Brickroutine

A.H. Ziengs

System Design and Implementation

Brickroutine Ul Home Overview Monitering Workflows Dataset

; . American lobster :
Instructions for annotating heatmaps: SR Start Over J| B Save Annotations

For every heatmap shown, answer whether or not the J X, Select a mechanism
listed requirements are represented in the heatmap -
carapiece

The next heatmap automatically appears when a |
claw

requirement was met or when no requirements are
left R g claw texture

.) shell
Use the buttons in the right top corner to save the
annotations or to start over again tail fin
. . . thin legs
You can save at any time. Empty annctations will be

disregarded and will appear a another sample

You can navigate with the buttons on the bottom or

the left and right keyboard arrows to revisit or skip

heatmaps Mathing requirement but no matching mechanism

found.

The button in between yes and no will undo the

annotation for this specific heatmap Please annotate the real mechanism on the right -

Srickrouting

A Human-in-the-Loop System for
Interpreting Image Recognition Models

by
AH. Ziengs

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Wednesday June 1, 2022 at 1:00 PM.

Student number: 4391799
Project duration: March 17, 2021 — June 1, 2022
Thesis committee: Prof. dr. ir. G.J.P.M. Houben TU Delft, chair

Dr. Y. Yang TU Delft, supervisor
Dr. L. Miranda da Cruz TU Delft, supervisor
Dr. N. Yorke-Smith TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

http://repository.tudelft.nl/

Preface

| vividly remember the day when my parents got their first computer. A colossal second-hand machine
that ran Windows 3.11. As an 8-year-old boy, | was given the task of explaining to them how to use it for
basic tasks. My affinity with and interest in these machines kept evolving at a pace that was proportional
to the development of these machines themselves. Years later, | found myself disassembling them,
unscrewing the mainboard and copying shell commands from the internet, something that only was
available at my former high school.

In hindsight, it is easy to say that computers were my calling and that | should have done something
with them professionally as soon as an educational path allowed me to do so. Yet, driven by ignorance
and stereotypes, | chose to study technology management after | finished high school. Years later,
when | completed my first bachelor’s at age 22 and when | got my first of many existential crises, | did
something which was perceived as odd and risky by many. | enrolled for a second bachelor’s degree,
Computer Science at Delft University of Technology. It took me only three weeks to realize two things.
First, it was not gonna be a walk in the park and secondly, it indeed was my calling and never felt so
intrinsically motivated for something to put the effort in.

Fast forward to 2022, countless lectures, exams, nervous presentations, houses, and a pandemic
later. While already working a full-time job, this thesis marks the completion of my master’s degree.
| am grateful to have done it in a way that taught me invaluable skills that | will benefit from for many
years to come. Therefore, | would like to use this preface to thank some people that enabled me to
do so. First, Jie Yang, who as a supervisor has always challenged and motivated me throughout the
entire time that my thesis lasted. By encouraging me to step up when | needed to and slowing me down
when | was drowning in the details, you have been an enthusiastic supervisor that | would recommend
to anyone. Next, Luis Cruz, who has taught me a lot about academics. | am incredibly grateful for
your critical and honest questions that always got me thinking about the narrative of my thesis and
constantly kept reminding me of the importance of the bigger picture. The last one that was part of
my recurring meetings is Agathe Balayn, for who | am thankful to have learned a lot from. With me
working on something that intersects with your PhD, you always have been committed to providing me
with extensive feedback (and numerous moments when | thought “ah yes, she has a good point”) on
short notice. From the moment | started my master’s, | haven’t been too thrilled about doing my thesis
but the three of you made it a nice experience after all.

With computer systems, a solid foundation is of fundamental importance. This can be metaphori-
cally said about life in the broader sense. After a quarter of my thesis, | moved from a studio apartment
to a house with friends. | don’t know how | would have survived without this adventure, which initially
would be just for a brief term. | want to give a big shout out to my housemates who always cheered
me up when | had enough, made dinner so that | could do marathons of coding and accompanied me
in doing sports and other activities that relieved some stress and pressure. This often resulted in me
working even harder the next day. Lars, Nico, Abe, and Jesse, your contributions to my positive thesis
experiences are greater than you probably imagine and | will forever cherish the great memories of
my final year as a student. Speaking of a good foundation, | can hardly find the appropriate words
to describe my gratitude towards /sabel, my girlfriend. Sacrificing loads of quality time to allow me
to compensate for my lack of organisational skills, asking the right questions and always providing a
listening ear can be seen as an accomplishment by itself.

| would like to conclude this in dutch with some words for my parents. Papa en Mama, ik ben
dankbaar voor alle ondersteuning die jullie mij in mijn Delftse jaren hebben gegeven, waardoor ik mezelf
op vele fronten heb kunnen ontwikkelen. Ondanks jullie beperkte affiniteit met wetenschap en studeren,
heb ik me atlijd enorm gesteund gevoeld en weet ik dat ik atlijd op jullie kan rekenen en daar ben ik
trots op.

Bart
Delft, May 22, 2022

Contents

Introduction 1
1.1 UseCases e 1
1.2 Contributions L 2
Background 3
21 Interpretability. 3
2.2 General Debugging. 4
2.3 Debugging ML systems L 4
24 Fairness. 5
2.5 System Architectures. L 6
The Brickroutine System 7
3.1 General Objective e 7
3.2 UserStories. L 9
3.3 StartingPoint. L 10
3.4 Heatmap Extraction 12
3.5 Workflows Specifications. 12

3.5.1 Workflow 0: Requirement Elicitation. 12

3.5.2 Workflow 1: Requirement Validation Annotation 13

3.5.3 Workflow 2: Mechanism Validation Annotation 15

3.5.4 Workflow 3: Adding new requirements oL 18

3.5.5 Workflow 4;: Requirements Correction. 19

3.5.6 Workflow 5: The Overview. 21
3.6 Process OVErview e e e 26
System Design 29
4.1 Architectural Requirements L 29
4.2 Backbone: Docker 29
4.3 UserlInterface: React e 31
4.4 APL INET e e 31
4.5 Storage: MongoDB. 32
4.6 Data Monitoring: Mongo Express 33
4.7 Communication: RabbitMQ 34
4.8 Heatmap Extraction: Python. 34
4.9 Comparison with Existing Solutions 35
Evaluation: Informativeness 37
51 Goals e 37
5.2 Experimental Setup 37

521 Approach e 38

522 Metrics L 38
5.3 Experimental Results. e 39

53.1 Firstround 39

53.2 Secondround. 41

533 Thirdround L 42

534 Fourthround 43
54 Overview 43
5.5 DIisCusSSIiON 44

vi

Contents

Evaluation: Validity

6.1 Goals s
6.2 ExperimentalSetup
6.2.1 Approach
6.2.2 Metrics
6.3 ExperimentalResults.
6.3.1 Firstround
6.3.2 Secondround.
6.3.3 Thirdround
6.3.4 Fourthround
6.4 Overview
6.5 Discussion

Discussion

7.1 Requirement-first vs Concept-first.
7.2 Multiple Requirements Annotation.
7.3 Differences Between the Experiments.
7.4 lterative Approach
7.5 Usability.
76 Futurework.

Conclusion

Results for sea creatures

A.1 Results for sea creaturesround 1.
A.2 Results forseacreaturesround2
A.3 Results forseacreaturesround3
A.4 Results for seacreaturesround4

Results for Birds

B.1 Resultsforbirdsround1.
B.2 Results forbirdsround2.
B.3 Results forbirdsround3.
B.4 Results forbirdsround4.

Proposed Improvements for Brickroutine

Readme from Code Repository

Introduction

Nowadays, the term Artificial Intelligence (Al) is commonly seen in newspapers, television, universities,
and businesses. This rather broad term refers to the ability of computers and machines to perform
some tasks in such a way, that it resembles human intelligence. As a subset of this area, Machine
Learning (ML) is characterized by using computational methods that use past information available to
make accurate predictions. It consists of designing efficient and accurate algorithms to facilitate these
predictions [22]. These predictions vary in complexity and can be anything ranging from forecasting
future events to an application for self-driving cars.

However, humans face barriers in trusting the models and verifying whether or not they behave in
reasonable ways when deployed [25]. This becomes increasingly problematic when signs of unfairness
or biasedness arise and model decisions affect humans. The consequence of this phenomenon is that
certain groups face discrimination, either implicit or explicit [12]. To assess the success of machine
learning systems, other aspects besides performance matter. Criteria such as safety, nondiscrimina-
tion, avoiding technical debt or, providing the right to explanation are also seen as important and a
condition for using these ML systems in a real-life fashion [12].

As a part of modern Machine Learning, computer vision algorithms have become more ubiquitous
in the last decade. Machine learning systems have an increased performance edge over humans for
some tasks [12]. This achievement can be mainly contributed to the developments in Deep Learning,
which makes use of multiple-layer neural networks to make predictions.

The variation in the complexity of ML models has consequences for the extent to which humans
can explain resulting predictions. For the simpler models such as K-Nearest Neighbors and Decision
Trees, we can have an intuitive feeling about the predictions [22]. For a deep neural network, however,
the specific features at each layer make explaining the output hard to impossible for humans. This
situation is oftentimes called the black box problem in Al [13]. Developers can track the intermediate
states of the mathematical calculations but are blind to the inner workings of the model.

In many use-cases, during the development or execution of these predictions, artificial intelligence
applications are combined with human intelligence. In the case of computer vision applications, crowd
workers are commonly used to annotate images as input for supervised learning algorithms. Addition-
ally, the term human-in-the-loop (HITL) machine enjoys an increasing number of publications over the
last decade [30]. HITL refers to a strategic approach that combines human and machine intelligence.
[23] The goals of applying HITL can vary. Next to providing input to increase efficiency or maximize
accuracy, developers of Al systems have a fundamental responsibility to facilitate the privacy and fair-
ness of these systems. To assess the fairness, we need ways that allow us to debug and explain these
systems.

1.1. Use Cases

Consequently, the problem that arises is that both end-users and developers of a Machine Learning sys-
tem have difficulties defining the concept of interpretability and therefore experience problems tracking

1

2 1. Introduction

down model decisions. This is especially problematic when the system displays unexpected behaviour
and the root cause of the bug is unknown. To define this concept in the scope of this project, a few
use-cases are illustrated below.

» Given a neural image classifier that is trained on a bird data set, a developer of Al models wants
to see why a certain erroneous prediction of a bird species was made. He wants to explain this
in terms of concepts that a human also would use to describe such a problem (e.g. Which part
of the birds makes the algorithm confuse bird y and z with each other?).

» Given a requirement in human language for an entity to classify as something we all understand,
and that is along the line of reasoning of humans (e.g. a kitchen contains a sink and an oven),
end-users of Al models want to verify that this requirement (amongst others) is in fact used to
classify a certain image and that the correct predictions are not merely coincidental.

» Given a neural image classifier that is used in the medical domain to detect anomalies on an x-
ray, doctors using this application would like to know why the model predicted a medical condition
that they cannot verify with their domain knowledge.

In short, we can say that we want to interpret the model and that it is becoming increasingly harder
to debug an ML model when the complexity increases and this matters more when ethical factors come
into play. Such systems are supposed to be fair so that they can be trusted by people that are subject to
their predictions. Moreover, since the input to these systems is ever-increasing, we want the systems
to be robust so that they always keep these fair and trustworthy characteristics. In their Standard
Glossary of Software Engineering Terminology [10], IEEE defined robustness as “The degree to which
a system or component can function correctly in the presence of invalid inputs or stressful environmental
conditions”. Following up, the problem can be described as:

“Humans have limited possibilities to disassemble a machine learning model and verify if
the algorithm followed a line of reasoning that is comprehensible so that decisions can be
assessed in terms of fairness, robustness, and trustworthiness”

1.2. Contributions

A partial answer to the problem statement is given by the work of Balayn et al [2]. In their work, a human-
in-the-loop machine learning method is presented that explains the inner mechanism of a trained model
in terms of human-comprehensible concepts. This thesis is an extension of that research and will be
conducted in close collaboration with the authors. In their work, it is shown how to understand the
model. The goal and main contributions of this work are to subsequently compare it to what a human
would expect and have a complete ready-to-use system. The eventual contributions include:

Contribution a Functional and Non-Functional requirements elicitation for such a system (section 3.2).
Contribution b A mapping of the contextual requirements into the required workflows (section 3.5).

Contribution ¢ A mapping of the activities of such a system into an architecture that fits a known
architectural paradigm (chapter 4).

Contribution d An implementation of this software.

Contribution e An extensive evaluation of this implementation (chapter 6 and chapter 5).

Background

The problem defined in our problem statement revolves around wrong outputs and wrong features for
Machine Learning (ML) systems. This chapter reviews the existing work on fairness and interpretability
and the fundamental difference between debugging traditional software systems and Machine Learning
ML systems. Additionally, relevant work on (ML) software architectures is covered. Since the goal
and contributions of this thesis are relatively new, we list resources that are inspirational but do not
necessarily compare to the envisioned outcome of this thesis. Interpretability and fairness are hot
research topics nowadays [32]. Because we want to interpret the behaviour of our model with the
eventual goal to assess, amongst other things, fairness, we look for existing work there that serves
as background knowledge. Compared to general software testing, ML testing encompasses more
complexity because it may not only occur in the code but in the data as well. In order to grasp the
problem in its entirety, we assess how debugging machine learning systems differs from traditional
software debugging.

2.1. Interpretability

Numerous methods for interpretability exist. Traditionally, existing tools are organized in such a way
that they can be interpreted by an explanator that is easy to comprehend. These methods are local,
meaning they concern individual samples. Common techniques are decision trees, feature importance
and heatmaps [33].

Moving on to global (explaining the network as a whole [33]), in [14], ACE, an algorithm to extract
visual concepts (after training) from images is presented. In this work, simple to more complex concepts
in the form of image patches are extracted that eventually are part of the classification task of the
algorithm. This work does not require human supervision to be executed but does rely on individual
perception with respect to interpretation of the results. Additionally, in the case users want to test a pre-
defined hypothesis about the inner workings of the model, the input images require that these concepts
are explicitly present.

In [2], which is the foundation for this thesis, a human-in-the-loop machine learning approach that
used crowdsourcing is presented. Crowd workers are used for annotating saliency maps so that even-
tually, model behaviour can be explained with concepts that are understandable to humans. The out-
comes are evaluated against ACE [14] and with a relatively little amount of annotated images, human-
comprehensible interpretations could be done by the model. As in earlier attempts at interpretability
[25], statistical testing is used to quantify the performance.

From both the academic and corporate world a few comparable systems have originated:

« Snorkel’, to programmatically build training data. This project has been integrated with the re-
cently emerged snorkel.ai? project into an entire suite that allows for labelling, deploying, mon-
itoring and more. Compared to our proposed system, however, snorkel is more to accelerate
workflows, whereas our system is explicitly aimed at interpretability.

"https://www.snorkel.org/
2https://snorkel.ai/

4 2. Background

+ Al Explainability 360%. To comprehend models’ predictions in multiple stages of an Al pipeline.
This system has similar goals compared to ours but is aimed at more mathematical approaches
such as boolean decision rules and linear models applied to various types of data. Our system
aims at the interpretability of image recognition models with semantic concepts.

« Error Analysis 4, an API set for python that allows for a visual explanation of errors for both iden-
tification and diagnosis. After testing the models, errors are analysed. The difference between
our problem and system is that we do not have a concise definition of an error. In our case,
we want to interpret the results with semantic concepts, something that is not limited to incorrect
predictions of the model.

2.2. General Debugging

In general software development, programs display a deterministic character. In an arbitrary program-
ming language, given a fixed input, results are identical when executing the code multiple times. This
has consequences for the scope of the debugging workflow. In their standard glossary of software
engineering terminology [10], IEEE describes the definition of debugging is as follows:

Definition. Debugging is the process of locating and correcting errors in a program in which errors
have been detected

Subsequently, the authors present a debugging process model:

1. Initial source code with a hypothesis about the outcome that is not verified by executing the current
code.

2. Narrowing down the region that is likely to cause the problem

3. Modification of the source code so that the expected outcome could be reached
4. Verify the hypothesis, if not, go back to step 1.

5. The bug is located

A more systemic approach is presented in [20] where the relationship between using assertions and
faults in software programs is investigated. In this work, a slight statistical relationship between the
assertion density and the fault density is shown. In an IEEE paper, assertions have been defined as
Formal constraints of software system behaviour that are commonly written as annotations of a source
text. The primary goal in writing assertions is to specify what a system is supposed to do rather than how
it is to do it [27]. This is mostly implemented by having a Boolean predicate in the source code which
should evaluate to true in order to ensure a correctly working software and raises an error otherwise.
The purpose of this mechanism is to locate bugs, both during compile-time and run-time.

2.3. Debugging ML systems

Traditional software is deterministic in nature whereas most ML algorithms possess stochasticity. This
stochastic element makes debugging more difficult because tests and assertions cannot test for fixed
values. Additionally, the inner workings of most ML models are abstracted and invisible to developers
since these techniques are mostly black boxes. The working of algorithms is implicitly learned from
the data rather than explicitly specified in the source code. The applicability of an ML algorithm is
measured with statistical tools such as accuracy and area under the curve (AUC). For less complex
algorithms such as Bayesian networks and support vector machines, visual tools exist to explain the
models’ behaviour to some extent [19].

In recent years, many approaches have been taken to debug ML systems and make them more
interpretable. In [18], it is shown that assertions in ML systems can be used for run-time monitoring
by logging unexpected behaviour or triggering corrective actions. Moreover, model assertions can find
errors with a high degree of confidence. Due to the aforementioned stochasticity, which is not a certain

3https://aix360.mybluemix.net/
“4https://erroranalysis.ai/

2.4. Fairness 5

error but a statistically high sign of unexpected behaviour. The implementation of these assertions
is done in a python library and allows developers to write assertions with a high level of abstraction.
Example use cases are the analysis of TV news, autonomous vehicles, video analytics and medical
classification.

The need for testing the entire ML pipeline is justified in [5] where 28 needs that can be modelled as
an assertion are presented. These are placed into four separate categories; data, model, infrastructure
and monitoring. Each category lists seven tests and the total score is the minimum score that is obtained
for each category. The minimum is chosen because all aspects are regarded as equally important for
a solid system. The problem statement from section 1.1 relates to the concept of debugging for the
sake of interpretability and [2] distinguishes use cases for debugging.

» Exploratory: developers of a model want to comprehend the model for fine-tuning and evaluation
purposes without searching for a specific answer (e.g. “How does a model A make its decisions
given a certain input and hyperparameters” as opposed to “Why predicted model 2 outcome Y
given input xX?”)

» Explanatory: developers or end-users want to verify why a model did a certain prediction on a
given input (e.g. “Why predicted model A outcome Y given input X?”). In this case, there’s a
distinction between global interpretability (rule construction based on a set of input entries) and
local interpretability (individual input entries).

Both scenarios are important because they serve as a use case for which the output of our system
could be utilized.

2.4. Fairness

As a non-functional characteristic that becomes more important nowadays [32], fairness is charac-
terised as the degree to which Al systems don’t have an unwanted algorithmic bias. In [9], multiple
definitions are addressed that relate to treating every individual equally and not giving a less qualified
individual an edge over a qualified one.

Back when still in its infancy, ML was used for seemingly innocent applications such as online ads
or filtering emails. Nowadays, it contributes to filtering loan applicants, deploying police officers and
diagnosing diseases. In the last years, a vast amount of research is done on the subject of fairness
because it is suspected that the usage of these algorithms can introduce discrimination [9]. One study
found that classifiers for face detection performed better for people with white skin compared to people
that are dark-skinned [6]. Additionally, one study shows that biases in language with respect to gender
and race and cultural stereotypes are passed on to artificial intelligence [7]. For cases like loan applica-
tions and fraud, the algorithms are trained on fraudulent samples. When the sample set is unbalanced
with respect to something that can lead to discriminatory practices, it becomes bias prone.

Previous works lists five reasons that cause unfairness as follows [3]:

+ Skewed sample
When a small initial bias exists, the errors may accumulate over time, hence increasing bias even
more.

* Tainted examples
When data is erroneously labelled by humans as a result of a subjective bias.

* Limited features
The lack of significant features may cause the model to not find an adequate relationship between
the features and the class labels.

» Sample size disparity
Occurs when the sampled data leans more toward one specific class.

* Proxies
There are cases where features are an indirect pointer to sensitive features that are subsequently
learned by the model (e.g. an address in a certain neighbourhood might eventually cause a bias
towards skin colour), even though the sensitive features themselves are omitted.

6 2. Background

More specifically, Krause et al. describe how inequality in the real world inevitably can lead to a bias that
is encoded in the data [9]. Furthermore, since ML algorithms reduce the average error in their training
phase [22], it can cause only majority populations are fitted to the model, leading to a bias towards
minority populations. In our work, we aim to contribute to fairness by looking at the inner working of
the model and by designing user interfaces, that help understand the models’ performance for certain
categories of the data.

2.5. System Architectures

Since one of our contributions will be a concrete implementation, the current state of system archi-
tectures with relevancy for our context will be addressed in this section. A trend of the last decade is
that systems are deployed in the cloud. Big cloud providers such as Amazon, Google and Microsoft
leverage this trend by offering entire platforms such as AWS® or Azure®. These infrastructural changes
triggered a change in architectural styles. Microservices architecture implies that small loosely cou-
pled services are each responsible for contributing a small part (hence “micro”) to an application [11].
The counterpart of microservices is the traditional monolithic architecture where all functionalities are
combined and bundled into one application that is executed during run-time. Monoliths still have ad-
vantages over micro-services such as rapid development, better testability and ease of deployment.
The combination of a microservices architecture on a cloud computing platform results in key selling
points such as flexibility with respect to deployment, being language-neutral and modularity.

The microservices architecture is commonly implemented using Docker * that uses a virtualization
platform to run software in so-called containers. A docker container is an isolated environment that
runs most programming languages. A software program is executed in a container that ensures all
the necessary requirements with respect to containers. The host system does not have to support the
programming languages. In [17], the usage of docker within a microservices architecture is justified.
Numerous reasons are given, docker is suitable for microservices because it accelerates; automation,
independencies, portability and resource utilization.

5https://aws.amazon.com/
6https://azure.microsoft.com/
"https://www.docker.com/

The Brickroutine System

Following chapter 2, a requirements elicitation for the system, which from this point onward we will
call “Brickroutine” is conducted in this chapter. This name is chosen because this system allows the
end-users to see the building bricks of an Al model by using several routines. First, the general objec-
tive with respect to debugging and explainability is revisited and subsequently, the necessary actions
and procedures will be explained. The use cases for this system stem from existing research on the
explainability of Al systems from Balayn et al. (2021) [2]. The nature of the typical user of this system
can vary. We envision it to be one of the following:

» Developers represent the people involved with the development of the Al model that is used to
classify images. They want to use this system to know which concepts are learnt by the model.
This provides them with the knowledge that they could use to modify the model.

* Domain experts represent the people involved with the provision of the initial requirements for
classification. When images stem from a category that requires specific knowledge with respect
to the semantic concepts, these people could use the system.

First, we will specify the general objective of Brickroutine and introduce terminology in section 3.1,
then the sets of actions needed to achieve this objective will be discussed in section 3.5.

3.1. General Objective

Consider the following situation: Given a neural image classifier that is trained on a birds data set, a
developer of Al models wants to see why a certain erroneous prediction of a birds species was made.
He wants to explain this in terms of concepts that a human also would use to describe such a problem
(e.g. Which part of the birds makes the algorithm confuse bird y and z with each other?).

Suppose bird y has yellow wings and a short pointy beak and bird z has black wings and a red dot
on its head. If an ornithologist would see a bird with a red dot, the concept of the red dot is used to
classify that bird as bird z because there is a relationship between that concept and the class the bird
belongs to.

Definition. A conceptis a semantic interpretation of a visual characteristic of an object that is used to
classify that object. Concepts may be composed of other concepts and can be used in combination with
other concepts. The ML model internally establishes the relationship between concepts and classes.
With the right tools and techniques, the parts of an image that an ML model used to classify could be
observed in a heatmap.

Definition. A heatmap or saliency map is an image that highlights the pixels that were used in each
layer of a neural network to come up with the prediction of that specific class. It features the original
image with an overlay that represents the relatedness to the prediction of each pixel. It is used so that
annotators can connect those regions with semantic concepts.

The eventual goal and contribution of the system is to test a Machine Learning model on the re-
lationships between concepts that it has learned. We want to verify if it has established the same

7

8 3. The Brickroutine System

relationship as humans would. Therefore, the correct relationship between the concepts and classes
is a requirement.

Definition. A requirement is a set of concepts that ultimately can be verified by our system. These
requirements are initially submitted to Brickroutine and can change over time. For example, when
humans see a sink and an oven, they would commonly identify the scene as a kitchen. Consequently,
oven A sink is a requirement for kitchen.

Ideally, we want to verify a complete list of requirements. For instance, what differentiates a kitchen
from a bathroom in human-understandable language? A human would argue that both feature a sink
but the combination sink and oven would only be present in a kitchen and would rather make an odd
bathroom. These requirements typically originate from a person that is skilful on the topic that data set
is about, a so-called expert in a specific domain.

Following section 2.3, ML models have no cognition of concepts when classifying due to their black-
box nature. It recognizes patterns and classifies an image with a certain likelihood when previously
learned patterns are present in that image. In [2], the pixels of an image that the model uses to clas-
sify objects are highlighted with saliency maps. When subsequently the concepts belonging to these
parts of the images are annotated with semantics, concepts and relationships between them can be
explained. As a result, the inner workings of the model can be described by what we call mechanisms.

Definition. A Mechanism is an approximation of the relation between concepts that results from a
trained model. After training, the model has implicitly learned a definition. For instance, when Brick-
routine helps us conclude that for some images that belong to the class kitchen, the model learned
patterns that humans would conceptualize as an oven, a sink and a chair respectively. A mechanism
would be oven A sink for the class kitchen.

Figure Figure 3.1 shows visual examples of the afore-mentioned terminology. Figure 3.1a shows
the input image of a shark, the requirement for this image is what concepts initially are thought to be
defining a shark, for instance, a dorsal (top) fin, a pointy snout and a caudal (back) fin. Figure 3.1b
shows the heatmap that can be used to approximate the real mechanism, this mechanism is retrieved
by annotation in our system and in this case represent the concepts dorsal fin, snout, mouth, grey skin
and a small part of the ocean, although this is depending on the perception of the annotator. We can
see in the images that the smaller fishes surrounding the shark are not picked up by the model.

(a) input image of a shark to test requirements against (b) heatmap of a shark to annotate the mechanism

Figure 3.1: pictures of a shark to demonstrate the terminology

Additionally, concepts can be (and often are) made from other concepts. When a step is taken
towards finer-grained concepts, other concepts appear. The lowest granularity of concepts that can be
distinguished in this context will be referred to as seed concepts.

Definition. A seed concept is a concept that is at the lowest granularity. A table for instance is made
up of multiple legs and a tabletop, the legs and tabletop, in this case, identify as seed concepts. Taking
a step towards concepts of a higher granularity, seed concepts can form intermediate concepts that
should eventually lead to a class for a requirement or mechanism.

We see that the definitions of requirements and mechanisms closely resemble each other. The
subtle difference lies in the fact that requirements are what we define as “how a human would look at

3.2. User Stories 9

an object and determine which class it belongs to”. Mechanisms, on the other hand, are how an ML-
model looks at it. Revisiting the general objective of Brickroutine, test a Machine Learning model on the
relationships between concepts that it has learned, we want to compare the initial requirements with
the learned mechanisms to infer the inner workings of the model. For instance: Is the mechanism that
the model uses along the line of reasoning of humans, i.e. do the requirements and the mechanisms
overlap? Moreover, if they differ, which mechanism is used instead and is this valid?

Let us imagine a simple world where one procedure answers the problem described above. Roughly
we could split up our procedure into three steps:

» Get the requirements from the domain experts
+ Let Brickroutine extract the mechanisms from the heatmaps.
» Compare and conclude

However, there are a couple of matters that make this more complex. First, a cold start problem
arises because the requirements have to be entered manually by the user and there is no guarantee
that the concepts in these requirements match concepts learned by the model. A result could be that
mechanisms could in the best case only be partially overlapping with requirements or even have no
concepts in common at all . Lastly, we cannot know the actual level of granularity of the mechanisms in
advance. Going back to our example, does the model see an actual table as a table or as a combination
of four legs and a tabletop? To cope with these phenomena, the routine of identifying, verifying or
modifying appropriate requirements and mechanisms is split up into a different sequence of actions,
which we will call a workflow.

Definition. A workflow is a sequence of actions with the goal of identifying, verifying or modifying the
requirements and mechanisms. Each workflow has a separate goal as a part of the general objective.
The execution of the actions in the workflow is either initialized by the user or other workflows. For
most workflows, conditions exists that should be met before the workflow can be executed.

Definition. A condition indicates that the combination of images, heatmaps and annotation should
be in a certain state before the user can start this workflow. An example of this is that there should be
images available in the system when the users wants to annotate them. These conditions have been
identified in the descriptions of our workflows in section 3.5.

3.2. User Stories

To account for the functional requirements of the system, it is helpful that the requirements are described
from the perspective of the end-user [4]. As initially stated in this chapter, the end-users of this system
will fall into two categories: developers and domain experts. Developers can also function as both,
under the condition that they are sufficiently informed about the semantic characteristics of the classes
that belong to the images of the submitted data set.

First, we define the user stories from the perspective of a developer:

* As a user | want to interpret my computer vision models so that | can know which semantic
concepts of my images the model reasoned on for correctly classified images and | can verify if
this is valid.

» As a user | want to interpret my computer vision models so that | can know on which parts of my
images the model reasoned for incorrectly classified images and | can take appropriate actions.

» As a user | want to upload a file with predictions that an ML model made so that | can see the
predictions in my system.

» As a user | want to upload a file with predictions that an ML model made so that | can compare
my semantic concepts analyses to the predictions.

» As a user | want to upload the original images that served as input for the ML model so that
requirements can be annotated.

10 3. The Brickroutine System

» As a user | want heatmaps to be automatically extracted when | upload the images so that | can
see which parts of my original images my model used to predict.

» As a user | want to be able to upload heatmaps when they are generated elsewhere so that | can
see which parts of my original images my model used to predict.

» As a user | want to upload multiple data sets and predictions and easily switch between them so
that | can use the system for multiple combinations of data sets and model results while main-
taining the same storage mechanisms.

* As a user | want to have an overview of all the classes and requirements with a table that shows
metrics for respective images in my data set so that | can interpret my model in terms of human-
understandable semantic concepts.

» As a user | want to have an overview of all the classes and requirements with a table that shows
metrics for respective images in my data set so that | can interpret my model in terms of human-
understandable semantic concepts.

» As a user | want to have a user interface so that | can use the system, execute actions and see
the output of my annotation work

Subsequently, we define user stories from the perspective of a person doing the annotations, the
so-called domain expert:

» As an annotator | want to submit requirements for each class so that | can verify if these require-
ments are present in the images that | upload

» As an annotator | want to be able to verify these requirements in the heatmaps so that | can
assess if my model used these requirements to make predictions and understand my model.

» As an annotator | want to enter custom mechanisms for each image when my requirements are
not verified so that | can understand my model.

» As an annotator | want to enter custom mechanisms for each image when my requirements are
not verified so that | can understand my model.

+ As an annotator | want to select how many images for each class | want to annotate so that | can
work efficiently towards my goals and do not have to annotate unnecessary images.

3.3. Starting Point

Now that we have established a general objective and functional requirements, we can describe our
workflows step by step. Our approach is to present the workflows in conjunction with the interface
design because of the coupled nature of those two parts. The initial feature that we describe and
implement is enabling the user to upload a data set. A data set suitable for our system consists of the
following parts:

+ A set of images that the model user to make predictions.

+ A file with file names predictions. The format we ask the user to use for their csv files is: image
name, true label, predicted label.

» A set of heatmaps for every image that is being uploaded (optional).

The interface for uploading a data set is shown in figure Figure 3.2. Here we see input fields with
explanations about the headers and heatmaps. The form is equipped with client-side validation to
sanitize the inputs at this point.

3.3. Starting Point 11

Brickroutine Ul Home Overview Monitoring Workflows Dataset

Add new Dataset

Name of data set

Predictions CSV File @ | Browse... | No file selected

File has headers

=
Generate heatmaps @ g

Images | Browse... | No files selected

Store Dataset

Figure 3.2: The user interface for uploading a data set

If we recall our functional requirements from the user stories, we do not simply design Brickroutine
for just one data set. After uploading at least one data set, the user can select their designated data
set by using the controls and the top and mark the data set as active. From this point, all statistics and
actions will be designed for that specific data set. Since the user uploaded the model result, we present
an overview per class of the accuracy and a counted list of the predictions to have the statistics in the
system and aid users in coming up with scenarios that they might want to verify in subsequent steps.
Figure 3.3 shows the interface design of the above-mentioned parts.

Brickroutine Ul Home Overview Monitoring Workflows Dataset

Overview of data sets

The table below displays all the datasets that have been loaded into Brickroutine. When a dataset is marked as active, workflows will use this dataset. Use the table to select the
datasets accordingly.

Add new Data Set

Active Name #Classes #images Heatmaps Setas active
o Birds 10 494 ©
[x] Sea Creatures 3 300 [™

Model results for this data set

True label Accuracy Predicted label Count
american_goldfinch 48
american_goldfinch 03%
pine_grosbeak 1
monk_parakeet 45
monk_parakeet 92%
american_goldfinch 4
downy_woodpecker 45
downy_woodpecker 0% hairy_woodpecker 4

lesser_goldfinch 1

lesser_goldfinch 43
lesser_goldfinch 88% american_goldfinch 5

hairy_woodpecker 1

hooded_merganser 40

bufflehead 5

monk_parakeet 1
hoaded_merganser 80% lesser_goldfinch 1

american_goldfinch 1

Figure 3.3: The overview of a data set

After uploading the images and while the heatmap generation process is triggered, the users can
see the state of their data set by navigating to the home screen by clicking on the home tab at the top of
the page. The interface is displayed in Figure 3.4. The expandable table at the top of the page shows
the users the requirements per class and the per image state the numbers. In subsection 3.5.6, we
will elaborate on this table after we have described Brickroutine in more detail. Below the table is a

12 3. The Brickroutine System

list (User actions for this data set) that shows the user which steps are done and still need to be done.
Not in the picture is a detailed visual description of a typical flow in Brickroutine, which is covered in
section 3.6.

Brickroutine Ul Home Overview Monitoring Workflows Dataset

Overview for Sea Creatures

in hanism in hanism not qui not
Class (requirements) image @ heatmap @ in heatmap @ inimage @ images @

~ American_lobster (10) [0 0 0 100 (100%)
~ great_white_shark (7) 0 0 0 0 100 (100%)

- tench (8) [0 0 0 100 (100%)

User actions for this data set
+ Dataset Added

+ Requirements Elicited

X Requirements Validated

X Heatmaps Validated

% Requirements for unverified images added

X Requirements Corrected

Figure 3.4: Brickroutine home screen

3.4. Heatmap Extraction

As mentioned in section 3.1, the heatmaps will help the user understand which specific parts of the
image the model used to make classifications. The concept of heatmaps or saliency maps was first
described in [28] and can be applied to convolutional networks. The output in the heatmaps should be
interpreted as the relative importance of the pixels from the input image with respect to the predicted
classs.

Currently, the model at the back-end of our system is fixed to Inception V3[29]. By first finding the
derivative (using back-propagation) and using the predicted class as input for this function, we get the
input values of our last layer (softmax for Inception V3) represented in the vectorized (one-dimensional)
form. By transforming this back to the original image size, we get an approximation of the pixels that
are used by the model. Finally, if we use these values as an overlay on the original image, the user
can annotate which concepts are featured by the image at the places where the heatmap values are
significant.

If the user selected the checkbox to generate the heatmaps within Brickroutine (Figure 3.2), the
heatmaps will be extracted in the background. A detailed technical explanation of this procedure will
follow in section 3.4. Having the heatmaps in Brickroutine is a condition for the mechanism validation
annotation procedure to start. When the heatmaps are finished, the user sees this in the data set
overview screen (Figure 3.3).

3.5. Workflows Specifications

In this section, detailed outlines and pseudocode of each workflow are given. For each workflow the
condition, input and result are given.

3.5.1. Workflow 0: Requirement Elicitation

This workflow is concerned with obtaining the requirements for each classification that is possible in the
data set it concerns. This is done by asking the domain experts to specify a list of requirements for each
class. For each requirement, a weight is required. The weight is a decimal number between 0 and 1
and can be interpreted as the likelihood of which an object of the respective class features the concepts
that are part of this requirement. A higher weight means a higher likelihood. Figure Figure 3.5 depicts
the overview and Figure 3.6 shows how we implemented this weighted element in the user interface.

3.5. Workflows Specifications 13

Brickroutine Ul Home Overview Monitoring Workflows Dataset

Name HRequirements Action

hairy_woodpecker 5 n
hooded_merganser 3 n
pine_grosbeak 3 a
monk_parakeet 3 n
mandarin_duck 6 ﬂ
american_goldfinch 5 ﬂ
bufflehead 4 n
gila_woodpecker 4 n
downy_woodpecker 4 n
lesser_goldfinch 5 a

Figure 3.5: Workflow 0: Overview of classes

Brickroutine Ul Home Overview Monitoring Workflows Dataset
Name of class hairy_woodpecker

Rule1 black wings white breast
Weight C— 0.9

Rule2 white breast

Weight —— 08

Rule 3 black wings

Weight —— 0.8

Rule 4 u throat stripe

Weight C— 0.7

Rule 5 n red crown

Weight CE— 0.6

Add new rule
B Save changes

Figure 3.6: Workflow O: Define and modify requirements for a class

3.5.2. Workflow 1: Requirement Validation Annotation

The goal of this workflow is simply to do an initial verification on an image level. A requirement is
marked as verified when all the concepts of that requirement appear in the input image. The outcome
of this workflow is used in subsequent steps. An outline in pseudocode is given in algorithm 1.

14

3. The Brickroutine System

1

2
3
4
5
6
7
8

Data: Original images and requirements for each class
Condition: Unannotated images
Result: Requirements annotated in the images that belong to the sample
for All images from sample do
for All requirements for this class sorted by weight in ascending order do
if Requirement appears in image then
Set this requirement as verified
break
end
end
end

Algorithm 1: Pseudocode for Workflow 1

For this workflow, we can imagine that the user does not want to annotate all images at once.

In fact, we think users should use Brickroutine in small iterations (more on that topic in section 3.6).
Additionally, following the user stories, we want the users to select the desired amount of images to
annotate for each class specifically. As a result, the user interface depicted in Figure 3.7 allows the
user to control this.

Brickroutine Ul Home Overview Monitoring Workflows Dataset

Annotate requirements

q
Class (requirements) image @ heatmap @ in heatmap @ inimage @ images @
~ American_lobster (10) 0 0 0 0 100 (100%)
v great_white_shark (7)) 0 o 0 100 (100%)
~ tench (8) 0 [0 0 100 (100%)
Select the classes to include below
@ selectall

Amount per class:

— 40
American_lobster

Amount:

O 40
great_white_shark

Amount:

CE— 40
tench

Amount:

CE— 40

Get sample

Figure 3.7: The sample selector for workflow 1

On the top of the image, we see the same expandable table as is on the home screen. Below are

the controls that allow the user to either select all images with the same amount of images per class
or a (de)select individual classes with specific numbers. When all numbers are appropriately defined,
the users can hit and the system shows the requirement annotation interface, which is
shown in figure Figure 3.8.

3.5. Workflows Specifications 15

Brickroutine Ul Home Overview Monitoring Workflows Dataset
. - great white_shark :
Instructions for annotating images: Sl i i ' start over J| @ Save Annotations

For every image shown, answer whether or not the
listed requirements are represented in the image

The next image automatically appears when a
requirement was met or when no requirements are
left

Use the buttons in the right top corner to save the
annotations or to start over again

You can save at any time. Empty annotations will be
disregarded and will appear a another sample

You can navigate with the buttons on the bottom or

the left and right keyboard arrows to revisit or skip
images Are the following concepts present in the image?
The button in between yes and no will undo the dorsal fin AND PECtUFﬂ| fin AND
annotation for this specific image caudal fin
requirement 3/7
weight: 0.8

Figure 3.8: The requirement annotation interface for workflow 1

At the bottom, we implemented a control panel that turns if a matching requirement (the

shown concepts appear in the image) was present in the image, when none was found, m for

the image the users are currently annotating and for images that still have to be annotated. The
user can jump between images by clicking on these buttons or using the arrow keys on the keyboard.
In the middle, right to the instructions, we see the actual annotation component. It shows the concepts
that are part of the current requirement, the sequence number of the requirement and the weight. The
three buttons on the bottom are to give input with respect to the presence of a requirement and to undo
the current image in case the user makes a mistake. To submit their annotations (this can be done
before all images are annotated) the users use the button on the top right. The button to the left of the
submit button can be used to set all the images back to the initial state.

Although it is possible that multiple requirements are present in an image, the pseudocode in algo-
rithm 1 shows that we limit the user to annotating one requirement per image and proceeding to the next
image when that requirement is found. Because all the requirements have weights attributed to them
and the requirements are presented to the user in ascending order, the requirement with the highest
weight will appear first. In this way, annotation time is reduced. The weight of the requirements and
therefore the order in which they are presented in this workflow can be adjusted in a subsequent work-
flow (subsection 3.5.4). Eventually, the mechanisms that are found by the system could be equivalent
to these requirements.

3.5.3. Workflow 2: Mechanism Validation Annotation
The goal of this workflow is simply to verify the presence of the requirements on a concept level by
leveraging the heatmaps. A condition is that every image that is addressed in this step has been
through the previous workflow and that the heatmaps for this data set are extracted. An outline in
pseudocode is given in algorithm 2. We ask the user if the requirement is entirely covered because the
model might have learned concepts of a finer granularity when the concepts from the requirement are
only partially covered. This information is used in the following workflows.

Contrary to algorithm 1, in algorithm 2, we take an extra step to check if the mechanism matches any
similar requirement with lower weight. If in this stage, the mechanism proved to be similar to a require-
ment with a lower weight than the requirement that was annotated, we set that specific requirement as

16 3. The Brickroutine System

Condition: Heatmaps present in system and requirements extracted
Data: Heatmaps and requirements for images
Result: Images with annotated mechanisms
1 for All images from sample do
if If all concepts of annotated requirement are highlighted by heatmap then
Mark this image as verified mechanism
if concepts are entirely covered then
\ mark this mechanism as entirely covered
else
\ mark this mechanism as not entirely covered
end
else
Mark the requirement for this image as not verified in heatmap
Select all relevant concepts as a custom mechanism
end
Execute algorithm 3 // Check if the mechanism matches another
requirement

© o N o a b W N

-
o

- =
W N

14 end

Algorithm 2: Pseudocode for Workflow 2

verified, both in the image itself and in the generated heatmap. We do this by the procedure highlighted
in algorithm 3 where the key function represents a generated string based on alphabetically ordered
concepts so that the requirement will be returned if all the concepts of the annotated mechanism are
matching.

Data: Images with annotated mechanisms

Result: Images with optionally matched requirements
1 C « empty dictionary

2 for All classes c; from the submitted images do

3 R < empty dictionary

4 for All requirements r; in c; do

5 | R« (key(r),1)

6 end

7 C <R

8 end

9 for All images I; from sample do

10 if key (mechanism(l;)) € C then

1 \ Set C[key (mechanism(l;))] as the verified requirement and mechanism for I;
12 end

13 end

Algorithm 3: Retroactively matching the mechanisms with requirements

For the images that the user annotates in this step, the requirements should be present in the
system. Analogous to the previous workflow, we have the sample selector again. However, we allow
selecting the user only images from classes that have one or more annotated requirements. Likewise,
the maximum number is also bounded by the number of verified requirements. The user interface for
this step is shown in image Figure 3.9. Here we can see the range of the sliders match the numbers
in the table at the top and that the class tench is stricken through because the amount of verified
requirements is 0 in the example.

The user interface for this annotation step is shown inFigure 3.10a. At the bottom of the page the
users see the navigation pane again that can be controlled with either keyboard or mouse. On the
bottom of the image in the centre, we implemented a button as an overlay (the double arrows) that
allows the user to toggle between the heatmap and the original image in case the heatmap is limiting
the user in determining which semantic concepts are behind the highlighted parts.

3.5. Workflows Specifications 17

Brickroutine Ul Home Overview Monitoring Workflows Dataset

Annotate mechanisms

in ism in ism not qui not L

q
Class (requirements) image @ heatmap @ in heatmap @ inimage @ images @
~ American_lobster (10) 27 (27%) 0 0 3(3%) 70 (70%)
~ great_white_shark (7) 18 (18%) 0 0 2(2%) 80 (80%)
» tench (8) 0 0 0 0 100 (100%)

Select the classes to include below
select all

@ American_lobster

Amount:
—— 27
B great_white_shark

Amount:
E—— 15
iench

Get sample

Figure 3.9: The sample selector for workflow 1

In addition to the previous annotation step, a single annotation during this workflow consists of
multiple actions with a minimum of two. The minimal case is when the heatmap is highlighting the
exact concepts of the requirement. After clicking yes, the user is asked if the requirement is entirely
covered. When the mechanism is not matching the requirement, we ask the user to annotate a custom
mechanism (algorithm 2, line 11). For annotating this custom mechanism, we present the user with all
the distinct concepts of the requirements for the concerning class. Additionally, the users can add new
concepts in this stage. When selecting a mechanism for another image of the same class, these newly
added concepts will also be part of the input list to speed up annotating time and prevent the definition
of ambiguous concepts. The list is ordered alphabetically to help the user pick the correct concept. A
flow of all the possibilities with the user interfaces attached is shown in Figure 3.10b.

18 3. The Brickroutine System

Brickroutine Ul Home Overview Monitoring Workflows Dataset

'O start Over | B Save Annotations

Select a mechanism

Instructions for annotating heatmaps:

For every heatmap shown, answer whether or not the
listed requirements are represented in the heatmap

carapiece
The next heatmap automatically appears when a ‘
. claw
requirement was met or when no requirements are
left claw texture
B N tail fin
Use the buttons in the right top comer to save the
annotations or to start over again thin legs

You can save at any time. Empty annotations will be
disregarded and will appear a another sample

You can navigate with the buttons on the bottom or
the left and right keyboard arrows to revisit or skip
heatmaps

Mathing requirement but no matching mechanism
found.
The button in between yes and no will undo the

annotation for this specific heatmap Please annotate the real mechanism on the right -

(a) The mechanism annotation interface for workflow 2

Mathing requirement found. Is it also highlighted is it entirely covered?

Go to next image
by the saliency map? ;
claw texture AND carapiece AN
claw texture AND carapiece weight: 1
weight: 1

Select a mechanism Select a mechanism Select a mechanism
carapiece Define new mechanism @ carapiece
claw claw
claw texture new concept 1 claw texture
tail fin new concept 1
new concept 2

thin legs new concept 2

tail fin

thin legs

| 5

e — Select mechanism | ——

(b) The flow of annotating a custom mechanism for workflow 2

Figure 3.10: The user interface for workflow 2

3.5.4. Workflow 3: Adding new requirements

So far, we defined requirements, annotated them and subsequently annotated the mechanisms. Be-
cause the requirements originate from the input of the users, there could be images that have no verified

3.5. Workflows Specifications 19

requirements at all. The goal of this workflow is to help the user define the requirements for these im-
ages. In a Utopian world, we would be able to define a brief set of requirements for each class and

all images of that class should feature at least one of those requirements. Unfortunately, the reality
is a bit more complex. As an example, think of an arbitrary simple object. Different shapes, colours,
compositions and camera angles exist which all influence which concepts are (not) visible. Addition-
ally, the context in the image around an object might influence how a concept in an image should be
classified. Additionally, it might also be the case that the user finds the image inappropriate and wants
to exclude it from further analysis. Reasons for this can be that the object is very unclear and hence
useless for the model, or that the image does not feature the supposed object of the class at all. For
these cases, we let the user annotate a remark. The outline of workflow 3 is shown in algorithm 4 and
the user interface is depicted in Figure 3.11. When a user adds a remark, the requirement is disabled
because doing so marks the image as invalid for further analysis.

Brickroutine Ul Home Overview Monitoring Workflows Dataset
Unverified Image (3 /10) Submit all new requirements

Name: 9eb5f27b78aa4d5db6fSededdaabf84 jpg Original Image: Optional: When no suitable requirement could be
) formulated, use this field to specify a remark for this
Label: pine_grosbeak image. Pick from other remarks that have been entered for

Unverified Requirements: images belonging to the same classes or enter a new one.

» pink feathers AND grey wings
« grey feathers AND orange head
« heavy chest

Please note that you can't add a requirement for this
image when a remark is entered. Clear remark

Type new remark here

Add a new requirement for this image or leave empty to skip

New Requirement n concept1

Weight — 05

Figure 3.11: Adding new requirements for unverified images

Condition: Images without verified requirements > 0
Data: Images without verified requirements
Result: Images with an optional requirement or optional remark
1 for All images I; without verified requirements do
2 if User can to add a requirement for this image then
3 Ask for requirement
4 Mark requirement as verified for this image
5 else if user wants to add a remark for this image then
6 | Add remark for this image
7 end

Algorithm 4: Adding requirements for unverified images

3.5.5. Workflow 4: Requirements Correction

In the process of workflow 1 (subsection 3.5.2). Requirements with weights were elicited from the user.
After going through the other workflows, the results in this state of the system could be informative with
respect to the requirements. This workflow is concerned with the validity and if necessary, correction
of the requirements. For each requirement that is now known by the system the state could be one of
the following four:

* No images have this requirement
During workflow 1, no images were annotated to feature the combination of concepts listed in this
requirement. This can either mean that for all images a requirement with a higher weight than

20 3. The Brickroutine System

this one was annotated or that none of the images matches the concepts of this requirement at
all.

» Not all mechanisms match this requirement
This indicates that the requirements were present in images but not for all those images the
mechanism was present. This can be an indication that the requirement is not suitable. Therefore,
we ask the user to review this requirement and possibly adjust it accordingly.

* Mechanism found in images, but only for x the mechanism was spanning the entire concept
The mechanism was found in the image, but for x of the images, the mechanism was spanning the
entire concept. This means that for some images, the mechanism was matching the requirement
but only partially. This is an indication that the model might have learned a concept of finer
granularity. Therefore, the user is encouraged to annotate concepts of finer granularity than the
one(s) currently in the requirement.

* Mechanism found in images
This means that for all the images in which this requirement was present, the mechanisms are
matching. The granularity of the requirement is therefore likely to be appropriate. The user is
encouraged to review the weight of this requirement. When a requirement has a relatively high
number of verified mechanisms, the weight should be proportional so that this requirement is
shown early in the process during subsequent runs of workflow 1.

Condition: Mechanism validation annotation done for a set of images for each class
Data: Requirements for each class
Result: Validated or improved requirements
1 for All classes do
for All requirements in this class ordered by weight in ascending order do
Present requirement to with editable concept classes and weight to user
Present state of this requirement to the user
if User changes a requirement R; of class c then
for Images I; of class c that previously had this as a verified requirement do
\ Set this image as unannotated
end
end
10 end
1 end

© o Ny oo b~ W DN

Algorithm 5: Pseudocode for Workflow 4

Logically, some requirements will change when the user uses this workflow. As a result, the old
requirement is not existing anymore in the system and the state of the images needs to be modified
appropriately. Given an example requirement r with concepts ¢ ... ¢,,_; that changes to ' with concepts
g - Cn—1, there is no way to know that the images that had r as a verified requirement, also feature
r'. As a result, we set the state of these images back to unannotated. This is covered in algorithm 5
at lines 5-9. When the user changes the requirements in workflow 0 (Figure 3.6), the same procedure
will take effect.

3.5. Workflows Specifications 21

Brickroutine Ul Home Overview Monitoring Workflows Dataset

American_lobster (1/3)

Total verified requirements: 71
Total verified mechanisms: 71

Rule 1 n claw texture carapiece
—
Weight A
34 Verified requirements %12 34 Verified mechanisms § Mechanism found in images, please review the weight
— .
Weight 08
B 18 Verified requirements & 18 Verified mechanisms
— .
Weight 08
B9 Verified requirements & 9 Verified mechanisms
Rule 4 n carapiece tail fin
Weight — 0.5
B0 Verified requirements € 0 Verified mechanisms ! No images match this requirement
Rule 5 n claw texture
— .
Weight 08

B9 5 Verified requirements %8 5 Verified mechanisms ! Mechanism found in images, please review the weight

Figure 3.12: Workflow 4 in the Ul

3.5.6. Workflow 5: The Overview

The workflows we defined so far, function as the foundation for our final and most revealing workflow
where all dots are connected. In this workflow, it's time for the harvest. As opposed to other workflows,
this workflow is about consuming explanatory data.

At the top of the screen, in Figure 3.13a we see our expendable table again with for each class (10
in Figure 3.13a) and an expandable section for each class below. In Figure 3.13b, some rows have
been expanded. For each column, left to right, the meaning is as described below. These descriptions
will also be shown when users hover over the question mark at each column header.

Requirement in image
All images for which the presence of this requirement was true. Includes both images that went
through the heatmap annotation step and images that still have to.

Mechanism in heatmap
Images for which the requirement was covered by the heatmap.

Mechanism not in heatmap
Images for which the requirement was not covered by the heatmap and a custom mechanism
was annotated.

Requirement not in image
All images for which the presence of this requirement was false.

Unnannotated images
Annotate these images in the requirement annotation step (workflow 1).

Please note that the first column (Requirement in image) is always greater than or equal to the sec-
ond column (Mechanism in heatmap) because we annotate the requirements before the mechanisms.
Logically, the third column is the difference between the previous two.

22 3. The Brickroutine System

Figure 3.13b shows the expanded table, in which we see per class the requirements that are present
in our images (first column) and if the mechanism was following this mechanism (second and third
column). The shown percentages behind each number is with respect to the total amount of images
known by the system for this class. By using this table, the user can quickly check the results with
respect to the defined requirements on a high level.

3.5. Workflows Specifications

23

Brickroutine Ul Home Overview Monitoring Workflows Dataset

Class overview

Requirement in Mechanism in Mechanismnot Requirement not Unnannotated
Class (requirements) image @ heatmap @ in heatmap @ inimage @ images @
~ american_goldfinch (5) 48 (98%) 7 (14%) 41(84%) 1(2%) (]
~ bufflehead (4) 48 (98%) 5(10%) 43(88%) 11(2%) 0
~ downy_woodpecker (4) 50 (100%) 8(16%) 42 (84%) 0 4]
~ gila_woodpecker (4) 50 (100%) 3(6%) 47 (94%) 0 0
~ hairy_woodpecker (5) 50 (100%) 4(8%) 46 (92%) 0 0
~ hooded_merganser (3) 50 (100%) 6 (12%) 44 (88%) 0 0
~ lesser_goldfinch (5) 46 (94%) 3(6%) 43 (88%) 3(6%) 0
~ mandarin_duck (6) 47 (949%) 4(8%) 43 (86%) 3 (6%) 0
~ monk_parakeet (3) 48 (98%) 5(10%) 43(88%) 11(2%) 0
 pine_grosbeak (3) 47 (98%) 12(25%) 35 (73%) 1(2%) [

Requirements and mechnisms per class:

american_goldfinch w
bufflehead =
downy_woodpecker w
gila_woodpecker w
hairy_woodpecker =

hooded_merganser w
(a) The overview pane: General result

Brickroutine Ul Home Overview Monitoring Workflows Dataset

Class overview

Requirementin Mechanismin Mechanismnot Requirement not Unnannotated

Class (requirements) image @ heatmap @ in heatmap @ inimage @ images @
+ american_goldfinch (5) 48 (98%) 7(14%) 41(84%) 1(2%) 0

yellow breast, yellow belly, black wings 13 (27%) 3(6%) 10 (209%) -

yellow breast, yellow belly, yellow back 2 (4%) 2 (4%) 0 -

yellow breast, yellow belly 4(8%) o 4(8%) -

yellow breast, yellow belly, yellow back, black wings 23 (47%) 2 (4%) 21(43%) -

black wings 6(1290) 0 6(12%) -
+ bufflehead (4) 48 (98%) 5(10%) 43 (88%) 11(2%) o

white spot, rainbow crest 26(53%) 4(8%) 22(45%) -

dark head, white spot 20 (41%) 0 20 (41%) -

black wings, white feathers 1(2%) 0 1(2%) -

black wings, grey feathers 1(29%) 1(2%) 0 -
~ downy_woodpecker (4) 50 (100%) 8(16%) 42 (84%) 0 [
~ gila_woodpecker (4) 50 (100%) 3(6%) 47 (94%) 0 0
~ hairy_woodpecker (5) 50 (100%) 4(8%) 46(92%) 0 o
« hooded_merganser (3) 50 (100%) 6 (12%) 44 (88%) 0 0

black crest with white spot 28 (56%) 2(4%) 26 (52%) -

cinnamon crest 20 (40%) 2(4%) 18 (36%) -

brown sides 2(4%) 2(4%) 0 -
~ lesser_goldfinch (5) 46 (94%) 3(6%) 43(88%) 3(6%) 0
~ mandarin_duck (6) 47 (94%) 4(8%) 43 (86%) 3(6%) 0
~ monk_parakeet (3) 48 (98%) 5(10%) 43(88%) 1(2%) 0
~ pine_grosbeak (3) 47 (98%) 121(25%) 35(73%) 1(2%) 0

(b) The overview pane: The requirements information table

Figure 3.13: The overview pane 1/2

24 3. The Brickroutine System

Revisiting two of our earlier-defined user stories below, we will transform these requirements into a
user interface:

» As a user | want to interpret my computer vision models so that | can know on which semantic
concepts of my images the model reasoned for correctly classified images and | can verify if this
is valid.

» As a user | want to interpret my computer vision models so that | can know on which parts of my
images the model reasoned for incorrectly classified images and | can take appropriate actions.

This suggests that we should first segment on classes on subsequently on the predicted label. As a
result for each class, the interface in Figure 3.14a shows a set of tables. Every row in each table is
clickable and will open a popup with the associated images. The different table types are defined below
and will only be shown if it has at least one row.

* Mechanisms that follow requirements for correctly predicted images
These are the requirements that also are shown in Figure 3.13b but filtered on correct predictions.
By clicking on a row, the user can inspect the heatmaps for correctly predicted images and see if
the model followed a valid mechanism and thus verify if the right concepts are used.

» Mechanisms that do not follow requirements for correctly predicted images
These are the custom mechanisms that the user annotated for correctly predicted images. By
clicking on a row, the user can inspect the heatmaps for correctly predicted images that did not
follow the requirements. In case the model learned a background concept or has another bias,
the user can observe the mechanisms here and use this acquired knowledge, either within our
outside Brickroutine.

* Mechanisms that follow requirements for incorrectly predicted images
These are the requirements that also are shown in Figure 3.13b but filtered on incorrect predic-
tions. By clicking on a row, the user can inspect the heatmaps for correctly predicted images and
inspect which mechanisms are followed to incorrectly predict class. Each row is a unique com-
bination of mechanism, class label and predicted label so that the user can understand incorrect
predictions.

» Mechanisms that do not follow requirements for incorrectly predicted images
These are the custom mechanisms that the user annotated for incorrectly predicted images. By
clicking on a row, the user can inspect the heatmaps for incorrectly predicted images that did not
follow the requirements and track possible causes for this.

* Remarks for unverified images
When a user indicated that a specific image was not useful and thus a remark was entered in
workflow 3 (subsection 3.5.4), the heatmaps of remarked image(s) will be shown when the users
click on these rows. This will help the user understand the role of these images with respect to
the model’s behaviour.

3.5. Workflows Specifications

25

Requirements and mechnisms per class:

american_goldfinch »
bufflehead =

downy_woodpecker &

PRV o

that follow requi for ly predicted images
Mechanism Count (entire concept)
black white wing patches 5 (4)

black white wing patches, white breast 3 (3)

Mechnasims that do not follow requi for correctly predicted images

Mechanism Count

tree 4

tree, black whiteawing patches a

black white win;zhes, tree 4

red crown, tree 2

sky 2

black white wing patches, sky 1

black white wing patches, white breast, tree 1

tree, white breast, black white wing patches 1

white breast, tree 1

sky, black white wing patches 1

tree, black white wing patches, white bottom 1

white breast, white bottom, tree 1

(a) Mechanisms explained

tree, black white wing patches X

Mechnasims that de not follow requirements for correctly predicted images

(b) Clicked on a mechanism row

Figure 3.14: The overview pane 2/2

26 3. The Brickroutine System

3.6. Process Overview

After having defined the five workflows of Brickroutine, all the components are in place. It is important
to notice in this stage that we cannot truly know what the model has learned because the semantic
concepts that are given by the user of the system are a conceptualization of numbers (black box, see
section 2.3). As aresult, the requirements and corresponding weights that are initially submitted by the
user can change over time to represent the images in the data set and the resulting heatmaps of the
model better. Moreover, the requirements can change because the level of granularity of the concepts
in the requirements is adjusting (recall the definition of seed concepts from section 3.1). Therefore,
we propose the sequence of actions that are depicted in the flowchart of Figure 3.15. The colours of

Add requirements or
remarks

_f

Upload data set

Yes

Y

. ~
Enter requirements
for each class

Any unfulfilled

(images?
A

nE S] o

Add new 1 Annotate Requiremen
corection
necessary?

Explanations

requirements —> requirements in a Satisfying?

| or edit existing ones J batch

equirements
present in most
images?

Correct requirements

| Consult overview
—— for explanation ofthe
) model

Annotate more
requirements?

Annotate

(-
e mechanisms

—HNo—>

Workflow 0 Workflow 1 Workflow 2 Workflow 3 Workflow 4 Workflow 5

Figure 3.15: A flowchart on how to use Brickroutine

the boxes in the flowcharts indicate to which workflow this specific step corresponds. Some subjective
notions on the decision boxes:

1. Requirements present in most images?
At both the home pane and the overview pane, an overview table is shown that indicates for how
many images each requirement is present. The user should consult this and act accordingly. If for
a large number of images the requirements are not present, the user should alter the requirements
or add new ones.

2. Annotate more requirements?
After annotating the requirements, the user should have developed an intuition of the representa-
tion of the requirements in the images. If the user is confident that the requirements in this stage
are properly defined, more requirements can be annotated right away. Else, the user should
assess the models’ mechanism first in workflow two, which either verifies or fine-tines the re-
quirements.

3.6. Process Overview 27

3. Explanations satisfying?
Depending on the goal with respect to the upload data set and results, it is up to the user to
assess if those goals are met. This is where the overview pane (Workflow 5, subsection 3.5.6)
is designed for. If the goal is to look for explanations of misclassified items (“why has my model
prediction class x instead of true label y”), then the user should search for that combination.

4. Any unfulfilled images?
If there are images that do not have verified requirements, then encouraging the user to add
more requirements will improve the coverage of the requirements and therefore, the change that
matching mechanisms will be found in subsequent iterations of annotating.

5. Requirement correction necessary?
After every iteration of annotating, the user should have developed an intuition about the rele-
vance and granularity of the defined concepts. By making use of workflow 4 (subsection 3.5.5),
the user can see the absolute numbers on (partial or entire) coverage of the requirements and
manually assess if the weight for each requirement is appropriate.

We believe that following the sequence defined in this flowchart gives the user flexibility to decide if there
are additional iterations required and will result in an efficient cost/informativeness ratio regarding the
goal of a specific user. This flowchart is also shown in the system on the home page and the workflow
selection page (Figure 3.16).

Brickroutine Ul Home Overview Monitoring Workflows Dataset

Select your preferred workflow:

o,
-
Workflow 0: Requirement elicitation

®
av

Workflow 1: Requirement validation annotation

ao

Workflow 2: Heatmap validation annotation

L]
at

Workflow 3: Add new requirements

o,
aa

‘Workflow 4: Correct requirements

o]

&~
Workflow 5: The overview

Figure 3.16: The interface for selecting the workflows

Lastly, we present the interface depicted in Figure 3.17, that allows the user to visit external pages
of storage and communication mechanisms that are being used.

28

3. The Brickroutine System

Brickroutine Ul Home Overview Monitoring Workflows Dataset

Brickroutine system status @
This will verify if all the nessecary communication mechanisms appropriately loaded

Initialized correctly

Click to initialize Brickroutine

Monitoring Tools

-
-

MongoDB Express

(8

RabbitMQ Management Ul

Figure 3.17: The interface for selecting the monitoring tools

System Design

After our functional design and requirements, this chapter describes the architectural design and imple-
mentation of Brickroutine. First, we will describe architectural requirements that stem from the context
and functional requirements of our system. Subsequently, we will describe the seven different building
blocks that currently are the embodiment of Brickroutine.

4.1. Architectural Requirements

Thus far, we have addressed different technical domains. We want our system to be at the intersection
of data science, software architecture and interface design. The requirements for Brickroutine that we
take into account with respect to the architecture include:

+ Extensibility
Since our system is the first attempt into making a system from scratch, it is likely that changes
will follow in the future. As a result, we need to pick our architecture in such a way that it easily
allows for extensions without having to comprehend and alter the entire code base.

* Modularity
Modularity is a requirement for achieving extensibility. We want to split up our system into modules
because: (1) Brickroutine becomes easier to maintain when we target one specific module at a
time while others are operational and (2) it allows for easier testing and debugging. Having small
modules in a software system is referred to as the Polylithic Principle in architecture [15].

» Compatibility
In chapter 3, we have already seen that our system consists of a variety of components. Data
science applications like extracting the heatmaps in section 3.4 are mostly in Python nowadays.
Since we implement our user interface as a web page, we need javascript compatibility. For
uploading and storing the data sets and annotations, we need a backend component. Addition-
ally, during the implementation phase and possible follow-up phases after this thesis project has
ended, it is highly likely that execution and development will be on local machines. We need
to take into account the variety of operating systems and the effort to install the necessary run-
time. This suggests that the architecture should be compatible with a variety of languages and
frameworks and that it should ideally be compatible with different operating systems.

4.2. Backbone: Docker

Nowadays, containerization is a hot topic in the realm of software engineering and, in our application, is
a tool to achieve extensibility, modularity and compatibility. A container is an isolated run time environ-
ment that runs on a host computer and supports almost all modern software implementations. Instead
of running in a dedicated virtual machine, containers sit on top of a physical system and its operating
system. Each container shares the host operating system kernel, binaries and libraries are created
from scratch when the container is started and no leftover files remain on the host system when this
containerized environment is deleted [16]. By using this containerized approach, we are not limited to
operating systems or programming languages and hence achieve compatibility.

29

30 4., System Design

Using docker containers as building blocks for our system, allows us to isolate different compo-
nents in our system from each other and satisfy the modular requirement. These components will be
discussed in subsequent sections. Every component is unaware of each other’s implementation, only
the abstractions (data models, API endpoints) have to be known in order for the different components
(in this design: containers) to communicate. In this way, we leverage the microservice approach from
section 2.5. An overview of Brickroutine’s components is given in Figure 4.1. Each component that is
implemented in a container has a subtitle indicating it. Two of our chosen components are Software
as a Service (SaaS) components that run in the cloud. In the left box of each component, the section
elaborating on that specific component is given.

Azure Cosmos DB
MongoDB API

i" o o i
| | | | | I
I b o |
I P! L = |
I I I | —> A
| bl o A |
[[

I . : I |
| | | | | I
I (. o |
Mpngo DB .	Azure Cosmo		Azyire Blob Storage	
[Cgntainer] 45		[5aas)	[SaaB] 44	

Iv'_ _________________ "\l Iv'_ _________________ |

| | | b4 |

I | I |

1 | | I

: _ I ! ..{. I

| | | e |

I [I [

I I

| A | | |

| Rabbit MQ ! | Brickrouting Web API !

| [Container] A7 : | [Container] 4.4 :

| Mongo Express Brickroutine Heatmaps
| [Container] 46 . [Container] A48

o
&
=
=
=
&

o

w

ot

| Brickroutine
| [System Boundary] “2

Figure 4.1: Schematic overview of the system architecture

With this multi-container approach for Brickroutine, we need to ensure that they operate as a system
and that we can start, stop and modify the containers. We use Docker Compose for this'. Docker
Compose is a tool for running applications that consists of multiple containers by means of a YAML?
file [16]. In this file, we can aggregate the contents of multiple Dockerfiles, which can be seen as a

"https://docs.docker.com/compose/
2https://yaml.org/

4.3. User Interface: React 31

standalone (micro)service. This approach allows for multiple configurations. For instance, we have a
separate compose file for development configurations that a debugger can be attached to and listens
to code changes. Instructions and commands for using the application are listed in the readme .md
of this project’s repository and is included as Appendix D. When using Docker Compose, an internal
network is created that allows containers to communicate with each other. For each container, TCP
ports have to be explicitly exposed, contributing to the security of the system.

4.3. User Interface: React

In chapter 3, we have shown the user interfaces for Brickroutine. Since our containerized approach
allows us to pick any technology, we choose a web-based user interface that users can simply run
in a web browser. For our implementation, we choose React to build our interfaces. As part of the
Progressive Web App (PWA) paradigm, react is used to create applications that load a single web
page and update the content based on the users’ interaction. Besides the smooth user experience,
this results in an expandable interface when components are added during follow-up work after this
project, satisfying the extensibility requirement. For using the react framework, we choose to use
Typescript as the programming language. Typescript is a syntactic flavour of javascript and adds static
typing, which we regard as beneficial for a developer’s experience and maintainability.

React leverages a component-based approach. User elements can be defined as components that
have a specific set of input data and change based on the data that is passed through the components.
Components can consist of other components to make the approach flexible. In chapter 3, we saw
different interfaces for different purposes that are visually similar to others. Defining these as compo-
nents ensures that we do not have to write repeated code. In the end, our React application is built as
a plain web application and can be run in an NGNIX 2 container that only is 27MB in size.

4.4. API: .NET

Every user action from the front-end that requires interaction with any other component starts with a
REST call to our so Web API. Running in a separate Docker container, this back-end of our application
is concerned with, but not limited to the following responsibilities:

» Getting information from the database and returning it to the user.

» Getting information from the user (e.g. annotations or an uploaded data set) and storing it in the
database.

* Receiving an action from the user and passing it to the right component (e.g. extraction of the
heatmaps)

For our implementation, we picked the .NET framework. This is a software development framework
from Microsoft that, amongst other purposes, allows for rapid web application development using the
Object-Oriented C# programming languages. Our reasons to pick this for Brickroutine include:

+ Native support for implementing APIs that are used by the user interface

» Our system does various things like simultaneously, processing data, uploading images, and
generating requests for heatmaps. We don’t want our user system to be blocked when tasks that
have no outcome in the user interface are executed and thus want to implement asynchronous
processes. The .NET framework has good support for this with the Task-based asynchronous
pattern (TAP) 4.

» Support for multiple platforms and thus suitable for developing and running it in a Linux Docker
container.

This setup includes a dependency injection framework out of the box so that we can adhere to
the single responsibility and dependency inversion principle [21], which states that classes should rely
on concretions instead of abstractions. By using this principle, projects are only aware of the public
functions (interfaces) and parameters of others, yet without knowing anything about the implementation
itself. Below, we list different components of our APl implementations, which all are implemented as
separate .NET projects:

3https://www.nginx.com/
“https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap

32 4., System Design

* Brickroutine.WebAPI
This project is the first layer that receives the API requests from the Front-End. With Headers in
the HTTP calls, we differentiate between different data sets and the used models are compatible
with the front-end.

* Brickroutine.DatabaseService
With API libraries from MongoDB, this project is used to write queries in a C# that are compiled
into MongoDB statements that are subsequently sent to the database to fetch, write and update
our data.

* Brickroutine.Common
Contains definitions for interfaces, and the implementation of the abstractions of other compo-
nents (recall dependency inversion). Additionally, all constants are defined here to prevent the
hard coding of variables and magic numbers.

* Brickroutine.BlobstoreService
We choose to upload our input images and heatmaps to the azure blob storage °. This is online
storage in which all images can be easily retrieved with an URL. We picked this for the easy
integration with our .NET backend. This project handles the uploading of the images.

 Brickroutine.RabbitMQManager
A separate project that is used to send requests to our message broker. All actions that originate
from the front end have to go through our API.

» Brickroutine.ConsumeRabbitMQHostedService
Listens to messages that are directed to the API. Makes use of an observable and checks for
the appropriate message headers. Currently used to obtain the extracted heatmaps and subse-
quently upload them to the Azure blob store.

4.5. Storage: MongoDB

To persist data that is produced during the usage of Brickroutine, a storage mechanism is required.
Because we want our system to be extensible and are unaware of which (un)structured data we might
have to store in the future, we choose the NoSQL paradigm over the traditional RDBMS As part of the
NoSQL paradigm, we picked MongoDB for Brickroutine, a document-based key-value database [31].
MongoDB stores data in its own format called BSON. BSON stands for binary JSON and supports all
ubiquitous data types [8]. For our implementation, the reasons to pick this technology include:

* Integration with the backend through C# API for MongoDB.

* When our system becomes larger and possibly has large chunks of unstructured data, a NoSQL
DB like MongoDB system gives flexibility.

» Due to the support for unstructured data that NoSQL systems offer, nullable properties are not
saved to the database when they do not contain a value. This results in less storage overhead.

» There are docker images available for MongoDB. Hence, for development or running the system
locally, a database can simply be spun up in a docker container.

* MongoDB is a ubiquitous implementation and therefore finds sufficient support on modern cloud
platforms when we choose to store the data online. In our implementation, to enable sharing data
while still running the application itself locally, we have support to connect to Azure Cosmos DB
with a MongoDB implementation. The user should configure the application in such a way that
one of those is connected to the backend.

Because of the MongoDB APIs used in our back-end, we can define C# models that are converted
into suitable DB models. A UML Diagram of our data models is shown in Figure 4.2. The DataSet
class is the root and has a 1 : N relationship with classes ConceptsClass and Image, that get added
when the user uploads a data set. Although in our workflows we currently support the verification of
one requirement per image, we have designed our data models to support multiple for follow-up work.

Shttps://azure.microsoft.com/en-us/services/storage/blobs/

4.6. Data Monitoring: Mongo Express

33

DataSet

-ld: String

-DataSetMame: String
-NumOfClasses: Int

-Images: Image]]
-ConceptsClasses: ConceptsClass[]
-DataSetState: DataSetState

-HeatMapsPresent Bool

ConceptsClass

¥y

-id: String
-name: String

“requirements: Requirementf]

N

Image

-imageName: String

-prediction: String

-label; String

-verifiedRequirements: Requirement]
-annotatedMechanism: Mechanism
-remark: String

-annotationState: AnnotationState

£

Requirement

-id: String
-concepts: String]
-weight: Double

-entireConcept Bool?

Mechanism

-concepts: String[]

==enumeration==
Annotation State

Unannotated
Unverified
Verifiedinlmage
VerifiedinHeatmap
UnverifiedinHeatmap

Figure 4.2: Class models used in the Brickroutine database

4.6. Data Monitoring: Mongo Express

Exploring and maintaining the data is cumbersome when the database has only command-line interface
(cli) support and runs in a containerized environment. To overcome this barrier, we incorporated Mongo
Express into the system. Mongo Express is a web-based interface for administrative purposes. The
main idea behind this is that users can quickly inspect, modify, delete, and restore their data without
the burden of going through complex sets of actions. Like the database itself, this runs in a separate
docker container with the appropriate TCP ports exposed so that users can navigate to this web-based
interface from the Brickroutine Ul as depicted in Figure 3.17. A screen capture of Mongo Express with
our evaluation data is shown in Figure 4.3. It gives insights in the data that currently is in the system
and allows the Brickroutine developers to modify it accordingly.

@ Mongo Express Database: Brickroutine+ » Collection: DataSet~ » Document 61e/f207ci431(29bds74199

Editing Document: 61eff207cf43ff290d974199

Num

0fC

Image

1

AnnotatedMechanism: {
Conc

1
}
Annotationstate: 4

Figure 4.3: Mongo Express with data about an annotated image

34 4., System Design

4.7. Communication: RabbitMQ

Now that we have split up our system into different components with the possibility to add more in the
future, a challenge is presented from the way these individual components communicate with each
other. In our implementation, we follow an Event-driven Architecture (EDA) where communication
occurs through events. An EDA is a common approach to implementing microservices and uses mes-
sages to facilitate the integration of separate software components. An EDA usually consists of four
parts[15]. Below is a brief description of each of them and the current parts in our system that fulfil that
role.

» Eventpublisher: When an event happens, a message is published to a messaging platform. In our
system we currently have two publishers: 1) The web API that sends requests for extracting the
heatmaps with raw image data and 2) the heat map extractor that sends the completed heatmaps
back to the API to process them and upload them to the storage.

» Event subscriber: Subscribers are endpoints that listen to specific types of events. Currently, we
have two subscribers that are the opposite of the publishers mentioned above.

« Event broker or routers: \We use RabbitMQ © as the message broker. This is an open-source
message broker that can be run in a docker container. RabbitMQ makes use of multiple message
queues in which publishing software components can place messages that are retrieved from the
queues by subscribing components.

» Event persistence: RabbitMQ facilitates that, as long as the RabbitMQ service is up, messages
are kept in the queue. In our current implementation, we configure that the publishing component
should receive acknowledgements, which results in the deletion of the message wheniitis properly
received.

To facilitate complex routing structures, RabbitMQ does not allow producers to publish messages to
a queue directly. Instead, it implements a so-called exchange, that the messages should be published
to. This exchange subsequently forwards messages to the right queue by means of a routing key. We
use one single exchange for Brickroutine and have two queues, as presented in Table 4.1.

Queue name Routing key | Description

brickroutine.heatmpas | heatmaps Queue that is used to receive the input images and re-
quests to extract the heatmaps

brickroutine.api api Generic queue listener that can processes events

Table 4.1: Queues and routing keys used in Brickroutine

Although currently, only the process of generating the heatmaps uses this event-driven approach,
the system can easily be expanded because RabbitMQ has implementations for 11 commonly used
programming languages. To expand this system, we simply have to run the software we want to add
in a docker container that is attached to our network and it can communicate with other parts through
this message broker.

4.8. Heatmap Extraction: Python

The ideas and goals behind the heatmap extraction have been discussed in section 3.4. Technically,
this is implemented with Keras’ and Tensorflow? functions. The python program in our heatmaps
extraction container continuously listens for requests that originate from the API. If a request is received,
it will start the process of extracting them in a separate thread. When completed, it sends the contents
of the heatmaps back over a RabbitMQ connection where our API uploads this to Azure Blobstorage
(section 4.4). We use routing keys and custom headers to filter for the correct tasks. Because we can
only send binary data with RabbitMQ, we serialize the image data to base64 before sending them to
other components. After serialization we have a 3D array with floating-point values ranging from 0 to
255, representing the images.

Bhttps://www.rabbitmg.com/
"https://keras.io/
8https://www.tensorflow.org/

4.9. Comparison with Existing Solutions 35

4.9. Comparison with Existing Solutions

In section 2.1, we mentioned existing solutions that provide model developers with tools for interpretabil-
ity of their models. Brickroutine distinguishes itself in a number of ways. First, it should be used after
training the model. Additionally, it is a user-friendly tool complete with a user interface and tools for
monitoring and the system design is done in such a way that it is extensible.

Evaluation: Informativeness

This chapter will describe the design, results and discussion of the evaluation with respect to the infor-
mativeness of Brickroutine.

5.1. Goals

We need to evaluate to which extent Brickroutine solved the initial problem of this thesis that is described
in section 1.1:

“Humans have limited possibilities to disassemble a machine learning model and verify if
the algorithm followed a line of reasoning that is comprehensible so that decisions can be
assessed in terms of fairness, robustness, and trustworthiness”

Derived from that problem statement, we assess the informativeness that Brickroutine gives us in order
to solve the above-defined problem to a certain extent.

Definition. Informativeness is the degree to which the system expresses information that can be
used to assess the inner workings of an adequately performing model so that we can comprehend its
reasoning.

Eventually, we want to have entries in the overview panel that show that the model reasoned on
overlapping concepts in the images. We want the explanations to be meaningful (e.g. in most cases, the
model predicted class x based on concepts q; ... a,_1). This shows the users that the model consistently
reasoned based on parts in an image and that the decision is not arbitrary. To be informative, our system
should explain trends of the model’s decisions in terms of semantics. Additionally, these semantics can
be combined with the prediction outcomes and give insight into the models’ behaviour. We can compare
these findings with the costs for these analyses. The exact definition of these costs is given below.

Definition. Costs: We measure the costs in time that a human spends on executing actions in Brick-
routine. For every specific step that involves any human action, we keep track of the time it takes to
complete that action. Additionally, the number of images at each step (if it involves annotating images)
will be kept track of so that we can plot it against the amount of annotated images and possibly present
some trade-offs.

5.2. Experimental Setup

We use the data set sea creatures, consisting of 300 images of 3 classes (lobster, shark, tench, 100
images each). This is a subset of imagenet ' and is selected by the authors of [2]. This used model
is trained on Inception v3 and has weights pre-trained weights from imagenet. The predictions in
this three-class data set are all correct. We choose to use this because the goal of this set of images,
heatmaps and predictions is to give insights in how the model made predictions. The initial requirements
that we used in workflow O for these classes are listed in Table 5.1.

"https://www.image-net.org/

37

38 5. Evaluation: Informativeness

Class Requirements
American_lobster (8) claw, red shell, tail fin

red shell, tail fin

claw, red shell

claw, tail fin

red shell

thin legs

tail fin

claw

great_white_shark (6) mouth, snout, gill openings, dorsal fin, pectoral
fin, caudal fin

dorsal fin, pectoral fin, caudal fin
mouth, snout, gill openings
mouth, snout

gill openings

dorsal fin, pectoral fin

tench (8) olive skin, dark rounded fins, red eye
olive skin, dark rounded fins
dark rounded fins, red eye

olive skin, red eye

red eye

dark rounded fins

olive skin

lateral line

Table 5.1: Initial requirements

5.2.1. Approach

We follow the iterative procedure from section 3.6 and gather qualitative and quantitative metrics after
each iteration. We will do annotations until all annotated images are covered, to investigate how the
metrics change over time and see the added value of each iteration. The parts of Brickroutine that
are covered are within the border in Figure 5.1. We choose to leave Workflow 3 out of the evaluation
because our data sets are of significant size and this will probably result in overhead costs. Even
though the additional results might be converging, we continue to do it for all the possible images so
that we can compare the gained knowledge against the extra costs. The iteration size in images will
be set to roughly 20% of the images per class, resulting in 20 images for Sea Creatures

5.2.2. Metrics

The novelty of our work has the consequence that it cannot be compared against specific baselines
or existing alternatives. To assess the informativeness of our system, we would like to know how
much detail with respect to that goal is given. Additionally, since our approach has a crowdsourcing
element, we also want to keep track of metrics with respect to the annotations. The resulting metrics
are introduced below.

In the context of informativeness, we would like to observe the inner working of the model for the
right predictions, i.e. does the model base correct predictions on the right semantic concepts? To
evaluate this, we keep track of the relative amount of verified mechanisms over time. logically, we
also keep track of time, because it serves as an important baseline for the applicability. Moreover,
the efficiency of a system is important since, we want to minimize the number of annotations while
maintaining a satisfactory outcome. Efficiency is defined as the average number of annotations per
image. Because during the search for suitable requirements, image annotations get undone when a
requirement changes (subsection 3.5.5, algorithm 5).

5.3. Experimental Results 39

Add requirements or

Upload data set remarks

Yes

--u;--ruuuu-u;--uuuuuu-L--uuuuu

v

Any unfuffilled

images? =
.
No + =
No =
b .
.
Explanations =
Satisfying? Eaves
3

Enter requirements
for each class

1 j hor Y
Annotate Requirement
requirements in a cormrection

(Add new)
requirements
\or edit existing ones |

batch necessary?
Follow I A -
: thls1 Yi; :
oop 1x .

Requirements
present in most
images?

Na, Correct requirements =

Annotate more
requirements?

Annotate

p—
Yes mechanisms

: Consult overview .
for explanation ofthe
model =

‘ Workflow 0 ‘ Workflow 1 ‘ Workflow 2 || Workflow 3 ‘ Workflow 4 Workflow 5

Figure 5.1: A flowchart on how Brickroutine is used in evaluating informativeness

5.3. Experimental Results

This section lists the results of the evaluation with respect to informativeness. An extensive table with
results is given in Appendix A.

5.3.1. First round
The full results are listed in section A.1. Table 5.2 shows that for each class, from a total of 20, for 9,8,
and 16 images, a matching mechanism was found.

Class (requirements) Requirement Mechanism in | Mechanism Requirement Unnannotated
in image heatmap not in | notinimage images
heatmap
American lobster (8) 18 (18%) 9 (9%) 9 (9%) 2 (2%) 80 (80%)
great white shark (6) 19 (19%) 8 (8%) 11 (11%) 1(1%) 80 (80%)
tench (8) 18 (18%) 16 (16%) 2 (2%) 2 (2%) 80 (80%)

Table 5.2: Requirements overview table after one round for Sea Creatures

Class specific observations for american Lobster

The three most annotated mechanisms with their occurrences are claw, red shell (5),and red
shell (4),and claw, front body part (2). We notice that the concept Red shell occurs 11
times in the image, however, only in 3 cases, the heatmap appears to be covering the entire concept.
This is an indication that the model might have learned a concept of finer granularity. If we click on this
mechanism in the overview pane of the interface, the observe the images as depicted in Figure 5.2.

40 5. Evaluation: Informativeness

Additionally, we notice the concept Front body part appearing in multiple annotations, including images
where the lobster’s shell is not red on the image. Subsequently, it looks like the part of starting at
the lobster’s head up until the start of its tail is highlighted by the heatmaps. In lobster terms, this is
referred to as the carapace (“Body piece from eyes to start of tail’) 2. Even for pictures that contain
multiple lobsters, that specific part seems to be highlighted. Therefore, we decide the next action to
be changing the initial requirement red shell to contain just the concept carapiece. Additionally,
we adjust the weights according to the number of images that contained the requirement to prevent
unnecessary overhead during the annotation of the next batches of images.

red shell X

Mechanisms that follow requirements for correctly predicted images

Figure 5.2: Images for which the mechanism red shell was annotated

Class specific observations for great white shark

We notice that eight images have requirements verified in the heatmap. The concepts mouth, snout,
gill openings, dorsal fin,pectoral fin are presentin the verified requirements. In addition,
both the concepts eye (Figure 5.3) and nostril have occurrences in mechanisms that did not match
requirements . This is an indication that we should incorporate it in the requirements. As a result, we
add requirements with these concepts.

mouth, eye, snout X

Mechnasims that do not follow requirements for correctly predicted images

Figure 5.3: An image for which the concept eye was highlighted by the saliency map

Class specific observations for tench

Requirements made up of combinations of the concepts olive skin, dark rounded finds, red eye were
verified in 16 of the 18 images. Consulting the images (Figure 5.4) shows that these images are
outlining these concepts in its entirety, leaving no reason to refine them. Additionally, the only other
annotated concept (camouflage clothing) refers to humans that were part of these images when
fishing. For this class, we leave the requirements with their weights as is.

2https://lobsteranywhere.com/seafood-savvy/lobster-lingo/

5.3. Experimental Results 41

olive skin, dark rounded fins X

Mechanisms that follow requirements for correctly predicted images

Figure 5.4: Images for which the mechanism olive skin, dark rounded fins was annotated

Consequences of changing the requirements

Because we modified most requirements, images that contained the changed requirement, need to be
annotated again, because there is no way of knowing that the new definition is still present in the image.
As a result of the actions described above, 28 images need to be annotated again. Please note that
in case a custom mechanism is required again, Brickroutine will automatically resolve the previously
annotated mechanism (algorithm 3).

5.3.2. Second round

The full results are listed in section A.2. In Table 5.3, we notice that at this stage, for 105 of the 120
annotated images we are able to to verify a requirement. In the case of American Lobster and tench,
the overview pane already lists requirements that show consistent model behaviour.

Class (requirements) Requirement Mechanism in | Mechanism Requirement Unnannotated
in image heatmap not in | notinimage images
heatmap
American lobster (8) 36 (36%) 28 (28%) 8 (8%) 4 (4%) 60 (60%)
great white shark (7) 32 (32%) 17 (17%) 15 (15%) 8 (8%) 60 (60%)
tench (8) 37 (37%) 25 (25%) 12 (12%) 3 (3%) 60 (60%)

Table 5.3: Requirements overview table after two rounds for Sea Creatures

Class specific observations for american Lobster

The requirement claw, carapiece is presentin 17 of the 36 images. However, not all heatmaps
were showing coverage of the entire concept. When we inspect images where the concept claw was
annotated, we notice that not the entire claw was covered in most cases but rather a smaller part
(Figure 5.5).

claw, carapiece X

Mechanisms that follow requirements for correctly predicted images

Figure 5.5: The heatmaps show a smaller part of the claw highlighted

42 5. Evaluation: Informativeness

As aresult, we add the requirement claw texture, carapiece and the separate conceptclaw
texture with a high weight as new requirements. Note that we could have changed the requirement
at this point, but chose to add a new one because otherwise a lot of annotations would be lost without
eventually gaining more knowledge about the model’s behaviour than we have at this point.

Class specific observations for great white shark

We notice that 19 unique mechanisms are listed, which is more than for other classes. While it might
be a sign of diversity, a closer inspection suggests that (1) most are combinations of the different
concepts, and (2) they can roughly be split up between concepts that either are a close up of a shark’s
head or more a distant composition where the entire body and the fin outline is shown. Based on this
requirements, we already have a fairly good idea of what the model behaves like and therefore we do
not alter the requirements. We do alter the weights with the expectation to save annotation costs since
the fourth and fifth requirements are the most verified ones.

Class specific observations for tench

We see that for every verified requirement but one, the entire concept is highlighted by the heatmaps.
This is a sign that our requirements are at an appropriate level of granularity. For other concepts that
are not part of any requirement, we observe that most of them are part of a background concept that is
appearing in some images but are not semantically related to the tench itself (human, dog, camouflage
clothing). As a result, we choose not to alter anything and proceed to the next iteration.

5.3.3. Third round

After three rounds, it seems like we arrived at requirements and concepts that can be used to approxi-
mate the model’s inner reasoning mechanism (Table 5.4). In general, we notice a trend that the weight
factor of a requirement is proportional to the relative amount of occurrences of that requirement, both in
the image itself and in the heatmap. The full overview table and mechanisms are given in section A.3.

Class (requirements) Requirement Mechanism in | Mechanism Requirement Unnannotated
in image heatmap not in | notinimage images
heatmap
American lobster (10) 56 (56%) 44 (44%) 12 (12%) 4 (4%) 40 (40%)
great white shark (7) 46 (46%) 22 (22%) 24 (24%) 14 (14%) 40 (40%)
tench (8) 55 (565%) 38 (38%) 17 (17%) 5 (5%) 40 (40%)

Table 5.4: Requirements overview table after three rounds for Sea Creatures

Class specific observations for american Lobster

Recall that in the previous round subsection 5.3.2, we fine-tuned the requirement of claw to claw
texture. At this point, the requirement claw texture, carapace is verified in the heatmap 12
times. The entire concept was present for every occurrence, indicating that the level of granularity of
this concept seems appropriate.

Class specific observations for great white shark

The most occurring requirement is mouth, snout, gill openings, eye, nostril followed by
one that is made up of a subset of these concepts. Inspecting individual images on the overview page
does not suggest that we can refine the requirements any further. In the end, we do see 27 unique
mechanisms. However, the majority of them are made up of combinations of the concepts we defined.
At this point, the model seems to have learned multiple angles and viewpoints. Some are more from a
close-up point with concepts like nostril and eye being represented, whereas other views contained
an image of the shark as a whole where concepts like dorsal finand caudal fin were highlighted.

Class specific observations for tench

The most verified requirement is olive skin, dark rounded fins, red eye, occurring 16 times out of the 60
images that we addressed so far. In fact, combinations of these concepts are present 38 times (= 63%
) and are solely responsible for any of the verified requirements. Concepts that are present in images

5.4. Overview 43

that do not follow requirements are either too insignificant to be transformed into a requirement (gill
cover) or do semantically not relate the class tench (human, dog or camouflage clothing).

Actions after this round

Since both the coverage of the requirements and the granularity of the respective concepts seem ap-
propriate, we do not modify any requirements after this round. We do however adjust some weights
in correspondence with the frequency a requirement occurs. Additionally, since the requirements and
their weights did not require any breaking changes, we choose to annotate the last 60 120 images (40
per class) in one batch in the next round.

5.3.4. Fourth round

The full results are included in section A.4. We notice that for each class (American lobster: claw,
carapiece & claw texture, carapiece, Great White Shark: mouth, snout, gill open-
ings, eye, nostril & mouth, snout, eye, nostrill & dorsal fin, pectoral fin,
Tench: olive skin, dark rounded fins, red eye & olive skin, dark rounded fins
& olive skin, red eye), the most two occurring mechanisms are equivalent to the one in our
previous round. This suggests that we did not gain a lot more information while we still had annotation
expenses.

5.4. Overview

Table 5.5 shows the duration for each stage and a requirements overview table from Brickroutine is
given in Table 5.6. In an annotation time of 103 minutes, we got mechanisms for 149 images, with
for each class some distinguishing trends that can explain the model’'s behaviour. The total amount
of annotation steps is 623, resulting from some images losing their annotated requirement when they
change (workflow 4, subsection 3.5.5). Therefore, on average we have:

. 623
Avg. Annotations/Image = — =~ 4.2

149

Action Time Images avg.

time/image
Requirement annotation: first round 0:09:44 60 0:00:10
Mechanism annotation: first round 0:09:57 57 0:00:10
Requirement annotation: second round 0:11:10 88 0:00:08
Mechanism annotation: second round 0:13:41 78 0:00:11
Requirement annotation: third round 0:06:34 60 0:00:07
Mechanism annotation: third round 0:10:35 52 0:00:12
Requirement annotation: fourth round 0:19:34 120 0:00:10
Mechanism annotation: fourth round 0:22:07 108 0:00:12
total 1:43:22 623 0:00:10

Table 5.5: Statistics about the time taken to do the annotations

Class (requirements) Requirement Mechanism in | Mechanism Requirement Unnannotated
in image heatmap not in | notinimage images
heatmap
American lobster (10) 96 (96%) 71 (71%) 25 (25%) 4 (4%) 0
great white shark (7) 80 (80%) 41 (41%) 39 (39%) 20 (20%) 0
tench (8) 89 (89%) 60 (60%) 29 (29%) 11 (11%) 0

Table 5.6: Requirements overview table after four rounds for Sea Creatures

In Table 5.6 we notice that for the class american lobster, 96% of the images have the eventual
requirement. Analogously, this number is 80% and 89% for great white shark and tench. For 71%,
41% and 60% the mechanism was also verified by our approach, meaning that for these cases an
approximation of the model’'s mechanism was extracted. Figure 5.6 show how these numbers change
over time.

44

5. Evaluation: Informativeness

a0 = American_lobster
— great_white_shark
— tench

70

50

40 /\/‘//
20 30 40 50 &0 70 80 %0 100
Annotated images

Mechanisms that follow requirements (%)

Figure 5.6: Annotated images and verified requirements

5.5. Discussion
We noticed a few things as a result of this evaluation:

» The percentage of verified requirements for each class did not change significantly after annotat-

ing images after round 2. The top verified mechanisms did not change either, implying that we
were able to explain the model’s decisions as good after 2 rounds (with a total of 40 images per
class and 283 total annotations) in 45 minutes as after 4 rounds (with a total of 100 images per
class and 623 total annotations) in 103 minutes.

The design of our workflows enabled us to obtain finer-grained requirements for American Lobster
(carapiece) and Great White Shark (gill openings, dorsal fin, pectoral fin).
This confirms the suitability of splitting up our evaluation into rounds and that for these cases,
the number is appropriate. However, we enforced this tactic ourselves and an improvement for
the system would be to tunnel the user more into using this approach by making adapting the
interface to this so that to results of each round could be consulted separately afterwards.

As a result of changing the requirements and adjusting the weights accordingly, we expect the
user to spend less time annotating the requirements since higher weighting ones appear first.
The idea of this is that the user can annotate the most likely requirement by simply clicking yes in
the interface (Figure 3.8). We noticed that as a result, the average annotation time per image was
not significantly influenced by that as Table 5.5 depicts. The risk that this approach introduced is
that a select requirement could not be verified in the subsequent mechanism annotation step and
another requirement with a lower weight, does match the eventual annotated mechanism. As a
result, more time is spent in the mechanism annotation step, because the user has to cherry-pick
the concepts manually. This suggests that future work should investigate the efficiency of not
limiting ourselves to annotating just one requirement.

An improvement would be to include an additional step to transform an annotated mechanism
into a requirement. Since after annotating the mechanisms the user has obtained new knowledge
about how the model possibly behaves, we experienced that we added requirements in which all
the concepts appeared in a previously annotated mechanism. Therefore, an interface element to
picking a requirement from the mechanisms saves time and decreased the odds of ambiguous
requirements.

* In our current setup, requirements are entered purely based on domain knowledge and not linked

5.5. Discussion 45

to the specific set of images, an improvement therefore would be to show a randomly taken
sample to the user to guide them in the initial annotation process.

In conclusion, we think that the design of our workflows and interfaces already helps the user in
assessing the inner workings of an adequately performing model, and that it can be further expanded
by tailoring towards the needs of this specific scenario by following the made suggestions.

Evaluation: Validity

This chapter describes the design, results and discussion of the evaluation with respect to the validity
of Brickroutine.

6.1. Goals

In addition to the previous chapter, we can imagine a use case in which users want to know how valid the
predictions of a model are. If we recall the initial problem of this thesis that is described in section 1.1:

“Humans have limited possibilities to disassemble a machine learning model and verify if
the algorithm followed a line of reasoning that is comprehensible so that decisions can be
assessed in terms of fairness, robustness, and trustworthiness”

To start with an example, suppose that a model was trained on a data set and the accuracy on the
test data set is 70 %. We imagine the developers of the model want to know at least two things:

1. Can the causes for confusion between classes be traced back to semantic concepts?
2. Are the right predictions based on concepts that actually belong to the respective classes?

In short, we can state we want to investigate how valid these predictions are with respect to semantic
concepts that we would use to describe those classes.

Definition. Validity is the degree to which the system expresses information that can be used to
assess if the model makes valid predictions, meaning that it bases its reasoning on aspects of the input
data that are in line with training procedures and expectations. Can wrong predictions be explained
(model predicted class x for class y because it appeared to have learned concepts a; ...a,_1)? If we
can find biases in the data set or reason why the model is behaving a certain way, we should have
some pointers about the models’ (in)validity.

By making use of our iterative approach, the costs form an important metric too. Especially in use
cases with lower model performance because the users are more likely to annotate custom require-
ments, leading to higher annotation times.

Definition. Costs: We measure the costs in time that a human spends on executing actions in Brick-
routine. For every specific annotation step that involves any human actions, we keep track of the time it
takes to complete that action. Additionally, the number of images at each step (if it involves annotating
images) will be kept track of so that we can plot it against the amount of annotated images and possibly
present some trade-offs.

6.2. Experimental Setup

We use a data set Birds, consisting of 494 images in 10 classes, with each class having 49 or 50
images. This data set is known to have biases in some classes, which is why we use this specific data

47

48 6. Evaluation: Validity

set to address the validity and attempt to obtain explanations from it. This model is trained on imagenet
and was subsequently trained by using training data consisting of 100 images for each class.

This data set has not only the right predictions. In fact, quite often a wrong prediction was made. The
distribution of the predicted class for this data set is shown in Table 6.1. In this table, only combinations
of 5 or more occurrences are shown and each incorrect prediction is assigned an identifier M; to use
later in the evaluation. Given this distribution, we can use the images of this data set to evaluate if we
can identify reasons for any of the incorrect predictions M;. For example, in the case of gila woodpecker,
11 times downy woodpecker was predicted. Likewise, the model mistook a bufflehead for a hooded
merganser 12 times. The concepts in these input images are sometimes similar since the high degree
of visual similarity between different birds.

True label Id Predicted label Count
gila woodpecker gila woodpecker 25
M1 | downy woodpecker 11
hairy woodpecker hairy woodpecker 38
M2 | downy woodpecker 8
american goldfinch american goldfinch 48
monk parakeet monk parakeet 45
lesser goldfinch lesser goldfinch 43
M3 | american goldfinch 5
pine grosbeak pine grosbeak 31
M4 | american goldfinch 7
mandarin duck mandarin duck 35
M5 | lesser goldfinch 5
M6 | hooded merganser 5
bufflehead bufflehead 36
M7 | hooded merganser 12
downy woodpecker downy woodpecker 45
hooded merganser hooded merganser 40
M8 | bufflehead 5

Table 6.1: Model and Prediction distribution with 5 or more occurrences

To have a bit of background knowledge, the jargon depicted in Figure 6.1 is used to define unam-
biguous semantic concepts. The initial requirements we use for each class are shown in Table 6.2.

Crown
Head A]
Mape Nostrl‘l e
"< Beak
Back Lower Beak
~ ™ Throat
Rurng Breast
Y
Uppettail
Coverts &
Tail —_
Undertail
Covers
Figure 6.1: The parts of a bird to be used [24]
Class Requirements
american_goldfinch (3) yellow breast, yellow belly, yellow back, black wings
yellow breast, yellow belly, yellow back

Continued on next page

6.2. Experimental Setup

49

continued from previous page

Class

Requirements

black wings

bufflehead (4)

white spot, rainbow crest

dark head, white spot

black wings, white feathers

black wings, grey feathers

downy_woodpecker (4)

black white wing patches, white breast

black white wing patches

white breast

red crown

gila_woodpecker (4)

red crown, green neck, green belly, green breast, black white
striped wings

green neck, green belly, green breast, black white striped
wings

black white striped wings

green neck, green belly, green breast

hairy_woodpecker (5)

black wings, white breast

white breast

black wings

throat stripe

red crown

hooded_merganser (3)

black crest with white spot

cinnamon crest !

brown sides

lesser_goldfinch (3)

black crown, yellow breast, yellow belly, yellow back

yellow breast, yellow belly, yellow back

black wings, lighter wing patches

mandarin_duck (5)

rainbow crest

brown feathers

white stripe below eye

long brown neck feathers

golden sides

monk_parakeet (3)

green feathers, light breast, light crown

green feathers

light crown, light throat

pine_grosbeak (3)

pink feathers, grey wings

grey feathers, orange head

heavy chest

Table 6.2: Initial requirements for bids data set

Additionally, this data set was trained specifically to introduce some biases in the data. These biases
are described in Table 6.3. The goal of injecting biases B1-B4 is to create expectations that we can
verify later on. Biases B5 and B6 are characterized by species of birds that are visually very similar.
We want to use Brickroutine to determine if the model “randomly” mistakes these classes or if some
consistent patterns can be extracted. Bias B7 functions as a baseline because a monk parakeet has
some visually unique characteristics in comparison to the other birds belonging to this data set.

Id Class Training data Test data Expectaction
B1 Gila woodpecker Primarily images | Images with and | The concept cactus should appear
with a cactus without a cactus in mechanisms of correct predictions
and should not appear in mecha-
nisms of incorrect predictions for gila
woodpecker
B2 Pine grossbeak Only male (pink) | Male (pink) and | Mostly correct prediction for the male
variants female (orange) | variants and incorrect predictions for
variants the female variants
B3 Mandarin duck Only male (color- | Male (color- | Correct predictions on the male vari-
ful) variants ful) and female | ant. Incorrect predictions on the fe-
(monochromatic) males that might get confused with
variants other species.

"https://www.allaboutbirds.org/guide/Hooded_Merganser/id

Continued on next page

50 6. Evaluation: Validity
continued from previous page

Id Class Training data Test data Expectaction

B4 Bufflehead Not too many sit- | Both idly in the | Male versions look like hooded mer-

ting idly in the wa- | water as standing | ganser or mandarin duck, the ones
ter, more are fly- | up and flying that are sitting idly in the water could
ing or standing up be classified as one of those.

B5 Downy wood- | - - Since these two species look very
pecker & Hairy much alike, confusion should ide-
woodpecker ally only occur between these two

classes

B6 American - - Since these two species look very
goldfinch & much alike, confusion should ide-
Lesser goldfinch ally only occur between these two

classes

B7 Monk parakeet - - The concepts that are exclusive to

this species, green colours and blue
wingtips should appear at the end

Table 6.3: The bias in the training data of Birds

6.2.1. Approach

We follow the iterative procedure from section 3.6 and gather metrics after each iteration. To investigate
how the metrics change over time and see the added value of each iteration, we will annotate until
no unannotated images remain. The parts of Brickroutine that are covered are within the border in
Figure 6.2. We choose to leave Workflow 3 out of the evaluation because our data sets are of significant
size and this will result in overhead costs. Even though the additional results might be converging, we
continue to do it for all the possible images so that we see can compare the gained knowledge against
the extra costs. The iteration size in images will be set to roughly 20% of the images per class, resulting
in 20 images for Birds

6.2.2. Metrics

With the nature of the evaluation goals in mind, two types of statistics will be gathered:

* Found explanations: For each combination of incorrectly predicted images in Table 6.1, we will

add an explanation if the system has provided us with sufficient information to do so. If there
is sufficient information in the system after running an iteration, we will use this information and
add an explanation for a specific misprediction M,,. This explanation is in the form of a rule in
human language e.g. “the model confused a gila woodpecker with a woodpecker because the
wing patches are visually similar. Eventually, by keeping track of the iteration number in which
this explanation was found, we can state how many iterations are required for this type of data
set.

Traced biases: For each bias that was injected into the data set, we have an expectation (Ta-
ble 6.3). If there is sufficient information in the system after running an iteration, we will use this
information and add an explanation for a specific bias B,,. Again, we can use the round in which
this information was obtained to estimate the amount of annotated images that are required to
establish the goals. We gather this by appending a column to the table and fill it with yes/no
values depending on if the expectation is verified by the information from Brickroutine.

6.3. Experimental Results 51

Add requirements or

Upload data set remarks

Yes

v

Enter requirements

for each class - [— =
A -

Any unfuffilled
images?

\or edit existing on es) batch necessary?

1 'f Mo Y No :
e X & .)
Add new Annotate . equiremen Explanations =
requirements requirements in a comection Satisfing? —Ves:
H
Follow I A =
: N
this Yi; :

loop 1x

Requirements
present in most
images?

Na, Correct requirements =

Annotate more

Aoz :
Yes requirements?

_”"'ﬂ Amnotate }-;ro?:f;ﬁ::ﬂ:: otthe|
mechanisms Sl :

‘ Workflow 0 ‘ Workflow 1 ‘ Workflow 2 || Workflow 3 ‘ Workflow 4 Workflow 5

Figure 6.2: A flowchart on how Brickroutine is used in evaluating validity

6.3. Experimental Results

This section describes the evaluation round for this data set with the goal to find biases and explanations
in the model. An extensive table with results is given in Appendix B.

6.3.1. First round

The full results are given in section B.1. What immediately stands out is that despite the requirements
being present in all the images, for only three classes (American Goldfinch, Monk Parakeet), and Pine
Grosbeak, requirements are entirely verified in the heatmap. Two of these classes are classes with the
highest prediction accuracy. An overview is given in Table 6.4. In this table we see that for 8 of the 100
images a mechanism is found in this stage.

Investigating further, we notice a lot of annotated concepts that are not part of the semantics we
would typically use to describe a bird such as tree, sky, cactus and water. Forinstance, the concepts
depicted in Figure 6.3 show that irrelevant concepts are learnt.

52 6. Evaluation: Validity
Class (requirements) Requirement Mechanism in | Mechanism Requirement Unnannotated
in image heatmap not in | notinimage images
heatmap
american goldfinch (3) 10 (20%) 3 (6%) 7 (14%) 0 39 (80%)
bufflehead (4) 10 (20%) 0 10 (20%) 0 39 (80%)
downy woodpecker (4) 10 (20%) 0 10 (20%) 0 40 (80%)
gila woodpecker (4) 10 (20%) 0 10 (20%) 0 40 (80%)
hairy woodpecker (5) 10 (20%) 0 10 (20%) 0 40 (80%)
hooded merganser (3) 10 (20%) 0 10 (20%) 0 40 (80%)
lesser goldfinch (3) 9 (18%) 0 9 (18%) 1(2%) 39 (80%)
mandarin duck (5) 10 (20%) 0 10 (20%) 0 40 (80%)
monk parakeet (3) 10 (20%) 3 (6%) 7 (14%) 0 39 (80%)
pine grosbeak (3) 10 (21%) 2 (4%) 8 (17%) 0 38 (79%)

Table 6.4: Requirements overview table after one round for birds

sky, cactus X

Mechnasims that do not follow requirements for carrectly predicted images

Figure 6.3: Gila woodpecker for which the concepts sky and cactus were annotated

After this round first round of annotating both the requirements and the heatmaps in the image, we
have a list with initial hypotheses about misclassified images in Table 6.5. Note that not all combinations
of misclassified images are yet present. Since the goal of this evaluation is to gain information about
misclassified images and the requirements are appropriate, we do not modify them and proceed to
annotate more images without modifying the requirements.

Additionally, from the biases described in Table 6.3, at this stage we are able to verify 4, although
only a few images exist to support these conclusions yet. These are listed in Table 6.6.

6.3. Experimental Results

53

Id Label Predicted Concepts Explanation
M1 | gila woodpecker downy wood- | black white striped wings, sky, | The wing patches are similar. Both
pecker green crown, tree males have a red crown. The con-
cept tree is annotated for most cor-
rectly classified downy woodpeck-
ers and not at all for gila wood-
pecker
M2 | hairy woodpecker | downy wood- | tree, black wings, white breast, | The wing patterns of these two
pecker throat stripe, sky, tree are similar, Both males have a red
crown. For both classes, the model
has learnt tree.
M4 | pine grosbeak american orange head, tree, green back- | The mispredicted images are im-
goldfinch ground, grey feathers ages in trees, were most images
have a snow background. The fe-
male pine grosbeak looks more like
an american goldfinch because of
the absence of pink colors
M5 | mandarin duck lesser goldfinch golden sides, water, soil, back- | The duck is smaller than on most
ground ornament pictures and there is a lot of water.
The gold color might look like the
yellow of the finch.
M6 | mandarin duck hooded mer- | neck, water, white stripe below eye | The female mandarin duck looks
ganser like the female hooded merganser
M7 | bufflehead hooded mer- | water, grey feathers, white spot, | For both classes, the concept wa-
ganser neck ter was learnt, The females of these
two birds look alike
Table 6.5: Hypotheses about misclassified images
Id Class Expectation Verified
B1 | Gila woodpecker | The concept cactus should appear in mechanisms of correct predictions and should | Yes
not appear in mechanisms of incorrect predictions for gila woodpecker
B2 | Pine grossbeak Mostly correct prediction for the male variants and incorrect predictions for the female | Yes
variants
B4 | Bufflehead Male versions look like hooded merganser or mandarin duck, the ones that are sitting | Yes
idly in the water could be classified as one of those.
B7 | Monk parakeet The concepts that are exclusive to this species, green colours and blue wingtips should | Yes
appear at the end

Table 6.6: Verified biases after one round

An illustration of bias B7 from Table 6.6, is given in Figure 6.4 that shows a concept with green
colours that is exclusive to the monk parakeet in this data set.

green feathers, light breast, light crown X

Mechanisms that follow requirements for correctly predicted images

Close

Figure 6.4: Concepts that are exclusive for monk parakeet

54

6. Evaluation: Validity

6.3.2. Second round
The full results can be consulted in section B.2. After this round of annotation again 10 images for all
10 classes, the requirement overview table is shown in Table 6.7.

Class (requirements) Requirement Mechanism in | Mechanism Requirement Unnannotated
in image heatmap not in | notinimage images
heatmap
american goldfinch (3) 20 (41%) 4 (8%) 16 (33%) 0 29 (59%)
bufflehead (4) 20 (41%) 0 0 (41%) 0 29 (59%)
downy woodpecker (4) 20 (40%) 0 0 (40%) 0 30 (60%)
gila woodpecker (4) 20 (40%) 0 0 (40%) 0 30 (60%)
hairy woodpecker (5) 20 (40%) 2 (4%) (6%) 0 30 (60%)
hooded merganser (3) 20 (40%) 0 20 (40%) 0 30 (60%)
lesser goldfinch (4) 19 (39%) 1 (2%) 8 (37%) 1(2%) 29 (59%)
mandarin duck (6) 20 (40%) 0 0 (40%) 0 30 (60%)
monk parakeet (3) 19 (39%) 3 (6%) 6 (33%) 1(2%) 29 (59%)
pine grosbeak (3) 20 (42%) 3 (6%) 7 (35%) 28 (58%)

We make some general observations after having annotated 20 images per class:

Table 6.7: Requirements overview table after two rounds for birds

+ 58 of the 185 mechanisms in total contain the concept tree. This suggests that the model learned
that concept and used it for the prediction of multiple classes (hairy woodpecker, gila woodpecker,
downy woodpecker).

» The model learnt the same concepts in the classes that are highly similar (e.g. hairy and downy
woodpecker). Given that most predictions were right, it either learnt a concept of a finer granularity
or co-existence with irrelevant background concepts.

» The concept green background was used to predict american goldfinch and lesser goldfinch.
This is both for correct and incorrect predictions.

We can extend our table of explanations for incorrect predictions with the rows from Table 6.8. We
have some explanations for all our major incorrect predictions.

Id Label Predicted Concepts Explanation
M3 | lesser goldfinch American black wings, yellow belly, sky Both the male and female are visu-
goldfinch ally similar and in both classes the
concept tree was present
M8 | hooded mer- | bufflehead cinnamon crest, water, grey belly, | The head, crest of the females are
ganser dark feather texture similar. Hooded merganser con-

tains more annotations for black
crest, which is exclusively featured
in the male birds

Table 6.8: additional hypotheses about misclassified images after two rounds

Moreover, we can add the two rows from Table 6.9 to our table of verified biases. For mandarin duck,
no correct predictions contained the concept grey feathers (that female variants have) while this
does occur in predictions for other lesser goldfinch and gila woodpecker. Additionally, for all incorrect
predictions of lesser goldfinch, the predicted class was american goldfinch, verifying B6 in Table 6.9.
An example for this case is shown in figure Figure 6.5, where we see that apart form a correct concept
that both american goldfinch and lesser goldfinch feature, the model also learnt tree and sky.

Id Class Expectation Verified
B3 | Mandarin duck Correct predictions on the male variant. Incorrect predictionson | Yes
the females that might get confused with other species.
B6 | American goldfinch & Lesser goldfinch | Since these two species look very much alike, confusion should | Yes
ideally only occur between these two classes

Table 6.9: additionally verified biases after two rounds

6.3. Experimental Results 55

yellow belly, tree, sky X

Mechanisms that do not follow requirements for incorrectly predicted images

Close

Figure 6.5: The model predicted american goldfinch instead of lesser goldfinch

Again, since the main goal is to characterize bugs in the predictions and assess the informativeness
we decide to leave the requirements as is. We proceed to the next round with again 10 images for each
of the 10 classes.

6.3.3. Third round

The full results are in Table B.5 and a requirement overview table is given in Table 6.10. In summary, we
conclude that even though some mechanisms do have more than 1 occurrence now, still a vast amount
(289/307) of unique, custom annotated mechanisms exist per class. If we inspect the mechanisms more
closely, we see that there are still a lot of concepts in the mechanisms that seem irrelevant for those
specific classes. For instance, the tree is mentioned 76 time and sea is part of the mechanism 51
times.

Class (requirements) Requirement Mechanism in | Mechanism Requirement Unnannotated
in image heatmap not in | notinimage images
heatmap
american goldfinch (3) 29 (59%) 4 (8%) 25 (51%) 1(2%) 19 (39%)
bufflehead (4) 32 (65%) 0 32 (65%) 0 17 (35%)
downy woodpecker (4) 30 (60%) 1(2%) 29 (58%) 0 20 (40%)
gila woodpecker (4) 30 (60%) 2 (4%) 28 (56%) 0 20 (40%)
hairy woodpecker (5) 30 (60%) 4 (8%) 26 (52%) 0 20 (40%)
hooded merganser (3) 30 (60%) 3 (6%) 27 (54%) 0 20 (40%)
lesser goldfinch (4) 29 (59%) 2 (4%) 27 (55%) 1(2%) 19 (39%)
mandarin duck (6) 29 (58%) 1(2%) 28 (56%) 1(2%) 20 (40%)
monk parakeet (3) 29 (59%) 5(10%) 24 (49%) 1(2%) 19 (39%)
pine grosbeak (3) 30 (63%) 4 (8%) 26 (54%) 0 18 (38%)

Table 6.10: Requirements overview table after three rounds for birds

Since our search for explanations for incorrect predictions was completed before this round of eval-
uation, we have one left for assessment. The row shown in Table 6.11 explains that we can not verify
B5. Two reasons for this exist: 1) For the class Gila woodpecker, 11 times the class downy wood-
pecker is predicted by the model and 2) this confusion is caused by concepts that refer to the birds’
attributes. We already had the knowledge of reason 1 since the outcome of predictions can be seen
in Brickroutine right after uploading a data set (Figure 3.3). However, after doing 3 iterations we also
have knowledge that this indeed is based on semantic concepts. If we consult our overview pane, we
see that:

* A gila woodpecker was incorrectly classified as a downy woodpecker based on the concepts
green neck, red crown, black white striped wings and tree.

» Agilawoodpecker was correctly classified based on the concepts 2 red crown, black white
striped wings, green breast, green belly.

The interface from Brickroutine for these cases are shown in Figure 6.6a and Figure 6.6b. From these

56 6. Evaluation: Validity

images (more examples exist), we see that the model did confuse these two classes based on similar
concepts.

Id Class Expectation Verified
B5 | Downy woodpecker & Hairy woodpecker | Since these two species look very much alike, confusion | No
should ideally only occur between these two classes

Table 6.11: additionally verified biases after three rounds

green neck, red crown, black white striped wings, tree X red crown, black white striped wings, green breast, green belly X

Mechanisms that do not follow requirements for incorrectly predicted images Mechnasims that do not follow requirements for correctly predicted images

(a) gila woodpecker classified as downy woodpecker (b) gila woodpecker classified as gila woodpecker

Figure 6.6: The models’ confusion about different species of woodpeckers

6.3.4. Fourth round

After doing this round, we were not able to explain more incorrect predictions or biases. We annotated
192 more requirements and 186 more mechanisms. We had one explanation for a bias (Bs) left to
verify but we noticed that the confusion for Hairy Woodpecker and Downy Woodpecker was not limited
to those classes. The final results are listed in Table 6.12. In the fourth column, mechanism not in
heatmap, we see that for roughly 87% of the images, a custom mechanism was annotated.

Class (requirements) Requirement Mechanism in | Mechanism Requirement Unnannotated
in image heatmap not in | notinimage images
heatmap
american_goldfinch (5) 48 (98%) 7 (14%) 41 (84%) 1(2%) 0
bufflehead (4) 48 (98%) 5 (10%) 43 (88%) 1(2%) 0
downy_woodpecker (4) 50 (100%) 8 (16%) 42 (84%) 0 0
gila_woodpecker (4) 50 (100%) 3 (6%) 47 (94%) 0 0
hairy_woodpecker (5) 50 (100%) 4 (8%) 46 (92%) 0 0
hooded_merganser (3) 50 (100%) 6 (12%) 44 (88%) 0 0
lesser_goldfinch (5) 46 (94%) 3 (6%) 43 (88%) 3 (6%) 0
mandarin_duck (6) 47 (94%) 4 (8%) 43 (86%) 3 (6%) 0
monk_parakeet (3) 48 (98%) 5(10%) 43 (88%) 1(2%) 0
pine_grosbeak (3) 47 (98%) 12 (25%) 35 (73%) 1(2%) 0

Table 6.12: Requirements overview table after four rounds for birds

6.4. Overview
In Table 6.13, we see the costs in time for each round of requirement and mechanism annotation. For
average annotations per image we observe:

978
Avg. Annotations/Image = 797 ~ 1.96

This number is close to two, which implies that for most images we did only one requirement annotation
and one mechanism annotation step. Images that have fewer than two annotations are images that
have no matching requirement in workflow 1, with the consequence that they do not appear in the
selected images for workflow 2.

6.4. Overview 57

Action Time Images avg.

time/image
Requirement annotation: first round 0:05:53 100 0:00:04
Mechanism annotation: first round 0:29:33 100 0:00:18
Requirement annotation: second round 0:05:36 100 0:00:03
Mechanism annotation: second round 0:41:10 100 0:00:25
Requirement annotation: third round 0:08:01 100 0:00:05
Mechanism annotation: third round 0:35:26 100 0:00:21
Requirement annotation: fourth round 0:17:59 192 0:00:06
Mechanism annotation: fourth round 0:51:32 186 0:00:17
total 3:15:10 978 0:00:12

Table 6.13: Statistics about the time taken to do the annotations (birds)

A full table with explanations about the incorrect predictions of this data set is given in Table 6.14.
For each combination of incorrectly classified classes with more than 5 occurrences, an explanation
was found.

Id Label Predicted Concepts Explanation
M1 | gila woodpecker downy wood- | black white striped wings, sky, | The wing patches are similar. Both
pecker green crown, tree males have a red crown. The con-

cept tree is annotated for most cor-
rectly classified downy woodpeck-
ers and not at all for gila wood-

pecker
M2 | hairy woodpecker | downy wood- | tree, black wings, white breast, | The wing patterns of these two
pecker throat stripe, sky, tree are similar, Both males have a red

crown. For both classes, the model
has learnt tree.

M3 | lesser goldfinch American black wings, yellow belly, sky Both the male and female are visu-
goldfinch ally similar and in both classes, the

concept tree was present
M4 | pine grosbeak american orange head, tree, green back- | The mispredicted images are im-
goldfinch ground, grey feathers ages in trees, were most images

have a snow background. The fe-
male pine grosbeak looks more like
an american goldfinch because of
the absence of pink colors

M5 | mandarin duck lesser goldfinch golden sides, water, soil, back- | The duck is smaller than on most
ground ornament pictures and there is a lot of water.
The gold color might look like the
yellow of the finch.

M6 | mandarin duck hooded mer- | neck, water, white stripe below eye | The female mandarin duck looks
ganser like the female hooded merganser
M7 | bufflehead hooded mer- | water, grey feathers, white spot, | For both classes, the concept wa-
ganser neck ter was learnt, The females of these

two birds look alike
M8 | hooded mer- | bufflehead cinnamon crest, water, grey belly, | The head, the crest of the females
ganser dark feather texture are similar. Hooded merganser

contains more annotations for black
crest, which is exclusively featured
in the male birds

Table 6.14: Hypotheses about misclassified images

Analogously, A full table with explanations about the expected biases of this data set is given in
Table 6.15. We notice that for all but one of the biases, our expectations could be verified.

58 6. Evaluation: Validity
Id Class Training data Test data Expectation Verified
B1 | Gila woodpecker Primarily images | Images with and | The concept cactus should appear | Yes

with a cactus without a cactus in mechanisms of correct predictions
and should not appear in mecha-
nisms of incorrect predictions for gila
woodpecker

B2 | Pine grossbeak Only male (pink) | Male (pink) and | Mostly correct prediction for the male | Yes

variants female (orange) | variants and incorrect predictions for
variants the female variants

B3 | Mandarin duck Only male (color- | Male (color- | Correct predictions on the male vari- | Yes

ful) variants ful) and female | ant. Incorrect predictions on the fe-
(monochromatic) males that might get confused with
variants bufflehead

B4 | Bufflehead Not too many sit- | Both idly in the | Male versions look like hooded mer- | Yes

ting idly in the wa- | water as standing | ganser or mandarin duck, the ones
ter, more are fly- | up and flying that are sitting idly in the water could
ing or standing up be classified as one of those.

B5 | Downy wood- | - - Since these two species look very | No
pecker & Hairy much alike, confusion should ide-
woodpecker ally only occur between these two

classes

B6 | American - - Since these two species look very | Yes
goldfinch & much alike, confusion should ide-
Lesser goldfinch ally only occur between these two

classes

B7 | Monk parakeet - - The concepts that are exclusive to | Yes

this species, green colors and blue
wingtips should appear at the end

Table 6.15: The bias in the training data of Birds

6.5. Discussion

After doing this evaluation, we gained some interesting insights. We will describe them below and
evaluate how Brickroutine handled these observations and how we can use this knowledge for im-
provements to the system.

* We notice that the users end up adding similar concepts for different classes, for instance yel-
low breast was added for American Goldfinch, Lesser Goldfinch, and sky is part of the mecha-
nism for American Goldfinch, Downy Woodpecker, Gila Woodpecker, Hairy Woodpecker, Lesser
Goldfinch, Monk Parakeet and Pine Grosbeak. This observation currently has to be done manu-
ally by consulting the overview pane of Brickroutine. An improvement would be to let Brickroutine
output these concepts so that the user is automatically provided with this information because it
helps to determine the validity of the predictions.

» From Table 6.12, we notice that on average 11.5% of the mechanisms follow a requirement. This
is caused by the fact that quite often a custom mechanism was annotated with irrelevant back-
ground concepts that are not part of the requirement. Therefore, as opposed to the previous
chapter about informativeness, the added value of doing a requirement annotation first is much
less. In this case, leaving out the initial requirement annotating step and doing the mechanism
annotation from the heatmaps would have saved annotation costs, while not sacrificing the infor-
mation with respect to the validity of this model.

* In Figure 6.7, we see that after two rounds we found all but one bias and mispredictions, meaning
that we had spent 113 minutes for annotating 578 images that only provided us with 1 additional
found bias. This suggests that with the current setup, doing two rounds would be sufficient to
achieve our goals.

6.5. Discussion 59

---- all biases Bias
---- all mispredictions Misprediction
§ mmmm——— m————— e ———
2 VR, . IV, . VA——, .
6
5
o
c
=1
o 4
[v]
3
2
1
0
1 2 3 4

found in round

Figure 6.7: Overview of the found biases and mispredictions per round

+ During this evaluation, we elicited explanations for biases and mispredictions from Brickroutine.
Regarding these, finding the mispredictions was a straightforward action since in the Ul we could
go to the overview pane and look for that specific combination. However, an extension would be
a query function where we could enter the true label and predicted class and get an overview
of all the concepts so that the user gets this information right away. For the biases, we could
implement a form of hypothesis testing, in which the user is allowed to link specific heatmaps to
hypotheses so that explanations could be stored.

Discussion

This chapter serves to evaluate the design and evaluation of Brickroutine from the previous chapters.
First, we will address design choices that have been made and the implications for the usage of the
system. Subsequently, we will discuss lessons learnt from this and how this could impact possible
future work. We will conclude this chapter with perceptions about the generalizability of our approach
and the practical applications of our work in the current state.

7.1. Requirement-first vs Concept-first

During the design of our system, we choose to first let a human-defined requirement be verified in an
image and from this presence verify if the model reasoned on mathematical representations of these
concepts. We choose to do so because the goal we want to achieve is to test if an ML-model reasons
like a human does. This approach can metaphorically be interpreted as what in software testing is
referred to as a AAA (Arrange-Act-Assert) pattern. We set up the necessary elements by defining what
a requirement is, then we act by letting the annotators work on the heatmaps and eventually we test to
assess the similarity between the two. In our opinion, this approach leads to three caveats:

* A requirement that is present in the image is not annotated in the requirement annotation step
because a requirement with a higher weight is verified first. Although the requirement is marked
as verified if the user selects the exact set of concepts as a custom mechanism, this is at the
expense of additional annotation costs and would have been more efficient when the correct
requirement was selected in the first place.

» During the evaluation, we noticed that annotators end up adding similar requirements that only
differ on some concepts. Forinstance, in the case of a great white shark, we had one requirement
consisting of the concepts: mouth, snout, gill openings, eye and nostril and anotherone
in which the nostril was omitted. For some images, the nostril was visually present in the
input image but was not sufficiently highlighted. The user has to enter both of these requirements,
leading to more annotation time. Currently, in the mechanism annotation step the user can choose
from this distinct set that is ordered alphabetically.

» Our current setup to test a requirement imposes a binary constraint: a requirement is either
entirely verified or not at all. While there could be a situation in which just n — 1 of the n concepts
in a requirement are verified, this information is not picked up by Brickroutine.

We can label our current approach as a Requirement-first approach. Another view to look at this would
be a Concept-first approach in which we introduce some alterations in the design of our workflow and
system as described below:

1. In workflow 1, we present the input images to the user and ask them to name the concepts
that appear in the images using an interface equivalent to that of annotating the mechanisms
(Figure 3.10). The user should be directed into annotating concepts that are likely to use be used
to classify a specific class and at the same time is distinctive between different classes that are
part of the data set. Annotated concepts should be reappearing as a checkbox to prevent time
overhead as a result of repeatedly typing in the concept.

61

62 7. Discussion

2. Execute workflow 2 (subsection 3.5.3) as-is to obtain the mechanism from the heatmaps.

3. Requirement correction is not applicable since users can add concepts in the first step and the
weight is not used.

4. Incorporate an additional element to let domain experts verify if this is valid reasoning. We can use
the knowledge that concepts that have been entered in the first step will contribute to meaningful
explanations and concepts that solely exist in the mechanism annotation step as irrelevant or
background concepts. The goal of this step is to filter out concepts that might have been learnt
by the model and do not contribute to the class itself.

5. In the overview pane, present the validated mechanisms as well as the invalidated ones aggre-
gated by classes.

In summary, with the approach presented above, we move the connection between requirements
and concepts to a later stage. This could introduce a bias for the domain experts since they can pick
from mechanisms that have been annotated instead of reasoning from their own knowledge. With the
approach presented above, we can design views with concept-based statistics, such as the most learnt
concepts by the model and co-occurring concepts. Additionally, when the system has obtained a decent
knowledge base of the concepts, we can apply inference techniques like Markov Logic Networks (MLN)
to automatically extract the most likely requirement [26].

7.2. Multiple Requirements Annotation

As stated in the previous section, in this work we limited ourselves to testing a single requirement
for each image. A small addition would be to expand our system to have multiple requirements per
image. This will inevitably lead to higher annotation costs in the requirement annotation phase but will
reduce the costs in the mechanism annotation phase since the users do not have to enter the concepts
manually in the case the highlighted concepts in the heatmap are represented by a requirement. There
is however a trade-off in the case a custom mechanism is still required when none of the verified
requirements is highlighted in the heatmap. We propose this trade-off between more costs in either
workflow 1 or workflow as an opportunity for future work.

7.3. Differences Between the Experiments

During the evaluation, we tested two different use-cases with different goals. We evaluated the Infor-
mativeness (data set Sea Creatures) for a data set with high accuracy to see how much information
about the right predictions the system could give us. Secondly, we evaluated the Validity (data set
Birds) for a data set that had lower accuracy and we had expected the model to reason significantly
different from humans due to the injected biases. Our findings as a result of these different evaluations
include:

» For Informativeness, the percentage of verified requirements is a valid metric since it is an indica-
tion of the degree to which the model reasons like a human would. For this data set, an average
of 88% of the images featured the requirements and for an average of 57% of the images, the
mechanism followed these requirements.

» For Validity, the percentage of verified requirements is not a suitable metric since it does not
represent the information we get from the system in a quantitative way. Instead, we found expla-
nations for confusion between different classes and verified hypotheses based on how we trained
the model. Since we deem these goals as valid use cases for interpreting the model, an improve-
ment would be to design user interface elements or workflows for these specific scenarios and
present the findings to the user. In our current setup, finding these causes heavily relied on the
human assessment of the overview pane. We envision a dashboard that allows users to design
specific experiments so that they can explicitly search for specific behaviour of their models.

» We found that on average, the mechanism annotation for Validity was more costly than for In-
formativeness. In Figure 7.1, these differences are depicted. This can be easily explained by
the fact that for Validity, the user is resorted to annotating a custom mechanism, which is more
time-intensive than simply clicking a yes button to verify that requirement in the heatmap. We also
notice that the requirement annotation time is lower for Validity than for Informativeness. This is

7.4. lterative Approach 63

Requirement Annotation (Workflow 1)
Mechanism Annotation (Workflow 2)

Round 1 Round 2

25

20

15

ime (s)

10

Birds Sea Creatures Birds Sea Creatures
Round 3 Round 4
25

20

15

ime (s)

10

Birds Sea Creatures Birds Sea Creatures

Figure 7.1: Difference per data set in annotation times

explained by the fact that we had initially fewer and coarser-grained requirements for the Birds
data set that are more likely to feature in the images. As a result, the users spend less time until
a suitable requirement is found or until all requirements have been tested.

The observations above lead to the fundamental question if both types of experiments are actu-
ally eligible for an approach that differentiates between requirements and mechanisms. For cases like
Informativeness that have rather an explanatory nature, we think this approach is suitable since this
eventual comparison between what we think the model should learn and actually has learnt is appropri-
ate. The nature of Validity on the other hand is more exploratory, and we have no intuitive expectations
of how the model actually decided. For these cases, limiting ourselves to the mechanism annotation
workflow 2 would have yielded similar outcomes.

7.4. lterative Approach

During the design of Brickroutine, we proposed the iterative approach that is depicted inFigure 3.15.
The idea behind this is that all semantic concepts are eventually conceptualizations of the models’ de-
cision and these conceptualizations can change over time depending on the number of annotations. In
the end, we never know what the model truly learnt and all information that is extracted from Brickroutine
is only a linguistic representation of numerical decisions.

We found that for our evaluation regarding the Informativeness this approach proved to be suit-
able since in the first two rounds our requirements changed. Examples are the evolution from front
body part to carapiece (finer-grained concept) for American Lobster and constructing require-
ments based on the angle the picture is taken from for Great White Shark. For the use-case of Validity,

64 7. Discussion

on the other hand, we noticed that our initial requirements did not change much. The reason behind
this was that emphasis was put on annotating the mechanisms because the granularity of the existing
concepts was appropriate to reach our goals.

A simple heuristic would be that the more requirements are changing over time, the more suitable
an iterative approach is. However, the overhead of doing more smaller iterations versus fewer larger
annotations is marginal. Since in both evaluations we found that the explanations were sufficient after
two rounds of annotating with 40% of the images for each data set, we still believe this is feasible for
our problem statement. An improvement for Brickroutine would be to suggest a number of images
to annotate that is based on the degree to which requirements have changed in previous annotation
rounds.

7.5. Usability

Since this thesis and as a result, Brickroutine is the first attempt for an initial product, the usability
is proportional to the scope of a graduation project. Currently, the system can be executed on any
windows or UNIX-like machine that supports docker (=8GB RAM is advised). The source code is
stored on a TU-Delft repository and should be requested in collaboration with owners'. Below, we list
some of the possibilities and limitations of the current software product.

» Heatmaps are automatically generated but the usage of Inception V3[29] and ImageNet weights
is fixed. To change this, the python code in the Docker container that extracts the heatmaps
should be altered accordingly.

» Because the system runs in Docker containers, it can be deployed on ubiquitous cloud platforms
to make it accessible over the public internet. Ideally, this should be in an authorized environment
or authorization should be added to the application itself (React and Dotnet support OAuth2 flows
2

)-

» The source code allows users to use a local MongoDB database in a docker container as well as
an online database on Microsoft Azure3. This can be easily substituted by for example an AWS
S3 instance*. For multiple simultaneous users, the system should be adapted for concurrent
annotations.

» Due to a container-based approach, debugging the individual components is easily done by mak-
ing use of remote containers®.

* In section 2.1, we mentioned existing solutions that provide model developers with tools for inter-
pretability of their models. Brickroutine distinguishes itself in a number of ways. First, it should be
used after training the model. Additionally, it is a user-friendly tool complete with a user interface
and tools for monitoring and the system design is done in such a way that it is extensible.

+ For the current functionalities, having RabbitMQ could be seen as slightly over-engineered, since
we use it for only one use-case, extracting the heatmaps. In hindsight, this could also be solved
with less complex solutions. However, given that this Event-Driven Architecture enables possi-
bilities for follow-up work, we regard this as an appropriate design choice in retrospect.

A list of proposed improvements for the current implementation from a developer’s perspective is given
in Appendix C.

7.6. Future work

In previous sections of this chapter, we already mentioned improvements to the system that fit within
the current system boundaries. These can be characterized as in-depth improvements and are based
on the same level of input (input images and a trained model) and output (semantic explanations of the
model). Since we aim for Brickroutine to be a novel cornerstone for Machine-Learning interpretability
in a broader sense, we envision some in-breadth improvements that are eligible for future work. These
are conceptually described below:

"https://github.com/delftcrowd/brickroutine
2https://oauth.net/2/
3https://docs.microsoft.com/en-us/azure/cosmos-db/mongodb
“https://aws.amazon.com/s3/
Shttps://code.visualstudio.com/docs/remote/containers

7.6. Future work 65

» Currently, the process halts when explanations of the model have been obtained. In a real use
case, we believe this information is consumed by the models’ developers and used to optimize
the model. Therefore, we envision Brickroutine to be a full-fledged ML suite in which developers
can adapt hyper-parameters, retrain their models and gather explanations for different versions
of their models. Due to the event-driven architecture, we can upload and download models by for
example submitting a python file or trained model in the same way we currently upload images.
We can communicate the status of these training sessions back from Docker containers to the
web API. The current user interface could be expanded with for instance web sockets to enable
real-time monitoring of these training sessions.

* In our current setup we upload a trained model to subsequently annotate concepts in them. Even-
tually, we have knowledge of what concepts are important for the model. We think of a scenario
in which we let domain experts annotate specific regions where they think differences between
different classes will specifically be visually present. Let us take two similar-looking birds as an
example: if the domain expert can by means of a bounding box indicate in which parts of different
birds the differences primarily occur, then the model is guided into looking for specific patterns.
Then we would shift the added value that the domain experts have from post-training to pre-
training. After doing predictions, the current setup of Brickroutine can be leveraged to determine
the added value of this procedure.

» As an extension to the previous point, we can adjust the system in such a way that concepts are
given a semantic label like is done in [1]. In this way, annotations can be partially automated and
we would gradually decrease the annotation costs when there are enough samples.

* In our current work, every image is annotated by strictly one annotator. For more performance
add in the possibility to let more annotators use the system to have a more diverse base of human
knowledge.

» To broaden the horizon, we envision Brickroutine could be expanded to be applicable to other
problems than image classification problems and a deep learning model. In the end, we add
semantic meaning to a conceptualization of numerical features. If a problem is suitable for human-
in-the-loop machine learning, then an approach like Brickroutine could be eligible to assess if the
model follows some kind of human reasoning. Use cases we imagine are genre-classification of
music or language-based models. We would like to leave this to the imagination of the reader.

Conclusion

In this work, we have presented the design and implementation of Brickroutine: a system that uses
a trained model, input images and a human-in-the-loop approach to give semantic interpretations to
image classification problems. By giving an iterative approach in terms of workflows and technically
designing it in a modular, salable way using Docker, we hope to have inspired researchers and software
developers to keep developing cutting edge solutions for interpretability and combine this in a ready-
to-use expandable system with modern user interfaces.

We have shown that the current setup allows users to construct requirements for an image classi-
fication problem and test this against the mechanisms an Al model uses for making predictions. We
have shown the differences between well-performing and less performing combinations of models and
data sets. We did two types of evaluation on data sets that featured 300 and 500 images and found
that doing two iterations of annotations for 40% of the images in each data set was sufficient to explain
the model to a certain extent. Lastly, we found that the combination of model performance and visual
differences between images are fundamental in designing workflows to serve specific goals. For in-
terpretations of an explanatory nature, which we call informativeness, we think our current approach
is suitable. For exploratory interpretations, which we refer to as validity, we believe the current setup
is inappropriate. In conclusion, we hope to have given insight into an iterative approach for the inter-
pretation of the inner workings of ML models. We believe that by contributing to this work, we have
laid a new cornerstone that serves as a foundation for follow-up work. As a result, we have made
suggestions for follow-up work. We hope to have contributed to new inspirations and insights into the
area of interpretability, for image recognition problems, and beyond.

67

Results for sea creatures

A.1. Results for sea creatures round 1

Class (requirements) Requirement Mechanism in | Mechanism Requirement Unnannotated
in image heatmap not in | notinimage images
heatmap

American lobster (8) 18 (18%) 9 (9%) 9 (9%) 2 (2%) 80 (80%)

great white shark (6) 19 (19%) 8 (8%) 11 (11%) 1(1%) 80 (80%)

tench (8) 18 (18%) 16 (16%) 2 (2%) 2 (2%) 80 (80%)

Table A.1: Requirements overview table after one round for Sea Creatures

True label Predicted label Mechanism Req? Count

American lobster American lobster claw, red shell yes 5
red shell yes 4
claw, front body part no 2
head, eye no 1
front body part no 1
disassembled claw, human mouth no 1
front body part, claw no 1
claw, head no 1
head, front body part no 1
claw, front body part, head no 1

great white shark great white shark mouth, snout, gill openings yes 2
mouth, dorsal fin, snout no 2
dorsal fin, pectoral fin yes 2
mouth, snout yes 2
mouth, snout, eye no 1
mouth, eye, snout no 1
dorsal fin, pectoral fin, caudal fin yes 1
eye, nostrill no 1
mouth, snout, pectoral fin no 1
eye, gill openings, dorsal fin, mouth no 1
gill openings, dorsal fin no 1
gill openings yes 1
eye, mouth, snout, fishing equipment no 1
eye, nostrill, mouth no 1

tench tench olive skin, dark rounded fins yes 7
olive skin, dark rounded fins, red eye yes 5
olive skin yes 3
olive skin, red eye yes 1
camouflage clothing, olive skin, dark rounded fins, | no 1
red eye
camouflage clothing, dark rounded fins no 1

Table A.2: Mechanisms overview table after one round for Sea Creatures

69

70

A. Results for sea creatures

A.2. Results for sea creatures round 2

Class (requirements) Requirement Mechanism in | Mechanism Requirement Unnannotated
in image heatmap not in | notinimage images
heatmap

American lobster (8) 36 (36%) 28 (28%) 8 (8%) 4 (4%) 60 (60%)

great white shark (7) 32 (32%) 17 (17%) 15 (15%) 8 (8%) 60 (60%)

tench (8) 37 (37%) 25 (25%) 12 (12%) 3 (3%) 60 (60%)

Table A.3: Requirements overview table after two rounds for Sea Creatures

True label Predicted label Mechanism Req? Count

American lobster American lobster claw, carapiece yes 17
carapiece yes 8
claw, front body part no 2
claw yes 2
thin legs yes 1
front body part, claw no 1
claw, head no 1
bottom body, claw no 1
claw, front body part, head no 1
eye, thin legs no 1
claw, eye no 1

great white shark great white shark mouth, snout, gill openings, eye, nostrill yes 6
mouth, snout, eye, nostrill yes 6
dorsal fin, pectoral fin yes 3
dorsal fin, pectoral fin, caudal fin yes 2
mouth, gill openings, pectoral fin, caudal fin, dorsal | no 1
fin, snout, eye
dorsal fin, eye, mouth, snout, pectoral fin no 1
eye, nostrill no 1
gill openings, dorsal fin no 1
gill openings no 1
mouth, eye, snout no 1
dorsal fin, gill openings no 1
dorsal fin, pectoral fin, gill openings no 1
eye, mouth, fishing equipment no 1
fishing equipment, dorsal fin, caudal fin no 1
dorsal fin, pectoral fin, eye no 1
pectoral fin, dorsal fin, mouth, eye, snout, nostrill no 1
snout, mouth, fishing equipment, pectoral fin no 1
mouth, snout, nostrill no 1
dorsal fin, fishing equipment no 1

tench tench olive skin, dark rounded fins, red eye yes 9
olive skin, dark rounded fins yes 9
olive skin yes 4
olive skin, red eye yes 3
camouflage clothing, olive skin, dark rounded fins, | no 1
red eye
camouflage clothing, dark rounded fins, olive skin no 1
red eye, fin attachment no 1
olive skin, red eye, human, dark rounded fins no 1
gill cover, dark rounded fins, olive skin no 1
olive skin, human no 1
gill cover, red eye, olive skin no 1
olive skin, dark rounded fins, human no 1
dog, olive skin, dark rounded fins no 1
human, olive skin no 1
human, olive skin, red eye no 1
dark rounded fins, gill cover, lips, red eye, olive skin | no 1

Table A.4: Mechanisms overview table after two rounds for Sea Creatures

A.3. Results for sea creatures round 3 71
A.3. Results for sea creatures round 3
Class (requirements) Requirement Mechanism in | Mechanism Requirement Unnannotated
in image heatmap not in | notinimage images
heatmap

American lobster (10) 56 (56%) 44 (44%) 12 (12%) 4 (4%) 40 (40%)

great white shark (7) 46 (46%) 22 (22%) 24 (24%) 14 (14%) 40 (40%)

tench (8) 55 (55%) 38 (38%) 17 (17%) 5 (5%) 40 (40%)

Table A.5: Requirements overview table after three rounds for Sea Creatures

True label Predicted label Mechanism Req? Count

American lobster American lobster claw, carapiece yes 18
claw texture, carapiece yes 12
carapiece yes 8
claw, front body part no 2
thin legs yes 2
claw yes 2
claw texture yes 2
front body part, claw no 1
claw, head no 1
bottom body, claw no 1
claw, front body part, head no 1
eye, thin legs no 1
claw, eye no 1
tail fin, carapiece, claw no 1
human, eye, front body part, thin legs no 1
human, claw, carapiece no 1
carapiece, human no 1

great white shark great white shark mouth, snout, gill openings, eye, nostrill yes 9
mouth, snout, eye, nostrill yes 7
dorsal fin, pectoral fin yes 3
dorsal fin, pectoral fin, caudal fin yes 2
gill openings no 2
dorsal fin, pectoral fin, eye no 2
mouth, gill openings, pectoral fin, caudal fin, dorsal | no 1
fin, snout, eye
dorsal fin, eye, mouth, snout, pectoral fin no 1
eye, nostrill no 1
gill openings, dorsal fin no 1
mouth, eye, snout no 1
dorsal fin, gill openings no 1
dorsal fin, pectoral fin, gill openings no 1
eye, mouth, fishing equipment no 1
fishing equipment, dorsal fin, caudal fin no 1
pectoral fin, dorsal fin, mouth, eye, snout, nostrill no 1
snout, mouth, fishing equipment, pectoral fin no 1
mouth, snout, nostrill no 1
dorsal fin, fishing equipment no 1
mouth, snout, nostrill, gill openings no 1
snout, eye, nostrill no 1
mouth, snout, gill openings, dorsal fin, pectoral fin, | yes 1
caudal fin, eye, nostrill
dorsal fin, eye, mouth, caudal fin no 1
eye, dorsal fin, snout no 1
eye, mouth, dorsal fin no 1
fishing equipment, mouth, eye, snout no 1
eye, shout no 1

tench tench olive skin, dark rounded fins, red eye yes 16
olive skin, dark rounded fins yes 1
olive skin, red eye yes 5
olive skin yes 5
camouflage clothing, olive skin, dark rounded fins, | no 1
red eye

Continued on next page

72 A. Results for sea creatures

continued from previous page

True label Predicted label Mechanism Req? Count
camouflage clothing, dark rounded fins, olive skin no 1
red eye, fin attachment no 1
olive skin, red eye, human, dark rounded fins no 1
gill cover, dark rounded fins, olive skin no 1
olive skin, human no 1
gill cover, red eye, olive skin no 1
olive skin, dark rounded fins, human no 1
dog, olive skin, dark rounded fins no 1
human, olive skin no 1
human, olive skin, red eye no 1
dark rounded fins, gill cover, lips, red eye, olive skin | no 1
dark rounded fins, red eye yes 1
human, dark rounded fins, silver skin no 1
gill cover, silver skin no 1
human, olive skin, dark rounded fins no 1
silver skin, dark rounded fins no 1
human, jaw texture no 1

Table A.6: Mechanisms overview table after three rounds for Sea Creatures

A.4. Results for sea creatures round 4 73
A.4. Results for sea creatures round 4
Class (requirements) Requirement Mechanism in | Mechanism Requirement Unnannotated
in image heatmap not in | notinimage images
heatmap

American lobster (10) 96 (96%) 71 (71%) 25 (25%) 4 (4%) 0

great white shark (7) 80 (80%) 41 (41%) 39 (39%) 20 (20%) 0

tench (8) 89 (89%) 60 (60%) 29 (29%) 11 (11%) 0

Table A.7: Requirements overview table after four rounds for Sea Creatures

True label Predicted label Mechanism Req? Count

American_lobster American_lobster claw, carapiece yes 18
claw texture, carapiece yes 12
carapiece yes 8
claw, front body part no 2
thin legs yes 2
claw yes 2
claw texture yes 2
front body part, claw no 1
claw, head no 1
bottom body, claw no 1
claw, front body part, head no 1
eye, thin legs no 1
claw, eye no 1
tail fin, carapiece, claw no 1
human, eye, front body part, thin legs no 1
human, claw, carapiece no 1
carapiece, human no 1

great_white_shark great_white_shark mouth, snout, gill openings, eye, nostrill yes 9
mouth, snout, eye, nostrill yes 7
dorsal fin, pectoral fin yes 3
dorsal fin, pectoral fin, caudal fin yes 2
gill openings no 2
dorsal fin, pectoral fin, eye no 2
mouth, gill openings, pectoral fin, caudal fin, dorsal | no 1
fin, snout, eye
dorsal fin, eye, mouth, snout, pectoral fin no 1
eye, nostrill no 1
gill openings, dorsal fin no 1
mouth, eye, snout no 1
dorsal fin, gill openings no 1
dorsal fin, pectoral fin, gill openings no 1
eye, mouth, fishing equipment no 1
fishing equipment, dorsal fin, caudal fin no 1
pectoral fin, dorsal fin, mouth, eye, snout, nostrill no 1
snout, mouth, fishing equipment, pectoral fin no 1
mouth, snout, nostrill no 1
dorsal fin, fishing equipment no 1
mouth, snout, nostrill, gill openings no 1
snout, eye, nostrill no 1
mouth, snout, gill openings, dorsal fin, pectoral fin, | yes 1
caudal fin, eye, nostrill
dorsal fin, eye, mouth, caudal fin no 1
eye, dorsal fin, snout no 1
eye, mouth, dorsal fin no 1
fishing equipment, mouth, eye, snout no 1
eye, shout no 1

tench tench olive skin, dark rounded fins, red eye yes 16
olive skin, dark rounded fins yes 1
olive skin, red eye yes 5
olive skin yes 5
camouflage clothing, olive skin, dark rounded fins, | no 1
red eye

Continued on next page

74 A. Results for sea creatures

continued from previous page

True label Predicted label Mechanism Req? Count
camouflage clothing, dark rounded fins, olive skin no 1
red eye, fin attachment no 1
olive skin, red eye, human, dark rounded fins no 1
gill cover, dark rounded fins, olive skin no 1
olive skin, human no 1
gill cover, red eye, olive skin no 1
olive skin, dark rounded fins, human no 1
dog, olive skin, dark rounded fins no 1
human, olive skin no 1
human, olive skin, red eye no 1
dark rounded fins, gill cover, lips, red eye, olive skin | no 1
dark rounded fins, red eye yes 1
human, dark rounded fins, silver skin no 1
gill cover, silver skin no 1
human, olive skin, dark rounded fins no 1
silver skin, dark rounded fins no 1
human, jaw texture no 1

Table A.8: Mechanisms overview table after four rounds for Sea Creatures

Results for Birds

B.1. Results for birds round 1

Class (requirements) Requirement Mechanism in | Mechanism Requirement Unnannotated
in image heatmap not in | notinimage images
heatmap
american goldfinch (3) 10 (20%) 3 (6%) 7 (14%) 0 39 (80%)
bufflehead (4) 10 (20%) 0 10 (20%) 0 39 (80%)
downy woodpecker (4) 10 (20%) 0 10 (20%) 0 40 (80%)
gila woodpecker (4) 10 (20%) 0 10 (20%) 0 40 (80%)
hairy woodpecker (5) 10 (20%) 0 10 (20%) 0 40 (80%)
hooded merganser (3) 10 (20%) 0 10 (20%) 0 40 (80%)
lesser goldfinch (3) 9 (18%) 0 9 (18%) 1(2%) 39 (80%)
mandarin duck (5) 10 (20%) 0 10 (20%) 0 40 (80%)
monk parakeet (3) 10 (20%) 3 (6%) 7 (14%) 0 39 (80%)
pine grosbeak (3) 10 (21%) 2 (4%) 8 (17%) 0 38 (79%)

Table B.1: Requirements overview table after one rounds for birds

True label Predicted label Mechanism Req? Count
american goldfinch american goldfinch yellow breast, yellow belly, yellow back, black wings | yes 2
yellow breast, yellow belly, yellow back yes 1
white bottom, tree no 1
yellow back, tree, yellow crown no 1
tree, yellow crown, yellow back no 1
tree, yellow crown no 1
yellow crown, tree, white bottom no 1
yellow crown, green background, wing patch no 1
foot, tree, green background, yellow belly, black | no 1
crown
bufflehead bufflehead water no 2
hooded merganser water, eye, neck no 1
water, grey feathers, rainbow crest, white spot no 1
bufflehead water, white feathers, top wing no 1
dark head, white spot, top wing, beak no 1
beak, white feathers, water no 1
hooded merganser water, white spot, grey feathers, neck no 1
bufflehead water, grey feathers no 1
top wing, water no 1
downy woodpecker downy woodpecker black white wing patches, tree no 2
tree no 1
black white wing patches, sky no 1
black white wing patches, white breast, tree no 1
tree, white breast, black white wing patches no 1
white breast, tree no 1

Continued on next page

75

76 B. Results for Birds
continued from previous page
True label Predicted label Mechanism Req? Count
tree, black white wing patches no 1
lesser goldfinch tree, black white wing patches, white breast no 1
downy woodpecker sky, black white wing patches no 1
gila woodpecker gila woodpecker sky, cactus no 2
green belly, sky no 1
green neck, red crown no 1
monk parakeet green belly, black white striped wings no 1
downy woodpecker black white striped wings, sky, green crown no 1
green crown, black white striped wings, tree no 1
green neck, red crown, black white striped wings, | no 1
tree
american goldfinch sky, black white striped wings, green crown no 1
downy woodpecker tree, green belly no 1
hairy woodpecker hairy woodpecker sky no 1
black wings, sky, throat stripe, beak no 1
monk parakeet tree, black wings no 1
downy woodpecker red crown, white breast, black wings no 1
hairy woodpecker red crown, black and white wing patches, sky, tree no 1
white breast, tree no 1
throat stripe, white breast, white belly no 1
white belly, tree, black and white wing patches no 1
throat stripe, sky, white back stripe no 1
downy woodpecker throat stripe, sky no 1
hooded merganser hooded merganser dark feather texture, eye no 1
brown sides, eye no 1
black crest with white spot, eye, neck no 1
eye, brown sides, water no 1
eye, neck, water, brown sides no 1
neck, water no 1
cinnamon crest, water, dark feather texture no 1
eye, dark feather texture no 1
brown sides, eye, water no 1
dark feather texture, water no 1
lesser goldfinch lesser goldfinch yellow belly, tree no 1
beak, sky, yellow breast no 1
beak, sky no 1
black wings, lighter wing patches, beak, green back- | no 1
ground
american goldfinch black wings, yellow belly, sky no 1
lesser goldfinch yellow back, yellow belly, lighter wing patches, green | no 1
background
green background, lighter wing patches no 1
lighter wing patches, tree no 1
black crown, yellow belly, neck accent no 1
mandarin duck mandarin duck rainbow crest, golden sides, brown feathers, water no 1
brown feathers, golden sides, water no 1
lesser goldfinch golden sides, water, soil, background ornament no 1
mandarin duck rainbow crest, brown feathers, neck no 1
american goldfinch golden sides, brown feathers, neck, water no 1
mandarin duck neck, golden sides, water, red beak no 1
rainbow crest, neck, red beak, water no 1
hooded merganser neck, water, white stripe below eye no 1
mandarin duck rainbow crest, soil, brown feathers no 1
red beak, golden sides, water no 1
monk parakeet monk parakeet green feathers, light breast, light crown yes 2
green feathers, light crown, sky, tree no 1
green feathers yes 1
fence, light crown, sky, green feathers no 1
blue wingtips, beak, green feathers, tree no 1
green feathers, tree, sky no 1
sky, fence, beak no 1
sky, tree, green feathers, light breast no 1
light breast, tree no 1
pine grosbeak pine grosbeak pink feathers, grey wings yes 2

Continued on next page

B.1. Results for birds round 1

77

continued from previous page

True label Predicted label Mechanism Req? Count
pink feathers, snow, cheek no 1
american goldfinch orange head, tree, green background no 1
grey feathers, orange head, green background no 1
pine grosbeak grey feathers, orange head, sky no 1
grey feathers, orange head, tree no 1
monk parakeet sky, snow, tree, wing patches no 1
pine grosbeak wing patches, snow, grey feathers no 1
wing patches, pink feathers, sky no 1

Table B.2: Mechanisms overview table after one rounds for birds

78 B. Results for Birds

B.2. Results for birds round 2

Class (requirements) Requirement Mechanism in | Mechanism Requirement Unnannotated
in image heatmap not in | notinimage images
heatmap
american goldfinch (3) 20 (41%) 4 (8%) 16 (33%) 0 29 (59%)
bufflehead (4) 20 (41%) 0 20 (41%) 0 29 (59%)
downy woodpecker (4) 20 (40%) 0 20 (40%) 0 30 (60%)
gila woodpecker (4) 20 (40%) 0 20 (40%) 0 30 (60%)
hairy woodpecker (5) 20 (40%) 2 (4%) 18 (36%) 0 30 (60%)
hooded merganser (3) 20 (40%) 0 20 (40%) 0 30 (60%)
lesser goldfinch (4) 19 (39%) 1(2%) 18 (37%) 1(2%) 29 (59%)
mandarin duck (6) 20 (40%) 0 20 (40%) 0 30 (60%)
monk parakeet (3) 19 (39%) 3 (6%) 16 (33%) 1(2%) 29 (59%)
pine grosbeak (3) 20 (42%) 3 (6%) 17 (35%) 0 28 (58%)

Table B.3: Requirements overview table after two rounds for birds

True label Predicted label Mechanism Req? Count
american goldfinch american goldfinch yellow breast, yellow belly, yellow back yes 2
yellow breast, yellow belly, yellow back, black wings | yes 2
white bottom, tree no 1
yellow back, tree, yellow crown no 1
tree, yellow crown, yellow back no 1
tree, yellow crown no 1
yellow crown, tree, white bottom no 1
yellow crown, green background, wing patch no 1
foot, tree, green background, yellow belly, black | no 1
crown
yellow belly, yellow breast, black crown no 1
green background, black crown no 1
yellow belly, yellow breast, foot no 1
green background, beak, eye no 1
snow, black wings, yellow belly, yellow breast, yellow | no 1
crown
green background, yellow back, black wings, green | no 1
belly, green breast
tree, sky no 1
green background, wing patch, tree no 1
green background, yellow breast, green belly, yellow | no 1
crown
bufflehead bufflehead water no 2
hooded merganser water, eye, neck no 1
water, grey feathers, rainbow crest, white spot no 1
bufflehead water, white feathers, top wing no 1
dark head, white spot, top wing, beak no 1
beak, white feathers, water no 1
hooded merganser water, white spot, grey feathers, neck no 1
bufflehead water, grey feathers no 1
top wing, water no 1
water, black wings no 1
rainbow crest, water no 1
tree no 1
hooded merganser water, neck no 1
bufflehead eye, water, white feathers, black wings no 1
hooded merganser dark head, white spot, black wings, grey feathers, | no 1
neck, water
bufflehead neck, wing patch no 1
hooded merganser dark head, grey feathers, wing patch, neck no 1
neck, water no 1
bufflehead wing patch, neck, grey feathers no 1
downy woodpecker downy woodpecker tree no 4
black white wing patches, tree no 3
black white wing patches, sky no 1

Continued on next page

B.2. Results for birds round 2

79

continued from previous page

True label Predicted label Mechanism Req? Count
black white wing patches, white breast, tree no 1
tree, white breast, black white wing patches no 1
white breast, tree no 1
tree, black white wing patches no 1
lesser goldfinch tree, black white wing patches, white breast no 1
downy woodpecker sky, black white wing patches no 1
tree, black white wing patches, white bottom no 1
hairy woodpecker tree, neck no 1
downy woodpecker white breast, white bottom, tree no 1
foot, tree no 1
hairy woodpecker white breast, black white wing patches, sky, tree no 1
downy woodpecker red crown, black white wing patches, tree no 1
gila woodpecker gila woodpecker sky, cactus no 2
green belly, sky no 1
green neck, red crown no 1
monk parakeet green belly, black white striped wings no 1
downy woodpecker black white striped wings, sky, green crown no 1
green crown, black white striped wings, tree no 1
green neck, red crown, black white striped wings, | no 1
tree
american goldfinch sky, black white striped wings, green crown no 1
downy woodpecker tree, green belly no 1
lesser goldfinch green background no 1
gila woodpecker red crown, green breast, green background no 1
downy woodpecker red crown, black white striped wings, green back- | no 1
ground, tree, beak
tree, beak, black white striped wings, green belly, | no 1
green breast, green neck
sky, tree, red crown, green neck no 1
monk parakeet green neck, black white striped wings, green belly, | no 1
tree, sky
pine grosbeak water feeder, red crown no 1
gila woodpecker beak, green belly, green breast, green neck, sky no 1
green neck, black white striped wings, cactus, sky no 1
pine grosbeak red crown, green neck, water feeder, green back- | no 1
ground
hairy woodpecker hairy woodpecker black and white wing patches, tree no 2
sky no 1
black wings, sky, throat stripe, beak no 1
monk parakeet tree, black wings no 1
downy woodpecker red crown, white breast, black wings no 1
hairy woodpecker red crown, black and white wing patches, sky, tree no 1
white breast, tree no 1
hairy woodpecker throat stripe, white breast, white belly no 1
white belly, tree, black and white wing patches no 1
throat stripe, sky, white back stripe no 1
downy woodpecker throat stripe, sky no 1
hairy woodpecker beak, tree, eye no 1
bufflehead white breast yes 1
hairy woodpecker tree no 1
beak, red crown, white back stripe, black wings, | no 1
green background
downy woodpecker eye, green background, black and white wing | no 1
patches
red crown, black and white wing patches, sky, tree no 1
hairy woodpecker green background, tree, black and white wing | no 1
patches
white breast yes 1
hooded merganser hooded merganser dark feather texture, eye no 1
brown sides, eye no 1
black crest with white spot, eye, neck no 1
eye, brown sides, water no 1
eye, neck, water, brown sides no 1
neck, water no 1
cinnamon crest, water, dark feather texture no 1

Continued on next page

80 B. Results for Birds
continued from previous page
True label Predicted label Mechanism Req? Count
eye, dark feather texture no 1
brown sides, eye, water no 1
dark feather texture, water no 1
hooded merganser monk parakeet brown sides, eye no 1
bufflehead cinnamon crest, water, grey belly, dark feather tex- | no 1
ture
lesser goldfinch cinnamon crest, eye, dark feather texture, reed no 1
hooded merganser cinnamon crest, water, beak, neck no 1
black crest with white spot, eye, water no 1
brown sides, water no 1
cinnamon crest, water, dark feather texture, brown | no 1
sides
american goldfinch water, cinnamon crest, dark feather texture no 1
hooded merganser neck, brown sides no 1
water, dark feather texture, black crest with white | no 1
spot
lesser goldfinch lesser goldfinch green background, lighter wing patches no 2
yellow belly, tree no 1
flower, neck no 1
beak, sky, yellow breast no 1
beak, sky no 1
black wings, lighter wing patches, beak, green back- | no 1
ground
american goldfinch black wings, yellow belly, sky no 1
lesser goldfinch yellow back, yellow belly, lighter wing patches, green | no 1
background
lighter wing patches, tree no 1
black crown, yellow belly, neck accent no 1
yellow belly, yellow breast, black crown no 1
green background no 1
green background, yellow back, neck, tree no 1
black crown, yellow breast, yellow belly, yellow back | yes 1
green background, yellow breast, yellow belly no 1
yellow belly, yellow breast, tree, beak no 1
yellow belly, yellow breast, green background, neck | no 1
american goldfinch yellow belly, tree, sky no 1
mandarin duck mandarin duck rainbow crest, golden sides, brown feathers, water no 1
brown feathers, golden sides, water no 1
lesser goldfinch golden sides, water, soil, background ornament no 1
mandarin duck rainbow crest, brown feathers, neck no 1
american goldfinch golden sides, brown feathers, neck, water no 1
mandarin duck neck, golden sides, water, red beak no 1
rainbow crest, neck, red beak, water no 1
hooded merganser neck, water, white stripe below eye no 1
mandarin duck rainbow crest, soil, brown feathers no 1
red beak, golden sides, water no 1
rainbow crest, golden sides, brown feathers, water, | no 1
soil
rainbow crest, neck, dotted bottom no 1
lesser goldfinch grey feathers, soil, dotted bottom no 1
mandarin duck golden sides, rainbow crest, water no 1
golden sides, brown feathers, long brown neck | no 1
feathers
rainbow crest, dotted bottom, brown feathers, water, | no 1
golden sides, long brown neck feathers
rainbow crest, long brown neck feathers, neck no 1
gila woodpecker grey feathers, brown feathers, snow no 1
mandarin duck rainbow crest, neck, golden sides, water no 1
pine grosbeak long brown neck feathers, red beak, water, neck no 1
monk parakeet monk parakeet green feathers, light breast, light crown yes 2
green feathers, light crown, sky, tree no 1
green feathers yes 1
fence, light crown, sky, green feathers no 1
blue wingtips, beak, green feathers, tree no 1

Continued on next page

B.2. Results for birds round 2

81

continued from previous page

True label Predicted label Mechanism Req? Count

green feathers, tree, sky no 1

sky, fence, beak no 1

sky, tree, green feathers, light breast no 1

light breast, tree no 1

green feathers, tree no 1

sand no 1

sky, tree no 1

sky, green feathers, light crown no 1

beak, light throat, light crown, sky no 1

light crown, light throat, sky, green feathers no 1

american goldfinch light breast, green feathers, tree no 1
monk parakeet light throat, urban objects no 1
blue wingtips, green background no 1

pine grosbeak pine grosbeak pink feathers, grey wings yes 3
pink feathers, snow, cheek no 1

american goldfinch orange head, tree, green background no 1
grey feathers, orange head, green background no 1

pine grosbeak grey feathers, orange head, sky no 1
grey feathers, orange head, tree no 1

monk parakeet sky, snow, tree, wing patches no 1
pine grosbeak wing patches, snow, grey feathers no 1
wing patches, pink feathers, sky no 1

grey feathers, heavy chest no 1

monk parakeet grey feathers, tree no 1
pine grosbeak snow, pink feathers no 1
sky, pink feathers no 1

wing patches, tree, green background no 1

grey feathers, orange head, snow no 1

heavy chest, tree, wing patches no 1

grey wings, wing patches, pink feathers no 1

tree, pink feathers, eye, flower no 1

Table B.4: Mechanisms overview table after two rounds for birds

82

B. Results for Birds

B.3. Results for birds round 3

Class (requirements) Requirement Mechanism in | Mechanism Requirement Unnannotated
in image heatmap not in | notinimage images
heatmap
american goldfinch (3) 29 (59%) 4 (8%) 25 (51%) 1(2%) 19 (39%)
bufflehead (4) 32 (65%) 0 32 (65%) 0 17 (35%)
downy woodpecker (4) 30 (60%) 1(2%) 29 (58%) 0 20 (40%)
gila woodpecker (4) 30 (60%) 2 (4%) 28 (56%) 0 20 (40%)
hairy woodpecker (5) 30 (60%) 4 (8%) 26 (52%) 0 20 (40%)
hooded merganser (3) 30 (60%) 3 (6%) 27 (54%) 0 20 (40%)
lesser goldfinch (4) 29 (59%) 2 (4%) 27 (55%) 1(2%) 19 (39%)
mandarin duck (6) 29 (58%) 1(2%) 28 (56%) 1(2%) 20 (40%)
monk parakeet (3) 29 (59%) 5 (10%) 24 (49%) 1(2%) 19 (39%)
pine grosbeak (3) 30 (63%) 4 (8%) 26 (54%) 0 18 (38%)
Table B.5: Requirements overview table after three rounds for birds
True label Predicted label Mechanism Req? Count
american goldfinch american goldfinch yellow breast, yellow belly, yellow back yes 2
yellow breast, yellow belly, yellow back, black wings | yes 2
white bottom, tree no 1
yellow back, tree, yellow crown no 1
tree, yellow crown, yellow back no 1
tree, yellow crown no 1
yellow crown, tree, white bottom no 1
yellow crown, green background, wing patch no 1
foot, tree, green background, yellow belly, black | no 1
crown
yellow belly, yellow breast, black crown no 1
green background, black crown no 1
yellow belly, yellow breast, foot no 1
green background, beak, eye no 1
snow, black wings, yellow belly, yellow breast, yellow | no 1
crown
green background, yellow back, black wings, green | no 1
belly, green breast
tree, sky no 1
green background, wing patch, tree no 1
green background, yellow breast, green belly, yellow | no 1
crown
black crown, black wings, green breast, tree no 1
foot, black wings, green breast, beak no 1
green belly, green breast, green background, tree no 1
foot no 1
green belly, green breast, eye no 1
green background, tree, wing patch no 1
black wings, green belly, green breast, wing patch no 1
green background, yellow back no 1
yellow belly, black wings, green background no 1
bufflehead bufflehead water no 2
top wing, water no 2
water, neck no 2
hooded merganser water, eye, neck no 1
water, grey feathers, rainbow crest, white spot no 1
bufflehead water, white feathers, top wing no 1
dark head, white spot, top wing, beak no 1
beak, white feathers, water no 1
hooded merganser water, white spot, grey feathers, neck no 1
bufflehead water, grey feathers no 1
water, black wings no 1
rainbow crest, water no 1
tree no 1
hooded merganser water, neck no 1

Continued on next page

B.3. Results for birds round 3

83

continued from previous page

ground

True label Predicted label Mechanism Req? Count
bufflehead eye, water, white feathers, black wings no 1
hooded merganser dark head, white spot, black wings, grey feathers, | no 1

neck, water
bufflehead neck, wing patch no 1
hooded merganser dark head, grey feathers, wing patch, neck no 1
neck, water no 1
bufflehead wing patch, neck, grey feathers no 1
rainbow crest, wing patch, water no 1
white feathers, tree no 1
white spot, rainbow crest, water no 1
hooded merganser water no 1
bufflehead water, neck, wing patch, white spot no 1
top wing, neck, rainbow crest, water no 1
dark head, beak, black wings, neck, water no 1
hooded merganser white spot, neck, water no 1
bufflehead wing patch, neck, water no 1
downy woodpecker downy woodpecker tree no 4
tree, black white wing patches no 3
black white wing patches, tree no 3
black white wing patches, sky no 1
black white wing patches, white breast, tree no 1
tree, white breast, black white wing patches no 1
white breast, tree no 1
lesser goldfinch tree, black white wing patches, white breast no 1
downy woodpecker sky, black white wing patches no 1
tree, black white wing patches, white bottom no 1
hairy woodpecker tree, neck no 1
downy woodpecker white breast, white bottom, tree no 1
foot, tree no 1
hairy woodpecker white breast, black white wing patches, sky, tree no 1
downy woodpecker red crown, black white wing patches, tree no 1
black white wing patches, white breast yes 1
black white wing patches, white breast, background | no 1
leaf
hairy woodpecker tree no 1
downy woodpecker black white wing patches, white breast, white bot- | no 1
tom, tree
tree, sky no 1
tree, white breast, sky no 1
red crown, white breast no 1
sky, white breast, black white wing patches no 1
gila woodpecker gila woodpecker sky, cactus no 3
green belly, sky no 1
green neck, red crown no 1
monk parakeet green belly, black white striped wings no 1
downy woodpecker black white striped wings, sky, green crown no 1
green crown, black white striped wings, tree no 1
green neck, red crown, black white striped wings, | no 1
tree
american goldfinch sky, black white striped wings, green crown no 1
downy woodpecker tree, green belly no 1
lesser goldfinch green background no 1
gila woodpecker red crown, green breast, green background no 1
downy woodpecker red crown, black white striped wings, green back- | no 1
ground, tree, beak
tree, beak, black white striped wings, green belly, | no 1
green breast, green neck
sky, tree, red crown, green neck no 1
monk parakeet green neck, black white striped wings, green belly, | no 1
tree, sky
pine grosbeak water feeder, red crown no 1
gila woodpecker beak, green belly, green breast, green neck, sky no 1
green neck, black white striped wings, cactus, sky no 1
pine grosbeak red crown, green neck, water feeder, green back- | no 1

Continued on next page

84 B. Results for Birds
continued from previous page
True label Predicted label Mechanism Req? Count
gila woodpecker green crown, cactus, black white striped wings no 1
downy woodpecker black white striped wings yes 1
hairy woodpecker sky, green neck, red crown, black white striped wings | no 1
monk parakeet green neck, green belly, green breast, black white | yes 1
striped wings
gila woodpecker red crown, black white striped wings, green breast, | no 1
green belly
sky, green background, green breast, green neck, | no 1
black white striped wings
cactus, green breast, green crown no 1
sky, tree, green neck no 1
green breast, green crown no 1
hairy woodpecker hairy woodpecker tree no 2
black and white wing patches, tree no 2
sky no 1
black wings, sky, throat stripe, beak no 1
monk parakeet tree, black wings no 1
downy woodpecker red crown, white breast, black wings no 1
hairy woodpecker red crown, black and white wing patches, sky, tree no 1
white breast, tree no 1
throat stripe, white breast, white belly no 1
white belly, tree, black and white wing patches no 1
throat stripe, sky, white back stripe no 1
downy woodpecker throat stripe, sky no 1
hairy woodpecker beak, tree, eye no 1
bufflehead white breast yes 1
hairy woodpecker beak, red crown, white back stripe, black wings, | no 1
green background
downy woodpecker eye, green background, black and white wing | no 1
patches
red crown, black and white wing patches, sky, tree no 1
hairy woodpecker green background, tree, black and white wing | no 1
patches
white breast yes 1
black wings, white breast yes 1
red crown, tree no 1
downy woodpecker tree, black and white wing patches, throat stripe no 1
hairy woodpecker white belly, white breast, red crown no 1
green background, tree, black and white wing | no 1
patches, red crown
eye, green background no 1
black wings, white breast, white belly no 1
downy woodpecker tree, black wings, sky no 1
black wings, white breast yes 1
hooded merganser hooded merganser brown sides, eye no 2
cinnamon crest yes 2
dark feather texture, eye no 1
black crest with white spot, eye, neck no 1
eye, brown sides, water no 1
eye, neck, water, brown sides no 1
neck, water no 1
cinnamon crest, water, dark feather texture no 1
eye, dark feather texture no 1
brown sides, eye, water no 1
dark feather texture, water no 1
monk parakeet brown sides, eye no 1
bufflehead cinnamon crest, water, grey belly, dark feather tex- | no 1
ture
lesser goldfinch cinnamon crest, eye, dark feather texture, reed no 1
hooded merganser cinnamon crest, water, beak, neck no 1
black crest with white spot, eye, water no 1
brown sides, water no 1
cinnamon crest, water, dark feather texture, brown | no 1
sides
american goldfinch water, cinnamon crest, dark feather texture no 1

Continued on next page

B.3. Results for birds round 3

85

continued from previous page

True label Predicted label Mechanism Req? Count
hooded merganser neck, brown sides no 1
water, dark feather texture, black crest with white | no 1
spot
cinnamon crest, water no 1
bufflehead brown sides, water no 1
cinnamon crest, water no 1
hooded merganser brown sides, neck no 1
cinnamon crest, neck, water no 1
water, dark feather texture, cinnamon crest no 1
black crest with white spot yes 1
lesser goldfinch lesser goldfinch green background, lighter wing patches no 2
yellow belly, tree no 1
flower, neck no 1
beak, sky, yellow breast no 1
beak, sky no 1
black wings, lighter wing patches, beak, green back- | no 1
ground
american goldfinch black wings, yellow belly, sky no 1
lesser goldfinch yellow back, yellow belly, lighter wing patches, green | no 1
background
lighter wing patches, tree no 1
black crown, yellow belly, neck accent no 1
yellow belly, yellow breast, black crown no 1
green background no 1
green background, yellow back, neck, tree no 1
black crown, yellow breast, yellow belly, yellow back | yes 1
green background, yellow breast, yellow belly no 1
yellow belly, yellow breast, tree, beak no 1
yellow belly, yellow breast, green background, neck | no 1
american goldfinch yellow belly, tree, sky no 1
lesser goldfinch tree no 1
neck, neck accent, sky no 1
neck, yellow back, yellow belly no 1
black wings, lighter wing patches yes 1
sky no 1
black wings, lighter wing patches, yellow back, yel- | no 1
low belly, sky
neck, black wings, yellow belly no 1
darker wing patches, green background no 1
sky, black wings, lighter wing patches no 1
mandarin duck mandarin duck rainbow crest, golden sides, brown feathers, water no 1
brown feathers, golden sides, water no 1
lesser goldfinch golden sides, water, soil, background ornament no 1
mandarin duck rainbow crest, brown feathers, neck no 1
american goldfinch golden sides, brown feathers, neck, water no 1
mandarin duck neck, golden sides, water, red beak no 1
rainbow crest, neck, red beak, water no 1
hooded merganser neck, water, white stripe below eye no 1
mandarin duck rainbow crest, soil, brown feathers no 1
red beak, golden sides, water no 1
rainbow crest, golden sides, brown feathers, water, | no 1
soll
rainbow crest, neck, dotted bottom no 1
lesser goldfinch grey feathers, soil, dotted bottom no 1
mandarin duck golden sides, rainbow crest, water no 1
golden sides, brown feathers, long brown neck | no 1
feathers
rainbow crest, dotted bottom, brown feathers, water, | no 1
golden sides, long brown neck feathers
rainbow crest, long brown neck feathers, neck no 1
gila woodpecker grey feathers, brown feathers, snow no 1
mandarin duck rainbow crest, neck, golden sides, water no 1
pine grosbeak long brown neck feathers, red beak, water, neck no 1
mandarin duck brown feathers, rainbow crest, golden sides no 1
hooded merganser golden sides, water no 1

Continued on next page

86 B. Results for Birds
continued from previous page
True label Predicted label Mechanism Req? Count
mandarin duck rainbow crest, golden sides, white stripe below eye, | no 1
neck, long brown neck feathers
rainbow crest yes 1
rainbow crest, golden sides, grey feathers no 1
hooded merganser water, rainbow crest, golden sides no 1
mandarin duck long brown neck feathers, water, neck no 1
golden sides, long brown neck feathers no 1
water, rainbow crest no 1
monk parakeet monk parakeet green feathers, light breast, light crown yes 4
green feathers, light crown, sky, tree no 1
green feathers yes 1
fence, light crown, sky, green feathers no 1
blue wingtips, beak, green feathers, tree no 1
green feathers, tree, sky no 1
sky, fence, beak no 1
sky, tree, green feathers, light breast no 1
light breast, tree no 1
green feathers, tree no 1
sand no 1
sky, tree no 1
sky, green feathers, light crown no 1
beak, light throat, light crown, sky no 1
light crown, light throat, sky, green feathers no 1
american goldfinch light breast, green feathers, tree no 1
monk parakeet light throat, urban objects no 1
blue wingtips, green background no 1
beak, green feathers, green background no 1
beak, blue wingtips no 1
green background no 1
sky no 1
light breast, green feathers no 1
green background, green feathers no 1
light breast, blue wingtips no 1
beak, light breast, light crown no 1
pine grosbeak pine grosbeak pink feathers, grey wings yes 3
pink feathers, snow, cheek no 1
american goldfinch orange head, tree, green background no 1
grey feathers, orange head, green background no 1
pine grosbeak grey feathers, orange head, sky no 1
grey feathers, orange head, tree no 1
monk parakeet sky, snow, tree, wing patches no 1
pine grosbeak wing patches, snow, grey feathers no 1
wing patches, pink feathers, sky no 1
grey feathers, heavy chest no 1
monk parakeet grey feathers, tree no 1
pine grosbeak snow, pink feathers no 1
sky, pink feathers no 1
wing patches, tree, green background no 1
grey feathers, orange head, snow no 1
heavy chest, tree, wing patches no 1
grey wings, wing patches, pink feathers no 1
tree, pink feathers, eye, flower no 1
mandarin duck grey feathers, orange head yes 1
pine grosbeak sky, heavy chest no 1
lesser goldfinch grey feathers, grey wings no 1
pine grosbeak grey wings, tree no 1
monk parakeet sky, tree no 1
american goldfinch tree, heavy chest, grey wings no 1
yellow feathers, grey feathers, green background no 1
bufflehead grey feathers, orange head, sky no 1
american goldfinch grey feathers, sky, tree no 1
lesser goldfinch orange head, pink feathers no 1

Table B.6: Mechanisms overview table after three rounds for birds

B.4. Results for birds round 4 87
B.4. Results for birds round 4
Class (requirements) Requirement Mechanism in | Mechanism Requirement Unnannotated
in image heatmap not in | notinimage images
heatmap
american_goldfinch (5) 48 (98%) 7 (14%) 41 (84%) 1(2%) 0
bufflehead (4) 48 (98%) 5(10%) 43 (88%) 1(2%) 0
downy_woodpecker (4) 50 (100%) 8 (16%) 42 (84%) 0 0
gila_woodpecker (4) 50 (100%) 3 (6%) 47 (94%) 0 0
hairy_woodpecker (5) 50 (100%) 4 (8%) 46 (92%) 0 0
hooded_merganser (3) 50 (100%) 6 (12%) 44 (88%) 0 0
lesser_goldfinch (5) 46 (94%) 3 (6%) 43 (88%) 3 (6%) 0
mandarin_duck (6) 47 (94%) 4 (8%) 43 (86%) 3 (6%) 0
monk_parakeet (3) 48 (98%) 5 (10%) 43 (88%) 1(2%) 0
pine_grosbeak (3) 47 (98%) 12 (25%) 35 (73%) 1(2%) 0
Table B.7: Requirements overview table after four rounds for birds
True label Predicted label Mechanism Req? Count
american goldfinch american goldfinch green background no 3
yellow breast, yellow belly, yellow back yes 2
yellow breast, yellow belly, yellow back, black wings | yes 2
yellow breast, yellow belly, tree no 2
yellow breast, yellow belly, black wings yes 2
white bottom, tree no 1
yellow back, tree, yellow crown no 1
tree, yellow crown, yellow back no 1
tree, yellow crown no 1
yellow crown, tree, white bottom no 1
yellow crown, green background, wing patch no 1
foot, tree, green background, yellow belly, black | no 1
crown
yellow belly, yellow breast, black crown no 1
green background, black crown no 1
yellow belly, yellow breast, foot no 1
green background, beak, eye no 1
snow, black wings, yellow belly, yellow breast, yellow | no 1
crown
green background, yellow back, black wings, green | no 1
belly, green breast
tree, sky no 1
green background, wing patch, tree no 1
green background, yellow breast, green belly, yellow | no 1
crown
black crown, black wings, green breast, tree no 1
foot, black wings, green breast, beak no 1
green belly, green breast, green background, tree no 1
foot no 1
green belly, green breast, eye no 1
green background, tree, wing patch no 1
black wings, green belly, green breast, wing patch no 1
green background, yellow back no 1
yellow belly, black wings, green background no 1
black wings, green background, wing patch no 1
sky, eye no 1
sky no 1
sky, yellow crown, green breast, green belly no 1
wing patch, green background no 1
yellow breast, yellow belly, sky no 1
yellow belly, yellow breast, sky no 1
pine grosbeak yellow breast, yellow belly, black wings yes 1
american goldfinch yellow breast, yellow belly, yellow crown, green | no 1
background
sky, white bottom no 1

Continued on next page

88 B. Results for Birds
continued from previous page
True label Predicted label Mechanism Req? Count
green background, wing patch, black wings, eye no 1
green background, yellow belly, yellow breast no 1
bufflehead bufflehead water no 3
white feathers, water no 3
top wing, water no 2
water, neck no 2
hooded merganser white spot, rainbow crest yes 2
bufflehead white spot, rainbow crest yes 2
hooded merganser water, eye, neck no 1
water, grey feathers, rainbow crest, white spot no 1
bufflehead water, white feathers, top wing no 1
dark head, white spot, top wing, beak no 1
beak, white feathers, water no 1
hooded merganser water, white spot, grey feathers, neck no 1
bufflehead water, grey feathers no 1
water, black wings no 1
rainbow crest, water no 1
tree no 1
hooded merganser water, neck no 1
bufflehead eye, water, white feathers, black wings no 1
hooded merganser dark head, white spot, black wings, grey feathers, | no 1
neck, water
bufflehead neck, wing patch no 1
hooded merganser dark head, grey feathers, wing patch, neck no 1
neck, water no 1
bufflehead wing patch, neck, grey feathers no 1
rainbow crest, wing patch, water no 1
white feathers, tree no 1
white spot, rainbow crest, water no 1
hooded merganser water no 1
bufflehead water, neck, wing patch, white spot no 1
top wing, neck, rainbow crest, water no 1
dark head, beak, black wings, neck, water no 1
hooded merganser white spot, neck, water no 1
bufflehead wing patch, neck, water no 1
white spot, water no 1
hooded merganser neck, dark head, white spot, grey feathers no 1
bufflehead water, eye, grey feathers no 1
hairy woodpecker neck, grey feathers, water no 1
bufflehead rainbow crest, white feathers, water no 1
black wings, grey feathers yes 1
wing patch, water no 1
rainbow crest, water, white feathers, white spot no 1
downy woodpecker downy woodpecker black white wing patches yes 5
tree no 4
tree, black white wing patches no 4
black white wing patches, tree no 4
black white wing patches, white breast yes 3
red crown, tree no 2
sky no 2
black white wing patches, sky no 1
black white wing patches, white breast, tree no 1
tree, white breast, black white wing patches no 1
white breast, tree no 1
lesser goldfinch tree, black white wing patches, white breast no 1
downy woodpecker sky, black white wing patches no 1
tree, black white wing patches, white bottom no 1
hairy woodpecker tree, neck no 1
downy woodpecker white breast, white bottom, tree no 1
foot, tree no 1
hairy woodpecker white breast, black white wing patches, sky, tree no 1
downy woodpecker red crown, black white wing patches, tree no 1
black white wing patches, white breast, background | no 1
leaf
hairy woodpecker tree no 1

Continued on next page

B.4. Results for birds round 4

89

continued from previous page

True label Predicted label Mechanism Req? Count
downy woodpecker black white wing patches, white breast, white bot- | no 1
tom, tree
tree, sky no 1
tree, white breast, sky no 1
red crown, white breast no 1
sky, white breast, black white wing patches no 1
hairy woodpecker black white wing patches, sky, tree no 1
downy woodpecker white breast, sky no 1
tree, black white wing patches, white breast no 1
tree, white breast no 1
sky, black white wing patches, tree no 1
black white wing patches, tree, sky no 1
red crown, black white wing patches, sky no 1
gila woodpecker gila woodpecker sky, cactus no 3
green belly, sky no 1
green neck, red crown no 1
monk parakeet green belly, black white striped wings no 1
downy woodpecker black white striped wings, sky, green crown no 1
green crown, black white striped wings, tree no 1
downy woodpecker green neck, red crown, black white striped wings, | no 1
tree
american goldfinch sky, black white striped wings, green crown no 1
downy woodpecker tree, green belly no 1
lesser goldfinch green background no 1
gila woodpecker red crown, green breast, green background no 1
downy woodpecker red crown, black white striped wings, green back- | no 1
ground, tree, beak
tree, beak, black white striped wings, green belly, | no 1
green breast, green neck
sky, tree, red crown, green neck no 1
monk parakeet green neck, black white striped wings, green belly, | no 1
tree, sky
pine grosbeak water feeder, red crown no 1
gila woodpecker beak, green belly, green breast, green neck, sky no 1
green neck, black white striped wings, cactus, sky no 1
pine grosbeak red crown, green neck, water feeder, green back- | no 1
ground
gila woodpecker green crown, cactus, black white striped wings no 1
downy woodpecker black white striped wings yes 1
hairy woodpecker sky, green neck, red crown, black white striped wings | no 1
monk parakeet green neck, green belly, green breast, black white | yes 1
striped wings
gila woodpecker red crown, black white striped wings, green breast, | no 1
green belly
sky, green background, green breast, green neck, | no 1
black white striped wings
cactus, green breast, green crown no 1
sky, tree, green neck no 1
green breast, green crown no 1
downy woodpecker black white striped wings, sky no 1
gila woodpecker red crown, black white striped wings, sky, tree no 1
downy woodpecker tree, green neck no 1
american goldfinch green breast, green belly, green neck, green back- | no 1
ground
hairy woodpecker green belly, green breast, sky no 1
gila woodpecker black white striped wings, sky no 1
red crown, green neck, black white striped wings, | no 1
cactus
green crown, sky, green belly, cactus no 1
monk parakeet green belly, green breast no 1
lesser goldfinch tree no 1
hairy woodpecker black white striped wings yes 1
gila woodpecker cactus, red crown, black white striped wings, green | no 1
background
cactus, green belly, green breast, sky no 1

Continued on next page

90 B. Results for Birds
continued from previous page
True label Predicted label Mechanism Req? Count
red crown, cactus, black white striped wings, sky no 1
cactus, red crown, sky, black white striped wings no 1
green crown, black white striped wings, sky no 1
downy woodpecker tree, sky, green neck no 1
gila woodpecker cactus, black white striped wings, sky no 1
red crown, green neck, green breast no 1
hairy woodpecker tree, sky no 1
hairy woodpecker hairy woodpecker black and white wing patches, tree no 3
tree no 2
tree, red crown, black and white wing patches no 2
red crown, sky no 2
sky no 1
black wings, sky, throat stripe, beak no 1
monk parakeet tree, black wings no 1
downy woodpecker red crown, white breast, black wings no 1
hairy woodpecker red crown, black and white wing patches, sky, tree no 1
white breast, tree no 1
throat stripe, white breast, white belly no 1
white belly, tree, black and white wing patches no 1
hairy woodpecker throat stripe, sky, white back stripe no 1
downy woodpecker throat stripe, sky no 1
hairy woodpecker beak, tree, eye no 1
bufflehead white breast yes 1
hairy woodpecker beak, red crown, white back stripe, black wings, | no 1
green background
downy woodpecker eye, green background, black and white wing | no 1
patches
red crown, black and white wing patches, sky, tree no 1
hairy woodpecker green background, tree, black and white wing | no 1
patches
hairy woodpecker white breast yes 1
black wings, white breast yes 1
red crown, tree no 1
downy woodpecker tree, black and white wing patches, throat stripe no 1
hairy woodpecker white belly, white breast, red crown no 1
green background, tree, black and white wing | no 1
patches, red crown
eye, green background no 1
black wings, white breast, white belly no 1
downy woodpecker tree, black wings, sky no 1
black wings, white breast yes 1
hairy woodpecker black and white wing patches, green background, | no 1
tree
monk parakeet tree, red crown, black and white wing patches no 1
hairy woodpecker red crown, tree, black and white wing patches no 1
black and white wing patches, sky no 1
red crown, black and white wing patches, sky no 1
tree, red crown, white belly no 1
green background, sky no 1
tree, red crown, black and white wing patches, white | no 1
belly
tree, red crown no 1
black and white wing patches, red crown, tree no 1
green background, tree no 1
lesser goldfinch tree, red crown no 1
hairy woodpecker black and white wing patches, tree, throat stripe, red | no 1
crown
downy woodpecker throat stripe, white belly, tree no 1
hairy woodpecker tree, sky no 1
hooded merganser hooded merganser brown sides, eye no 2
eye, brown sides, water no 2
brown sides, water no 2
cinnamon crest yes 2
black crest with white spot yes 2
water, brown sides no 2

Continued on next page

B.4. Results for birds round 4

91

continued from previous page

True label Predicted label Mechanism Req? Count
brown sides yes 2
dark feather texture, eye no 1
black crest with white spot, eye, neck no 1
eye, neck, water, brown sides no 1
neck, water no 1
cinnamon crest, water, dark feather texture no 1
eye, dark feather texture no 1
brown sides, eye, water no 1
dark feather texture, water no 1
monk parakeet brown sides, eye no 1
bufflehead cinnamon crest, water, grey belly, dark feather tex- | no 1
ture
lesser goldfinch cinnamon crest, eye, dark feather texture, reed no 1
hooded merganser cinnamon crest, water, beak, neck no 1
black crest with white spot, eye, water no 1
cinnamon crest, water, dark feather texture, brown | no 1
sides
american goldfinch water, cinnamon crest, dark feather texture no 1
hooded merganser neck, brown sides no 1
water, dark feather texture, black crest with white | no 1
spot
cinnamon crest, water no 1
bufflehead brown sides, water no 1
bufflehead cinnamon crest, water no 1
hooded merganser brown sides, neck no 1
cinnamon crest, neck, water no 1
water, dark feather texture, cinnamon crest no 1
cinnamon crest, neck, brown sides no 1
cinnamon crest, dark feather texture, water no 1
pine grosbeak cinnamon crest, brown sides no 1
hooded merganser black crest with white spot, eye, brown sides, water | no 1
cinnamon crest, eye, dark feather texture no 1
black crest with white spot, neck, brown sides, water | no 1
bufflehead cinnamon crest, snow no 1
hooded merganser grey belly, cinnamon crest, water no 1
gila woodpecker cinnamon crest, dark feather texture no 1
hooded merganser black crest with white spot, eye no 1
water no 1
neck, black crest with white spot, water no 1
bufflehead water, cinnamon crest no 1
lesser goldfinch lesser goldfinch green background no 3
green background, lighter wing patches no 2
yellow belly, tree no 1
flower, neck no 1
beak, sky, yellow breast no 1
beak, sky no 1
black wings, lighter wing patches, beak, green back- | no 1
ground
american goldfinch black wings, yellow belly, sky no 1
lesser goldfinch yellow back, yellow belly, lighter wing patches, green | no 1
background
lighter wing patches, tree no 1
black crown, yellow belly, neck accent no 1
yellow belly, yellow breast, black crown no 1
green background, yellow back, neck, tree no 1
black crown, yellow breast, yellow belly, yellow back | yes 1
green background, yellow breast, yellow belly no 1
yellow belly, yellow breast, tree, beak no 1
yellow belly, yellow breast, green background, neck | no 1
american goldfinch yellow belly, tree, sky no 1
lesser goldfinch tree no 1
neck, neck accent, sky no 1
neck, yellow back, yellow belly no 1
black wings, lighter wing patches yes 1
sky no 1

Continued on next page

92 B. Results for Birds
continued from previous page
True label Predicted label Mechanism Req? Count
black wings, lighter wing patches, yellow back, yel- | no 1
low belly, sky
lighter wing patches, black wings, sky, yellow belly, | no 1
yellow breast
neck, black wings, yellow belly no 1
darker wing patches, green background no 1
sky, black wings, lighter wing patches no 1
american goldfinch green background, tree no 1
flower, tree, black back no 1
lesser goldfinch yellow belly no 1
darker wing patches, sky, lighter wing patches, pale | no 1
green feathers
sky, lighter wing patches, tree no 1
sky, green background no 1
beak, black back, green background no 1
yellow back, yellow belly, green background no 1
darker wing patches, lighter wing patches, green | no 1
background
sky, yellow breast, yellow belly no 1
black crown, green background, yellow breast no 1
darker wing patches, lighter wing patches, sky no 1
hairy woodpecker yellow breast, yellow belly, yellow back yes 1
lesser goldfinch sky, tree, darker wing patches, lighter wing patches | no 1
neck, lighter wing patches, pale green feathers no 1
mandarin duck mandarin duck rainbow crest yes 3
golden sides, long brown neck feathers no 2
rainbow crest, golden sides, brown feathers, water no 1
brown feathers, golden sides, water no 1
lesser goldfinch golden sides, water, soil, background ornament no 1
mandarin duck rainbow crest, brown feathers, neck no 1
american goldfinch golden sides, brown feathers, neck, water no 1
mandarin duck neck, golden sides, water, red beak no 1
rainbow crest, neck, red beak, water no 1
hooded merganser neck, water, white stripe below eye no 1
mandarin duck rainbow crest, soil, brown feathers no 1
red beak, golden sides, water no 1
rainbow crest, golden sides, brown feathers, water, | no 1
soil
rainbow crest, neck, dotted bottom no 1
lesser goldfinch grey feathers, soil, dotted bottom no 1
mandarin duck golden sides, rainbow crest, water no 1
golden sides, brown feathers, long brown neck | no 1
feathers
rainbow crest, dotted bottom, brown feathers, water, | no 1
golden sides, long brown neck feathers
rainbow crest, long brown neck feathers, neck no 1
gila woodpecker grey feathers, brown feathers, snow no 1
mandarin duck rainbow crest, neck, golden sides, water no 1
pine grosbeak long brown neck feathers, red beak, water, neck no 1
mandarin duck brown feathers, rainbow crest, golden sides no 1
hooded merganser golden sides, water no 1
mandarin duck rainbow crest, golden sides, white stripe below eye, | no 1
neck, long brown neck feathers
rainbow crest, golden sides, grey feathers no 1
hooded merganser water, rainbow crest, golden sides no 1
mandarin duck long brown neck feathers, water, neck no 1
water, rainbow crest no 1
downy woodpecker rainbow crest, grey feathers, water no 1
mandarin duck brown feathers, rainbow crest no 1
long brown neck feathers, dotted bottom, golden | no 1
sides
lesser goldfinch water no 1
mandarin duck golden sides, water no 1
water, golden sides no 1
hooded merganser water no 1

Continued on next page

B.4. Results for birds round 4

93

continued from previous page

True label Predicted label Mechanism Req? Count
mandarin duck golden sides yes 1
rainbow crest, water no 1
rainbow crest, golden sides no 1
golden sides, long brown neck feathers, beak no 1
lesser goldfinch long brown neck feathers, soil, green background no 1
mandarin duck water no 1
golden sides, long brown neck feathers, soil no 1
golden sides, long brown neck feathers, rainbow | no 1
crest, neck
monk parakeet monk parakeet green feathers, light breast, light crown yes 4
sky, tree no 3
green background, green feathers no 2
green feathers, light crown, sky, tree no 1
green feathers yes 1
fence, light crown, sky, green feathers no 1
blue wingtips, beak, green feathers, tree no 1
green feathers, tree, sky no 1
sky, fence, beak no 1
sky, tree, green feathers, light breast no 1
light breast, tree no 1
green feathers, tree no 1
sand no 1
sky, green feathers, light crown no 1
beak, light throat, light crown, sky no 1
light crown, light throat, sky, green feathers no 1
american goldfinch light breast, green feathers, tree no 1
monk parakeet light throat, urban objects no 1
blue wingtips, green background no 1
beak, green feathers, green background no 1
beak, blue wingtips no 1
green background no 1
sky no 1
light breast, green feathers no 1
light breast, blue wingtips no 1
beak, light breast, light crown no 1
sky, light breast no 1
sky, green feathers no 1
light crown, light breast, green feathers, sky no 1
tree, sky, green feathers no 1
american goldfinch green background no 1
monk parakeet beak, light crown, green background, green feathers | no 1
tree, light breast, beak no 1
green feathers, light breast, sky no 1
american goldfinch sky, tree, light breast no 1
monk parakeet sky, beak, light breast, green feathers no 1
beak, urban objects, green feathers, light breast, sky | no 1
light crown, sky, light breast, beak, green feathers no 1
beak, green background, light breast no 1
green feathers, tree, light breast no 1
human, green feathers no 1
american goldfinch sky, tree no 1
pine grosbeak pine grosbeak pink feathers, grey wings yes 4
grey feathers, orange head yes 4
american goldfinch grey feathers, orange head yes 2
pine grosbeak pink feathers, grey wings, snow no 2
pink feathers, snow, cheek no 1
american goldfinch orange head, tree, green background no 1
grey feathers, orange head, green background no 1
pine grosbeak grey feathers, orange head, sky no 1
grey feathers, orange head, tree no 1
monk parakeet sky, snow, tree, wing patches no 1
pine grosbeak wing patches, snow, grey feathers no 1
wing patches, pink feathers, sky no 1
grey feathers, heavy chest no 1
monk parakeet grey feathers, tree no 1

Continued on next page

94 B. Results for Birds
continued from previous page
True label Predicted label Mechanism Req? Count
pine grosbeak snow, pink feathers no 1
sky, pink feathers no 1
wing patches, tree, green background no 1
grey feathers, orange head, snow no 1
heavy chest, tree, wing patches no 1
grey wings, wing patches, pink feathers no 1
tree, pink feathers, eye, flower no 1
mandarin duck grey feathers, orange head yes 1
pine grosbeak sky, heavy chest no 1
lesser goldfinch grey feathers, grey wings no 1
pine grosbeak grey wings, tree no 1
monk parakeet sky, tree no 1
american goldfinch tree, heavy chest, grey wings no 1
yellow feathers, grey feathers, green background no 1
bufflehead grey feathers, orange head, sky no 1
american goldfinch grey feathers, sky, tree no 1
lesser goldfinch orange head, pink feathers no 1
monk parakeet tree, orange head, grey feathers, sky no 1
pine grosbeak snow, pink feathers, wing patches no 1
snow, tree, pink feathers, grey wings no 1
grey wings, pink feathers, tree no 1
sky, grey feathers, orange head no 1
downy woodpecker snow, tree, orange head, grey feathers no 1
pine grosbeak snow, orange head, grey feathers no 1
lesser goldfinch grey feathers, orange head yes 1

Table B.8: Mechanisms overview table after four rounds for birds

Proposed Improvements for Brickroutine

Suggested improvement on existing functionalities:

» Make MongoDB save the annotated images in one operation asynchronously instead of doing a
write per image.

» When image annotations are reset, either on an individual level or all at once, also undo the ’entire
concepts fields.

+ Clicking on a row with a remark now shows the heatmap, while it makes more sense to show the
original image.

95

Readme from Code Repository

Birckroutine is a system to debug and explain computer vision models by iteratively(routinely) finding
the human-comprehensible concepts (bricks) that helped an Al-algorithm make a certain classification.
The system uses RabbitMQ as a message broker and is build with docker containers

Running
Prerequisites: Docker Docker Compose (For linux, comes included with Docker Desktop for Mac and
Windows)

* For the first time, simply run in rootfolder:

docker-compose -f ./docker-compose.yml up
+ To rebuild the images

docker-compose -f ./docker-compose.yml up --build
» To select a specific set of services

docker-compose -f ./docker-compose.yml up brickroutine-api brickroutine-
ul rabbitmg --build

» To shut down the docker containers
docker-compose -f ./docker-compose.yml down
» To remove all docker images when you don’t use it anymore, simply run

docker system prune -a

Developing
docker-compose -f ./docker-compose.debug.yml up

Or, as recommended, install the docker extension in vscode. In order to easily debug python code in
brickroutine-heatmaps and the API in brickroutine-webapi, | stronly recommend using the development
container files and setting up a development container. In that way, you don’t have to install all the
dotnet and python dependencies on your system and can easily remove the containers when done.
When in the development container environment, just debug as you would usally and the containers
are attached to the docker network (brickroutine_network). The Frontend (brickroutine-ui) runs inside
a node container and refreshes automatically when you change a .tsx file.

97

%22https://code.visualstudio.com/docs/remote/containers%22

98 D. Readme from Code Repository

Unix/Windows

For Unix (mac/linux) Just use docker and docker-compose from command line or vscode extension. For
windows, do use Docker desktop with WSL 2 backend and run clone the project folder inisde a mounted
WSL directory and not in a Windows directory to leverage file system compatibility (when developing
the Ul) as per best practices described https://code.visualstudio.com/docs/containers/
overview here.

Using the system
There is a folder Test_Dataset in the root of this repo, which can be uploaded on the pane ‘Dataset’. It
contains of 300 images and a accompanying csv file

Credentials

RabbitMQ

guest/guest ### Azure blob storage This system uses azure blob storage to upload and retrieve images
Read more. For just experimental use, the free tier is sufuccient. TU Delft students and employees
are eligible for cloud credits. In order to use this, make an azure account (TU delft email can be used)
and create a blob store resource. The connection string can be entered in the appsettings.json of
Brickroutine.WebAPI. Update the docker-compose.yml file with the appropriate link.

https://code.visualstudio.com/docs/containers/overview
https://code.visualstudio.com/docs/containers/overview
https://code.visualstudio.com/docs/containers/overview
%22https://azure.microsoft.com/nl-nl/services/storage/blobs%22

(1]
(2]
(3]
[4]

[5]

[6]

[7]
(8]
[9]

[10]

(1]

[12]
[13]
[14]
[15]
[16]
[17]
[18]

[19]

Bibliography

Yali Amit, Pedro Felzenszwalb, and Ross Girshick. “Object detection”. In: Computer Vision: A
Reference Guide (2020), pp. 1-9.

Agathe Balayn et al. “What do You Mean? Interpreting Image Classification with Crowdsourced
Concept Extraction and Analysis”. In: The World Wide Web Conference. ACM. 2021, to appear.

Solon Barocas and Andrew D Selbst. “Big data’s disparate impact”. In: Calif. L. Rev. 104 (2016),
p. 671.

Kent Beck. Extreme programming explained: embrace change. addison-wesley professional,
2000.

Eric Breck et al. “The ML test score: A rubric for ML production readiness and technical debt
reduction”. In: 2017 IEEE International Conference on Big Data (Big Data). |EEE. 2017, pp. 1123—
1132.

Joy Buolamwini and Timnit Gebru. “Gender shades: Intersectional accuracy disparities in com-
mercial gender classification”. In: Conference on fairness, accountability and transparency. PMLR.
2018, pp. 77-91.

Aylin Caliskan, Joanna J Bryson, and Arvind Narayanan. “Semantics derived automatically from
language corpora contain human-like biases”. In: Science 356.6334 (2017), pp. 183—-186.

Rick Cattell. “Scalable SQL and NoSQL data stores”. In: Acm Sigmod Record 39.4 (2011), pp. 12—
27.

Alexandra Chouldechova and Aaron Roth. “The frontiers of fairness in machine learning”. In:
arXiv preprint arXiv:1810.08810 (2018).

IEEE Standards Coordinating Committee et al. “IEEE standard glossary of software engineering
terminology (IEEE Std 610.12-1990). Los Alamitos”. In: CA: IEEE Computer Society 169 (1990),
p. 132.

Lorenzo De Lauretis. “From monolithic architecture to microservices architecture”. In: 2019 IEEE
International Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE. 2019,
pp. 93-96.

Finale Doshi-Velez and Been Kim. “Towards a rigorous science of interpretable machine learn-
ing”. In: arXiv preprint arXiv:1702.08608 (2017).

Warren J von Eschenbach. “Transparency and the Black Box Problem: Why We Do Not Trust
Al”. In: Philosophy & Technology (2021), pp. 1-16.

Amirata Ghorbani et al. “Towards automatic concept-based explanations”. In: Advances in Neural
Information Processing Systems 32 (2019).

Shivakumar R Goniwada. “Event-Driven Architecture”. In: Cloud Native Architecture and Design.
Springer, 2022, pp. 241-294.

Kinnary Jangla. Accelerating Development Velocity Using Docker: Docker Across Microservices.
Apress, 2018.

David Jaramillo, Duy V Nguyen, and Robert Smart. “Leveraging microservices architecture by
using Docker technology”. In: SoutheastCon 2016. IEEE. 2016, pp. 1-5.

Daniel Kang et al. “Model assertions for debugging machine learning”. In: NeurlPS MLSys Work-
shop. 2018.

Josua Krause, Adam Perer, and Kenney Ng. “Interacting with predictions: Visual inspection of
black-box machine learning models”. In: Proceedings of the 2016 CHI conference on human
factors in computing systems. 2016, pp. 5686—-5697.

99

100

Bibliography

[20]

[21]
[22]
[23]
[24]

[25]

[26]
[27]

[28]

[29]
[30]
[31]
[32]

[33]

Gunnar Kudrjavets, Nachiappan Nagappan, and Thomas Ball. “Assessing the relationship be-
tween software assertions and faults: An empirical investigation”. In: 2006 17th International
Symposium on Software Reliability Engineering. IEEE. 2006, pp. 204-212.

Robert C Martin, James Newkirk, and Robert S Koss. Agile software development: principles,
patterns, and practices. Vol. 2. Prentice Hall Upper Saddle River, NJ, 2003.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT press, 2018.

Robert Munro Monarch. Human-in-the-Loop Machine Learning: Active learning and annotation
for human-centered Al. Simon and Schuster, 2021.

Hugh Powell, Charles Ripper, and Cornell Lab. Bird ID skills: Field marks. Aug. 2015. URL:
https://www.allaboutbirds.org/news/bird-id-skills-field-marks/.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “"Why should i trust you?” Explaining
the predictions of any classifier”. In: Proceedings of the 22nd ACM SIGKDD international confer-
ence on knowledge discovery and data mining. 2016, pp. 1135-1144.

Matthew Richardson and Pedro Domingos. “Markov logic networks”. In: Machine learning 62.1-2
(2006), pp. 107-136.

David S. Rosenblum. “A practical approach to programming with assertions”. In: IEEE transac-
tions on Software Engineering 21.1 (1995), pp. 19-31.

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. “Deep inside convolutional networks:
Visualising image classification models and saliency maps”. In: arXiv preprint arXiv:1312.6034
(2013).

Christian Szegedy et al. “Rethinking the inception architecture for computer vision”. In: Proceed-
ings of the IEEE conference on computer vision and pattern recognition. 2016, pp. 2818-2826.

Xingjiao Wu et al. “A Survey of Human-in-the-loop for Machine Learning”. In: arXiv preprint
arXiv:2108.00941 (2021).

Rashid Zafar et al. “Big data: the NoSQL and RDBMS review”. In: 2016 International Conference
on Information and Communication Technology (ICICTM). IEEE. 2016, pp. 120-126.

Jie M Zhang et al. “Machine learning testing: Survey, landscapes and horizons”. In: IEEE Trans-
actions on Software Engineering (2020).

Yu Zhang et al. “A survey on neural network interpretability”. In: [EEE Transactions on Emerging
Topics in Computational Intelligence (2021).

https://www.allaboutbirds.org/news/bird-id-skills-field-marks/

	Introduction
	Use Cases
	Contributions

	Background
	Interpretability
	General Debugging
	Debugging ML systems
	Fairness
	System Architectures

	The Brickroutine System
	General Objective
	User Stories
	Starting Point
	Heatmap Extraction
	Workflows Specifications
	Workflow 0: Requirement Elicitation
	Workflow 1: Requirement Validation Annotation
	Workflow 2: Mechanism Validation Annotation
	Workflow 3: Adding new requirements
	Workflow 4: Requirements Correction
	Workflow 5: The Overview

	Process Overview

	System Design
	Architectural Requirements
	Backbone: Docker
	User Interface: React
	API: .NET
	Storage: MongoDB
	Data Monitoring: Mongo Express
	Communication: RabbitMQ
	Heatmap Extraction: Python
	Comparison with Existing Solutions

	Evaluation: Informativeness
	Goals
	Experimental Setup
	Approach
	Metrics

	Experimental Results
	First round
	Second round
	Third round
	Fourth round

	Overview
	Discussion

	Evaluation: Validity
	Goals
	Experimental Setup
	Approach
	Metrics

	Experimental Results
	First round
	Second round
	Third round
	Fourth round

	Overview
	Discussion

	Discussion
	Requirement-first vs Concept-first
	Multiple Requirements Annotation
	Differences Between the Experiments
	Iterative Approach
	Usability
	Future work

	Conclusion
	Results for sea creatures
	Results for sea creatures round 1
	Results for sea creatures round 2
	Results for sea creatures round 3
	Results for sea creatures round 4

	Results for Birds
	Results for birds round 1
	Results for birds round 2
	Results for birds round 3
	Results for birds round 4

	Proposed Improvements for Brickroutine
	Readme from Code Repository

