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Several Agent-Based and Cellular M)
Automata Mathematical Frameworks Shethie
for Modeling Pancreatic Cancer

Jiao Chen and Fred J. Vermolen

Abstract Mathematical modeling sheds light on cancer research. In addition to
reducing animal-based experiments, mathematical modeling is able to provide
predictions and prevalidate hypotheses quantitatively. In this work, two different
agent-based frameworks regarding cancer modeling are summarised. In contrast,
cell-based models focus on the behavior of every single cell and presents the
interaction of cells on a small scale, whereas, cellular automata models are used
to simulate the interaction of cells with their microenvironment on a large tissue
scale.

1 Introduction

In agent-based modeling, a collection of autonomous decision-making entities
(called agents) is utilized to model a system. Based on a set of rules, each agent
makes the decision individually and executes various behaviors for the whole system
[8]. Therefore, agent-based modeling represents a dynamic and interactive system,
which has been applied in various fields like biomedical research [5], chemistry
[10], market analysis [1], etc.
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Agent-based modeling is capable of simulating a broad spectrum of length-
scales, which has been classified by Van Liedekerke et al. [11] into the following
three types:

» Lattice-based model, where the model is developed based on regular lattice sites
in a spatial computational domain. In biomedical modeling, cell bioprocesses are
represented by transitions of each lattice state such that the model shows the
evolution of a system by a discrete time-stepping mechanism or a continuous-
time framework [9]. According to [11], the lattice-based model can be further
classified into cellular automata models, lattice gas cellular and cellular potts
models.

e Off-lattice model, which means the model is lattice-free and each agent is
allowed to move in any direction rather than restricting agents to lattice sites.
Some examples are center-based models, deformable cell models, and vertex
model, etc. [11].

e Hybrid discrete-continnum model. To solve large multicellular systems, dis-
crete agent-based models need large computational time since individual cells
are concerned. The continuum model is able to solve PDEs for tissue dynamics
or other complicated issues. Therefore, a hybrid discrete-continuum model is
proposed to simulate multiscale models [11].

2 Agent-Based Models

Agent-based (or cell-based) models deal with biological cells as discrete entities in
a computational domain. One of the advantages is the straightforward integration
of cell-level processes like cell proliferation, cell death, cell mutation, etc. and the
intracellular interactions. We develop a cell-based model with an application to
pancreatic cancer therapy at early stages [5]. In this work, we consider three cell
phenotypes, i.e. epithelial cells, cancer cells, T-lymphocytes, which are visualized
as blue, red and green colored circles in Fig. 1, respectively. Figure 1 shows
consecutive snapshots of the migration of T-lymphocytes in pancreatic cancer at an
early stage. Since pancreatic cancer cells accumulate in rounded (three dimensional)
clusters, we model the computational domain as a circular structure [5]. To visualize
cell mutation, epithelial cells change color from blue to filled red. Moreover, other
cell bioprocesses such as cell division and cell death are incorporated. Typically, in
a competitive environment, cancer cells have a growth and proliferation (division)
advantage over other healthy cells, therefore, the number of cancer cells in Fig. |
accounts for the majority at time = 150 h.

In this model, the migration of epithelial and cancer cells is mechanotaxis
updated by

1

v =" At M () + nAW (), 1)
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Fig. 1 Consecutive snapshots of cancer progression and T-lymphocytes migration when time =
2 h (a), time = 20 h (b) and time = 150 h (c), respectively. The blue, red and green color denote
epithelial cells, cancer cells and T-lymphocytes

where r; and o; represents the position of cell i and its velocity parameter. The
M; (r) is the total mechanical signal comprising of traction force caused by strain
energy density and a repulsive force. In addition, n denotes a constant and AW(¢)
takes care of random walk (diffusion), which is a Wiener process. In contrast, the
locomotion of T-lymphocytes is chemo-mechanotaxis, where T-lymphocytes are
attracted by a type of chemokine secreted by cancer cells. The displacement of T-
lymphocytes is described as

v = r’/'._l + BVelt, r’;—l)m + AW — MmC(r'J%—l)z'}—lAt. )
Here c(z, r;'._l) denotes the concentration of chemokine secreted by cancer cells at
time step n — 1 and B is a constant. Whenever any two cells contact with each other,
the repulsive force M™°(r ;) repels two cells with direction z;.

Next we consider a deformable cell model. The deformable cell model simulates
the evolution of cell shape during the interaction with the microenvironment, see an
example in [3]. In Fig. 2, some snapshots at consecutive times are plotted to show
the deformation of a migrating cell and its nucleus denoted in red and green color,
respectively. Furthermore, circles in grey color are regarded as two stiff obstacles
and the cell penetrates the cavity by the attraction of two source points (blue
asterisk). The migration of the cell and its nucleus is determined by chemotaxis,
which can be expressed as

X (1P = x; (tP) + Ar- (BV e (1P +a(x (17) +% —x: (1P ) +nAW,  (3)
and

X! (P = X! (1P) 4 At (—a (X () 4% =% (1P D) Fa (X (1P) 4K — xP (P H1)) 4 AW,
4
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Fig. 2 Consecutive snapshots of the deformation of one migrating cell and its nucleus when time
= 0h, time = 0.0799 h, time = 0.1349 h and time = 0.1709 h, in red and green color, respectively.
Two stiff obstacles are visualized in grey circles and source points are denoted by blue asterisks

Note that x; and xf denote the location of a node i on the cell membrane and nucleus
surface, respectively. The second term in Egs. (3) and (4) represents the interaction
between the nucleus surface and cell membrane. Analogously, we model random
walk by using a Wiener process AW, where 7 is a constant.

Cells are subject to large deformation during migration to adapt to the environ-
ment. This cell-based model can be applied to the deformation of an immune cell
with the attraction of a pathogen source. In addition, it also can be used to describe
the deformation of a cancer cell during the migration to the oxygen source as part
of the metastasis process.

3 The Cellular Automata Model

The cellular automata model is a lattice-based method, which has been used in
various fields. Specifically, a computational domain is divided into lattice sites,
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where each lattice site can be occupied by one cell or multiple cells. Each lattice
site can be in a discrete state and is able to ‘jump’ from one state into another
state. Moreover, one single cell is able to share a few lattice sites in some cases. We
develop a three-dimensional model to simulate the cancer progression and recession
under virotherapy [2], in which one lattice point is occupied by multiple cells.
As a result, Fig. 3 shows cancer progression at early stages in a 15x15x15 mm?3
domain. To mimic cell mutation, epithelial cells (in blue color) are allowed to turn
into cancer cells (in red color). As mentioned earlier, cancer cells have more growth
and division rates than normal cells in a competitive environment with limited space
and nutrition. The number of cancer cells increases significantly and thereby cancer
progresses to a large volumetric fraction in the simulations.

In the model, any lattice site has three discrete states, i.e. unoccupied (or dead
cell) state, epithelial cell state, cancer cell state. Under certain conditions, a lattice

Cancer progression Cancer progression
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Z-axis (mm)
Z-axis {mm)
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6
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Z-axis (mm)

(c)

Fig. 3 Consecutive snapshots of cancer progression when time = 0 days, time = 4 days and time
= 40 days, respectively, in cellular automata model. The blue and red color represent epithelial
cells and cancer cells. The computational domain is 15x 15x 15 mm?
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point, i, can change state and the transition probability P within a time interval (,
to + At) is defined as

to+At
P = / S, )dt ~ 1 — exp(—A; At). (&)
to

where f(X;,t) is an exponential distribution and A; denotes the probability rate
at grid node i per unit of time of state transition. Note that the probability rate
for the change of state depends on the two states between which the grid node
undergoes the change. Regarding our model, one of the merits is the flexibility
of the input parameters. With proper input variables, our numerical results can
reproduce experimental results very well, see Fig. 4 [2], where curves show cancer
growth during 50 days. Taking the animal-based experimental results from [6],
cancer grows under gemcitabine intervention compared with a control experiment
showing in the blue line and black line in Fig.4. In comparison, modeled results
indicated by the red lines are able to predict the cancer progression well according
to experimental curves.

Subsequently, this cellular automata model is extended to oncolytic virotherapy
in pancreatic cancer at early stages [2]. We assume that a three-dimensional domain
is fully colonized by cancer cells and at a certain time a dose of viruses is given
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Fig. 4 Cancer growth with the respect of time in days [2]. The red curves show the numerical
results from the cellular automata model, whereas the black and blue lines represent the cancer
growth without gemcitabine and with gemcitabine, respectively. The experimental results are taken
from the work [6]
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Fig. 5 Consecutive snapshots of cancer recession when time = 25 h, time = 50 h and time =
75 h, respectively, in cellular automata model with an application to virotherapy in pancreatic
cancer. In the computational domain 15x15x15 mm3, the epithelial cells, cancer cells, infected
cells are denoted in blue, red and black color, respectively. In addition, the lattice sites in white
color represent the dead cells or unoccupied states

intratumorally by injection (see Fig.5). Figure 5 shows cancer recession under
virotherapy, where cancer cells, epithelial cells, infected cells are visualized in red,
blue and black color, respectively. Once cancer cells die due to viral replication,
the lattice points will transform from the cancer state to the unoccupied state,
which is indicated in white color. Since the viruses are injected in the center of
the domain, viruses diffuse and infect cancer cells from the central lattice points
with the evolution of time (see Fig. 5b). The model of viral diffusion is defined as

z;ca(tr) = DAc(r) + y(1)§(x — xp) + Be(r)(1 — c]flru)) ©
D*"™ + Te() =0, ondl ’
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where c(r) is the viral concentration at any lattice point and D denotes the viral
diffusivity. The Dirac delta function § (x) mimics the viral source with a time-related
secretion rate y (¢) at position X,. Note that Bc(r)(1 — le,?) is a reaction term to
simulate the viral replication, which only takes place in the grid nodes that are in
the cancer state. Here 8 denotes the proliferation rate of virus and N, represents a
burst size of viruses. On the boundary I', viruses are able to disperse to the neighbor
tissue or organs with a mass transfer rate coefficient T. As more and more cancer
cells are eliminated by viruses, there is a ‘wound’ region, characterized by cells in
the ‘unoccupied state’ appearing in the tissue as a result. However, healthy cells
migrate to this wound from neighbor tissue or organs and hence fill in this gap by
proliferation. In other words, this model could also be used for simulating wound
healing.

4 Uncertainty Quantification

Using the cell deformation model, see Eqs. (3)-(4) and Fig.2, we quantify the
influence of uncertainty in the input data on the time of metastasis, which is modeled
by the time at which a cancer cell exists a blood vessel. In the modeling set-up,
cancer cells transmigrate through the walls of a blood vessel and subsequently they
are transported by the bloodstream to enter at a different part of the body where they
can colonize by forming new tumors. The set-up deviates from Fig. 2, more details
can be found in [4]. The uncertainty quantification is performed by Monte Carlo
simulations, see [7], in which the input parameters, here the cell size and the size of
the aperture of the blood vessel are sampled from statistical distributions. The results
indicate a significant positive correlation (sample correlation coefficient r = 0.79)
between the metastasis time and the cell size. Hence the larger the cancer cell, the
more time it takes to metastasize since transmigration through a blood vessel is more
difficult for larger cells. Furthermore, the Monte Carlo simulations hint at a weaker
negative correlation (r = —0.17) between the metastasis time and the size of the
aperture of the vessel. This confirms the intuition that a permeable vessel facilitates
the transmigration of the cell, and hence enhances metastasis (Fig. 6).

Moreover, the Monte Carlo method is further used to predict the likelihood of
successful cancer treatment in our other works [2, 5]. The corresponding results are
hopeful to aid experiment design and prevalidation before clinical trials.
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Fig. 6 Scatter plots of Monte Carlo simulations [4]. (a) Correlation between cell size and cell
metastatic time with coefficient r = 0.78592; (b) correlation between vessel size and cell metastatic
time with coefficient r = —0.16567

5 Discussion and Conclusions

Regarding cancer modeling, we develop different agent-based frameworks, namely
the cell-based model and cellular automata model, which are compared in this paper.
The cell-based model, where each individual cell is considered, is beneficial for
modeling at small scales. The morphology of the cells can be fixed as in the model
applied in pancreatic cancer at early stages [5]. Furthermore, one can zoom into the
process of cell migration where one models morphological changes of each cell,
such as in the simulation framework with an application to cancer metastasis [3].
Furthermore, the intercellular biomechanics and interactions between cells and their
microenvironment are incorporated. However, with an increase in the number of
cells, the cell-based model will be time-consuming, and therefore cellular automata
model could be a computationally ‘cheap’ alternative. Besides the cellular automata
model, a continuum model for the viral spread is taken into account by using
the reaction-diffusion equation [2]. As we expected, the numerical results show
consistency with the results from the experiments in the literature.

Computational modeling has played and will continue to play a pivotal role in
cancer research and treatment. The computational framework will possess aspects
from both complicated physics-based approaches as well as from ‘simple’ tractable
phenomenological modeling approaches.
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