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Abstract

Our society contains all types of organizations, such as companies, research groups and hobby clubs. Affiliation

networks, as a large and important portion of social networks, consist of individuals and their affiliation relations: Two

individuals are connected by a link if they belong to the same organization(s). Affiliation networks naturally contain

many fully connected cliques, since the nodes of the same organization are all connected with each other by defini-

tion. In this paper, we present methods which facilitate the computation for characterizing the real-world affiliation

networks of ArXiv coauthorship, IMDB actors collaboration and SourceForge collaboration. We propose a growing

hypergraph model with preferential attachment for affiliation networks which reproduces the clique structure of af-

filiation networks. By comparing computational results of our model with measurements of the real-world affiliation

networks of ArXiv coauthorship, IMDB actors collaboration and SourceForge collaboration, we show that our model

captures the fundamental properties including the power-law distributions of group size, group degree, overlapping

depth, individual degree and interest-sharing number of real-world affiliation networks, and reproduces the properties

of high clustering, assortative mixing and short average path length of real-world affiliation networks.
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1. Introduction

Social networks, as one type of real-world complex networks, are widely studied [1, 2, 3, 4]. Social networks are

defined as networks where nodes are individuals and links are relations between individuals, reflecting acquaintances,

friendships, sexual relations, collaboration, common affiliation, etc. Apart from many common properties of the

real-world networks, such as a high clustering coefficient, a short characteristic path length and a power-law degree

distribution, social networks also exhibit assortative mixing and community structure [4, 5, 6, 7].

Affiliation networks, an important type and a large portion of social networks, have not yet been well understood

and modeled. The nodes of affiliation networks represent individuals. If two nodes in an affiliation network have the

same membership, for instance, they belong to the same institute or they work for the same project, then they are

connected by a link. Examples of affiliation networks include movie actor networks (nodes represent the actors and

two actors have a link if they have been casted together in one or more movies), science coauthorship networks (nodes

represent the scientists and two nodes are connected if they have coauthored one or more articles), journal editor

∗Corresponding author

Email address: d.liu@tudelft.nl (Dajie Liu )

Available online at www.sciencedirect.com



568   Dajie Liu et al.  /  Procedia Computer Science   9  ( 2012 )  567 – 576 

networks (nodes as the editors and two editors are adjacent if they serve on the same editorial boards of journals) and

sports player networks (nodes as players and two players who played in the same games are connected)1.

Affiliation networks naturally contain many fully connected subnetworks which are called cliques or complete

subgraphs in the language of graph theory, since the nodes of the same group, such as a movie cast, are all connected

with each other by definition. The clique structure of affiliation networks increases largely the percentage of triangles

among the three hops walks, consequently resulting in high clustering coefficient. The affiliation networks also show

high assortativity. Besides the statistics of individuals such as clustering coefficient, characteristic path length and

nodal degree, we are also interested to answer the following questions: How many groups are there? How many

individuals does a group have? How many groups does an individual belong to? How many individuals do two

groups have in common? how many groups do two individuals belong to together (It is be useful for recommandation

systems)? And to how many groups is a group adjacent (Two groups are adjacent if they have individuals in common)?

In Section 4, we attempt to gain more information on the structure properties of affiliation networks by answering

these questions in the cases of the ArXiv coauthorship networks of subjects of ”General Relativity and Quantum

Cosmology” and ”High Energy Physics - Theory”, the IMDB movie actors collaboration network and the SourceForge

software collaboration network. In Section 3, we introduce the analytical properties on the topology and spectra of the

affiliation networks. In Section 5, we propose a preferential attachment based growing hypergraph model for affiliation

networks. The nodes of the hypergraph model represent the groups of affiliation networks, and the hyperedges,

connecting multiple nodes, represent the individuals. Numerical analyses show that our hypergraph model reproduces

all the properties of affiliation networks.

2. The representation of affiliation networks

2.1. Preliminaries

Suppose the affiliation network under consideration has N individuals and M groups, where an individual may

belong to multiple groups. The membership number mj of an individual j is defined by the number of groups of which

j is a member. The degree d j of an individual j equals the number of individuals who have the same membership

in one or more groups. The interest-sharing number αi, j of individuals i and j is defined by the number of groups to

which they both belong, which indicates how many common interests they share. The group size sk of group k is the

number of individuals that belong to group k. The group degree uk of group k equals the number of groups sharing

individual(s) with group k. The overlapping depth βk,l of two groups k and l equals the number of individuals that

they share. An affiliation network is linear if βk,l ≤ 1 for all k, l ∈ [1,M], where M is the number of groups. If the

membership number mj = m for j ∈ [1,N], the affiliation network is called a m-uniform affiliation network.

We use the graphs in Figure 1a to exemplify the definitions of d j, mj, αi, j, sk, uk, and βk,l. The graph in Figure 1a

(1) has labeled five nodes which are members of at least two groups. Obviously, d1 = 24, d2 = 12, d3 = d4 = 8 and

d5 = 9. Nodes 1 − 5 belong to 5, 3, 2, 2 and 2 groups respectively, thus m1 = 5, m2 = 3 and m3 = m4 = m5 = 2.

Individual 1 and 2 belong to only one common group, hence αi, j = 1. As shown in Figure 1a (2), the groups I − IV
have 6, 5, 5 and 6 nodes respectively, hence, sI = sIV = 6 and sII = sIII = 5. Evidently, the overlapping widths:

βI,II = 2, βI,III = 1, βI,IV = 3, βII,III = 2, βII,IV = 0 and βIII,IV = 1. The group degree: uI = uIII = 3, uII = uIV = 2.

An affiliation network is usually described by a graph where the nodes represent the individuals and two nodes are

connected by a link if they both belong to a group or several groups. If a set CI of individuals belong to group I, the

set CI of individuals comprise a fully connected clique. If a set CII (CII ⊆ CI) of individuals also belong to another

group II, we cannot represent the group II by this graph description, because the set CII of individuals are already

fully connected inside the group I. Newman et al. [8] suggested a bipartite graph model with all information preserved

by representing a group with one type of nodes and individuals with the other type of nodes, where links only connect

nodes of different types, as shown in Figure 1b. Lattanzi et al. [9] proposed a bipartite-graph-based generative model

for affiliation networks. However, the bipartite-graph-based model does not reproduce all the affiliation networks’

topological properties shown in Section 3. Hence, we introduce the hypergraph representation of affiliation networks.

1Some biological networks can also be classified as affiliation networks including protein interaction networks with proteins as nodes, of which

two are connected by a link if they involve in the same functional category or more. In this paper, we focus on affiliation networks of social

networks.
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Figure 1: (a) The example affiliation networks for illustration of the definitions of d j, m j, αi, j, sk , uk , and βk,l. The nodes denote individuals. The

groups consist of links of the same color and the shared thick black link(s), and the nodes incident to the links of both colors. (b) The bipartite

graph representation of the affiliation network of the NAS group. There are two types of nodes: the blue circles denoting the groups and the solid

blue disks denoting the individuals. If an individual belongs to a group, the corresponding two nodes are connected by a link. The corresponding

hypergraph is shown in Figure 2(a).

Table 1: The groups and the group members of the exemplary affiliation network of NAS.

Index Names of groups Individuals Index Names of groups Individuals

I NAS-TU Delft A, B,C,D, E, F VII A research group-KPN C,C1, · · · ,C4

II A research group-MIT A, A1, · · · , A5 VIII A piano club C,C5, · · · ,C8

III A research group-Cornell Univ. A, A6, · · · , A10 IX A research group-TNO D,D1, · · · ,D4

IV IEEE/ACM ToN editorial board A, A11, · · · , A15 X A rock band D,D5,D6,D7

V A research group-KSU A, A16, · · · , A20 XI A soccer team E, E1, · · · , E4

VI A research group-Ericsson B, B1, · · · , B4 XII Bioinformatics-TU Delft F, F1, · · · , F4

2.2. Hypergraph representation

A hypergraph is the generalization of a simple graph2. A hypergraph H (M,N) has M nodes and N hyperedges3.

Its nodes are of the same type as those of a simple graph, as shown in Figure 2 (a). The hyperedges of hypergraphs

can connect multiple nodes, like hyperedge A in Figure 2 (a) connecting nodes I, II, · · · ,V . A hypergraph is linear if

each pair of hyperedges intersects in at most one node. Hypergraphs where all hyperedges connect the same number

m of nodes are defined as m-uniform hypergraphs with the special case that 2-uniform hypergraphs are simple graphs.

If an affiliation network is linear, the representing hypergraph is linear; if an affiliation network is m-uniform, the

representing hypergraph is also m-uniform.

We propose to describe an affiliation network with M groups and N individuals by a hypergraph H (M,N): M
nodes represent the M groups; N hyperedges represent N individuals; and an hyperedge is incident to a node if the

corresponding individual is a member of the corresponding group.

The line graph of a hypergraph H (M,N) is defined as the graph l (H), of which the node set is the set of the

hyperedges of H (M,N) and two nodes are connected by a link of weight t, when the corresponding hyperedges share

t node(s). The degree d j of an individual j, defined in subsection 2.1, equals the number of individuals that connect

to j in the line graph l (H). The line graph l (H) is an unweighted graph when the corresponding hypergraph is linear;

otherwise is weighted, and the weight of link i ∼ j equals the interest-sharing number αi, j.

2.3. An illustrative example

In this subsection, we give an exemplary affiliation network and then represent it by a hypergraph. Table 1 de-

scribes an affiliation network based on the affiliations of members of the NAS research group (Network Architectures

and Services Group at Delft University of Technology). Individuals A, B,C,D, E, F are members of NAS and the

2A simple graph is an unweighted, undirected graph containing no self-loops nor multiple links between the same pair of nodes
3We use the term ”hyperedge” instead of ”hyperlinks” in order not to make confusion with hyperlinks of WWW webs.
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Figure 2: (a) The hypergraph representation of the NAS affiliation network described in Table 1. The hyperedges are the blue ellipse-like closed

curves. The nodes are the disks with different colors marked with Roman numerals. A node and a hyperedge are incident if the node is surrounded

by the hyperedge. The hyperedges and nodes represent the individuals and the groups respectively. Individuals participate in multiple groups,

implying that the groups overlap with each other. (b) The line graph of the hypergraph in (a), which is a simple graph. The nodes here denote the

individuals while the communities consist of links of the same color and the nodes which are incident to them. Note that this graph is also the line

graph of the hypergraph.

other individuals are the members of groups which overlap with the NAS group. Figure 1b depicts the bipartite graph

representation of the NAS affiliation network with the blue circles representing the groups and the solid blue disks

representing the individuals. Two nodes are linked when the corresponding individual belongs to the corresponding

group.

We represent this network by the hypergraph H (12, 53) shown in Figure 2 (a). The nodes of the hypergraph

denote the groups and the individuals are denoted by the hyperedges. There are 12 groups as described in Table 1,

corresponding to the 12 nodes of the hypergraph in Figure 2 (a), and there are 53 individuals among whom 6 NAS

members with the membership number mA = 5, mC = mD = 3, mB = mE = mF = 2. If an individual belongs to

multiple groups, the corresponding nodes are connected by the hyperedge specifying that individual.

Figure 2 (b) depicts the line graph l (H) of the hypergraph H (12, 53) in Figure 2 (a), which represents the exem-

plary NAS affiliation network. In the line graph l (H), the individuals are denoted by nodes and the groups are denoted

by links of the same color and the nodes which are incident to those links. The line graph l (H) is unweighted since

the NAS affiliation network is linear.

3. Properties of affiliation networks

3.1. Topological properties
The line graph l (H) has N nodes and L links. The topology of l (H) can be described by its adjacency matrix A, a

N × N matrix, where the element ai j equals the linkweight of link i ∼ j if there is a link between node i and node j,
else ai j = 0. Since l (H) is undirected, the adjacency matrix A is symmetric.

The following equalities are valid for all affiliation networks,

N =
M∑

k=1

sk −
M∑

k=1,l=1

βk,l

L =
1

2

N∑

j=1

d j =

M∑

k=1

sk (sk − 1)

2
−

M∑

k=1,l=1

βk,l
(
βk,l − 1

)

2

N∑

j=1

(
mj − 1

)
=

M∑

k=1,l=1

βk,l

If βk,l ≤ 1 for all k, l ∈ [1,M], where M is the number of groups, which implies that the affiliation networks are

linear, we have,

d j =
∑

All the groups to
which individual j belongs

(s − 1)
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where s is the group size; And

uk =
∑

All the individuals
that group k contains

(m − 1)

where m is the membership number of an individual. When the affiliation network is linear, we also have αi, j ≤ 1.

The adjacency matrix Al(H)
N×N of the line graph l (H) of a hypergraph H (M,N) which represents an affiliation net-

work with M groups and N individuals, can be expressed by the unsigned incidence matrices RM×N of H (M,N)

Al(H)
N×N =

(
RT R
)

N×N
− diag(RT R) (1)

where the entry ri j of R is 1 if node i and hyperedge j are incident, otherwise ri j = 0. Basically, the adjacency matrix

Al(H) equals the matrix RT R setting all the diagonal entries to zero. The interest-sharing number αi, j of individual i
and j equals the entry al(H)

i j of Al(H)

αi, j = al(H)
i j (2)

The membership number mj of an individual j equals,

mj =

M∑

i=1

ri j = (RT R) j j (3)

The group size sk of group k is

sk =

N∑

l=1

rkl = (RRT )kk (4)

Let WM×M =
(
RRT
)

M×M
− diag(RRT ), then the overlapping depth βk,l of two groups k and l equals,

βk,l = wkl (5)

where wkl is an entry of WM×M .

The individual degree d j equals the number of nonzero entries in the jth row/column of Al(H)
N×N , with the special

case d j =
N∑

i=1
al(H)

i j when the affiliation network is linear. Similarly, the group degree uk equals the number of nonzero

entries in the kth row/column of WM×M .

3.2. Spectral properties

3.2.1. The adjacency spectra of l (H) of m-uniform affiliation networks
A m-uniform affiliation network can be represented by m-uniform hypergraphs Hm (M,N), of which the unsigned

incidence matrix R has exactly m one-entries and M − m zero-entries in each column. Thus, all the diagonal entries

of RT R are m. The adjacency matrix of the line graph of Hm (M,N) can be written as,

Al(Hm)
N×N = RT R − mI (6)

where RT R is a Gram matrix [10][11].

Lemma 1. For all matrices AN×M and BM×N with N ≥ M, it holds that λ (AB) = λ (BA) and λ (AB) has N − M extra
zero eigenvalues

λN−M det (BA − λI) = det (AB − λI)

Lemma 1 and (6) yields,

det
(
Al(Hm)

N×N − (λ − m) I
)
= λN−M det

((
RRT
)

M×M
− λI
)
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The adjacency matrix Al(Hm)
N×N has at least N − M eigenvalues of −m. We have

xT
(
RT R
)

x = (Rx)T Rx = ‖Rx‖22 ≥ 0

and

xT
(
RRT
)

x =
(
RT x
)T

RT x =
∥∥∥RT x

∥∥∥2
2
≥ 0

where xL×1 is an arbitrary vector. Hence, both
(
RT R
)

N×N
and
(
RRT
)

M×M
are positive semidefinite, hence all eigenval-

ues of
(
RT R
)

N×N
are non-negative. Due to (6), the adjacency eigenvalues of Al(Hm)

N×N are not smaller than −m.

3.2.2. The adjacency spectra of l (H) of non-uniform affiliation networks
A non-uniform affiliation network with maximum membership number mmax can be represented by a non-uniform

hypergraph H (M,N). The unsigned incidence matrix R of H (M,N) has at most mmax one-entries in each column.

Therefore, the largest diagonal entry of RT R is mmax. The adjacency matrix of the line graph of non-uniform hyper-

graph H (M,N) is,

Al(H)
N×N = RT R +C − mmaxI (7)

where C = diag
(

c11 c22 · · · cLL

)
and c j j = mmax − (RT R) j j ≥ 0 for j ∈ [1,N].

Since

xT
(
RT R +C

)
x = xT

(
RT R
)

x + xT
(√

CT
√

C
)

x

= ‖Rx‖22 +
∥∥∥∥
√

Cx
∥∥∥∥

2

2
≥ 0

where xL×1 is an arbitrary vector and
√

C = diag
( √

c11
√

c22 · · · √
cLL

)
, RT R+C is also positive semidefinite,

thus, the adjacency eigenvalues of Al(Hm)
N×N are not smaller than −mmax.

4. Real-world affiliation networks

4.1. ArXiv coauthorship network
We analyze the arXiv data of subjects of ”General Relativity and Quantum Cosmology” (GR-QC) and ”High

Energy Physics - Theory” (HEP-TH) in the period from January 1993 to April 2003, which were collected by J.

Leskovec et al. [12]. We construct the hypergraph with the papers as nodes and the authors as hyperedges. A

hyperedge is incident to a node if the corresponding author authors/coauthors the corresponding paper. In this manner

we construct the hypergraph of the arxiv GR-QC coauthorship network with 5855 authors and 13454 papers, and the

hypergraph of the arXiv HEP-TH coauthorship network with 9877 authors and 21568 papers. We fit the data of s, β,
m, d and α with the power function f (x) = x−γ. The values of γ are shown in Table 2. The group size s follows a

power-law distribution. In this case of coauthorship network, the group size s means the number of authors a paper

has. As shown in Figure 3a and 3b, We see that, in the coauthorship networks of both subjects, the papers with only

one author and with more than ten authors are very rare. Most of papers have two or three authors. The group degree u
in both Figure 3a and 3b has a power-law tail. The group overlapping depth β follows a power-law distribution4. The

membership membership m of an individual here means the number of papers he or she authors and coauthors, and

also follows a power-law distribution. The interesting sharing number α, denoting the number of papers in which two

individuals participate together, follows a power-law distribution5. The ArXiv coauthorship networks of both subjects

possess high clustering coefficient, large assortativity coefficient and short average path length as shown in Table 2.

4.1.1. IMDB movie actors collaboration network
The data of IMDB movie actors collaboration network with 127823 movies and 392340 actors, were collected by

Hawoong Heong from Internet Movie Database (based on www.imdb.com). We construct the hypergraph of IMDB

4Most of the pairs of groups have no overlap. We only consider the group pairs which overlaps with each other.
5We only consider the individual pairs who have nonzero interest-sharing number.
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Figure 3: The probability density distribution of group size s, group degree u, group overlapping depth β (the first row from left to right), individual

membership number m, individual degree d, individual interest-sharing number α (the second row from left to right) of the ArXiv coauthorship

networks of (a) ”General Relativity and Quantum Cosmology” category and (b) ”High Energy Physics - Theory” category. They all follow power-

law distributions.

Table 2: The clustering coefficients C, the assortativity coefficients ρD, the average path lengths l, and the exponents γ of power-law fittings of

s, u, β,m, d and α of the arXiv GR-QC and HEP-TH coauthorship networks, the IMDB actor collaboration network, the SourceForge software

collaboration network and the proposed growing hypergraph model.

Network γ (s) γ (u) γ (β) γ (m) γ (d) γ (α) C ρD l
ArXiv GRQC coauthorship 5.50 2.14 3.93 1.95 1.84 3.56 0.637 0.584 6.50

ArXiv HEP-TH coauthorship 6.24 1.63 3.56 1.72 1.68 2.86 0.289 0.382 4.89

IMDB actors collaboration 2.04/5.35 0.407/3.40 4.80 1.81 1.91 3.62 0.762 0.682 4.29

SourceForge collaboration 3.91 2.45 3.76 3.48 2.61 4.60 0.636 0.401 7.06

Growing hypergraph model 2.55 1.17 6.02 2.02 1.27 3.15 0.54 0.71 4.98
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moive actors collaboration network with the movies as nodes and the actors as hyperedges. A hyperedge is incident

to a node if the corresponding actor appears in the corresponding movie. We fit the data of s, u, β, m, d and α with the

power function f (x) = x−γ, as shown in Figure 4a and Table 2. The data of s are fitted with two power functions in

different regions. The group degree u appears also to follow two power-law distribution in two regions. All the values

of γ are shown in Table 2. The IMDB movie actors collaboration network exhibits high clustering, assortative mixing

and short average path length.
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Figure 4: The probability density distribution of group size s, group degree u, group overlapping depth β (the first row from left to right), individual

membership number m, individual degree d, individual interest-sharing number α (the second row from left to right) of (a) the IMDB movie actors

collaboration network and (b) the SourceForge software collaboration network.

4.1.2. The SourceForge software collaboration network
SourceForge is a web-based project repository assisting developers to develop and distribute open source software

projects. SourceForge facilitates developers by providing a centralized storage and tools to manage the projects. Each

project has multiple developers. We construct the hypergraph of the SourceForge software collaboration network

by taking software projects as nodes and the developers as hyperedges. A hyperedge is incident to a node if the

corresponding developer participates in the corresponding software project. The SourceForge software collaboration

network has 259252 software projects and 161653 developers. We fit the data of s, u, β, m, d and α with the power
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function f (x) = x−γ. As shown in Figure 4b, the pdfs of all the six metrics d j, mj, αi, j, sk, uk, and βk,l are well fitted

by power law functions with exponents γ shown in Table 2. The SourceForge network also has a high clustering

coefficient, a high assortativity coefficient and an small average path length, which are shown in Table 2.

5. Modeling of affiliation networks

5.1. Model description

As stated before, we use the nodes of hypergraph to represent the groups and the hyperedges to represent the

individuals. In the description of our model, the nodes and groups, the hyperedges and individuals are used inter-

changeably. Our model is a growing hypergraph model, starting with a small hypergraph which represent the initial

groups and individuals. Later on, new individuals and new groups are added to the network in the growing process.

We notice that the number of group M is larger the number of individuals N in ArXiv networks and Sourceforge

network, and M is smaller than N in IMDB network. Making a movie needs more efforts and labor force than writing

a paper or developing an open-source software. In our model, we take M
N = 1, assuming that each coming individual

start a new group. Note that the group size of real-world affiliation network follow a power-law distribution. We

employ preferential attachment of individual to the existing groups to achieve the power-law distributed group size.

The tricky issue is to determine the membership number of each new coming individuals, namely to decide how

many nodes that a new hyperedge should connect to. The analysis of real-world affiliation networks tells a power-law

distribution of the membership number, hence we preproduce a power-law distributed sequence of numbers, taking

them as the membership numbers of new coming individuals.

Our hypergraph model is described by the following procedure:

1. Start with a seed hypergraph H0 (M0,N0) with M0 groups and N0 hyperedges.

2. Suppose that the desired number of individuals (hyperedges) of the network to be generated is N+N0. Determine

the membership numbers for the N new hyperedges: Γ =
[

m1 m2 · · · mL

]
. Note that the membership

number vector Γ is the input parameter of our hypergraph model.

3. At growing step j, j = 1, 2, · · · , L, add a new hyperedge j and a new group to the hypergraph. Make the new

hyperedge j and the new group incident, and the membership number of j becomes 1.

(a) Connect the new hyperedge j to the existing group i with probability pi = si/
∑

si, where si is the group

size of i and
∑

si is the sum of group sizes of all the existing groups.

(b) Repeat 3a) mj − 1 times so that the membership number of the hyperedge j increases to mj.

4. Repeat 3) until the number of hyperedges increases to N + N0.

Compute the metrics d j, mj, αi, j, s j,u j and βi, j using the methods given in Section 3.1 including the formulas (1)

to (5).

5.2. Simulation results

We use a hypergraph H (20, 20) with the membership number mj = 1, j = 1, 2, · · · 20, as the starting seed. We

add 5000 new hyperedges (individuals) and 5000 new nodes (groups) to the starting seed through 5000 growing steps.

Hence, all the hypergraphs we generate have 5020 nodes and 5020 hyperedges. We generate a sequence of natural

numbers following a power-law distribuion with the pdf Pr [Γ = m] = m−2.02. In the growing process, we apply this

sequence of natural numbers as the membership numbers. We denote the group size and group degree of a random

group by S and U, the group overlapping depth of a random pair of groups by B, the individual degree of a random

individual by D, and the interest-sharing number of a random pair of hyperedges by Φ.

Due to the principle of preferential attachment, we expect that the group size of all the generated hypergraphs

follow power law distributions, which are confirmed by Figure 5. Futhermore, group degree u, individual degree d,

group overlapping depth β and individual interest-sharing number α also follow power-law distributions. Our model

reproduces the power-law distributions of s, u, d, β and α observed in real-world affiliation networks with similar

exponents as shown in Table 2, and also reproduces the properties of high clustering, assortative mixing and short

average path length exhibited by real-world affiliation networks.
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Figure 5: The probability density distribution of group size s, group degree u, individual degree d, group overlapping depth β and individual interest-

sharing number α of our growing preferential-attaching hypergraph model. The membership numbers are input parameters, follows a power-law

distribution. The hypergraph model reproduces the power-law distributions of s, u, d, β and α observed in real-world affiliation networks.

6. Conclusion

Affiliation networks are an important type of social networks. We propose a hypergraph representation which

reproduces the clique structure of affiliation networks. We give analytically the topological and spectral properties

of affiliation networks. We also present formulas which facilitate the computation for characterizing the real-world

affiliation networks of ArXiv coauthorship, IMDB actors collaboration and SourceForge collaboration. We propose a

preferential attachment based growing hypergraph model for affiliation networks. Numerical analyses show that our

hypergraph model reproduces the power-law distributions of group size, group degree, overlapping depth, individual

degree and interest-sharing number of real-world affiliation networks, and reproduces the properties of high clustering,

assortative mixing and short average path length of real-world affiliation networks.
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