
<Improving the Random Walker algorithm for
interactive 3D medical image segmentation using

AI predictions>
<Modify the weight function to rely on an ensemble of

segmentation predictions>

< Bram Stellinga1>

Supervisor(s): <Klaus Hildebrandt1>, <Nicolas Chaves-de-Plaza1>

1EEMCS, Delft University of Technology, The Netherlands

No Institute Given

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: <Bram Stellinga>

Final project course: CSE3000 Research Project

Thesis committee:<Klaus Hildebrandt>,<Nicolas Chaves-de-Plaza>,<Thomas Abeel>

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Integrate predictions into random walker for interactive image segmentation 1

Abstract. The segmentation of anatomical structures in 3D medical
images is crucial for various applications in the field of medical imaging.
Fully automated methods often lack accuracy, while manual segmenting
requires much time and effort from a user. Due to this, Active Learning
approaches are being proposed to solve this by making the method in-
teractive. This is done by iteratively segmenting the image based on user
provided input, which can then be added to correct uncertain regions of
intermediate segmentation results. We propose a method to improve a
Random Walker (RW) algorithm that is used for interactive 3D medical
image segmentation, by integrating an ensemble of predicted segmenta-
tions obtained by a previously trained Bayesian Deep Neural Network
(BDNN). The predictions are used to improve the weight function used
by the RW to indicate the similarity of neighbouring voxels. We evalu-
ate our results by combining the weight function originally used by the
RW, with two custom approaches, Mean Predictions and Unanimous
Votes. Both are combined with the original RW’s weights in the form of
a weighted sum. Mean Predictions is based on only the mean of all pre-
dictions for each voxel, while Unanimous Votes only considers averages
of either exactly 1 or 0. Lastly, we will propose a method to combine the
original weight function with the mean predictions by summing together
the image intensities with the mean predictions while keeping the vari-
ance normalized. All results are evaluated using both synthetic data and
empirical data from a MICCAI dataset. Lastly, our method shows that
the Adaptive Alpha Approach outperforms all other methods including
the original RW in terms of average DICE Coeffients for the first two
iterations.

1 Introduction

In the field of medical imaging, the segmentation of anatomical structures in a
3D medical image plays a crucial role, e.g. by providing information about treat-
ment planning by locating organs or identifying tumor boundaries in radiation
therapy etc. Besides the various algorithms designed for 3D image segmentation,
state-of-the-art algorithms often still produce errors that need to be checked by
humans. Recent sources, such as [5], therefore propose methods that combine
Active Learning with 3D image segmentation.

Active learning is a type of machine learning where samples from unlabeled
data are selected based on the model’s uncertainty and iteratively queried to
a human to provide additional labels. More specifically, the method proposed
in [5] starts with some user input in the form of contours drawn around the
region of interest (ROI), for one or more 2D slices of the 3D input image. A
segmentation algorithm then segments the image based on these annotations.
The resulting segmentation is then evaluated by creating an uncertainty field
indicating the uncertainty of the classification per each voxel in the image, de-
pending on boundary energy, regional energy, smoothness and entropy energy.
Subsequently, a 2D slice with the most uncertainty is queried to the user, who
then aims to improve the previous segmentation result by drawing additional

2 Bram Stellinga

contours on the queried slice. After the segmentation is executed again with the
updated user input, the previous steps are repeated until the user is satisfied.
See figure 1 for an example.

(a) (b) (c)

(d) (e) (f)

Fig. 1: An example of the general pipeline, the first row shows the first iteration
and the second row the second. (a) The input image. (b) The contour(s) around
the ROI added by the user. (c) The resulting segmentation. (d) The query slice.
(e) The additional contours added by the user. (f) The new segmentation result.

In the previously mentioned paper, a Random Walker (RW) algorithm [2]
is used for image segmentation. One of its main advantages is that besides the
segmented image, it also provides the probabilities of each voxel belonging to a
label, which can directly be interpreted as the certainty of the classification and
thus be used to create the uncertainty field. The overall performance is mainly
evaluated as the amount of human interaction needed for the uncertainty to
drop below a preset threshold. Since the uncertainty values are directly based
on the result of the RW, improving the segmentation algorithm will result in a
decreasing amount of effort required from the user.

To both improve the accuracy of the segmentation algorithm and reduce the
required user effort, we came up with a method to integrate predefined AI-based
segmentation results with the Random Walker. For this, we used a network

Integrate predictions into random walker for interactive image segmentation 3

that has been trained beforehand, on a subset of a MICCAI1 dataset, and has
been used to generate an ensemble of predictions for the remaining test split of
this data. As the RW provides uncertainty values that are needed for finding
the query slice, we decided to not replace the algorithm but try to make it
benefit from these predictions. This is because the uncertainties that originate
from the predictions are not necessarily based on the image itself, but rather on
the standard deviation of the ensemble. The aim of this report is therefore to
answer the following question: how can the performance of the Random Walker
for interactive 3D image segmentation be improved by integrating an ensemble
of AI-based segmentation predictions?

To answer this research question, first [5] will be replicated and the results
will be evaluated similarly. Next, the pre-generated predictions will be integrated
by modifying the weight function used in the RW and make this depend on
these predictions. As this modification can be done in several ways, we will start
by defining two different methods. One where the weight function is directly
depending on the average of all predictions, and one where the average is scaled
to minimize the influence of non-unanimous votes. Both methods will then be
combined with the original weight function that is based on the image intensities.
This combination will be in the form of a weighted sum, for which different
weights will be evaluated. Finally, we will get to our main goal, which is to make
the ratio of this weighted sum adaptive, by making it depend on the similarity
of all predictions for each voxel.

The report will be presented in the following structure. First the methodology
used in this research will be further described and explained in section 2. After
this, the experimental setup is explained together with the results in 3. Next,
a reflection of the responsible research will be discussed in section 4. Finally,
the results are discussed in 5 followed by a conclusion and a discussion about
possibilities for future work in 6.

2 Methodology

Before explaining the RW algorithm and how we will use a set of pre-generated
segmentation predictions by a Deep Neural Network (DNN) to improve it, we
will define some notations. The spatial image domain will be represented by
Ω ⊂ R3 and therefore each voxel location will be represented by x ∈ Ω. It is
also important to note that we will only focus on grayscale images, and the
intensity function is defined as I(x) : Ω → R. Furthermore, we define our own
segmentation algorithm as a classifier represented by y(x) : Ω → {0, 1}, which
classifies each x ∈ Ω to either 1 or 0, which correspond to the ROI and the
background, respectively. Besides our own classifier, we will have an ensemble
of N predefined predictions P = {P1, P2, ..PN}, where each element is also a
segmentation classifier, that is ∀Pk ∈ P , Pk : Ω → {0, 1}. Lastly, since we are
working with an Active Learning approach and because the RW requires some

1 http://www.miccai.org/

4 Bram Stellinga

initial labeling, a user will provide some labeled data. This data is represented
by a set T for which each element is represented by (X,Y) ∈ T , where X ∈ Ω,
Y ∈ {0, 1} and each X is unique.

2.1 Random Walker algorithm

The classifier we will use for the image segmentation is the Random Walker
algorithm [2]. This is an algorithm that, using a graph datastructure, assigns
probabilities for each pair of neighbouring voxels. Together with a small set of
labeled data T, it calculates for each unlabeled x ∈ Ω the total probability
of arriving at X for each (X,Y) ∈ T . The classification y (x) will then equal
the label Y for which the probability of x reaching X was the greatest, for
(X,Y) ∈ T . Note that the algorithm also works for 2D images, but as the focus
of this research is on 3D images only, the term voxels is used rather than pixels.
Initial labelingThe RW requires a set T of initial training data, which a user
should provide. The method proposed by [5] uses a functionality called 2D
Livewire [1], which helps a user to interactively draw accurate contours at 2D
slices around the ROI. However, the RW requires labeled voxels, rather than
one or more drawn contours, so this user input has to be converted to fit the
purpose. As the paper does not explicitly state how they did this, a decision has
to be made. One thing we can do is, for each contour drawn, label all pixels out-
side the contour as background and the rest as foreground. However, this would
assume the contours are drawn perfectly which would require alot of effort from
the user. Therefore, we applied a dilation method to thicken the contour before
labeling the outside and inside of the contour as background and foreground
respectively. This results in having unlabeled pixels at the location of the drawn
(dilated) contour, thus keeping some degree of freedom for inaccuracies from
the user. The unlabeled pixels are then naturally labeled according to the RW’s
probability assignment.

(a) (b) (c)

Fig. 2: Example of our workflow with a) being the contour(s) a user provides and
b) the labels obtained from the dilated contour, with brown and blue being the
ROI and the background respectively. Lastly, c) is the resulting segmentation
from the basic RW for this specific 2D slice.

Integrate predictions into random walker for interactive image segmentation 5

Classification based on weighted graphAn important preprocessing step in
the algorithm is the creation of a weighted graph. Based on the image to be
classified, a graph G = (V,E) is created, where each vertex v ∈ V corresponds
to a unique x ∈ Ω and each edge e ∈ E corresponds to a connection between
two neighbouring voxels vi, vj ∈ V , denoted by ei,j . The weight of an edge ei,j
is then defined by the following formula:

wi,j = exp[
−β

10 ∗ σintensities
(Ii − Ij)

2)] (1)

where for any k, Ik is the voxel intensity of the x corresponding to vk, and β
is the only parameter of the algorithm. Furthermore, σintensities refers to the
Standard Deviation of all the voxel intensities in the input image such that
σintensities ∈ R.

It is important to notice that there exist different implementations of such a
Random Walker’s weight function in image segmentation. However, as our goal
is to modify an existing library method (for details see section 3.1), we decided to
stick to their definition, and therefore we use Eq.1. Lastly, as described in [2], by
structuring the problem in this way using a weighted graph, it can be rewritten
to a combinatorial Dirichlet problem. Finding the solution then equals to solving
a linear equation with as many unknowns as there are unlabeled voxels.

2.2 Integrating AI predictions

To minimize the labeling effort of the user while improving the intermediate
segmentation results, we will extend the RW algorithm by integrating existing
segmentation predictions generated by a Bayesian Deep Neural Network. To have
more certainty about the correctness of these results, we will use an ensemble of
predictions for the same input image and ROI.

In the original algorithm, the classification is based on the weights assigned
to neighbouring voxels, which depend on the similarity of local intensity, and
the input parameter β (see Eq.1). Therefore, we propose a method to modify
this weight function by making it depend on the predictions in the ensemble P.
We will focus on different approaches of how to process P and combine it as
a weighted sum together with the original function. Lastly, we will propose a
method to make the weights used in this weighted sum adaptive.
Mean PredictionFirst, for each voxel in the image, we will calculate the average
prediction and again use 1 to create the weighted graph, but now on these
averages instead of on the image intensities. The new weight function is then
defined by:

wi,j = exp[
−β

10 ∗ σmean pred
(
1

N

N∑
n

Pn,i − Pn,j)
2] (2)

where Pn ∈ P , N = |P | and for every k, Pn,k ∈ {0, 1} is the predicted
classification of Pn at the x corresponding to vk. Furthermore, σmean pred denotes
the Standard Deviation of the mean of the mean of all predictions, and again

6 Bram Stellinga

σmean pred ∈ R. With this, we can interpret voxels corresponding to a high
average prediction value, to a higher chance of belonging to the ROI, and vice
versa. As Eq.1 ensures by definition that regions of similar intensity are labeled
similarly, we aim to make the RW less likely to cross the predicted segmentation
boundary with this new formula.

Unanimous VoteSecondly, it is important to remember that the predicted
segmentations can be erroneous. Therefore, besides the previously mentioned
method, we will also try to improve the segmentation algorithm by only look-
ing at unanimous votes, and ensure an inconclusive value assignment for non-
unanimous predictions. For this, instead of directly taking the difference between
two average predictions, we do this only for cases where they are both unani-
mously voted, which means for voxels where the average predicted label is either
exactly 0.0 or 1.0. For all the other cases, this value will manually be set to 0.5 to
remain indecisive. To be more specific, the new weight function will be defined
by:

wi,j = exp[
−β

10 ∗ σmean pred
(
1

N

N∑
n

d(Pn,i, Pn,j))] (3)

where:

d(m,n) =

{
0.5 if 0 < m < 1 or 0 < n < 1

m− n else
(4)

Combine with the original weight functionFurthermore, for both of the
new defined functions (Eq. 2 and Eq. 3), we will combine it with the origi-
nal weight function. We will do this by seperately calculating both the orignal
weights and the chosen extended weights, and adding them together using some
value for α. This will be defined by the following formula:

wi,j = α ∗ woriginal i,j + (1− α) ∗ wpred i,j (5)

Here, woriginal represents the original weight function (Eq.1) and wpred is the
extended weight function based on only the predictions, and both Eq.2 and Eq.3
will be used seperately to evaluate this. The value for α indicates how much we
will depend on the original weight function based on the image intensities only.
With this we aim to improve the RW by integrating the predicted results, and
at the same time being able to account for inaccuracies in the predictions by
also using the original weight function.

Adaptive weighted sumUp untill now, we have used a predefined value for α
that is the same throughout all iterations and for every voxel in the image. This
approach limits the algorithm from dynamically choosing which method to rely
more on, the one based on the image intensities or one based on the predictions.
Where are convinced to believe that in this way the algorithm does not uses
both data in its best interest, therefore we propose the Adaptive Alpha method.

Integrate predictions into random walker for interactive image segmentation 7

Instead of calculating both weight functions and constructing a weighted sum,
we will now sum the data itsself and use the original weight function (Eq.1) on
this data. The new weight function then becomes:

wi,j = exp[
−β

10 ∗ σintensities
(Si − Sj)

2)] (6)

where S is the sum of the average predictions and the image intensities:

Si =
1

σmean pred

1

N
(

N∑
n

Pn,i) +
Ii

σintensities
(7)

Here, we have divided both the mean predictions aswell as the image intensi-
ties by their corresponding Standard Deviation. By doing this we aim to ensure
a better comparability between the two by normalizing the variation.

3 Experimental Setup and Results

3.1 Experimental setup

In this subsection we will explain how we setup our experiment and which as-
sumptions have been made.
Simulating initial labelingWe simulated the user input by assuming the user
behaves perfectly. This means that instead of manually drawing contours around
the ROIs, we directly used the ground truths and generated the contours around
this region using a library method findContours. To keep in mind the goal of
minimizing the labeling effort, we choose to always label only one arbitrary 2D
slice initially. We assume that for the initial labeling, a user also provides the
first and last index on the z-axis where the ROI is present. To simulate this input
we calculate a boundary box for the z-axis using the ground truth, with a pixel
offset of 1. With respect to these boundaries, we have chosen to initially always
label the middle slice aligned to the x,y-plane. Note that for cases where the
ROI is not present in the middle positioned slice at all, we choose the x,y-plane
aligned slice, containing the ROI, that is closest to this middle position.
Converting initial contours to labelsFor the conversion of the initial con-
tours around the ROI to labels, we made use of a scikit-image’s Morphology
method to apply a dilation. Initially a kernel of size 3x3 is used. However, a
problem arises when the area inside a contour is close to the kernel size, which
result in a morphological closing. That means in this case that the area inside
the contour is now fully filled and no foreground labels will be added there. This
often results in the RW labeling this 2D slice fully as background, because the
unlabeled voxels are surrounded by background labels in this slice. To fix this
problem, we check for each contour whether this is the case and iteratively re-
duce the size of the kernel if needed, until some space is left for the foreground
labels. After this, the outside of the contour is filled with value 2 using scikit-
image’s floodfill method. Subsequently, the pixel values of the dilated contours

8 Bram Stellinga

and the region inside of it are flipped, making label 1 correspond to the ROI,
and the neighbourhood around the drawn contours remain unlabeled. Lastly, as
the initial labeling always happens on 2D slices that are x,y-plane aligned, the
RW initially has no information about boundaries on the z-axis. This can result
in having false positives on x,y aligned slices where no ROI is present, and since
we similate user input only in the form of contours around the ROI, this is not
possible to fix on x,y aligned slices. We are aware that these errors should easily
be corrected by user input on rotated slices, but we consider this sometime to
account for in future work. Therefore to fix this, we initially always label the
first and the very last slice as fully background.

(a) (b)

Fig. 3: Simplified example of the initial labeling

Segment the imageThe next step is to run the RW with a desired value for
β. Similarly to [5], we choose the value for β by qualitatively observing which
produced the best results. For the original weight function we choose β = 20.
Furthermore, to ensure reliability in the comparisons against the extended weight
functions, we decided to be consistent with this value for all methods. Lastly,
for the random walker algorithm we used a library method from scikit-image2

which is an open source image processing library. We replicated the function
used by the RW to assign weights to edges in a graph and modified it to fit our
purposes.
Simulate additional labelingAfter the segmentation is done, and a plane of
most uncertainty is provided to the user, we again need to simulate labeling.
This will be done exactly the same as for the initial labeling described in 3.1,
namely by generating a contour around the ground truth. Note that this time
this is been done only on the proposed slice instead of on the middle slice as for
the initial labeling.
Converting additional contours to labelsThe next step is to convert the
new user input again to labels, and union it with the labels obtained by all
previous user input. For this conversion we use the same method as explained
in 3.1, except that we don’t need to label the first and last slice of the 3D image

2 https://scikit-image.org

Integrate predictions into random walker for interactive image segmentation 9

anymore, as we only have a 2D slice to label this time. The new labeled slice is
then inserted into the previous labels for all non-zero values of the new labeled
slice. The purpose of ignoring zero labeled voxels here, is to make sure we avoid
replacing labeled voxels by value zero, which would represent unlabeling the
voxel.

Empirical dataAs test data we used a subset of a MICCAI dataset consisting of
CT-scans from 10 different patients and the corresponding ground truth labeling
9 different parts of the human brain [4], the same parts for each patient. For
the data used as AI generated predictions, we used ensembles of segmentations
generated by a Bayesian DNN [3]. The DNN was trained on a subset of the
patients in the MICCAI dataset and tested on the rest of the dataset, resulting
in 6 predicted segmentated images.

Synthetic dataBesides real-world data, we created synthetic data to highlight
the main differences between the proposed methods. For this we created a 2D
image containing a square region centered in the middle that has been blurred to
simulate changes in intensity around the edges of the square. We also create an
arbirary ground truth, indicating a square region centered such that the desired
segmentation boundary is surrounded by inconsistent intensities of the input
image. Then, we simulated erroneous predictions by replicating the ground truth
6 times, and randomly shifting each in a random direction. Lastly, we simulated
the initial contours by creating a 1-dimensional line-based contour, to fit the
purpose for this 2D image example.

Technical detailsRegarding the coding environment, all code is written in
Python (3.10), and in order to easily work with a large set of available libraries
we use Anaconda as a software distribution for Python. Furtermore, OpenCVs3

is also a library we used, most importantly to create contours of images. Lastly,
the repository consisting of our reproduction of [5] is made public and can be
accessed in a Github4 repository5.

3.2 Results

In this section we will present and describe the results obtained. We will first
show the results of our methods on randomly generated synthetic data. For
this we will compare the results of the original method, the Mean Predictions
method and the Adaptive Alpha method. Futhermore, we will show the DICE
Coefficients for the different organs in our MICCAI dataset for our different
methods.

3 https://opencv.org/
4 https://github.com/
5

10 Bram Stellinga

Fig. 4: 2D example synthetic data. First row from left to right: Contour, Input
image, Mean predictions, Summed data as Eq.7. Second row from left to right:
Ground Truth, Original segmentation result, Mean Predictions based segmen-
tation result, Adaptive Alpha based segmentation result. The resulting DICE
Coefficients of the three segmentations are 0.7823, 0.8624, 0.9093 for Mean Pre-
diction, Unanimous Vote and Adaptive Alpha respectively.

(a) (b)

Fig. 5: Boxplot showing the DICE scores for the MICCAI dataset. This figure
shows the results of combining the original weight function with the Mean Pre-
diction based, for different values of α. The left (a) shows the results after the
first iteration, and the right (b) after the second. The x-axis indicates the organ
of interest with the last position being the average over all organs.

Integrate predictions into random walker for interactive image segmentation 11

(a) (b)

Fig. 6: Boxplot showing the DICE scores for the MICCAI dataset. This figure
shows the results of combining the original weight function with the Unanimous
Votes based, for different values of α. The left (a) shows the results after the
first iteration, and the right (b) after the second. The x-axis indicates the organ
of interest with the last position being the average over all organs.

Figure 5 shows the results for combining the original weight function with
the Mean Prediction based. It shows the DICE Coefficient of 9 patients in our
MICCAI dataset, for each ROI. It also shows the average DICE Coefficient over
all different ROIs. It can be seen that for α = 0.0 the method always outperforms
all the others. More specifically, as α increases, the overall performance has a
corresponding improvement. Although the method performs the best for α = 0.0,
it is also worth to notice that this seems to have a high variance, especially for
the first iteration. For the parotids (Parotid L and Parotid R) the algorithm
works the best, especially for the first iteration. For the second iteration, using
α = 0.0, the results have a small variance for every organ except for the optics
(Optic Chiasm, Optic Nrv L and Optic Nrv R).

Furthermore, figure 6 shows the results for combining the original weight
function with the Unanimous Vote based. It shows the DICE Coefficient of 9
patients in our MICCAI dataset, for each ROI. It also shows the average DICE
Coefficient over all different ROIs. It can be seen that for α = 0.0 the method
again outperforms all the others and has an overall corresponding improvement
in performance as α increases. For all values of α, there is more consitency in the
performance for the brainstem (BStem) and the parotids (Parotid L and Parotid
R). The overall performance is the worst for the optic chiasm (Opt Chiasm), the
mandible (Mandible) and the optic nerves (Opt Nrv L and Opt Nrv R). However,
if we only look at α = 0.0, out of all organs it performs the best on the mandible
after the second iteration.

12 Bram Stellinga

(a) (b)

Fig. 7: Boxplot showing the DICE scores for the MICCAI dataset. This figure
shows the comparative results between the Mean Predictions Approach and the
Unanimous Votes Approach (both using α = 0.0), the Original RW and the
Adaptive Alpha Approach. The left (a) shows the results after the first iteration,
and the right (b) after the second. The x-axis indicates the organ of interest with
the last position being the average over all organs.

Lastly, figure 7 shows the results of the Adaptive Alpha Approach. For com-
parativity, we plotted the boxplots against the Original RW, the Mean Predic-
tions Approach and the Unanimous Votes Approach. For the latter two, we used
both α = 0.0 as this optimized their results. It can be seen that the Adap-
tive Alpha Approach performs the worst on the optics, while having an overall
performance that is slightly better than the other three methods.

4 Responsible Research

It is of great importance that a research is done responsible, meaning it should
be reproducible and ethical aspects and possible risks should be taken into con-
sideration.

First of all, we made sure our research is reproducible by providing the link
to a GitHub repository in section 3. We also made sure to provide our code with
comments explaining parts as clear as possible. Lastly, we tried to explain every
decision that deviates from the replicated proposal [5] as precise as possible in
this report.

Another important aspect of responsible research, is to consider ethical as-
pects. One of the most important things to consider for this research is the data
used. Most importantly with respect to privacy rules, there are limitations in the
data we can use. Fortunately, we used a database which has been made available
to the public in the hope it can be helpful to others.

Furthermore, it is very important to consider possible risks in a responsible
research. In our research the first and most straightforward risk, is being biased
to our test data. Because of the need of AI generated segementation results for
this research and because of the limited time we had, it was not possible to
test our method on the whole MICCAI dataset, but only a subset for which

Integrate predictions into random walker for interactive image segmentation 13

the predictions where generated. As this subset is a rather small dataset (6
predictions of 9 ROIs for 10 different patients), the chances of overfitting occur.
This is unfortunately an undesired risk that could not be solved in the given
time for this research.

5 Discussion

In this section we will discuss the results presented in 3.2.
First of all, it can be seen that for all methods, it performs the worst for the

optic organs, which are the Optic Nerve (L and R) and the Optic Chiasm. This
is not surprising, as the optic organs have one of the smallest, if not the smallest,
ROI out of all the other organs in our dataset. For which some dimensions are
only a few pixels in length. This makes them more sensitive to artifacts in the
image and most importantly there is simply less information to obtain.

Another interesting result is that α = 0 always outperformed the other pos-
sibilities for α, by far. Again, this is not surprising, as we have only focused on
two iterations. And as we decided to only annotate one new slice per iteration,
the original RW has still little information to utilize after two iterations. Mean-
while the predictions provide more information about the ROI for these first
two iterations, admidittely erroneous possibly, but for the first two iterations
these errors do not compare to the errors of the orginal RW for such a small
number of iterations. The fact that the first two iterations do not ensure a high
performance for the original RW can also be verified by observing the results
in [5]. It can be seen that the most rapid increase of DICE Coefficient there, is
present during the few initial iterations. This confirms why using α = 0 always
outperformed the other chosen values.

Another observation is that the Unanimous Votes Approach performs slightly
better than Mean Prediction Approach. This is not what we expected, as the de-
cision to discard the influence of all non-unanimous votes was arbitrarily chosen.
While actually we could have chosen any other threshold for this, for example
only taking the two most similar voted values etc. We expected that since the
value for this threshold was not based on any actual data, this would perform
worse than the Mean Prediction Based Approach. However, it actually makes
sense as unanimous votes provide the most certainty in its prediction, making
this approach less sensitive to ensembles of predictions where a high variance is
present.

Another remarkible observation is the results for the Mandible. It seems to
have one of the best performances with minimum variance, only for the methods
using α = 0 and the Adaptive Alpha Approach. Meanwhile, for all the other
methods, the Mandible produces one of the worst results. We believe that this is
due to the fact that the automated slice annotation, after the first segmentation
does not add much information. It could be that for example the chosen slice of
most uncertainty has a small ROI. However, this results in a minimum increase
of performance between the two iterations, which can also be observed in the
boxplots. It then makes sense that for α = 0 the methods are not affected by

14 Bram Stellinga

this, as they focus only on the predictions. Also, the Mandible is a relatively big
organ, which also means that it could take longer for the original RW to obtain
a high performance, which on the other hand does not apply for the prediction
based methods.

Lastly, we observe that the Adaptive Alpha Approach slightly outperforms all
other methods for both iterations. This confirms the hypothesis that by summing
the data beforehand, the value of each voxel is depending on both the predicted
mean and the intensity, which results in a more adaptive ratio compared to
combining the weight functions afterwards.

For future work, a recommendation would be to test our methods on differ-
ent ensembles which vary in accuracy. As the ensembles we used are relatively
accurate which can result in our methods to be biased to relying heavily on the
ensembles. This is also shown to be the case as methods that focus only on the
predictions outperformed almost all the other methods that take into account
the image intensities. For another future work, we believe the algorithm can be
improved even more by taking into account local regions for each voxel. As the
weight functions we propose either handle the 3D image as a whole, or voxel-
wise, we believe that by depending more on a local 3D window for each voxel, we
can make the methods less sensitive for outliers in the image. This is a general
approach that can apply to different parts of the algorithm. An example could
be to base the difference in intensities on the average intensities in a 3D neigh-
bourhood around a voxel, etc. Additionally, this local information can be used
to handle areas where the image intensities are fuzzy, resulting in an indication
of how much the weight function should rely on the predictions for a voxel in
this area. Lastly, for the future it can be valuable to focus on a way to define
an indication of certainties, as for example by looking at local neighbourhood,
for the voxels. These certainties can then be used to make the method of Adap-
tive Alpha even more adaptive, by taking into account the reliability of both
the predictions and the image intensities. We have tried multiple methods that
make use of this by taking the standard deviation, however, this was either time
consuming or it did not perform as expected. For the sake of time we decided
that this approach unfortunately requires more effort and thus we excluded these
ideas from this research.

6 Conclusion and future work

In this paper we have proposed a method to integrate an ensemble of segmen-
tation predictions, obtained by a BDNN (ALL GENOEMD?), into a Random
Walker’s weight function, to improve interactive 3D medical image segmentation.
We evaluated three methods, Prediction Means Approach, Unanimous Votes Ap-
proach and Adaptive Alpha Approach, while comparing to the orginal RW. The
Prediction Means Approach focuses on the mean of all predictions in the ensem-
ble, while the Unanimous Votes Approach only takes into account predictions
that where all the same throuhout the whole ensemble for a voxel. Furhter-
more, the Adaptive Alpha Approach sums the mean predictions with the image

Integrate predictions into random walker for interactive image segmentation 15

intensities after normalizing their variances, with the aim to have a more adap-
tive approach for each voxel. All methods are evaluated by showing the average
DICE Coefficients of all patients in our dataset, for different ROIs, for the first
two iterations. We simulated the intermediate user input by automatically an-
notating one slice per iteration. With this, our work shows that the Adaptive
Alpha Approach outperforms all other methods.

For future work, we recommend to test our methods on data that contains less
accurate ensembles of predictions. Lastly, an approach to indicate uncertainties
in local regions for both the predictions and the image intensities, and use this
to optimise the weighted sum is a desired future work.

References

1. Barrett, W.A., Mortensen, E.N.: Interactive live-wire bound-
ary extraction. Medical Image Analysis 1(4), 331–341 (1997).
https://doi.org/https://doi.org/10.1016/S1361-8415(97)85005-0,
https://www.sciencedirect.com/science/article/pii/S1361841597850050

2. Grady, L.: Random walks for image segmentation. IEEE Transactions
on Pattern Analysis and Machine Intelligence 28(11), 1768–1783 (2006).
https://doi.org/10.1109/TPAMI.2006.233

3. Mody, P.P., de Plaza, N.C., Hildebrandt, K., van Egmond, R., de Ridder, H., Staring,
M.: Comparing Bayesian models for organ contouring in head and neck radiother-
apy. In: Colliot, O., Išgum, I. (eds.) Medical Imaging 2022: Image Processing. vol.
12032, p. 120320F. International Society for Optics and Photonics, SPIE (2022).
https://doi.org/10.1117/12.2611083, https://doi.org/10.1117/12.2611083

4. Raudaschl, P.F., Zaffino, P., Sharp, G.C., Spadea, M.F., Chen, A., Dawant,
B.M., Jung, F.: Evaluation of segmentation methods on head and neck ct: Auto-
segmentation challenge 2015. In: AutoSeg Workshop and Challenge at MICCAI. pp.
2020–2036 (2017)

5. Top, A., Hamarneh, G., Abugharbieh, R.: Active learning for interactive 3d image
segmentation. In: Fichtinger, G., Martel, A., Peters, T. (eds.) Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI 2011. pp. 603–610. Springer
Berlin Heidelberg, Berlin, Heidelberg (2011)

