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Abstract

In order to interact with environments and appliances made for humans, robots should be
able to manipulate a large variety of objects and appliances in human environments. When
having experience with manipulating a certain object or appliance, a robot should be able to
generalize this behaviour to novel, but similar objects and appliances.

When a human has to do a simple task like pushing a previously unseen button or rotating a
knob, it has an idea of how to do this. Based on prior experience with similar object parts,
a concept for this kind of manipulation tasks is formed.

In this work we use a similar idea to learn robots to infer how an object or appliance should be
manipulated. We make use of a neural network approach to generate manipulation trajectories
for a robot. An instruction in natural language and a pointcloud of the ‘manipulatable’ object
part are encoded into a compact feature representation. We use a recurrent neural network
to generate a manipulation trajectory, conditioned on this learned feature representation.

We report on experimental results with our model, first letting our recurrent neural network
hallucinate manipulation trajectories. This shows that it has learned reasonable patterns.
Then we compare the generated trajectories, conditioned on the learned feature represen-
tation, with the current state of the art. We show that for some simple tasks our model
generates better trajectories, but in general does not have enough training data to generate
reasonable trajectories for more challenging and complex tasks.
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Chapter 1

Introduction

A robot operating in a real-world environment should be able to do common tasks, like
opening a door, turning a light on (Figure 1-1) or preparing a cup of coffee. In this way
it could help or replace humans and make our life easier. We want to generate robotic
manipulation trajectories for these kind of manipulation tasks. The robot has to learn how to
perform these tasks, because we do not want to program the robot again for each new task.
The robot has to learn this in such a way, that it is able to generalize its learned behaviour
to new unseen environments. So the robot should be able to deal with novel objects and
appliances, which it has never seen before.
Robots capable of doing tasks, in environments made for humans, could have a great impact
on society. Elderly people and people with disabilities could be helped in their own household
environments, which is very useful in times when the average age of people is increasing.
Another example is production that is moved to low-wage countries that can be moved back,
because now robots could perform these, for humans simple and repetitive, tasks. And con-
sider the time people have for other activities, when robots are doing the ‘boring’ household
tasks.

1-1 Learning Strategies

When we talk about learning, according to Atkeson [4], we can roughly identify four different
learning strategies:

• Learning by being taught. A teacher (or programmer) tells the robot explicitly what to
do in various situations by teaching or programming rules.

• Learning by imitation. The robot learns by observing (human) experts doing the task
or related tasks.

• Learning by thinking or dreaming. The robot learns the task by planning or mentally
practicing the task. While doing the task, the most appropriate plan is chosen and
modified to the current situation.
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2 Introduction

Figure 1-1: The PR2 robot turning a light on by rotating a knob. Image from https://
majalah.ottencoffee.co.id/robobarista-robot-yang-jago-membuat-kopi/.

• Learning by doing. The robot learns from practicing the task.

In this work we propose a method which can be considered as a learning by imitation strat-
egy (also called learning from demonstrations or imitation learning [5]). It needs a lot of
demonstrations during its training phase to develop an understanding of how to generate
trajectories, in such a way that it is able to generalize the observed behaviour to new unseen
objects and appliances. We do not focus on the other strategies. Explicitly programming rules
will never achieve enough generalization capabilities for novel unseen objects and appliances.
Learning by thinking typically involves a model or simulation in which a step or action is
evaluated and we consider the case where this is not available. Learning by doing can be a
very powerful method, but requires a lot of trials to achieve good performance, when starting
with near-zero knowledge [6]. However, this could be a good option to improve the behaviour
learned by our strategy, when using that as a starting point.

In our learning strategy we want a model that is able to generate a manipulation trajectory.
A manipulation trajectory can be considered as a sequence of waypoints. At each step the
model thinks about or plans the most appropriate next waypoint. The plan for how to choose
the next waypoint is learned internally in the model, during a training phase. For this training
a let of demonstrations are required. The model is trained to build a trajectory step by step,
by iteratively predicting the next waypoint.

We choose for this one waypoint per step approach, because we want to make use of the
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1-2 A Neural Network for Generating Sequences 3

sequential structure in trajectories. Our model generates trajectories step-by-step, with each
next step based on the previously generated steps. Because we have no feedback involved in
our method, it could be considered as an open-loop controller. However, this step-by-step
method is particularly useful for eventually extending the method to use feedback, which can
be provided after each step.

An alternative would be to generate a complete trajectory with a fixed number of waypoints
in one go. In this way no use is made of the sequential structure, the network has to find out
itself that waypoints would be related in a temporal way in the representation. This yields
an unnecessary complex learning task, with a less compact model. Also it is less simple to
include feedback, because then the whole trajectory has to be replanned.

1-2 A Neural Network for Generating Sequences

We choose a deep learning model to accomplish the generation task. Deep learning models
have shown to be able to learn high level abstrations from data [7]. Therefore they are an
appropriate candidate to learn high level features from training trajectories and use this to
generate new robotic manipulation trajectories.

A special kind of a deep learning model, that is specialized in handling sequences, is a recurrent
neural network (RNN). RNNs are a powerful class of dynamic models. They have been used to
generate complex sequences with long-range structure in domains as diverse as text [8, 9, 10,
11], handwriting synthesis [2, 12], audio [13, 14, 15, 16] and image caption generation [17, 18].
All sequences with complex and long-range structures. We are interested in generating another
kind of sequences, also with a complex structure, manipulation trajectories for robots.

In this work we investigate how to apply RNNs for the generation of robotic manipulation
trajectories for a robotic arm. We look at an RNN ‘hallucinating’ about trajectories, based
on all trajectories it has seen during training. Here there is no instruction or environment
involved, the RNN is completely free in what it wants to generate. We extend this to condi-
tioned generation. In this extension the network is allowed to predict its sequence prediction
on a learned representation of the task and environment. This results in an architecture with
two main components: (i) a model that learns a representation for a given task and envi-
ronment and (ii) an RNN that generates a trajectory. In our work the task is represented
in natural language and the environment as a pointcloud. We focus on component (ii) and
use an existing implementation [3] for component (i). This existing implementation encodes
high-dimensional inputs (natural language instructions and pointclouds) to a compact vector
representing the task and environment. Then this compact representation — which should
include the necessary information to generate a trajectory for this particular task — is feeded
to the RNN. The RNN can then generate a trajectory, based on this representation of the
task. So if we look to the complete model, we have an encoder which maps high-dimensional
inputs (an instruction in natural language and the environment as a pointcloud) to a compact
representation. The RNN (the decoder) maps the compact representation subsequently to
a manipulation trajectory. So our complete model (an encoder-decoder architecture) gener-
ates a manipulation trajectory given a natural language instruction and a pointcloud of the
environment.
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4 Introduction

Figure 1-2: The PR2 robot opening a door. Image from https://sites.google.com/site/
icra17dme/.

RNNs can be used for sequence generation by training them on a dataset of real data se-
quences. One step at a time is processed by the network. The network is trained to predict
what step comes next. New sequences can be generated from a trained network by iteratively
sampling from the output distribution of the network. Here we assume the predictions are
probabilistic and form a probability distribution for the next step of the sequence. The sample
from the output is feeded as input at the next step. Intuitively, the sampled predictions are
treated as if they were real, much like ‘dreaming’ or ‘hallucinating’.

For the trajectory generation, we consider the case without any interaction with the envi-
ronment. There is no feedback. This means the trajectory generation is feedforward and
purely offline and can be thought off as dreaming about a trajectory to fulfill a task, but
without really executing it. When there is interaction with the environment possible, a form
of reinforcement learning (learning by doing) can be used to practise the task and fine-tune
performance. However, think of manipulating a new object or appliance in a household en-
vironment, for example opening a door handle (Figure 1-2). Based on experience with other
handles a human can think almost unconsciously of a manipulation trajectory for this new
door handle, much like ‘dreaming’. This makes it interesting to apply a sequence learning
method with recurrent neural networks to this kind of manipulation trajectories.

1-3 Challenges

The difficulty with current learning algorithms is that they can train an agent to perform
very well in one particular task. The challenge is to have an agent than can transfer or
generalize knowledge to different tasks. When it has learned to manipulate a number of
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1-4 Related Work 5

objects and appliances it should be able transfer this knowledge to manipulate novel objects
and appliances. When we compare it to human learning, humans do not start from scratch
with every new task. We are able to build on what we already know. We can apply the
knowledge acquired across a whole series of experiences to each new task.

We train a recurrent neural network on a dataset with a large variety of small manipulation
trajectories in a common household environment [19]. This includes trajectories to rotate a
knob, pull a handle, press a button or hold a cup below a nozzle. We want our network to
learn features about these trajectories, such that it is able to generalize this understanding
to generate new trajectories. In this case the network is completely free in what it generates.
When adding a representation (or context vector) of the task and environment the generation
of a trajectory is not completely free anymore and we can speak of conditioned generation,
which is an even more challenging task.

1-4 Related Work

By letting the trajectory generation be conditioned on a learned representation of the task and
environment (the context), we see a correspondence to the encoder-decoder framework [18].
The environment can be a high-dimensional input, like a 3D point-cloud of the object that has
to be manipulated. The task can be a instruction in natural language, like ‘Rotate the knob
clockwise to the desired setting’. A compact feature representation can then be inferred from
these two inputs. That compact feature representation, or context vector, encodes the task
and environment in a compact way. The encoder-decoder framework has a lot of successful
applications, including machine translation [9, 10, 11], image caption generation [17], video
clip description [18] and speech recognition [15, 16]. In an encoder-decoder structure both
the input and output have a rich structure and are related somehow. All these encoder-
decoder networks are based on a shared set of building blocks. Whereas the first systems had
some form of multimedia content (images, video, audio) as input and text as output, new
research shows even more promising directions with complicated rich structures as images [20]
as output. This makes it a promising idea to try to use trajectory generation as another
building block in encoder-decoder networks.

We apply our network to the Robobarista dataset [19]. This dataset contains crowd-sourced
manipulation trajectories for a lot of different small tasks in a household environment. The
dataset contains 1225 manipulation trajectories, which are demonstrated for 250 tasks and
environments. In [3], a representation for the task and environment is learned. Besides this,
a representation for each trajectory is learned that maps to the same feature space. During
inference, when presented with a previously unseen representation for a task and environment,
a suitable trajectory has to be selected. From the set of existing trajectories, the one closest
in the feature space is selected. This does result in a reasonable performance, but by using
already existing trajectories with a nearest neighbor approach, the flexibility and creativity
seems a bit limited. These existing trajectories are originally executed in a probably similar,
but different environment. So the selected trajectories are not adjusted to the small differences
between the original and the new unseen environment. Furthermore the trajectories are used
as they are, so there is no way to use a different starting position. By using recurrent neural
networks we show that we can generate more flexible and creative trajectories.
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6 Introduction

1-5 Contributions

The main contributions of this work are:

• We extend the work on sequence learning to a new domain, robotic manipulation tra-
jectories.

• We propose a new method for offline trajectory generation. Without any interaction
with the environment, a trajectory is generated for a given task and environment. This
method is applied to the Robobarista dataset and compared to the current state of the
art.

1-6 Outline

In Chapter 2 required background material we use in later chapters is presented. In Chapter 3
we describe our method to generate trajectories with recurrent neural networks. In Chapter 4
we describe our method to build an encoder. Experiments and results with our RNN model
are presented in Chapter 5. We summarize and discuss the methods and results in Chapter 6.
Furthermore we give directions for possible future research.
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Chapter 2

Background

In this chapter we describe the building blocks from deep learning we build upon later in this
work. With deep learning we mean a powerful set of techniques for learning in neural net-
works. With neural networks we mean a biologically-inspired programming paradigm which
enables a computer to learn from observational data. According to [7], deep learning allows
computational models that are composed of multiple processing layers to learn representa-
tions of data with multiple levels of abstraction. Learned representations often result in much
better performance than can be obtained with hand-designed representations [21]. For a more
complete introduction to deep learning and neural networks we refer to [7] and [21]. This
chapter focusses on deep learning methods we use for our method. This includes recurrent
neural networks (Section 2-1), mixture density networks (Section 2-2) and encoder-decoder
networks (Section 2-3). Furthermore we describe the work of Graves on handwriting [2]
(Section 2-4), which combines the methods mentioned and is therefore closely related to our
work. The current state-of-the-art approach for selecting a manipulation trajectory for the
Robobarista dataset is described in Section 2-5. In Section 2-6 we compare the different deep
learning methods for generating (sequential) data.

A neural network is typically a function that maps an input x to an output y. It is typi-
cally organized in layers, see Figure 2-1. Layers are made up of a number of interconnected
‘units’, which contain an ‘activation function’. Data is presented to the network via the ‘in-
put layer’, which is linked to one or more ‘hidden layers’. The linking between units is done
via weighted ‘connections’. These weights are modified during training by a learning rule
called ‘backpropagation’ [21]. The hidden layers link to an ‘output layer’ where the output is
presented.

2-1 Recurrent Neural Networks

A special form of a neural network, specialized in handling sequential data, is a recurrent
neural network (RNN). In an RNN, unlike feedforward neural networks, connections between
units form a directed cycle. This creates an internal state of the network between inputs.
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Figure 2-1: A basic feedforward neural network with an input layer, two hidden layers and an
output layer. The layers are linked with weighted connections. Each unit (except for the input
layer) contains an ‘activation function’. Image from [1].

RNNs are called recurrent, because they perform the same task for every element of the
sequence. The output depends on the previous computations. Another way to think about
RNNs is that they have a “memory” (the internal state) which captures information about
what has been calculated so far [22]. Recurrent Neural Networks (RNNs) have become the
first choice for generating sequential data [2]. Recurrent neural networks achieve impressive
results in language modeling [8], machine translation [9, 10, 11], speech recognition [15, 16],
handwriting generation [2, 12], image caption generation [17, 18], audio generation [13, 14],
etc.

The complete RNN computes a function from input histories x1:t up to step t to output vector
yt. The function is parameterised by weights W . An example architecture for an RNN is
shown in Figure 2-2. As input we have a sequence of vectors x = (x1, . . . , xT ), for T steps.
The input is passed through a stack of N recurrently connected hidden layers to compute the
hidden vector sequences hn = (hn1 , . . . , hnT ), the internal state or “memory”, with n indicating
the hidden layer. Then the output vector sequence y = (y1, . . . , yT ) is computed for all T
steps.

The hidden layer activations are computed by the following equation for t = 1 going to T and
n = 2 to N :

h1
t = H(Wihnxt +Whnhnhnt−1 + bnh) (2-1)

where theW terms are the weight matrices,Wihn connects the inputs to the nth hidden layer,
Whnhn connects nth hidden layer to the nth hidden layer at time t − 1, the b terms denote
bias vectors and H is the hidden layer function.

Given the hidden sequences, the output sequence can be computed by

ŷt = by +
N∑
n=1

Whnyh
n
t , (2-2)
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2-1 Recurrent Neural Networks 9

Figure 2-2: An architecture for a recurrent neural network with 3 hidden layers. Note here also
the skip connections from inputs to all hidden layers and from all hidden layers to the outputs.
This is a possible extension for an RNN, that makes it easier for information to flow directly to
one of the top layers. Image from [2].
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yt = Y(ŷt) (2-3)

where Whny connects the last hidden layer to the output layer and Y is the output layer
function.

The output vectors yt are used to parameterise the predictive distribution for the next in-
put, Pr(xt+1|yt). It can be very challenging to find a good predictive distribution for high-
dimensional, real-valued data, more on this in the next section.

With the predictive distributions for the next inputs y1:t, the probability given by the network
to the sequence x is

Pr(x) =
T∏
t=1

Pr(xt+1|yt) . (2-4)

To train the RNN a certain loss function has to be minimized. The probability of the sequence
can be maximized via the maximum likelihood principle. This can be done via the negative
logarithm of Pr(x), this is the function we want to minimize:

L(x) = −
T∑
t=1

log Pr(xt+1|yt) . (2-5)

The partial derivatives of the network weights with respect to the loss function can be com-
puted with backpropagation through time [23]. Then the network weights can be trained
with gradient descent.

So the network is trained to predict a predictive distribution yt for the next input xt+1.
This can be used to generate a novel sequence. By iteratively sampling from the predictive
distribution yt and feeding this as the next input xt+1, novel sequences can be generated.

In principle an RNN with enough capacity should be sufficient to generate sequences of
arbitrary complexity. In practice, it turns out RNNs are unable to store information about
past inputs for very long [2]. This limits its capabilities to model long-range structures. The
problem is that when the predictions of the network are only based on the last few inputs,
and these inputs where themselves also predicted by the network, the network has no ability
to recover from mistakes in the past.

Having a better and longer memory can solve this issue, because it has a stabilizing effect.
With a better memory it can look further back in the past to formulate predictions. Long
Short-term Memory (LSTM) [24] is an architecture designed to be better at storing and
accessing information than standard RNNs. By using LSTM memory cells in the hidden
layers instead of “normal” units, storing and accessing information becomes easier for the
network. Then the network becomes better at finding and exploiting long range dependencies
in the data.

A problem with recurrent neural networks is that of exploding or vanishing gradients [2].
Because of the backpropagation through time a gradient is multiplied by the same weight
matrix over and over again. To avoid exploding gradients, a commonly used method is to
clip gradients such that they lie within a predefinied range.
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2-2 Mixture Density Networks

We can use an RNN, possibly with LSTM memory cells, to generate a sequence. For each step
t an output vector yt is produced. This output is a predictive distribution for the next step
of the sequence xt+1. We do not want to directly output this next step, because then always
the same sequence would be generated. The stochasticity involved by picking samples yields
a distribution over sequences. We want a distribution over sequences that models uncertainty
in a prediction and also gives different choices for each step.

In a mixture density network [25] the outputs are used to parameterise a mixture distribution.
Each mixture component has a mean and covariance matrix. A subset of the outputs of
the network is used to define weights for each mixture component. The remaining outputs
correspond to the means, standard deviations and correlations for the individual mixture
components. The number of mixture components is another hyperparameter of the model
and, intuitively, is the number of choices the network can make for the next output.

So, when a mixture density network is used, the output of the network at step t is

yt = (πjt , µ
j
t , σ

j
t , ρ

j
t j)

M
1 (2-6)

forM mixture components. Here µ indicate means, σ standard deviations and ρ correlations.

When mixture density networks are used in combination with recurrent neural networks the
output distribution is conditioned on the current input and the history of previous inputs.

2-3 Encoder-Decoder Models

We described how to generate sequences with a recurrent neural network and how to use
a mixture density network to parameterise a predictive distribution for each step of the se-
quence. Generating sequences in this way means hallucinating about sequences, but there is
no way to guide the sequence generation. Suppose for example the generation of manipula-
tion trajectories conditioned on the manipulatable object and corresponding natural language
instruction. We want a trajectory that is suited to perform the task described in the instruc-
tion for the corresponding object. Therefore the RNN, that generates the trajectory, needs
additional information. It needs to know the position of the object, what kind of object, what
kind of instruction, etcetera. We need a way to capture the relevant information from the
raw and high-dimensional inputs. Here encoder-decoder models are very useful. The encoders
maps the high-dimensional inputs to a compact representation, that is used by the decoder
(the RNN that generates the trajectory).

Suppose a rich high-dimensional input structure and an output sequence that is related.
Examples are machine translation, speech recognition and image captioning. Encoder-decoder
networks were originally proposed in the context of machine translation, where a natural
language sequence (the input) has to be mapped to a natural language sequence in a different
language (the output) [9, 10]. In an encoder-decoder structure the encoder fenc maps the
input data x into a fixed-length vector representation in a continuous space. We call this the
context vector c:

c = fenc(x) . (2-7)
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The choice of fenc depends on the type of input. A convolutional neural network (CNN) may
be a natural choice for an image. When x is a natural language sentence a recurrent neural
network (RNN) may be used.

Then the decoder fdec generates the output y conditioned on the vector representation, or
context c. We could also say the conditional probability distribution of y given x is computed:

Pr(y|x) = fdec(c) . (2-8)

The choice of the decoder network fdec is again dependent on the type of the output data.
When the output data is a sequence an RNN is a natural choice. In machine translation
[9] an RNN is used to encode the input sentence. As encoder an RNN is used to predict
the next word in the sequence. The encoding c is the representation from the last hidden
layer, the layer before the softmax prediction over the next word (after the whole sentence
was seen by the RNN). In some of the works on image captioning the output from the last
convolutional layer is flattened to form the context c. In other works the output from the last
fully-connected layer before the output is used. The idea behind using the first option is that
more spatial information is preserved. For both machine translation and image captioning an
RNN language model is used as decoder.

2-4 Handwriting Synthesis

An application where recurrent neural networks and mixture density networks are used to-
gether for real-valued data is handwriting synthesis [2]. This is an interesting application,
because it has similarities with generating manipulation trajectories for a robotic arm. For
handwriting synthesis trajectories on a two-dimensional plane are generated. For robotic
manipulation, trajectories in a three-dimensional space are generated. The handwriting is
generated step by step, one pen offset per step. There are complex long range structures
involved. For example, the network has to remember how to finish a character it has started
a number of steps ago. Think of adding the dot on the ‘i’ or adding the cross for a ‘t’. By
using a mixture density network there is a probability distribution for each predicted step. In
this way there is a distribution over handwriting strokes. Furthermore, it can be shown that
there is relative high uncertainty about where to start with a new character.

In conditioned handwriting, or synthesis, the input is some text (a sequence of characters).
The output is a sequence of pen offsets, together with an indicator whether to lift the pen up.
This represents handwriting. These two sequences are related. For this case no use is made
of an encoder-decoder structure. Here this would not make sense, as in this application the
input is not a rich high-dimensional structure. The RNN that generates the output strokes
just needs to focus on one character of the input at the same time.

For the handwriting the basic RNN structure is the same as in Section 2-1. Each input xt
consists of a real-valued pair (x1, x2) that defines the pen offset from the previous input. The
binary x3 indicates whether this step is the end of a stroke (the pen is lifted up before the
next stroke starts). A mixture of bivariate Gaussians was used to predict x1 and x2. For
x3 a Bernoulli distribution was used. There each output vector consists of the end of stroke
probability e, a set of means µj , standard deviations σj , correlations ρj and mixture weights
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πj for M mixture components. That is

xt ∈ R× R× {0, 1} , (2-9)

yt =
(
et, {πjt , µ

j
t , σ

j
t , ρ

j
t}Mj=1

)
. (2-10)

The probability density Pr(xt+1|yt) for the next input xt+1 given the output yt is defined as:

Pr(xt+1|yt) =
M∑
j=1

πjtN (xt+1|µjt , σ
j
t , ρ

j
t )
{
et if (xt+1)3 = 1
1− et otherwise

. (2-11)

where N (x|µ, σ, ρ) is the Gaussian indicating the probability of a x given mean vector µ,
standard deviation vector σ and correlation ρ (x, µ and σ indicate two dimensional vectors).

This can be substituted in Equation (2-5). We can take the negative logarithm of the proba-
bility density to determine the sequence loss:

L(x) =
T∑
t=1
− log

(∑
j

πjtN (xt+1|µjt , σ
j
t , ρ

j
t )
)
−
{

log et if (xt+1)3 = 1
log(1− et) otherwise

. (2-12)

Then the derivatives of the weights with respect to the loss were computed and the network
was trained on a dataset with handwriting examples with rmsprop [26]. Samples could be
generated by iteratively sampling from the trained model. Some generated samples of this
work are visible in Figure 2-3.

Note that this was the unconditioned case. For the case of handwriting synthesis, the gen-
eration of handwriting for a given text, an augmentation was needed. The main challenge is
that the text sequence is much shorter than the pen trace and the alignment between them
is unknown until the trace is generated. This is because the number of coordinates used to
write each character varies and is also dependent on style and size of the handwriting.

The solution was to use a ‘soft window’, that convolves with the text string. This ‘soft window’
is fed as an extra input to the model. The parameters of the model are extra outputs, at
the same time when predictions for the next step are made. So it dynamically determines
an alignment between the text and the pen locations. It learns to decide which character to
write next. Because we have no alignment problem for our case of generating trajectories —
based on a vector representation of the task and environment — we do not go into detail on
this ‘soft window’ model.

In terms of the loss function we now – for the case of handwriting synthesis — have to consider
the text sequence c as well. The sequence loss is now

L(x) = − log Pr(x|c) (2-13)

where

Pr(x|c) = −
T∏
t=1

Pr(xt+1|yt) . (2-14)

Note that yt is now a function of the context vector c as well as the sequence of inputs x1:t.
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Figure 2-3: Handwriting samples generated by [2]. All samples are 700 steps long. Clearly
characters and some shorts words are visible, this demonstrates the ability of the network to
generate long-range structures, because the average character occupies more than 25 steps. Image
from [2].
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2-5 Current Approaches for the Robobarista dataset

For the application of handwriting the context c is a sequence of characters. For the task
of trajectory generation we are interested in a context vector c representing the task and
environment. A method to learn such a vector is described in [3]. The Robobarista dataset
consists of point-clouds of an object to be manipulated, think of pushing a button or rotating
a knob. Each pointcloud has a corresponding instruction in natural language, for example
‘Push down on the handle to add hot water’. The dataset contains trajectories, collected via a
crowd-sourcing platform, that perform the given instruction for the given object or appliance.
The goal in the Robobarista setting is to learn a function that maps a given new point-cloud
p ∈ P of an object part and a new language instruction l ∈ L to a trajectory τ ∈ T :

P× L→ T . (2-15)

In [3], this is done by learning a deep multimodal embedding. A deep neural network learns
to embed the point-cloud/instruction pair to a feature space. For the manipulations trajec-
tories an embedding to the same space is learned. For a new environment/instruction pair a
trajectory can be selected by picking the nearest neighbor from the feature space.
This nearest neighbor trajectory often results in a reasonable performance. However, orig-
inally it was created with another (but quite similar) environment and instruction, which
yields a trajectory that will not completely be customized for the new environment.

2-6 Comparison to Alternative Generative Models

In this chapter we described how to generate sequential data — handwriting and robotic
manipulation trajectories are examples of this — with RNNs. In general three different
approaches are used for generative modeling [27]:

• Generative Adversorial Networks (GANs) [28] pose the training process as a game be-
tween a generator network and a second discriminator network. The discriminator tries
to classify examples as coming from the true distribution or the model distribution
(generated by the generator). When the discriminator notes a difference between the
two distributions, the generator adjusts its weights slightly to make the difference go
away. In theory, at the end the generator exactly reproduces the true data distribution.
The discriminator is then unable to find a difference.

• Variational Autoencoder (VAEs) [29] formalize the problem in a framework of proba-
bilistic graphical models. A lower bound on the log likelihood of the generated data is
maximized.

• Models like RNNs, as we described in this chapter, train a network that models the con-
ditional distribution of every datapoint yt (from which xt+1 is sampled) given previous
datapoints x1:t. This method is effective for data as handwriting and text [30], which
are natural sequences. However also an image can be considered as a sequence, when
the conditional distribution of every pixel is modeled given all pixels from the top and
left. Here the RNNs run both horizontally and vertically over the image, instead of just
in one dimension. This method is used in [31] to generate natural images.

MSc Thesis D.A. Mus



16 Background

D.A. Mus MSc Thesis



Chapter 3

Methods

We approach the generation of trajectories in the context of sequence learning. The aim is to
predict, given an internal representation of the steps taken so far, what the next step will be.
We treat this predicted next step as a real step and use it to predict the next step again. By
iteratively applying this method complete sequences of variable length can be produced.

A challenge is, that for predicting the next step in a sequence, looking at the current step only
is not enough. The relevant information from the previous steps has to be taken into account.
Therefore a main challenge is to capture this relevant information. For example, a trajectory
for pushing down a handle consist roughly of several stages. The handle is approached, then
there is some small push, a small movement in the opposite direction of the push is made to
release the pressure on the handle and then the gripper moves away. Here the information
from the previous waypoints is needed to determine what the current stage is and what the
next waypoint should be.1

Another example is turning a knob, the RNN has to know in which direction (clockwise
or counterclockwise) it is turning and how much it has already turned the knob. This is
information that has to be extracted from the previous steps. This ability to extract and
encode the relevant information from the sequence seen so far must be developed during the
training phase. The network has to learn how to encode relevant aspects of the sequence seen
so far in its hidden state.

In this chapter we describe how we use this method to generate manipulation trajectories with
recurrent neural networks. We first look to the case where the generation is not conditioned
on anything, letting the network freely hallucinate about trajectories. Next we describe the
case where the generation is conditioned on a high-level representation of some task — a
feature vector encoding of the environment and instruction in natural language [3]. In this
way the trajectory generation is guided to perform a task.

1We could say the current direction of moving is possibly enough to determine the stage of the trajectory.
However, to get fluid and robust trajectories, it is beneficial to have the history as well.
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3-1 Unconditioned Generation

We build upon the architecture for handwriting generation [2] (Section 2-4) to generate trajec-
tories. The key component of recurrent neural networks for sequence generation is to predict
the next item in the sequence and then treat this item as if it was real. In [2] mixture density
networks are used to predict an entire probability density function for the next item. When
mixture density networks are combined with recurrent neural networks, the output distribu-
tion for the next step is not only conditioned on the current input (the current step), but on
the history of previous inputs (the previous steps in the sequence).

3-1-1 Architecture

A data point in a manipulation trajectory is more complex than the 3-dimensional data point
for the handwriting application described in Chapter 2. We assume manipulation trajectories
consist of a sequence of waypoints. We use the trajectories from the Robobarista dataset [3].
Each waypoint (g, t, r) consists of a discrete gripper status g ∈ {“open”, “closed”, “holding”},
position t ∈ R3 and orientation, expressed as a quaternion2, r ∈ R4 with respect to the
origin. We use, similar to the handwriting work, the offset with respect to the previous data
point as input for the translation and rotation. The gripper status is represented by three
binary indicators xgripper = {0, 1}3, one for each of the three possible gripper options. So the
input consists of the gripper status xgripper, the translation offset and the rotation offset with
respect to the previous waypoint, xtrans and xrot:

xt ∈ {0, 1}3 × R3 × R4 . (3-1)

From the output layer of the recurrent mixture density network we use ygripper = (go)t, (gc)t, (gh)t
to indicate the probability for each of the three possible gripper statuses. For the real-valued
data, the translations and rotations, we use two sets of mixtures of Gaussians, one to predict
the translation and another mixture of Gaussians to predict the rotation with respect to the
previous waypoint. Each mixture component has a weight πt. The weights of the transla-
tional components πjt and the rotational components πlt sum both up to one. Each mixture
component has a multi-dimensional mean µ and a covariance matrix Σ.

This is different than existing works on handwriting [2, 12], which use two dimensions per
mixture component and thus can output standard deviations and correlations directly. We
cannot use output entries directly as entries for the covariance matrix, because the covariance
matrix has to be symmetric and positive definite. That is why we choose to let each mixture
component output a lower triangular matrix L. Then the covariance matrix is build by
Σ = LLT + εI. In this way we have a symmetric and positive definite covariance matrix. So
the output looks like

yt = ((ygripper)t, (ytrans)t, (yrot)t) (3-2)

with
(ygripper)t = ((go)t, (gc)t, (gh)t) (3-3)

2We explain quaternions in Appendix A.
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Figure 3-1: The architecture for the recurrent mixture density network.

where go, gc, gh indicate the probability for a open, closed and holding gripper status respec-
tively. The other output terms ytrans and yrot consist of mixture components:

(ytrans)t = {πjt , µ
j
t , L

j
t}Mj=1 , (3-4)

(yrot)t = {πkt , µkt , Lkt }Nk=1 (3-5)

with M and N the number of translation and rotational mixture components respectively.
The architecture is depicted in Figure 3-1.

The softmax function is applied to let the each gripper status be in the (0, 1) range and sum
to one. To make the mixture weights for both the translational and rotational components
sum to one also a softmax is applied:

πjt = exp(πjt )∑M
j′=1 exp(π̂j

′

t )
=⇒ πjt ∈ (0, 1),

∑
j

πjt = 1 . (3-6)

Note that the means are three dimensional vectors for the translational and four dimensional
for the rotational mixtures. To obtain corresponding 3 × 3 and 4 × 4 covariance matrices,
the lower triangular matrices have 6 and 10 entries respectively. This is a lot more than in
[2], where the mean and standard deviations are two dimensional vectors and there is one
correlation number. When we compare the mixtures for trajectories with the mixtures for
handwriting in [2], we go from a two-dimensional space without rotations involved to a three
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dimensional space with rotations involved. This means going from 5 (2 means, 2 standard
deviations and a correlation) numbers per mixture to 9 (3 means, 3 standard deviations and
3 correlations) per translational component and 14 (4 means, 4 standard deviations and 6
correlations) per rotational component.

With the output of the network — the gripper probabilities and the parameters of the mix-
ture components for the translations and rotations — a probability density function can be
formed. The next gripper status, next translation and next rotation are handled as indepen-
dent components in our model, while they are strictly speaking not independent. This implies
the output yt contains independent predictive distributions for the gripper status, translation
and rotation for xt+1. This means that, for the example of releasing a handle, a closed gripper
status could be sampled, while there is for step t+ 1 a translation in some direction sampled.
Ideally the sampled gripper status should then be open to release the handle. However, this
can already be fixed at the prediction for the next waypoint at step t+2, where the still closed
gripper and the translation are provided as input. This is why this will not be a real problem,
because the waypoints are close to each other. Because of the independence assumption,
which makes the model much simpler than without, the probability Pr(xt+1|yt) of the next
input xt+1 given the output of the network yt is defined as:

Pr(xt+1|yt) = Pr
trans

(xt+1|yt) Pr
rot

(xt+1|yt) Pr
gripper

(xt+1|yt) (3-7)

= Pr((xtrans)t+1|(ytrans)t) Pr((xrot)t+1|(yrot)t) Pr((xgripper)t+1|(ygripper)t) (3-8)

with

Pr((xtrans)t+1|(ytrans)t) =
M∑
j=1

πjtN ((xtrans)t+1|µjt ,Σ
j
t ) , (3-9)

Pr((xrot)t+1|(yrot)t) =
N∑
k=1

πktN ((xrot)t+1|µkt ,Σk
t ) (3-10)

and

Pr((xgripper)t+1|(ygripper)t) =


(go)t if ((xgripper)t+1)1 = 1
(gc)t if ((xgripper)t+1)2 = 1
(gh)t if ((xgripper)t+1)3 = 1

. (3-11)

The multidimensional Gaussian N (x|µ,Σ) is defined as

N (x|µ,Σ) = 1
(2π)n/2|Σ|1/2 exp

(
− 1

2(x− µ)TΣ−1(x− µ)
)

(3-12)

with Σ the covariance matrix built from the lower triangular matrix L with Σ = LLT + εI.

As a loss function we take the negative log likelihood of the sequence, see Equation (2-5):

L(x) =
T∑
t=1
− log Pr(xt+1|yt) (3-13)

=
T∑
t=1

[
− log Pr

trans
(xt+1|yt)− log Pr

rot
(xt+1|yt)− log Pr

gripper
(xt+1|yt)

]
. (3-14)
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The loss function has a term for the translation, the rotation and for the gripper status. To
give a term more importance with respect to the other terms we use weights. The respective
terms are weighted with respect to each other with the α (α ≥ 0), β (β ≥ 0) and γ (γ ≥ 0)
parameters:

L(x) =
T∑
t=1

[
− α log Pr

trans
(xt+1|yt)− β log Pr

rot
(xt+1|yt)− γ log Pr

gripper
(xt+1|yt)

]
. (3-15)

If we substitute this backwards, the α, β and γ parameters corresponds to powers in the
original probability Pr(xt+1|yt):

Pr(xt+1|yt) = Pr
trans

(xt+1|yt)α Pr
rot

(xt+1|yt)β Pr
gripper

(xt+1|yt)γ . (3-16)

This means that when one of the weight parameters is increased this term get more influence
on Pr(xt+1|yt).

3-1-2 Unbiased Sampling

A unbiased trajectory can be generated by iteratively sampling xt+1 from Pr(xt+1|yt), with
t the time step ranging from 0 to some horizon T for a trajectory of T + 1 waypoints. A
mixture component is sampled for both the translational component and the rotational one,
based on the weights πjt and πkt . After choosing the mixture components the translation and
rotation are sampled from the distribution of the component itself, with the mean µ and Σ
corresponding to that component.

3-1-3 Biased Sampling

When sampling from the output distributions to get real waypoints and trajectories, we
can have a preference for smoother trajectories. In this case we should pick the mixture
components with high probability more often. To bias the sampling towards more probable
predictions at each step independently, we introduce the probability bias b. This is a real
number greater than or equal to zero. The approach in [2] for recalculating the mixture
weights is followed:

πjt =
exp

(
πjt (1 + b)

)∑M
j′=1 exp

(
π̂j

′

t (1 + b)
) . (3-17)

Each Gaussian mixture is scaled by

Σt = 1
1 + b

Σt . (3-18)

This artificially reduces the variance in the choice of the mixture component and in the
distribution of the mixture itself. When b = 0 the sampling remains unbiased, and when
b → ∞ the variance in the sampling disappears. In that case always the mean of the most
probable mixture component will be chosen.
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3-2 Trajectory Synthesis

In the previous section we described how to use a recurrent mixture density network to
generate manipulation trajectories by predicting a probability density for the next waypoint.
It is clear the generation of a trajectory for a given task is not possible in this way. There
is no way to guide which movements the network generates, the networks freely hallucinates
about trajectories. Here we describe an augmentation of the network that makes it possible
to generate sequences conditioned on some high-level input.

3-2-1 Architecture

For the trajectory synthesis we use the learned compact representations from [3], see Chap-
ter 4. This part acts as the encoder in our encoder-decoder structure. The learned represen-
tation acts as the context c. It is an encoded form of the task description and the object part
that has to be manipulated. The task of the RNN is the decode this context into a trajectory.
The context c is connected to the first hidden layer of the RNN. The new architecture is
depicted in Figure 3-2. If we denote the hidden state of the RNN as ht we can update the
hidden state of the RNN by

ht = φθ(ht−1, xt, c) . (3-19)

The context c for handwriting generation (Section 2-4) is a sequence of one-hot vectors. The
dimension of each vector equals the number of characters in the alphabet. All vector entries
are zero, except for the character which it represents. This entry equals one, therefore the
name one-hot vector. Compared to this context for handwriting synthesis, we have one fixed
size vector c with continuous entries for trajectory synthesis.

Because we use as inputs to the network the translation and rotation with respect to the
previous point, instead of the origin, the network does not have any knowledge about the
initial absolute configuration, the initial position and orientation. That is why we add the
initial position and orientation to the context vector c.

Another option, which is similar to the work on generating handwritten digits [12], is to
provide the initial position and orientation as the first waypoint and let the network generate
the translations and rotations for the next waypoints. This is similar to [12], because there
the first point provided is the offset from the origin. In the handwriting work the top-left
corner of the canvas is the origin, where we assume the origin to be in the object part to be
manipulated. This approach seems not ideal, distances from the origin can be quite large and
are not in line with the other translations. This could confuse the network.

If we follow the simple encoder-decoder framework [18] we should initialize the hidden state
of the RNN with the context vector c. The problem here is that there is a mismatch between
the size of the context vector and the hidden state of the RNN. However, the remaining units
in the hidden layer could still be initialized to zero values.

For analysis of the contexts we use a 2-dimensional t-SNE [32] embedding to visualize the
context vectors c. In this way we can get an intuition for what is encoded in these vectors.
We expect vectors for similar instructions to appear together.
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Figure 3-2: The architecture for the recurrent mixture density network, conditioned on a feature
representation of an instruction in natural language and a point-cloud of the object part that has
to be manipulated. The feature representation is added as extra input to the first hidden layer.

MSc Thesis D.A. Mus



24 Methods

D.A. Mus MSc Thesis



Chapter 4

Encoder

We build a neural network that projects input pairs — consisting of a point-cloud of an ma-
nipulatable object part and an instruction in natural language, saying what to do with the
object part — to a feature space. The goal in later stages is to use these learned feature rep-
resentation to generate new trajectories from. We choose to reproduce the method described
in [3], which achieves state of the art performance on the Robobarista dataset [19].

4-1 Preprocessing

The raw data from the three different modalities — point-clouds, natural language instructions
and trajectories — are converted to fixed-length vector representations. This fixed length
vectors are the inputs to the networks, one network for mapping a pointcloud-language pair
to the feature space and another network to map trajectories to the same feature space.

4-1-1 Point-cloud

The raw RGB-D information of the segmented point-cloud — only the part of the point-cloud
containing the object part is included — is converted to two occupancy grid like structures.
Both structures have 10× 10× 10 voxels. One structure has a voxel size of 1× 1× 1 cm. The
other structure has a voxel size of 2.5× 2.5× 2.5 cm. We do not take into account the color
information in the raw RGB-D data, but only the position information. Each voxel counts how
many points of the point-cloud are contained in that voxel. The grid structure with smaller
size has more precision, but not all points are contained in this smaller sized structure. The
bigger structure does not miss points, but is less accurate. With two 10 × 10 × 10 structure
the point-cloud is converted to a 2000-dimensional vector representation. Both grids are
normalized to contain values between 0 and 1 by dividing by the maximum count in the grid.

MSc Thesis D.A. Mus



26 Encoder

Figure 4-1: The model for the deep multimodal embedding. Figure from [3].

4-1-2 Natural language instruction

For the language instruction a bag-of-words model is used. The total number of different
words contained in the dataset is 230. So each instruction is converted to a 230-dimensional
vector, where each vector element is set to 1 if that word is contained in the instruction and
to 0 otherwise.

4-1-3 Trajectory

Trajectories are given as a variable-length sequence of waypoints. Each waypoint contains a
gripper status (‘open’, ‘closed’ or ‘holding’), a translation with respect to the origin and a ro-
tation (represented as a quaternion) with respect to the origin. Each trajectory is normalized
to a length of 15 waypoints by removing waypoints or adding them through interpolation.
For each waypoint we have 3 binary features for the gripper status, 3 real-valued ones for
the translation and 4 real-values ones for the quaternion. This yields a 15 × 10 dimensional
feature representation for each trajectory.

4-2 Network architecture

We have two separate networks. One network ΦP,L(p, l) has as input the point-cloud rep-
resentation p and the instruction representation l. The other network Φτ (τ) has as input
the fixed-length representation of the trajectory τ . Both networks have as output an M -
dimensional layer. This are the M features we want to learn. So both networks project their
input to the shared feature space. The architecture of the network is depicted in Figure 4-1.
This is the same architecture as in [3]. The number of neurons in the layers h1,p, h1,l, h1,τ ,
h2,pl and h2,τ is respectively 150, 175, 100, 100 and 75. This is the same as in [3].
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4-3 Loss Function

We want to learn useful features. This means features that could be used to generate tra-
jectories from. In standard auto-encoder networks the objective is to reconstruct the original
input. Then the representation in a hidden layer — often with a small number of neurons to
“compress” information — could serve as feature representation. In this case we do not use
this reconstruction objective as loss function, but use the same loss function as in [3].

This loss function is constructed by looking more specifically at the problem. For each point-
cloud/language pair (pi, li) some trajectories should be able to complete the task, while others
are completely irrelevant. We want the relevant trajectories to be close in the feature space to
the pair (pi, li), while the irrelevant trajectories should be further away. To express similarity
in the feature space a similarity function is introduced, similarity is defined as sim(a, b) = a ·b.
The relevant trajectories should have a higher similarity to the projection of (pi, li) than
the irrelevant trajectories. Besides that, we want that some irrelevant trajectories are more
irrelevant than others. To be more specific, the difference between the similarities of τj and τk
to the projected point-cloud/language pair (pi, li) should be at least the loss ∆(τj , τk). Here
∆(τj , τk) is a loss function that compares demonstrations. So we have the constraint

sim(ΦP,L(pi, li),Φτ (τj)) ≥ ∆(τj , τk) + sim(ΦP,L(pi, li),Φτ (τk)) (4-1)

where τj is a relevant trajectory for the pair (pi, li) and τk is an irrelevant trajectory.

To determine the set of relevant and irrelevant trajectories the optimal trajectory is deter-
mined for each pair (pi, li). The trajectories are collected using crowd-sourcing. We assume
the trajectory with the smallest average distance to all other trajectories for the pair (pi, li)
must be a good demonstration. We use this as the optimal demonstration τ∗i and use thresh-
olds (tS , tD) to determine two sets of relevant (similar) and irrelevant (dissimilar) trajectories
from the total pool of trajectories T :

Ti,S = {τ ∈ T |∆(τ∗i , τ) < tS}
Ti,D = {τ ∈ T |∆(τ∗i , τ) < tD}

(4-2)

The values used for tS and tD are 8 and 10. The dataset grows exponentially if we push away
all irrelevant trajectory at each iteration for each pair (pi, li). Instead, the most violating
trajectory τ ′ can be determined. This is the trajectory from the set of irrelevant trajectories
with the highest similarity augmented with the loss scaled by a constant α:

τ ′i = argmaxτ∈Ti,D
(sim(ΦP,L(pi, li),Φτ (τj))) + α∆(τi, τ)) (4-3)

The value used for α is 0.2. So at each iteration for each example (pi, li) we want to push away
the most violating trajectory τ ′i . Therefore we can use the hinge loss of the most violating
trajectory as a loss function:

L(pi, li, τi) = |∆(τ ′i , τi) + sim(ΦP,L(pi, li),Φτ (τ ′i))− sim(ΦP,L(pi, li),Φτ (τi))|+ (4-4)

Here the notation | · |+ is the same as max(0, ·). This loss function equals 0 when the relevant
trajectory has a similarity equal or greater than the similarity of the irrelevant one augmented
with the distance between the trajectories.
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4-4 Experiments

The model is trained on the Robobarista dataset consisting of 250 point-cloud/language pairs
and 1225 crowd-sourced manipulation trajectories. We use roughly 80% as training set and
the remaining 20% as test set. We use the Adam optimizer [33] with an initial learning rate
of 0.001, a small decay is applied after every 10, 000 steps. We used the same parameters
for tS , tD and α as in [3], values of 8, 10 and 0.2 respectively. From initial experiments
we found that using all dissimilar trajectories, instead of only the most violating ones, gives
better performance. This leads to large dataset of more than 18 million combinations of
pointclouds, instructions, similar and dissimilar trajectories. The general opinion in deep
learning is that more data is beneficial, so this could explain why this works better. Although
by using all dissimilar trajectories, we also include a large number of trajectories that are
already far enough away from the pointcloud/language pair.

We used a batch size of 256 and trained the networks for 20, 000 iterations. The loss for the
model is shown in Figure 4-2. We also test the number of constraints (Equation 4-1) satisfied,
this is shown in Figure 4-3. We see a large gap between the training and test set.

We experimented with using Batch Normalization to improve learning. However, we found
batch normalization is not suited for this task. By using batch normalization, activations of
units depend on the other input examples in the batch. When an input example consists
of a pointcloud/language pair, a similar trajectory and a dissimilar trajectory (pi, li, τj , τk),
this means the similar and dissimilar trajectory τj and τk have different mean and variance
values per unit. Therefore the same trajectory can have different embeddings. Therefore the
training loss will decrease very fast, it can “cheat” by using different embeddings for the same
trajectory and by using that satisfy constraints. This results in a model that is performing bad
during inference, when the mean and variance are fixed. The mean and variance computed
during training are used then.

Batch renormalization [34] claims to ensure that training and inference models generate the
same outputs that depend on individual examples, rather than on the entire minibatch.
Therefore batch renormalization could be a suitable option to improve the performance of
the model.

In the rest of this work we do not make use of this results, because we are able to use the
original pointcloud/language pair embeddings used in [3].
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Figure 4-2: The loss during training.

Figure 4-3: The percentage of constraints satisfied during training. We see a gap between
the train and test set.The model performs much better on the training set, which is a sign of
overfitting and not generalizing well to new data.
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Chapter 5

Experiments

In Chapter 3 we described our model that predicts the next waypoint based on an internal
representations of the waypoints seen so far.

We train the model on the Robobarista dataset [19]. This dataset contains 1225 manipulation
trajectories which are demonstrated for 250 tasks. We use roughly 80 percent for training the
model and use the remaining data to report performance on.

5-1 Dataset

The Robobarista dataset [19] contains three different modalities of data (point-clouds, lan-
guage instructions and trajectories). There are 116 objects in the dataset with 250 nat-
ural language instructions. Using crowd-sourcing 1225 manipulation trajectories are col-
lected from 71 non-expert users. The trajectories are collected via a web platform (http:
//robobarista.cs.cornell.edu). Because of the collection via crowd-sourcing the trajec-
tories contain a lot of noise.

We note that the number of pointcloud/language pairs and trajectories is relatively small. In
the slightly comparable application of generating handwriting more than 10, 000 handwritten
lines are used, with an average line occupying around 700 steps (the average letter about 25
steps. This is a lot more than the robotic trajectories we have available. A lot of trajectories
do contain a minimal amount of waypoints, some trajectories contain only three or four
waypoints. This low resolution of waypoints can result in different trajectories for the same
task that look quite different, which makes it very challenging to capture the relevant patterns
in the training phase. The adding of extra waypoints via linear interpolation does not remove
this noise in the training trajectories.

Each point cloud p ∈ P is represented as a set of n points in a three-dimensional Euclidean
space. Each point (x, y, z) is represented with its color (r, g, b) resulting in:

p = {p(i)}ni=1 = {(x, y, z, r, g, b)(i)}ni=1 (5-1)
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Figure 5-1: A point-cloud for a coffee cream dispenser. The corresponding instruction is ’Hold
the cup below the nozzle’. Also shown is the two-fingered end-effector of the robot arm. The
segmented object part, shown in green, is the only part that is used. The other points in the
point-cloud are not used.
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for a point-cloud with n points, see Figure 5-1. Each instruction l ∈ L is written in natural
language. An example is (for two instructions): “Hold paper towel in front of the nozzle. Pull
the trigger to spray.”. Here the task is to spray cleaner to a paper towel. Each trajectory
τ ∈ T is a robot arm trajectory and is represented with a sequence of m waypoints. Each
waypoint consists of a gripper status g ∈ {“open”, “closed”, “holding”}, translation (tx, ty, tz)
and rotation (rx, ry, rz, rw) with respect to the origin:

τ = {τ (i)}mi=1 = {(g, tx, ty, tz, rx, ry, rz, rw)(i)}mi=1 (5-2)

The rotations are expressed as quaternions.
Only the position and rotation of the end-effector of the robot arm are recorded. In this way,
focus is on the interaction between the robot and the environment, rather than the movement
of the arm. Besides that, the trajectories are represented in an coordinate frame of the object
part rather than the robot or object coordinate frame. This makes trajectories more easily
compatible across different objects. The negative z-axis is aligned along gravity. The x-
axis is aligned following the approach in [35], along the principal axis of the manipulatable
object part using PCA. This means that when the robot is in front of the object — and
wants to approach it — it has to move along the y axis in positive direction. By using this
coordinate frame, the trajectory does not need to change, even when the object part’s position
and orientation changes. However, the approach of [35] does not always succeed. There are
examples in the dataset where the end-effector has to move along the x-axis or diagonally.

5-2 Preprocessing

All trajectories are normalized to a fixed length of 25 waypoints. In this way the trajectories
become smoother. The interpolation is done by adding extra waypoints via interpolation, lin-
ear interpolation for the positions and spherical interpolation for the rotational quaternions
This is the same preprocessing step as for learning a multimodal embedding in [3]. The choice
for 25 waypoints is a trade-off. Choosing a lower number results in less smooth trajectories,
which makes it more difficult for the neural network to learn patterns. Choosing more way-
points per trajectory will result in an even greater percentage of interpolated waypoints. We
do not want a network that only learns to interpolate and is not learning the more relevant
patterns in the trajectories. An alternative for the fixed-length, which allows variable-length
sequences, is to use an end-of-sequence marker. Because of ease of implementation, we decided
to stick with the fixed-size version.
In the Robobarista dataset each trajectory consists of a sequence of waypoints. Each waypoint
consist of a gripper status, a position and an orientation of the gripper with respect to the
origin. We choose, similar to [2], to let the network output the translation and rotation with
respect to the previous waypoint. This instead of predicting the absolute coordinates with
respect to the origin. This makes the predictions depend on local features. This is more
intuitive than when global coordinates have to be remembered and predicted.
A translation between two consecutive absolute positions can be computed in a straigthfor-
ward way, by subtracting the position at step t from the position at step t+ 1. The rotation
between two consecutive quaternions q1 and q2, both representing the orientation with respect
to the origin can be computed with

q′ = q2 · q−1
1 (5-3)
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with the inverse and multiplication operator as defined for quaternions. Now we can go from
orientation q1 to q2 by q2 = q′ · q1.
We have to note that by using the translations and rotations with respect to the previous
waypoint, instead of absolute positions and orientations, we loose information about the initial
position and orientation with respect to the origin. The same goes for the initial gripper status.
For the gripper status this is not a problem, because the gripper status for the second waypoint
turns out to be always equal to the first. It does not make sense to immediately change the
gripper status. By loosing information about the absolute initial position and orientation,
this means the preprocessed trajectories become translation and rotation invariant. Two
trajectories with different initial positions and orientations, but performing the same motions
(translations and rotations), will result in two identical preprocessed trajectories. Because of
the loss of the original position and orientation, this is added to the context vector when we
experiment with conditioned trajectory generation.
All translation and rotation features are normalized to have mean 0 and standard deviation
1, as is recommended in literature [36]. Because the gripper status consists already of binary
values, these features do not have to be normalized. We note that by normalizing the rotation
features, it is not a valid quaternion with unit length anymore. However, a 4-dimensional
vector at the output is easily scaled to have unit length again [37].

5-3 Metrics

We train the network to predict the next step in the sequence — whether we provide the
context vector c or not. A natural choice would be to consider the root-mean squared error
(RMSE). When given a target sequence this network is given the true step at time t and
asked to predict the step at t+ 1. The RMSE is the error between the predicted estimate for
t + 1 and the true value at t + 1. This error is averaged over the total number of predicted
steps.
However, we are not per se interested in the per step prediction capabilities. This is because
we are interested in the prediction of whole trajectories. The network is trained with the
teacher-forcing method. This means the ground-truth input at step t is given and the network
is asked to predict the next step t+ 1. This prediction is not used as input at the next step,
but again the ground truth value at time t+1 from the target trajectory is provided (therefore
the name teacher-forcing) to predict step t+ 2.
We want that the predicted trajectory during training — during training no hallucinating is
involved — matches the target trajectory as close as possible. That is why we make use of
the metric Dynamic Time Warping for Manipulation Trajectories (DTW-MT) [19]. This is a
metric that computes a loss between two complete trajectories by non-linearly warping the
trajectories of possible different lengths (although we use fixed length in our implementation).
With this metric translations, rotations and gripper status are taken into account. The
ordering of matched trajectory waypoints is preserved.
Because the DTW-MT metric does not give an intuitive number, we also measure accuracy.
By accuracy we mean the percentage of the trajectories with an DTW-MT value less than
2. By empirical evaluation, a value less than 2 from the ground-truth trajectory looks very
similar. This accuracy metric is also used in [3] to evaluate the performance of their method.
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In their work, this is not used in the context of teacher-forcing and thus DTW-MT values are
higher. Therefore they use a threshold value of 10 to compare trajectories.

5-4 Trajectory Generation

First we look to the experiments where we do not provide the context c. We train the model
and then sample a number of trajectories from this trained model — by letting the model
“hallucinate”. The goal of this experiment is to see if the network has learned patterns from
the trajectory data and is able to generate reasonable trajectories.

5-4-1 Training

We train using the Adam [33] algorithm for 100 epochs, using a batch size of 20. The learning
rate starts at 1 × 10−3 with a small decay applied after every epoch. The derivatives are
clipped in the range [−10, 10].
We use 2 hidden LSTM layers [24] with each 256 units and 5 mixtures for both the transla-
tional and rotational components. This results in a network with roughly 830, 000 trainable
parameters. This is in line with the different architectures used for online handwriting [2, 12].
We have to find the parameters α, β and γ to weight the translation, rotation and gripper
term in the loss function and find a good balance between them. Training runs with equal
weights for the translational, rotational and gripper term showed a much higher value for the
gripper loss. Therefore we train a model with only the gripper term involved, thus paying
no attention to the translation and rotation. In this way, we can find out what the optimal
value for the gripper loss is. Because the model is trained with teacher-forcing — at each
step the input from the target trajectory is provided — there are reasonable translations and
rotations provided to base the prediction for the gripper on. The result for the gripper loss
is shown in Figure 5-2.
Training runs with the equal weights for the translational, rotational and gripper term showed
a much higher value for the gripper loss. Therefore we choose values for α, β and γ of 1, 1
and 100 respectively. In this way the gripper loss is close to the optimal value. The total
loss during this training is plotted in Figure 5-3. We also look to the individual contributions
of the translational, rotational and gripper term to the loss. Initially the gripper term has
most influence, but this contribution decreases fast. To show that the learned predictions
also works for trajectories never seen before — the validation set — we plot performance on
the RMSE and DTW-MT measure in Figures 5-4 and 5-5.
The size of the dataset is quite limited, so we should expect to see signs of overfitting. The
performance on the training data is better than performance on the test data, on the metrics
reported here. When there is overfitting we could solve this by adding drop-out [38] to our
network. A keep probability of 0.8 is used in work on handwriting [39]. To see the effect of
this added drop-out we also train a model with drop-out. We choose a keep probability of 0.8.
The results are in Figures 5-6, 5-7 and 5-8. We see the model with dropout performs better
than the model with no drop out. However, as we will describe later in this chapter, a model
with better predicting capabilities for the next waypoint will not generate better trajectories
per se.
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Figure 5-2: The value of the gripper term of the loss function during training. We compare a
model that is trained for 100 epochs with only the gripper term in the loss function. From the
other model, with a complete loss function we take only the contribution of the gripper term.
The model fully trained on the gripper has a slightly lower loss. However, the difference is very
small.

Figure 5-3: The loss on the training data. The network is trained for 100 epochs with a small
decay applied to the learning rate after each epoch. Also shown are the individual contributions
of the translation, rotation and gripper term to the loss. The gripper term is weighted by a factor
of 100.
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Figure 5-4: The root-mean squared error (RMSE) for both the training (blue) and test (orange)
data. The RMSE is only computed for the predicted translations, so predicted rotations and
gripper status are not taken into account.

To check what kind of predictions the network has really learned we visualize some trajectories
from the validation set. Here we can see the predicted movements at each step. Because we
use a mixture density network the network outputs multiple options for each step. The results
are in Figure 5-9.

We see that there is always an option — for a model doing well on the training metrics —
to do the same translation at step t + 1 as at step t. In general — due to the high number
of interpolated waypoints in the trajectories — this is a good prediction. However, always
predicting to same translation as the previous step can be considered as a sign of overfitting.
This will probably not lead to good trajectories when generating complete trajectories with
no target trajectory involved.

In Figure 5-10 and 5-11 we see another example. Here it is clearly shown that at the first step
the model does not really have an idea in which direction to move. This is logical because it
has not yet any information available. After some movements the model predict options with
higher probabilities. This are most often movements in approximately the same direction.

5-4-2 Generated Trajectories

We sample trajectories from the model and then look at the results. There is no metric to
measure the quality of hallucinated trajectories. We choose the model that gives best results,
when looking at the visualizations. This is not the model with dropout, that performs best
on the training metrics.

For hallucination the first waypoint is fed and the remaining waypoints are sampled from the
model. The first waypoint consist of zero values for the translation and a unit quaternion
for the rotation (meaning zero rotation). We experiment with different initial values for the
gripper.

We expect that a lot of changes in gripper status between consecutive waypoints does indicate
a bad trajectory and more consistency — only a few changes — indicates a better trajectory.
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(a) DTW-MT

(b) DTW-MT Accuracy

Figure 5-5: DTW-MT plots showing results of the DTW-MT metric. The predicted waypoints
are connected to form a trajectory. The loss between this trajectory and the target trajectory is
computed with the DTW-MT metric. In this metric positions, rotations and gripper status are
taken into account. The results shown here are averaged over all trajectories in the train or test
set. Because the DTW-MT metric does not give an intuitive number we also plot the percentage
of trajectories with a DTW-MT loss less than 2.
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Figure 5-6: The loss on the training data for a network trained with and without dropout. We
see the no dropout version achieves a slightly lower loss. This is explainable, with no dropout no
units are dropped.

Figure 5-7: The root-mean squared error (RMSE) for both the training and test trajectories with
and without dropout. During evaluation for both the training and test set no dropout is applied,
no units are dropped. Remarkable is that the test trajectories perform better than the training
trajectories. Also dropout performs clearly better than no dropout.
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(a) DTW-MT

(b) DTW-MT Accuracy

Figure 5-8: DTW-MT plots showing results of the DTW-MT metric for dropout and no dropout.
This gives the same view as the RMSE measure. Dropout performs better than no dropout.
Remarkable is that the test trajectories perform better than the training trajectories.
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(a) Example from model with dropout.

(b) Example from model without dropout in earlier stages of training.

Figure 5-9: Training visualized for a trajectory from the test set, only predicted translations are
shown. The target trajectory is the dashed trajectory. At each waypoint the model is asked to
predict the next move (teacher-forcing). The means from the mixture components are plotted
(higher probability means higher opacity). We see that for this noisy trajectory the upper model
achieves a better DTW-MT score than the lower one. However, the upper one prefers to keep
moving in the same direction and misses the changes in direction. The lower one does not simply
repeat the previous move, but keeps a preference for a move in a certain direction which slowly
changes.
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Figure 5-10: Typical example of a ‘push down’ trajectory to pull down a lever or handle. The
object part is approached. A small push down movement is followed by a move in opposite
direction and the closed gripper moves away again. We see that at the first step there is a high
uncertainty in the model. All options have about equal probability. After the first step the model
has one clear option with higher probability.

Initial status % open % closed % holding Nr. of transitions
open (sampled) 55.7 44.1 0.1 0.73
closed (sampled) 7.6 92.3 0.1 0.28
holding (sampled) 0.0 0.1 99.9 0.02
open (train) 53.6 46.4 0.0 1.66
closed (train) 8.4 91.6 0.0 0.36
holding (train) 0.0 0.0 100.0 0.0
open (test) 61.2 38.8 0 1.65
closed (test) 4.2 95.8 0.0 0.23
holding (test) 0.0 0.0 100.0 0.0

Table 5-1: Percentage of open, closed and holding gripper for sampled trajectories with different
initial gripper status. The numbers are averaged over 100 sampled trajectories of length 25 for
the top 3 rows. The numbers can be compared with the same statistics for the trajectories in
the training and test set. The sampled trajectories show more or less the same statistics as the
training data for the percentage of open, closed and holding. The sampled trajectories are a
bit conservative when it comes to changing the gripper status. There are less transitions when
starting with an open gripper than for the training data.
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Figure 5-11: Typical example of a ‘hold below’ trajectory to hold a cup below a nozzle or spout.
First the model has a tendency to move along the x-axis. After a while, the model wants to move
more in an upwards direction.

MSc Thesis D.A. Mus



44 Experiments

Initial status Total translation (m) Total rotation (rad)
open (sampled) 0.193 0.971
closed (sampled) 0.156 0.664
holding (sampled) 0.198 0.415
open (train) 0.251 1.42
closed (train) 0.200 0.72
holding (train) 0.157 0.223
open (test) 0.265 2.65
closed (test) 0.223 2.36
holding (test) 0.150 2.16

Table 5-2: Average total translation and rotation per trajectory for 100 sampled trajectories and
the complete training and test set. The sampled trajectory tend to move and rotate a bit less then
the training trajectories, when starting with an open or closed gripper. For holding trajectories
the sampled ones move and rotate slightly more.

Statistics about the gripper status for the sampled trajectories can be found in Table 5-1.
These numbers can be compared with the numbers for the training and test set. We see
similar patterns in the sampled trajectories as for the training and test data. The number of
transitions for holding patterns is close to zero. Trajectories with this gripper status do not
change the gripper. Most transitions take place when the gripper starts open, then approaches
an object and then closes to grasp the object. After doing some operation, like rotating, the
object part is released again — the gripper is opened. The explains the higher number of
transitions when starting with an open gripper status.

In Table 5-2 we look to the total translation and rotation for the sampled trajectories and
compare this with the same statistics for the training and test data. We see the model has
learned to produce translations and rotations of reasonable length. The numbers are about
equal. The average translation is a bit less for the sampled trajectories than for the training
and test one, except the holding ones. The same goes for the rotation.

We also visualize some of the sampled trajectories. First we visualize three examples —
starting with an open, closed and holding gripper — with a high bias b of 1000. The high bias
b eliminates the variability in the sampling and shows the learned preferences of the model.
The results are shown in Figure 5-12a, 5-12b and 5-12c. We see the holding trajectory has a
smooth curve to move the gripper under a nozzle or spout. This generated trajectory looks
realistic. The open and close one keep the gripper status constant and keep choosing the
most save option, so they move in a straight line forward and down. This is a good start for
a trajectory, however at a certain point — when doing a ‘push’ operation for example — the
gripper has to move back. The model has not enough confidence to really do this and keeps
moving forward.

By performing unbiased generation — b is set to 0 — not always the most straightforward
option is chosen and more patterns in the hallucination become visible. For the sampled
trajectories starting with an open gripper, we picked two trajectories where the open-close-
open (grasp-release) pattern is visible (see Figure 5-13).

We also let the network hallucinate about trajectories with a closed gripper. This are often
‘push down’ or ‘press’ trajectories. Two hallucinated trajectories are visible in Figure 5-14.
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(a) Starting with an open gripper, the sampled
trajectory keeps the open gripper and moves in a
straight line.

(b) Starting with a closed gripper, the sampled tra-
jectory keeps the gripper closed and moves in a
straight line.

(c) Starting with a holding gripper, the sampled tra-
jectory moves with a smooth curve to a certain point.

Figure 5-12
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Figure 5-13: Two hallucinated trajectories starting with an open gripper. We see the open-close-
open pattern (grasp-release) for both trajectories. This is a pattern that frequently occurs in the
training trajectories with open gripper. The left trajectory moves in a certain direction and closes
the gripper. The gripper does not moves back up, but still in a forward direction. When this was
backward the trajectory would look like more realistic. Also for the right trajectory we see the
open-close-open pattern, however this one keeps moving in a down and forward direction.

Figure 5-14: Two hallucinated trajectories starting with closed gripper. The left one can be
considered as a hallucinated ‘push’ trajectory. The gripper stays closed, approaches something,
does a ’push movement’, moves in the opposite direction and moves away. Only the moving
away part is not in a direction we would expect. The right one is a hallucinated ‘push down’
trajectory. After moving down the gripper moves back up, this pattern is clearly visible in the
training trajectories. We see the last waypoints have a open gripper. This seems not reasonable.
Probably this is generated, because the model does not have a clear idea when to end a trajectory.
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Figure 5-15: Two hallucinated holding trajectories. The trajectories are unbiased and that is why
they are not very smooth. Nevertheless the trajectories move with a curve in an up and forward
direction.

The same is done for holding trajectories. The results are shown in Figure 5-15. Also here the
trajectories move with a holding gripper in a forward and up direction with a curve. However,
because the sampling is unbiased, the trajectory is not smooth. To make smoother holding
trajectories the bias b can be increased.

5-5 Trajectory Synthesis

In [3] a feature representation is learned for point-cloud/natural language instruction combi-
nations. The goal during training is to map pairs that have similar manipulation trajectories
to similar regions in the feature space. To accomplish this a special loss function is used,
see Chapter 4. We want to see if we can condition the generation of trajectories on these
representations.

5-5-1 Context Vectors

First we inspect how the different feature representations look like and what is learned.
This is done by using a t-SNE visualization [32]. The t-SNE algorithm gives each multi-
dimensional datapoint a location in a two-dimensional map. The pointcloud/language pair
representations are 25-dimensional datapoints, a subset of these is used for visualization. The
t-SNE algorithm is run until converge with a perplexity of 5 and a learning rate of 10. The
resulting two-dimensional embedding is shown in Figure 5-16.

When we look at the corresponding language instructions for all the pairs at the top-right
cluster we see very similar instructions, all with the “hold below” phrase. We mention a few
examples:

• Hold the cup below the nozzle.

• Hold the cup below the white grape juice nozzle.

• Hold the cup below the spout.
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Figure 5-16: A t-SNE embedding for a subset of the pointcloud/language pairs. We clearly
see two clusters, one at the top-right and one at the bottom-left. When zooming in onto the
bottom-left cluster we can identify 4 subclusters.

• Hold the cup below the right nozzle.

• Hold the cup below the passion orange guava juice nozzle.

We can separate the datapoints at the bottom left in four subclusters again. Also here we
can see some correspondences between the subclusters, although they are more detailed.

The subcluster at the bottom contains mostly instructions to push or press a button. A few
examples:

• Push the white grape juice button.

• Press the button to open the door.

• Squeeze the trigger to make the car go forward.

• Press the button to make the water flow.

• In an emergency, hit the push-button in the back.

The subcluster at the top-left contains a lot of instructions to push down a lever or pull a
handle. A number of examples:

• Press down on the stapler’s handle.

• Push down on the right lever to dispense cold water.

• Press down on the handle to punch holes.

• Pull down the handle towards you to dispense the tea.
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• Press down on the handle to dispense coffee.

The subcluster at the top-right contains a lot of rotate or turning in a clockwise or counter-
clockwise manner instructions. A few examples:

• Rotate the handle clockwise to start the water.

• Turn the handle counterclockwise and pull to open the cabinet door.

• Rotate the knob clockwise to turn on the power.

• Rotate the knob clockwise to the desired setting.

• Turn the handle clockwise to fill the cup.

The subcluster at the middle-left contains instructions to press down a handle

• Press down on the stapler’s handle.

• Press down on the handle to punch holes.

• Press down on the flush handle to flush.

When we condition the trajectory generation on the feature representations of the point-
cloud/language pairs we expect to see different trajectories for the “hold below” cluster than
for the trajectories in the other part of the t-SNE visualization. The generated “hold below”
trajectories should have a holding gripper status.

5-5-2 Training

We train the model with the as extra input the context c — augmented with the starting
position and orientation — in the same way as the model for unconditioned generation, using
the Adam algorithm for 100 epochs. The loss is shown in Figure 5-17. We see the loss is
decreasing over time.

We also show performance on the RMSE — the average root mean squared eror (RMSE)
between the target and predicted translation — in Figure 5-18. The performance on the
DTW-MT metric is reported in Figure 5-19

5-5-3 Results

We are interested in the quality of the trajectories synthesized with the RNN model. Therefore
the RNN model is used to generate trajectories for pointcloud/language pairs it has never
seen before. The pointcloud and natural language instruction for this new object are encoded
into the context vector c. With this context vector c, augmented with the starting pose
(position and orientation) as input, our model generates a trajectory of 25 waypoints. Our
test set consists of 60 pointcloud/language pairs.
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Figure 5-17: The loss is decreasing over time. We show the individual contributions of the
gripper, translation and rotation term to the loss function. The gripper loss is weighted by a
factor of 100, which makes this contribution the biggest during the initial phases of training. All
three contributions decrease over time.

Figure 5-18: The root mean squared error for both the training and test set during training for
the synthesis model. Both values are decreasing over time. The test set performs slightly better.
A possible explanation for this uncommon phenomena is that the test set performs already better
when the training has not started yet.
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Figure 5-19: The DTW-MT for the training and test set during training and the accuracy
(DTW-MT < 2).
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Model DTW-MT Accu. (%)
Our RNN model (no context) 10.7 50.0
Our RNN model (starting pose) 7.5 62.6
Our RNN model (context without starting pose) 7.6 65.3
Our RNN model 6.8 76.7

Table 5-3: Results on the Robobarista Dataset for our RNN model. We compare our synthesis
RNN model with our RNN model without context. The model without context hallucinates a
trajectory. Each column shows a different metric used to evaluate the models. For the DTW-MT
metric, lower values are better. For Accuracy (DTW-MT < 10), higher is better. We also include
two baselines, one with only the starting pose in the context vector c and one with the context
vector c without the starting pose.

For evaluation purposes an expert trajectory, which is not included in the training data, is
used. Each generated trajectory is evaluated against this expert demonstration, using the
DTW-MT measure. We choose to let the generated trajectory start at the same position as
the expert trajectory, with the same orientation.
Then we use the DTW-MT metric to measure the loss between the trajectories. With this
metric all generated waypoints are matched against waypoints in the expert trajectory (or the
other way around if the generated trajectory has more waypoints than the expert trajectory).
The starting points are matched against each other and the same holds for the end points. The
intermediate waypoints are matched against other waypoints in the expert trajectory. Order
is preserved, this means the third waypoint of the generated trajectory cannot be matched
against the second expert waypoint, when the second generated waypoint is already matched
against the third expert waypoint.
We compare our RNN method with some baselines, the results are in Table 5-3. We see
that providing the context performs significantly better than a hallucinated trajectory from
Section 5-4-2. Because the hallucinated trajectory starts at the same point as the expert
trajectory the computed loss on the first few waypoints is relatively low. Therefore this
baseline model has still a reasonable DTW-MT score and accuracy, although it does not
know what kind of task to perform. We also analyse the effect of adding the starting pose.
Adding only the starting pose — the other entries in the context c are set to zero — performs
better than with no context at all. The same holds for a context without starting pose —
these entries are set to zero. So from the numbers in Table 5-3 we can see that both the
starting pose and the context (the learned pointcloud/language embedding) help to generate
trajectories closer to the expert ones.
We also compare our method to the current state-of-the art, the method that finds the
nearest trajectory in the learned multimodal embedding space [3]. We call this method
nearest neighbour. We also include a baseline from [3] called chance, this method picks a
random trajectory from the set of training trajectories.
To make a fair comparison with the nearest neighbour method, we let our RNN model start
at the same position (and with same orientation) as the nearest neighbour trajectory. Both
the nearest neighbour trajectory and the generated trajectory are compared with the expert
with the DTW-MT loss. The results are in Table 5-4. We see that the average loss of our
generated trajectory is higher than for the nearest neighbour method. However, we note that
the nearest neighbour method does not have the flexibility to start at different positions.
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Model DTW-MT Accu. (%)
Nearest Neighbour [3] 9.2 76.7
Our RNN model (no context) 15.3 20.0
Our RNN model 11.4 55.0

Table 5-4: Scores when our RNN model starts at the same point as Nearest Neighbour. Also a
hallucinated trajectory for each pointcloud/language pair is generated as a baseline.)

Model Open Close Hold
Chance [3] 0.49 0.65 0.49
Nearest Neighbour [3] 0.17 0.15 0.26
Our RNN model (no context) 0.32 0.55 0.48
Our RNN model 0.18 0.27 0.16

Table 5-5: Results on Robobarista Dataset. Rows list models we tested, including our RNN
model and baselines. The percentage of open, close and hold gripper statuses per trajectory
is computed. The absolute difference with respect to the expert trajectory is averaged over all
pointcloud/language pairs in the test set. Lower numbers are better.

To further analyse our generated trajectories we look to the gripper status only. Per trajectory
we compute the percentage of open, close and holding. The same is done for the expert
trajectories. The absolute difference per gripper status is computed. The average numbers
for the test set are reported in Table 5-5.

We see our RNN model performs better than the chance model and the RNN model without
context. The nearest neighbour method performs best. It turns out our RNN model does
almost always predict the right waypoint for a task where it has to hold a cup below a spout
or nozzle. That this kind of task is relatively easy to identify from the context vector c is
clear from the t-SNE embedding shown in Figure 5-16. The number for the holding status
for our RNN model is still 0.16, this is due to the fact that the expert does also some ‘push’
tasks with a holding gripper.

We show some examples of generated trajectories in the Figures ranging from 5-20 to 5-25.
It is clear that for most ‘Hold below’ tasks the generated trajectory looks reasonable and has
for a number of examples a lower DTW-MT loss than the nearest neighbour trajectory. For
some pretty good trajectories with low DTW-MT loss, see Figure 5-20 and 5-21. The ‘Hold
below’ trajectories can be considered as the most easy, because here the movement is only
in one direction and the gripper status is constant. Also a significant part of the training
trajectories, almost half of them, consist of this kind of trajectories. Because these trajectories
are relatively easy, these training trajectories look also quite similar. This makes it easier for
the RNN to learn reasonable ‘Hold below’ trajectories. For the other kind of trajectories the
variance is much higher, trajectories for a ‘Pull down’ instruction can be quite different and
have movements in different directions. Together with the fact that we have a relative small
amount of data, it turns out that it is difficult for the RNN to synthesize reasonable ‘push’,
‘pull down’, ‘press’ or ‘rotate’ trajectories.

Also the nearest neighbour method seems to have reasonable performance for ‘hold below’
trajectories, but more difficulties with the other one. Also this seems logical, because a
‘hold below’ trajectory can be easier transferred to another pointcloud/language pair. This
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Figure 5-20: A generated ‘hold below’ trajectory very similar to the expert one. Also the loss
(1.26, plotted after the instruction) is for this example better than for the nearest neighbour
trajectory, which has a DTW-MT loss of 4.74. We also mention the instruction corresponding
originally to the chance and nearest neighbour trajectory.

is because these kind of trajectories are quite similar. For other tasks this turns out to be
more difficult.
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Figure 5-21: Another generated ‘hold below’ trajectory similar to the expert one. In red the
means of the mixture components are plotted.
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Figure 5-22: A ‘push’ trajectory, where the expert chooses to do this with a holding gripper.
The generated trajectory initially moves in the right direction, but does not perform any ‘push’
and moving back movement. In red the means of the mixture components are plotted.
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Figure 5-23: Here we see a generated trajectory for a ‘pull down’ task. The expert approaches
the handle with an open gripper status (+), after which the gripper moves down and moves back
up with a closed gripper (*). Then it moves back with an open gripper (+). The generated
trajectory only starts approaching the object with an open gripper. In red the means of the
mixture components are plotted.
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Figure 5-24: A ‘push’ trajectory, the expert approaches the button with a closed gripper and
moves back. The generated trajectory moves in the right direction, however with a closed gripper
and it does not move back. The nearest neighbour trajectory is very close to the expert for this
example.
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Figure 5-25: Another example for an example that is difficult. The generated trajectory starts
with an open gripper, same as for the expert. The generated trajectory closes the gripper and
starts to move in another direction. In red the means of the mixture components are plotted.
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Chapter 6

Conclusions and Future Work

In this work, we approached the task of generating robotic manipulation trajectories for
common tasks in a household environment. We proposed a learning from demonstrations
strategy. With this strategy a recurrent neural network is trained to predict the next waypoint
of the manipulation trajectory. By iteratively sampling from this predictive distribution
complete trajectories could be generated. This approach has successful applications in other
domains, including text, handwriting synthesis, audio and image caption generation.

First we approached the generation of trajectories, without any context involved, also called
‘hallucinating’. The recurrent neural network has to learn to exploit patterns in the way-
points seen so far, to predict the next waypoint. We showed that — by sampling trajectories
from our trained model — the network has succesfully learned reasonable patterns. These
patterns become most clearly visible in ‘hold below’ trajectories, but also patterns for ‘push’,
‘pull down’ or ‘press’ actions emerged. This showed the capability of generating reasonable
trajectories.

Second we extended our unconditioned model to a conditioned case, trajectory synthesis.
Here the trajectory generation is conditioned on the task in natural language and the object
part as a point cloud. Work from [3] is used to encode this multimodal input into a compact
context vector. In [3] the nearest trajectory from the complete training set in the learned
feature space is selected. This limits the flexibility when a manipulation trajectory is required
for a new unseen environment, because the existing trajectory is used as it is. It is not
adjusted to the small differences between environments and the same starting position has to
be used. In our method the generation of the trajectory is then conditioned on the learned
compact representation of the object part and task in natural language, so here we showed
an encoder-decoder structure with a mapping from pointcloud/language pairs to trajectories.
We trained and tested our algorithm on the Robobarista dataset [19]. We showed that our
approach does generate reasonable trajectories for simple tasks (‘hold cup below’). However,
we showed that for difficult and challenging tasks our approach does not generate reasonable
trajectories. Some reasonable patterns emerged for some examples, such as a right gripper
status. Anyhow, we showed that this is not enough to perform the instruction successfully.
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To generate better trajectories for the challenging tasks, it is likely that a lot more training
data is needed.

6-1 Future Work

For future work we have a number of ideas and suggestions:

• The main bottleneck with our current approach for trajectory synthesis is the need for
lots of training data. After training we see reasonable patterns emerging, but not yet
enough for complete reasonable trajectories. Therefore we expect that our method will
benefit from methods as one-shot learning [40] or other methods that require less data.
A method called active one shot learning is described in [41]. When this method is
applied to our application of generating trajectories, the trajectories are presented in
a stream during training. Then at each step a decision has to be made whether to
predict the next label (the correct trajectory) or pay to receive the correct label. The
optimal strategy would be to maintain a set of pointcloud/language pair representations
and their corresponding trajectory representations, in memory. Then, upon receiving a
new pointcloud/language pair, the optimal strategy is to compare this to the existing
pointcloud/language representations in memory. Here the uncertainty of a match has
to be weighted against the cost of requesting a label. If the model believes it is a
new pointcloud/language pair — not comparable to the memorized representations —
then a representation for this pair must be stored, the label requested, and stored and
associated with the new representation.

• In the current approach the training of the encoder (pointcloud/lanugage pairs to con-
text vector) and the decoder (context vector to next waypoint) is completely separated.
This could be combined to train a fully end-to-end network. This means the error when
predicting the next waypoint during training is also backpropagated to the weights of
the encoder network. This could lead to context vectors better suited to generate tra-
jectories from. Another possibility is to also train the context vectors itself during the
trajectory synthesis training.

• Note that the current approach for generating trajectories — sampling one waypoint
per time step — is a greedy approach. Only one waypoint per step is sampled and used
as the next input. A more advanced option is to use a beam search heuristic. Beam
search is a heuristic search algorithm that explores a graph by expanding the most
promising nodes in a limited set. For generating trajectories this means that at each
step a number of options with high probability for the next waypoint are considered
and kept as partial hypotheses. At each step then a number of these partial trajectories
are further expanded until a number of trajectories is complete. Then some criteria has
to be used to select the final trajectory from the set. More decoding strategies, with
good results in machine translations, can be found in [42].

• To improve the learning during training the concept of incremental sequence learn-
ing [12] can be useful. The network must learn the ability to build up internal repre-
sentations of the part of the sequence received so far. This is necessary to predict the
next step of the sequence. The key observation is: “later steps in the sequence can only
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be learned well once the network has learned to develop the appropriate internal state
summarizing the part of the sequence seen so far”. Therefore it may be beneficial to
learn first the very first steps in the sequence. When an suitable internal representation
of this part of the sequence has been developed the length of the sequences is gradually
increased. With using this method an improvement in sequence learning performance
is found in [12].

• With the method described in this chapter we predict iteratively the next item of the
sequence. This can lead to a problem if the wrong decision is taken at a certain step
t − 1. In that case, the model can become in a part of the state space that is very
different from those visited during training. The network will not know what to do
and this can lead to cumulative bad predictions. To deal better with this case, [43]
proposes to use during training at step t the true step to predict the next step or the
one that is predicted during the previous step. In this way the model learns to deal with
small errors in the predictions. So during training randomly is decided to use the true
current step or the predicted estimate. In the first rounds, when the model is not well
trained, higher probability is given to the true step. During training, when the model
gets better, the probability of using the predicted one becomes higher.

• It will be interesting to really use variable length sequences instead of sequences inter-
polated to a fixed length. When using variable length sequences, an end-of-sequence
marker has to be used as extra input and output. The network has then to predict
when to end a sequence. This can improve the trajectories, because it now sometimes
looks like something new is started, when the trajectory has already done something.

• One issue we have is that better performance on the metrics for predicting the next
waypoint do not necessarily lead to better generated trajectories. It would be interest-
ing to train a discriminator network that learns to identify between human generated
trajectories and trajectories generated with our method. Feedback of this method can
be used in some way to augment the loss function during training. This is the same prin-
ciple as used for generating naturally looking images with Generative Auto Encoders
(GANs) [28].

• We used the encoding for the pointcloud/language pairs from [3]. It is interesting to
research which information is really encoded in the learned context vectors and whether
there is some structure in the learned embedding space. When learning word vectors
it was found that vector(“King”) - vector(“Man”) + vector(“Woman”) results in
a vector that is closest to the vector representation of the word Queen. It is worth re-
searching whether this is also possible with learned representations for natural language
instructions and object parts.
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Appendix A

Quaternions

In this work quaternions are used to represent orientations and rotations: orientations with
respect to a fixed coordinate frame and rotations between consecutive steps.

We need a representation that represents the orientation of the gripper of the robot arm. We
have two strong preferences for this representation: (i) two orientations that are physically
close should be close in the representation and (ii) the representation should be unique. All
orientations that look identical should have the same value. The problem of finding a correct
way to represent a pose is discussed in more detail in [44].

We choose to use the same representation as in [3], quaternions. A quaternion q ∈ R4, ||q|| = 1
can be used to represent an orientation in a 3-dimensional environment. A unit quaternion
represents a rotation by an angle θ around a unit axis vector a as:

q =
[
ax sin θ

2 ay sin θ
2 az sin θ

2 cos θ2
]

(A-1)

A quaternion is often the preferred choice over Euler angles (yaw, roll and pitch). Euler angles
can be ambiguous (see Figure A-1), a key reason for this is that a phenomena like Gimbal
lock1 can occur. We can think of a quaternion as 3 numbers representing an axis and the
fourth number the amount of rotation around that axis. However, also quaternions are not
completely unambiguous, q and −q represent exactly the same orientation.

Four output values at the output layer of a neural network are easily mapped to legitimate
rotations by normalizing them to unit length, this method is used in [37] as well. In [37] a
neural network is used to estimate the camera pose from a single image. A quaternion is here
preferred over a rotation matrix. This is because normalizing a 4D-value to unit length is
simpler than the orthonormalization required for rotation matrices.

1GimbalLock explained: https://www.youtube.com/watch?v=zc8b2Jo7mno
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Figure A-1: The reason why quaternions are often preferred over Euler angles. Image from
http://3dvrm.com/quat/.
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