
CodeGPT on XTC
Compressing a CodeGPT Model Using Hybrid Layer Reduction

and Extreme Quantisation through Knowledge Distillation

Aral de Moor

Supervisors: Arie van Deursen, Maliheh Izadi, Ali Al-Kaswan

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Aral de Moor
Final project course: CSE3000 Research Project
Thesis committee: prof. dr. Arie van Deursen, dr. Maliheh Izadi, ir. Ali Al-Kaswan

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Large language models are powerful because of
their state-of-the-art language processing abilities.
But, they come at the cost of being extremely
resource-intensive, and are steadily growing in size.
As a result, compressing such models for resource-
constrained devices is an active and promising re-
search area. In spite of their current popular-
ity, many novel compression techniques lack im-
plementation for GPT models. We apply the
XTC pipeline, consisting of layer-reduction and
quantisation through knowledge distillation, to a
CodeGPT generative model. The resulting mod-
els are evaluated on the CodeXGLUE line-level
code-completion benchmark. Based on this, we
demonstrate that (1) XTC can be adapted to GPT-
like models, translating many of the findings of the
original study; (2) a 6-layer reduction with 1-bit
weight and 8-bit activation quantisation is able to
reduce model size 15×, in addition to almost dou-
bling inference speed, with minimal performance
degradation. The resulting compressed models
show promise for use in local code generation. By
showing that a novel compression technique can be
adapted to GPT-like models, we hope to further in-
spire research in this field.

1 Introduction
Large Language Models are used increasingly often in lan-
guage processing tasks due to their superior understanding
[3], and their ability to be fine-tuned to a wide array of down-
stream applications. However, with their high language un-
derstanding comes the cost of high resource requirements.
Furthermore, as language models have been rapidly growing
in size [16], they become prohibitively expensive to train and
run.

Auto-completion in IDEs can be compared to having a re-
liable personal assistant by your side as you code, and as such
is among the most prominent features in IDEs [1]. Tools such
as Github Copilot and Kite take this pair-programmer concept
further with the use of generative language models, which
are able to provide more than merely rule-based suggestions.
However, such online-hosted subscriptions raise concerns re-
garding property infringement, and post a paywall on a model
that is trained on public data.

Compressing large language models (LLMs) is thus an ac-
tive area of research. A few notable examples include Tiny-
BERT, a 4-layer reduced model that is 7.5× smaller, 9.5×
faster on inference, and maintains 96.8% of its original ac-
curacy [6]; and a 1-bit weight quantised XTC-BERT with
32× smaller size maintaining 99.4% accuracy [15]. However,
many novel compression techniques lack implementation for
generative models. Such a compressed model could be used
for inference locally, addressing the issues concerns raised by
online subscriptions. This leads to our research question:

How effective are hybrid in-training knowledge distilla-
tion, layer reduction, and quantisation techniques for com-
pressing a CodeGPT generative model?

This work applies the state-of-the-art XTC [15] com-
pression pipeline for general-language BERT models to a
programming-language CodeGPT model [7]. This entails
two steps of knowledge distillation: a layer-reduction, fol-
lowed by extreme quantisation. To investigate the effect of
each step, we compress three models: using 1-bit weight and
8-bit activation quantisation; using 6-layer-reduction; and a
hybrid combination of both.

We evaluate the compressed models’ accuracy on the
CodeXGLUE Code-Completion task [7]. To determine their
suitability for resource-limited devices, we study their disk
usage, size in memory, and inference speed. Furthermore,
we place our results in context with other novel compression
techniques adapted to GPT in our research group [8, 12, 13].

Our evaluation reveals that the hybrid XTC pipeline can
compress a CodeGPT model by 15×, while maintaining
83.7% of its original accuracy. Additionally, we observe that
6-layer-reduction results in a considerable inference speedup,
as half of the computationally-expensive self-attention layers
are removed. Moreover, we note that extreme 1-bit quantisa-
tion can reduce model size by more than ten-fold.

Our contributions are as follows. Firstly, we demonstrate
that XTC can be adapted to GPT-like models, yielding im-
pressive compression results, and translating many of the
findings of the original study. Furthermore, we find that while
XTC results in the largest CodeGPT size reduction, a hybrid
of layer-reduction through knowledge distillation, combined
with post-training quantisation of [13] may significantly re-
duce training time for an equivalent model.

2 Background and Related Works
This section provides background knowledge on Transformer
models, the GPT architecture in particular. We further men-
tion the CodeXGLUE benchmark and its CodeGPT baseline
model. Lastly, we detail typical compression techniques for
such Large Language Models (LLMs), and the XTC com-
pression pipeline adapted in this paper.

2.1 Transformer Models
Transformer models [14] are a type of deep learning model
designed for natural language processing (NLP) tasks. Its
main innovation, the self-attention mechanism, efficiently
captures long-range dependencies between tokens of its in-
put sequence, which can be difficult with traditional recurrent
or convolutional neural networks [14]. This allows them to
reach state-of-the-art results on NLP tasks such as generat-
ing text and translating language [4, 9]. Over the last few
years, the parameter count of these models has been growing
exponentially [16], to improve their language understanding
ability.

GPT (Generative Pre-trained Transformer) [9] refers to a
family of LLMs based on the transformer architecture. Their
causal language modeling objective teaches them to predict
the next word in a sequence. They are pre-trained on a large
dataset of text, at which point they are able to generate novel
human-like text. This pre-trained transformer excels on gen-
eral tasks, and can be fine-tuned to a wide array of specific
generative inference tasks, such as code completion.



BERT (Bidirectional Encoder Representations from Trans-
formers) [4] models are similarly pre-trained on a large cor-
pus of text. But, unlike GPT models, which take into account
only previous tokens to generate the next, their bidirectional
approach allows them to pay attention to both the left and
right context of a token. This makes them suited for NLP
tasks such text classification or question answering.

2.2 CodeXGLUE Benchmark
CodeXGLUE (General Language Understanding Evaluation
benchmark for Code) consists of a collection of code intel-
ligence tasks and a platform for model evaluation and com-
parison [7]. It aims to be a programming-language equiva-
lent of the widespread GLUE natural-language benchmark.
In particular, we use the line-level Code-Completion task as
our accuracy metric, scoring predictions on the Exact Match
and Edit Similarity metrics.

Lu et al. [7] further provide CodeGPT1 as a baseline model
for their Code Completion task. This model has the same
12-layer architecture and training objective of GPT-2, but
is pre-trained on the Python corpora from the CodeSearch-
Net dataset [5]. This gives it a general understanding of the
Python programming language.

2.3 Compressing LLMs
As the parameter count of LLMs has been growing steadily
[16], reducing their size through means of compression is an
active research area. This study combines the following com-
pression techniques in a hybrid setting:

• Knowledge Distillation: Training a smaller student
model from the outputs of a larger teacher model. This
can be applied during the pre-training [8, 10] or fine-
tuning [15] stages, in conjunction with another compres-
sion method applied to the student.

• Layer Reduction: Removing whole hidden layers from
the neural network, while maintaining the network’s di-
mension. This falls under the pruning category of re-
moving unnecessary parameters of a LLM. Layer reduc-
tion in this context, however, directly targets only the
decoder layers containing the self-attention mechanism,
which is the most expensive operation [2] in process-
ing input sequences. Existing layer-reduced models in-
clude the 6-layer-reduced TinyBERT [6], and the 6-layer
XTC-BERT [15], both maintaining the accuracy of the
original 12-layer model.

• Quantisation: Mapping full-precision weights to low-
bit ones, e.g. FP32 to INT8. When moving from 32 to
8 bits, disk usage decreases by a factor of 4, while the
computational cost for matrix multiplication decreases
by a factor of 16 [2]. This technique can be broadly or-
ganised into two classes. In-training approaches such
as [15] refer to performing quantisation operations dur-
ing training, and manage up to a 32× reduction in size.
Post-training approaches, such as [2], directly convert
a pre-trained floating-point network into a fixed-point
one, yielding up to a 8× size reduction. The latter of

1https://huggingface.co/microsoft/CodeGPT-small-py

these two requires only a few calibration passes through
the model, however, allowing for significant compres-
sion without taking time to re-train.

2.4 XTC Pipeline
The eXTreme Compression (XTC) pipeline proposed by Wu
et al. [15] combines the aforementioned techniques to cre-
ate a ’simple yet effective’ compression method. They find
that 1-bit quantisation with a 5-layer reduction is able to re-
duce disk usage by 50×, resulting in state-of-the-art results
on GLUE tasks for a BERT-like model [15]. As a point for
future research, they pose how their findings may translate to
GPT-like models, which is addressed in this study.

3 Methodology
We adapt the XTC pipeline published under the DeepSpeed
package 2. Our baseline model is compressed through a 6-
layer reduction, followed by 1-bit weight and 8-bit activation
quantisation. This consists of the following two knowledge
distillation steps.

1. Lightweight Layer Reduction. Select a subset of the
fine-tuned teacher weights by initialising the student
model with every other layer of the teacher model. We
select every other layer as this is shown to perform better
than students initialised with the bottom or top half lay-
ers in [15]. So, the six-layer model is initialised from the
l-layer of the baseline model with l ∈ {1, 3, 5, 7, 9, 11}

2. Low-Bit Quantisation. On the layer-reduced model,
apply a quantisation-aware knowledge distillation with
the full model as teacher. Following the XTC speci-
fication, we use a one-/eight-bit quantiser to compress
model weights/activations on a forward pass, and use
STE for passing gradients in the backward pass.

We note our implementation differs than that for BERT
models. For DeepSpeed’s compression library to accommo-
date GPT models, we convert the Conv1D layers to function-
ally equivalent Linear layers by transposing their weights.

We further make modifications to the original XTC training
pipeline. Due to limited computational resources, we limit
the number of epochs in each knowledge distillation from 18
to 1. To accommodate this, we increase the learning rate from
5e−5 to 5e−4, and reduce the number of warm-up epochs
from 1 to 0.2.

4 Experimental Setup
To assess the effectiveness of CodeGPT on XTC, we first
evaluate the model on the Code-Completion task it is trained
on. Then, we study its size, memory usage, and inference
time, on both CPU and GPU. Lastly, we compare our com-
pressed model to other compression techniques adapted to
CodeGPT in our research group [8, 12, 13], specifically those
discussed for BERT models in [2, 10, 11].

2https://pypi.org/project/deepspeed/



4.1 Research Questions
In the context of this study, we formulate three research ques-
tions (RQ):

RQ 1 How does CodeGPT on XTC affect its accuracy on the
CodeXGLUE line-level Code Completion task? We
first set a baseline model fine-tuned on the Code Com-
pletion task. We then adapt XTC for GPT-like mod-
els and create three compressed models: a 6-layer-
reduced; a 1-bit weight and 8-bit activation quantised;
and, a hybrid model combining both methods. The ac-
curacy of the baseline and compressed models is eval-
uated on the Code Completion task.

RQ 2 How CodeGPT on XTC affect its disk size, CPU/GPU
memory usage, and CPU/GPU inference times? Be-
sides evaluating the accuracy of the compressed mod-
els, we are also interested in their efficiency. We study
how layer-reduction and quantisation affect the afore-
mentioned memory metrics, by running CPU/GPU in-
ference on the same Code Completion task.

RQ 3 How does CodeGPT on XTC compare to other com-
pression techniques, in terms of training time, accu-
racy, and efficiency? Given the models at different
levels of compression, we place CodeGPT on XTC in
context with other techniques studied in the research
group [8, 12, 13].

4.2 Datasets
Given the CodeGPT baseline provided by CodeXGLUE [7],
we further fine-tune the model on the entire PY1503 Code
Completion dataset provided by CodeXGLUE. To test the
model, we augment the token-level Code Completion dataset
for line-level completion by simply stripping the last line
from each input sequence. For our evaluation, we use a 1000-
sample subset of the test set.

4.3 Evaluation Metrics
We evaluate the resulting models on the line-level Code-
Completion task of the CodeXGLUE benchmark, where the
quality of the generated code is measured through Exact
Match accuracy (EM) and Levenshtein Edit Similarity (ES).
EM accuracy is given as the percentage of perfect responses
generated by the model. ES is a measure of how many sin-
gle character edits are required to transform one string into
another, which should correlate with the effort it takes for a
developer to correct the generated code.

We further study the models’ disk size, CPU/GPU mem-
ory usage, and CPU/GPU inference speed during generation.
This should demonstrate how well the compression-related
findings of [15] translate to a GPT-like model.

4.4 Baseline
We, and our research group, create a baseline model for com-
pression as follows. Given the CodeXGLUE [7] CodeGPT4

model pre-trained on the Python corpora from the Code-
SearchNet dataset [5], we fine-tune it to the PY150 Code

3https://huggingface.co/datasets/0n1xus/codexglue
4https://huggingface.co/microsoft/CodeGPT-small-py

Table 1: Summary of baseline (base), 1-bit weight and 8-bit activa-
tion quantised (1W8A), 6-layer reduced (6L), and hybrid (1W8A6L)
compressed models. Given are their Size (MB), Compression Fac-
tor, Parameter Count, and CodeXGLUE line-level Code Completion
Scores: Edit Similarity (ES) and Exact Match Accuracy (EM).

Size Factor Params ES EM (%)

base 510.0 1.0× 124M 39.0 14.5
1W8A 42.6 12.0× 124M 37.2 14.1
6L 445.6 1.1× 82M 36.9 13.5
1W8A6L 32.3 15.8× 82M 33.9 10.9

Completion task5. This baseline model takes 510 MB of disk
space and scores 39.1 on the Edit Similarity metric and 14.5%
on Exact Match.

4.5 Configuration
Our experimental setup runs the compression training and
CodeXGLUE evaluation on a single NVIDIA A100 GPU
(40GB VRAM). However, to maintain consistency with the
research group, we evaluate inference-related metrics from
RQ 2 on a NVIDIA V100 (16GB VRAM) for GPU metrics,
and an Intel Xeon 2.20GHz (12.7GB RAM) for CPU metrics.

5 Results
Table 1 presents the resulting disk usage and Code Comple-
tion scores, as stipulated in RQ 1. The 1-bit weight and 8-bit
activation quantised (1W8A), 6-layer reduced (6L), and hy-
brid (1W8A6L) model scores on the Code Completion task
metrics, as well as the baseline (base) are given. Most no-
tably, it can be seen that quantisation yields the largest size
reduction: the 1W8A quantised model has a considerable
compression factor of 12×, with only −1.8 ES and −0.4%
EM reduction.

Table 2 summarises GPU size, GPU/CPU memory usage,
and CPU/GPU inference speed, addressing RQ 2. The GPU
size is essentially the size of the unpacked model in memory,
and was found to be similar to the memory size on the CPU.
In particular, it can be seen that the 6L layer-reduced model
takes only 340 MB in memory, compared to the baseline 510
MB, and has a significant inference speedup on both CPU and
GPU.

On our configuration specified in Section 4.5, training the
1W8A quantised model required 3h 45m, and the 6L-reduced
model took 2h 30m. The hybrid model is essentially a sum of
these two, taking around 6h 20m.

6 Discussion
Our results strongly show promise for adapting XTC to GPT-
like models. Despite the computational limitations in our
training setup, we are able to compress the baseline model
up to 15× its size while maintaining considerable accuracy.
Within the related literature of our research group [8, 12, 13],
this is the largest size reduction with acceptable accuracy.

5https://github.com/microsoft/CodeXGLUE/tree/main/Code-
Code/CodeCompletion-line



Table 2: Summary of Model Memory Size on GPU (MB),
GPU/CPU Memory Usage during Inference (MB), and CPU/GPU
Inference Speeds (samples/sec.).

GPU Size Memory Usage Inference
(MB) GPU CPU GPU CPU

base 509.6 4000 4870 16.6 0.36
1W8A 663.2 4000 4850 11.4 0.39
6L 341.8 4420 4770 26.9 0.68
1W8A6L 341.8 4380 4354 26.2 0.70

This implies that many of the findings of the original XTC
paper for BERT-like models [15] translate to GPT-like mod-
els.

6.1 Accuracy of Compressed Models
Table 1 shows that XTC is effective at compressing CodeGPT
models. The accuracy degrades only slightly, despite the sig-
nificantly shorter training epochs, which is discussed as a lim-
itation in Section 7. Quantising a model results in the largest
disk size reduction. This is because FP32 to 1-bit results in a
32× size reduction, and FP32 to 8-bit is still a considerable
4× reduction.

The 6L-reduction has a smaller compression factor, but by
targeting the decoder layers, allows for another considerable
size reduction for the 1W8A6L-hybrid model. Furthermore,
while the 6L model removes every other layer, its parameter
count does not halve as one would expect. This is due to the
token embedding layers remaining as-is, which are around
40M parameters. As the layer reduction is only applied to the
12 GPT decoder layers, this results in less of a size decrease
than [15].

6.2 Memory Usage and Efficiency of Compressed
Models

Table 2 shows that XTC can compress CodeGPT for
resource-constrained devices. Most notably, layer reduction
almost halves the space required by the model in memory, and
roughly doubles the inference speed. This is likely because it
removes half the decoder layers containing the self-attention
mechanism, which is the most expensive operation crucial for
efficient processing of long input sequences [2].

On the other hand, the unpacked 1W8A-quantised model
takes more space in memory than the baseline. Similarly,
quantising does not seem to have an inference speedup de-
spite fixed-point arithmetic being generally faster. We assume
that this is due to the compression library wrappers that ex-
pand the quantised weights into floats, in order to work with
our evaluation pipeline. This limitation relating to the com-
pression library itself is further discussed under Section 7.

6.3 Comparison with Concurrent Work
Lastly, we comment on the training time of the models, and
place their accuracy and efficiency in context with other com-
pression methods investigated by our research group. In this
context, XTC yields the largest size reduction with minimal
accuracy loss. Given its drastic size reduction, CodeGPT on

XTC shows potential for compression training on a capable
GPU, after which it can be used for inference on resource-
constrained devices.

However, it is evident that XTC requires a considerable
training time, especially for quantisation. Yet, post-training
quantisation techniques studied by Storti [13] manage to con-
vert weights to INT4 with higher accuracy in only a few cali-
bration data passes, taking no more than a few minutes. Given
that in-training knowledge distillation is relatively slow, for
faster compression of LLMs, future research could investi-
gate the hybrid effectiveness of XTC layer reduction through
knowledge distillation, combined with post-training quanti-
sation techniques in [12, 13].

7 Threats to Validity
Internal validity questions if other factors could have affected
the outcome. External validity refers to the generalisability of
our results. Construct validity relates to the adequacy of the
theoretical constructs and the use of appropriate evaluation
metrics.

7.1 Internal Validity
A key finding in [15] is that quantised models are often under-
trained, and thus longer training iterations with learning rate
decay are highly preferred for closing the accuracy gap of
extreme quantisation. The XTC pipeline calls for 18-epoch
knowledge distillation for both the layer reduction, and the
quantisation step. However, as mentioned under Section 3,
this is unfeasible in our setup due to computational limita-
tions. We maintain a linear learning rate decay like the origi-
nal pipeline, but opt for a 1-epoch knowledge distillation for
each step, and further modify the learning rate from 5e−5 to
5e−4 to accommodate this limitation. To investigate its ef-
fect, we consider the loss curves of each compressed model
in Figure 1.

Figure 1 shows a relatively stable loss curve for both
the 1W8A-quantised and 6L-reduced model. However, the
1W8A6L-hybrid model displays more volatile training. De-
spite the learning rate having decayed to almost 0 at the last
1000 steps, it makes a considerable loss improvement. This
indicates that the model is potentially under-trained. We re-
gard this sub-optimal compression result as a serious limita-
tion of our study. While our results show XTC applies well
to a CodeGPT model, future research should investigate the
potential benefit of more training epochs.

A further internal limitation of our study is that we have
only attempted the layer-reduction and quantisation config-
urations that worked best for BERT in [15]. Different opti-
mal configurations, that outperform our compressed models
may exist as the GPT architecture is not identical to BERT.
For instance, we select every odd when initialising our layer-
reduced model, but one could also select the even layers, or
the first six, etc. Furthermore, XTC uses symmetric activa-
tion quantisation, while related work such as [13] indicates
that asymmetric quantisation also shows promise. We sug-
gest that future research investigates a wider range of such
configurations.



Figure 1: Compressed Model Loss over Training Steps (1 Epoch).

Lastly, we faced issues with adapting the XTC compres-
sion library6 to GPT-like models. Namely, extreme quantisa-
tion (< 8-bit) is not supported by the underlying PyTorch7

model, and requires architecture modifications, converting
Conv1D to Linear layers. The compression library remedies
this with wrapper layers, which we believe to be the reason
why there is no memory reduction or inference speedup for
the quantised models in Table 2. We hope that our findings
inspire the continued development of such compression li-
braries and the eventual support of PyTorch for extreme quan-
tisation.

7.2 External Validity
The CodeGPT baseline provided to our research group does
not perform as well as in the CodeXGLUE paper where it
is introduced, scoring 39.0 ES and 14.5% ES, as opposed
to 69.7 ES and 39.1% EM [7]. We resorted to this sub-
optimal setup due to time limitations in our study. Given that
the starting accuracy is sub-optimal, it could be that a fully-
trained initial model suffers a larger accuracy loss through
XTC. Hence, for realistic generalisability to real-world use-
cases, we advise future research to use an optimal baseline
for compression.

7.3 Construct Validity
Given that the main application of code-generation models is
to assist developers, there is a threat that the CodeXGLUE
Code Completion metrics do not accurately represent the true
performance of the model in this use-case. There are sev-
eral equivalent ways to write programming statements, e.g.
ternary operators and if-else blocks. This could mean that
functionally identical code results in a lower ES or EM score.
While we are unaware of a benchmark task that directly tests
the functionality of generated code, it could be an avenue for
the future study of code-generation models. Alternatively,

6https://pypi.org/project/deepspeed/
7https://pypi.org/project/torch/

subsequent studies could investigate the effects of XTC on
several GPT models, fine-tuned to different tasks.

8 Conclusion
Our study highlights the remarkable potential of GPT-like
models on XTC, demonstrating its ability to compress code-
trained generative models while maintaining accuracy. Layer
reduction and quantization through knowledge distillation
can reduce the size of CodeGPT by 15×, in addition to in-
ference speedups. By affirming the effectiveness of XTC at
compressing CodeGPT models, we hope to have inspired fu-
ture advancements in this field.

We briefly summarise the points raised for future research.
Firstly, as CodeGPT on XTC shows significant promise, it
is worthwhile for subsequent studies to use the intended 18-
epoch knowledge distillation. Such studies can also investi-
gate the effect of different compression configurations, such
as asymmetric activation quantisation. Secondly, we note
the potential of post-training quantisation techniques such
as [13], and suggest a hybrid approach of in-training layer-
reduction and post-training quantisation. Lastly, we suggest
the generalisability of our findings is studied by applying
XTC to a variety of GPT models fine-tuned to different down-
stream tasks.

9 Responsible Research
We promote the reproducibility of our research by provid-
ing comprehensive details on our methodology under Sec-
tion 3 and our computational configuration under Section 4.5.
We further publish our implementation code on the TU Delft
AI-enabled Software Engineering Research Group’s GitHub
repository8, and our compressed models are available on their
HuggingFace Hub9.

Further, it is essential to acknowledge the potential eth-
ical implications of large language models. While auto-
completion tools powered by generative models can greatly
enhance developers’ productivity, they also raise concerns
about intellectual property infringement, code ownership, and
potential biases in the generated code. Throughout this study,
we use a modified dataset that is stripped of any identifiable
literals and strings.

10 Acknowledgements
This work was performed as the final thesis of the Bsc. Com-
puter Science and Engineering at TU Delft. We appreciate
the support and guidance of the project supervisors, as well
as the help from our research project group. We further thank
the – particularly computational – support of the University.

References
[1] Sven Amann, Sebastian Proksch, Sarah Nadi, and Mira

Mezini. A study of visual studio usage in practice. In
2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), vol-
ume 1, pages 124–134, 2016.

8https://github.com/AISE-TUDelft/LLM4CodeCompression
9https://huggingface.co/AISE-TUDelft



[2] Yelysei Bondarenko, Markus Nagel, and Tijmen
Blankevoort. Understanding and Overcoming the Chal-
lenges of Efficient Transformer Quantization. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 7947–7969,
Online and Punta Cana, Dominican Republic, Novem-
ber 2021. Association for Computational Linguistics.

[3] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

[4] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding, 2019.

[5] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. Codesearchnet
challenge: Evaluating the state of semantic code search,
2020.

[6] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao
Chen, Linlin Li, Fang Wang, and Qun Liu. Tiny-
BERT: Distilling BERT for Natural Language Under-
standing. In Findings of the Association for Compu-
tational Linguistics: EMNLP 2020, pages 4163–4174,
Online, November 2020. Association for Computational
Linguistics.

[7] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement, Dawn
Drain, Daxin Jiang, Duyu Tang, Ge Li, Lidong Zhou,
Linjun Shou, Long Zhou, Michele Tufano, Ming Gong,
Ming Zhou, Nan Duan, Neel Sundaresan, Shao Kun
Deng, Shengyu Fu, and Shujie Liu. Codexglue: A ma-
chine learning benchmark dataset for code understand-
ing and generation, 2021.

[8] Emil Malmsten. Distilling code-generation models for
local use, 2023.

[9] Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. Improving language understanding by
generative pre-training. 2018.

[10] Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter. October 2019.

[11] Haihao Shen, Ofir Zafrir, Bo Dong, Hengyu Meng,
Xinyu Ye, Zhe Wang, Yi Ding, Hanwen Chang, Guy
Boudoukh, and Moshe Wasserblat. Fast DistilBERT on
CPUs, December 2022. arXiv:2211.07715 [cs].

[12] Dan Sochirca. Compressing code generation language
models on cpus, 2023.

[13] Mauro Storti. Leveraging efficient transformer quanti-
zation for codegpt: A post-training analysis, 2023.

[14] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need,
2017.

[15] Xiaoxia Wu, Zhewei Yao, Minjia Zhang, Conglong Li,
and Yuxiong He. Extreme Compression for Pre-trained
Transformers Made Simple and Efficient, June 2022.
arXiv:2206.01859 [cs].

[16] Frank F. Xu, Uri Alon, Graham Neubig, and Vincent J.
Hellendoorn. A systematic evaluation of large language
models of code, 2022.


	Introduction
	Background and Related Works
	Transformer Models
	CodeXGLUE Benchmark
	Compressing LLMs
	XTC Pipeline

	Methodology
	Experimental Setup
	Research Questions
	Datasets
	Evaluation Metrics
	Baseline
	Configuration

	Results
	Discussion
	Accuracy of Compressed Models
	Memory Usage and Efficiency of Compressed Models
	Comparison with Concurrent Work

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity

	Conclusion
	Responsible Research
	Acknowledgements

