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Abstract
Adequate flood protection is important to many countries, but especially so to the Netherlands. With
a large share of its population centers located below sea level, in so-called polders, the need for flood
protection systems quickly becomes apparent. This need is even more pressing with the rise of sea
levels and the increase in river discharge variability due to the onset of climate change. To future proof
themselves, the Netherlands needs to maintain and strengthen their flood defences. Especially precar-
ious is the situation for polders, which are low-laying areas protected by one or more dikes. From a
technical perspective, the feasibility of the polder system has been proven to withstand the expected
water level rise as result of climate change for at least 2 to 3 meters sea level rise, shown by Kok et al.
(2008). However, research into the economic perspective on the feasibility of the polder concept has
been less extensive. This leads to the main question of this research: When can the Dutch polder
concept become economically unviable?

Research on the topic of economic viability over time has been performed by Eijgenraam (2006), who
based his work on the original work of van Dantzig (1956). However, this research still contains some
knowledge gaps. The work by Eijgenraam is concerned with the optimization of the Cost-Benefit Anal-
ysis (CBA), without regard for any (financial) constraints that might be imposed on the optimization.
Furthermore, the research conducted was set in a deterministic way, not including the uncertainty in
many of the parameters that are used in the framework such as the sea level rise or population growth.
The final knowledge gap is on the use of the discount rate. The discount rate is prescribed to be con-
stant for investments being made in the current financial environment by The Ministry of Finance in
the Netherlands. However, as the discounting of future costs and benefits to the present value is a
non-linear process, the variability in the discount rate will result in non-linear results as well. As such
this research argues for a variable discount rate, determined by various models.

To more accurately determine the economic viability of the Dutch polder concept, additions to the re-
search of Eijgenraam are proposed that fill in the current knowledge gaps. The result of this research
is a mathematical framework for the optimization of dike reinforcements in two dimensions, the life-
time of the structure and the crest height increase of the dike. The framework consist of a discounted
Cost-Benefit Analysis with a financial constraint and a constraint on the maximum allowable time be-
fore reinforcement is needed. This framework contains stochastic elements in it’s parameters and a
stochastic model for the discount rate.

The derived framework was subsequently used to analyse two case studies based on regions in the
Netherlands. The two case studies were based on the dikering of IJsselmonde (dikering 17) and the
dikering ofWalcheren (dikering 29). The results were determined for the two climate scenario’s posed
by the IPCC and KNMI by means of a Monte Carlo simulation. In the base case, both dikerings were
deemed economically viable for both climate scenario’s. A sensitivity analysis was performed on sev-
eral of the input parameters of the model. This analysis showed the the costs of increasing the crest
height of a dike is the most influential parameter in the assessment of the economical viability of the
polder concept.

The case studies led to the conclusion that the polderconcept is deemed economically viable based
on the derived framework in this research as long as the cost per meter crest height increase per kilo-
meter dike do not exceed a certain threshold. When the costs exceed a factor 2.5 for Walcheren of
and a factor of 1.2 for IJsselmonde, the economic viability, as judged in this framework, is lost. For the
simplified cases this leads to thresholds of €11.3 mln. for Walcheren and €5.5 mln. for IJsselmonde.
The difference in this threshold is mainly attributed to the difference in population and asset density
between regions, as well as the difference in initial risk level. Economic viability in this research means
the sign of the adjusted CBA. Whenever this sign turns from positive to negative, economic viability
is lost. However, this does not mean that reinforcement is not the (economic) most optimal solution.
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The marginal costs of reinforcement only exceed the marginal costs of flood risk for IJsselmonde af-
ter a 3.5-fold increase in costs from considered base case. For Walcheren, there is no turning point
and reinforcement appears to be the most economically feasible solution for all reinforcement costs
considered. As such, dike reinforcement under sea level rise remains the economically more feasible
solution judged on the derived framework in this research for the simplified case studies ofWalcheren
and IJsselmonde.

This research has opened up the possibility to compare alternatives over different time periods and re-
inforcement measures with different constraints and stochastic parameters, adding to the work done by
Eijgenraam. As such, a more risk-informed discussion on the general viability of the polderconcept can
be had, ultimately resulting in a more informed decision on the future of the polders in the Netherlands.
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1
Introduction

This chapter will introduce the reader to some background information on the topic of flood protection
in The Netherlands. After the background introduction, the most recent research on the topic of eco-
nomic optimization of flood defences will be showed. The knowledge gaps in the presented research
will be presented and discussed, being the driver for this research. After the knowledge gaps have
been adressed, the objective of this research is presented, including the main research question and
corresponding sub-questions. This section will also include the scope of the research. This chapter
continues with the research approach, laying down the steps that will be undertaken to come to an
answer to the research question. The chapter concludes with an outline of the rest of the report.

1
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1.1. Background
Flood protection is not a new topic in the Netherlands, as early as the 14𝑡ℎ the concept of a polder was
introduced and around the 15𝑡ℎ century the polder with a pumping station as it is currently known was
conceived (Nederlands Openluchtmuseum, 2022). Although not new, it currently is a hotly debated
one. In the past year Europe saw some very destructive floods. It should come as no surprise that
the main driver behind these extreme weather events is climate change. According to the IPCC the
”Extreme weather events causing highly impactful floods and droughts have become more likely and
(or) more severe due to anthropogenic climate change” (Pörtner et al., 2022).

It should therefore require no explanation that adaptation is necessary for the continuation of life in the
Delta regions such as the Netherlands. How and when these adaptations are done in an economically
most optimal way has been a long-asked question by economists and engineers alike. Several ap-
proaches such as van Dantzig (1956) and the later improved version by Eijgenraam (2006) have been
proposed to solve this optimization problem.

The discussion on how and when to improve flood defences has recently been revived as the Delta-
commissioner of the Netherlands, Peter Glas, gave a second round of advice to the government on the
topic of housing and climate adaptation. In his advice the Deltacomissioner called upon a more critical
view on where and how we should build houses in the Netherlands Glas (2021). As such, the question
on when and especially where to reinforce flood defences became relevant again. Should new housing
be created in urban areas that lie relatively lower than their less urban, but higher laying, counterparts?
Some, such as Rijcken (2022), argue that the Netherlands has the technological capacity to keep the
water out of polders for the expected water level rise in the future. Others argue that it is best to prepare
for the worst and ”climate proof” the future houses by moving them to higher laying areas. Whatever
side is chosen, the main focus appears to be on the technical side of the discussion, rather than the
economical side. This research attempts to quantify the economical viability of the polderconcept in
the Netherlands to add an additional perspective to the discussion and help come to a better conlusion
on the future of flood protection in the Netherlands.

1.2. Knowledge gaps
Although the technical feasibility of polders has been researched extensively, such as by Kok et al.
(2008), the economical assessment and feasibility of the polders has been underexposed. After the
flood disaster of 1953, Van Dantzig has concerned himself with the question on how to optimally
heighten dikes from an economical point of view. Many cost benefit analysis today still rely on his
original work. After nearly 50 years, Eijgenraam (2006) has made a re-assessments on the optimal
heightening of dikes when economic growth is factored in, as well as determining the optimal timing
of the reinforcement. However, this research is concerned only with the end result of the cost benefit
analysis, assessing the internal rate of return for the investments. Neglecting any possible constraints
caused by the financing of the projects undertaken. In reality resources are scarce and not every de-
cision, even if they have a positive net result, can be carried out. As such this research proposes to
add constraints to the optimization problem to better reflect the use of scarce resources. Furthermore,
the derivation given by Eijgenraam (2006) is deterministic in several components such as growth rates
for population and asset value. Although the taken rates reflect the average value of the quantity very
well, they do not capture the natural variability in the quantities. Especially if this variability is very large,
the outcome of economical assessments might differ greatly from realization to realization as the as-
sessment often contains non-linear functions. As a final knowledge gap, the discount rate used in the
determination of the net present value is reconsidered. Discounting costs over time is a very non-linear
process. The true discounted costs may therefore vary largely from realization to realization. In recent
years the stability of the economic system has been tested several times, where interest raises have
been significantly raised and lowered. Taking a deterministic rate for projects with durations of over 50
to 100 years does not reflect the true variability in the economic and political system.
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1.3. Objective
This research will build upon the research of Eijgenraam, adding constraints on his posed optimization.
Next to the added constraints, the optimization will also be set-up in a stochastic way to include the
uncertainty of certain parameter estimates. The final addition to his model will be the inclusion of a
variable discount rate, to be able to reflect changes in economic trends. The objective of this research
is to advance the understanding in the economic workings of the Dutch polder concept and produce
new insights on how to judge the economic feasibility of the Dutch polder concept. To this end the
following research questions is posed:

When can the Dutch polder concept become economically unviable?

In order to answer the main question, three sub-questions are posed.

• Which frameworks for judging the economic feasibility of the polder concept are possible?
• How does the assessment of economic feasibility change over time?
• Which variable(s) has/have the most influential contribution to the the viability assessment?

The time-element in this context concerns the feasibility assessment of a polder throughout the life-
time of the flood defences protecting it, with the (possible) inclusion of constraints on the investment
moments to reflect the use of scarce resources.

1.3.1. Scope
This research limits itself to the economic viability of a polder. The technical feasibility of the polder
concept and political will to keep investing in the concept are left out of this research. Kok et al. (2008)
argue and show that the technical feasibility is not the limiting factor for the future of the polderconcept.
In terms of designing, constructing and maintaining the flood defenses in the Netherlands, the feasibility
criteria is therefore assumed to be met.

1.4. Research approach
The main question of this research will be addressed by formulating an answer to each of the sub-
questions. The first of which will be answered by performing a literature study on the existing policies
of the Netherlands, as well as producing new criteria to assess the economic feasibility of the polder
concept. These criteria will be tested on their relative stringency and developed into multiple mathe-
matical models. The models will be tested on two case studies. The second question will be answered
by means of the two case studies. The answer to the third question comes from a sensitivity analysis
on the two case studies. In this sensitivity analysis the parameters will be varied to determine the most
influential one.

1.5. Report outline
Chapter 2 will provide a literature study on a few key concepts that are needed to perform an economic
analysis of a polder. Chapter 3 will introduce the methodology used in this research, leading to a model
for analysing the economic feasibility of a region. Chapter 4 will introduce the data that will be used for
a case study based on the proposed model. Next to the introduction of the data, some key statistics
ont he two case studies are presented. In chapter 5 the model will be applied on two cases. One for
a polder that is primarily influenced by river discharge and one for a polder that is primarily influenced
by sea level rise. The results will be presented in chapter 5. Chapter 6 will consist of a discussion on
the model and the results. Finally, chapter 7 will present an answer to the original research question
and draw a conclusion. Next to a conclusion, several recommendations for further research will be
proposed in this chapter.
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Literature Study

The aim of this literature study is to gain insights into the workings of the current state of flood protection
and the financing of the polder model. By discussing a variety of topics that are needed in an economic
and financial analysis of a water safety system, the base for a model will be created.

The section will start with the motive behind the main research question by introducing the poldercon-
cept and the National Deltaprogramme. In particular, it will take a closer look at the most recent advice
Deltacommissioner Peter Glas gave on the need for the relocation of housing. Which in turn gave rise
to the question this research aims to answer.

Hereafter, the current state of affair in the Netherlands will be assessed, as well as the possible future
states due to climate change. The focus will be on sea level rise and discharge variability, with a brief
mention of other consequences.

Next, the general policies regarding water and safety in the Netherlands will be discussed. A brief his-
tory will be given, after which the Dutch approach to safety standards will be introduced. The section
ends with the current safety standards.

Later, the technical side of safety will briefly be discussed. Although this research looks at economic
feasibility of the polderconcept, some basic concepts will be introduced to understand the failure mech-
anisms of common flood defences. The section ends with a derivation of the costs of increasing a flood
defence to the required safety level.

After this, some general economic theories will be explained to gain insight into the considerations one
should make when choosing a particular safety level. The concept of costs and benefits will be dis-
cussed in detail, as well as the different approaches one can take based on risk tolerance. The aim of
this section is to gain insight into the thought process a government has when choosing to what level
it will protect an area.

Finally, this section will look at the financing of projects in general, which will assist in determining the
costs for the polder model. To this end, a detailed explanation of the determining factor in finance, the
interest rate, will be discussed. The study will zoom into three common models to determine interest
rates over time.

4
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2.1. The polderconcept
As mentioned in the introduction, polders have a rich history in the Netherlands. Before proceeding
with the analysis, it is important to define what a polder and the Dutch polderconcept is, as well as why
it is needed.

2.1.1. Definition
The Dutch dictionary defines a polder as ”A section of land between dikes on a place where water
used to be”. Although in a general sense this is what is meant by a polder, the technical definition for
engineering practices is a bit more nuanced. According to Hoes and van de Giesen, 2015 a polder is
defined as ”as a level area which has originally been subject to a high groundwater or surface water,
and is separated from the surrounding hydrological regime, to be able to control the water levels in the
polder” and should show the following characteristics:

• A polder does not receive any foreign water from a water course, but only from rain, seepage, or
by irrigation intake;

• A polder has an outlet structure (sluice or pump) that controls the discharge;
• The ground water and surface water level are independent from the water level in the adjacent
land. These water levels are artificially maintained in order to optimize the objectives of the polder.

To put it simply, a polder is relatively low-laying area that is closed off from foreign water by a system
of flood defences. If water does enter, it is swiftly pumped out to maintain the integrity of the polder.
This approach allows areas that would normally be flooded, to be used for other purposes that yield
utility. This reclaimed land is often used for agriculture, but can also be used for housing. A schematic
overview of a polder is given in figure 2.1.

Figure 2.1: A schematic overview of a polder (Stijnen et al., 2012)

Note that the Dutch polderconcept should not be confused with the Dutch poldermodel, which is a
method of consensus decision-making based on the policymaking in the 1980’s and 1990’s.
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2.1.2. The need for polders
As can be seen in figure 2.2a, a large part of the Netherlands is at or below the current sea level. The
relative depth of the Netherlands makes it more susceptible to flooding.

(a) Contour map of the Netherlands (b) Regions under and above NAP

Figure 2.2: Two views on elevations maps of the Netherlands (Blom-Zandstra et al., 2009)

Although below sea level, this land was considered valuable enough to protect from the water. ”To
protect” in this sense means that limited (or preferably, no) water from the sea or river should be able
to enter the system, possibly damaging and/or flooding the low-laying areas. To this extent a ”polder”
was developed. It can be seen as a large area that lies beneath sea and is protected from the outside
water via flood defences.

Some noteable polders in the Netherlands are: The Flevopolder, which is the result of the construction
of the Afsluitdijk, is currently the world’s largest artificial island. The Zuidplaspolder which is the lowest
point of the Netherlands and shares this title with Lammefjord for the entire European Union. The Dutch
polderconcept is also being exported around the global. A noteable project is that of Pulau Tekong in
Singapore, the first polder in Southeast-Asia. The polder will create a new area northeast of mainland
Singapore, being approximately 810ha in size. The design was made by dutch Engineering firm Royal
HaskoningDHV, Boskalis will be responsible for making the ten kilometer long dike system. The project
is expected to be finished this year (NOS, 2018).

2.2. National Deltaprogramme
The Netherlands has always had a precarious relationship with water. However, it wasn’t until the dev-
astating North Sea flood of 1953 that measures on a national level were taken by the government to
protect it’s citizens against a flood. To fulfill it’s promise of protection, the first Deltacommission was
formed within one month of the 1953 floods. This first iteration of the commission was tasked with
advising the government on which measures to implement to guarantee water safety and prevent a
possible next flooding. This ultimately led to the creation of the Delta Works in Zeeland. A collection of
five stormsurge barriers, two sluices and six dams, of which the final construction was finished in 1997
with the completion of the Maeslantbarrier. The Delta works are, next to the Afsluitdijk, regarded as
one of the largest water safety projects to ever be undertaken. The final report of this iteration of the
Deltacommission was published near the end of 1960.

After nearly 50 years, in September 2007, the second iteration of the Deltacommission was installed
by the minister of Transport and Water management and tasked with advising the government on
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strategies for dealing with the impacts of climate change on the Dutch water system. The result of
this commission was a report with twelve recommendations. One of these recommendations was ”the
strengthening of the political-administrative organization for our water safety” as well as ”securing finan-
cial resources for water safety” (Deltacommissie, 2008). This resulted in the Delta law (the so called
Deltawet) being implemented in 2011, which mandated a yearly Deltaprogramme to be drafted.

2.2.1. Deltaprogramme 2022
By law, the Deltacommissioner has to present the Deltaprogramme to the House of Representatives
on the third Tuesday of September (Prinsjesdag). This has happened each year since the inception of
the Deltaprogramme in 2011. The programme contains a detailed plan for the next six years, and an
outline of the plans for the six years after that. On the 21st of September the Deltaprogramme for 2022
was presented.

The report contains three substantive sections, Water safety, Fresh water and Spatial adaption. For
this research, the first and latter sections are of most interest to this report. Some of the most important
points from these section were:

Water safety: All primary flood defences should adhere to the ”new” norms by 2050. The water au-
thorities and Rijkswaterstaat are currently mapping all dikes that need reinforcements. This mapping
should be finished by 2022. The deadline of 2050 means that, on average, 50km of dike should be
reinforced each year. This criteria is currently not being met.

Spatial adaptation: Some stress tests on certain areas were performed to see how increased precipi-
tation and threats from rising sea levels would impact these areas. This is part of the Deltaplan Spatial
Adaptation, which contains all projects and mitigations that are needed to develop the Netherlands in
a climate robust manner. The plan is worked out in detail for the coming six years.

2.2.2. Additional advice Deltacommissioner
On the 13th of July 2021, a joint request for advice from the Ministry of the Interior and Kingdom Re-
lations and the Ministry of Infrastructure and Water Management was made to the Deltacommissioner.
The consult concerned the inclusion of the developments of climate adaptation when planning for the
, both on the short- and long-term. Before 2030, a total of 900.000 new houses need to be build, of
which 220.000 need to be build in large-scale housing areas. The request was divided into two tracks.

Track 1: Advice on the short term based on insights with the emphasis on costs
The first track was a request for advice on how to proceed with the required housing need in the next
two to three years, from a cost-effective perspective on climate-adaptive design. The response from
the Deltacommissioner on track one was given per letter on the first of September 2021, but is not
considered relevant for this research and hence is not presented.

Track 2: Advice on the longer term
The second track was a request for advice on how to proceed with climate adaptive urbanisation in the
Netherlands with a time horizon of 2050 to 2100.

The response from the Deltacommissioner on the second track was given per letter on the third of
December 2021. The advice rested on two leading principles. The first of which was that the conse-
quences of climate change should not be carried over to future generations. To achieve this, the water-
and soil-system should be leading when considering the spatial planning of houses in the Netherlands.
This concerns the construction methods as well as the construction location. The second principle con-
cerned the inclusion of the effects of climate change in the investment plans for housing. An emphasis
is put on the flexibility that is needed to prevent a lock-in, e.g. a large investment in an area that makes
it nearly financially impossible to abandon an area without suffering great losses. The most important
advice from the Deltacommissioner for this research is: ”(...) Next to that I would like to advice to start
an investigation on how urbanisation and the investments that are associated with the urbanisation can
be redistributed spatially over the Netherlands. Next to that I advice to start a migration to locations
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that are the least vulnerable from a climate change perspective” Glas (2021).

2.3. Climate change
The climate is changing. The rate and reason might be under debate, the effects are real and measur-
able. In the recent report of the IPCC The complete list of these effects extends far beyond the scope
of this research. Therefore this section will be limited to the two main threats to water safety: Increased
river discharge variability and the trend in sea level rise. Some other threats outside of the scope of
this research will briefly be mentioned at the end.

2.3.1. River discharge
The effects of climate change on river discharge are two-fold as it is mainly the variability that is effected.
An increase in variability means more extreme discharges, causing both low and high water levels. In
the Netherlands, the main rivers of interest are the Rhine and the Meuse. These will be the rivers taken
into consideration for this research. The predicted discharge in 2050 and 2100 haven been taken from
Klijn et al., 2015, which based the discharge of the KNMI climate scenario’s of 2014 (van den Hurk
et al., 2014). These scenario’s are based on IPCC reports and contain four scenario’s. These four
scenario’s are the combination of two variables: The global temperature increase and the change in
airflow patterns, which can both take low and high values. For this research the main interest is in the
change in temperature, such that the two scenario’s that are looked at are that of a high and low change
in temperature with a large change in airflow patterns. These scenario’s corresponds to G𝐻 and W𝐻
in the KNMI report. The distinction is made by the indication of a ”+ (-)” next t to the year, indicating a
high (low) change in temperature. Next, it is important to find the corresponding water level for a given
discharge per river, this is done via Q-H relationships. To determine these water levels, the normative
discharge with an exceedance probability of 1/1.250 is chosen. The results are shown in table 2.1.

Current 2050- 2050+ 2100- 2100+
Discharge Rhine [m3/s] 14400 15300 15200 14900 17100

Increase in water level Rhine [m] - 0.31 0.28 0.18 0.94
Discharge Meuse [m3/s] 3900 4250 4250 4100 4750

Increase in water level Meuse [m] - 0.27 0.27 0.16 0.57

Table 2.1: Discharge and water level of Rhine and Meuse in 2050 and 2100 Klijn et al., 2015

The Q-H relationship is assumed identical to the relationship used by Kok et al., 2008, which relates a
10% river discharge increase in the Rhine with approximately 0.50 meters increase in water level. For
the Meuse, a 10% increase corresponds to slightly more than 30 centimeters of water height increase. .

It should be noted that a river has spatial variability and that this water level is not the exact water level
along the entire Rhine and Meuse. Nonetheless the numbers give a ballpark idea about the costs that
will be incurred for dikes along these rivers.

2.3.2. Sea level rise
The effects of climate change on the sea level rise (SLR) largely depend on the chosen emission
scenario and corresponding increase in temperature. Although the author of this research is an optimist
by nature, and would therefore prefer to believe in a scenario where global emissions will decrease,
the truth is that this is most likely not true. When it comes to collaboration on a global scale, a neutral
or even pessimistic view seems to be more warranted. Therefore the upper-bound of the estimates
from the IPCC report Oppenheimer et al., 2019 will be assumed in this research. Table 2.2 shows the
rate of global mean sea level rise as well as the expected value in 2050 and 2100 with the confidence
interval in brackets, these values are also shown graphically in figure 2.3.
For this research, the high-end estimates of the RCP4.5 and RCP8.5 are used. This corresponds to an
expected sea level rise of 0.34 and 0.40 meters for 2050 and 0.72 and 1.10 meters for 2100 for RCP
4.5 and RCP8.5 respectively.
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RCP2.6 RCP4.5 RCP8.5
Annual SLR [mm/y] 4 [2 - 6] 7 [4 - 9] 15 [10-20]

Expected SLR 2050 [m] 0.24 [0.17 - 0.32] 0.26 [0.19 - 0.34] 0.32 [0.23- 0.40]
Expected SLR 2100 [m] 0.49 [0.29 - 0.59] 0.55 [0.39 - 0.72] 0.84 [0.61 - 1.10]

Table 2.2: Expected sea level rise by 2050 ad 2100 by the IPCC

Figure 2.3: IPCC global sea level rise estimates for different scenario’s Oppenheimer et al., 2019

A recent study of researchers at the TU Delft found evidence of an increase in the yearly SLR rate
after 1990. Steffelbauer et al. (2022) showed that the average measured SLR rate over eight stations
in the Netherlands before the break-point in the 1990’s is 1.7 ± 0.3 mm yr−1, and increased to 2.7 ±
0.4 mm yr−1 after the break-point. This increasing rate can also be seen in the adjusted predictions
by the KNMI. Since 2014 the predictions have been adjusted by as much as 20%. This supports the
argument for choosing the upper-bound of the proposed confidence interval by the IPCC scenario’s.

2.3.3. Other consequences
Although river discharge variability and sea level rise constitute the main effects that are considered
in this research, there are other effects that can have an impact on the boundary conditions for water
safety. The consequences will be briefly described, as well as their impact on the (direct) environment.
They will not, however, be taken into account during the financial analysis.

Drought
With a changing climate come periods with increased length where there is no precipitation. This can
lead to drought, which in turn causes low ground water levels. If the ground water levels are low for
prolonged period of time, the head in dikes will drop. When, eventually, the water in rivers rises again,
the head difference over the dike will be greater than it was before the drought. This increases the risk
for several failure mechanisms. Next to the increase of flood defences, there is the societal risk of a
decreased water supply.

Salt intrusion
When discharges in the rivers are low and/or the sea level is high, salt water can intrude estuaries and
river mounds. If the discharge is lowered for a prolonged period of time, the brackish water will intrude
further upstream and can intrude into the groundwater. This has the potential of decreasing the size
of the current ecological habitat of many species, as well as contaminate aquifers filled with drinking
water.

2.4. Policies on water safety
This section discusses the historic context of water safety in the Netherlands. After a brief look at
the history, the current state of affairs will be discussed. Finally, the structure of water safety in the
Netherlands will be explained.
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2.4.1. The history of safety
Water safety standards in the Netherlands have existed for an extensive period of time but were only
formally enshrined in law since 1995. Since then, safety standards have been incorporated in two laws
and the legal definition has been changed.

Wet op de Waterkering
The ’Wet op de Waterkering’, which roughly translates to law of the Flood Defences, is a law that was
introduced in 1995 to give a legal anchor for safety standards against flooding. This law denotes a
safety standard for each area within a dike ring in the Netherlands. The norm is defined as ”The av-
erage exceedence probability - per annum - of the highest of the highest high water level for which
the primary water defence intended to directly protect the outside water must be calculated, taking
into account other factors that determine the water-defence capacity” De Nederlandse Overheid, 1995.
These safety standard were derived by the first Deltacommission in 1953, and differed per area. Most
dike sections in the western part of the Netherlands had a safety standard of 1/10.000, while most river
dike sections inland had a safety standard around 1/1.250. By law, the safety standards had to be re-
viewed every five years. The allowed exceedence probability per dike section can be seen in figure 2.4.

Figure 2.4: Safety standard per dike section

Waterwet
TheWet op de Waterkeringen was incorporated, together with seven other water-related laws, into the
Waterwet in 2009. This law still incorporates the safety standards of the Wet op de Waterkeringen,
but adds several other water-related requirements on paper. The total list of requirements contains
subjects on water quality and quantity as well as on the usage of water.

The new standard
On the first of January 2017 a new safety standard was introduced. This new standard changed the
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question from: What is the failure probability of the flood defence given a hydraulic load? to What
is the probability of a fatal flood?. Meaning that it is not the strength of the individual flood defences
(often dikes) that is assessed, but rather the system and probability of flooding of an area. The goal is
that in 2050, each inhabitant of the Netherlands has a probability of death due to flooding of 1:100.00.
Whether this change was for the better, is up for debate. An independent Dutch advice committee
on water safety (ENW) has posed some questions around the approach and given advice on how to
improve it (Kok et al., 2020).

2.4.2. Philosophy of safety
The dutch philosophy on water safety after 2017 can be deduced back to one key concept, that of Risk.
Risk is defined as the probability of damage due to an event, such as a flood, multiplied by the expected
damages as a consequence of said event. Summing over all 𝑛 possible floods and their respective
damages yields the total risk for an area, as given per:

Risk =
𝑛∑
𝑖=1

ℙ[Event𝑖] · 𝔼[Damage𝑖]

Where:
Risk: The expected costs incurred, often expressed in monetary amounts per year.
ℙ[Event𝑖]: The probability of an event occurring per year, in Hydraulic Engineering this often concerns
a flood)
𝔼[Damage𝑖]: The damage, often expressed in monetary amounts, as a result of an event 𝑖 occurring

To give an illustration of the new standard introduced in 2017, two examples will be shown. Before the
introduction of the new standard, dike sections were given an allowable failure probability. Assume
there is a dike section that protects an area with a river running through it, with a value of €125 on the
left side of the river and €250 on the right side of the river. Assuming the frequency of exceedence for
this particular dike section is 1/1,250, it is found that the risk for each side 𝑅𝑙 , 𝑅𝑟 equals:

𝑅𝑙 =
1

1, 250
· 125 = 0.1 𝑅𝑟 =

1

1, 250
· 250 = 0.2

When the two sections are assumed to be independent, a total risk 𝑅1 can be calculated as the sum of
the two individual risks, given by:

𝑅1 =
𝑟∑
𝑖=𝑙

𝑅𝑖 = 0.1 + 0.2 = 0.3

Doing a similar exercise, but requiring the risk to remain constant for both areas and equal the lower risk
of the left side, it is found that the allowable failure probability ℙ[Flooding] for both sections now equals:

ℙ[Flooding𝑙] = 0.1
125

=
1

1, 250
and ℙ[Flooding𝑟] = 0.1

250
=

1

2, 500

Hence, the required safety level has increased. As dikes are usually made symmetric, this means that
a safety standard of 1/2.500 will be required for both areas, reducing the total risk for the two areas to:

𝑅2 =
1

2, 500
· (125 + 250) = 0.15

Although fictional, this example illustrates the current state of affairs of legal safety in the Netherlands.
Due to the introduction of the new safety standards, a lot of dikes changed from being considered ”safe”
before 2017 to being considered ”unsafe” afterwards.
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2.4.3. Safety standards
The current safety standards are derived from the new standard that was introduced in 2017. As it is
fairly young, not all new safety standards have been met. The current safety standard is an acceptable
risk of dying due to flooding that has to be less than 1/100,000 or equivalently ℙ(𝐷𝑒𝑎𝑡ℎ |𝐹𝑙𝑜𝑜𝑑) = 10−5.

Primary Flood defences
The primary flood defences of the Netherlands offer protection against floods from the North sea, the
Waddensea as well as the large rivers (Rhine, Meuse) and a selection of estuaries, most of which are
in the province of Zeeland. The primary flood defences are maintained by both the water authorities
and Rijkswaterstaat as per the Waterwet.

Regional Flood defences
Regional flood defences protect the Netherlands against water from within, often from the many lakes,
smaller rivers and canals. Roughly speaking there are three types of regional flood defences: Those
that prevent against water from large rivers and seas but are not primary flood defences. Those that
prevent against flooding from water that comes from the smaller rivers, lakes or canals. And finally
those that only function once a primary flood defence fails. Those are normally in a ”dry” state. Wa-
ter authorities, regional sections of Rijkswaterstaat en the provinces each have a responsibility for the
maintenance of the regional flood defences.

Hoogwaterbeschermingsprogramma
To prevent flooding in the Netherlands, theHoogwaterbeschermingsprogramma (HWBP), roughly trans-
lating to ”Floodprotection programm”, will cary out reinforcements on flood defences between now and
2050. This includes around 1,500 kilometers of dikes and 500 slocks and pumping stations. This pro-
gramme is a joint effort by Rijkswaterstaat and the water authorities. Yearly, around €800 million is
invested in reinforcement, of which 50% comes from Rijkswaterstaat, 40% from the joint water author-
ities and the final 10% from the water authority in which the reinforcement takes place (Staf deltacom-
missaris, 2022).

2.5. The technical side of safety
Although the focus of this research is not on the technical aspects of water safety, it is important to
understand the technical principals of several common flood defences. The assumption is made that
the the technical feasibility is met for different hydraulic boundary conditions. However, the costs per
flood defence do depend on the hydraulic boundary conditions. A higher water level for example,
will lead to increased costs for dike reinforcement. This sections will introduce some common flood
defences, discuss their failure mechanisms and technical adaptations that can be made to prevent
these failure mechanisms. These technical adaptations will be quantified to the extent that is relevant
for this research.

2.5.1. Flood Defences
Per definition, flood defences are hydraulic structures with the primary objective of providing protection
against flooding along the coast, rivers, lakes and other areas where water and land (or other water bod-
ies) interact. There are several types of flood defences, some common ones are: Dike, dams, dunes,
storm surge barriers and water retaining structures like walls and hydraulic structures (Jonkman et al.,
2021). As the focus of this research is on inlets near the sea and rivers, dikes and storm surge barriers
will be looked at in more detail.

Storm surge barriers
These are structures that are partly move-able to allow for the passage of ships and river discharge
under normal circumstances. During periods of high water, these structures can close the waterway
off to protect the hinterland against flooding. Famous examples in the Netherlands are the Eastern
Scheldt storm surge barrier and the Maeslantkering.

Dike
A dike is a flood defence that is (supposed to be) immovable. They protect the hinterland against water
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by simply having a higher crest elevation than the waterlevel can reach during periods of high water
such as storms or high discharge in rivers. The main focus of this research will be on dikes, as they
are the most prevalent form of flood defences in the Netherlands.

Note that next to their water retaining function, flood defences often have a secondary function like
recreational, agricultural or transportation. Although secondary, these functions often (partly) determine
of the safety requirements.

2.5.2. Failure mechanisms
When designing flood defences, the designing and constructing party has to show that the structure
is sufficiently safe. This is done by assessing the possible failure mechanism and making sure the
strength of the design exceeds the load provided by the boundary conditions, which is generally done
by adhering to the so-called NEN-normen. Often a limit state function 𝑍 is defined for the safety, which
is the difference between the resistance (strength) 𝑅 and the load 𝑆. The criteria that is often set is
that:

𝑍 = 𝑅 − 𝑆 > 0

Where the probability of failure for a certain failure mechanisms can be expressed as:

𝑃 𝑓 = ℙ(𝑍 < 0)
Where the probability of failure must meet a certain requirement, often based on set regulations and/or
expected damages. The assessment of the failure probability can be done on several different stochas-
tic levels, ranging from completely deterministic to completely stochastic. A short overview, based on
Jonkman et al., 2017, will be provided below.

Level 0 - Deterministic approach
The level 0 method is a deterministic approach to design. There is no variation in the load and resis-
tance parameters and hence the concept of failure probability can not be applied here. This method is
hardly ever used in designing (hydraulic) constructions and will not be discussed further.

Level I - Semi-probabilistic approach
The level I method is a semi-probabilistic approach to design. The parameters that are uncertain are
modelled by the so-called characteristic values for both the load and resistance. This is done by choos-
ing a low-percentile (often 5%) in the case of the strength parameter, and a high-percentile (often 95%)
in the case of load parameters.

Level II - Approximation of full-probabilistic approach
The level II method is an approximation of a full probabilistic approach to design. In this method the
mean of the variables (both resistance and load) and their covariance matrices are taken into account
to determine 𝑃 𝑓 via the limit-state function. Note that the limit-state function in this case has the mean,
standard deviation and the covariance matrix included. By equating the limit-state function to zero, a
reliability index 𝛽 can be derived, which is equal to the shortest distance from the origin to the surface
that is described by equating the limit-state function to zero. In case of non-linear limit state functions,
the equations first have to be linearized. The reliability index 𝛽 can be transformed to a failure proba-
bility by means of the standard normal distribution. Note that this approach often requires iterating.

Level III - Full probabilistic approach
The level III method is a full probabilistic approach. The biggest difference with the previously men-
tioned method is that the formulation for 𝑃 𝑓 is exact. If possible with analytical formulations, although
this is strongly limited by the number of variables. More often numerical integration or Monte Carlo
simulations are used.

Level IV - Risk-based approach
The level IV method is a probabilistic approach where the consequences (the costs) are also taken into
account. Here, the risk is used as a measure of the reliability. Different designs can then be compared



2.5. The technical side of safety 14

on an economic basis, by taking the uncertainty, costs and benefits into account.

For standard engineering practices, the level I method is most often used (Jonkman et al., 2021). Spe-
cific failure mechanisms for dikes and storm surge barriers will be discussed further.

Storm surge barriers
There are three large risks associated with Storm surge barriers: Failure to close, structural failure
and failure to defend against flood. The first one regards a malfunction either the operating system of
the structure, or the structural elements (the physical closing) of the barrier. The second is related to
the loads on the structure. Once these loads exceed the strength of the structure, failure might occur.
The final one occurs when the structure was not designed for the water levels it is supposed to defend
against. This last one might become the case if sea level rise or discharge variability increases more
than anticipated when the structures were designed and constructed.

Dikes
For dikes, there is a large plethora of failure mechanism. A selection of the most important failure
mechanisms is displayed in figure 2.5.

Figure 2.5: List of the most important failure mechanisms (TAW, 1999)

In this section the focus will be on the three main failure mechanism: Overtopping, macro-stability and
internal erosion.

Overtopping
Overtopping occurs when a wave that approaches the outer slope of a dike will run up the slope and
reach over the crest. This happens when the design level of the crest is below the highest point of the
waves. The waves will top over the crest and a flow of water will flow over the inner slope of the dike.
The failure mechanisms that is associated with overtopping is the stability of the inner slope. The rea-
son behind this is that the inner slope is eroded, which can lead to progressive damage and potential
collapse (Jonkman et al., 2021). The required height and slope for different wave conditions can be
determined via the EuroTop manual (van der Meer et al., 2016).

Macro-stability
Macro-stability can be divided into two main topics: Stability of the outer slope and stability of the inner
slope. The first being less common than the second one. Often, slope instabilities will be triggered
by hydrological events, such as high water of a sea or river, which cause the pore water pressure to
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increase. This increase in pore water pressure decreases the effective strength. With a decrease in
effective strength comes the risk that a structure will fail, as the soil is unable to bear the loads. In-
terestingly, failure of the inner slope occurs when the water on the outer slope is high for a prolonged
period of time. This increases water infiltration and lowers the effective stress. However, if the water
level suddenly drops, called a sudden drawdown but the soil is saturated, the pressures exerted by the
outward slope might be to high for the soil to bear. This is because the river or sea provides a force
against the dike, which it keeps in balance with pressures in the soil, once the force is removed the
dike exerts this force on thin air and might, as a result, fail.

Internal erosion
Internal erosion is not a single mechanisms but consist of three sub-mechanisms that all need to hap-
pen for internal erosion to occur. These sub-mechanisms are uplift, heave and piping. Uplift occurs
when the pore pressures in the aquifer underneath the dike increase due to the large differential in
hydraulic head between the inner and outer side of the dike. The exact specifications can be calcu-
lated via TAW, 1999. When the upward pressure and the inner side exceeds the weight of a top layer,
this layer can be moved upward and rupture. This rupture allows water to seep through. When the
pressure exceeds a certain critical gradient not only water is transported, but sand as well. During this
stage, sand boils may form. When sand is transported a ”pipe” can form under the dike. This pipe will
grow in length and diameter until the structural integrity of the dike is compromised and it collapses.
The exact criteria were derived by Sellmeijer, 1988. As noted before, for structural failure to occur, all
three sub-mechanism have to occur.

This section is concluded with the remark that most of the failure mechanisms described above can be
solved by increasing the crest height and width of a dike section. This not only makes the dike higher,
giving it more resistance against overtopping, it also makes the dike more stable and increases the
piping length. The next section will demonstrate this principle.

2.5.3. Adaptation
When boundary conditions such as river discharges or sea levels change, there is a need for adapt-
ing existing flood defences to meet the safety requirements. In this section a relationship between an
increase in the water level and the costs for adaptation will be made. Again, the distinction between
dikes and storm surge barriers is made.

Storm surge barrier
Storm surge barriers have a large variability in appearance and structural design, so drawing a single
conclusion is rather difficult. One thing that they do often have in common is the inability to adept to
changing boundary conditions. If the water level rises above the structure, there is no ”quick fix” to
increase the height of the structure, as often is possible with dikes. However, it should be noted that
these structures are often designed with a long lifetime in mind. Next to the long lifetime they are often
also prepared for worst case scenarios, making them likely to withstand even the worst climate predic-
tions.

Dike
In principal, dikes have three failure mechanisms as described in a previous section, all three of which
would in principal require a different adaptation. However, there is an argument to make for only taking
the water level rise into account. When a dike has to be redesigned for higher water levels, the crest
height has to be increased. Assuming that the slope has to be maintained, the dike has to be scaled
proportionally to the height increase. If we assume a constant berm width and crest width, it is possible
to derive simple expressions for the increase in width and area. This principle is illustrated in figure 2.6.
Note that the factor 𝑛 is equal to the fraction of the increase in height Δℎ over the original height ℎ. This
allows to derive some expressions for the difference in width Δ𝑤 = 𝑤ℎ𝑒𝑖𝑔ℎ𝑡𝑒𝑛𝑒𝑑 − 𝑤𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 and in area
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Figure 2.6: A common dike scaled by a factor 𝑛

Δ𝐴.

Δℎ = (𝑛 − 1)ℎ ∼ 𝑛

Δ𝑤 = (𝑛 − 1)ℎ(2𝑦 + 𝑥) ∼ 𝑛

ΔA = (𝑛2 − 1)(𝑦ℎ2 + 1

2
𝑥ℎ) + (𝑛 − 1)(𝐵ℎ + 1

2
𝑑ℎ) ∼ 𝑛2 + 𝑛

(2.1)

As can be seen in equation 2.1, the width and height are scaled by the same factor 𝑛, while the area
increases approximately with 𝑛2. These results are in line with the derivations made by Jonkman et
al. (2013). It should quickly become apparent that this means that with increasing water heights, the
reinforcement costs will increase with a power that is larger than that of the water height. Note that for
relatively small increases in crest height, a linear assumption is justified. However, as the crest height
increase relative to the initial dike of the height starts approaching larger figures, the exact calculations
have to be made.

2.6. Economics
This section will discuss some basic economic concepts, and puts these concepts into the context of
this research. It is split up into a section on costs and benefits and how to properly count them and a
section on utility theory. The (social) science of economics is concerned with the study on the division
of scarce goods that have alternatives use among a group of individuals with limited resources. The
premise of economic analysis is that individuals strive to maximize their own utility. From this premise,
a lot of deductions can be made.

2.6.1. Costs and Benefits
To properly assess a polder, all costs that it incurs should be tallied up, and compared to the sum of
all benefits it provides. This section takes a closer look at the definition of the costs and benefits in
economics. After defining the concepts, some Finally, a special case of costs will be discussed, that
of opportunity costs. These are often overlooked costs that are crucial for the economic and financial
comparison of two alternatives.

Benefits
The Oxford dictionary defines Economic Benefits as: ”Benefits that can be expressed in financial terms
as the result of an improvement in facilities provided by a government, local authority, etc.”. As an ex-
ample the construction of a road is given, which brings on a plethora of benefits for road users. Lower
vehicle operating costs, time saving due to the improvement and lower accidents costs as a result of
the reduction in accidents.

A list containing the benefits of a polder could be drawn up in a similar fashion, however one would
quickly run into a few challenges. Some of the benefits are easily quantified, added space for industry
or housing for example. However, other benefits are more intangible and are not so easily quantified,
an improved business climate due to perceived safety for example.
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Costs
In a similar fashion as the benefits, the list of costs also contains a division based on the quantification
of the costs. When drawing up a list of total costs, only the so-called Prospective costs andOpportunity
costs should be included.

Prospective costs
Prospective costs are costs that are incurred when action is taken, and are therefore within control of
the decider, they are often seen as the opposite of Sunk costs.

Opportunity costs
An often overlooked aspect of the total costs is the opportunity costs, as they are per definition not
observed. This is also what differentiates economic costs from accounting costs. In simple terms, Op-
portunity costs are the .This concept is closely linked to the that of the Time value of money, which is
discussed in section 2.7.

Sunk costs
A sunk cost is a cost that has already been incurred and can’t be recovered. In classical economics,
these costs should not be taken into account whenmaking a decision, only the prospective costs should
have be considered whenmaking a decision. Often, in personal decision but also business , these costs
are mistakenly taken into

To make an informed decision, all of costs should be weighed against all of the benefits. When deciding
whether to ”abandon” a polder, the Dutch government has to weigh both the the quantifiable as well as
the intangible costs and benefits.

2.6.2. Theory of utility
Utility refers to the measurement of the effectiveness of an applied good or service, which is a way
in economics to indirectly measure unobserved variables such as satisfaction, happiness or feeling.
Utility is a useful concept as it places the added benefit, often described in a monetary amount, into
perspective. As an illustration two individuals are compared, which both get a raise of €10 per day.
Without thinking of the context via utility, it appears that both individuals would improve their financial
situation by an equal amount, after all they are now both €10 per day richer. However, this train of
thought does not take their initial wealth into account. Individual one might already make €10.000 per
day, making the raise only a 0.1% increase in his or her earnings. On the contrary, individual two might
make €10 per day, making the raise a 100% increase in earnings. Obviously, a way to differentiate
between these situations is needed. This is where the theory of utility enters the picture, it places the
added benefit into context.

There are two main utility theories, that of Cardinal Utility and that of Ordinal Utility. Although they are
in many points alike, the main difference is in the quantification of utility. Cardinal Utility assumes that
agents (individuals or institutions) can quantify their utility (often done in so-called ”Utils” as the unit of
choice) and rank them accordingly. Meaning that it is possible to state by how much an agent prefers
a combinations of goods and/or services above another combination. Ordinal Utility theory assumes
that agents are able to rank their preference, but not quantify them. Hence, in Ordinal Utility theory it
is not possible to state how much a combination of goods and/or services is preferred above another
combinations, only that it is preferred.

For the purpose of this research, the Ordinal Utility theory is assumed valid. The reason behind this is
that this research is only concerned with ordinal preferences of combinations of goods and/or services,
not their actual value. To apply the Ordinal Utility theory, four assumptions have to be satisfied. These
are:

1. Rationality of the consumer: Given the budget constraint of a rational individual or institution,
they will always strive to maximize utility.

2. Ordinal Utility: Agents can only tell their ordinal preference for goods and services.
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3. Transitivity: If there are three goods A,B and C, and the choice of the individual or institution is
A ≻ B and B ≻ C, then it follows that A ≻ C.

4. Consistency: If A ≻ B, then there should not exist a logical reasoning that leads to B ≻ A.

Note that for a utility function 𝑈(𝑥), the same properties hold, e.g. if 𝐴 ≻ 𝐵, then 𝑈(𝐴) ≻ 𝑈(𝐵).

An important concept that can be derived from the Theory of Utility is the concept of Risk Aversion.
These three preferences can be graphically shown by means of the Utility function.

Figure 2.7: Risk approaches in Utility functions

As can be seen in figure 2.7, risk-aversion has a concave utility function whereas risk-seeking behaviour
displays a convex utility function. When a person or institution is risk-neutral, this is displayed by a
straight line, neither concave nor convex.

2.7. Financing water safety
Although economics and finance are closely linked, they are not the same. Where economics is con-
cerned with the distribution and optimization of scarce resources, finance is concerned with the optimal
use of funds with the idea of wealth maximization in mind. This section will dive deeper into the financial
side of water safety. To this end, the current structure of a Cost-Benefit analysis in the Netherlands
will be discussed and some weak points will be pointed out. After this discussion, the concept of Time
value of money will be introduced. Certain aspects of the concept will be closer examined and three
possible ways of determining a variable discount rate will be introduced.

2.7.1. Current structure
The discount rate is used in the Netherlands to discount the expected costs and benefits of a public or
governmental investment project back to the present (Ministerie van Financien, 2020). It can be seen
as the minimum required return on investment for a project or policy, required by the Dutch state. If the
expected return is higher than the discount rate, the social prosperity rises, if the it lower, than it falls.
A higher discount rate gives a lower weight to the costs and benefits in the future. Per 2020, the stan-
dard discount rate used in the Netherlands is set at 2.25%. This figure consist of -1% for the risk-free
discount rate and of 3.25% for the risk premium. The rates were determined via three sources: The re-
quired return by households, companies and insights from the so-called Ramsey-rule. These rates are
revised every five years and the discount rate for short- and long-term investments are assumed similar.

There are several things that raise concerns when considering discounting a process. The first is the
stringent approach by Ministerie van Financien (2020) to quantify the discount rate as a single determin-
istic rate, where the interest rate (a close substitute for the discount rate) is naturally a highly variable
rate. Setting an interest rate at a certain set percentage neglects all the inherent variability of the econ-
omy. The second point of concern is setting the rate for five years at a time. One does not have to look
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far to see that the years 2017 - 2022 have known inflation rates with monthly lows of 0.3% and highs
of 12%. Setting the rate for five years at a time would completely misjudge the economic viability of a
project in 2022 based on the rates determined in 2017.

For these reasons, this research argues in favour of changing the discount rate from a set rate to a
variable rate to incorporate the natural fluctuations of the economy. This better reflects the true cost of
a project in turbulent economic times.

2.7.2. Time value of money
To properly asses an investment, it should be noted that the value of an asset at a particular point in time
𝐶𝑡 is different from the value of that same asset at a different point in time 𝐶𝑡+𝑛 , where 𝑛 can attain both
positive and negative values indicating a past or future value, respectively. To compare investments in
different assets their future values should be compared to one another on a set point in time. A widely
used metric to accomplish this goal is the Net Present Value of an asset, which discounts the future
cash flows of the asset to the present value by taking the risk-free rate as the minimum base return,
yielding the Present Value of all future cash flows. The principal investment is subtracted to achieve
the Net Present value, as can be seen in equation 2.2.

𝑁𝑃𝑉 =
𝑇∑
𝑡=1

𝐶𝑡
(1 + 𝑟)𝑡 − 𝐶0 (2.2)

In which:
𝐶𝑡 = The value of an asset at time 𝑡
𝑟 = The discount (or interest) rate
𝐶0 = The principal investment at 𝑡 = 0

The interest (or discount) rate 𝑟𝑡 is an often misunderstood concept. This rate should be viewed as
a rate of return on an investment that can always be achieved, without taking ”any” risk. No asset is
completely risk-free, but governmental bonds (of selected countries) are often used as a proxy for the
risk-free rate. To invest money in assets or projects, one takes on risk. The expected pay-out has to
scale with the risk in order for an investor to justify their investment. After all, why would one take the
risk of investing in a project that has a potential pay-out of 3% of the principal, but also has a 30%
chance of failure when the risk-free rate offered by governmental bonds is also 3%. This would only
constitute additional risk for no additional pay-out, something that rational humans would not consider
as a viable option. Therefore, to compare investments a benchmark was established, the risk free rate.
This report looks into three possibilities for determining the risk-free rate:

• Constant rate over the time, hence 𝑟 = 𝑟𝑡
• A variable interest rate determined by an autoregressive type of model.
• A variable interest ratemodelled as a randomwalk with a potential drift. Also known as a Brownian
motion.

In traditional investment for projects a constant rate is often assumed, even when the investment period
spans many decades. As will be demonstrated in this report, the assumption of a constant rate is a
naive one. Therefore two additional methods, with variable interest rates, are researched.

2.7.3. Constant rate (with noise)
The assumption of a constant interest rate appears to be the easiest of the three cases, and in a mod-
elling sense it indeed is, choosing the exact number for the interest rate is difficult. When noting that
the lifetime of the considered structures often ranges from 50 to 100 years, setting an interest rate at
one particular number seems almost foolish to do. To get an idea of the variability that risk-free rates
exhibit, properties of the US 10-year treasury bonds are briefly discussed. To model the discount rate,
one could think about taking the current rate, taken at the 25th of July 2022, which has a value of
around 2.8%. This would, however be a multiple of well over 4 over the risk-free rate on this same
asset a mere two years ago.
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Although the last few years have seen high volatility due to the global pandemic, this phenomenon is
not limited to only the last years. When looking at figure 2.8, it can be seen that the interest rates have
varied from a recent low of around 0% to high of 15%+ in the 1980’s.

Figure 2.8: 10-year US treasury bonds

To conclude this section: Taking a single risk-free rate as the true value when financing a project
neglects a lot of the inherent variability of this rate. Nonetheless, this is what the Dutch government
recommends for large infrastructure project, often setting the rate at ±2%. To extend this model a bit,
some noise can be added as to simulate the random movements that the interest rate takes quarter to
quarter. Often, this is done by modelling the rate as a Gaussian process, such that 𝑟𝑡 ∼ 𝒩(𝜇, 𝜎2)

2.7.4. Time series model
For statistical analysis of time series in economics and finance, often a autoregressive-moving-average
(ARMA) models are used. As the name suggests, these models consist of two main parts: one term for
the autoregression (AR) and another term for the moving average (MA). The AR part models the linear
dependence of the variable with it’s own past value(s). The MA part models the linear dependence
of the variable with past value(s) of the stochastic errors that are inherent in time series. A standard
formulation of the model can be seen in equation 2.3, containing 𝑝 AR terms and 𝑞 MA terms.

𝑋𝑡 = 𝜇 + 𝜀𝑡 +
𝑝∑
𝑖=1

𝜑𝑖𝑋𝑡−𝑖 +
𝑞∑
𝑖=1

𝜃𝑖𝜀𝑡−𝑖 (2.3)

In which:
𝜇 = The deterministic trend of the time series
𝜀𝑡 = The white noise error terms at time 𝑡
𝜑𝑖 = The i-th parameter coefficient of the AR part
𝜃𝑖 = The i-th parameter coefficient of the MA part
𝑋𝑡−𝑖 = The previous value of the variable of interest
𝜀𝑡−𝑖 = The previous values of the white noise error terms

The use of an ARMA(p,q) model, as opposed to just an AR(p) or MA(q) model, is the most appropriate
in this situation for two reasons. First off, as the development of interest rates in the Netherlands, or
any country for that matter, often depends on the interest rate from a previous period. This is reflected
in the AR part of the model. The MA section is justified as it is used to characterise ”shock” information
to a series. The financial health of a country is judged not solely on its finances, but also by events
that might impact it. Think of wars, trade relations that turn sour or change of political course. These
events are hard to model, as they are per definition unforeseen. To add an element of randomness to
the model, the MA section is added.
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Two examples of a the development of a 50 and 100 year risk free interest rate are shown in figure
2.9a and 2.9b. In this case an ARMA(2,1) model was used with parameters:
𝜇 = 1
𝜑1 = 0.3
𝜑2 = -0.05
𝜃1 = 0.22

(a) Prediction for 50 years (b) Prediction for 100 years

Figure 2.9: Prediction of the risk free interest rate 𝑟𝑡 over two different periods, based on an ARMA(p,q) model

2.7.5. Interest rate as a random walk
Brownian motions, also known as random walks, find their origins in the description of the motion
of small particles. It describes random motion in a three-dimensional plane with equal probability of
moving one step in either of the three axis (up-down, left-right, forward-backward). In the case of a one-
dimensional Brownian motion, it can be modelled as the scaled limit of a random walk. If we denote
𝑅 to be a Rademacher variable, meaning it has a discrete probability distribution with the following
probability mass function:

𝑓 (𝑥) =


1
2 if 𝑥 = −1
1
2 if 𝑥 = 1

0 otherwise

and take the sum of 𝑛 i.i.d. Rademacher variables, and divide by the square root of 𝑛, we obtain the
following scaled continuous time process.

𝑊𝑛(𝑡) = 1√
𝑛

[𝑛𝑡]∑
𝑖=1

𝑅𝑖 𝑡 ∈ [0, 1]

Taking the limit as 𝑛 −→ ∞, yields the so-called one-dimensional Wiener process 𝑊𝑡 . The Wiener
process follows a normal distribution with mean 0 and variance 𝑡, such that at 𝑡 = 𝑠:

𝑓𝑊𝑠 (𝑥) = 1√
2𝜋𝑠

𝑒−
𝑥2
2𝑠 𝔼[𝑊(𝑠)] = 0 𝕍[𝑊(𝑠)] = 𝑠

This process is defined by four properties.

1. 𝑊(0) = 0

2. 𝑊(𝑡) is continuous in 𝑡.
3. 𝑊(𝑡) has independent increments.
4. (𝑡) has Gaussian increments. Meaning𝑊(𝑡) −𝑊(𝑠) ∼ 𝒩(0, 𝑡 − 𝑠) for 0 ≤ 𝑠 ≤ 𝑡

The Wiener process is used in a variety of financial models, albeit with modifications. For the value
of bonds and stocks, which can not be negative, a Geometric Brownian motion is often used. For the
modelling of interest rates, which can be negative but often exhibit a certain trend, the so-called Wiener
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process with drift is used. This stochastic process, 𝑋(𝑡) incorporates a trend with the stochastic nature
of the Brownian motion. Defining the drift as 𝜇 and the variance of process as 𝜎2, the process can be
written as per equation 2.4.

𝑋(𝑡) = 𝜇𝑡 + 𝜎𝑊(𝑡) (2.4)

Determining the parameters 𝜇 and 𝜎 can be done in a variety of ways. An example for a ”regular”
Wiener process is given in figure 2.10a. An example of a Wiener process with drift (𝜇 = −0.05 &
𝜎 = 0.9) is given in figure 2.10b. Note that in both cases the starting value was 2.8.

(a) Brownian motion (b) Brownian motion with drift

Figure 2.10: Brownian motion with and without drift with a starting value of 2.8

Often, the Brownian motion is used for Monte Carlo simulation to determine the probability of ex-
ceedance of a certain boundary by the Brownian motion.Doob, 1949 showed that there exists a closed-
form expression for the exceedance probability of constant boundary crossing for a Brownian motion
with negative drift for some 𝑡 ≤ 0.

ℙ(𝑠𝑢𝑝𝑡≥0 𝑋(𝑡) > 𝑦) = ℙ(𝑋(𝑡∗) > 𝑦 for some 𝑡∗ > 0)
= ℙ(𝑊(𝑡∗) + 𝜇𝑡∗ > 𝑦 for some 𝑡∗ > 0)
= ℙ(𝑊(𝑡∗) > 𝑦(1 − (𝜇/𝑦)𝑡∗) for some 𝑡∗ > 0)
= ℙ( 𝑊(𝑡∗)

1 − (𝜇/𝑦)𝑡∗ > 𝑦 for some 𝑡∗ > 0)

= ℙ(𝑠𝑢𝑝𝑡≥0 𝑊(𝑡)
1 − (𝜇/𝑦)𝑡 > 𝑦) = 𝑒2𝜇𝑦

Which finally yields equation 2.5
ℙ(𝑠𝑢𝑝𝑡≥0 𝑋(𝑡) > 𝑦) = 𝑒2𝜇𝑦 (2.5)

This relatively simple expression allows for the calculation of an exceedance probability of the interest
rate during the time period of interest. Conversely, it is possible to calculate the probability of non-
exceedance by use of the complement rule.

ℙ(𝑠𝑢𝑝𝑡≥0 𝑋(𝑡) < 𝑦) = 1 − ℙ(𝑠𝑢𝑝𝑡≥0 𝑋(𝑡) > 𝑦) = 1 − 𝑒2𝜇𝑦
This is a useful result when determining the maximum allowable interest rate for financial feasibility of
a polder system, and it’s corresponding probability.



3
Methodology

This chapter contains the methodology of the research and consists of three main sections with several
subsections. The chapter starts with the CBA analysis which will include temporal elements, after which
it continues to the proposed added constraints. The final section will combine all insights to propose a
model for the analysis.

The first section comprises the Cost-Benefit Analysis (CBA) used in this research. Section 3.1 starts
with the general definition of a CBA and moves into the costs that are taken into account in this re-
search. Next,considering which costs have to be considered in this research, the subsection also
quantifies these costs by putting them in a mathematical framework. After the costs, the same is done
for the benefits. With both these quantities expressed, the section moves on to the inclusion of tem-
poral elements. This means that the costs and benefits are adjusted to reflect their growth or decline
over time, as derived by Eijgenraam (2006). Furthermore, expressions for the optimal and maximal
reinforcement times will be (re)-derived. This leads to a framework for the number of reinforcements
needed. The section will continue with the inclusion of the discounting principle on both the costs and
benefits. Combining these derivations and frameworks leads to an optimization algorithm that will be
presented at the end of the section, further referenced as the adjusted CBA.

Section 3.2 comprises the additional constraints proposed to the adjusted CBA analysis. Four con-
straints are derived and mathematically formulated. After the mathematical formulation, a small numer-
ical example is given. This numerical example will be used in the next section to determine which of
the four constraints will be further developed and incorporated in the adjusted CBA.

The final section, section 3.3, is concerned with the description of the proposed model for the case
studies and analysis. It starts with choosing one of the four constraints based on several criteria. After
a constraint is chosen, three models for the discount rate will be presented. The final part of this section
consists of the description of the full mathematical framework by which the economical viability will be
judged. It combines the insights of the adjusted CBA with the added constraints.

23
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3.1. Cost-Benefit Analysis
A Cost-Benefit Analysis, often abbreviated as CBA, is a systematic process that can be used by individ-
uals, businesses or governmental agencies to analyze which decisions to make and which decisions
to forgo. As the name suggests, it consist of two quantities, the costs and the benefits, that are ana-
lyzed by some criteria. Often this criteria consists of the (discounted) benefits needing to exceed the
(discounted) costs. In the field of Hydraulic Engineering a CBA is often used to evaluate the econom-
ically most optimal solution for a flood defence to protect an area. Whichever proposed defence has
the largest positive value is often chosen. The costs and benefits that are taken into account when
performing a CBA can consist of material as well as immaterial costs. One can think of the physical
costs of strengthening a flood defence as well as adverse effects of a proposed flood defence on the
ecosystem or even go as abstract as the utility individuals take i when tallying up the costs. Similarly,
the benefits can consist of material as well as immaterial benefits. For this research the costs and ben-
efits are limited to the material costs and benefits as they are more easily quantifiable and are (often)
the majority share of the total costs and benefits.

3.1.1. Costs
For the purpose of this research two types of costs are included: The incurred costs as the flood risk
increases or decreases and the costs of physically strengthening the flood defences. Each of these
two types of costs will be explained in detail and a mathematical model will be provided.

Incurred costs as a result of flood risk
For the purpose of this research there are two types of costs associated with the flood risk, that of the
expected costs incurred for individuals and for assets. In general the risk, which is the expected costs
that are incurred as a result of an event, can be expressed as the product of the probability of loss of
value (ℙ) and the value of the object or person (𝑉).

𝑅𝑖𝑠𝑘 = ℙ ·𝑉
Expanding this expression to include the difference in the value of lives and that of assets, but keeping
the probability of loss of value the same for both quantities, yields that the expected costs as a result
of flood risk can be expressed as:

𝐶𝑟𝑖𝑠𝑘 = ℙ · (𝑉𝑎𝑠𝑠𝑒𝑡 +𝑉𝑙𝑖𝑣𝑒)
Where:
ℙ: The probability of a flood occurring
𝑉𝑎𝑠𝑠𝑒𝑡 : The value of assets lost as a result of a flood
𝑉𝑙𝑖𝑣𝑒 : The value of lives lost as a result of a flood

The value of anything is per definition a subjective matter, especially when talking about something as
precarious as a human life or a personal home. Luckily, generally accepted numbers do exist for both
these quantities. The value of a human life for hydraulic engineering purposes is generally accepted to
be €6.7 mln. (Slootjes & Wagenaar, 2016). The loss of asset value in this research is limited to the loss
of housing. To this extent, the median house value in an area is assumed to be the value of the assets.
Extension can be made by including the monetary value of infrastructure and the value of assets can
be adjusted to include different types of buildings such as office space for companies.

To relate the probability of a flood occurring to the crest height and increase in crest height Δℎ, an
exponential model is proposed.

ℙ = 𝑒𝛼(𝐻𝑐𝑟𝑒𝑠𝑡−𝐻𝐻𝑊𝐿+Δℎ) = 𝑒𝛼·(𝐻+Δℎ) (3.1)

Where:
𝛼: A coefficient relating freeboard height to failure probability
𝐻𝑐𝑟𝑒𝑠𝑡 : The crest height of a dike
𝐻𝐻𝑊𝐿: The high water level
𝐻: The freeboard height, defined as 𝐻𝑐𝑟𝑒𝑠𝑡 − 𝐻𝑆𝑊𝐿.
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The reason for choosing an exponential model is two-fold. The first reason is that it captures the physi-
cal reality rather well, yielding exponential smaller failure probabilities for increasing crest heights. The
second reason is that the natural exponential function has some attractive mathematical properties
when making derivations.

Combining all derived expressions yields equation 3.2 for the expected costs as a result of flood risk.

𝐶𝑟𝑖𝑠𝑘 = 𝑒𝛼·(𝐻+Δℎ) · (𝑉𝑎𝑠𝑠𝑒𝑡 +𝑉𝑙𝑖𝑣𝑒) (3.2)

Note that it is possible to differentiate between the risk of loss of live and assets by including a so-called
evacuation factor, which captures the ability of people to escape floods by going to higher grounds or
leaving the area, whereas assets are unable to. To keep calculations simple in this research, this factor
is assumed to be equal to zero.

Incurred costs due to physical strengthening of flood defence
The costs that are incurred when physically strengthening a dike are dependent on a number of param-
eters. These parameters include the geometry of the dike, the proposed increase in crest height, the
length of the reinforcement and the unit cost per increase of meter crest height. Their relationship is
summarized in equation 3.3.

𝐶𝑑𝑖𝑘𝑒 = 𝐿𝑑𝑖𝑘𝑒 · 𝐾𝑑𝑖𝑘𝑒 · Δℎ (3.3)

Where:
𝐿𝑑𝑖𝑘𝑒 : The length of the dike section that required reinforcement [km]
𝐾𝑑𝑖𝑘𝑒 : The costs of increasing the crest height by one meter per kilometer dike [€m/km]
Δℎ: The increase in crest height [m]

Out of these parameters, the cost per kilometer dike when the crest height is increased by one meter
(𝐾𝑑𝑖𝑘𝑒 ) has the largest uncertainty. Jonkman et al. (2013) summarized the results of several research
papers on these costs. The estimates range from €4.5 mln. in rural areas to €22.4 mln. for urbanised
areas. Both these figures were for the Netherlands, between different countries there appears to be a
large variance in the costs as well.

Note that throughout this section a linear relationship was assumed between the costs of strengthening
a dike and the increase in crest height. For small Δℎ with respect to the initial crest level this relation-
ship holds well, however if the increase is relatively large, the geometry of the dike plays a roll as well.
In this case the generalized results from Jonkman et al. (2013) do not hold and the geometry of the
dike should be taken into account. This can be done by deriving a unit cost of the area of a dike and
combining this with the results derived in equation 2.1.



3.1. Cost-Benefit Analysis 26

Cost minimization
To provide the lowest cost, the minimum of the two above mentioned costs should be found. Note
that while they flood risk decreases for a larger crest height increase, the costs of strengthening a dike
increases for increasing crest height additions. This effect is shown in figure 3.1, which displays the
minimization of the combination of flood risk and the costs of strengthening a dike.

Figure 3.1: Typical Cost minimization for a set 𝑡

It becomes apparent that the point of lowest costs lies slightly to the right of the crossing of the two cost
lines. To be more specific, it lies at the exact point where the slope of the two lines is equal, but with
opposite signs. This can be mathematically explained as a minimization of the derivatives with respect
to Δℎ. For the chosen two costs this yields:

𝜕𝐶𝑡
𝜕(Δℎ) =

𝜕(𝑒𝛼·(𝐻+Δℎ) · (𝑉𝑎𝑠𝑠𝑒𝑡 +𝑉𝑙𝑖𝑣𝑒) + 𝐿𝑑𝑖𝑘𝑒 · 𝐾𝑑𝑖𝑘𝑒 · Δℎ
𝜕(Δℎ) = 0

Which has a solution when the numerator equals zero, corresponding to the derivative of the two cost
components equalling one another. This mathematical explanation gives an intuitive explanation for
the need of the slope of the two cost components needing to equal each other with opposite sign. The
physical strengthening is linear in Δℎ whereas the flood risk is (negative) exponential in Δℎ, explaining
the right shift of the minimization point.

The two costs considered have an analytical solution for Δℎ as there are few terms and the terms are
mathematically ”well-behaved”, meaning they have attractive properties. However, as one can imagine
that as the cost component is expanded with more terms, this minimization can becomemathematically
cumbersome. To generalize the minimization task, the general framework in equation 3.4 is proposed.

min
∀Δℎ

𝐶𝑡 (3.4)

Equation 3.4 displays the minimization process of the total costs for all possible crest height increases
Δℎ. The equation can be expanded by taken the previously derived costs and plugging them into the
equation, the result of which becomes:

min
∀Δℎ

𝑒𝛼·(𝐻+Δℎ) · (𝑉𝑎𝑠𝑠𝑒𝑡 +𝑉𝑙𝑖𝑣𝑒) + 𝐿𝑑𝑖𝑘𝑒 · 𝐾𝑑𝑖𝑘𝑒 · Δℎ

Which has the elegant solution where the partial derivative of this expression with respect to Δℎ was
set equal to zero.
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3.1.2. Benefits
The benefits considered in this research consist of the change in flood risk with respect to the unaltered
situation. Unaltered in this context means the flood risk without any intervention, such as the increase
of crest height level for a dike, after a period 𝑇. This unaltered situation can then be compared to the
altered situation, one in which an intervention has taken place, to calculate the expected benefits from
the intervention.

To illustrate this principle, imagine a dike that currently has a flood risk of 105, and a probability of
flooding of ℙ(𝐹𝑙𝑜𝑜𝑑𝑖𝑛𝑔) = 10−4. If growth rates of assets and population are momentarily put aside
and the growth in polder risk is only affected by sea level rise, the gradual increase in flooding probability
is the only factor contributing to the increased risk. If after a period 𝑇 a reinforcement is made to the
dikes surrounding the polder, such that the probability of flooding becomes ℙ(𝐹𝑙𝑜𝑜𝑑𝑖𝑛𝑔) = 10−5
The results of the small example are illustrated in figure 3.2.

Figure 3.2: Comparison of total costs with and without reinforcement

The benefits in this case would be the difference in cost per year for all the years that there is a difference.
Hence the difference between the two integrals of the costs (or summation for discrete time) over the
time should be taken. This is marked by the shaded area in figure 3.2. In mathematical notation this
means that:

𝐵 =
∫ 𝑇

0

𝐶no reinforcement(𝑡)𝑑𝑡 −
∫ 𝑇

0

𝐶reinforcement(𝑡)𝑑𝑡
Or in the case of discrete time:

𝐵 =
𝑇∑
𝑡𝑖=0

𝐶no reinforcement · 𝑡𝑖 −
𝑡∑
𝑖=0

𝐶reinforcement · 𝑡𝑖

=
𝑇∑
𝑡𝑖=0

(𝐶no reinforcement − 𝐶reinforcement) · 𝑡𝑖
(3.5)

To maximize the cost-benefit analysis, the costs subtracted from the benefits should be maximized.
Such that the minimization problem given in 3.4 becomes the maximization problem given in 3.6.

max
∀Δℎ

𝐵𝑡 − 𝐶𝑡 (3.6)
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In reality the growth in population and asset value also contributes to the increase in risk over time.
These factors will be included in the following section on the inclusion of temporal elements.

3.1.3. Inclusion of temporal elements
The derived expressions for the costs and benefits so far have been for stationary pints in time. Al-
though time was included in the benefits, the analysis was still only performed on a set point in time.
This section introduces the temporal domain into the analysis of costs and benefits. It will start with the
increase of risk over time due to an increase in flooding probability as a result of sea level rise as well
as an increase in damage due to the increase in value within an area. After this the increase in costs
for physically strengthening a dike will be mathematically formulated. Next, a framework for minimiz-
ing these costs over time will be presented. After this the net present value method for a periodically
changing discount rate will be discussed. Finally, a mathematical formulation for the benefits over time,
including increase in asset value and population growth, will be provided.

Increased risk over time
If the expected costs are to be kept constant and it is given that the value within an area (and thereby
the expected damage) increases, the failure probability must decrease. Hence a dike reinforcement is
needed as more people move into an area or the value of assets increases, regardless of any change in
hydraulic boundary conditions. This results in the need for periodic strengthening of a dike. Preferably
the dike would be strengthened nearly continuously, as people are continuously migrating to an area
and assets are increasing in value. In practice this is unfeasible, and investments are made periodic.
This principle is demonstrated in figure 3.3, first derived by Eijgenraam (2006).

Figure 3.3: Typical ”sawtooth” pattern for reinforcing dikes, as derived by Eijgenraam (2006)

To quantify the exact point of needed reinforcement, formulas are needed that capture the extent of
increasing value in an area over time, as well as the increasing sea level rise over time. Eijgenraam,
2006 has derived a multitude of these expressions, which will be generalized and presented below.

The expected cost as a result of flood risk contains two elements that are temporally dependent. The
first one is the increased probability of flooding, the second one is the increase is value. This can be
captured in the definition of risk as:

𝑅𝑖𝑠𝑘 = ℙ(𝑡) ·𝑉(𝑡)
Starting with the increase in flooding probability over time, the assumption is made that this is caused
solely by sea (or river) level rise. For sea (river) level rise over time, a general expression for the
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increase or decrease of flooding probability over time can be derived from the proposed exponential
model, given in equation 3.1. As the freeboard decreases when the sea (river) level rises, this term
(𝑆𝐿𝑅(𝑡)) can be added in the exponent to simulate the effect of an increase in flood probability. This
yields equation 3.7.

𝑃(𝑡) = 𝑒−𝛼(𝐻𝑐𝑟𝑒𝑠𝑡−𝐻0−𝑆𝐿𝑅(𝑡)) = 𝑒−𝛼(𝐻−𝑆𝐿𝑅(𝑡)) (3.7)

One could further expand this expression by noting that 𝑆𝐿𝑅(𝑡) can be expressed as:

𝑆𝐿𝑅(𝑡) = 𝛽 · 𝑡
Where 𝛽 is a coefficient indicating the sea level rise year over year. Further noting that at time 𝑡 = 0 the
sea level rise is equal to zero allows for rewriting equation 3.7 into a more general form with the failure
probability of the dike at time 𝑡 = 0, denoted as 𝑃0. This results in:

𝑃(𝑡) = 𝑒−𝛼·𝐻 · 𝑒𝛼·𝑆𝐿𝑅(𝑡) = 𝑃0 · 𝑒𝛼·𝛽·𝑡
If a dike reinforcement is introduced, were 𝐻 is increased with a quantity Δℎ, the equation can be
rewritten as:

𝑃(𝑡) = 𝑒−𝛼(𝐻+Δℎ) · 𝑒𝛼·𝑆𝐿𝑅(𝑡) = 𝑃0 · 𝑒𝛼(𝛽·𝑡−Δℎ) (3.8)

Equation 3.8 captures the increase or decrease in the probability of flooding over time for an increase
in crest height Δℎ.

The next element to quantify is the increase in expected damage as a function over time. For this end,
it is assumed that the increase in expected damage is solely a result of the population increase and
increase in asset value. This allows for an elegant formula to be derived, displayed in equation 3.9.

𝑉(𝑡) = 𝑉0,𝑎𝑠𝑠𝑒𝑡 · 𝑒 𝑡·𝜃 +𝑉0,𝑙𝑖 𝑓 𝑒 · 𝑒 𝑡·𝛾 (3.9)

Where:
𝜃: The growth rate for assets
𝛾: The growth rate for the population
𝑉0: The value of life and assets at time t = 0

If the population growth rate (𝜃) and asset growth (𝛾) are assumed equal, and set to 𝜃, the expression
can be simplified to:

𝑉(𝑡) = (𝑉0,𝑎𝑠𝑠𝑒𝑡 +𝑉0,𝑙𝑖 𝑓 𝑒) · 𝑒 𝑡·𝜃
Combining these simplified expression for the development of value over time with that of the develop-
ment of the flooding probability over time, yields equation 3.10.

𝐶𝑟𝑖𝑠𝑘(𝑡) = 𝔼(𝑡) = 𝑉(𝑡) · 𝑃(𝑡) = (𝑉0,𝑎𝑠𝑠𝑒𝑡 +𝑉0,𝑙𝑖 𝑓 𝑒) · 𝑃0 · 𝑒(𝑡(𝛼·𝛽+𝜃)−𝛼·Δℎ) (3.10)

Ideally, one would make sure that the risk remains nearly identical over time. In a perfect world this
would mean that each millimeter of sea level rise and each euro increase in value due to both asset
and population growth is compensated by a corresponding increase in crest height. In mathematical
terms this would mean that the expression in the exponent is equal to zero. It then quickly becomes
apparent that the verbal explanation of a matching safety increase matches the mathematical one, as
a constant risk would imply that 𝑡(𝛼 · 𝛽 + 𝜃) − 𝛼 · Δℎ = 0. Hence, Δℎ as a function of 𝑡 should be equal
to:

Δℎ(𝑡) = 𝑡(𝛼 · 𝛽 + 𝜃)
𝛼

However, this is often infeasible when faced with reality. In practice a periodic investment is more
common. This means that the dike is often designed safer than economically optimal and allowed to
slowly becomes ”less safe” over time until a reinforcement is needed again. The latest time 𝑡∗ at which
a reinforcement should be made can be found by equating the risk as a function 𝑡 to the risk that is
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demanded for that particular polder 𝐸demand. Equating these two quantities and solving for 𝑡∗, yields
the following expression:

𝑡∗ =
𝑙𝑛( 𝐸demand

(𝑉0,𝑎𝑠𝑠𝑒𝑡+𝑉0,𝑙𝑖 𝑓 𝑒 )·𝑃0
) + 𝛼 · Δℎ

𝛼 · 𝛽 + 𝜃
for 𝐸demand ≥ (𝑉0,𝑎𝑠𝑠𝑒𝑡 +𝑉0,𝑙𝑖 𝑓 𝑒) · 𝑃0 (3.11)

This equation captures both the increase in flooding probability as a result of sea (river) level rise over
time, as well as the increase in value (and thereby expected damages when a flood occurs) over time.

If the rates 𝜃 and 𝛾 are significantly different from one another, equation 3.10 changes to:

𝔼(𝑡) = 𝑉(𝑡) · 𝑃(𝑡) = 𝑃0 ·𝑉0,𝑎𝑠𝑠𝑒𝑡 · 𝑒(𝑡(𝛼·𝛽+𝜃)−𝛼·Δℎ) +𝑉0,𝑙𝑖 𝑓 𝑒 · 𝑃0 · 𝑒(𝑡(𝛼·𝛽+𝛾)−𝛼·Δℎ)
From which it quickly becomes apparent that closed form expression for Δℎ(𝑡) and 𝑡∗ are not possible.
However, as will be later demonstrated during the case study these will be solved by means of an
iterative solve approach.

Increased cost of reinforcement over time
Next to the costs that are incurred over time as a result of increased flood risk, the cost of dike rein-
forcement are also time dependent. To this end, the functions of the dike reinforcement costs and flood
risk should be related to time. For the costs of increasing the dike height, the assumption of a standard
exponential growth with rate 𝜂 is made, displayed in equation 3.12.

𝐶𝑑𝑖𝑘𝑒(𝑡) = 𝐿𝑑𝑖𝑘𝑒 · 𝐾𝑑𝑖𝑘𝑒 ,0 · Δℎ · 𝑒𝜂·𝑡 (3.12)

Where:
𝜂: Growth rate for costs of dike reinforcement
𝐾𝑑𝑖𝑘𝑒 ,0: Costs of dike reinforcement at 𝑡 = 0
𝐿𝑑𝑖𝑘𝑒 : Length of the dike

Such that the total costs incurred as a function of time become:

𝐶𝑡 = 𝐶𝑑𝑖𝑘𝑒(𝑡) + 𝐶𝑟𝑖𝑠𝑘(𝑡) = 𝐿𝑑𝑖𝑘𝑒 · 𝐾𝑑𝑖𝑘𝑒 ,0 · Δℎ · 𝑒𝜂·𝑡 + (𝑉0,𝑎𝑠𝑠𝑒𝑡 +𝑉0,𝑙𝑖 𝑓 𝑒) · 𝑃0 · 𝑒(𝑡(𝛼·𝛽+𝜃)−𝛼·Δℎ) (3.13)

Solving the optimal point of minimal costs for each timestep 𝑡, yields an array of possible choices for
Δℎ and 𝐶𝑡 . The optimal choice of which will be discussed in the following section.

Minimizing the total costs over time
The simple framework for a set time 𝑡 given in equation 3.4 can be expanded with the temporal elements
derived above. However, before presenting the temporal framework the constraint on the reinforcement
times is derived further into a mathematical model.

After the required reinforcement at time 𝑡∗, the reinforcement process can be seen as a reset back to
𝑡0 with a new initial failure probability after reinforcement, denoted by 𝑃0,1. The process of solving for
a maximum allowable 𝑡∗2 is then identical to the previously mentioned steps. This process can be re-
peated as many times as is needed for lifetime of the structure, resulting in 𝑛 reinforcement times, the
final of which occurs at 𝑡∗𝑛 and has a new initial failure probability of 𝑃0,𝑛 . The derived expression gives
a criteria for when to reinforce the dike at latest, earlier is however always a possibility. This leaves
a domain of times in which the reinforcement could be performed, the optimal reinforcement time is
then a function of the length of the time domain and the discount rates (current and future). The exact
optimal point can be derived by numerical simulation.

To illustrate this principle, imagine a dike that needs a first reinforcement at a latest time of 𝑡 = 𝑡1, a
second reinforcement at 𝑡 = 𝑡2 and so on until it is in need of its 𝑛𝑡ℎ reinforcement at 𝑡 = 𝑡𝑛 . This leaves
the following domains for the reinforcements 𝑅𝑛 .
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𝑅1 ∈ [𝑡0 , 𝑡1]
𝑅2 ∈ [𝑡1 , 𝑡2] ∪ [𝑡0 , 𝑡1] = [𝑡0 , 𝑡2]
...

𝑅𝑛 ∈ [𝑡𝑛−1 , 𝑡𝑛] ∪ [𝑡𝑛−2 , 𝑡𝑛−1] ∪ ... ∪ [𝑡0 , 𝑡1] = [𝑡0 , 𝑡𝑛]
The feasible domains may overlap. In this case the reinforcement might need to happen in far spaced
periods of time, but they can also happen earlier.

If it appears that more than one reinforcement will be needed within the lifetime of the dike, then the
minimum of the sum of two (or more) reinforcements should be sought. More than one reinforcement
will be needed if the sum of two (or more) subsequent choices for 𝑡∗ is less than the lifetime of the
structure. This principle is demonstrated in figure 3.4, where 𝑡∗𝑖 demonstrates the latest possible rein-
forcement time and 𝑡𝑖 the chosen optimal reinforcement time.

Figure 3.4: Example of multiple reinforcement times

It can be seen that there were three moments before which a reinforcement needs to occur, yielding
the three possible reinforcement domains of 𝑡 ∈ [𝑡∗0 , 𝑡∗1], [𝑡∗0 , 𝑡∗2], [𝑡∗0 , 𝑡∗3]. However, the lifetime lies within
Hence two reinforcements at 𝑡 = [𝑡1 , 𝑡2] are needed in this example, as the range [𝑡∗2 , 𝑡∗3] lies partially
outside the lifetime of the dike.

These required reinforcement times can be added to the maximization problem of equation 3.6 as
constraints. This extends the derived framework to the following formalized mathematical notation:

max
∀𝑡∈[𝑡1 ,...,𝑡𝑛 ]

𝐵𝑡 − 𝐶𝑡
s.t 𝑡1 , 𝑡2 , ..., 𝑡𝑛 ∈ [𝑡0 , 𝑡∗1], [𝑡0 , 𝑡∗2], ..., [𝑡0 , 𝑡∗𝑛]

Benefits over time
As the benefits in this research are assumed to consist of a decrease in risk, the equations derived for
the costs of increased risk over time can be repurposed to derive an expression for the benefits over
time.

Combining the general formulations given in equation 3.5 and 3.2, an expression can be found for the
difference in costs over time. Let 𝐶0(𝑡) be the costs associated with flood risk when no reinforcement
is made and 𝐶1(𝑡) be the costs that are associated with flood risk when a reinforcement of Δℎ is made.
The result is given in equation 3.14
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𝐵(𝑡) =
𝑡∑
𝑖=0

(𝐶no reinforcement − 𝐶reinforcement) · 𝑡𝑖

= (𝑉0,𝑎𝑠𝑠𝑒𝑡 +𝑉0,𝑙𝑖 𝑓 𝑒) · 𝑃0 ·
𝑇∑
𝑡𝑖=0

𝑒(𝑡𝑖 (𝛼·𝛽+𝜃)) − 𝑒(𝑡(𝛼·𝛽+𝜃)−𝛼·Δℎ)

= (𝑉0,𝑎𝑠𝑠𝑒𝑡 +𝑉0,𝑙𝑖 𝑓 𝑒) · 𝑃0 ·
𝑇∑
𝑡𝑖=0

𝑒(𝑡𝑖 (𝛼·𝛽+𝜃)) · (1 − 𝑒−𝛼·Δℎ)

(3.14)

Equation 3.14 is logically increasing in benefits as Δℎ increases. In the limit case where Δℎ −→ ∞, the
benefits are the costs of not reinforcing. This is to be expected, as when the crest height is heightened
ever more, the expected risk decreases to zero. This results in only the ”original” expected flood risk
(e.g. the situation in which there is no reinforcement) to be a contributing factor to the benefits. The
negative exponential function displays the diminishing returns of increasing Δℎ.

Net present value of costs
As described in the literature section, the discount rate is vital part of the economical success of any
project. Future expenses should be discounted towards the present to accurately compare costs. Fur-
thermore, when looking only at the problem through an economical point of view, delaying costs will
(almost) always lead to lower discounted total costs, excluding negative discount rates. For illustration
purposes a small example is demonstrated.

Imagine a dike reinforcement that is needed to ensure the safety for the coming 50 years. The entire
reinforcement can be done all at once at 𝑡 = 0, with a cost 𝐶0 = 100. Another option is to split the
investment into two equal parts, one at 𝑡 = 0 and one at 𝑡 = 25. The final options is continuous
reinforcement, investing 2% of 𝐶0 every year to meet safety standards. For simplicity of the example,
a constant discount rate of 2% is assumed. The results of the different strategies are shown in figure
3.5.

Figure 3.5: Discounted costs over time for various investment strategies

As expected, spreading the investment out over a larger time period results in a lower total present
value for the costs. The result becomes even more pronounced over longer periods of time, a 100
year lifetime reduces the discounted costs for a two-step investment strategy to 67% and a continuous
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investment strategy to only 43% of the one-time investment strategy.

The statement that delaying costs to future points in time results in lower discounted costs has a big
underlying assumption, that of a positive discount rate in the denominator of equation 2.2. However,
a positive discount rate is not a given in the present economical climate. To demonstrate the effect a
(partial) negative discount rate can have on a project, a different example is demonstrated. The same
three investment strategies as the previous example are used, but now on an discount rate of ±1%
for the first and last half of the project. Figure 3.6a displays the result for a negative discount rate in
the first half of the investment period, a a positive one for the remainder. Figure 3.6b has an opposite
approach, starting with a positive rate and ending with a negative rate.

(a) Starting negative rate, ending positive rate (b) Starting negative rate, ending positive rate

Figure 3.6: Discounted costs for a two-state discount rate model

There are two things to note from this example. The first being that the discounting function obviously
is not a symmetric one, costs made in the early stage of the constructions lifetime will have a far greater
impact on the total discounted costs than later costs. The second one is that the presence of a negative
rate on its own can not tell you about the best investment strategy, as can be seen in figure 3.6a the
discounted costs are still lower for the two-investment and continuous investment strategy than for the
”lumpsum” approach. It should require no explanation that the results are more pronounced when the
life time of the project is increased.

If the discount rate is allowed to vary for each timestep, the discounting process that was given in
equation 2.2 has to be modified to allow for a variable 𝑟𝑡 . This no longer produces an exponent of
power 𝑡 but a product of the denominator, such that the discounted costs up to time 𝑇 can be given by
equation 3.15.

𝐶𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 =
𝑇∑
𝑡=1

𝐶𝑡∏𝑡
𝑡=1(1 + 𝑟𝑡)

(3.15)

Such that if there are two costs incurred at time 𝑡 = 1 and 𝑡 = 3, the total discounted costs become:

𝐶𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑 =
𝐶1

1 + 𝑟1 + 𝐶3

(1 + 𝑟1) · (1 + 𝑟2) · (1 + 𝑟3)
Similarly, the benefits can be discounted. As the benefits per equation 3.14 are solely a function of the
increased risk, they follow the same framework for discounting as presented in this section. Both terms
of the calculated costs can be discounted via equation 3.15. Such that:

𝐵𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡𝑒𝑑(𝑡) =
𝑇∑
𝑡=1

𝐵𝑡∏𝑡
𝑡=1(1 + 𝑟𝑡)

The discounting of costs and benefits can be applied to the derived expression for the total costs and
benefits in equation 3.13 and 3.14. The difference between the two should be maximized to achieve an
optimal economical reinforcement plan. The result of this maximization is a set of costs 𝐶1 , 𝐶2 , ..., 𝐶𝑛
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and benefits 𝐵1 , 𝐵2 , ..., 𝐵𝑛 with a corresponding set of times 𝑡1 , 𝑡2 , ..., 𝑡𝑛 at which the sum of all net results
is largest, given the combination of time dependent discount rates and dike reinforcement heights.
Combining the principle of discounting costs and benefits to the previously derived framework yields
the following mathematically generalized optimization problem:

max
∀𝑡∈[𝑡1 ,...,𝑡𝑛 ]

𝑇∑
𝑡=1

𝐵𝑡 − 𝐶𝑡∏𝑡
𝑡=1(1 + 𝑟𝑡)

s.t 𝑡1 , 𝑡2 , ..., 𝑡𝑛 ∈ [𝑡0 , 𝑡∗1], [𝑡0 , 𝑡∗2], ..., [𝑡0 , 𝑡∗𝑛]
The range of maximum allowable times 𝑡∗1, ... , 𝑡∗𝑛 are functions of the investments made in dike rein-
forcement 𝐶𝑡1 , ... , 𝐶𝑡𝑛 as the investment is directly responsible for the new initial failure probabilities
𝑃0,1, ... 𝑃0,𝑛 . Making the subsequent allowable failure times dependent on one another. The interaction
between the different components is visualized in a flow chart in figure 3.7.

Figure 3.7: Flow chart of the interaction of different terms in discount rate model

This framework nearly completes the model that is needed to solve the research question. However,
to ”future-proof” the polderconcept an additional constraint is needed, which will be derived in the next
section.

3.2. Added constraints on the Cost-Benefit Analysis
Determining whether a polder becomes economically unfeasible first requires a better understanding
of what exactly is meant by ”economic unfeasible”. The CBA gives a criterion for how much a certain
decision would yield in costs and benefits, but does not tell the person in charge of making the decision
if the financial resources for the decision are available. This is an often overlooked aspect of a CBA,
and this research argues that the financial constraints should be added to a CBA to give the person in
charge of making a decision the full picture of the investment. To stress the importance of taking the
financing of a polder in consideration when performing a CBA, the following example is illustrated.

Imagine a closed system polder generating an annual revenue, consisting of revenue generated by
taxation and by subsidy from the government, which is direct to flood defences and having annual ex-
penditures related to flood defences. The polder has a positive outlook based on the CBA criteria, but
it’s expenditure is larger than it’s revenue. Hence this polder will need resources to finance it’s flood
defences, which should not be a problem as it’s ”business case” is positive, it generates more in ben-
efits than that it generates in cost. The resources needed could come from a central government, that
has a finite budget. If there is only one such polder, there is most likely no problem as the budget from
the central government will be more than enough to finance this one polder. However, now imagine
that there are more polders just like the one in our example. In particular, imagine there are so many
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polders that there need for resources exceed the available resources. One could argue that the pold-
ers with the ”best” CBA should be given resources and that this solves the problem. However, as was
demonstrated in the previous section the required safety level for a polder will increase year over year
due to asset and population growth, even without any sea level rise. As the polders are an integral part
of the the central government, their growth rates in both asset value and population will match those
of the nation at large. Meaning that if there is a pie consisting of the total budget of the government,
the share needed per polder remains constant over time. However, it is well established that there is
some form of sea (river) level rise, which causes a relative growth of the required budget per polder to
the available budget provided by the government. In other words, the proverbial needed piece of the
pie grows larger over time. Taken to it’s extreme, eventually the requires slice for a single polder will
outgrow the size of the entire pie and no polder reinforcement can be financed, however much more
benefits compared to costs it produces.

This example demonstrates the need for an additional constraint on the budget that a polder can ex-
haust per year, to keep it sustainable for the future. This sustainability directly relates to the main re-
search question on the viability of the polder concept. In this section a selection of possible approaches
to budget constraints will be discussed and compared.

1. Marginal cost ≤ Marginal revenue
This approach likens most to the comparison of the Dutch flood protection system as a business.
In finance and economics the comparison of marginal benefits and marginal costs is made to
maximize profits. In particular, whenever the marginal revenue is equal to the marginal costs, a
firm has maximised profit. This means that the available budget is not necessarily exhausted,
rather the budget is used to the point where the marginal costs equal the marginal revenue. The
marginal revenue in this case comes from the decrease in expected flood risk, as a result of the
increase in crest height.
In this scenario the polder has to sustain itself. This entails that the marginal ”revenue” of a single
polder has to exceed or at least be equal to the marginal costs associated with that particular
polder.

2. Budget for flood protection = Expenses flood protection
This approach assumes that the government appoints a fixed share of it’s available yearly bud-
get for flood protection, and in turn exhausts this budget to provide a maximised level of flood
protection. Two methods of budget division are considered for this approach.

(a) Budget shared pro rata to economic risk among polders
The dedicated annual budget is shared among the polders based on the economic risk that
each polder is exposed to. The economic risk is a combination of the loss of assets and
life with their respective probability of As the government will strive to minimize economic
impact in case of a flood, this approach will yield an equilibrium in economic risk amongst
the different polders.

(b) Budget shared pro rata to the individual risk among polders
The dedicated annual budget is shared among the polders based only on the individual risk
that one has when living in a polder. As the government will strive to minimize the individual
risks among polders, this will yield an equilibrium where all polders will share the same
individual risk.

3. Reinforcement costs for flood protection≤ Expected damages due to flooding
Opposed to the popular mantra first attributed to Dutch philosopher Desiderius Erasmus ”Preven-
tion is better than cure”, this approach looks at the costs after a flood has occurred. Particularly,
it compares the expected costs that are incurred after an area floods and compares this to the
total costs of reinforcing the dikes that are protecting that area. The level of reinforcement is thus
not dependent on a law stating the required flood protection level, but solely on the value that sits
within that area and the costs of reinforcement.

4. Individual risk = constant
This approach likens most to the current approach taken by the Dutch government. In this sce-
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nario, each inhabitant of the Netherlands receives a similar protection level, regardless of popula-
tion density or asset value in that area. As the budget is limited, it is possible that the government
can’t provide the necessary protection level based on the available resources. If the budget is
inadequate for the required level of protection, the assumption is made that the budget will be
split such that all inhabitants get a similar protection level.

3.2.1. Mathematical formulation of added constraints
The four possible constraints have to be put into a mathematical framework to decide upon their strin-
gency and which should be added as constraints to the maximization problem presented in section
3.1.3 Inclusion of temporal elements. To derive their stringency, the polders are schematized as circu-
lar regions with a constant asset and population density. Their revenue comes from a local taxation as
well as a national taxation. The costs considered are those of physically strengthening a dike through
crest height increases as well as added risk as a result of population/asset growth and/or increased
probability of flooding.

The full derivation of all four constraints can be found in section A.3.1 Stringency of the financial con-
straints. The final mathematical result is presented below for all four constraints.

Marginal costs ≤ Marginal revenue
The first possibility for an additional constraint concerns the derivative of the costs and revenue with
respect to the increase of crest height Δℎ. The marginal revenue should be larger or equal than the
marginal costs, resulting in a normative situation where they are equal to one another. In mathematical
notation this means that:

𝑀𝑅 =
𝜕𝑇𝑅
𝜕(Δℎ) and 𝑀𝐾 =

𝜕𝑇𝐾
𝜕(Δℎ)

The expression for each was derived in the appendix, the final results are shown below.

𝑀𝑅 =

{
0 for SLR < Δℎ

= − 𝐿2𝑑𝑖𝑘𝑒 ,𝑛 ·(𝑒𝑆𝐿𝑅−Δℎ−1)
4𝜋 · (ℙ(𝑎𝑠𝑠𝑒𝑡, 0) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦, 0) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒) for SLR ≥ Δℎ

This equation demonstrates the marginal revenue with respect to the crest height increase Δℎ. There
are two expressions, dependent on the relative size of the crest height against the expected sea level
rise. As can be seen, the marginal revenue for a polder is zero when the crest height increase is larger
than the expected sea level rise. The quantity turns negative when the expected sea level rise is larger
than the crest height increase.

𝑀𝐾 =


𝐿𝑑𝑖𝑘𝑒 ,𝑛 · 𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 · (Δℎ2𝑦 + Δℎ𝑥

ℎ + 2𝑦ℎ + 𝑥 + 𝑏 + 1
2 𝑑)

−𝐿2𝑑𝑖𝑘𝑒 ,𝑛 · (𝑒𝑆𝐿𝑅−Δℎ − 1)[ℙ(𝑎𝑠𝑠𝑒𝑡,0)·𝐻·𝑉𝑎𝑠𝑠𝑒𝑡+ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦,0)·𝑃·𝑉𝑙𝑖𝑣𝑒
4𝜋 ] for SLR < Δℎ

𝐿𝑑𝑖𝑘𝑒 · 𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 · (Δℎ2𝑦 + Δℎ𝑥
ℎ + 2𝑦ℎ + 𝑥 + 𝑏 + 1

2 𝑑) for SLR ≥ Δℎ

This equation demonstrates the marginal costs with respect to the crest height increase Δℎ. If the crest
height increase is greater than the expected sea level rise, the costs consist of (the derive of) the costs
of reinforcement minus the expected increase in safety. If the crest height increase is smaller than the
expected sea level rise, the costs consist solely of the (the derivative of) the costs of reinforcement.

Budget for flood protection = Expenses flood protection
The second possibility for an additional constraint concerns the costs and revenues themselves, which
should equal one another. In mathematical notation this means that:

𝑇𝑅 = 𝑇𝐶
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The expression for the total revenue and total costs has been derived in the appendix, the results are
captured in the equations below.

𝑇𝑅 =

{
𝐵 for SLR ≥ Δℎ

𝐵 + 𝐿2𝑑𝑖𝑘𝑒 ,𝑛
4𝜋 (Δℙ(𝑎𝑠𝑠𝑒𝑡) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + Δℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒) for SLR < Δℎ

where:

𝐵 =
𝐿2𝑑𝑖𝑘𝑒 ,𝑛
4𝜋

(𝑇𝑓 𝑖𝑥𝑒𝑑 + 𝑇𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ·𝑉woz) + ( 𝐿𝑑𝑖𝑘𝑒 ,𝑛∑𝑁
𝑘=1 𝐿𝑑𝑖𝑘𝑒 ,𝑘

)2 · 𝐵𝑠𝑢𝑏𝑠𝑖𝑑𝑦 for k ≠ n

As can be seen, the total revenue consist of two parts: the generated tax and the expected decrease
in costs due to a decrease in flood risk. If the sea level rise is greater than the increase in crest height,
the revenue consists solely of the generated tax. If the crest height increase is larger than the sea level
rise, it consists of both components.

The total costs can be expressed as:

𝑇𝐾 =

{
𝐿2𝑑𝑖𝑘𝑒 ,𝑛
4𝜋 (Δℙ(𝑎𝑠𝑠𝑒𝑡) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + Δℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒 + 𝐾𝑑𝑖𝑘𝑒 · 4𝜋

𝐿𝑑𝑖𝑘𝑒
) for SLR ≥ Δℎ

𝐾𝑑𝑖𝑘𝑒 · 𝐿𝑑𝑖𝑘𝑒 for SLR < Δℎ

It can be seen that the total costs consist of two parts as well: The expected flood risk costs and the
costs of strengthening the dike, e.g. increasing the crest height.

Reinforcement costs for flood protection ≤ Expected damage due to flooding
For the third constraint two quantities had to be assessed. The reinforcement costs for flood protection
and the expected damage due to the flooding. The reinforcement costs can be expressed as:

𝐶𝑑𝑖𝑘𝑒 = 𝐿𝑑𝑖𝑘𝑒 · Δ𝐴 · 𝐾𝑑𝑖𝑘𝑒
= 𝐿𝑑𝑖𝑘𝑒 · 𝐾𝑑𝑖𝑘𝑒 · (Δℎ2𝑦 + 2Δℎ𝑦ℎ + Δℎ2𝑥

2ℎ
+ Δℎ𝑥 + Δℎ𝐵 + Δℎ𝑑

2
)

The expected damage due to flooding consist of the loss of life and the loss of assets. As such, it can
be expressed as:

𝔼[𝑑𝑎𝑚𝑎𝑔𝑒𝑠 |𝐹𝑙𝑜𝑜𝑑𝑖𝑛𝑔] = 𝐿2𝑑𝑖𝑘𝑒 · 𝑒𝑆𝐿𝑅
4𝜋

· (ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦, 0) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒 + ℙ(𝑎𝑠𝑠𝑒𝑡, 0) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡𝑠)

Individual risk = constant
The fourth and final constraint has an equality between the expected sea level rise and the increased
crest height, meaning 𝑆𝐿𝑅 = Δℎ. As such, the total revenue and total costs can be reduced to the
following expressions:

𝑇𝑅 = 𝐵 =
𝐿2𝑑𝑖𝑘𝑒 ,𝑛
4𝜋

(𝑇𝑓 𝑖𝑥𝑒𝑑 + 𝑇𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ·𝑉woz) + ( 𝐿𝑑𝑖𝑘𝑒 ,𝑛∑𝑁
𝑘=1 𝐿𝑑𝑖𝑘𝑒 ,𝑘

)2 · 𝐵𝑠𝑢𝑏𝑠𝑖𝑑𝑦 for k ≠ n

The total revenue is similar as in the previous section, but now solely consists of the term 𝐵. This term
indicates the generated tax revenue.

𝑇𝐾 = Δ𝐴 · 𝐾𝑑𝑖𝑘𝑒 · 𝐿𝑑𝑖𝑘𝑒 = ((Δℎ
2

ℎ2
+ 2Δℎ

ℎ
)(𝑦ℎ2 + 1

2
𝑥ℎ) + (Δℎ

ℎ
)(𝐵ℎ + 1

2
𝑑ℎ)) · 𝐾𝑑𝑖𝑘𝑒 · 𝐿𝑑𝑖𝑘𝑒

The total costs solely consists of the costs of physically strengthening the dike, as per definition of this
criteria there is no increase or decrease in risk.
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The expressions for the four criteria allow for the addition of the constraints in the mathematical frame-
work of the maximization problem presented in the previous section. To determine which of the four
constraints should be added to this framework, a numerical example will be worked out in the next
section.
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3.2.2. Numerical example
To get a sense of the stringency of these different interpretations, a numerical example is presented.
This numerical example considers a fictitious island nation, which is only affected by sea level rise. The
nation consist of two island, a larger and a smaller one. Each of these islands is protected by a single
dike-ring enveloping the island, making it act like a singular large polder. A schematic overview of the
example is given in figure, 3.8, including the key difference in statistics from table 3.1.

Figure 3.8: Schematic overview of stringency derivation example

The islands have a circular shape with a diameter just under 20 and 10 kilometers for island one and
two respectively. Island 1 has a population of around 30.000 people and island 2 has a population of
around 40.000. The monetized risk of the inhabitants and assets for island 1 is around €30. mln. per
year. For island 2 this is around €16 mln. per year. The single dike-ring, at time 𝑡 = 0, has a safety
level that results in individual risks for persons and assets of ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) and ℙ(𝑎𝑠𝑠𝑒𝑡). The island
nation has a certain GDP (revenue) and allocates a certain amount 𝐵𝑠𝑢𝑏𝑠𝑖𝑑𝑦 to flood protection. Next to
that, each local municipality island also raises a so called ’flood protection tax’. In most demographic
regards, both islands resemble the Netherlands, with some small changes in each. Key statistics of
each island is shown in table 3.1.

Variable Unit Description Polder 1 Polder 2
P [Individuals · km−2] Population density 100 500
H [Assets·km−2] Asset density 100 500
R [Individuals] Number of residents per household 3 4

𝑉𝑊𝑂𝑍 [€] Valuation of a house 300.000 300.000
𝑉𝑙𝑖𝑣𝑒 [€] Economic value of a life 6.7 · 106 6.7 · 106
𝑉𝑎𝑠𝑠𝑒𝑡 [€] Economic value of a house 3 · 105 3 · 105

ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) [-] Current individual probability of death 5 · 10−4 5 · 10−4
ℙ(𝑎𝑠𝑠𝑒𝑡) [-] Current probability of loss of value of an asset 1 · 10−4 1 · 10−4
𝐵𝑠𝑢𝑏𝑠𝑖𝑑𝑦 [€ per 50 years] Budget provided by Central government 5 · 108 2.5 · 108
𝐿𝑑𝑖𝑘𝑒 [km] Length of the dike section 60 30
SLR [m] Expected sea level rise over 50 years 1 1
𝐾𝑑𝑖𝑘𝑒 [€·𝑚−1 · 𝑘𝑚−1 ] Costs per 𝑚 per km of dike reinforcement 4.5 · 106 4.5 · 106

Table 3.1: Key statistics of fictitious island nation

The presented figures and statistics will be used on each of the four different constraints with Δℎ be-
ing the parameter to solve for. This will yield limits on the minimum (or maximum) increase in crest
height Δℎ that the proposed constraint can tolerate, given an idea of the stringency of the additional
constraints. The results of the analysis can be found for each constraint in figure 3.9. Each of the
constraints will get a further explanation based on the figure below. The figures are displayed in full
size in the appendix as well, in figures A.1 through A.4.
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(a) Marginal costs ≤ Marginal revenue (b) Budget = Expenses

(c) Reinforcement costs ≤ Expected damages (d) Individual risk = constant

Figure 3.9: Results of numerical calculations for the four different constraints

The derivations made are done with the assumption of a 1 meter sea level rise over the given time
period. hence, the increase in crest height Δℎ will always be with respect to the expected sea level
rise of 1 meter. A description per figure is given in each of the different constraints presented below.
In general the value is shown on the y-axis and the increase in crest height Δℎ can be seen on the
x-axis. The revenue is shown by a blue line, the costs by the red line and the net result is shown in black.

Marginal costs ≤ Marginal revenue
This constraint is displayed in figure 3.9a. It can be seen that the marginal costs (red line) are a linear
functions of the crest height increase given the expected sea level rise. This function is linear as we
are considering the derivative of the increased costs for crest level height , which itself is a quadratic
function in crest level height. The marginal benefits (blue line) are zero up until the point of the expected
sea level rise. After which they increase up until they reach a stationary pint around 5 meter crest level
height increase. This indicates that extending the reinforcements beyond 5 meter increase do not yield
any marginal benefits. Furthermore it can be seen that there are two points where the marginal costs
line (red) intersects with the marginal revenue line (blue). This means that there is a range of Δℎ for
which the marginal revenue is larger than the marginal costs, satisfying the criteria. This puts both an
upper- and a lower-bound on the possible values of Δℎ.

Budget flood protection = Expenses flood protection
This constraint is displayed in figure 3.9b. It can be seen that the costs decrease when approaching
the 1 meter increase in crest height. This is to be expected as the costs consist of the added flood risk,
which decrease with increasing crest height. Note that the sharp decline and subsequent increase
around 1 meter are due to the mathematical formulation. In reality this line is expected to decrease and
smoothly transition into the graph right of 1 meter. The benefits (blue line) only exists for crest level
height increases above 1 meter. As the benefits considered in this research consist of the decrease in
flood risk, the values are only defined for actual reduction, e.g. when the crest level increase is larger
than the expected sea level rise. Furthermore it can be seen that there is a single point after which the
revenue exceeds the costs. This puts a lower bound on the values that Δℎ can attain, but does not put
an upper bound on the values it can attain.
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Reinforcement costs for flood protection ≤ Expected damage due to flooding
This constraint is displayed in figure 3.9c. It can be seen that in this case the expected benefits are
given as a constant with respect to the increase in crest level height. The expected costs are the result
of the reinforcement costs. These costs grow quadratically with the crest level height increase. Fur-
thermore it can be seen that there is a single point after which the costs exceed the revenue. Since the
costs exceed the revenue after a certain point, the opposite situation of the previous constraint occurs.
There is now an upper-bound that is placed on the value of Δℎ.

Individual risk = constant
The final constraint is displayed in figure 3.9d. In this case the individual risk should remain constant
and hence, it is assumed that there are no benefits due to further increasing the crest height beyond
the ”required” height of the sea level rise (1 meter). Note that the x-axis only goes from 0 to 1 meter
in this case, as this is the expected sea level rise. The expected costs are again a quadratic function
of the crest height as they consist of the reinforcement costs. Furthermore it can be seen that there
is again a single point where the costs exceed the revenues. This again leads to an upper-bound on
the value of Δℎ. Hence we find a feasible range of values ranging from zero up to this intersection point.

Note that as the numbers used in these derivations come from a fictional example, it is their relative
position toward one another (in terms of Δℎ) that is important rather than their absolute values.
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3.3. Model description
This section will describe the model that will be implemented to solve the original research question.
It will start of with the choice of two of the given constraints from the section on additional constraints.
After the constraints are chosen, the three options for the discount rate model will be presented. Next,
the temporal model will be introduced. This model will be used to analyze the second sub-question
of this research. Finally, the spatial model will be introduced, which will be used to answer the third
sub-question of this research.

3.3.1. Choice of constraints
A quantitative comparison of the different approaches can be made with the figures derived in the
previous section. To this end the approaches are compared not by their total costs or benefits, but
rather to what extent an increase in Δℎ is possible before the method ceases to be feasible according
to it’s own criteria. Table 3.2 shows the results of this comparison.

Method Feasible domain of Δℎ Limit(s) on Δℎ
Marginal cost ≤ Marginal utility Δℎ ∈ [2.8, 4.6] 2.8 ≤ Δℎ ≤ 4.6 [m]
Budget safety = Expenses safety Δℎ ∈ [1.8,∞) Δℎ ≥ 1.8 [m]

Reinforcement costs ≤ Expected Damages Δℎ ∈ (0, 3.6] Δℎ ≤ 3.6 [m]
Individual risk = constant Δℎ ∈ (0, 0.38] Δℎ ≤ 0.38 [m]

Table 3.2: Comparison of different methods based on maximum Δℎ for a given SLR of 1 [m]

Note that as this is a case with fictitious numbers, the exact values of Δℎ are not important. Rather,
it is their relative relationship between different methods that are needed for the derivation of stringency.

From this table, three notable results emerge.

• The first approach yields two points of intersection between the marginal revenue and marginal
costs, while the other methods yield one intersection point.

• The second approach yields a minimum requirement on Δℎ, while the third approach yields a
maximum requirement on Δℎ.

• If the third scenario is excluded, there exists a range where the other three approaches have
a feasible Δℎ, based on their own criteria e.g. have a domain that overlaps. This is given by
Δℎ ∈ [2.8, 3.6]

Based on the limits posed on Δℎ, it can be observed that third approach imposes the strictest require-
ments, as a maximum increase of crest height of Δℎ = 0.38 [m] is allowed before the polder becomes fi-
nancially infeasible. This is followed by the fourth approach, which has a maximum increase of Δℎ = 3.6
[m]. The first approach places the third strictest requirements on the maximum crest height increase
with Δℎ = 4.6 [m], but also poses a more limited range for the start of financial feasibility. The second
approach imposes a lower bound on the increase in crest height, but does not pose an upper bound
on the increase in crest height. This would mean that any increase above Δℎ = 1.8 [m] would yield a
financially stable system.

Choosing two of the four options was done based on two criteria:

1. The ability to sufficiently quantify the approach, and:
2. The previously derived stringency of the approach.

Next to these criteria the general idea of a novel approach to the assessment of the polder concept is
kept in the back of the mind.

For the first criteria, the available data should be sufficient to quantify. Although the data process-
ing comes in a later section, it will become apparent that the required data is provided for nearly all
approaches. The marginal costs for increasing the safety level ten-fold are given by Slootjes and Wa-
genaar, 2016 in their research. The marginal utility is easily calculated by the increase or decrease
in risk to people and assets. Figures for the extrapolated budget will be provided as well as for the
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expenses in this section as well. These figures can be re-used for the third method. However, the
fourth method, that of reinforcement costs being equal to expected damages, leaves a rather large un-
known in the data set. Namely that of the costs of re-building and moving (parts of) cities to a different
location. This is hard to quantify as a city is not build in a single time frame, but over many decades if
not centuries. Discounting all of these different values back to the current day or to a future date would
be a task too large in scope for this research. For this reason, all approaches apart from the fourth are
recommendable via this criteria.

For the second criteria, table 3.2 is used. Starting with the first method, it gives a rather discounting
result: That of two points where in between the increase in crest height yields a feasible result, as this
is the only method that yields such a result, it is an discounting one to develop further. The second
method is unique as well in that it yields a lower limit for Δℎ, indicating that the crest height needs to
be increased about 80% higher than the proposed 1 meter sea level rise. The third method is limited
to one meter of sea level rise and is unable to reach this limitation in the proposed simplified model,
making it a rather poor candidate for this criteria. The fourth method yields an upper limit that falls
(partly) in the domain of the first and second method. As it is covered in between these two methods,
those would suffice.

Combining the insights of the two criteria with a general indication of novelty from the approach, the
first two models are chosen. As marginal costs and utilities are not a standard practice in hydraulic
engineering (or engineering in general), this approach might deliver new insights. Furthermore, the
marginal costs and benefits are possible to quantify, making it a feasibly method to study. The second
approach is chosen as it gives a contrast to the first one based on the limitations on Δℎ. The other
reason is that it is possible to quantify as well.

3.3.2. Discount rate model
The time dependent discount rate 𝑟𝑡 has a large impact on the solution of the maximization framework
of discounted costs. As such, determining the correct rate is crucial. Crucial as it may be, it is not easy.
As introduced in the literature section, three models will be proposed for modelling the discount rate,
two of which find their origins in economic and/or econometric origins. These are a constant discount
rate with noise, an discount rate modelled by an ARMA(p,q) model and an discount rate modelled by
a Brownian motion with drift.

The full derivation and reasoning behind the choices for the specific parameters in the models can be
found in section A.2.

Constant discount rate with noise
The constant discount rate is determined to have a mean value of 1.9%, based on the targets set by
the ECB as well as historical data. The analysis showed that the distribution of the discount rate is
reasonably normally distributed. Hence the choice of of the distribution is Gaussian. The standard
deviation was determined to be around a quarter of the discount rate value, so around 0.5%.
Hence the values of the constant discount rate with noise are drawn from 𝑟𝑡 ∼ 𝒩(1.9, 0.5), which has
a 95% probability of drawing a value between [1.0 , 3.0].

ARMA(p,q) model
For the ARMA(p,q) model the discount rate of the full sample was examined and fitted according to
the Akaike Information Criterion (AIC) and significance of the parameters. This yielded an ARMA(2,2)
model as best fit for the data set, meaning that two lagged values of the discount rate are taken into
account as well as two lagged errors. The discount rate 𝑟𝑡 according to the chosen ARMA(2,2) model
has the following form and parameters.

𝑟𝑡 = 0.53𝑟𝑡−1 − 0.88𝑟𝑡−2 + 𝜀𝑡 − 0.36𝜀𝑡−1 + 0.85𝜀𝑡−2
Brownian motion with drift
The last proposed model is a Brownian motion with drift. A preliminary analysis of the historical data
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yielded two possibilities for the drift coefficient 𝜇, one negative and one positive. The choice was made
for the positive rate, as a negative rate would yield values well below -1%, which are not sustainable
for prolonged periods of time. Hence the choice was made for a Brownian motion with drift coefficient
𝜇 = 0.087 and standard deviation 𝜎 = 2.872, the starting value of the Brownian motion is the discount
rate of 2020, set at 𝑟0 = −0.328.

These three models represent options from which values of 𝑟𝑡 can be drawn for each timestep in con-
sideration. The choice for one (or more) of the models will be presented in the chapter Case Study.

3.3.3. Temporal model
For the temporal model, the second chosen budget constraint will be introduced to the previously de-
rived framework for discounted costs. The reasoning for this is that if a polder were to be self sufficient
and sustainable in the future, it should at the bare minimum be able to cover it’s yearly (averaged)
expenses with the budget it raises and the budget provided by the central government.

It follows from this criteria that the resources spent on dike reinforcement should be less or equal than
the resources that are available at time 𝑡. As reinforcements are usually performed with the idea that
the reinforcement will last a long time, the assumption is made that the budget over different years can
be ”saved” up to be spent at some time 𝑡 in the future. Hence the required budget up to and including
time 𝑡 must not exceed the budget that has become available up to and including time 𝑡. Let 𝑃𝑡 be the
available budget at time 𝑡, defined as:

𝑃𝑡 =
𝑡∑
𝑖=1

𝑃𝑖

The original maximization problem from equation 3.4 gets two transformations, one additional con-
straints and one additional condition. The transformation is the discounting process, displayed in the
first line of equation 3.16. The additional constraint is given in the second line, displaying how the costs
at each time instant 𝑡 should be smaller than the sum of the available budget up to that instant, for all
timesteps in considerations. The conditions is given in the third line, where all possible reinforcement
moments leading to the costs 𝐶𝑡 should be within the timeframe allowed before strengthening of the
dike section is needed to adhere to the given failure probability demand.

max
∀𝑡∈[𝑡1 ,...,𝑡𝑛 ]

,
𝑇∑
𝑡𝑖=1

𝐵𝑡(Δℎ) − 𝐶𝑡(Δℎ)∏𝑡
𝑗=1(1 + 𝑟 𝑗)

s.t. 𝐶𝑡(Δℎ) ≤
𝑡∑
𝑖=1

𝑃𝑖(Δℎ) ∃𝑡 ∈ [𝑡1 , ..., 𝑡𝑛], ∃Δℎ ∈ [0,∞]

𝑡1 , 𝑡2 , ..., 𝑡𝑛 ∈ [𝑡0 , 𝑡∗1], [𝑡0 , 𝑡∗2], ..., [𝑡0 , 𝑡∗𝑛]

(3.16)

Note that it is implicitly stated in equation 3.16 that the maximization over time also includes the maxi-
mization over Δℎ. The formal double maximization problem is then given as:

max
∀𝑡∈[𝑡1 ,...,𝑡𝑛 ], ∀Δℎ∈[0,∞]

𝑇∑
𝑡𝑖=1

𝐵𝑡(Δℎ) − 𝐶𝑡(Δℎ)∏𝑡
𝑗=1(1 + 𝑟 𝑗)

s.t. 𝐶𝑡(Δℎ) ≤
𝑡∑
𝑖=1

𝑃𝑖(Δℎ) ∃𝑡 ∈ [𝑡1 , ..., 𝑡𝑛], ∃Δℎ ∈ [0,∞]

𝑡1 , 𝑡2 , ..., 𝑡𝑛 ∈ [𝑡0 , 𝑡∗1], [𝑡0 , 𝑡∗2], ..., [𝑡0 , 𝑡∗𝑛]
where: 𝐶𝑡(Δℎ) = 𝐿𝑑𝑖𝑘𝑒 · 𝐾𝑑𝑖𝑘𝑒 ,0 · Δℎ · 𝑒𝜂·𝑡 + (𝑉0,𝑎𝑠𝑠𝑒𝑡 +𝑉0,𝑙𝑖 𝑓 𝑒) · 𝑃0 · 𝑒(𝑡(𝛼·𝛽+𝜃)−𝛼·Δℎ)

𝐵𝑡 = (𝑉0,𝑎𝑠𝑠𝑒𝑡 +𝑉0,𝑙𝑖 𝑓 𝑒) · 𝑃0 ·
𝑇∑
𝑡𝑖=0

𝑒(𝑡𝑖 (𝛼·𝛽+𝜃)) · (1 − 𝑒−𝛼·Δℎ)
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The budget 𝑃𝑡 , length of dike 𝐿𝑑𝑖𝑘𝑒 and costs per dike height increase 𝐾𝑑𝑖𝑘𝑒 ,0 can be derived directly
from the figures obtained in the subsequent data collection section, or be (partly) explicitly formulated
in terms of parameters (in simplified scenario’s) by equation A.8. The temporal dependent parameters
𝛽, 𝜃, 𝛾 and 𝜂 can be derived from historical data given in the case study section. After deriving the
minimal total costs, the CBA can be performed. This entails the comparison of the discounted total
benefits with the discounted total costs as per equation 3.16



4
Case study

This section consists of the data collection and extrapolation as well as the introduction of the two
case studies. The section on data collection consists of specific regional data as well as the data that
is required to model the discount rate. The case studies consider dikering 17 and dikering 29 in the
Netherlands.

The section starts with the collection and processing of data that is required for the case studies. The
available budget for the two cases in consideration will be disclosed first, as well as the extrapolation of
the budget to 2050 and 2100. After this the loss of value for both cases will be derived and extrapolated
as well. The final section considers collection and processing of data used to model the discount rate.

After the collection and processing of data, an overview of the two case studies with key parameters
will be given. The cases consider dikering 17, primarily influenced by river discharge variability, and
dikering 29, primarily influenced by sea level rise. The key statistics are divided into deterministic
parameters and stochastic parameters that will be used in a later chapter for the Monte Carlo analysis.

46
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4.1. Data collection and processing
This section contains the collection and processing of three sets of data. The first set regards the
available budget by both the local and central governmental body of the regions in the Netherlands.
The second set of data comprises the loss of value when a dike breaches and flooding occurs for both
the dike rings that are considered in the case study. This loss of value comprises both the loss in life
as well as the loss in assets. The final sets comprises data on Dutch governmental bonds with a 10
year duration, which is assumed to be the best proxy for the risk-free rate in the Netherlands. The two
areas in consideration, dikering 17 and 29, are shown in relation to the Netherlands in figure 4.1. The
mentioned dikerings are indicated with a black circle.

Figure 4.1: Spatial position of dikering 17 and 29 in relation to the Netherlands

4.1.1. Available budget
Determining the available budget first requires a determination of the different revenue streams. As
was stated in the literature study, the Dutch polder concept relies on two streams of revenue. The first
one being the budget provided by the central governmental body. This is often a set amount per year,
dependent on the GDP of the Netherlands. The second revenue stream comes from the taxes raised
by the local water authorities. The revenue of the local water authorities is dependent on a number of
parameters, but roughly contains two parts. A fixed part to be paid by everyone and a variable part that
is dependent on the value of your home. Both parts will be evaluated. The full evaluation, including
extrapolations and derivations, can be found in the appendix in section A.3.1.

The budget provided by the central government is found to be a share of 3.6% (2.3%) for Hollandse
Delta (Scheldestromen) of the annual budget of the Deltafonds. As the Deltafonds is expected to grow
over time at a steady rate, the budget was extrapolated to be €3.95 bln. in 2100. These figures can
be combined to find a proxy for the budget provided by the central government for both water authorities.
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The raised tax generated by the water authorities themselves consists of a fixed (𝐶) and variable part
( 𝑓 ), taking the form displayed in equation 4.1.

𝐵𝑡𝑎𝑥 = 𝐶 + 𝑓 ·𝑉ℎ𝑜𝑢𝑠𝑒 (4.1)

The generated budget is dependent on the parameters in the above mentioned expression, as well as
the number of people that live within each polder. The future values for 𝐶, 𝑓 and𝑉ℎ𝑜𝑢𝑠𝑒 were determined
by means of extrapolation for the specific provinces. The value for the growth rate of the population
was derived from figures of the CBS, presented in figure A.13.

Combining the found results for two factors contributing to the yearly budget, they can each be calcu-
lated and tallied up. The result is shown in table A.6.

Dikering 29 Dikering 17
2050 2100 2050 2100

Central government 52.0 90.9 81.4 142.2
Local water authority 14.0 30.6 35.8 87.9
Total budget [mln. €] 66.0 121.5 117.2 230.1

Table 4.1: Final results of available budget in 2050 and 2100 for dikering 17 and 29

4.1.2. Loss of value
Determining the expected loss of life and economic damage has for a large part been done by the
Ministry of Infrastructure and Water Management back in 2016 (Slootjes & Wagenaar, 2016). This was
done by simulating a breach in the flood defence (often a dike), which resulted in an expected number
of affected people, casualties and economic damage. These numbers were calculated for 2011 and
2050. Table A.7 provides some key figures about the two selected dikerings, including all the dike
sections corresponding to the ring. These figures contain the expected economic damage, the loss
of live and the total damage in 2011. All figures that are expressed in monetary units are in millions
of euro’s. Note that for the loss of live a value of €6.7 million per casualty was assumed. Within the
column Loss of live, a cost of €12.500 was assigned to each affected, but not deceased, individual on
top of the number of lost lives.

Dike section Length [km] Costs of increasing
safety level [ €·𝑘𝑚−1]

Economic
damage [€]

Loss of
live [€] Total damage [€]

17-1 27.0 4.4 780 433 1.213
17-2 26.5 5.8 2.600 1.279 3.879
17-3 9.5 2.5 11.000 8.575 19.575
Total 63 4.7∗ 14.380 10.287 24.667

29-1 22.0 5.8 2.100 359 2.459
29-2 17.0 6.5 3.300 2.355 5.655
29-3 7.0 6.3 5.300 14.770 20.070
29-4 12.5 1.0 69 6 75
Total 58.5 5.0∗ 10.700 17.484 28.184

Table 4.2: Expected damages in 2011, based on (Slootjes & Wagenaar, 2016)

∗ These values are the average cost of increasing the safety level per kilometre in millions of euro’s
over the entire length of the dikering.

The analysis by Slootjes and Wagenaar (2016) provides estimates for the monetary value of those af-
fected and for the casualties in 2050, as well as an estimate for the economic damage in 2050, shown
in table D.1. These values were derived by multiplying the figures from 2011 by an assumed annual
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growth of 1.9% over 39 years. This growth is used for both the economical figures as well as the pop-
ulation growth and by extent to the fatalities. The calculations were made for 2011 and extrapolated to
2050, however no estimates for 2100 were provided. To this extent, similar growth figures are used to
extrapolate the values in the year 2100. These figures are presented in table D.2.

Before using these figures, a quick check on the 1.9% figures was performed. Starting with the ex-
pected economic growth, the BBP changes for the past 25 years are plotted and averaged, shown
in figure A.16. The year-over-year change in BBP appears to average out around the value of 1.9%.
Hence this value is assumed to be a plausible figure for the growth rate of asset value 𝜃. However, as
has been explained in the section Available budget, the population growth per year is around 59.000
people per year. Solving an exponential growth model for the growth rate exactly, it is found that the
population growth rate (𝛾) is around 0.30% (0.2991). As this value is significantly different from the
proposed value by Slootjes and Wagenaar, 2016, the values for population growth are adjusted. It is
assumed that the value of the loss of live scales linearly with the growth or decline in population. The
results for 2050 and 2100 are shown in table D.4.

4.1.3. Interest rate
The available data for the long-term Dutch interest rates are reported by The Organisation for Economic
Co-operation and Development (OECD, 2022). The rates are given per year, starting in 1959 up to
2021. The development of the interest rate over time is shown in figure C.16 in the appendix. Some
key statistical properties of the time series are displayed in table 4.3.

Statistic Value
Datapoints 60
Minimum -0.38
Maximum 11.55

𝔼[𝑋] (Mean) 5.51
𝔼[𝑋2] (Standard deviation) 2.87

𝔼[𝑋3] (Skewness) -0.31
𝔼[𝑋4] (Kurtosis) -0.48

Table 4.3: Summary statistics of historical interest rate

It becomes apparent by looking at the minimum and maximum that all data point fall neatly between
the mean and ±2𝜎. Looking at the skewness the data appears to be centrally distributed. The kurtosis
provided is corrected by a factor 3 for the normal distribution, meaning that a value close to 0 represents
a kurtosis that is near that of a normal distribution. As the kurtosis is slightly negative, there is a bit
more scattering of the data points than would be expected based on a normal distribution. However,
based on these statistics the conclusion can be drawn that the data is reasonably normally distributed.

4.2. Dikering 17
Dikering 17 can be considered a dikering that is primarily under the influence of rivers, specifically the
Meuse. Hence the discharge variability is of the most importance for this analysis. As dikering 17 is
part of the municipality of Hollands Delta, these figures will be used for the budget. The estimated
damage due to loss of life and loss of assets are directly derived for dikering 29.

4.2.1. Key parameters
The key parameters used in the case study are shown in table 4.4.
The parameters 𝑉0,𝑙𝑖 𝑓 𝑒 and 𝑉0.𝑎𝑠𝑠𝑒𝑡 represent the total expected damage in loss of life and assets when
a flood occurs. There are two values for 𝛽 as the analysis is concerned with the 2100+ (𝛽 = 0.06) and
2100- (𝛽 = 0.02) scenario presented by the KNMI, as per table 2.1. Both these values will be used in
the calculations and simulations. Finally there is one parameter that is not listed here, the allowable
risk level 𝐸𝑑𝑒𝑚𝑎𝑛𝑑, as this variable is varied from 0.25 times the initial risk level (𝑃0 · (𝑉𝑎𝑠𝑠𝑒𝑡 + 𝑣𝑙𝑖 𝑓 𝑒)) to
2.5 times the initial risk level.
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Parameter Distribution Mean Coefficient of variation
Deterministic parameters

𝛼 Deterministic 0.8 -
𝑃0 Deterministic 1/4000 -
𝐿𝑑𝑖𝑘𝑒 Deterministic 63.0 -
𝐾𝑑𝑖𝑘𝑒 Deterministic 4.7 · 106 -
𝑉0,𝑙𝑖 𝑓 𝑒 Deterministic 14.380 · 106 -
𝑉0,𝑎𝑠𝑠𝑒𝑡 Deterministic 10.287 · 106 -
𝐸𝑑𝑒𝑚𝑎𝑛𝑑 Deterministic 1.5 · 𝑃0 -

Stochastic parameters
𝛽 Normal [0.002, 0.006] [0.10, 0.05]
𝛾 Normal 0.003 0.05
𝜃 Normal 0.019 0.05
𝜂 Normal 0.019 0.05

Lifetime Exponential 80 0.0625
𝑟𝑡 Normal 0.019 0.25

Table 4.4: Key parameters for case study of Dikering 17

4.3. Dikering 29
Dikering 29 can be considered a dikering that is primarily under the influence of the sea. Hence the
sea level rise will be the most important parameter for this analysis. The local water authority that is
associated with dikering 29 is that of Scheldestromen. As such, the values for local tax revenue as well
as their share of the national deltaprogramme budget are assumed to (partly) be a proxy for the values
that the dikering generates. The estimated damage due to loss of life and loss of assets are directly
derived for dikering 29.

4.3.1. Key parameters
The key parameters used in the case study are shown in table 4.5.

Parameter Distribution Mean Coefficient of variation
Deterministic parameters

𝛼 Deterministic 0.8 -
𝑃0 Deterministic 1/2000 -
𝐿𝑑𝑖𝑘𝑒 Deterministic 58.5 -
𝐾𝑑𝑖𝑘𝑒 Deterministic 4.7 · 106 -
𝑉0,𝑙𝑖 𝑓 𝑒 Deterministic 17.484 · 106 -
𝑉0,𝑎𝑠𝑠𝑒𝑡 Deterministic 10.700 · 106 -
𝐸𝑑𝑒𝑚𝑎𝑛𝑑 Deterministic 1.5 · 𝑃0 -

Stochastic parameters
𝛽 Normal [0.005, 0.009] [0.10, 0.12]
𝛾 Normal 0.003 0.05
𝜃 Normal 0.019 0.05
𝜂 Normal 0.019 0.05

Lifetime Exponential 80 0.0625
𝑟𝑡 Normal 0.019 0.25

Table 4.5: Key parameters for case study of Dikering 29

There are two values for 𝛽 as the analysis is concerned with the RCP4.5 scenario from (median estimate
SLR of 0.55 [m]) and the RCP8.5 scenario (high-end estimate SLR of 1.10 [m]) by the IPCC for 2100,
displayed in table 2.2. Both these values will be used in the calculations and simulations. Again, the
allowable risk level 𝐸𝑑𝑒𝑚𝑎𝑛𝑑,is ranged fro 0.25 to 2.5 times the initial risk level.



5
Results

This chapter will present the found results from the case studies introduced in the previous chapter.
To determine the results of the adjusted CBA with the constraints presented in the chapter on method-
ology, a Monte Carlo simulation was run. The simulation consisted of 105 calculations per run. The
variables in each calculation were drawn from the distributions given in table 4.4 and 4.5.

Two notable parameters used in the optimization were the crest height increase Δℎ and the lifetime
of the dike. The increase in crest height was varied from 0 to 5 meters for each calculation. As the
maximal expected water level increase is around 1 to 1.5 meters, a crest height increase of 5 meters is
well above the logical maximum value, guaranteeing convergence to an optimal increase. The lifetime
of the polderdike is a stochastic quantity with an expected value of 80 years and standard deviation of
5 years. Hence each calculation has a different realized lifetime to simulate the uncertainty in lifetime
assessment of dikes.

To determine the most influential parameters in the optimization framework, a sensitivity analysis was
performed. To this extent various parameters are varied within range and the Monte Carlo analysis
was performed again, with the varying parameters. The parameters chosen for the sensitivity analysis
are both deterministic and stochastic of nature, requiring either simply substituting or redrawing from
the distribution.

51
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5.1. Dikering 17
This section presents the results for dikering 17, referred to as Hollandse Delta in previous sections.

5.1.1. Results optimization of CBA
The results for the optimization of the CBA for dikering 17 can be seen in table 5.1 for two values of 𝛽,
0.002 and 0.006. The first value represents the mean, the values in between brackets represent the 5
and 95% confidence interval of the chosen quantity. All monetary values are in €mln.

Mean value of 𝛽 0.002 0.006
Chosen Δℎ [m] 1.0 1.6
Chosen reinforcement year [-] ∗ 2020 2020
Benefits [mln. €] 709 (687, 725) 841 (811, 884)
Costs [mln. €] 684 (666, 698) 696 (684, 762)
Net result [mln. €] 25 (11, 59) 145 (118, 172)

Table 5.1: Monte Carlo results for Dikering 17 for different values of 𝛽

∗ The chosen reinforcement year is taken as the mode of all possible reinforcement years, this holds for all tables presented in this chapter.

The net results of both values of 𝛽 with the optimal chosen value for Δℎ is positive, within a 95%
confidence interval. Some additional results of the simulation performed to obtain the results in table
5.1 are shown in figure 5.1. This figure displays a histogram of the chosen crest height increases and
a histogram of the net result of the CBA for 𝛽 = 0.006. The intermediate results for the benefits and
costs can be found in figure C.17 in the appendix. The same set of figures for 𝛽 = 0.002 can be found
in the appendix in figure C.18.

(a) Crest height increase (b) Net result of CBA

Figure 5.1: Monte Carlo results for Hollandse Delta with 𝛽 = 0.006

Figure 5.1a displays a normalized histogram from the optimal determined crest height increases for
dikering 17. The 95% confidence interval for the 105 samples is shown in red. The mean is around
1.6 meter with a minimal (maximal) value around 1.45 (1.85) meter. The tight interval and high density
around 1.55-1.60 meter display a proper convergence of the optimization task. The results of the figure
indicate that, based on the current risk, population and other characteristics of the Hollandse Delta and
the assumed annual growth rates for sea level rise, economic growth and population growth, the most
optimal dike reinforcement height is around 1.60 meters. Due to the stochastic nature of the simula-
tions, some results were a bit lower (around 1.50 meters) and some were a bit higher (1.85 meters).

Figure 5.1b displays a normalized histogram for the net results of the discounted CBA for dikering 17.
It can be seen that the results are rather normally distributed with a mean around 145 €mln. and a
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minimal (maximal) value around 80 (210) €mln.

The intermediate results for the costs and benefits, displayed in figure C.17a and C.17b appear to
display a bimodal distribution, where the costs have a more pronounced second mode than the benefits.
The larger mass appears to be on the lower mode for both the benefits and the costs. The optimization
problem is dependent on both the costs and benefits, which have opposite optimal investment years.
To benefit the most of the reinforcement, it should be done as early as possible. To discount the costs
as much as possible, it should be done as late as possible. This opposition of optimal timing creates a
constant ”tug” between the two components, resulting in the bimodal distribution observed.

5.1.2. Sensitivity Analysis
The sensitivity analysis will be performed for three quantities: the tolerable risk, the costs of dike rein-
forcement and the lifetime of the dike. To make the computations feasible, the value of 𝛽 is chosen to
be 0.006 and the number of drawn samples is reduced to 104. The 5- 95% confidence interval is shown
as the shaded area in each of the graphs, where the solid line displays the mean value of the analysis.
Next to the benefits, costs and net result, the chosen crest height increase Δℎ is displayed.

Tolerable risk 𝐸demand
The tolerable risk 𝐸demand is expressed as a fraction of the original risk level 𝐸0. The fraction ranges
from 0.25 to 2.5, in 10 steps. Each step consists of a Monte Carlo analysis. The results are graphically
displayed in figure 5.2.

Figure 5.2: Sensitivity analysis for allowable risk for Hollandse Delta

This double-axed graph displays the adjusted CBA on the left axis and the chosen crest height increase
Δℎ on the right axis. All fractions produce a positive CBA for dikering 17, given the other parameters.
The costs and benefits remain relatively stable around a fraction of 0.50, slightly decreasing as the frac-
tion increases. This is despite the decrease in chosen crest height as the fraction increases. However,
at a fraction of 1.75 it appears that the crest height remains stable around a value of 1.55 [m]. It is also
at this point that the variability in the costs greatly diminishes, which can be seen as the confidence
interval shrinks. The mean value of the benefits as well as the confidence interval remain relatively
stable after a fraction of 1.5.

Cost of dike reinforcement 𝐾dike
The costs of dike reinforcement is ranged from €4.7 ·106 to €22.4 ·106 as per the minimum and maximum
costs for reinforcement derived by Jonkman et al. (2013). Note that these figures are for the starting
year 2020 and that the costs increase exponentially with a factor 𝜂 throughout the lifetime of the dike.
The results of the sensitivity analysis are graphically displayed in figure 5.3. The x-axis is expressed
as a fraction of the chosen costs of the range (𝐾𝑑𝑖𝑘𝑒 ) divided by the original costs used in the analysis
(𝐾0), which has a value of €4.7 · 106.
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Figure 5.3: Sensitivity analysis for costs associated with crest height increase for Hollandse Delta

It becomes apparent from figure 5.3 that there is very particular range of 𝐾𝑑𝑖𝑘𝑒 where the heightening of
a dike actually makes sense from an economical perspective. Whenever the fraction 𝐾𝑑𝑖𝑘𝑒/𝐾0 exceeds
3.5, the choice is made to increase the crest height with 0 meters. This can have two causes:

1. The financial constraint is not met, which has the result that an increase in dike height is not possible.
Note that the there are still costs incurred, namely those of the flood risk for a crest height increase of
0 [m]. This is the asymptotic part of cost part of the graph.
2. The costs of increasing the dike height is significantly higher than the incurred flood risk, causing
the optimal CBA to be found in not increasing crest height.

Figure 5.4: Zoomed in results for the sensitivity analysis for 𝐾𝑑𝑖𝑘𝑒

After further investigation it appears to be a combination of both effects. This can be confirmed when
looking at figure C.19a, where it can be seen that the first mentioned effect dominates after a Δℎ of
around 2.2 [m]. Nonetheless there are still low points around 1.4 [m], however this is where the second
effect appears to make make it’s entrance. Even with the reduced flood risk the total costs are not lower
than the option of not increasing the crest height. Taking the first mentioned effect to it’s extreme, figure
C.19b displays the results when the fraction attains it’s largest value. For this value of 𝐾𝑑𝑖𝑘𝑒 there is no
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viable solution after a Δℎ of around 0.3 [m]. The costs are steeply increasing and before the proposed
increased crest height reaches the expected sea level rise, the costs are exceeding the budget. The
result is a situation in which large costs are incurred and additional safety is not provided.

The exact point of negative net results is hard to determine, as there are confidence bands in which
the simulation results fall. Figure 5.4 shows the results for fractions of 1.0 to 1.5. It becomes clear that
the mean costs are larger than the mean benefits for a fraction of around 1.15, while the 5 and 95%
percentile are crossing for a fraction of around 1.45. These fractions correspond to costs of increasing
the crest height of a dike one meter per kilometer (𝐾𝑑𝑖𝑘𝑒 ) of €5.5 and 6.8 mln. respectively.

It should be noted that although the net result of the adjusted CBA turns negative after fractions of
around 1.2, there is still a crest height increase. This indicates that protecting the dike section, even
though it presents more marginal costs than marginal benefits, is still a preferred option to refraining
from increasing the crest height. It is only after around 3.7 times the original dike costs that the costs
of marginally increasing the dike height exceed the marginal costs of not increasing the dike, which are
the costs incurred due to additional flood risk.

Lifetime of the dike
The mean lifetime of the dikes is ranged from 60 to 100 years, with the same coefficient of variability
as per table 4.4. The results of the analysis are graphically displayed in figure 5.5.

Figure 5.5: Sensitivity analysis for the lifetime variability for Hollandse Delta

From figure 5.5 it becomes apparent that the the chosen crest height is ever increasing over larger lifes-
pans. This makes intuitive sense, as a longer lifespan means a greater potential for an increased water
level. Furthermore, the benefits remain relatively constant, only increasing ever so slightly. Indicating
that the crest level is chosen in such a manner that yields a similar risk level for all lifetime possibilities.
This indication is confirmed when looking at the costs, which increase linearly with increasing crest
height. Again indicating that the increased costs are solely the result of an increase in costs due to
physical strengthening of the dike rather than an increase in flood risk. Using this set of parameters
there is a feasible solution each lifetime choice, that yields a positive CBA for all choices. However, the
CBA is decreasing over longer lifespans, despite the additional years to discount the costs over.

Change of interest rate model
The final sensitivity analysis that is performed is not directly linked to one of the input parameters, but
rather to modelling of the discount rate. For previous sections a constant discount rate with noise was
assumed. For this last analysis this was changed to a Brownian Motion with drift, with the parameters
that were derived in the section 3.3.2 Interest rate model. For this analysis the parameters of the
sensitivity analysis are reset to the same values that were used in section 5.1.1 Results optimization of
CBA. The results of the optimization via a Monte Carlo analysis are shown in table 5.2.
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Mean value of 𝛽 0.002 0.006
Chosen Δℎ [m] 1.0 1.3
Chosen reinforcement year [-] 2020∗ 2020∗
Benefits [mln. €] 705 (665, 724) 837 (807, 876)
Costs [mln. €] 696 (624, 715) 710 (695, 769)
Net result [mln. €] 9 (-10, 27) 126 (99, 153)

Table 5.2: Monte Carlo results for Dikering 17 for different values of 𝛽 using a Brownian Motion for the discount rate

∗ As the reinforcement years were clearly split between the start and end of the chosen reinforcement
period, the mode is displayed. However, the chosen reinforcement years had a larger variability in the
case of a lower value for 𝛽.

The results of the analysis with the discount rate modelled by a Brownian motion are for a large part
in agreement with the results found in table 5.1 where a constant rate with noise was used. The net
result appears to be slightly lower than when a constant rate with noise is used. The detailed results
are shown in figures 5.6a and 5.6b.

(a) Crest height increase (b) Net result of CBA

Figure 5.6: Monte Carlo results for Hollandse Delta with 𝛽 = 0.006 using a Brownian Motion for the discount rate

The crest height distribution displayed in figure 5.6a is nearly identical to the distribution found when
using a constant rate with noise. The shape and variability of the net result in figure 5.1b also has nearly
identical characteristics, albeit that the net results is shifted slightly the left, which is the result of slightly
lower benefits and higher costs. The results of the benefits and costs for the analysis using a Brownian
Motion for the discount rate for 𝛽 = 0.006 can be found in figures C.20a and C.20b in the appendix. The
results for the case when 𝛽 = 0.002 in combination with a Brownian Motion for the interest rate have
the same characteristics as that of 𝛽 = 0.006, being nearly identical to that of the results for 𝛽 = 0.002
modelled by a constant rate with noise. The graphical results of this analysis can be found in figures
C.21.
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5.2. Dikering 29
This section presents the results for dikering 29, referred to as Scheldestromen in previous sections.

5.2.1. Results optimization of CBA
The results for the optimization of the CBA for dikering 29 can be seen in table 5.3 for two values of 𝛽,
0.005 and 0.009. The first value represents the mean, the values in between brackets represent the 5
and 95% confidence interval of the chosen quantity. All monetary values are again in €mln.

Mean value of 𝛽 0.005 0.009
Chosen Δℎ [m] 2.5 2.7
Chosen reinforcement year [-] 2045 2020
Benefits [mln. €] 1937 (1847, 1996) 2325 (2245 , 2408)
Costs [mln. €] 1011 (923, 1054) 1052 (1040, 1064)
Net result [mln. €] 926 (887, 966) 1273 (1199, 1349)

Table 5.3: Monte Carlo results for Dikering 29 for different values of 𝛽

The results for dikering 29 differ significantly from the results obtain for dikering 17. It can be seen in
table 5.3 that the benefits are well over twice as large and the costs around 1.5 times as large as in
table 5.1. This results in a net results of the CBA for dikering 29 that is significantly positive. Some
additional results for 𝛽 = 0.009 can be found in figure 5.7. Similar figures are generated for 𝛽 = 0.005,
given in the appendix in figure C.23.

(a) Crest height increase (b) Net result of CBA

Figure 5.7: Monte Carlo results for Hollandse Delta with 𝛽 = 0.006

The two figures in the main text, figure 5.7a and 5.7b, again display the distribution of optimal crest
height increases and the distribution of the net results of the CBA, but then for dikering 29. From figure
5.7a it becomes apparent that there is a smaller bimodal peak for the crest heights around 2.2 - 2.3
[m] besides the more prominent chosen crest height of around 2.7 [m]. The individual distributions of
the costs and benefits are displayed in figure C.22 in the appendix. In the cost function in figure C.22a
the bimodal distribution that was observed in the crest height increases can be observed as well. The
lower discounted costs are a logical consequence of having a lower crest height.

5.2.2. Sensitivity Analysis
The sensitivity analysis will again be performed for three quantities: The tolerable risk, the costs of
dike reinforcement and the lifetime of the dike. To make the computations feasible, the value of 𝛽 is
chosen to be 0.009 and the number of drawn samples is reduced to 104. Again, the 5- 95% confidence
interval is shown as the shaded area in each of the graphs, where the solid line displays themean value.
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Tolerable risk 𝐸demand
The same fraction for the tolerable risk is chosen as in the section on dikering 17. The results are
graphically displayed in figure 5.8.

Figure 5.8: Sensitivity analysis for allowable risk for Scheldestromen

The same lay-out as in the section on dikering 17 is chosen to represent the choices. It appears that the
CBA has a net-positive result for all fractions of the risk for dikering 29, constituting of benefits well over
twice as large ast he costs. Furthemore it can be observed that as the tolerable risk level increases,
the crest height is correspondingly lowered from 2.8 [m] at its high to around 2.65 [m] at its low. After
the fractions reaches around 0.75 in value, the chosen crest height increase as well as the benefits
and costs remain constant.

Costs of dike reinforcement 𝐾dike
Again, the range of the costs of dike reinforcement is ranged from €4.7 · 106 to €22.4 · 106. The results
of the sensitivity analysis are displayed graphically in figure 5.9.

Figure 5.9: Sensitivity analysis for costs associated with crest height increase for Scheldestromen

An interesting result emerges from figure 5.9. The first thing to note is that the graph stops after the



5.2. Dikering 29 59

fraction reaches just below 3.5, after which the constraint could not be met anymore. This resulted in
an unfeasible solution and hence no results. As such the costs for increasing the dike height per meter
per kilometer in Scheldestromen can, according to this framework with constraints, not be increased
beyond 𝐾𝑑𝑖𝑘𝑒 = €16 mln. Furthermore it can be observed that the crest height increase reaches a stable
value around a fraction of 2.5, with Δℎ = 1.65. The mean costs reach beyond the mean benefits after
a fraction of around 2.4, indicating a maximum on the costs of 𝐾𝑑𝑖𝑘𝑒 = €11.3 mln. for a net positive
result. Note that this does not mean that increasing the crest height of the dike does not yield marginal
benefits, it means that the marginal costs of increasing the dike height are higher than the marginal
benefits from said increase. The 5 and 95% confidence intervals cross each other around a value for
the fraction of 2.8, corresponding to 𝐾𝑑𝑖𝑘𝑒 = €13.2 mln.

Lifetime of the dike
The mean lifetime is again varied from 60 to 100 years. The results are shown in figure 5.10.

Figure 5.10: Sensitivity analysis for lifetime variability for Scheldestromen

From figure 5.10 it again becomes apparent that the crest height is increasing for increasing values of
the mean lifetime, albeit at a slower rate than for dikering 17. A feasible and net positive result can
be found for all considered lifespans of the structure. The benefits remain relatively constant and the
costs increase linearly with the increase in crest height, as is to be expected.

Change of interest rate model
A final sensitivity analysis on the discounted rate is again performed. The constant rate with noise is
replaced in favour of the Brownian motion with drift. The results of the analysis are summarized in table
5.4.

Mean value of 𝛽 0.005 0.009
Chosen Δℎ [m] 2.5 2.7
Chosen reinforcement year [-] 2020∗ 2020∗
Benefits [mln. €] 1941 (1829, 2001) 2398 (2228 , 2944)
Costs [mln. €] 1042 (937, 1083) 1153 (1053, 1525)
Net result [mln. €] 898 (856, 941) 1245 (1164, 1332)

Table 5.4: Monte Carlo results for Dikering 29 for different values of 𝛽, using a Brownian motion to model the discount rate

∗ As the reinforcement years were clearly split between the start and end of the chosen reinforcement
period, the mode is displayed. However, the chosen reinforcement years had a larger variability in the
case of a lower value for 𝛽.
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Again, the results of the analysis of the CBA with a Brownian Motion as the model for the discount
rate are largely in agreement with the results where a constant rate with noise was used to model the
discount rate, displayed in table 5.3. The net result again appears to be slightly lower than when a
constant rate with noise is used, mainly due to the increased costs. The detailed results are shown in
figures 5.11a and 5.11b.

(a) Crest height increase (b) Net result of CBA

Figure 5.11: Monte Carlo results for Scheldestromen with 𝛽 = 0.009 using a Brownian Motion for the discount rate

The crest height distribution displayed in figure 5.11a is again nearly identical to the distribution found
when using a constant rate with noise. However, the net result displayed in figure 5.11b has a fatter
right tail than the net result in figure 5.7b. This indicates that either the costs or the benefits have
more probability mass in their extremes (left-tailed and right-tailed, respectively). This fatter right tails
is ”compensated” by a slight shift of the entire distribution to the left, which causes a nearly identical
mean for the constant rate with noise model and the Brownian Motion model. The results of the benefits
and costs for the analysis using a Brownian Motion for the discount rate for 𝛽 = 0.005 can be found in
figures C.24a and C.24b in the appendix. Looking at figure C.24b, the source of the rght fat tail can be
retrieved. The benefits are apparently slightly skewed towards larger values. This could be the result
of realisation of the Brownian Motion that run far into the positive for later time periods, constituting a
better investment moment than when the rate is positive.

The results for the case when 𝛽 = 0.005 in combination with a Brownian Motion for the interest rate have
the same characteristics as that of 𝛽 = 0.009, being nearly identical to that of the results for 𝛽 = 0.005
modelled by a constant rate with noise. The graphical results of this analysis can be found in figure
C.25.



6
Discussion

This chapter contains the discussion of the research. The chapter is divided in four sections which
discuss the obtained results and the proposed model.

The chapter starts with an evaluation of the proposed model. This will be done by comparing the out-
comes of the model with previously established outcomes on the expected costs for flood protections
under the given climate scenarios.

The second section considers the analysis of the results that were found. The results are discussed
along the three sub-questions that were posed in the introduction of this research. Starting with a
discussion on the results of the obtain economical framework. Next, the second sub-question on the
economic viability of the polderconcept in the temporal domain will be discussed. Hereto, the results of
the two case studies are discussed. The third section takes a closer look at the sensitivity of the differ-
ent parameters used in the analysis of the case studies, and analyzes the most influential parameter.
Finally, the fourth section will summarize the analysis of the three sub-questions to provide the results
to the main question posed in this research.

The third section contains the implications of the analysed results from the second section. These im-
plications are discussed with the advice of the Deltacommissioner in mind, providing an advice based
on the outcomes of this research with respect to the economical viability of the polderconcept.

The fourth and final section discusses several limitations of the model. Three main limitations are
pointed out and discussed in the presented framework. These limitations concern the use of the dis-
count rate, the number of cost and benefit functions within the framework and the inclusion of non-
quantifiable costs and benefits into the model.
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6.1. Model evaluation
This section will examine the results of the research and compare them to research carried out in the
past to evaluate the results of the model. Kok et al. (2008) estimate the costs of keeping the Nether-
lands at a similar risk level at around €0.5 to 1.0 bln per year. The analysis performed in this research
was for an 80 year lifetime, hence the costs estimated by Kok et al. (2008) would be anywhere in
between €40 and 80 bln. for all flood defences in the Netherlands in this period. In chapter A.3.1 it
became apparent that the local water authorities that dikering 17 and 29 lie in have an annual budget
of 3.6% and 2.3% of the assumed annual budget of the Netherlands, respectively. This results in an
annual budget of 18 - 36 mln. €for dikering 17 and €11.5 - 23 mln. for dikering 29. Over the 80-year
lifespan this would be anywhere between €1.44 - 2.88 bln. and €0.92 - 1.84 bln. for dikering 17 and
29 respectively.

Kok et al. (2008) estimate the costs of increasing the crest height of a dike in the Delta region by 1
meter per kilometer dike at around €14 mln. Hence, to make a fair comparison between the costs
proposed by this model and the costs derived by Kok et al. the corresponding crest height increases
for the different fractions of 𝐾𝑑𝑖𝑘𝑒 in the sensitivity analysis should be compared.

For dikering 17, a river dike with a length of 63 kilometers, the crest level increase is around Δℎ = 1.35
[m] for 𝐾𝑑𝑖𝑘𝑒/𝐾0 = 3.0. This yields a total expenditure for dike reinforcement for dikering 17 with the
figures provided above of 𝐶 = 1.35 · 14 · 63 = €1.2 bln. This is beneath the lower end estimate provided
in the research of Kok et al. although the difference is in the same order of magnitude.

For dikering 29, a sea dike with a length of 58.5 kilometers, the crest level increase is around Δℎ =
1.65 [m] for 𝐾𝑑𝑖𝑘𝑒/𝐾0 = 3.0. This yields a total expenditure for dike reinforcement for dikering 29 of
𝐶 = 1.65 · 14 · 58.5 = €1.35 bln. This estimate sits right in between the minimum and maximum of the
derived lifetime budget for this dikering.

This section has demonstrated that for dikering 29 the results lie within the expected range of results
provided by figures derived from Kok et al. (2008). For dikering 17 the costs were below the minimum
costs suggested by Kok et al. However, as this research searched for an optimization it is not unthink-
able that the total costs are slightly lower than in other research. As such, the conclusion is drawn that
the model performs within the range that is expected.

6.2. Analysis of results
This research set out to answer the research question:

When can the Dutch polder concept become economically unviable?

In order to answer the main question, three sub-questions are posed.

• Which frameworks for judging the economic viability of the polder concept are possible?
• How does the assessment of economic viability change over time?
• Which variable(s) has/have the most influential contribution to the the viability assessment?

The results for each of the sub-questions posed will be presented below. After the presentation of each
sub-question, the results will be generalized and summarized in the final section.

6.2.1. Framework for economical viability
This research argues that a cost benefit analysis (CBA) with two added components is beneficial to
the judgement of the economical viability of the polderconcept. The first component comes in the form
of an addition, namely that of temporal elements to the standard CBA. To this end the maximization is
performed over the crest height as well as time. Furthermore, the interest rate 𝑟𝑡 used in the discount-
ing process is given additional degrees of freedom by being able to vary over each time period. The
second component consist of a constraint on the possible reinforcement periods as well as the possi-
ble crest height increases. To this end, four constraints were determined and mathematically derived.
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These constraints were quantitatively assessed on their stringency and in the end, one constraint was
chosen for the framework and subsequent case study. This constraint stated that the cumulative yearly
budget of a polder should exceed the costs of reinforcement at the given reinforcement time and crest
height increase, to be a viable solution for the maximization problem.

The result of this sub-question is a mathematical framework that consists of three lines, shown below.

max
∀𝑡∈[𝑡1 ,...,𝑡𝑛 ], ∀Δℎ∈[0,∞]

𝑇∑
𝑡𝑖=1

𝐵𝑡(Δℎ) − 𝐶𝑡(Δℎ)∏𝑡
𝑗=1(1 + 𝑟 𝑗)

s.t. 𝐶𝑡(Δℎ) ≤
𝑡∑
𝑖=1

𝑃𝑖(Δℎ) ∃𝑡 ∈ [𝑡1 , ..., 𝑡𝑛], ∃Δℎ ∈ [0,∞]

𝑡1 , 𝑡2 , ..., 𝑡𝑛 ∈ [𝑡0 , 𝑡∗1], [𝑡0 , 𝑡∗2], ..., [𝑡0 , 𝑡∗𝑛]
The first line displays the original maximization problem of net result of the CBA. Where the net result
consist of the benefits at any over the crest height increase of a dike Δℎ, usually performed in any
ordinary CBA. However, as can be seen in the subscript of the maximization, it is maximized in Δℎ
for all the crest height increases as well as maximizedin 𝑡 for all the time periods. This is the first
addition that this research proposes. To minimize over time, the discounting process was modified
to include a variable interest rate per time period, rather than the constant interest rate commonly
assumed. The second and third line display two constraints on the maximization problem. Starting with
the second, this is where the additional budget constraint comes into play. It can be seen that there
should exists a combination of 𝑡 and Δℎ such that the costs incurred as a result of that combination
should be smaller than the cumulative budget up to that point. The third line introduces restriction for
the possible reinforcement moments 𝑡𝑖 , derived in equation 3.11 as a parameter that is based on the
allowable risk and the growth rates of sea level rise and assets.

6.2.2. Viability in the temporal domain
To examine the viability in the temporal domain, two case studies were performed based on the derived
framework for economic viability. These case studies consisted of dikering 17 and 29 in the Nether-
lands. The figures used in the analysis were derived from Slootjes and Wagenaar (2016) and Centraal
Bureau voor de Statistiek (2022a) and adjusted to better fit current predictions. Both of the case stud-
ies were performed for two climate scenario’s. In the case of dikering 17, this consisted of the 2100+
and 2100- scenario presented by the KNMI. For dikering 29 this consisted of the RCP4.5 and RCP8.5
scenarios presented by the IPCC.

The net result of the adjusted Cost-Benefit Analysis performed on the case studies was higher for an
increased rise in annual water level, rather than a lower increase in annual water levels. This result
holds for both the case studies. The outcome came as a surprise as it is generally accepted that a
higher water level requires an increase in crest height, which in turn would lead to higher expected
costs. However, for the two cases in consideration the increase in crest height was early twice as high
as one would expect when looking only at the expected sea or river level rise. Where dikering 17 ex-
pected 0.25 and 0.50 meter for the two scenarios respectively, the crest height increases were 1.0 and
1.3 meter. Similarly, for dikering 29 the expected sea level rise was around 0.6 and 1.1 meter, while
the maximization problem suggested optimal crest level increases of 2.5 and 2.7 meters respectively.
This indicates that the reduction in flood risk from an increase in crest height weights more heavily in
these cases than the costs of the physical strengthening does. As such, the costs between the two
scenarios only slightly increased as the crest height only marginally increased. The main driver of the
difference in net result therefore came from the difference in benefits. There was a larger difference in
benefits as the case with higher expected water level rise (for both case studies) commenced the crest
level increase earlier than the case with a lower expected water level rise. Therefore the reduction in
flood risk had more time to add to the benefits in the case with a higher water level rise, resulting in
high benefits.
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To conclude this section, the viability in the temporal domain seems to be easily reachable as the main
driver of the net result of the CBA is the reduction in flood risk over time. The parameters associated
with the two cases and the chosen parameters were such that the reduction in flood risk dominates the
increased costs of strengthening the dikes, making a higher crest level increase more favourable. A
different set of parameters might give a different outcome however, therefore the third sub-question of
this research was posed.

6.2.3. Sensitivity of parameters on the outcome of the assessment
To determine the parameters with the greatest influence on the economic viability of the polder in the
temporal domain, several sensitivity analyses were carried out on the performed case studies. To
distinguish between the several factors that contribute to the economic viability, the effect of each
varying parameters is displayed for each factor. The results of which are summarized in table 6.1.

𝛽 𝐸demand 𝐾𝑑𝑖𝑘𝑒 Lifetime 𝑟𝑡
Δℎ ++ - - 0 ++ 0

Chosen reinforcement year - 0 - - ±∗
Costs + - ++ + +
Benefits ++ - 0 + 0
Net Result + - - - 0 -

Table 6.1: Results of sensitivity analysis

∗ The change of the interest rate 𝑟𝑡 from a constant rate with noise to a Brownian motion with drift can
have either a positive or negative effect on the chosen reinforcement year

In this table, the parameters that were varied throughout the simulations are given in the columns,
whereas the parameters that were influenced are shown in the rows. The effects are qualitatively as-
sessed on a scale from −− to ++, where 0 means no effect. Note that the table refers to the effects of
[column] on [row] when the value in the columns is increased. The results found in table 6.1 hold for
both case studies.

The most notable results from the sensitivity analysis are summarized below.

• The cost of increasing a dike per meter crest height per kilometer is the most significant parameter
determining the economic viability of the polder.

• With a higher rate of sea level rate 𝛽 comes a larger need for crest height increase Δℎ over
time. However, this increase in crest height comes with costs as well as added benefits due to
decreased risk of flooding. The net result for both case studies became more positive for larger
values for 𝛽.

• The initial risk with respect to the demanded risk is influential for the required increase in crest
height, but does not provide a significant difference in the net result of the CBA. In particular, the
results remain relatively constant after the fraction 𝐸𝑑𝑒𝑚𝑎𝑛𝑑/𝐸0 hits 1.0.

• The lifetime of a dike predictably requires a larger increase in crest height for longer lifetimes.
Both the benefits and the costs increase with the same relative rate, yielding a (nearly) constant
net result for the CBA.

• Modelling the discount rate as a constant interest rate with noise produces nearly identical results
for the CBA, crest height increase and chosen reinforcement year as when the discount rate is
modelled as a Brownian Motion with drift.

6.2.4. Summary of results
Each of the three sub-questions provides a partial answer to the main question posed in this research.
This section collects the partial answers and summarizes them to give an answer to the main question.

Several ways of judging the economic viability of the polderconcept were deemed executable in this
research. All of the methods were concerned with an adjusted Cost-Benfit analysis that included a
constraint and the addition of temporal as well as parameter optimization. The considered parameter
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was the crest level increase that is needed for a dike to provide flood protection. Four constraints were
derived to judge the economic viability, of which one was chosen after a stringency derivation. The
constraint concerned the ability of the polder to financially sustain the needed reinforcements over it’s
lifetime, to be considered viable.

The result of this derivation was a mathematical framework that was used on two case studies, which
yielded an answer to the second sub-question on the temporal domain of economic viability. To this
end, simulations with the figures provided by the case study were performed. The result was a positive
outlook on the economic viability of polders over time, even seeing an increase in the net result of the
adjusted CBA for larger expected water level rises.

To generalize the results and make them less parameter dependent, a sensitivity analysis was per-
formed on three parameters and the modelling of the discount rate. The result was a qualitative as-
sessment of the most influential parameters on five key outcomes: The needed crest level increase
Δℎ, the chosen reinforcement year, the discounted costs, the discounted benefits and the net result of
the adjusted CBA. It became apparent that the most influential parameters on the chosen crest height
increase were the expected rate of sea level rise 𝛽 and the lifetime of the flood protection. The chosen
reinforcement year was relatively neutral throughout the parameters as it was often chosen to be rein-
forced immediately, going against conventional wisdom of delaying costs as much as possible to profit
on the discounting principle. The costs, benefits and net results are interwoven and will be assessed
by the latter component. The net result was greatly influenced by the cost of dike reinforcement 𝐾𝑑𝑖𝑘𝑒 .
This parameter influenced the costs in such a way that if taken too large, no feasible solution could be
found beyond certain crest height increases. The optimization even went as far as suggesting that for
values of 𝐾𝑑𝑖𝑘𝑒 above €17.4 mln.for Hollandse Delta the ”best” (e.g. economically the least expensive)
would be to not increase the crest height and accept the increased likelihood of a flood and all costs
that are associated with that.

This section is concluded with the answer to the original research question that: The polderconcept
is deemed economically viable based on the derived framework and performed case studies in this
research as long as the cost of per meter crest height increase per kilometer dike do not exceed a
certain threshold.

This threshold was found to be €11.3 mln. for dikering 29 and €5.5 mln. for dikering 17 in case of the
highest water level rise predictions. Note that these thresholds are set up according to a net positive
result of the adjusted CBA analysis and do not tell whether a (partial) migration is economically more
justified or not. To this end further research is needed.

6.3. Implications
The results of this research suggest that, taken on its own, the economic viability of the polderconcept
is lost for the two case studies considered when the costs of reinforcement exceeds a certain threshold.
If a policy or decision maker is solely interested in a net-positive result of costs and benefits, these
thresholds provide a very clear line at which to stay below. If it is not possible to reinforce the flood
defences below this price, the polderconcept can be considered economically unviable.

However, it may very well be possible that the question does not revolve around a net positive CBA but
rather against a better CBA result than the alternative. In this case, policy and decision makers should
question themselves to what extent they are willing to provide additional budget for flood protection
beyond the zero crossing of the net result of a Cost-Benefit Analysis. Alternatives, such as the (partial)
migration to other regions, should be fully analyzed in a similar fashion as was done in this research
to determine their net CBA results. It might very well turn out that a (partial) migration becomes eco-
nomically feasible only after a water level rise well above what is expected with current models. As
such the polderconcept remains the better option for years to come. However, it might also turn out
that (partial) migration will be the most economically feasible option within the expected water level rise.
The proverbial numbers should be crunched to determine the outcome of such an analysis.
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6.4. Limitations
The role of a model should be to assist in the decision making process. A model should therefore
reflect the aspects of reality that are important for the decision making process as best as possible.
Simultaneously, a model should be computationally feasible and perhaps more import: it should be
understandable. As such, a model will by definition be limited in it’s capabilities. The extend and scope
of these limitations is what distinguishes the quality of a model.

The proposed model in this research is computationally rather expensive and as such, limitations on
the scope of the model had to be put in place. This section will explain the limitations of the proposed
model.

6.4.1. Discount rate modelling
The discount rate in this research is modelled by a time-variable rate. The time variability allows for a
more flexible approach to model events such as downturns and uptakes in the economy and allow for
stochastic simulations of future scenario’s. The take in this research on the discount rate is a pragmatic
one, considering it as a variable that is to be estimated by data.

However, Lee and Ellingwood (2015) argue that using standardized figures for the discount rates for
time horizons beyond several decades do not capture the true costs for future generations. As choices
in Civil and Hydraulic engineering are often made for decades to come, the decision makers determine
the course of the infrastructure within a nation for a long time to come. Sometimes a choice might seem
(economically) right at the moment, but puts a large burden on future generations. To reduce the effect
of choosing optimally for the present but taking future burdens into consideration, Lee and Ellingwood
(2015) suggests carefully choosing the discount rate. This research illustrates that the discount rates
can be used for more than a quantitative analysis of future values, but can also be used to influence
policy and decision making. The model presented in this research does not incorporate such attributes
to the discount rate. However, as the interest rate modelling is made to be flexible in this research, it
is possible to manipulate it in such a way that smaller or larger rates are given to later dates, which
either discourages or encourages investment at a later moment. In this way the political aspect of the
discount rate can be implemented in the framework derived in this research.

6.4.2. Number of cost and benefit functions
This research took several cost and benefit functions into account for the CBA analysis. There are
however, many more aspects that one could think about that can be incorporated into the analysis. Ex-
amples of costs that could be considered is the added costs of introducing a large number of pumping
stations with increasing relative depth of the poldersystem with respect to the sea or river level or the
costs incurred as a result of the required sand nourishment due to additional coast erosion. On the
benefit side of the analysis one could think of a better perceived business climate when flood risk is
reduced. This business climate could in turn reduce interest rates on international loans or attract more
investors to the Netherlands.

The question one must ask him- or herself is whether the addition of more terms into either the cost
or benefit functions is worth the additional (computational) effort in relation to the added accuracy it
provides. The purpose of a model should always be to aid in the decision making process, not dominate
the decision making process.

6.4.3. Non-quantifiable costs and benefits
The previous section mentioned the addition of cost and benefit functions to the proposed model to
better capture some of the nuances in the assessment of the economic viability. This research focused
primarily on the most influential cost and benefit factors, which also needed to be quantifiable. There is
however an entire section of costs and benefits that are not so easily quantifiable but can play a large
part in the decision process on the viability of a poldersystem.

On the cost-side of the analysis this can consist of, but is not limited to, the perceived risk. On the
benefit-side of the analysis one could think of the increased utility of inhabitants of an area when the
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flood risk is reduced. People might feel less stressed and have an overall better quality of life when
the flood defences are strengthened, which contributes to a better quality of life. This improved quality
of life can be counted as a benefit, however the question then becomes how one can quantify such a
benefit in monetary terms for a fair value comparison.



7
Conclusion & Recommendation

This final chapter consists of two parts, a conclusion of the report and recommendation on further
research. The conclusion summarizes the most important findings of this report and condenses them
into an answer to the original research question. The section on recommendations consists of three
recommendations. On the inclusion of terms used in the assessment of the economic viability, one on
the extension of the model to incorporate risk aversion and finally one recommendation to incorporate
the spatial domain in the analysis as well.
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7.1. Conclusion
This research concerned itself with the assessment of the economic viability of the Dutch polder concept
in light of the changing climate. As such, the main research question was posed as:

When can the Dutch polder model become economically unviable?

To answer this question a framework for economic viability was constructed based on a Cost Benefit
Analysis (CBA) derived by Eijgenraam (2006), but with the addition of constraints, stochastic param-
eters and the inclusion of a variable discount rate. The posed constraint concerned the ability of the
polder to finance itself throughout the reinforcements within its lifetime. The addition of a variable
discount rate and the addition of stochastic parameters over the lifetime allowed for the inclusion of
temporal elements into the CBA.

The derived framework was subsequently used to analyse two case studies based on regions in the
Netherlands. The two case studies were based on the dikering of IJsselmonde (dikering 17) and the
dikering ofWalcheren (dikering 29). The results were determined for the two climate scenario’s posed
by the IPCC and KNMI. The results were determined for the two climate scenario’s posed by the IPCC
and KNMI by means of a Monte Carlo simulation. In the base case, both dikerings were deemed eco-
nomically viable for both climate scenario’s.

To quantify the effects that individual parameters had on the analysis of economic viability, a sensitivity
analysis was performed. To this end, four parameters were varied and the analysis was run again to
assess the difference. The result was a qualitative assessment of the most influential parameters on
the economic viability of the two polders in consideration. The costs of raising a dike per meter per
kilometer 𝐾𝑑𝑖𝑘𝑒 was found to be most influential on the results of the CBA.

The case studies led to the conclusion that the polderconcept is deemed economically viable based
on the derived framework in this research as long as the cost of per meter crest height increase per
kilometer dike do not exceed a certain threshold. When the costs exceed a factor 2.5 for Walcheren
of and a factor of 1.2 for IJsselmonde, the economic viability, as judged in this framework, is lost. For
the simplified cases this leads to thresholds of €11.3 mln. forWalcheren and €5.5 mln, for IJsselmonde.

Note that economically viable in this context means that the net results of the simplified case studies
remains positive. However, even if the results turns negative the choice for increasing the crest height
might remain the most economically justified choice. This is because the marginal costs of increasing
the crest height is still lower than the marginal flood risk that is added as a result of the water level rise.
For Scheldestromen, the net results turns negative but for costs considered in this research there is
an optimal crest level height increase above zero. This indicates that heightening the dikes will always
yield an economic better result than refraining from crest height increase. In this sense, the poldercon-
cept can be seen as viable for this simplified case. For Hollandse Delta there is a point where there
is no longer an optimal crest level increase above 0 meters. The crest height increase turns to zero
around 3.7 times the original marginal dike reinforcement costs.

This research has opened up the possibility to compare alternatives over different time periods and
reinforcement measures with different constraints and stochastic parameters, adding to the work done
by Eijgenraam.

7.2. Recommendation
This section provides three recommendations for the advancement of research on the topic of economic
viability of the polderconcept. The first recommendation is about including more elements in the costs
and benefits functions of the presented framework. The second recommendation concerns the addition
of risk aversion into the model.The final recommendation is about introducing a spatial aspect to either
this or a completely new model.
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7.2.1. Model extension
It has been mentioned as a limitation of the model in the previous chapter: The inclusion of more costs
and/or benefit functions into the analysis. Currently two terms are quantified for the costs, the costs
incurred when the crest level is elevated and the costs as a result of an increase in flood risk. On the
benefit side one term is included in this research, namely that of the decrease in expected costs as a
result of the decreased probability of flooding.

Although the included costs and benefits constitute the majority share of costs and benefits, they are
by no means the definitive list. Extending the list of costs and benefits will increase the accuracy
of the model evaluation. A balance should be sought between adding components and keeping the
model computationally feasible and comprehensible. The section is concluded with the suggestion to
include the costs of coastal erosion and added pumping capacity first, as these costs would most likely
contribute the largest share.

7.2.2. Risk aversion
The assessment of the viability of a polder as on a whole is not limited to the economic viability. In
fact, it is not even complete when the technical viability is factored in. A large part of the viability of
a polder, or any for that matter, is dependent on the number of people that deem it a place that they
would like to reside. Determining what a suitable place is to live, is partly determined by the risk per-
ception that the individuals have of said area. This risk perception does not necessarily have to reflect
the true risk. With small probabilities, people are notoriously bad at estimating their true frequency of
occurrence. Examples of this are insurance against unlikely events or the irrational fear of dying in a
plane crash, while happily going to work by car each day. The same can occur with the probability of
flooding. People can feel unsafer than they truly are, resulting in a low residence rate for an area that
is deemed ”unsafe” although it might well be perfectly safe.

The presented model results in a rather ”sterile” analysis of the polderconcept, looking at cold figures
on the viability. The reality however is that if people do not feel safe in a given area, they will not reside
there, no matter how safe it might really be. This phenomenon can be considered as an expression of
Risk aversion. The model would benefit from the inclusion of risk aversion in the required crest level
increase. A framework for such risk perception was presented by van Erp, 2017. The inclusion of risk
aversion would make the model more suitable for the adaptation by policy makers, who are often driven
by more than economic or technical motives.

7.2.3. The spatial domain
The analysis in this report was primarily focused on the temporal aspects of the viability of the polder-
concept. However, once can also think about the feasibility in the spatial domain. Although less used
for existing polders, during the design phase of a new area it is useful to know the limitations of the
size the polder can be made to keep it (economically) viable. To this end a spatial model with a similar
framework as created for the temporal domain could give a first indication of the limitations.

To encourage research into this area, the author has taken the liberty to set-up the beginnings of a
model that is likened to the temporal model derived in this research, but then for the spatial domain.
The set-up is presented in chapter B.
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A
Mathematical derivations, proofs and

extrapolations

A.1. Stringency of the financial constraints
To derive the stringency of each of the five approaches, the variables of the first polder will be taken
for the numerical example. These numerical examples use the previously derived formulas, with mod-
ifications for each approach. The approaches are judged based on the point where the increase in
crest height Δℎ, is no longer economically feasible by the criteria provided. Before the derivation of the
constraints, some general notation is introduced.

Costs
For the analysis in this report, the following costs were considered:

• 𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 : The costs associated with the loss of live as a result of a flood
• 𝐾𝑎𝑠𝑠𝑒𝑡𝑠 : The costs associated with the loss of assets as a result of a flood
• 𝐾𝑆𝐿𝑅(Δℎ): The costs that are incurred when increasing the crest height of a dike by Δℎ meters.

The total number of fatalities 𝑁 can be calculated as the integral of the product of the individual risk
and the population density over the area:

𝔼[𝑁] =
∬

𝐴
ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦)(𝑥, 𝑦)𝑃(𝑥, 𝑦)𝑑𝑥𝑑𝑦

When making the assumption that there is no spatial variation in the individual risk (𝐼𝑅) nor the popula-
tion density 𝑃, and assuming a circular polder shape, the expression above can be rewritten as:

𝔼[𝑁] = 𝐴 · 𝐼𝑅 · 𝑃 =
𝐿2𝑑𝑖𝑘𝑒
4𝜋

· ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) · 𝑃
The total cost of the loss of live is the expected number of lost lives multiplied by the valuation of a life.
This leads to the expression for the total costs of the loss of live shown in equation A.1.

𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 = 𝔼[𝑁] ·𝑉𝑙𝑖𝑣𝑒 =
𝐿2𝑑𝑖𝑘𝑒
4𝜋

· ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒 (A.1)

The expected loss of economic value is calculated via a similar integration of the individual risk of assets
over the area and asset density. Again making the assumption that the last two mentioned quantities
are constant over the area, the following expression for the expected loss of economic value 𝑆 can be
derived:

𝔼[𝑆] =
∬

𝐴
ℙ(𝑎𝑠𝑠𝑒𝑡)(𝑥, 𝑦)𝐻(𝑥, 𝑦)𝑑𝑥𝑑𝑦 =

𝐿2𝑑𝑖𝑘𝑒
4𝜋

· ℙ(𝑎𝑠𝑠𝑒𝑡) · 𝐻
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Such that the total costs due to the loss of assets is given by equation A.2.

𝐾𝑎𝑠𝑠𝑒𝑡𝑠 = 𝔼[𝑆] ·𝑉𝑎𝑠𝑠𝑒𝑡 =
𝐿2𝑑𝑖𝑘𝑒
4𝜋

· ℙ(𝑎𝑠𝑠𝑒𝑡) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 (A.2)

As this analysis is concerned with the increase or decrease in safety and the associated costs as a
result of an increase in river discharge or sea level rise, it is not the absolute costs that are taken into
account. The change in costs Δ𝐾 over a period T are considered, such that:

Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 = Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠,𝑇 − Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠,0

Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠 = Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠,𝑇 − Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠,0

The increase (or decrease) in safety is expressed solely in the 𝐼𝑅-terms. Ceteris paribus, the change
in cost Δ𝐾 via equation A.2 and A.1 can be written as

Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠 = Δℙ(𝑎𝑠𝑠𝑒𝑡) · 𝐿
2
𝑑𝑖𝑘𝑒

4𝜋
· 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡

Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 = Δℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) · 𝐿
2
𝑑𝑖𝑘𝑒

4𝜋
· 𝑃 ·𝑉𝑙𝑖𝑣𝑒

Next to expected costs due to loss of lives or assets, there is a cost to physically strengthening the
dikes to provide the required safety level. These costs are dependent on both the length of the dike
section and the cost of strengthening the dike per unit of length. These quantities are summarized in
equation A.3.

𝐾𝑆𝐿𝑅 = 𝐿𝑑𝑖𝑘𝑒 · 𝐾𝑑𝑖𝑘𝑒 where
𝐾𝑑𝑖𝑘𝑒 = 𝑓 (Δℎ𝑐𝑟𝑒𝑠𝑡 , ℎ0 , 𝑤0) as per equation 2.1

(A.3)

The costs for increasing the dike with a height Δℎ, is dependent on the geometry of the dike. For this
section it is assumed that the dike has the same general geometry as shown in figure 2.6.

Benefits
For this analysis, the followings revenue streams are considered:

• 𝐵𝑡𝑎𝑥 : The tax revenue generated by a local authority
• 𝐵𝑠𝑢𝑏𝑠𝑖𝑑𝑦 : The subsidy provided to a polder by the overarching government
• Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦 : The benefits in expected loss of human life as a result from an increased safety level
• Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠 : The benefits in expected loss of assets as a result from an increased safety level

The local authorities are assumed to raise taxes in a similar fashion as the Dutch local authorities, with
a fixed part and a variable part based on the value of your house. The tax-burden for an individual thus
becomes:

𝐵𝑡𝑎𝑥,𝑖 = 𝑇𝑓 𝑖𝑥𝑒𝑑 + Vwoz,i · 𝑇𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒
Such that the total tax revenue 𝐵𝑡𝑎𝑥 , which is the sum of all individual tax contributions 𝐵𝑡𝑎𝑥,𝑖 over all 𝑀
houses in a polder, becomes:

𝐵𝑡𝑎𝑥 =
𝑀∑
𝑖=1

𝐵𝑡𝑎𝑥,𝑖 = 𝑀 · 𝑇𝑓 𝑖𝑥𝑒𝑑 + 𝑇𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ·
𝑀∑
𝑖=1

Vwoz,𝑖 (A.4)

Next to the taxes raised by the local authority, a subsidy provided by the overarching governmental
body is provided. Such that for a system with 𝑁 polders, the 𝑖𝑡ℎ polder receives a share of the total
subsidy of:

𝐵𝑠𝑢𝑏𝑠𝑖𝑑𝑦,𝑗 = 𝐵𝑠𝑢𝑏𝑠𝑖𝑑𝑦 · 𝑝 𝑗 1 ≤ 𝑗 ≤ 𝑁 (A.5)

Where 𝑝 𝑗 is the fraction allocated to polder 𝑗. Such that:
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𝑁∑
𝑗=1

𝑝 𝑗 = 1 −→ 𝐵𝑠𝑢𝑏𝑠𝑖𝑑𝑦 =
𝑁∑
𝑗=1

𝐵𝑠𝑢𝑏𝑠𝑖𝑑𝑦,𝑗

This fraction can be determined in a plethora of ways. One such way is taking the ratio of the economic
value in area 𝑗 over the total economic value. Another possibility would be to take the ratio of the num-
ber of people in area 𝑗 over the total number of people in the system. This latter approach was chosen
for the numerical example later in this section.

Lastly, there is a not so obvious benefit to be gained in the polder concept. When the safety level in-
creases relative to the sea level rise, the polder will have a lower failure probability and thus individual
risk, both for assets and individuals. This decrease in turn leads to a lower expected loss of life 𝔼[𝑁]
and a lower expected loss of economic value 𝔼[𝑆], which constitutes a benefit. Conversely if the safety
level decreases, the expected loss in live and economic value increases. This leads to positive values
of Δ𝐾, constituting a cost.

Summing all benefits yields the total benefit 𝐵, as demonstrated in equation A.6.

𝐵 = 𝐵𝑡𝑎𝑥 + 𝐵𝑠𝑢𝑏𝑠𝑖𝑑𝑦,𝑗 + Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 + Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠

𝐵 = 𝑀 · 𝑇𝑓 𝑖𝑥𝑒𝑑 + 𝑇𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ·
𝑀∑
𝑖=1

𝑉𝑤𝑜𝑧,𝑖 + 𝐵𝑠𝑢𝑏𝑠𝑖𝑑𝑦,𝑖 · 𝑝𝑖 + Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 + Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠
(A.6)

In a similar fashion the total costs 𝐾 can be calculated, as demonstrated in equation A.7.

𝐾 = Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 + Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠 + 𝐾𝑆𝐿𝑅
𝐾 =

𝐿2𝑑𝑖𝑘𝑒
4𝜋

· (Δℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒 + Δℙ(𝑎𝑠𝑠𝑒𝑡) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡𝑠 + 𝐾𝑑𝑖𝑘𝑒 · 4𝜋
𝐿𝑑𝑖𝑘𝑒

)
(A.7)

A.1.1. Marginal cost ≤ Marginal utility
To asses this approach, the marginal cost 𝑀𝐾 and marginal benefit (revenue) 𝑀𝑅 functions should
first be defined. Assuming that the number of individuals, and therefore the number of houses, scales
with the size of the area, it is possible to rewrite equation A.6 with Δℎ as the only variable. Furthermore
the assumption is made that the government subsidy is divided by ratio of individuals in a polder over
the total number of individuals in the nation. Before deriving the marginals costs and benefits, the total
cost and benefit functions should be derived.

𝑇𝑅 =

{
𝐵 if Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 ,Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠 ≥ 0

𝐵 + Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 + Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠 if Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 ,Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠 < 0
(A.8)

𝑇𝐾 =

{
𝐾𝑆𝐿𝑅 + Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 + Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠 if Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 ,Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠 ≥ 0

𝐾𝑆𝐿𝑅 if Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 ,Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠 < 0
(A.9)

Note that the total revenue and costs following a dike strengthening are dependent on the loss or gain
of the expected number of fatalities or damaged assets. In particular, if no strengthening of the dike
is made, then the additional loss of life and damages due to the decrease in safety should be added
to the costs. Conversely, if it is decided that a dike is strengthened such that the probability of failure
decreases, than the additional safety can be calculated as revenue. This leads to two expressions for
the total costs and two expressions for the total revenue, dependent on the sign of Δ𝐾. It follows that
equation A.8 for polder 𝑛 out of 𝑁 can then be expressed as:

𝑇𝑅 =

{
𝐵 if Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 ,Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠 ≥ 0

𝐵 + 𝐿2𝑑𝑖𝑘𝑒 ,𝑛
4𝜋 (Δℙ(𝑎𝑠𝑠𝑒𝑡) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + Δℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒) if Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 ,Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠 < 0
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where:

𝐵 =
𝐿2𝑑𝑖𝑘𝑒 ,𝑛
4𝜋

(𝑇𝑓 𝑖𝑥𝑒𝑑 + 𝑇𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ·𝑉woz) + ( 𝐿𝑑𝑖𝑘𝑒 ,𝑛∑𝑁
𝑘=1 𝐿𝑑𝑖𝑘𝑒 ,𝑘

)2 · 𝐵𝑠𝑢𝑏𝑠𝑖𝑑𝑦 for k ≠ n

Furthermore, it follows that equation A.9 can be expressed as:

𝑇𝐾 =

{
𝐿2𝑑𝑖𝑘𝑒 ,𝑛
4𝜋 (Δℙ(𝑎𝑠𝑠𝑒𝑡) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + Δℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒 + 𝐾𝑑𝑖𝑘𝑒 · 4𝜋

𝐿𝑑𝑖𝑘𝑒
) if Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 ,Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠 ≥ 0

𝐾𝑑𝑖𝑘𝑒 · 𝐿𝑑𝑖𝑘𝑒 if Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 ,Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠 < 0

To get the marginal benefits (revenue) and marginal costs, the derivative with respect to the change in
dike height is taken, such that:

𝑀𝑅 =
𝜕𝑇𝑅
𝜕(Δℎ) and 𝑀𝐾 =

𝜕𝑇𝐾
𝜕(Δℎ) (A.10)

The dependence in the change in crest height for both 𝑇𝐾 and 𝑇𝑅 is in the term 𝐾𝑑𝑖𝑘𝑒 , as well as in
the increase (or decrease) in safety level Δℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) and Δℙ(𝑎𝑠𝑠𝑒𝑡). To this end, it is important to
specify the precise functions of both the safety levels as well as the costs to increase the dike height.

Assuming that the prices of reinforcing a dike are linearly proportional to the amount of material used,
the costs can be calculated using equation 2.1.

𝐾𝑑𝑖𝑘𝑒 = Δ𝐴 · 𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡
= (𝑛2 − 1)(𝑦ℎ2 + 1

2
𝑥ℎ) + (𝑛 − 1)(𝐵ℎ + 1

2
𝑑ℎ) · 𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡

(A.11)

where 𝑛 = ℎ+Δℎ
ℎ = 1 + Δℎ

ℎ .

For the individual risks, both to buildings and to people, it is assumed that an increase of Δℎ is needed to
maintain the same risk. For the sake of this example, any meter below or above the required height for
maintaining the current individual risk ℎ+Δℎ, reduces or increases the risks by a factor 10. Furthermore
it is assumed that the expected sea level rise (SLR) has to balance the increase in crest height Δℎ, and
that no additional height is needed. The increase in Δ𝐼𝑅 after some time T then becomes:

Δℙ = Δℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) = Δℙ(𝑎𝑠𝑠𝑒𝑡) = ℙ𝑇 − ℙ0

= ℙ0 · 10𝑆𝐿𝑅−Δℎ − ℙ0 = ℙ0 · (10𝑆𝐿𝑅−Δℎ − 1)
or, as this example is about order of magnitudes, a simple natural power function can be assumed
instead of a power function with base 10, such that:

Δℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) = Δℙ(𝑎𝑠𝑠𝑒𝑡) = ℙ0 · (𝑒𝑆𝐿𝑅−Δℎ − 1)
Defining the change in cost in this manner allows for the manipulation of the conditions in equation A.8
and A.9. Instead of Δ𝐾, one can write the domain of the function as two disjoint intervals based on the
increase in crest height and the sea level rise, such that:

if Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 ,Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠 ≥ 0 −→ SLR ≥ Δℎ

if Δ𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 ,Δ𝐾𝑎𝑠𝑠𝑒𝑡𝑠 < 0 −→ SLR < Δℎ

Hence equation A.8 and A.9 now become:

𝑇𝑅 =

{
𝐵 for SLR < Δℎ

𝐵 + 𝐿2𝑑𝑖𝑘𝑒 ,𝑛
4𝜋 (Δℙ(𝑎𝑠𝑠𝑒𝑡) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + Δℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒) for SLR ≥ Δℎ
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𝑇𝐾 =

{
𝐿2𝑑𝑖𝑘𝑒 ,𝑛
4𝜋 (Δℙ(𝑎𝑠𝑠𝑒𝑡) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + Δℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒 + 𝐾𝑑𝑖𝑘𝑒 · 4𝜋

𝐿𝑑𝑖𝑘𝑒
) for SLR < Δℎ

𝐾𝑑𝑖𝑘𝑒 · 𝐿𝑑𝑖𝑘𝑒 for SLR ≥ Δℎ

The marginal revenue for the case where 𝑆𝐿𝑅 ≥ Δℎ, yields the following derivation:

𝑀𝑅 =
𝜕(𝐵 + 𝐿2𝑑𝑖𝑘𝑒 ,𝑛

4𝜋 · (𝑒𝑆𝐿𝑅−Δℎ − 1) · (ℙ(𝑎𝑠𝑠𝑒𝑡, 0) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦, 0) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒))
𝜕(Δℎ)

= −
𝐿2𝑑𝑖𝑘𝑒 ,𝑛 · (𝑒𝑆𝐿𝑅−Δℎ − 1)

4𝜋
· (ℙ(𝑎𝑠𝑠𝑒𝑡, 0) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦, 0) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒)

When the sea level rise is larger than the increase in crest height, the marginal revenue only consist of
𝐵. As 𝐵 is independent of Δℎ, it’s derivative is equal to zero. Combining this yields equation A.12.

𝑀𝑅 =

{
0 for SLR < Δℎ

= − 𝐿2𝑑𝑖𝑘𝑒 ,𝑛 ·(𝑒𝑆𝐿𝑅−Δℎ−1)
4𝜋 · (ℙ(𝑎𝑠𝑠𝑒𝑡, 0) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦, 0) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒) for SLR ≥ Δℎ

(A.12)

For the marginal costs, the derivative of the dike reinforcement costs are shown first.

𝜕𝐾𝑑𝑖𝑘𝑒
𝜕(Δℎ) =

((𝑛2 − 1)(𝑦ℎ2 + 1
2 𝑥ℎ) + (𝑛 − 1)(𝐵ℎ + 1

2 𝑑ℎ)) · 𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡
𝜕(Δℎ)

=
((Δℎ2ℎ2 + 2Δℎ

ℎ )(𝑦ℎ2 + 1
2 𝑥ℎ) + (Δℎℎ )(𝐵ℎ + 1

2 𝑑ℎ)) · 𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡
𝜕(Δℎ)

= 𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 · (Δℎ2𝑦 + Δℎ𝑥
ℎ

+ 2𝑦ℎ + 𝑥 + 𝑏 + 1

2
𝑑)

The marginal costs are always non-zero, regardless of the value of Δℎ in relation to 𝑆𝐿𝑅. Starting with
the case where SLR ≥ Δℎ, the following expression is found:

𝑀𝐾 =
𝜕𝐾𝑑𝑖𝑘𝑒 · 𝐿𝑑𝑖𝑘𝑒

𝜕(Δℎ)
= 𝐿𝑑𝑖𝑘𝑒 · 𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 · (Δℎ2𝑦 + Δℎ𝑥

ℎ
+ 2𝑦ℎ + 𝑥 + 𝑏 + 1

2
𝑑)

In the case that SLR < Δℎ, the following expression is found:

𝑀𝐾 =
𝜕(𝐿2𝑑𝑖𝑘𝑒 ,𝑛 · (𝑒𝑆𝐿𝑅−Δℎ − 1) · (ℙ(𝑎𝑠𝑠𝑒𝑡, 0) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦, 0) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒 + 𝐾𝑑𝑖𝑘𝑒 · 4𝜋

𝐿𝑑𝑖𝑘𝑒
))

4𝜋 · 𝜕(Δℎ)
= 𝐿𝑑𝑖𝑘𝑒 ,𝑛 · 𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 · [Δℎ2𝑦 + Δℎ𝑥

ℎ
+ 2𝑦ℎ + 𝑥 + 𝑏 + 1

2
𝑑]

− 𝐿2𝑑𝑖𝑘𝑒 ,𝑛 · (𝑒𝑆𝐿𝑅−Δℎ − 1)[ℙ(𝑎𝑠𝑠𝑒𝑡, 0) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦, 0) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒
4𝜋

]

Combining these two expressions with their corresponding domain yields an equation that shows the
marginal costs. This is displayed in equation A.13.

𝑀𝐾 =


𝐿𝑑𝑖𝑘𝑒 ,𝑛 · 𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 · (Δℎ2𝑦 + Δℎ𝑥

ℎ + 2𝑦ℎ + 𝑥 + 𝑏 + 1
2 𝑑)

−𝐿2𝑑𝑖𝑘𝑒 ,𝑛 · (𝑒𝑆𝐿𝑅−Δℎ − 1)[ℙ(𝑎𝑠𝑠𝑒𝑡,0)·𝐻·𝑉𝑎𝑠𝑠𝑒𝑡+ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦,0)·𝑃·𝑉𝑙𝑖𝑣𝑒
4𝜋 ] for SLR < Δℎ

𝐿𝑑𝑖𝑘𝑒 · 𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 · (Δℎ2𝑦 + Δℎ𝑥
ℎ + 2𝑦ℎ + 𝑥 + 𝑏 + 1

2 𝑑) for SLR ≥ Δℎ

(A.13)
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To maximize profit, the two quantities 𝑀𝑅 and 𝑀𝐾, should be set equal to one another. Two cases
are distinguished, based on the domain of the functions:

Sea level rise smaller than crest height increase (SLR < Δℎ)
In this scenario the marginal revenue is equal to zero. This leads to the following equality:

𝐿𝑑𝑖𝑘𝑒 ,𝑛 · 𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 · [Δℎ2𝑦 + Δℎ𝑥
ℎ

+ 2𝑦ℎ + 𝑥 + 𝑏 + 1

2
𝑑]

− 𝐿2𝑑𝑖𝑘𝑒 ,𝑛 · (𝑒𝑆𝐿𝑅−Δℎ − 1)[ℙ(𝑎𝑠𝑠𝑒𝑡, 0) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦, 0) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒
4𝜋

] = 0

Sea level rise larger than crest height increase (SLR ≥ Δℎ)
This case yields the following equality:

𝐿𝑑𝑖𝑘𝑒 · 𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 · (Δℎ2𝑦 + Δℎ𝑥
ℎ

+ 2𝑦ℎ + 𝑥 + 𝑏 + 1

2
𝑑) =

−
𝐿2𝑑𝑖𝑘𝑒 ,𝑛 · (𝑒𝑆𝐿𝑅−Δℎ − 1)

4𝜋
· (ℙ(𝑎𝑠𝑠𝑒𝑡, 0) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦, 0) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒)

Figure A.1: Marginal revenue and costs as function of Δℎ

Both of these cases do not have a closed form expression for Δℎ. However, a graphical interpretation
can help in understanding the numerical solution. A graphical interpretation of the solution is shown in
figure A.1. There are two points where the marginals are equal, which are approximately at Δℎ = 2.8
[m] and Δℎ = 4.6 [m]

A.1.2. Budget for flood protection = Expenses flood protection
Where the previous approach used the marginals of the costs and benefits, this approach looks at the
totals of the costs and benefits. The goal is not maximizing the marginal utility of an additional unit Δℎ,
but rather maximizing the total utility. Hence, expression for the total costs 𝑇𝐾 and the total benefits
(revenue) 𝑇𝑅 are needed. For this purpose, equation A.8 and A.9 can be used. Setting the total costs
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and benefits equal to one another leads to the following expressions, again distinguishing two cases:

Sea level rise smaller than crest height increase (SLR < Δℎ)

𝐿2𝑑𝑖𝑘𝑒 ,𝑛
4𝜋

(𝑇𝑓 𝑖𝑥𝑒𝑑 + 𝑇𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ·𝑉woz) + ( 𝐿𝑑𝑖𝑘𝑒 ,𝑛∑𝑁
𝑘=1 𝐿𝑑𝑖𝑘𝑒 ,𝑘

)2 · 𝐵𝑠𝑢𝑏𝑠𝑖𝑑𝑦

=
𝐿2𝑑𝑖𝑘𝑒 ,𝑛
4𝜋

(Δℙ(𝑎𝑠𝑠𝑒𝑡) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + Δℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒 + 𝐾𝑑𝑖𝑘𝑒 · 4𝜋
𝐿𝑑𝑖𝑘𝑒

)

Sea level rise larger than crest height increase (SLR ≥ Δℎ)
In case of a larger sea level rise than increase in crest height, the following expression is found:

𝐵 +
𝐿2𝑑𝑖𝑘𝑒 ,𝑛
4𝜋

(Δℙ(𝑎𝑠𝑠𝑒𝑡) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + Δℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒) = 𝐾𝑑𝑖𝑘𝑒 · 𝐿𝑑𝑖𝑘𝑒
Again, in neither case a closed form solution for Δℎ can be found. However, it is possible to derive a
numerical solution and graphical interpretation. This graphical interpretation is given in figure A.2.

Figure A.2: Total revenue and costs as function of Δℎ

Interestingly, in this case there is no point where the total revenue exceeds the total costs in the first
part domain (𝑆𝐿𝑅 < Δℎ). There is however a point in the second part of the domain (𝑆𝐿𝑅 ≥ Δℎ)
where the total revenue first exceeds the total costs. This point is around Δℎ = 1.8 [m], after which the
total revenue will increase faster than the total costs for increasing Δℎ. This would mean that, for this
particular polder and parameters, increasing the dike height always appears to be a financially smart
decision. It should however be noted that physically this can not be true, as there must come a point
of diminishing returns for the increase in safety against the cost of heightening a dike.

A.1.3. Individual risk = constant
In this approach the government is assumed to maintain a constant individual risk for each inhabitant.
For the stringency analysis that means that the increase in crest level Δℎ should equal the increase (or
decrease) in sea level rise. Then the total costs can be compared to the total revenue from an area,
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after which an economic assessment can be made. This approach only has one scenario, namely that
Δℎ = SLR. The total revenue by equation A.8 thus reduces to:

𝑇𝑅 = 𝐵 =
𝐿2𝑑𝑖𝑘𝑒 ,𝑛
4𝜋

(𝑇𝑓 𝑖𝑥𝑒𝑑 + 𝑇𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ·𝑉woz) + ( 𝐿𝑑𝑖𝑘𝑒 ,𝑛∑𝑁
𝑘=1 𝐿𝑑𝑖𝑘𝑒 ,𝑘

)2 · 𝐵𝑠𝑢𝑏𝑠𝑖𝑑𝑦 for k ≠ n

The total cost, by equation A.9, reduces to:

𝑇𝐾 = 𝐾𝑑𝑖𝑘𝑒 · 𝐿𝑑𝑖𝑘𝑒 = ((Δℎ
2

ℎ2
+ 2Δℎ

ℎ
)(𝑦ℎ2 + 1

2
𝑥ℎ) + (Δℎ

ℎ
)(𝐵ℎ + 1

2
𝑑ℎ)) · 𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 · 𝐿𝑑𝑖𝑘𝑒

Equating these two quantities yields a closed-form solution for the increase in crest height. As the
combined equation is quadratic in form, only the positive solution for Δℎ is shown here.

Δℎ =
ℎ · (

√
( 2ℎ · (𝑦ℎ2 + 1

2 𝑥ℎ) + 𝐵ℎ + 1
2 𝑑ℎ)2 +

4·(𝑦ℎ2+ 1
2
𝑥ℎ)·( 𝑇𝑅·ℎ

𝐿𝑑𝑖𝑘𝑒 ·𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 )
ℎ − 2

ℎ · (𝑦ℎ2 + 1
2 𝑥ℎ) − (𝐵ℎ + 1

2 𝑑ℎ)
2 · (𝑦ℎ2 + 1

2 𝑥ℎ)
Where 𝑇𝑅 is the expression for the total revenue. Solving this equality with the values from table 3.1
yields that the increase in crest height is approximately Δℎ = 0.38 [m]. This intersection point of total
costs and total revenue can also be derived graphically, via figure A.3.

Figure A.3: Total costs and revenue for constant individual risk

Note that the x-axis on this figure only goes up to the assumed SLR of 1 [m], per definition of this
approach. It becomes apparent that the required Δℎ = 𝑆𝐿𝑅 = 1 [m] is not reached before the polder
becomes financially unfeasible. Although the total revenue is independent of Δℎ, the assumption for
the provided subsidy or raised tax is of great influence on the financial feasibility of the polder. If it
is assumed that there just one polder that receives all of the subsidy, the point of feasibility jumps to
Δℎ = 0.8 [m]. Similarly, if the subsidy provided increases, the line shifts upwards. Particularly, if the
subsidy is multiplied by a factor of 2.8, the polder is on the edge of financial feasibility for an expected
SLR of 1 meter.
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A.1.4. Reinforcement costs for flood protection ≤ Expected damages due to
flooding

For this approach the expected damage due to flooding should first be assessed. These expected
damages can be expressed in the variables 𝐾 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡 𝑖𝑒𝑠 and 𝐾𝑎𝑠𝑠𝑒𝑡𝑠 , which are given in equations A.1
and A.2 respectively. Combining the two expressions yields equation A.14.

𝔼[𝑑𝑎𝑚𝑎𝑔𝑒𝑠 |𝐹𝑙𝑜𝑜𝑑𝑖𝑛𝑔] = 𝔼[𝑁] +𝔼[𝑆]

=
𝐿2𝑑𝑖𝑘𝑒
4𝜋

· (ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦, 𝑇) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒 + ℙ(𝑎𝑠𝑠𝑒𝑡, 𝑇) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡𝑠)
(A.14)

Where ℙ(𝑎𝑠𝑠𝑒𝑡, 𝑇) and ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦, 𝑇) are the values of the individual risk to assets and individuals
at time 𝑇, with no intervention being made on the flood defences. Hence these quantities can be ex-
pressed as:

ℙ(𝑎𝑠𝑠𝑒𝑡, 𝑇) = ℙ(𝑎𝑠𝑠𝑒𝑡, 0) · 𝑒𝑆𝐿𝑅
ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦, 𝑇) = ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦, 0) · 𝑒𝑆𝐿𝑅

Such that equation A.14 can be rewritten as:

𝔼[𝑑𝑎𝑚𝑎𝑔𝑒𝑠 |𝐹𝑙𝑜𝑜𝑑𝑖𝑛𝑔] = 𝐿2𝑑𝑖𝑘𝑒 · 𝑒𝑆𝐿𝑅
4𝜋

· (ℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦, 0) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒 + ℙ(𝑎𝑠𝑠𝑒𝑡, 0) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡𝑠)

The costs for flood protection reinforcement are dependent on the required reinforcement height (and
corresponding width), the length of the dike and the costs of reinforcement, as given in equation A.11.
Replacing 𝑛 with the expression for the change in crest height leads to equation A.15.

𝐾𝑑𝑖𝑘𝑒 = 𝐿𝑑𝑖𝑘𝑒 · Δ𝐴 · 𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡
= 𝐿𝑑𝑖𝑘𝑒 · 𝑃𝑟𝑒𝑖𝑛 𝑓 𝑜𝑟𝑐𝑒𝑚𝑒𝑛𝑡 · (Δℎ2𝑦 + 2Δℎ𝑦ℎ + Δℎ2𝑥

2ℎ
+ Δℎ𝑥 + Δℎ𝐵 + Δℎ𝑑

2
) (A.15)

These two expressions allow for the derivation of an upper limit for increase in crest height. Assuming
a similar structure for the individual risks as in the marginal costs and benefits section and setting A.14
equal to A.15, a numerical solution for Δℎ can be found. Using the values for all parameters but Δℎ from
table 3.1 yields a graphical interpretation of this approach, shown in figure A.4. The expected damages
have a constant value as they are taken as the expected costs that are incurred for a scenario where
there is no dike reinforcement.

The reinforcement costs are lower than the expected damage for any Δℎ up to approximately Δℎ = 3.6
[m].

A.2. Proposed models for the interest rate
To determine the most suitable model for modelling the interest rate, three options are presented in
this section. First a model for a constant interest rate will be shown, next a model for the interest rate
modelled by an ARMA(p,q) model will be shown. Finally a model for the interest rate modelled by a
Brownian motion will be discussed. These models will then be incorporated into the NPV expression
to conclude the section.

A.2.1. Constant interest rate with noise
A first step in determining the constant interest rate would be to look at some summary statistics of
the historical data. These summary statistics are shown in table 4.3. A possibility could be to take
the mean value of the interest rate of the 60 year period as the constant interest rate. However, when
looking at the standard deviation it becomes apparent that there is a large deviation from the mean
throughout the years. Not only is there a large deviation, two distinct periods can be observed in figure
C.16. In the first period, ranging from 1960 to 1980, the interest rate is steadily increasing from 4.5 to
12%. This constitutes a growth rate of around 0.38% per year. The second period, starting in 1980
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Figure A.4: Expected damages and reinforcements costs as function of Δℎ

and ending in 2020 is a period of steady decline, starting with in 1980 at 12% and ending in 2020 at
a slightly negative value of -0.38%. This constitutes a growth rate of around -0.31%. Averaging both
periods out, the constant interest rate in the first period would be 8.25% and in the second period 5.75%.

However, a notable event happened around the turn of millennium, where the Netherlands joined the
European Union and with that the Economic and Monetary Union (EMU) as well. The European Central
Bank has set four criteria for membership of the EMU, as per February 1992 according to the Maastricht
Treaty. The fourth of which being that the governmental bonds should not exceed a 2% interest rate,
in line with the inflation targets set by the aforementioned organisation. It would therefore make sense
that the long-term interest rate should not exceed 2% in the case of a constant interest rate. The as-
sumption is made that the same steady trend upwards as the first time period (1960 - 1980) occurs after
2020, and the interest rate is kept locked to 2% after it first hits the 2% mark. This means that, starting
in 2020, the interest rate will hit 2% after six years, after which it is kept fixed for the remaining 24 or 74
years. The average interest rate for 2050 is taken as the weighted average of the preceding interest
rates, making the interest rate 𝑟2050 = 1.73%. The same exercise can be done for 2100, coming to an
interest rate 𝑟2100 = 1.89%. The noise that is added to this constant rate, to give it the appearance of a
natural rate, is assumed to be normally distributed. The standard deviation is chosen to be a quarter
of the value of the interest rate.

This section concludes with the observation that due to the large variability in interest rates it seems
almost foolish to set the interest rate at a fixed value for projects that range from 30 to 80 years. The
following sections will therefore research a variable interest rate.

A.2.2. ARMA(p,q) model
To determine the correct specification for an ARMA(p,q) model, the first step is to look at the autocor-
relation and partial autocorrelation of the time series. These are shown in figure A.5
The partial autocorrelations display some information on the appropriate number of lags to include for
the AR section of the model. The autocorrelation itself does not shown any useful information on the
MA section. As this might be a sign of the presence of a unit root and therefore non-stationarity, a
Dicky Fuller test is performed. The test statistic has a value of -0.0575 (p-value of 0.953), which is well
below the threshold of the critical value to reject the 𝐻0 of nonstationarity. To solve this issue, the first
difference of the time series is taken. The result of taking the first difference is shown in figure C.7. The
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Figure A.5: (Partial) Autocorrelations of interest rates

Dickey-Fuller test is performed again and now a test statistic of -6.151 (p-value of 7.6 · 10−8) is found,
giving enough confidence to reject the 𝐻0 of non-stationarity, and the conclusion is drawn that the time
series is now stationary. This allows for the use of the (partial) autocorrelations for a first estimation of
the order of the ARMA model. The (partial) autocorrelations are shown in figure A.6.

Figure A.6: (Partial) Autocorrelations of interest rates after taking first differences

Based on these autocorrelations an ARMA(1,1) appears to be a good first estimate. Next to the
ARMA(1,1) model, 35 other models are compared via the Akaike Information Criteria (AIC). Six or-
ders per term (both AR and MA) were compared. The five models with the lowest score are presented
in table A.1.

Order of ARMA(p,q) AIC
(2,3) 140.04
(2,4) 140.12
(4,2) 140.18
(4,3) 141.69
(3,4) 141.90

Table A.1: Akaike Information Criteria for five different ARMA models

It becomes apparent that an ARMA(2,3) model has the best AIC out of 36 combinations of models. The
initial guess of an ARMA(1,1) model has an AIC of 144.05, ranking it at a 19th place. Deriving a model
with the given time series and specifications above yields a model with parameters as displayed in
table D.3, including the standard deviation and significance of the parameter. All of the MA parameters
appear not to be of significance and hence, the order was reduced by one, from three to two. This
yields the model in table A.2, of which all of the parameters are significant.
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Parameter Value Standard deviation p-value
𝜑1 0.53 0.132 0.000
𝜑2 -0.88 0.119 0.000
𝜃1 -0.36 0.159 0.024
𝜃2 0.85 0.159 0.00

Table A.2: Parameter estimation of ARMA(2,2) model

To examine whether the removal of one MA term did not result in a loss of information, the residuals
are inspected on their properties. If the model captures the elements of the time series, the residuals
are expected to behave as white noise. To verify this, the residuals are plotted in figure C.8 and the
probability density function of the residuals are shown in figure C.9. These figures give a good indication
that the residuals are standard normally distributed, adhering to the white noise properties. To verify
this numerically a Ljung-Box test, as given per equation A.16 was performed on the first five lags.

𝐿𝐵 = 𝑛(𝑛 + 2)
ℎ∑
𝑘=1

𝜌𝑘
2

𝑛 − 𝑘 ∼ 𝜒2
1−𝛼(ℎ) (A.16)

All of these yielded values below the criteria of 𝑄 > 𝜒2
0.05(5), resulting in p-values above 0.77. Hence

the 𝐻0 of independently distributed data is not rejected and it can be concluded that the data is indeed
non-correlated. Further confirmation is obtained when looking at a QQ-plot of the residuals, shown in
figure A.7, which display a (near) one-to-one alignment of the theoretical quantiles with the empirical
quantiles. The (partial) autocorrelation, displayed in figure C.10, give final confirmation of the white
noise properties.

Figure A.7: QQ-plot of residuals of ARMA(2,2) model

The (partial) autocorrelation, displayed in figure C.10, give final confirmation of the white noise proper-
ties.

The time series model is now properly defined, which yields the following model that will be used to
predict the risk free interest rate 𝑟𝑡 for the desired investment period.

Δ𝑟𝑡 = 0.53Δ𝑟𝑡−1 − 0.88𝑟𝑡−2 + 𝜀𝑡 − 0.36𝜀𝑡−1 + 0.85𝜀𝑡−2

A.2.3. Brownian Motion
To construct the Brownian motion the following parameters need to be extracted from the data set:
𝜇: The drift coefficient
𝜎: The standard deviation
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𝑟0: The starting value of the Brownian motion

These values can be derived from the data set in a variety of ways, two of which will be presented here.
The first way is by taking the first differences of the data set. From these first differences, a mean can
be computed to substitute for 𝜇 and the variance can be computed to calculate the 𝜎. The second way
of computing 𝜇 is by taking the mean of the interest rate value at each time step, and dividing by the
length to get an increase per time step. The standard deviation 𝜎 is computed by taking the square
root of the variance of the interest rates. The starting value 𝑟0 is in both cases equal to the value of
the interest rate in 2020, which is 𝑟0 = −0.328. A summary of the parameters for the two different
approaches is given in table A.3.

Parameter Method 1 Method 2
𝜇 0.087 -0.076
𝜎 2.872 0.754
𝑟0 -0.328 -0.328

Table A.3: Parameters for two different BM approaches

These approaches yield some significant differences. An example of the two approaches is shown in
figure A.8.

(a) Sample of BM with values of the first method (b) Sample of BM with values of the second method

Figure A.8: Three samples of two approaches for a 30-year sample of a Brownian Motion

Each figure consists of three runs for a 30-year period. The variety between runs is rather large, which
is understandable given the variance of the approaches. More note able is that the first approach yields
a negative drift, where the second approach yields a positive drift.
Negative interest rates means that the investor has to pay a premium for keeping their money invested
in the asset, depreciating the investment each year. Keeping the rate negative is a temporary tool to
prevent or reverse deflation, as the goal of many financial intuitions is to keep inflation around ±2%. It
is therefore rather unlikely that a negative interest rate persist for long, let alone that it reaches values
well below −1%. For this reason, the second approach is chosen to determine the Brownian motion for
interest rates.

Figure A.8 displays only three runs, however when the number of runs is increased, the average of the
BM moves towards the value of 𝜇. The approximation of the drift for 2050, together with confidence
bands, is shown in figure A.9
The interest rate in 2050 is of interest. The distribution including the 5th and 95th percentile are shown
in the histogram in figure A.10.
It becomes apparent that the mean value of the interest rate in the 2050 year is around 2.28%, with a
5th percentile of -2.48% and a 95th percentile of 6.96%. The same figures and data can be produced
for a Brownian motion that extends eighty years into the future, to 2100. The development of the in-
terest rate is shown in figure C.13, the histogram of the final year values is shown in figure C.14. The
mean of the 100 year interest rate for the year 2100 is 6.68% with a 5th percentile of 1.81% and 95th
percentile of 11.46%.
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Figure A.9: Average of 10.000 sample BM for a thirty year period

Figure A.10: Histogram of final year of 10.000 sample BM for a thirty year period

Using the result from Doob, 1949, presented in equation 2.5, probabilities of boundary crossings for the
Brownianmotion can be calculated. The result of Doob was derived for a Brownianmotion with negative
drift. As the drift is positive for the derived Brownian motion, a modification is needed. To circumvent
this, it is noted that due to the Reflection Principle the exceedance probability of a positive boundary
with negative drift is identical to the exceedance probability of a negative boundary with positive drift.
Some examples of boundary crossing probabilities for the derived Brownian motion are shown in table
A.4. The results are also presented graphically for interest rates ranging from 0.0 to 20% in figure C.15.
It should be noted that the result of 2.5 was derived for all 𝑡 ∈ [0, inf), whereas this research is inter-
ested in finite 𝑡. There exist expressions for finite time series, but these are cumbersome to calculate.
For an indication of the order and the course of the probability over different boundaries, the result of
Doob suffices.

To differentiate between the 2050 and 2100 rates,the ”restart” property of Brownian motions was used.
This property can best be described by viewing the Brownian motion at time 𝑡∗ as a restart of the
process, as if it were to restart from 𝑡 = 0. However, now the exceedance boundary is not 𝑦 but the
difference between 𝑦 and the level the Brownian motion is at, at the restart. Mathematically this means



A.3. Extrapolation of available budget and expected costs 87

Interest rate Exceedance probability 2050 Exceedance probability 2100
2.5 0.647 0.962
4.5 0.457 0.676
6.5 0.322 0.480
8.5 0.277 0.339
10.5 0.161 0.240
12.5 0.113 0.169

Table A.4: Exceedance probabilities of interest rates for 2050 and 2100

that:

ℙ(𝑠𝑢𝑝𝑡∗≥𝑏 𝑋(𝑡∗) > 𝑦) = ℙ(𝑠𝑢𝑝𝑡≥0 𝑋(𝑡) > 𝑦 − 𝑋(𝑏)) = 𝑒2𝜇(𝑦−𝑋(𝑏))

The value of 𝑋(𝑏) after 50 years is the mean of the Brownian motion at 𝑡 = 50. Previously it was found to
be around 2.28%. Which can be entered in the expression above. Intuitively this makes sense, a time
period that stretches for a longer period of time most likely has a probability of exceeding a boundary
that is larger, given the same drift coefficient. This can indeed be verified from table A.4, where the
exceedance probabilities of a certain interest rate are higher for 2100 than for 2050.

A.3. Extrapolation of available budget and expected costs
A.3.1. Derviation of available budget
Budget provided by central government
The first part to be evaluated is the budget provided by the central government. To this end, two
estimates have to be made. The first estimate that has to be made is how the budget should be divided
amongst the different water authorities and how an extrapolation to 2050 and 2100 can be made. The
second estimate concerns the share of the GDP that is spend on flood protection. Although the central
government does not directly hand-out a budget to the local water authorities, it is possible to imagine
the budget being split up over projects that the water authorities undertake. To this end, the division is
assumed to be made based on the share of total expenditure per water authority. The budgets from
2015 to 2019 of the water authorities are compared (Centraal Bureau voor de Statistiek, 2022d) to the
total budget of all water authorities. The share of the two water authorities in consideration, Hollandse
Delta and Scheldestromen, are shown in figure A.11a.

(a) Budget as share of the total budget (b) Budget dedicated to flood protection as share of the total budget

Figure A.11: Budget for water authorities from 2015 to 2019
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Hollandse Delta receives on average 6.1% of the total budget, while Scheldestromen receives around
3.8%. This share of the total water budget can be divided further into budget that is related to flood
protection and budget that is related to other causes. Figure A.11b shows this division for the two water
authorities considered in 2019. The share of budget dedicated to flood protection is around 60% for
both water authorities over the period 2015-2019. The remaining 40% is split up between expenses
related to the water distribution system and the water purification system.Combining the two figures
yields a share of 3.6% and 2.3% of the total budget for water authorities dedicated to flood protection
for the Hollandse Delta and Scheldestromen respectively.

The next figure to determine is the total expenditure to flood protection in the Netherlands in the year
2050 and 2100. To this end, the historic and expected expenditures of the Deltafonds were used and
extrapolated. The historic figures come from 2013 to 2021 and the expected expenditure range from
2022 to 2025. The result are displayed in figure A.12.

Figure A.12: Linear extrapolation for Deltafonds expenditure in 2050

The extrapolation yields a value of €2.26 bln. for 2050 and €3.95 bln. for 2100.

Combing the two derived figures, it is possible to estimate the GDP expenditure to flood protection for
the two local water authorities in consideration. This yields €81.4 mln. for Hollandse Delta in 2050 and
€142.2 mln. in 2100. For Scheldestromen this yields €52.0 mln. in 2050 and €90.9 mln. in 2100.

Budget provided by the local water authority
As previously stated, the local water authorities in the Netherlands collect their own taxes from the
population in their jurisdiction. This taxation consist of many parts. For this research, the taxation is
simplified into the two main components: a set tax and a variable part based on the value of your house.
In general the tax can be written as:

𝐵𝑡𝑎𝑥 = 𝐶 + 𝑓 ·𝑉ℎ𝑜𝑢𝑠𝑒
Where:
f = The fraction of the value of the house that has to be paid
C = The constant part that has to be paid
𝑉ℎ𝑜𝑢𝑠𝑒 = The value of a house

To determine the budget that the local water authorities generate in future years, three main factors
have to be taken into account: The population growth, the increase in the value of a house and the
change in the constant 𝐶 and variable part 𝑓 of the taxation.
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Starting with the estimated population growth, the statistics from Centraal Bureau voor de Statistiek,
2022b are used. These statistics are provided from 2020 to 2050, but no further. To get an estimate
for 2050, a linear extrapolation was made using the least squares method. The result can be seen in
figure A.13.

Figure A.13: Linear extrapolation for population size in 2100

As can be seen, the linear extrapolation yields an estimate of 22.2 million people living in the Nether-
lands in 2100. The estimate provided by the CBS for 2050 is around 19.5 million people. For dikering
17 the number of inhabitants in 2020 was 195.000, for dikering 29 this number was 115.000 (Centraal
Bureau voor de Statistiek, 2022c). Using the same growth rate as for the general population in the
Netherlands, the extrapolated values for 2050 and 2100 yield 217.650 and 247.800 for dikering 17 and
128.400 and 146.100 for dikering 29, respectively.

The next estimate to be made is the increase in the value of an average house. To this end, historical
figures from Centraal Bureau voor de Statistiek, 2022a have been used, and an extrapolation to 2050
and 2100 has been made. The average value of a house in the Netherlands in 2020 was €334.500.
A linear extrapolation was chosen, as higher orders gave unrealistic results. The extrapolation for the
value of a house is shown in figure A.14. Next to the predicted value, an extrapolation was made for
the index (2015 = 100) of the house values. The results can be found in figure C.2.
Using this extrapolation, it is found that the median house value in 2100 is around €927.000. The corre-
sponding index is around 377. The average price of a house in dikering 17 was €218.000, for dikering
29 this was €208.000. Extrapolating these figures with the same growth rate to 2050 and 2100 yields
€354.000 and €604.000 for dikering 17 and €337.500 and €576.000 for dikering 29 respectively.

Finally, the change in the constant 𝐶 and variable 𝑓 part of the taxation are considered. To determine
the figures in 2050 and 2100, a linear extrapolation is made from the figures from the period 2011 to
2021. As a proxy for the taxes raised in a dikering, the taxes that are raised in a water authority are
used. The historic figures for Hollandse Delta can be seen in figure A.15.
A similar graphical display for Scheldestromen was created and can be found in figure C.1 in the ap-
pendix.

Extrapolating these figures to 2050 and 2100 for both water authorities yields the results shown in table
A.5. The full extrapolation can be seen in figures C.3 through C.6.
Combining the obtained results from the three main factors, an estimate for the raised tax per average
household in 2050 and 2100 can be made. Combining this estimate with the estimate for the budget
provided by the central government yields the total budget estimates. The results for these budget
estimates are shown in table A.6, where it is used that there are on average three people per household.
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Figure A.14: Linear extrapolation for house values in 2100

Figure A.15: Fixed and variable costs for Hollands Delta from the period 2011 - 2021

Scheldestromen Hollandse Delta
2050 2100 2050 2100

C [€] 235 442 190 329
f [%] 0.073 0.103 0.0406 0.0518

Table A.5: Results of local taxation factors in 2050 and 2100

Dikering 29 Dikering 17
2050 2100 2050 2100

Central government 52.0 90.9 81.4 142.2
Local water authority 14.0 30.6 35.8 87.9
Total budget [mln. €] 66.0 121.5 117.2 230.1

Table A.6: Final results of available budget in 2050 and 2100 for dikering 17 and 29

A.3.2. Derivation of incurred costs as a result of losses
Determining the expected loss of life and economic damage has for a large part been done by the
Ministry of Infrastructure and Water Management back in 2016 (Slootjes & Wagenaar, 2016). This was
done by simulating a breach in the flood defence (often a dike), which resulted in an expected number
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of affected people, casualties and economic damage. These numbers were calculated for 2011 and
2050. Table A.7 provides some key figures about the two selected dikerings, including all the dike sec-
tions corresponding to the ring. These figures contain the expected economic damage, the loss of live
and the total damage in 2011. All figures that are expressed in monetary units are in millions of euro’s.
Note that for the loss of live a value of €6.7 million per casualty was assumed. Within the column Loss
of live, a cost of €12.500 was assigned to each affected individual.

Dike section Length [km] Costs of increasing
safety level [ €·𝑘𝑚−1]

Economic
damage [€]

Loss of
live [€] Total damage [€]

17-1 27.0 4.4 780 433 1.213
17-2 26.5 5.8 2.600 1.279 3.879
17-3 9.5 2.5 11.000 8.575 19.575
Total 63 4.7∗ 14.380 10.287 24.667

29-1 22.0 5.8 2.100 359 2.459
29-2 17.0 6.5 3.300 2.355 5.655
29-3 7.0 6.3 5.300 14.770 20.070
29-4 12.5 1.0 69 6 75
Total 58.5 5.0∗ 10.700 17.484 28.184

Table A.7: Expected damages in 2011

∗ These values are the average cost of increasing the safety level per kilometre in millions of euro’s
over the entire length of the dikering.

The analysis by Slootjes and Wagenaar (2016) provides estimates for the monetary value of those af-
fected and for the casualties in 2050, as well as an estimate for the economic damage in 2050, shown
in table D.1. These values were derived by multiplying the figures from 2011 by an assumed annual
growth of 1.9% over 39 years. This growth is used for both the economical figures as well as the pop-
ulation growth and by extent to the fatalities. The calculations were made for 2011 and extrapolated to
2050, however no estimates for 2100 were provided. To this extent, similar growth figures are used to
extrapolate the values in the year 2100. These figures are presented in table D.2.

Before using these figures, a quick check on the 1.9% figures was performed. Starting with the expected
economic growth, the BBP changes for the past 25 years are plotted and averaged, shown in figure
A.16.

Figure A.16: Change in BBP for South Holland, Zeeland and the Netherlands
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Which appear to average out around the value of 1.9%. Hence this value is assumed to be a plausible
figure for the growth rate of asset value 𝜃. However, as has been explained in the section Available
budget, the population growth per year is around 59.000 people per year. Solving an exponential
growth model for the growth rate exactly, it is found that the population growth rate (𝛾) is around 0.30%
(0.2991). As this value is significantly different from the proposed value by Slootjes and Wagenaar,
2016, the values for population growth are adjusted. It is assumed that the value of the loss of live
scales linearly with the growth or decline in population. The results for 2050 and 2100 are shown in
table D.4.



B
Extension of the model - Spatial Domain
For the spatial model, the first chosen budget constraint will be introduced to the framework derived
in this report. However, the framework is now adjusted to minimize over the length of the dike section
𝐿𝑑𝑖𝑘𝑒 , rather than the temporal domain.

The starting points for this derivation are equation A.8 and A.9. To find an expression for the marginal
revenue and marginal costs, the partial derivative should be changed from 𝜕(Δℎ) to 𝜕𝐿𝑑𝑖𝑘𝑒 ,𝑛 . Such that:

𝑀𝑅 =
𝜕𝑇𝑅

𝜕𝐿𝑑𝑖𝑘𝑒 ,𝑛
and 𝑀𝐾 =

𝜕𝑇𝐾
𝜕𝐿𝑑𝑖𝑘𝑒 ,𝑛

Plugging in the derivation and simplifying yields the marginal revenue with respect to the size of a polder
as given below.

𝑀𝑅 =

{
𝐵′ for SLR ≥ Δℎ

𝐵′ + 𝐿𝑑𝑖𝑘𝑒 ,𝑛
2𝜋 (Δℙ(𝑎𝑠𝑠𝑒𝑡) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + Δℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒) for SLR < Δℎ

where:

𝐵′ =
𝐿𝑑𝑖𝑘𝑒 ,𝑛
2𝜋

(𝑇𝑓 𝑖𝑥𝑒𝑑 + 𝑇𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ·𝑉woz) + 2 · 𝐿𝑑𝑖𝑘𝑒 ,𝑛 · (𝐿𝑡𝑜𝑡𝑎𝑙 − 𝐿𝑑𝑖𝑘𝑒 ,𝑛)
(𝐿𝑡𝑜𝑡𝑎𝑙)3 · 𝐵𝑠𝑢𝑏𝑠𝑖𝑑𝑦 for k ≠ n

A similar derivation can be made for the marginal costs, the result of which is shown below.

𝑀𝐾 =

{
𝐿𝑑𝑖𝑘𝑒 ,𝑛
2𝜋 (Δℙ(𝑎𝑠𝑠𝑒𝑡) · 𝐻 ·𝑉𝑎𝑠𝑠𝑒𝑡 + Δℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦) · 𝑃 ·𝑉𝑙𝑖𝑣𝑒) + 𝐾𝑑𝑖𝑘𝑒 for SLR ≥ Δℎ

𝐾𝑑𝑖𝑘𝑒 for SLR < Δℎ

Taking the limit case for the inequality between the marginal costs and benefits, the equality is chosen.
Hence the two derived expressions should be set equal to one another to find the limit for 𝐿𝑑𝑖𝑘𝑒 ,𝑛 , given
the other parameters. This results in two expressions for the maximum length of a dike section 𝐿𝑑𝑖𝑘𝑒 .

min
∀𝐿∈[0,𝐿𝑚𝑎𝑥 ]

𝐶𝐿(Δℎ)

s.t. 𝜕𝐶𝐿
𝜕(Δ𝐿𝑑𝑖𝑘𝑒 ,𝑛) ≤ 𝜕𝑇𝑅𝐿

𝜕(Δ𝐿𝑑𝑖𝑘𝑒 ,𝑛) ∀Δℎ ∈ [0,Δℎ𝑚𝑎𝑥]
where 𝐶𝐿(Δℎ) = 𝑒𝛼·(𝐻+Δℎ) · (𝑉𝑎𝑠𝑠𝑒𝑡 +𝑉𝑙𝑖𝑣𝑒) + 𝐿𝑑𝑖𝑘𝑒 · 𝐾𝑑𝑖𝑘𝑒 · Δℎ

(B.1)

The first line in equation B.1 displays the minimization problem of the total costs with respect to the
chosen crest height increase Δℎ. The second line displays the constraint that is being put on the
minimization problem, namely that of the marginal revenue needing to equal the marginal costs. The
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marginals in this case are with respect to the length of the dike section 𝑛, 𝐿𝑑𝑖𝑘𝑒 ,𝑛 . The final line dis-
plays the given equation for the total costs in consideration, dependent on the flood risk and physical
strengthening of the dike section.

For the given expressions of the marginal revenue and marginal costs, it is possible to derive an explicit
formulation for the minimal dike length 𝐿𝑑𝑖𝑘𝑒 ,𝑛 . This is given as:

𝐿𝑑𝑖𝑘𝑒 ,𝑛 =

√(𝐴 + 2 · 𝐵 · 𝑦 − 𝐶)2 − 8 · 𝐵 · 𝐷 + 𝐴 + 2 · 𝐵 · 𝑦 − 𝐶
4 · 𝐵

Where:

𝐴 =
𝑇𝑓 𝑖𝑥𝑒𝑑+𝑇𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 ·𝑉woz

2𝜋

𝐵 =
𝐵𝑠𝑢𝑏𝑠𝑖𝑑𝑦
(𝐿𝑡𝑜𝑡𝑎𝑙 )3

𝐶 = Δℙ(𝑎𝑠𝑠𝑒𝑡)·𝐻·𝑉𝑎𝑠𝑠𝑒𝑡+Δℙ( 𝑓 𝑎𝑡𝑎𝑙𝑖𝑡𝑦)·𝑃·𝑉𝑙𝑖𝑣𝑒
2𝜋

𝐷 = 𝐾𝑑𝑖𝑘𝑒

𝑦 = 𝐿𝑡𝑜𝑡𝑎𝑙



C
Figures

Figure C.1: Fixed and variable costs for Scheldestromen from the period 2011 - 2021
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Figure C.2: Linear extrapolation for the index of house values in 2100

Figure C.3: Extrapolation for constant 𝐶 in taxation for Hollandse Delta

Figure C.4: Extrapolation for variable 𝑓 in taxation for Hollandse Delta
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Figure C.5: Extrapolation for constant 𝐶 in taxation for Scheldestromen

Figure C.6: Extrapolation for constant 𝑓 in taxation for Scheldestromen
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Figure C.7: First difference of long-term interest rate in the Netherlands

Figure C.8: Line graph of the residuals of the interest rates
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Figure C.9: Probability density function of the residuals of the interest rates

Figure C.10: (Partial) Autocorrelations of residuals of the interest rates
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Figure C.11: ARMA(2,3) predictions for the interest rate in 2050 using multiple data-slices

Figure C.12: ARMA(2,3) predictions for the interest rate in 2100 using multiple data slices
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Figure C.13: Average of 10.000 sample BM for an eighty year period

Figure C.14: Histogram of final year of 10.000 sample BM for an eighty year period
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Figure C.15: Interest rate exceedance probabilities for 2050 and 2100

Figure C.16: Historical long-term interest rates in the Netherlands
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(a) Discounted costs (b) Discounted benefits

Figure C.17: Monte Carlo results for costs and benefits for Hollandse Delta with 𝛽 = 0.006

(a) Crest height increase (b) Net result of CBA

(c) Discounted costs (d) Discounted benefits

Figure C.18: Monte Carlo results for costs and benefits for Hollandse Delta with 𝛽 = 0.002
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(a) Cost minimization graph for lower 𝐾𝑑𝑖𝑘𝑒 (b) Cost minimization graph for higher 𝐾𝑑𝑖𝑘𝑒

Figure C.19: Minimized costs for two cases where 𝐾𝑑𝑖𝑘𝑒 is varied

(a) Discounted costs (b) Discounted benefits

Figure C.20: Monte Carlo results for costs and benefits for Hollandse Delta with 𝛽 = 0.006, using a Brownian Motion for the
discount rate
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(a) Crest height increase (b) Net result of CBA

(c) Discounted costs (d) Discounted benefits

Figure C.21: Monte Carlo results for costs and benefits for Hollandse Delta with 𝛽 = 0.002, using a Brownian Motion for the
discount rate

(a) Discounted costs (b) Discounted benefits

Figure C.22: Monte Carlo results for costs and benefits for Scheldestromen with 𝛽 = 0.009
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(a) Crest height increase (b) Net result of CBA

(c) Discounted costs (d) Discounted benefits

Figure C.23: Monte Carlo results for costs and benefits for Scheldestromen with 𝛽 = 0.005

(a) Discounted costs (b) Discounted benefits

Figure C.24: Monte Carlo results for costs and benefits for Scheldestromen with 𝛽 = 0.009, using a Brownian Motion for the
discount rate
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(a) Crest height increase (b) Net result of CBA

(c) Discounted costs (d) Discounted benefits

Figure C.25: Monte Carlo results for costs and benefits for Scheldestromen with 𝛽 = 0.005, using a Brownian Motion for the
discount rate



D
Tables

Dike section Economic
damage [€]

Loss of
live [€] Total damage [€]

17-1 1.600 900 2.500
17-2 5.400 2.700 8.100
17-3 22.000 19.000 41.000
Total 29.000 22.600 51.600

29-1 4.500 800 5.200
29-2 7.000 5.000 12.000
29-3 11.000 30.000 41.000
29-4 143 14 157
Total 22.643 35.814 58.357

Table D.1: Expected damages in 2050

Dike section Economic
damage [€]

Loss of
live [€] Total damage [€]

17-1 4.100 2.307 6.407
17-2 13.839 6.919 20.758
17-3 56.381 48.693 105.073
Total 74.320 57.919 132.239

29-1 11.532 2.050 13.326
29-2 17.939 12.814 30.573
29-3 28.190 76.883 105.073
29-4 367 36 402
Total 58.029 91.783 149.555

Table D.2: Expected damages in 2100
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Parameter Value Standard deviation p-value
𝜑1 -1.19 0.17 0.000
𝜑2 -0.73 0.13 0.000
𝜃1 1.65 5.54 0.767
𝜃2 1.54 11.91 0.897
𝜃3 0.45 4.20 0.915

Table D.3: Parameter estimation of ARMA(2,3) model

2050 2100

Dike section Economic
damage [€]

Loss of
live [€]

Total
damage [€]

Economic
damage [€]

Loss of
live [€]

Total
damage [€]

17-1 1.600 486 2.086 4.100 565 4.665
17-2 5.400 1.437 6.837 13.839 1.668 15.507
17-3 22.000 9.634 31.634 56.831 11.185 68.016
Total 29.000 11.558 40.558 74.320 13.419 87.739

29-1 4.500 403 4.903 11.532 468 12.000
29-2 7.000 2.646 9.646 17.939 3.072 21.011
29-3 11.000 16.594 27.594 28.190 19.267 47.457
29-4 143 7 150 367 8 375
Total 22.643 19.644 42.287 58.029 22.807 80.836

Table D.4: Corrected expected damages in 2050 and 2100



E
Programming code

This chapter contains several of the written programming codes that were vital for the assesment. The
codes listed contain: The derivation of the stringency, the generation of the discount rate via a Brown-
ian Motion and the final optimization code as per the framework derived in this research.

The first code presented was used to generate the derived stringency plots.
1 #Scenario 1, marginal costs and marginal benefits
2

3 def MK(dh, k_values):
4 "Equation"
5 if k_values == "negative":
6 K = -P * L**2 * ((((np.exp(-(dh -1)) * H * V_asset + np.exp(-(dh-1))*P*V_live) * (-(

dh-1))) / 4* np.pi)
7 + dh*2*y + (dh*x/h) + 2*y*h + x+ b + 0.5*d)
8 if k_values == "positive":
9 K = (P * L**2 *dh*2*y + (dh*x/h) + 2*y*h + x+ b + 0.5*d)
10

11 return K
12

13 def MR(dh, k_values):
14 if k_values == "positive":
15 R = np.ones(len(dh))
16 if k_values == "negative":
17 R = P * L**2 * (((np.exp(-(dh -1)) * H * V_asset + np.exp(-(dh-1))*P*V_live) * (1-dh)

) / 4* np.pi)
18 return R
19

20 def Net(dh, K_values):
21 return MR(dh, K_values) - MK(dh, K_values)
22

23

24 dh = np.linspace(0,10,10000)
25 k_values = "positive"
26

27 plt.figure(figsize=(30,16))
28

29 plt.plot(dh, MK(dh, k_values) ,label = "Marginal costs", color = TU_red, linewidth = 3) #
Blauw

30 plt.plot(dh, MR(dh, k_values) ,label = "Marginal revenue", color = TU_blue, linewidth = 3) #
Rood

31 plt.plot(dh, Net(dh, k_values) ,label = "Net benefits", color = TU_black, ls = "--",
linewidth = 3)

32 plt.title("Marginal revenue and costs for positive K", size = 25)
33 plt.xlabel("Δh [m]", size = 22)
34 plt.xlim(0,10)
35 #plt.yscale("log")
36 plt.legend(fontsize = 18)
37 plt.yticks(np.linspace(5*10**7, 0,2), labels = ["Value €[]", 0], size = 22)
38 plt.xticks(np.linspace(0,10,6), size = 20)
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39 plt.savefig("scenario1_positive.jpg", bbox_inches = 'tight')
40 plt.show();
41

42 # Scenario 2, total revenue and total costs are equal
43

44 #Define the total revenue
45

46 def TR(dh, SLR):
47 B = ((L**2 /(4*np.pi)) * (T_fixed + T_variable * V_asset)) + (L / L_total)**2 * B_subsidy
48 K = np.zeros(len(dh))
49 for i in range(len(dh)):
50 if dh[i] < SLR:
51 K[i] = B
52 elif dh[i] >= SLR:
53 K[i] = B + ((L**2)/(4*np.pi)) * (np.exp(dh[i] - SLR) -1)*(IR_0a * H * V_asset +

IR_0f * P * V_live)
54 return K
55

56 #Define total costs
57

58 def TK(dh, SLR):
59 K = np.zeros(len(dh))
60 for i in range(len(dh)):
61 K_dike = Price * (((dh[i]/h)**2 + 2*dh[i]/h)*(y*h**2 + 0.5*x*h) +(dh[i]/h)*(b*h +

0.5*d*h))
62 if dh[i] < SLR:
63 K[i] = (L**2 / (4*np.pi)) * (np.exp(SLR - dh[i])-1)*(IR_0a * H * V_asset + IR_0f

* P * V_live + K_dike * (4*np.pi/L))
64 elif dh[i] >= SLR:
65 K[i] = K_dike * L
66 return K
67

68 dh = np.linspace(0,10,1000)
69

70 plt.figure(figsize=(30,16))
71 plt.plot(dh, TK(dh, SLR) ,label = "Total costs", color = TU_red, linewidth = 3) #Blauw
72 plt.plot(dh, TR(dh, SLR) ,label = "Total revenue", color = TU_blue, linewidth = 3) #Rood
73 plt.plot(dh, TR(dh,SLR) - TK(dh,SLR) ,label = "Net benefits", color = TU_black, ls = "--",

linewidth = 3)
74 plt.title("Total revenue and total costs", size = 25)
75 plt.xlabel("Δh [m]", size = 22)
76 #plt.ylabel("Value €[]")
77 plt.yscale("log")
78 plt.legend(fontsize = 18)
79 plt.xlim(0,10)
80 plt.ylim(4*10**7, 10**13)
81 plt.yticks(np.linspace(10**12, 10**9,1), labels = ["Value €[]"], size = 22)
82 plt.xticks(np.linspace(0,10,6), size = 20)
83

84 #plt.savefig("scenario2_final.jpg", bbox_inches = 'tight')
85 plt.show();
86

87 #Scenario 3, expected damage and costs of increasing safety
88 def E(dh):
89 result = ((L**2 * np.exp(SLR))/(4*np.pi)) * (IR_0f*P*V_live + IR_0a * H * V_asset) * np.

ones(len(dh))
90 return result
91

92 def K(dh):
93 result = L * Price * (dh**2 * y + 2*dh*y*h + (dh**2 * x)/(2*h) +dh*x + dh*b + (dh*d/2) )
94 return result
95

96 def total(dh):
97 return E(dh) - K(dh)
98

99 dh = np.linspace(0,10,1000)
100 plt.figure(figsize=(30,16))
101

102 plt.plot(dh,E(dh), label = "Expected damages", color = TU_blue, linewidth = 3)
103 plt.plot(dh,K(dh), label = "Reinforcement costs", color = TU_red, linewidth = 3)
104 plt.plot(dh,total(dh), label = "Net benefits", color = TU_black, ls = "--", linewidth = 3)
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105 plt.title("Expected damages and reinforcement costs", size = 25)
106 plt.xlabel("Δh [m]", size = 22)
107 #plt.ylabel("Value €[]")
108 plt.xlim(0,10)
109 #plt.ylim(10**8,1*10**10)
110 plt.yscale("log")
111 plt.legend(fontsize = 18)
112 plt.yticks(np.linspace(1*10**9, 10**10,1), labels = ["Value €[]"], size = 22)
113 plt.xticks(np.linspace(0,10,6), size = 20)
114 #plt.axvline(3.6)
115 #plt.savefig("scenario4_final.jpg", bbox_inches = 'tight')
116 plt.show();
117

118 #Scenario 4
119

120 T_fixed = 90
121 T_variable = 0.000343
122 L_total = 90
123 B_subsidy = 140* 10**7
124

125 #Define total revenue
126 def TR_4(dh, SLR):
127 B = ((L**2 /(4*np.pi)) * (T_fixed + T_variable * V_asset)) + (L / L_total)**2 * B_subsidy
128 K = B*np.ones(len(dh))
129 return K
130

131 #Define total costs
132 def TK_4(dh, SLR):
133 K_dike = Price * (((dh/h)**2 + 2*dh/h)*(y*h**2 + 0.5*x*h) +(dh/h)*(b*h + 0.5*d*h))
134 K = K_dike * L
135 return K
136

137 dh = np.linspace(0,SLR,1000)
138

139 plt.figure(figsize=(30,16))
140 plt.plot(dh, TK_4(dh, SLR) ,label = "Total costs", color = TU_red, linewidth = 3) #Blauw
141 plt.plot(dh, TR_4(dh, SLR) ,label = "Total revenue", color = TU_blue, linewidth = 3) #Rood
142 plt.plot(dh, TR_4(dh,SLR) - TK_4(dh,SLR) ,label = "Net benefits", color = TU_black, ls = "--"

, linewidth = 3)
143 plt.title("Total revenue and costs for constant individual risk", size = 25)
144 plt.xlabel("Δh [m]", size = 22)
145 #plt.ylabel("Value €[]")
146 plt.yscale("log")
147 plt.legend(fontsize = 18)
148 plt.xlim(0,1)
149 plt.ylim(10**7, 8* 10**8)
150 plt.yticks(np.linspace(3*10**8, 10**8,1), labels = ["Value €[]"], size = 22)
151 plt.xticks(np.linspace(0,1,6), size = 20)
152 plt.axvline(0.36)
153 plt.savefig("scenario10_final.jpg", bbox_inches = 'tight')
154 plt.show();
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The code for generating a Brownian Motion is a modified version of the Brownian() Class by Sarkar,
2020. The modifications are shown in the code below.

1 #Function definitions
2 def interest_rate(
3 self,
4 r0 = 2.5,
5 mu=0.2,
6 sigma=0.68,
7 deltaT=52,
8 dt=0.1,
9 ):
10 """
11 Models the interest rate r(t) using the Wiener process W(t) as
12 r(t) = mu*t +sigma.W(t)
13

14 Arguments:
15 mu: 'Drift' of the interest rate (upwards or downwards), default 1
16 sigma: 'Volatility' of the interest rate, default 1
17 deltaT: The time period for which the future prices are computed, default 52 (as

in 52 weeks)
18 dt (optional): The granularity of the time-period, default 0.1
19 start: Starting value of the interest rate
20

21 Returns:
22 s: A NumPy array with the simulated interest rate prices over the time-period

deltaT
23 """
24 n_step = int(deltaT/dt)
25 time_vector = np.linspace(0,deltaT,num=n_step)
26 # Forcefully set the initial value to r0
27 self.x0 = 0
28 # Weiner process (calls the `gen_normal` method)
29 weiner_process = sigma*self.gen_normal(n_step)
30 r = r0+ mu*time_vector + sigma*self.gen_normal(n_step)
31

32 return r
33

34 def plot_interest_rates(mu,sigma, r0, time):
35 """ Plots interest rates for multiple scenarios """
36 x = np.linspace(2020,2050,6)
37 label = []
38 for i in range(len(x)):
39 label.append(int(x[i]))
40

41 values = []
42 plt.figure(figsize=(15,8))
43 for i in range(3):
44 plt.title("Development of interest rate")#\n mu =" +str(mu), "\nsigma = " +str(sigma)

)
45 plt.ylabel("Interest rate [%]")
46 plt.xlabel("Time [years]")
47 b_interest = b.interest_rate(r0 = r0,
48 mu=mu,
49 sigma=sigma,
50 deltaT = time,
51 dt=1/12)
52 values.append(b_interest)
53 plt.plot(b_interest, color = color[i])
54 plt.legend(['Sample run '+str(i) for i in range(1,6)],
55 loc='upper left')
56 plt.xticks(np.linspace(0,360,6), labels = label)
57 textstr = '\n'.join((
58 r' $Parameters$' ,
59 r' $\mu = %.2f$' % (mu,),
60 r' $\sigma = %.2f$' % (sigma, )))
61 props = dict(boxstyle = ' round', facecolor = 'white', alpha = 0.5)
62

63 #Calculations
64 #2100 year prediction
65 n = 10000
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66 time = 80
67 dt = 1/12
68

69 values = []
70 means = []
71 var = []
72 b_interest = 0
73 mean_final = []
74 for i in range(n):
75 b_interest = b.interest_rate(r0 = -0.328083,
76 mu=mean/length,
77 sigma=sigma,
78 deltaT = time,
79 dt=dt)
80 values.append(b_interest)
81 means.append(np.mean(b_interest))
82 var.append(np.var(b_interest))
83 mean_final.append(b_interest[-1])
84

85 reshape = np.reshape(values, (n, int(time/dt)))
86

87 x = np.linspace(2020,2050,6)
88 label = []
89 for i in range(len(x)):
90 label.append(int(x[i]))
91

92

93 y = np.linspace(0, int(time/dt), int(time/dt))
94 plt.xticks
95 avg = np.mean(reshape,axis = 0)
96 var = np.var(reshape, axis = 0)
97

98 lower = np.quantile(reshape , 0.05, axis = 0)
99 upper = np.quantile(reshape, 0.95, axis = 0)
100

101 plt.figure(figsize = (16,8))
102 plt.xlim(0, int(time/dt))
103 plt.xticks(np.linspace(0,int(time/dt),6), labels = label)
104 plt.plot(avg, color= TU_blue, label = "mean value")
105 plt.plot(lower, color= TU_blue, alpha = 0.1, label = "95% confidence interval")
106 plt.plot(upper, color= TU_blue, alpha = 0.1)
107 plt.fill_between(y, lower, upper, color=TU_blue, alpha=0.1)
108 plt.legend();
109

110 print("Average value of the mean after", n , "runs =", np.mean(means))
111 print("Average value of the variance after", n , "runs =", np.mean(var))
112 print("Average value of the 2050 value after", n , "runs =", np.mean(mean_final))
113 plt.figure(figsize = (12,8))
114 plt.hist(mean_final, color = TU_blue, bins = 80, alpha = 0.8, density = True, edgecolor =

TU_black, label = "Realisations")
115 p5 = np.quantile(mean_final, 0.05)
116 p95 = np.quantile(mean_final, 0.95)
117 p50 = np.mean(mean_final)
118 plt.axvline(p5, color = TU_red, alpha = 0.8, label = "5th and 95th percentile")
119 plt.axvline(p95, color = TU_red,alpha = 0.8)
120 plt.axvline(p50, color = TU_black, alpha = 0.8, label = "Mean value")
121 plt.title("Final year realisations of Brownian Motion", size = 15)
122 plt.xlabel("Interest rate [%]", size = 12)
123 plt.ylabel("Density", size = 12)
124 plt.legend();
125

126

127 #Doob result
128 def Doob(mu, y):
129 return np.exp(-2*mu*y)
130 doob1 = []
131 doob2 = []
132 boundary = np.linspace(0, 20, 100)
133 for i in range(len(boundary)):
134 doob1.append(Doob(0.087,boundary[i]))
135 doob2.append(Doob(0.087,boundary[i]-2.28))
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136

137 doob2 = [1 if x > 1 else x for x in doob2]
138 plt.figure(figsize=(15,8))
139 plt.plot(boundary,doob1, color = TU_blue, label = "Time horizon 2050")
140 plt.plot(boundary,doob2, color = TU_red, label = "Time horizon 2100")
141 plt.title("Boundary crossing probability for different interest rates")
142 #plt.yscale("log")
143 plt.xlim(boundary[0], boundary [-1])
144 plt.xlabel("Interest rate [%]")
145 plt.ylabel("Probability of crossing")
146 plt.legend()
147 plt.savefig("Doob_results", bbox_inches = 'tight');
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The optimization code for producing the minimum costs over both time and crest height is shown below.
Note that the primary loop can be changed to produce different variations in variables.

1

2 #List to adjust the loop
3 var_lst = [0.005, 0.009]
4 var_name = "beta"
5

6 #Loop for varying various parameters
7 for z in range(len(var_lst)):
8 var_value = var_lst[z]
9

10 beta_mean = var_lst[z] #In this case, beta was the varied parameter
11 samples = 10**4
12 lifetime_mean = 80
13 factor_eis = 1.5
14 K_dike = 4.7*10**6
15

16 #Deterministic analysis
17 var_value = var_lst[z]
18 n = len(cumbudget)
19 t = np.linspace(1,n,n)
20

21 #Parameters
22 alpha_mean = 0.8 #Translationfactor
23 #beta_mean = 0.002 #Sea level rise
24 gamma_mean = 0.003 #Population increase
25 theta_mean = 0.019 #Asset value increase
26 eta_mean = 0.019 #Dike strengthening cost increase
27

28 alpha = alpha_mean
29 beta = beta_mean
30 gamma = gamma_mean
31 theta = theta_mean
32 eta = eta_mean
33 lifetime = 2020 + lifetime_mean
34

35 P0 = 1/2000#10**-4
36 L_dike = 63
37

38 V0_asset = 14380*10**6
39 V0_life = 10287*10**6
40 N_people = 1
41 N_asset = 1
42

43 E_eis = factor_eis* P0 * (V0_asset * N_asset + V0_life * N_people) #* lifetime_mean
44 r_mean = 1.9/100
45 r_std = 0.25*r_mean
46

47 dh = np.linspace(0,5,10000)
48 r = np.random.normal(r_mean, r_std, size = n)
49

50

51 lst1 = []
52 lst = []
53

54 t_max_lst = []
55 dh_list = []
56 C_lst = []
57 CSafety_lst = []
58 CDike_lst = []
59 CSafety_discount_lst = []
60 CDike_discount_lst = []
61

62 Csts = []
63 Budgt = []
64 Budgt_check_list = []
65 dh_unfeasible = []
66 dh_feasible = []
67 #Minimization task
68 for i in range(len(dh)):
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69 C_total = 0
70 CSafety = 0
71 CDike = 0
72 Budgt_check_list = []
73 #t_max_lst.append(t_max(alpha, beta, gamma, theta, dh[i], P0,V0, E_eis))
74 t_fin = t_max(alpha, beta, gamma, theta, dh[i], P0,V0_life, N_people,V0_asset,

N_asset, E_eis)
75 CSafety = C_safety(P0, N_people, N_asset, V0_life, V0_asset, t, alpha, beta, theta,

gamma, dh[i], lifetime_mean)
76 CDike = C_dike(L_dike, K_dike, t, eta,dh[i])
77 C_total = np.add(CSafety, CDike)
78 dh_new = dh
79 if t_fin + 2020 < lifetime:
80 dh_add = dh[i]
81 P1 = P_t_SLR(alpha, beta, t_fin, dh[i], P0)
82 V1_life = V_t(N_people, N_asset,V0_life, V0_asset, t_fin, theta, gamma)[1]
83 V1_asset = V_t(N_people, N_asset,V0_life, V0_asset, t_fin, theta, gamma)[2]
84 dh_new = np.add(dh_new,(np.ones(len(dh))*dh_add))
85 CSafety += C_safety(P1, N_people, N_asset, V1_life, V1_asset, t+t_fin, alpha,

beta, theta, gamma, dh_new[i], lifetime_mean)
86 CDike += C_dike(L_dike, K_dike, t+t_fin, eta,dh_new[i])
87 t_fin = t_max(alpha, beta, gamma, theta, dh_new[i], P1,V1_life, N_people,V1_asset

, N_asset, E_eis)
88 C_total += np.add(CSafety, CDike)
89 #Criteria
90 for j in range(len(C_total)):
91 if C_total[j] < cumBudget[j]:
92 Budgt_check_list.append(1)
93 else:
94 Budgt_check_list.append(0)
95

96 #Storing and sorting data
97 Budgt_check_list = np.array(Budgt_check_list)
98 cumBudget = np.array(cumBudget)
99 idx = np.where(Budgt_check_list > 0)[0]
100 if len(idx) == 0:
101 #print("There is no solution that meets the criteria for dh = "+str(dh[i])+"\r")
102 dh_unfeasible.append(dh[i])
103 elif len(idx) != 0:
104 TC = discount(C_total[idx], r[idx],t[idx])
105 CSafety_discount = discount(CSafety[idx], r[idx], t[idx])
106 CDike_discount = discount(CDike[idx], r[idx], t[idx])
107

108 t_max_lst.append(t_fin)
109 C_lst.append(np.min(C_total[idx]))
110 CSafety_lst.append(np.min(CSafety[idx]))
111 CDike_lst.append(np.min(CDike[idx]))
112 CSafety_discount_lst.append(CSafety_discount[np.argmin(TC)])
113 CDike_discount_lst.append(CDike_discount[np.argmin(TC)])
114 lst.append(np.min(TC))
115 lst1.append(np.argmin(TC))
116 #print(C_total[np.argmin(TC)]- cumBudget[np.argmin(TC)])
117 dh_list.append(dh_new[i])
118 Budgt.append(cumBudget[np.argmin(TC)])
119 Csts.append(C_total[np.argmin(TC)])
120 dh_feasible.append(dh[i])
121 #print(len(Budgt) - len(Csts))
122

123

124 fig, ax1 = plt.subplots(figsize = (12,8))
125 ax1.plot(dh_feasible,lst, color = TU_black, label = "Discounted minimal cost line");
126 #ax1.plot(dh_feasible,C_lst, color = TU_red, ls = "--", label = "Minimal cost line")
127 ax1.scatter(dh_feasible[np.argmin(lst)],np.min(lst), color = TU_blue, marker = "*", s=

70, label = "Discounted minimal costs" )
128 #ax1.scatter(dh_feasible[np.argmin(C_lst)],np.min(C_lst), color = TU_blue, marker = "o",

s= 70, label = "Minimal costs" )
129 ax1.set_title("Minimized discounted costs for different various increases in crest height

 \n Results Scheldestromen for \u03B2 ="+str(beta_mean)+", \u03B3 = "+str(gamma_mean)
+", \u03B8 = "+str(theta_mean)+", \u03B7 = "+str(eta_mean), size =15)

130 ax1.set_xlabel("Crest height increase [m]", size = 13)
131 ax1.set_ylabel("Cost", size = 13)
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132 #ax1.legend(loc= 'upper left')
133

134 #ax2 = ax1.twinx()
135 ax1.plot(dh_feasible, CSafety_discount_lst , color = TU_blue, label = 'Discounted flood 

risk')
136 ax1.plot(dh_feasible, CDike_discount_lst, color = TU_red, label = 'Discounted Dike 

reinforcement')
137 ax1.legend(loc= 'upper right')
138 plt.xlim(np.min(dh), np.max(dh));
139 plt.ylim(0)
140

141

142 print("Overall minimal costs" , np.min(lst), "for dh = ", dh_feasible[np.argmin(lst)], "
needs reinforcement again in", t_max_lst[np.argmin(lst)]+2020)

143 print("Rounded chosen dh = ", np.round(dh_feasible[np.argmin(lst)],1))
144 print("Chosen reinforcement time = ", 2020+lst1[int(np.argmin(lst))] )
145 plt.savefig("MinCostsDisc_S_beta_Var="+var_name+"="+str(var_value)+".png", bbox_inches =

'tight')
146

147 fig, ax1 = plt.subplots(figsize = (12,8))
148 #ax1.plot(dh_feasible,lst, color = TU_red, label = "Discounted minimal cost line");
149 ax1.plot(dh_feasible,C_lst, color = TU_red, ls = "--", label = "Minimal cost line")
150 #ax1.scatter(dh_feasible[np.argmin(lst)],np.min(lst), color = TU_blue, marker = "*", s=

70, label = "Discounted minimal costs" )
151 ax1.scatter(dh_feasible[np.argmin(C_lst)],np.min(C_lst), color = TU_blue, marker = "o", s

= 70, label = "Minimal costs" )
152 ax1.set_title("Minimized costs for different various increases in crest height \n Results

 Scheldestromen for \u03B2 ="+str(beta_mean)+", \u03B3 = "+str(gamma_mean)+", \u03B8 
= "+str(theta_mean)+", \u03B7 = "+str(eta_mean), size =15)

153 ax1.set_xlabel("Crest height increase [m]", size = 13)
154 ax1.set_ylabel("Cost", size = 13)
155

156 #ax2 = ax1.twinx()
157 ax1.plot(dh_feasible, CSafety_lst, color = TU_blue, ls = "--", label = 'Flood risk')
158 ax1.plot(dh_feasible, CDike_lst, color = TU_black, ls= "--", label = 'Dike reinforcement'

)
159 ax1.legend(loc= 'upper right')
160 plt.xlim(np.min(dh), np.max(dh));
161 plt.ylim(0)
162

163

164 print("Overall minimal costs" , np.min(C_lst), "for dh = ", dh_feasible[np.argmin(C_lst)
], "needs reinforcement again in", t_max_lst[np.argmin(lst)]+2020)

165 print("Rounded chosen dh = ", np.round(dh_feasible[np.argmin(C_lst)],1))
166 print("Chosen reinforcement time = ", 2020+lst1[int(np.argmin(C_lst))] )
167 plt.savefig("MinCosts_S_beta_Var="+var_name+"="+str(var_value)+".png", bbox_inches = '

tight')
168

169

170 # Monte Carlo Analysis
171

172 #Deterministic parameters
173 dh = np.linspace(0,5,100)
174 zero_lst = np.zeros(len(dh))
175 #Stochastic parameters
176 lifetime_lst = np.add(np.ones(samples)*2020,np.random.normal(lifetime_mean ,5,size =

samples))
177

178 #Stochastic parameters
179 alpha_lst = np.random.normal(alpha_mean, 0.05*alpha_mean, size = samples)
180 beta_lst = np.random.normal(beta_mean, 0.05*beta_mean, size = samples)
181 gamma_lst = np.random.normal(gamma_mean, 0.05*gamma_mean, size = samples)
182 theta_lst = np.random.normal(theta_mean, 0.05*theta_mean, size = samples)
183 eta_lst = np.random.normal(eta_mean, 0.05*eta_mean, size = samples)
184

185 #Lists to save output
186 Final_Cost_List = []
187 Final_Time_List = []
188 Final_dh_List = []
189 Final_Benefits_List = []
190 TR_List = []
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191

192 #Minimization task
193 for k in range(samples):
194 lifetime = lifetime_lst[k]
195 lftime = lifetime_lst[k] - 2020
196 alpha = 0.8
197 beta = beta_lst[k]
198 gamma = gamma_lst[k]
199 theta = theta_lst[k]
200 eta = eta_lst[k]
201

202 r = np.random.normal(r_mean, r_std, size = samples)
203 lst1 = []
204 lst = []
205 t_max_lst = []
206 dh_list = []
207 C_lst = []
208 Csts = []
209 Budgt = []
210 Budgt_check_list = []
211 dh_unfeasible = []
212 dh_feasible = []
213 Benefits_lst = []
214 Benefits_List = []
215 Cost_List = []
216 for i in range(len(dh)):
217 Bresult = 0
218 C_total = 0
219 Budgt_check_list = []
220 #t_max_lst.append(t_max(alpha, beta, gamma, theta, dh[i], P0,V0, E_eis))
221 t_fin = t_max(alpha, beta, gamma, theta, dh[i], P0,V0_life, N_people,V0_asset,

N_asset, E_eis)
222 C_total = np.add(C_safety(P0, N_people, N_asset, V0_life, V0_asset, t, alpha,

beta, theta, gamma, dh[i],lftime),C_dike(L_dike, K_dike, t, eta,dh[i]))
223 for m in range(len(t)):
224 Bresult += (P_t_SLR(alpha, beta, t[m], zero_lst[i], P0) - P_t_SLR(alpha, beta

, t[m], dh[i], P0)) * V_t(N_people, N_asset,V0_life, V0_asset, t[m], np.
mean(theta_lst), np.mean(gamma_lst))[0]

225 Benefits_lst = np.ones(len(dh))*Bresult
226 dh_new = dh
227 if t_fin + 2020 < lifetime:
228 dh_add = dh[i]
229 P1 = P_t_SLR(alpha, beta, t_fin, dh[i], P0)
230 V1_life = V_t(N_people, N_asset,V0_life, V0_asset, t_fin, theta, gamma)[1]
231 V1_asset = V_t(N_people, N_asset,V0_life, V0_asset, t_fin, theta, gamma)[2]
232 dh_new = np.add(dh_new,(np.ones(len(dh))*dh_add))
233 C_total += np.add(C_safety(P1, N_people, N_asset, V1_life, V1_asset, t+t_fin,

alpha, beta, theta, gamma, dh_new[i], lftime),C_dike(L_dike, K_dike, t+
t_fin, eta,dh_new[i]))

234 t_fin = t_max(alpha, beta, gamma, theta, dh_new[i], P1,V1_life, N_people,
V1_asset, N_asset, E_eis)

235 #t_fin = t_max(alpha, beta, gamma, theta, dh_new[i], P1,V1, E_eis)
236

237 #Criteria
238 for j in range(len(C_total)):
239 if C_total[j] < cumBudget[j]:
240 Budgt_check_list.append(1)
241 else:
242 Budgt_check_list.append(0)
243

244 #Storing and sorting data
245 Budgt_check_list = np.array(Budgt_check_list)
246 cumBudget = np.array(cumBudget)
247 idx = np.where(Budgt_check_list > 0)[0]
248 if len(idx) == 0:
249 #print("There is no solution that meets the criteria for dh = ",dh[i], end =

"\r")
250 dh_unfeasible.append(dh[i])
251 elif len(idx) != 0:
252 TC = discount(C_total[idx], r[idx],t[idx])
253 TB = discount(Benefits_lst[idx], r[idx], t[idx])
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254 TR = np.subtract(TB,TC)
255

256

257 Benefits_List.append(TB[np.argmax(TR)])
258 t_max_lst.append(t_fin)
259 C_lst.append(np.min(C_total[idx]))
260 Cost_List.append(TC[np.argmax(TR)])
261 lst.append(np.max(TR))
262 lst1.append(np.argmax(TR))
263 dh_list.append(dh_new[i])
264 Budgt.append(cumBudget[np.argmax(TR)])
265 Csts.append(C_total[np.argmax(TR)])
266 dh_feasible.append(dh[i])
267

268

269

270 Final_Time_List.append(lst1[np.argmax(lst)])
271 Final_dh_List.append(dh_feasible[np.argmax(lst)])
272 TR_List.append(lst[np.argmax(lst)])
273 Final_Benefits_List.append(Benefits_List[np.argmax(lst)])
274 Final_Cost_List.append(Cost_List[np.argmax(lst)])
275 print(np.round(k/samples*100,2), "%", end="\r")
276

277

278 #Plotting functionality
279

280 plt.figure(figsize = (10,8))
281 plt.hist(Final_Cost_List, bins = int(np.sqrt(samples)/6), density = True, color = TU_blue

,edgecolor = TU_black,label = "Samples");
282 plt.axvline(np.quantile(Final_Cost_List, 0.95), color = TU_red, alpha = 0.8, label = "5 &

 95% Confidence interval")
283 plt.axvline(np.quantile(Final_Cost_List, 0.05), color = TU_red, alpha = 0.8)
284 plt.legend()
285 plt.title("Results Scheldestromen for \u03B2 ="+str(beta_mean)+", \u03B3 = "+str(

gamma_mean)+", \u03B8 = "+str(theta_mean)+", \u03B7 = "+str(eta_mean))
286 plt.xlabel("Costs", size = 12)
287 plt.ylabel('Density', size = 12)
288 plt.savefig("DiscountedCosts_Final_S_Var="+var_name+"="+str(var_value)+".png",

bbox_inches = 'tight');
289

290 plt.figure(figsize = (10,8))
291 plt.hist(Final_Benefits_List , bins = int(np.sqrt(samples)/6), density = True, color =

TU_blue,edgecolor = TU_black,label = "Samples");
292 plt.axvline(np.quantile(Final_Benefits_List , 0.95), color = TU_red, alpha = 0.8, label =

"5 & 95% Confidence interval")
293 plt.axvline(np.quantile(Final_Benefits_List , 0.05), color = TU_red, alpha = 0.8)
294 plt.legend()
295 plt.title("Results Scheldestromen for \u03B2 ="+str(beta_mean)+", \u03B3 = "+str(

gamma_mean)+", \u03B8 = "+str(theta_mean)+", \u03B7 = "+str(eta_mean))
296 plt.xlabel("Benefits", size = 12)
297 plt.ylabel('Density', size = 12)
298 plt.savefig("DiscountedBenefits_Final_S_Var="+var_name+"="+str(var_value)+".png",

bbox_inches = 'tight');
299

300 plt.figure(figsize = (10,8))
301 plt.hist(TR_List, bins = int(np.sqrt(samples)/6), density = True, color = TU_blue,

edgecolor = TU_black,label = "Samples");
302 plt.axvline(np.quantile(TR_List, 0.95), color = TU_red, alpha = 0.8, label = "5 & 95% 

Confidence interval")
303 plt.axvline(np.quantile(TR_List, 0.05), color = TU_red, alpha = 0.8)
304 plt.legend()
305 plt.title("Results Scheldestromen for \u03B2 ="+str(beta_mean)+", \u03B3 = "+str(

gamma_mean)+", \u03B8 = "+str(theta_mean)+", \u03B7 = "+str(eta_mean))
306 plt.xlabel("Result", size = 12)
307 plt.ylabel('Density', size = 12)
308 plt.savefig("DiscountedResult_Final_S_Var="+var_name+"="+str(var_value)+".png",

bbox_inches = 'tight');
309

310

311 plt.figure(figsize = (8,6))
312 plt.hist(Final_Time_List, bins = int(np.sqrt(samples)/10), density = True, color =
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TU_blue, edgecolor = TU_black,label = "Samples");
313 plt.xlim(0,80)
314 plt.title("Results Scheldestromen for \u03B2 ="+str(beta_mean)+", \u03B3 = "+str(

gamma_mean)+", \u03B8 = "+str(theta_mean)+", \u03B7 = "+str(eta_mean))
315 plt.xlabel("Chosen reinforcement year", size = 12)
316 plt.ylabel('Density', size = 12);
317 plt.savefig("ReinforcementYear_Final_S_Var="+var_name+"="+str(var_value)+".png",

bbox_inches = 'tight')
318

319

320 plt.figure(figsize = (8,6))
321 plt.hist(Final_dh_List, bins = int(np.sqrt(samples)/15), density = True, color = TU_blue,

edgecolor = TU_black,label = "Samples");
322 plt.axvline(np.quantile(Final_dh_List, 0.95), color = TU_red, alpha = 0.8, label = "5 & 

95% Confidence interval")
323 plt.axvline(np.quantile(Final_dh_List, 0.05), color = TU_red, alpha = 0.8)
324 plt.legend()
325 plt.title("Results Scheldestromen for \u03B2 ="+str(beta_mean)+", \u03B3 = "+str(

gamma_mean)+", \u03B8 = "+str(theta_mean)+", \u03B7 = "+str(eta_mean))
326 plt.xlabel("Crest height increase [m]", size = 12)
327 plt.ylabel('Density', size = 12);
328 plt.savefig("CrestHeightIncrease_Final_S_Var="+var_name+"="+str(var_value)+".png",

bbox_inches = 'tight')
329

330

331 B_mean_lst = []
332 B_95_lst = []
333 B_05_lst = []
334 C_mean_lst = []
335 C_95_lst = []
336 C_05_lst = []
337 R_mean_lst = []
338 R_95_lst = []
339 R_05_lst = []
340

341 # Results in list
342 B_mean = int(np.mean(Final_Benefits_List)/10**6)
343 B_05 = int(np.quantile(Final_Benefits_List ,0.05)/10**6)
344 B_95 = int(np.quantile(Final_Benefits_List ,0.955)/10**6)
345 C_mean = int(np.mean(Final_Cost_List)/10**6)
346 C_05= int(np.quantile(Final_Cost_List ,0.05)/10**6)
347 C_95 = int(np.quantile(Final_Cost_List ,0.95)/10**6)
348 R_mean = int(np.mean(TR_List)/10**6)
349 R_05 = int(np.quantile(TR_List ,0.05)/10**6)
350 R_95 = int(np.quantile(TR_List ,0.95)/10**6)
351 print(B_mean, B_05, B_95)
352 print(C_mean, C_05, C_95)
353 print(R_mean, R_05, R_95)
354

355 B_mean_lst.append(B_mean)
356 B_95_lst.append(B_95)
357 B_05_lst.append(B_05)
358 C_mean_lst.append(C_mean)
359 C_95_lst.append(C_95)
360 C_05_lst.append(C_05)
361 R_mean_lst.append(R_mean)
362 R_95_lst.append(R_95)
363 R_05_lst.append(R_05)
364

365 str1 = str(B_mean_lst)
366 str2 = str(B_05_lst)
367 str3 = str(B_95_lst)
368 str4 = str(C_mean_lst)
369 str5 = str(C_05_lst)
370 str6 = str(C_95_lst)
371 str7 = str(R_mean_lst)
372 str8 = str(R_05_lst)
373 str9 = str(R_95_lst)
374 with open("resultS_Var="+var_name+"="+str(var_value)+".txt", 'w', encoding='utf-8') as f:
375 f.writelines([str1+"\n", str2+"\n", str3+"\n", str4+"\n", str5+"\n", str6+"\n", str7+

"\n", str8+"\n", str9+"\n"])
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