client-server based
game systems are also vulnerable to a long list of cheating possibilities [21].

Inside a server cluster all the machines are trusted completely, which allows
P2P-techniques like Pastry and PAST [22, 23] to be used to provide a persistent
database. PAST is a file system, built on top of Pastry, a P2P-system. The filesys-

10

tem handles requests to store and retrieve files. Stored files are replicatedon multi-
ple systems, allowing correct retrieval even if a small number of systems leaves the
network. Requests for retrieval are routed to one of the systems holding thefile, an
attribute which also services as a load-balancing mechanism.

The P2P-system Pastry is not very relevant, since it is constructed for ahighly
dynamic environment of average Internet users, quite unlike the dedicated server
cluster we are using. However, a PAST-like file system could be used to provide
reliable data-storage for our SMOG system. With the game data stored on multiple
hosts, there are possibilities to balance the load and reduce the effect of failing
servers.

We implemented a number of P2P techniques in WebHack. A study into the
possibility of adding more P2P functionality can be a topic of future research.

11

12

Chapter 3

WebHack: A Research System
For SMOGs

In this chapter we describe the design and implementation of our Social Multi-
player Online Game (SMOG) system, called WebHack. We first present a func-
tional description of the system, then the overall design and several major compo-
nents. Last, we discuss the implementation of the system.

3.1 Functional Description of the System

The WebHack system has three main functional aspects. It is a complete game
platform, it is usable for scientific research, and it has a working Facebook integra-
tion. We discuss these aspects, and their influence on the design, in the following
sections.

3.1.1 Game Platform

WebHack is a web-game platform capable of delivering the performance of an
MMOG. The platform runs on a cluster of server machines, and offers the function-
ality of a game-system to its users. This is not limited to offering a fully playable
game, but also includes features like security, administration, and maintenance.
These features are not only included for their functionality, but also to avoid work-
ing with an oversimplified game-system. Measurements on a system without these
features might lead to optimistic performance estimations or unrealistic conclu-
sions.

WebHack is a large-scale system, which operates on a cluster of machines.
In Section 1.2.2 we listed the objective to make the system capable of handling
250.000 concurrent players. WebHack contains functionality to comfortably con-
struct, configure, and modify clusters of dozens of machines, and to distribute the
workload over them.

13

Since it is impractical to require a large number of identical machines to be
available, WebHack is able to run on systems with different hardware configura-
tions and operating platform. WebHack can also join such systems into a single
server cluster, which is one of our technical objectives.

We operate WebHack on a cluster of machines during the experiments. If com-
ponents are placed on a single machine, they experience greatly reducedcommu-
nication delays. Such a setup would not lead to realistic measurements.

3.1.2 Research System

WebHack is a platform for scientific research. It offers the functionalityto run di-
verse and repeatable experiments on clusters of server systems. Complexscenarios
can be instrumented accurately and the system can be adapted during operation to
handle new situations.

An experiment is created by defining an initial system state, the configuration
options, and the arriving workload. Most changes to the configuration options do
not affect the final state of the system, making it possible to repeat an experiment
with different settings. The first run can be made in a slow, verbose mode,and
the second run using settings for optimal performance. The output of the first run
could be used to verify the correct operation of the system. Then, the performance
can be measured during the second run.

Repeatability requires the careful storage of random seeds, and event time stamps.
Nethack bases some of its decisions on the output of random functions or by look-
ing at the local clock. When different values are used in different runs, the output
of the game can greatly differ. The same output can be reached when the ran-
dom values and time stamps are stored, or when they are derived in a reproducible
manner.

New situations can be handled effectively by changing the configuration,and
even the executable code. Most components of WebHack can be dynamically
reconfigured, and large portions of the executable code can be reloaded without
losing state.

The combination of these features allows the WebHack operators to add new
configuration options within a running system and immediately start using them.
This flexibility allows investigating complex problems without having to rebuild
the conditions, by gradually adding code to first identify and later handle to prob-
lem.

The features are able to work on systems which use a large number of server
machines. Configuration changes can be made on groups of machines andcode
updates are distributed automatically. The measurement data for all machines are
collected onto a single machine, even if the server cluster suffers from failing ma-
chines. On this machine the information is combined, and further processed into
images, of which we show some in Chapter 4.

14

3.1.3 Facebook Integration

WebHack is a social web-game. The social aspect is integrated into gameplay, and
into the system.

The game offers social features, such as making players able to invite newplay-
ers, share items with their friends, and observe others games. The systemcollects
high-scores and other accomplishments, and allows players to compare andshare
this information. It is possible to add, and experiment with, new forms of interac-
tion.

On a system level, the social aspect is accomplished by registering WebHack
as a Facebook Application. It uses the Facebook API to communicate with the
Facebook platform, but is able to operate even when this communication is slow or
otherwise corrupted.

The Facebook integration makes the system part of the Facebook experience,
and raises the users expectation of the systems availability. WebHack gracefully
handles sudden server failures, and is able to run multiple reachable instances of
all its components.

3.2 System Design

WebHack, our SMOG system, consists of three main components. The first com-
ponent is called Nethack+, which is a Nethack process with wrapper codearound
it. The second component is the Nethack Handler Daemon (NHD). This daemon
manages the local system and a group of Nethack+ processes. The thirdcomponent
is a website, called HackSite, which handles the communication between NHD and
the players.

The secondary components are the graphing tool called ’Grapher’, a computer
player called ’Bot’, and a daemon to bundle HTTPS connections, called ’Bundler’.

3.2.1 Nethack+

WebHack builds upon the existing Nethack game. However, the game neededto
be heavily adapted to suit this project, since multiplayer features and web integra-
tion lacked. To add this functionality, a wrapper for the Nethack application was
constructed.

The wrapper intercepts and handles some calls Nethack makes to the Operat-
ing System (OS) on which it runs, i.e., Linux. Some of these intercepts change the
input and output behaviour of Nethack, for example, the terminal menu screens are
redirected to a website with choice buttons. Other intercepts change the internal
behaviour of Nethack, for example, when a multiplayer level is selected or an item
is donated to a player in another game.

From here onwards we refer to a wrapped Nethack process by placinga plus-
sign after the name, referring to it as Nethack+.

15

Figure 3.1: Schematic overview of a NHD with several Nethack+ processes.

3.2.2 Nethack Handler Daemon (NHD)

The NHD is a stand-alone daemon process, which is started on a number of server
machines. Its primary task is communicating with Nethack+ processes, other in-
stances of NHD, the Facebook API, the website, and humans.

The communication with Nethack+ processes is shown in Figure 3.1. Besides
the communication, NHD is also responsible for creating and destroying Nethack+
processes, handling their file access, recording their input requests,storing the cur-
rent game screen, and handling player commands.

To communicate with other instances of NHD they have to located, and con-
nections have to be set up. These connections span up a communication network
through which all the components in the system can be contacted. We discuss
different methods to locate and connect in Section 3.3.2.

Contact with the other NHDs is used to distribute, among other things, infor-
mation about games, configurations, and statistics. Distributing game information
allows the system to handle situations where a server fails. The information is also
used to assign new games to the correct NHD.

These requests have to be distributed in such a way that none of the systemsrun
out of resources. This is complicated by the fact that due to hardware differences
between servers, resources on one system are not necessarily comparable to an

16

equivalent amount of resources on another system.
Distributing the knowledge of the games allows the system to handle failing

servers gracefully and find the correct place to place new games.
NHD also uses HTTPS to communicate with the Facebook API. Through this

API it can retrieve detailed information on users and their friends, or postupdates
to the public message board of users.

For operators it is also possible to interact with a NHD directly, through a termi-
nal or the network. Commands can also be forwarded by other instances of NHD,
or through the website.

3.2.3 HackSite

HackSite is the name of the website for this system. It can be accessed directlyor
through the Facebook website, and can be used by both players and maintainers.
For direct access, the URLhttps://webhack.nl:21592/can be used. To access the
site through the Facebook website, one has to search for the ’WebHack’Facebook
Application.

The web pages are delivered to the clients browser by one application. The
application uses NHDs as its information source, and is mostly responsible forfor-
matting this information. It also adds web scripts to support hot keys and handles
the clickable game interface.

The website itself contains no game logic and understands little of the informa-
tion it is showing to the user. For example when a player clicks on a selection box
which is shown to him by HackSite, the mouse click is converted to a keystroke,
which is injected in a Nethack+ process. Nethack+ reports an updated menu, con-
taining a check mark in the selection box to NHD. NHD transfers the updated menu
page to HackSite, which renders it in the player’s browser. Although this method
requires a lot of communication steps, its generic approach makes it suitable for all
the game screens that might arise, greatly reducing the number of game situations
which have to be tested.

3.2.4 The Bot

Although WebHack is fully playable, we also created a simple computer player,
called Bot, for research and experimental purposes. By using a computer player
we are able to create, and recreate, a wide range of input patterns. TheBot does not
need to be a very proficient player, as long as the workload generated by a group
of bots resembles the workload created by a group of human players.

The Bot can emulate different arrival patterns for the players. We madeuse of
three different patterns, one where all the players arrive instantly, one where they
arrive in a constant rate, and one where the arrival of the players mimicsthe daily
pattern of an average, but somewhat simplistic, human.

Because of similarities in the communication, the robot is able to connect to a
NHD directly, or connect to the HackSite. The direct option allows specific com-

17

ponents of the system to be tested, and the latter setting allows for more accurate
measurements for a complete system.

3.2.5 The Grapher

When working with a large WebHack setup, there are hundreds of instances of
NHD running concurrently. They send commands to hundreds of thousands of
different Nethack+ processes. Such a setup generates a huge number of statistics.
To gather and process all these statistics a separate component was constructed.
It is called the Grapher, and can be run both from the command line, and as a
CGI script. The last option makes it possible to refine complex graphs with a web
browser.

The Grapher connects to a NHD and continually queries it for new events.An
event can signify many different things. For example it can be an entry from a log
file, a number which describes CPU usage for an application, or a collections of
measurements from the last second. Each events is created by a NHD, andthen
communicated to the other instances.

It is also possible for the Grapher to connect to multiple NHDs at the same
time. Such a setup is mostly useful for tracing WebHack while running tests where
systems can suffer from failures. It that case multiple connections to the server
cluster ensure that event information is always able to reach the Grapher.

3.2.6 The Bundler

To save file descriptors on certain machines, and to allow a more convenienthan-
dling of internal firewalls, we created a simple connection bundling application.

In Figure 3.2 we show how the Bundler is placed on the gateway and internal
machines. It is set up to bundle the incoming HTTPS connections into a single
connection. In this setup only the gateway machine, or machines, require therights
to receive inbound HTTPS connections from the Internet. This setup is more secure
because unrestricted access from the Internet is considered a security risk. By using
this tool, the risk can be avoided for the internal machines.

The use of the Bundler reduces the resource usage on the machines running
HackSite, and makes it possible to run the WebHack system when only user ac-
counts with limited privileges are available on the Gateway machines.

3.2.7 A Complete System

The components described so far in Section 3 can be combined to form the Web-
Hack system. A complete system requires several dedicated machines, calledGate-
ways, and a number of machines determined by the number of concurrent players.
We call the last type of machinesWorkers. In the following text we describe the
arrangement of components on these machines, the required network structure be-
tween the machines, and the steps required to activate the system.

18

Figure 3.2: Schematic overview of the HTTPS-Bundler.

A WebHack system requires at least one Gateway machine; using multiple Gate-
ways is preferable, since it allows to the system to function even if one of the
Gateway machines suffers a failure.

All Worker machines run an instance of NHD. Gateway machines either run
the Bundler, or the HackSite and an instance of NHD. A setup with 2 Gateway
machines which uses a Bundler is shown in Figure 3.2. At least one instanceof
HackSite is required, the use of the Bundler is optional.

To improve security, network access rights can be restricted for the server ma-
chines. Gateway machines require the rights to receive inbound HTTPS traffic, and
the rights to connect to the Worker machines. Worker machines require the rights
to make outbound HTTPS connections to the Facebook website, and the rightsto
connect to many other Worker machines. It is not required to be able to contact
all other Workers directly, as long as an indirect path from every Worker to every
other exists.

Starting and configuring the Bundler is simple. The only configuration option
is the port number to listen on. The application is started from the command line,
and the same method applies for most other components.

The HackSite is activated by starting a HTTP-daemon application. We used a
small and simple HTTP-daemon called ’Mongoose’, which we downloaded from

19

http://code.google.com/p/mongoose. After placing the HackSite executable in the
documents directory, the website is operational. However, it will only show apage
stating that an important component could not be reached.

The NHD is bundled with a small configuration file, which is used to prevent
a NHD from starting Nethack+ processes on specific machines, and to correctly
identify broadcast addresses.

No further configuration is needed. After starting up, the NHDs automatically
locate other instances and construct a communication network. When one instance
of NHD on a Worker node connects to a NHD on one of the Gateway machines,
the system is ready for operation. The discovery process usually takesonly a few
seconds.

After the system is brought online, players can connect to the system over Inter-
net, or a workload can be applied by running the Bot software. The Bot software
runs on separate machines, which, depending on the settings, either require the
rights to set up HTTPS connections to the Gateway machines, or the rights to set
up TCP connections to the Worker nodes. The Bot accepts a number of configu-
ration options. Among other things, they can specify the number of players that
will be emulated, the delay between their commands, and the pattern in which the
players arrive.

If graphs are required, a separate machine can be set up to run the Grapher. This
machine requires the rights to set up TCP connections to one or more machines
running NHD. Again, there is a benefit in using multiple connections in the situa-
tion that a machine fails. The Grapher stores the trace information to a database,
which can be queried by accessing the Grapher with a web browser.

3.3 System Implementation

In this section we describe the implementation of the WebHack components, in the
order they were introduced in Section 3.2.

3.3.1 Nethack+

Nethack+ is formed by placing a wrapper around the normal Nethack application.
In this section we first explain how the normal flow of execution is diverted to
activate our wrapper. Then we discuss the implementation of the wrapper in more
detail and show how the dungeon map and game menus and handled.

Right after startup, Nethack uses the file system to check for the existenceof a
saved game. The call is intercepted by a mechanism explained in Section 3.3.5,and
triggers the initialisation of the wrapper. The wrapper uses information contained
in the environment variables to establish a connection to to a NHD. The connection
is then used to query the saved game and multiplayer status. After startup the
connection is used to transfer files, logs, information on the screen, and keystrokes.

The wrapper intercepts calls to the file system, allowing the wrapper to control

20

which saved game Nethack+ uses as input. However intercepting all file system ac-
cess is complicated by the systems standard library, which has weakly documented
and complex file system requirements. These problems are avoided by adding fil-
ters capable of separating file accesses made by the application and the system
libraries. Calls to output characters on the terminal are intercepted by the wrapper.
From the location on the screen, and the contents of the process stack, thewrapper
is able to distinguish between symbols depicting the game map, showing a menu,
or displaying background narrative.

Understanding symbols on the map can be challenging. A single letter from
the alphabet can indicate the presence of both a feeble and a powerful monster,
which may or may not cause the letter to be displayed in a different colour. Adding
descriptions for the known symbols would improve the understandability, butcon-
stant additions would have to be made to cope with new symbols.

Our solution is to use the in-game help system for this purpose. Whenever a new
map symbol is reported to NHD, NHD sends a batch of keystrokes to Nethack+,
which activate the help system and request the explanation of the symbol. The re-
quest for information, and its reply, are hidden from the player, but the description
of the symbol is intercepted and used in the depiction on the website.

In-game menus and prompts show an overview of the players choices, andalso
list available hot keys for each option. This consistent behaviour allowedus to
include knowledge about keyboard shortcuts in the website, greatly improving the
interaction.

3.3.2 NHD

The NHD is implemented as a single-threaded, high-performance, Linux daemon
process. Most of the code is placed inside a library, consisting of many differ-
ent modules, which can be dynamically reloaded. We discuss three of the most
complex parts of this library in the following subsections.

Connecting to Other NHDs

In the WebHack system, the NHD plays the role of communication hub. An in-
stance of NHD maintains connections to other components running on the local
machine, and communicates with the other NHD instances running on remote ma-
chines. To announce its presence, a NHD broadcasts messages using UDP traffic.
When other instances are discovered, the NHD forms connections to a limited num-
ber of them. The connection scheme ensures all instances form a single network
which cannot be easily split.

Broadcasting functionality is not offered by all network systems, and careless
use of broadcast messages can congest networks. As an alternativeto broadcasting,
a list of hosts running NHD could be constructed and included in source code
or configuration files. However, maintaining a long list of addresses wouldbe
cumbersome and error prone.

21

Another way of deriving the addresses automatically is by scanning the local
network, although this option can be slow, and might require some knowledgeof
the network topology.

We chose to use small broadcast messages, and limited the number of broadcasts
for each NHD-instance to one per second. This gives us the advantages of auto-
matic detection of new hosts, while avoiding problems with network congestion.
In Section 4.5 we analyse the behaviour of this mechanism.

After a NHD locates other instances, direct connections can be set up. Asimple
scheme is to have one NHD instance form a connection to every other instance,
forming a star shaped network. This structure is fragile, since a failure onthe cen-
tral host cause the entire system to fail. Another simple scheme connects every
instance to every other, creating a full mesh. Although this construct is notfragile,
and messages never have to travel more than a single hop, the resource consump-
tion is impractical; with thousand hosts this scheme requires close to a million
connections.

NHD makes a limited number of connections, which still leads to a full mesh
with a low number of instances. With a larger number of NHD instances, each
picks its neighbours randomly from the broadcast messages received.In the rare
case this scheme leads to disconnected groups of instances, NHD ignoresthe con-
nection limit and adds connections until all instances form a single network. To
avoid network structures which can be easily split NHD occasionally adds acon-
nection to a host which is connected to a relatively low number of its neighbours.

Distributing New Games

When a new player arrives, HackSite sends a request for a fresh game to a prede-
fined NHD. That instance of NHD might host the game itself, or relay the request
to one of its neighbours. The system is capable of distributing games based on dif-
ferent algorithms. A simple algorithm places new games on random hosts. Hosts
can also be selected in a round-robin fashion, or the least busy host can be selected.
We leave the design, implementation, and evaluation of other algorithms for future
work.

Different methods of determining machine workload are supported. The num-
ber of active games is a good indicator for the weight of the expected workload,
but it ignores the difference in activity between players. Gauging the CPUusage
gives insight in the summed activity of all games. Lastly, it is possible to look at
command delays or number of commands processed per second. These sources
of information give insight in the performance of both the local machine and the
individual games.

After a new game is created on a NHD, the event is broadcasted to all other
hosts. The broadcasts include the game ID and the address of the NHD which is
hosting it. This information allows each NHD to deliver an overview of all existing
games to WebHack. The URLs in this overview encode the information, allowing
WebHack to contact the correct NHD for game interaction.

22

Handling Failures

Hosts can fail, for example because of a power failure. If a system runson a single
host, there is little to be done but restart the system after the failure has beenre-
solved. Distributed systems have a higher probability of experiencing failures, but
also have more ways of dealing with them. This system includes several mecha-
nisms to reduce the negative effects of a failing host.

Even when one server fails, web requests are able to reach the cluster of NHDs
through a different server. The cluster is able to communicate with all its members
regardless of the loss of a single server.

Players connect to the system with a web browser. The URL of the main site
points to multiple machines, each running WebHack. Those machines also run the
NHD. NHD forms a communication network which cannot be split by removing a
single machine. A single failure of one of these machines does not preventrequests
from the players to reach the cluster of NHDs.

Each active game is assigned to one NHD. This NHD selects two of its neigh-
bours as its backups, and broadcasts this information. All game-related informa-
tion, e.g., saved files, inputted commands, and the random seeds, is sharedwith the
backup hosts. When input arrives, WebHack sends it to both the primaryNHD and
his backups.

Normally, the primary NHD responds quickly after input arrives with an update.
If it does not respond in time the backup hosts notice and attempt to replace the
primary host is made. The backups recreate the game to its last known state, by
applying the same input. If they obtain a result before the primary host sends his,
they broadcast a message informing the cluster they are the new primary NHDfor
the game. In some cases, both backup servers claim ownership, but a protocol is in
place to favour one of the claims over the other.

Performance

The performance of a NHD is important because of its central role in the system.
We improved the performance of NHD over that of simple networking daemonsby
using three key features: Using asynchronous IO-functions, working with a single
thread, and employing zero-copy packet parsing functions.

A NHD handles network traffic asynchronously. Synchronous IO-requests can
block, causing a stall in execution. A NHD uses a single execution thread; thus,
using synchronous networking code would cause the program to spendmost of its
running time waiting for the completion of IO-requests.

Linux offers different API-calls to implement asynchronous network handling.
We chose the more modern ’epoll’ variant, which not only made the code more
responsive, but is also able to handle a much larger number of concurrent connec-
tions. Running a single-threaded daemon with one of the other asynchronous calls
results in an extra 25% CPU-usage when using over 2,000 concurrent connections.
The downside of the asynchronous network code is the added complexity,but the

23

improvement in performance is noticeable.
NHD uses a single thread of execution. When external tools are run by NHD,

they are placed inside their own process. The single thread approach has limita-
tions. Due to efficient handling of player commands and incoming packets, and
due to delaying some tasks until the CPU is idle, only one thread is required to
perform all NHD tasks. An advantage of this approach is the lack of locking.
Many high-performance daemons apply multiple threads in order to improve per-
formance. Such applications also tend to require locking for correct operation, and
to copy information between threads to separate buffers. These actions can cause
them to spend a significant amount of additional resources. To handle more then
10,000 users a single thread would not suffice. We would then need to splitthe op-
eration of NHD in multiple threads, while simultaneously trying to avoid installing
locks for as long as possible.

Zero-copy packet parsing functions handle incoming packets without copying
them before parsing. This is accomplished by copying pointers to strings, and
handling substrings more efficiently. Removing the operations which copy strings
around reduces the memory usage of the application and reduces the number of
operations required. The usage of zero-copy packet parsing was common in tradi-
tional Linux daemons written in C, but many high-level languages do not offer the
type of control over buffers which is required to avoid making copies.

In the optimal case, an operation reads network traffic into a buffer. Then, func-
tions handle all the messages which are completely stored in the buffer, without
making copies. Afterwards, the handled bytes are removed from the buffer. If
ring-buffers are used to store the incoming traffic, all these operations can be per-
formed without copying any memory blocks.

We developed a library to conveniently parse packets, and the structureswithin
these packets. It uses specialised code to handle read-only strings andsubstrings.
All the strings and substrings derived from one network buffer point tothe same
memory area, and only store the beginning point and length of the string. With this
approach, many operations are trivial to implement and do not require copying of
memory.

3.3.3 HackSite

HackSite is a CGI-application that creates the website for this system. These web-
sites allow the users to control the system, and play the game. The HackSite is
not aware of any game-information, and holds no state. To access information,
HackSite queries the local NHD.

The website for the project is implemented as a CGI-application. This approach
is not very popular anymore; most websites are implemented in a scripted lan-
guage. However, by constructing the website as an CGI application, it canbe
implemented in the same programming language as the rest of the system. This
allows us to reuse many functions and use the same libraries.

24

Using compiled applications also comes with another advantage; they execute a
lot quicker than interpreted scripts.

The HackSite can also be used to navigate the system. Players can invite their
friends, see the games they played, and start new ones. Maintainers can use the
website to view the logs, analyse system performance, or change the configuration.

All the gameplay happens through a single page. This web page contains javascripts
to make dynamic updates to the screen, and to register player input. Commands
can be issued through keystrokes and mouse clicks, and are sent to the HackSite-
application inside HTTP-requests. These request occur in the background and do
not trigger a reload of the game-screen. Rebuilding the entire screen would be
distracting to the player, and require too much time.

When the HackSite receives the HTTP-request, containing the player command,
it sets up a connection to the correct NHD, and forward the command there.The
website waits for a response. The response can contain error information, or up-
dates to game screen. If a response is received, it is returned immediately,other-
wise an empty response is returned after 200 ms. This limits the request duration
and frees up resources for new commands.

When no new commands are available, the HackSite also sends requests to
HackSite. These polling requests can pick up the slower updates, and updates
caused by other activity.

Ajax web scripts can be used to send actions to the server in small web requests,
without reloading the complete web page. The server could reply the web request
with a situation update, greatly reducing the amount of information transfered.
However the update can be incomplete, if an action has a delayed effect orresults
in an animation. To avoid missing updates the website periodically checks for
them even when no input is available. We also experimented with an alternative
method which uses a single Ajax connection for all updates. Although that method
is cleaner and more responsive, it was abandoned because long term connections
consumed an impractical amount of resources in current browser implementations.

3.3.4 Facebook Integration

The Facebook integration of WebHack is implemented in two different system
components; the HackSite handles cookies and redirections from the Facebook
website, and communication with the Facebook API is handled by a NHD. We
also used the Facebook Developer website for our implementation.

Registering a Facebook Application

The Facebook Developer website offers a portal for application developers. With
the site developers can register, configure and delete their Facebook Applications.
The most important settings are an application name, the application secret, and a
URL for the redirection.

25

We chose the name ’WebHack’ for our Facebook Application. We used a ran-
dom application secret, and registeredhttps://webhack.nl:21592 as our
website. The strange port number in the URL is the result of TU Delft policies,
which requires students to use ports not registered by IANA.

Implementing the Facebook Integration

When users navigate the Facebook website, a small piece of text, called a cookie,
is placed in their browser. The cookie allows the Facebook website to remember
which Facebook account is associated with the connection. The same strategy is
used with Facebook Applications.

When a Facebook user selects an application, the application website is shown
inside a panel on the Facebook website. The application website is able to derive
the Facebook identity of the user by parsing a cookie. Also included in this cookie
is a token which can be used to query the Facebook API.

The application parses the cookie by first decrypting it with a static decryption
key. This key is only known by Facebook, and the maintainer of the Facebook
Application, thus preventing others from constructing and intercepting these cook-
ies. The authenticity of the cookies can also be verified by looking at an electronic
signature, another mechanism to prevent forgeries.

To simplify logging in, it is also possible to navigate to the HackSite directly.
If the user is not yet logged in to Facebook, the site shows a button. Clicking the
button results in a Facebook login. The javascript code which is called by this
button is part of the Facebook API, and is described in detail on the Facebook
Developer website.

Calling the Facebook API

The HackSite is able to derive the Facebook identity and an API token from a
cookie. The token is a piece of which allows access to the Facebook API for a
limited duration. HackSite reports the Facebook identity, and the token, to the local
NHD. This instance of NHD shares this information with the rest of the cluster.

The NHD handles all calls to the Facebook API. It uses the token to accessthe
basic account information of the users, and to gather a list of their friends. The
information is then stored in a local database.

The Facebook API calls are placed inside HTTPS requests. GET and POST
methods are used to query and store the Facebook account information. NHD
spawns an external process to execute these HTTPS requests. In Section 4.2 we
analyse the design, and the performance of our Facebook API interface.

The local database which stores the Facebook account information is ableto
quickly respond to requests. In the background, the information is kept up-to-
date by executing Facebook API calls. This mechanism reduces the amountof
API calls, and quickly handles requests. However it may occur that pages are
constructed with outdated or missing information. As a result, pages created within

26

the first 5 seconds of using the application can fail to show the full name of the user,
and adding a new friend with the Facebook website can take up to a minute before
being propagated to the WebHack overviews.

3.3.5 Handling Legacy Code

In this section we describe the implementation aspects of L1, as defined in Sec-
tion 1.2.2. First, we discuss the Nethack license, and its relation to the General
Public License (GPL). We then explain the license implications of various meth-
ods of modifying Nethack.

Software Licenses

The GPL is currently the most used license for open source software. Itwas cre-
ated in 1989 by combining other licenses which shared a common goal. Many
prominent applications release their sources under the GPL, e.g., Firefox, the Linux
kernel and MySql.

These licenses prevented companies from taking publicly available sourcecode,
modifying the code slightly, and then selling the resulting product without reveal-
ing their changes. The GPL was updated twice to prevent certain methods ofcir-
cumventing the license.

Nethack was released in 1987, before the first version of the GPL was created,
and its license is based upon one of the predecessor of the GPL. The intention of
the license is the same. It allows sharing Nethack and making modifications, but
does not allow to hinder others who attempt to share the modified version further.

When the Nethack source is modified to allow the game to be used in a SMOG,
these modifications would be subject to the license. The license would not allow
to distribute the modified version of Nethack without also allowing access to the
modified source code.

If features are added to Nethack without modifying the source code, the license
can also apply. The license states that works that are derived from Nethack are only
allowed if the derived work is also subject to the same license agreement.

The situation is more complicated when considering a system which acts as a
portal to play a modified version of Nethack. If the portal is not derived from the
Nethack code, it can use a different software license. That license might allow
users to be charged a fee for usage of the portal.

The updated versions of the GPL describe the allowed usage of the protected
work in more detail, which prevents bypassing the GPL with such portals.

Layers of Abstraction

We mentioned the possibility of altering the behaviour of Nethack with making
modifications to the source code. This can be done by altering the environment in
which the Nethack process executes.

27

The environment could be modified by a framework. Portions of the framework
code that specifically handle Nethack would be considered to be a derived work.
If the framework uses a high level of abstraction, it becomes capable of handling
similar applications, and contains less Nethack-specific source code.

Our framework intercepts calls to the terminal, the file system, and the system
library. These three subsystems are commonly used in other applications, and we
handle them in a way which is not specific to Nethack.

The code which specifically handles game information from Nethack is placed
in a separated module. If our usage of Nethack code is considered to be subject
to the software license, only this part of the code would have to be disclosedupon
request. This addresses the legal challenge L1 (see Section 1.2.2).

Figure 3.3: Example of library preloading.

Implementation

The Nethack+ wrapper relies on a technique called ’library preloading’.This tech-
nique is available on many different platforms, including Linux-based systems. An
example of the approach is shown in Figure 3.3.

Most applications are linked to a set of libraries. When the application is started,
the application and the libraries are loaded into memory. The application is then
linked to certain functions which reside in the libraries, and it is executed.

28

With library preloading, functions from a library can be replaced without re-
compiling the application or the libraries. The replaced functions can also access
the original functions, which makes this technique suitable for building filters into
already existing applications.

With this technique it is possible to start an unmodified version of Nethack, while
preloading one of our libraries. The library overwrites all functions which access
the terminal, the file system, and several others.

When our library is preloaded, Nethack still communicates with the player by
calling the terminal. However, the calls to the terminal are not forward to a screen,
but to a NHD, which relays them to the HackSite.

29

30

Chapter 4

Experimental Evaluation

This chapter contains a selection of experiments and their results. In the follow-
ing two sections we will describe our experiments, and present our main findings.
Then, we present the individual experiments which show the performance of the
Facebook integration, the behaviour of a single Worker, the limitations of process
creation, and the behaviour of a large-scale setup. Last, we show the effect of
simple failures on performance of the system.

Figure 4.1: WebHack system with one Worker node.

31

4.1 Overview

We ran a number of experiments with the WebHack system. During those experi-
ments, the basic system setup was similar; the number of Workers and the reported
performance metrics varied.

4.1.1 The Basic Experimental Setup

In Figure 4.1 we show a basic WebHack setup. This setup has only one Worker,
but still requires four different machines. In Section 3.1.2 we describedwhy it is
not desirable to place all components on a single machine.

Machine 1 is dedicated to accepting HTTPS connections and routing the requests
to the server cluster. This machine is the only one that has to be reachable from
the Internet, it serves as an entry point to the rest of the system. It is one of the
Gateway machines, as mentioned in Section 3.2.7.

Machine 2 handles the bundle of incoming connections and delivers them to the
local HTTPS daemon, where they will be handled by the HackSite.

An instance of NHD runs on this machine, but no Nethack+ processes arestarted
here.

Machine 3 runs an instance of NHD, and a number of Nethack+ processes. This
machine is called a Worker and hosts the actual games. In larger setups, thisma-
chine might be duplicated a number of times, to allow the system to handle more
concurrent players.

Machine 4 runs the Bot software, described in Section 3.2.4, which emulateshu-
man players. In some experiments the Bot connects to a NHD over HTTPS, but in
others it bypasses the HTTPS layer and communicates with a NHD directly over
TCP. The normal and direct method are numbered 1 and 2, respectively,in the
figure.

4.1.2 Measurements

We ran a number of experiments with the basic setup we described in Section 4.1.1.
During those experiments, we took measurements which we use to show the per-
formance and correct behaviour of our SMOG system.

To evaluate the the responsiveness of the WebHack system, we measuredthe
delay of game commands, Facebook API calls, and HTTPS requests. The delay of
a game command is the time between receiving the input, and receiving the first
results of the command, both measured at the NHD.

The delay of a Facebook API call is measured at NHDs, and is the time between
sending the HTTPS request, and receiving the complete results. In Section2.1.3

32

we mentioned that the API request delays of an older version of the Facebook API
could be significant, and average at around 1 second.

The delay of HTTPS requests is the difference between the moment of receiving
the request, and the moment HackSite is finished creating the response. We expect
this delay to be not much larger than 200 ms, as described in Section 3.3.3.

With a single Worker system we tested the effect of the players arrival pattern
on the performance, and investigated the limits to the arrival rate.

To evaluate the performance of the system, we show the number of processes,
recently updated games, and process-game pairs in the system. The numberof
processes shows the number of Nethack+ processes; one is created for every active
game. The number of recently updated games shows the number of games, which
received new commands during the last 10 seconds. The number of process-game
pairs shows the number of Nethack+ processes that is attached to a game.

The combination of these three values give an impression of the resource usage
(processes) and performance (updated games). We traced the same three values for
a large setup with over 70 Workers.

In our final experiment, described in Section 4.5, we the effects of failures on
the WebHack system, and the effect of the code that distributes the workload.

4.1.3 Main Findings

Our experiments showed that WebHack is a responsive system, and capable of
delivering a high performance. The system is capable of handling over 300,000
concurrent players, exceeding technical challenge T1, and is able to handle failing
servers.

The Nethack+ processes handle 95% of the game commands in 200 ms. Delays
of over 1 seconds occur, but not infrequently (< 0.1%). The larger delays are
masked by the GUI, which is shown by plotting the HTTPS request delays. All
HTTPS requests, even with high workloads, are handled in 200 ms, with an average
request duration of only 20 ms.

We show that the system performs well when the emulated players follow a
daily pattern, but tendency to play short games increases resource consumption
and could lead to performance degradation.

The system can experience minor problems, and temporary reduced performance,
if the arrival rate is raised above a certain limit. Traces of system operationcon-
taining these temporary problems are shown in Sections 4.3.5 and 4.4.

WebHack is able to perform as a large-scale SMOG system. While using the
multi-cluster DAS-4 supercomputer with over 70 Workers, the system was able to
service 309,000 concurrent users, satisfying our technical objectives T2 and T3.

In the experiment in Section 4.5, we show that WebHack is correctly able to
function even if repeated machine failures occur. This happens without loss of
game or logging information.

33

4.2 Facebook Integration

In this section we analyse the Facebook integration of the WebHack system. We
discuss the structure of the API, and present the results of our experiment, where
we measured the API request delay.

4.2.1 Application Construction

The Facebook website offers construction guidelines and examples for awide
range of website applications and programming languages. Although the infor-
mation is extensive, multiple versions of the API are in use, creating a diversity of
options. The guidelines mostly supply small snippets of code, which can be com-
bined to form the required website functionality. This allows developers to quickly
build functional websites, but it lacks a structured uniform approach.

The fragmented structure of the API is partly caused by the face the interface
is under constant development. One of the recent API changes greatly affected
this project; Facebook started to require Applications to use secure connections,
rather than preferring them. These secure connections use the HTTPS protocol,
and require SSL certificates to operate.

4.2.2 Facebook API Performance

In a study on network footprints [13] it was shown that a Facebook Application
can suffer significant delay on its requests to the Facebook API. The delays differ
between applications, and the difference is mostly related to the application’s pop-
ularity. They show a delay of 0.6 seconds for one application, and a delaybetween
0.6 and 4 seconds for another.

The WebHack system measures the duration of the Facebook API requests it
executes. In Table 4.2.2 the distribution of the delays of basic account information
requests is shown. These requests require a single HTTPS GET operation to be
performed. We obtained the measurements by logging all Facebook API delays for
several weeks.

Table 4.1: Facebook API Delay.
What Min 25% Mean 75% 99% Max
HTTPS GET-Request duration 0.693 0.891 0.983 1.120 1.219 1.268

With this information we confirm the notion of Nazir e.a. that these delays are
significant [13]. Their research shows that the delays are larger formore popular
Applications. Even those delays would not lead to problems in WebHack.

The main reasons for this is the fact WebHack queries the Facebook API inthe
background and caches the results. The HackSite constructs correctinformation

34

even when the Facebook account information is incomplete. A Facebook Appli-
cation which does not handle the Facebook API requests asynchronously would
suffer from intolerable delays.

Requiring the use of asynchronous handling of Facebook API calls, theuse of
cryptography in the session tokens, and forcing the use of encrypted HTTPS con-
nections, makes implementing a high-performance Facebook Application a chal-
lenging task.

4.3 Performance of a Single Worker Node

In this section we will analyse and discuss a WebHack setup which uses a single
Worker. We first look into the duration of executing Nethack+ commands andweb-
requests in Sections 4.3.2 and 4.3.3. Then, we look into the effects of players which
follow a basic daily pattern in Section 4.3.4 and into the effects of high arrivalrates
in Section 4.3.5.

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

C
o

m
m

a
n

d
 d

e
la

y
 [

S
e

c
o

n
d

s
]

Run time [Seconds]

Quartiles
95 %
99 %

99.9 %
99.99 %

Figure 4.2: Distribution of Nethack+ command delay, 1000 Users.

35

4.3.1 Experimental Setup

We used the setup described in Section 4.1.1. The Bot uses HTTPS connections in
the the first two experiments, described in Sections 4.3.2 and 4.3.3, and direct TCP
connections in the other experiments.

4.3.2 Nethack+ Command Delays

The Nethack+ application executes a main loop where it repeatedly waits for com-
mands, and processes them. We measured the delay between the moment of arrival
of a command, and the moment the first updates to the game were made. Nethack+
receives the commands through a connection to an instance of NHD. In this exper-
iment each instance of NHD computed and stored the command delays for their
Nethack+ processes.

Game commands vary in delay and complexity. Some commands have a simple
result, e.g. a single message describing the current room. Commands can also
have complex results which consume more resources, e.g. travelling down a flight
of stairs to a new level. Such a command triggers the creation of a whole new
dungeon level.

Figure 4.2 shows the distribution of the delays in a box-plot. Each box represents
the delays from a 10 second interval. The boxes at the bottom of the figuredepict
the first and third quartile ranges, with a bar at the mean value. The top and bottom
bar show the minimum and maximum value, and various symbols depict the 95%,
99%, 99.9%, and 99.99% ranges. Most commands are processed within twotenths
of a second, but larger delays occur. The largest delay comes from acommand
which took over 1.5 second to handle. This delay is too long for comfortable game
play, but it only represents 0.1% of the commands which were handled in those
10 seconds. All other commands completed within 0.3 seconds. Large delays
only occur when one of the more complicated commands is executed on a machine
which runs many instances of Nethack+. Since the complicated commands are not
commonly executed, and the probability of a large delay is low, the situation is
acceptable for gameplay.

4.3.3 HTTPS Request Delays

Our next measurement focusses on HTTPS requests. We measured the delay of
these requests, in order to show that the system is responds quickly, even when
handling high workloads or slow commands.

The HTTPS requests are handled by the HackSite, which functions as a front-
end to the system. It serves web pages which allow players to navigate WebHack,
interact with their Facebook friends, and start new WebHack games. Nethack+
gameplay is also handled through the HackSite.

When a player command arrives at HackSite, the command is forwarded to an
instance of NHD. HackSite then waits for a limited amount of time. If game up-
dates arrive during this period they are immediately returned, otherwise HackSite

36

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600

H
T

T
P

S
 r

e
q

u
e

s
t

d
e

la
y
 [

S
e

c
o

n
d

s
]

Run time [Seconds]

Quartiles
95 %
99 %

99.9 %

Figure 4.3: Distribution of HTTPS request delays, with 100 Users, using SSL.

returns a successful result without any updates. The complete mechanism is de-
scribed in Sections 3.2.3 and 3.3.3.

The HackSite uses SSL, an encryption protocol which turns plain-text HTTP
requests into encrypted HTTPS requests. Facebook requires applications to use
encryption, to prevent simple eavesdropping attacks from capturing sensitive in-
formation.

The usage of SSL requires the generation of cryptographic certificates, and re-
quires that communication, both inbound and outbound, is translated with various
cryptographic operations. The cryptographic operations can requirea significant
amount of computation.

We used the setup shown in Figure 4.1.1, and emulated 100 players which exe-
cuted one command per second. HackSite measured the HTTPS request durations.
We show the distribution of these durations in Figure 4.3, using the method de-
scribed in Section 4.3.2.

The results show that almost all requests were handled in less than a tenth ofa
second. Many of the larger delays are caused by the absence of updates, but these
requests are also handled within 200 ms. This was expected, since HackSiteonly
waits for a limited duration when handling game commands.

After running the system with for an hour with 100 users, we raised the number

37

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600

H
T

T
P

S
 r

e
q

u
e

s
t

d
e

la
y
 [

S
e

c
o

n
d

s
]

Run time [Seconds]

Quartiles
95 %
99 %

99.9 %

Arrival of
900 players

Adjustment
period

Stable period
with 1000 players

Stable period
with 100 players

Figure 4.4: Distribution of HTTPS request delays, with up to 1000 Users, using
SSL.

of players to 1,000 while measuring the HTTPS request duration. The arrival of
new players places an extra burden on the system, because creating a new Nethack+
instance consumes more resources than normal gameplay, and because the system
has to find an eligible Worker to handle the new games.

We show the HTTPS request duration in Figure 4.4, in which we annotated the
moment where the number of players changed. Right after this moment an adjust-
ment period begins. During this period the delays show a much higher average
value, but the distribution of the peaks is similar to the stable period that follows.

Raising the number of users from 100 to 1,000 causes the web-requests tobe
handled slightly slower, increasing the duration to handle 95% of the requests from
40 ms to 75 ms. However, the mean request duration remains at 20 ms, and all
requests are handled within 200 ms. This shows that WebHack remains responsive
when handling 1,000 users which are using encrypted HTTPS connections, and that
the average HTTPS request requires only very little (<20 ms) processing time.

4.3.4 Effects of a daily pattern on system performance

For this experiment we use the Bot to emulate players, as before, but in a more
realistic manner. We added a daily rhythm and the tendency to play short games to

38

their behaviour.
We use the Weibull distribution, for the reasons described in Section 2.2.2, to

determine the arrival times of the players.

The Weibull distribution function in given by:
F(t) = 1− e(t/β)

α

, t > 0

The Weibull density function is given by:
f(t) = α.β−αt(α−1)e− (t/β)α, t > 0

Theα parameter defines the shape of the distribution. Withα = 1, this distribution
is a normal exponential distribution. Withα < 1 the weight of the function shifts to
the beginning, and withα > 1 more weight will move to the tail. Theβ parameter
defines the scale. Increasing it will increase the mean value of the function, and
vice versa.

From studies on Weibull parameters for HTTP traffic [24, 25] the value 0.7was
selected for the shape parameter. The average duration of a visit was selected to be
5 minutes, although there was no strong basis available for selecting this parameter.
Estimates for web server visits ranged from 2 to 30 minutes.

The daily rhythm of our emulated players is based upon their local timezone.
We used information of the distribution of Facebook users across the world, shown
in Table 4.3.4, and mapped the geographic locations upon time zones.

WebHack can be played on every moment of the day, but the emulated humans
mainly play during their evening hours. This leads to a situation where humans can
be in three states: Sleeping, Idle, and Playing.

Table 4.2: Distribution of Facebook users across the continents. Source:O’Reilly
Research.

Continent Number of users Percentage of users
North America 162.5 32.5%
Central America 6.5 1.3%
South America 46 9.2%
Europe 137.5 27.5%
Middle East / North Africa 42.5 8.5%
Africa 9 1.6%
Asia 88.5 17.1%
Oceania 11.5 2.3%

When a human is in the playing state, it sends a command every two seconds,
the length of their games is determined by the Weibull distribution, or occasionally
on the death of their character. In order to reduce the length of the experiments we
used a virtual clock which runs 20 times faster than a normal one, leading to virtual
days of 4320 seconds.

In Figure 4.5, we show the number of Processes, Recently Updated Games, and

39

 0

 250

 500

 750

 1000

 1250

 2000 4000 6000 8000 10000 12000 14000 16000

A
m

o
u

n
t

Run Time [Seconds]

Overview of Total Number of Processes and Games

Processes
Process/Game pairs

Recently Updated Games

Figure 4.5: Daily pattern.

Hooked Processes. The number of active games in the system is roughly equal to
the number of hooked processes. The number of recently updated gamesis slightly
lower, because players tend to play games for a short time. When they move on
WebHack receives no notification, and the game lingers for a while until WebHack
stops the process and saves the game.

In realistic situations, only a small percentage of the user base will be actively
playing at a given moment. The large fraction of short games forces the system to
allocate a substantial amount of resources to games which no longer receive any
input.

When dealing with a large number of players which sporadically play short
games, reducing over-allocation becomes more important. The situation can possi-
bly be improved by adding a mechanism to detect when an active player navigates
away from the website, or deselects the web browser as the active application.

4.3.5 Process Creation

In our next experiment we show how the WebHack system responds to changes in
the arrival rate of new players, and in particular the problems which arisewhen the
arrival rate is increased too much.

In Figure 4.6 we show a trace where a WebHack system with a single Worker

40

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600

N
e

tw
o

rk
 T

ra
ff
ic

 [
M

B
y
te

s
]

Run Time [Seconds]

Inbound
Outbound

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600

C
P

U
 U

s
a

g
e

 [
%

]

Run Time [Seconds]

Kernel
User

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 100 200 300 400 500 600

A
m

o
u

n
t

Run Time [Seconds]

Processes
Recently Updated Games

Process/Game pairs
 4 x 1500

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 100 200 300 400 500 600

C
o

m
m

a
n

d
s

Run Time [Seconds]

Number of Commands

Figure 4.6: Using two different arrival rates with 6,000 players.

received a workload of 6,000 players. There are two runs, started atthe first and
the 300th second. The maximum arrival rate of players is 60 players per second in
the first two runs, and 30 per second in the last.

When a run starts the arrival rate of players is increased from zero to the maxi-
mum value over a period of ten seconds. After the initial phase the arrivalrate is
kept constant until all players are active, at which point new games areonly created
when another ends.

The second run shows no problems. The number of processes, the number of
recently updated games, and the number of processes which are connected to a
game are very close to each other. In the first run the high arrival rate leads to a
slowdown, which caused some impatient players to create multiple games. After
about a minute the system stabilised. The slowdown was caused by the significant
amount of resources required to start up a new game, however the exact cause has
not been determined.

Using the second run as a known good result, we looked back at the resource
usage of the first run. The only clue is shown in the CPU usage graph around
the 150 - second mark. Time spent inside the kernel suddenly drops, however the
cause is not known. We speculate WebHack’s usage of kernel resources decreases
because the kernel is spending its resources on other tasks. The situationresults in
a large delay when handling game commands, which caused the Bot to retry some

41

of its operations.

4.4 Scalability of a large-scale distributed setup

In the previous section the attributes of a WebHack system with a single Worker
were discussed. In this section we will look at a large-scale setup, operating on
a multi-cluster supercomputer. We discuss the the arrival rates, command delays,
and the maximum number of concurrent players.

To scale up the system for a large amount of users, we used the DAS-4 su-
percomputer, which recently achieved 14th place on the Graph500 list [26]. The
supercomputer is split into 6 clusters, of which we will use only two, located in
Amsterdam and Delft.

4.4.1 Experimental Setup

The setup shown in Figure 4.1 was modified slightly. For this experiment Machine
2, which serves as a distributer, was replicated 5 times, and Machine 3, the Worker,
was replicated over seventy times.

Each Bot was set up to use direct TCP connections to NHD, bypassing the
HTTPS layer. This frees up resources for gameplay, avoids the complexities intro-
duced by the SSL layer, and works around certain problems caused by the firewalls
between the DAS-4 clusters.

This setup consists of almost hundred machines, and each of the Workershan-
dled thousands of games. The number of machines was limited by availability,
not by the system. This was shown by the resource consumption levels on the
Distributer machines, which did not reach critical levels during these experiments.

Due to fair-use policies, we limited our usage of the DAS-4 supercomputer to
two of its six clusters. We used 72 machines from the Amsterdam cluster,fs0, and
20 machines from the Delft cluster,fs3. The inter-cluster traffic was reduced by
allowing the Bot to directly connect to nearby NHDs.

4.4.2 Worker Setup

Workers are able to handle up to 6,000 games. At that point the OS enforced a limit
on the maximum number of processes. CPU and memory usage were significant,
which suggests an even higher number of games per Worker can be made possible
by further tweaking the OS parameters.

The maximum number of open files per user, and for a complete system, is also
limited. On our request, these limits were temporary raised for parts of the DAS-4
supercomputer. The Nethack+ code was modified to use the number of openfile
descriptors more efficiently.

Nethack+ opens file descriptors to access files on disk, communicate to NHD,
and access the console. Although Nethack+ cannot operate without a virtual con-
sole, it was proven that it is able to share the virtual console with all other Nethack+

42

instances. Files on disk can be virtualised in memory, and the other descriptors can
be kept open only when directly needed.

Using a combination of these techniques, the average number of open file de-
scriptors per instance of Nethack+ can even drop below 1.0, which practically re-
moves the file descriptors limit as a limiting factor.

Our setup did keep the TCP connection to NHD open at all times, as well as
spending several file descriptors on file system access. One of those descriptors
was used to open a large level datafile. By using the file system, rather than the
wrapping layer for access, a system-wide memory cache is used. The file isthen
only loaded into the memory once, which significantly reduces memory usage.

4.4.3 Workload Generation

In this experiment Workers were running multiple instances of NHD. Depending
on OS parameters either two or four instances of NHD, each with a processlimit
of 1,500, were started.

The OS-parameters were related to the DAS-4 clusters. The machines fromthe
Amsterdam cluster each hosted 3,000 Nethack+ games, and the machines from
Delft hosted 6,000 games each.

The first wave of arrivals consisted of 50 machines from the Amsterdam cluster,
which simulated a steady arrival rate of 1,500 new players per second. The arrival
rate was kept constant for a period of 100 seconds, resulting in 150,000 concurrent
players.

The second wave of arrivals came from 21 machines from Amsterdam, and16
from Delft. The player arrival rate was kept constant at 1,000 new players per
second for 153 seconds. The second wave added another 153,000 active players.
This wave was handled by a smaller number of machines, which results in a higher
arrival rate per machine. Also, the machines from the second wave wereattached
to two different clusters from the DAS-4 and are located 70km apart.

4.4.4 Experimental Results

Figure 4.7 shows the total number of processes during the experiment. Every in-
stance of NHD reported its local statistics every second, and the Graphercombined
those numbers into these graphs.

The first and second wave of arrivals are visible as the upward slopesin the
graph. At the start of the trace, there were already 6,000 players in the system.
With the 150,000 players from the first wave, and 153,000 from the second, the
total number of players in the system is 309,000. The graph shows a horizontal
line at this level.

During the second wave of arrivals, the system shows signs of stress,which
can be seen as downward spikes. The spikes occur when NHDs miss the deadline
to report their statistics, or when the Grapher is unable to correctly identify the
1-second interval for a report.

43

 0

 75000

 150000

 225000

 300000

 375000

 0 100 200 300 400 500 600

A
m

o
u

n
t

Run Time [Seconds]

Processes
Recently Updated Games

Process/Game pairs
 309,000

Arrival of
Amsterdam cluster

Stable period
with 309,000 players

Arrival of
Delft cluster

Stressed
system

Figure 4.7: Number of processes.

Only the correct reports are included in the summation; delayed or missing re-
ports result in a temporary drop of the totals.

Around the 300-second mark the stress caused some inpatient players to create
multiple games. This results in a surplus of processes spawned by the system.
After the system stabilises, the surplus processes are reused or terminated.

At the 425-second mark all the system is stable again. All the players are actively
playing, and the extra games and processes are slowly being reclaimed.

The amount of stress on the system, can be seen in Figure 4.8, where the com-
mand delays are shown.

During the first wave of arrivals WebHack shows good performance.No extra
games are created and the command delays indicate good responsiveness. How-
ever, half-way into the second wave the performance deteriorates, resulting in
larger delays for the players. After about a minute the system recovers and contin-
ues to operate normally.

The arrival rate during the first wave was around 1,500 players per second, for
a duration 100 seconds. The most popular Facebook Application today, The Sims
Social, received an averaged amount of 100 new users per second during the first
week of operation [27].

This experiment shows that the WebHack system is able to handle a large amount

44

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

D
e

la
y
 [

S
e

c
o

n
d

s
]

Run Time [Seconds]

Average Delay
Maximum Delay

Arrival of
Amsterdam cluster

Stable period
with 309,000 players

Arrival of
Delft cluster

Stressed
system

Figure 4.8: Command delay.

of concurrent users, and to be capable of handling high arrival rates, such as those
seen at the introduction phase of new SMOGs.

4.5 Handling Failures

In our last experiment we look into the effects of simple failures on the WebHack
system. We used a setup with multiple Workers, and repeatedly simulated a com-
plete machine failure. Such an event triggers the functionality described in Sec-
tion 3.3.2. This functionality causes a backup NHD instance to take over in the
event where the primary NHD is not responding to input quickly enough.

In the following sections we describe the experimental setup, and the results.
After looking at the functional performance, we discuss the resource consumption
of the failure tolerance features.

4.5.1 Experimental Setup

We used a slightly modified version of the setup shown in Figure 4.1. We used
three Workers, and configured all of the instances of NHD to operate asprimary
and as backup game host. The Bot emulated multiple players, and used direct

45

connections to communicate with the NHDs.
The Worker machines suffered from failures at random intervals. When a failure

occurs, the NHD forgets all game state and stops communicating for two minutes.
At that moment it will restart, and rejoin the server cluster. After starting up,the
rejoined server picks up new games again as they arrive.

The Bot runs on a separate machine, and emulates 100 players, which execute
one command per second. Two traces were collected with this setup. In the first
run the failure tolerance features enabled, and servers occasionally suffered from
failures. During the second trace, these features were disabled and theservers did
not suffer from failures.

 0

 20

 40

 60

 80

 100

 120

 0 100 200 300 400 500 600

N
u

m
b

e
r

o
f

R
e

c
e

n
tl
y
 U

p
d

a
te

d
 G

a
m

e
s

Run Time [Seconds]

Total
Worker 4
Worker 3
Worker 2
Worker 1

Crash of
Worker 1

Arrival of
Worker 3

Crash of
Worker 2

Arrival of
Worker 4

Figure 4.9: Number of recently updated games.

4.5.2 Experimental Results

In Figure 4.9 we show the number of recently updated games, broken downper
Worker. We annotated the arrival and departure of the different Workers.

At the beginning of the trace, there are two Worker machines active in the sys-
tem. The functionality described in Section 3.3.2 results in a relatively equal dis-
tribution of work between the two machines.

Around the 200-second mark one of the two initial Workers, Worker 1, suffers
from a failure. Within 10 seconds Worker 2, which acts as the backup gameserver,

46

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600

C
P

U
 U

s
a

g
e

 [
%

]

Run Time [Seconds]

Kernel
User

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500 600

C
P

U
 U

s
a

g
e

 [
%

]

Run Time [Seconds]

Kernel
User

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600

N
e

tw
o

rk
 T

ra
ff
ic

 [
M

B
y
te

s
]

Run Time [Seconds]

Inbound
Outbound

 0.01

 0.1

 1

 10

 100

 0 100 200 300 400 500 600

N
e

tw
o

rk
 T

ra
ff
ic

 [
M

B
y
te

s
]

Run Time [Seconds]

Inbound
Outbound

Figure 4.10: CPU Usage and Network Traffic.

replaces the failed machine, and handles the combined workload. A little over 300
seconds into the trace a new Worker, Worker 3, joins the cluster. This Worker
starts to quickly pick up new games. Since the total number of concurrent players
remains constant, a decline of the workload handled by Worker 2 can be seen.
During this period Worker 3 registers itself as the backup game server forthe games
handled on Worker 2. The effects of this can be seen at around the 450-second
mark, where Worker 2 suddenly fails. Worker 3 takes over the workloadand the
system recovers from the failure a second time.

Due to use of clocks and the random function, as described in Section 3.1.2, it is
not trivial to recreate games correctly on another machine. During this experiment
we traced the process which recreates the games on the backup machines.We
verified that the random seeds and game states before, and after the transfer, where
identical.

The failure tolerance features cause a large amount of extra messages tobe sent.
These messages notify backup game hosts of attempts to contact the primary hosts,
and transfer game information from the primary hosts to the backups. Processing
and sending these messages costs CPU and network resources. In Figure 4.10 we
placed the resource usage of the two runs side-by-side. The left and right side show
the trace without and with the failure tolerance functionality, respectively.

The spikes in CPU and network usage during the two recovery periods can be

47

clearly seen in the right hand figures. The differences in resource usage are small,
but significant. Notably the User CPU-usage and the Inbound network traffic are a
bit higher.

The resource costs consumed by the failure tolerance features are smallin com-
parison with the advantages. The features allow the system to continue operating
even when multiple failures occur. The primary game host is replaced quickly,
leading only to small discomfort for the players. The inevitability of system fail-
ures, and the need for maintenance, make these features a powerful addition to a
game platform.

48

Chapter 5

Conclusion

In the previous chapters we discussed MMOGs, Facebook, and our WebHack sys-
tem. In this chapter we will look back at our most important results and suggest
ways to expand this research in the future.

5.1 Summary

We looked into the process of integrating a MMOG into an online social platform,
specifically Facebook. Although the integration process was more complex than
expected, a functional and expandable integration was achieved.

We built an efficient SMOG system, using a multi-cluster architecture, asyn-
chronous IO, and zero-copy packet parsing. The workload is handled by many
small components, which can be easily distributed over a large number of machine.

We showed that our system is capable of functioning when suffering from mul-
tiple failures. The recovery is fast and automatic, and the features consumes an
insignificant amount of extra resources.

WebHack is a fully functional web-based game-system, which allows Nethack
games to be played over the web. The old game is expanded with social and multi
player features. The game platform includes important secondary features like
security and maintainability.

In Section 4.4 we show the system to be capable of supporting 309,000 concur-
rent players, well over our established goal of 250,000. The system iscapable of
handling the large arrival rates, which are seen when popular games are introduced.

The system is able to operate on the DAS-4 supercomputer using dozens of
machines from multiple clusters. The maximum number of machines was limited
by the size of the supercomputer, not by our system.

We have build our social platform upon legacy software, which we integrated
in a way that allows adding support for other legacy applications, and does not
involve rewriting the program.

We did not ignore the software license restrictions of the legacy software.In-
stead, we reduced the size of code which is considered to be a derived work.

49

5.2 Future Work

We created a functional, but basic SMOG system. The basic functionality leaves
many areas of optimisation and interesting design choices untouched.

Further research could expand the functional possibilities of the Facebook inte-
gration, or provide better understanding of the effects of the differentsocial aspects
of the interaction.

Our MMOG system uses many different processes and file descriptors tooper-
ate. Research into different construction methods or new techniques mightlead to
improvements in efficiency.

A study of possible improvements to workload distribution and fault tolerance
is another avenue for future research.

Although realistic scenarios were used in the experiments, some uncomfortable
implementational issues were avoided by restricting the use of HTTPS connec-
tions, and by limiting the scope of communication for certain messages. Removing
these simplifications is a topic for further research.

A number of ideas, based on P2P techniques described in Section 2.3, were used
in the WebHack system. The possibility of expanding these ideas to include a fully
distributed database engine in the system can be researched.

5.3 Finally

We hope that in the future, WebHack allows many players to finish a game of
Nethack and become the proud owner of an Amulet of Yendor.

50

Bibliography

[1] Johan Huizinga,Homo ludens, (1938, publisher=Beacon Press, Boston).

[2] http://internetgames.about.com/od/gamingnews/a/trendsdecade.htm.

[3] Aki Järvinen,Game design for social networks: interaction design for play-
ful dispositions, Proceedings of the 2009 ACM SIGGRAPH Symposium on
Video Games (New York, NY, USA), Sandbox ’09, ACM, 2009, pp. 95–102.

[4] http://nethack.org.

[5] Matt Barton,Dungeons and desktops: The history of computer role-playing
games, (2008).

[6] http://nl.wikipedia.org/wiki/facebook.

[7] https://www.facebook.com/press/info.php?statistics.

[8] Arnoud Bakker,Survey of system challenges when increasing the amount of
players in a virtual game world, (2011).

[9] Schaap, Charite, Doorn, and Pang,System architectures for massively multi-
player online games - an overview, 2008.

[10] van Ee, van den Heuvel, Hooikaas, and Rens.,A survey of system architec-
tures for massively multiplayer online games, 2009.

[11] Smit Tak, Jutte and de Swart,A survey of mmog system architectures, 2010.

[12] http://en.wikipedia.org/wiki/massivelymultiplayeronline game.

[13] Atif Nazir, Saqib Raza, Dhruv Gupta, Chen-Nee Chuah, and Balachander
Krishnamurthy,Network level footprints of facebook applications, Internet
Measurement Conference, 2009, pp. 63–75.

[14] Atif Nazir, Saqib Raza, and Chen-Nee Chuah,Unveiling facebook: a mea-
surement study of social network based applications, Internet Measurement
Comference, 2008, pp. 43–56.

[15] http://www.appdata.com.

51

[16] Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp, and
Ion Stoica,Load balancing in structured p2p systems, (2003).

[17] W. Willinger and V. Paxson,Where mathematics meets the internet, (1998).

[18] Will E. Leland, Murad S. Taqqu, Walter Willinger, and Daniel V. Wilson, On
the self-similar nature of ethernet traffic, IEEE/ACM Transactions on Net-
working2 (1993), 1–15.

[19] Thorsten Hampel, Thomas Bopp, and Robert Hinn,A peer-to-peer architec-
ture for massive multiplayer online games, Proceedings of 5th ACM SIG-
COMM workshop on Network and system support for games (New York,
NY, USA), NetGames ’06, ACM, 2006.

[20] Abdennour El Rhalibi, Madjid Merabti, and Yuanyuan Shen,Aoim in peer-
to-peer multiplayer online games, Proceedings of the 2006 ACM SIGCHI
international conference on Advances in computer entertainment technology
(New York, NY, USA), ACE ’06, ACM, 2006.

[21] Sieteng Soh Steven Webb,A survey on network game cheats and p2p solu-
tions, (2007).

[22] Antony Rowstron and Peter Druschel,Pastry: Scalable, decentralized ob-
ject location, and routing for large-scale peer-to-peer systems, Middleware
2001 (Rachid Guerraoui, ed.), Lecture Notes in Computer Science, vol. 2218,
2001, pp. 329–350.

[23] Peter Druschel and Antony Rowstron,Past: A large-scale, persistent peer-to-
peer storage utility, Workshop on Hot Topics in Operating Systems (2001),
0075.

[24] Hyoung-Kee Choi and J.O. Limb,A behavioral model of web traffic, Network
Protocols, 1999. (ICNP ’99) Proceedings. Seventh International Conference
on, oct.-3 nov. 1999, pp. 327 – 334.

[25] Ryen W White, Understanding web browsing behaviors through weibull
analysis of dwell time, Work (2010), 379–386.

[26] http://www.graph500.org/nov2011.html.

[27] http://www.allfacebook.com/sims-social-is-facebooks-fastest-growing-
application-2011-08.

52

