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Abstract

This thesis investigates the performance of the invariant extended Kalman filter (IEKF)
compared to the multiplicative extended Kalman filter (MEKF) in the context of nonlinear
state estimation on matrix Lie groups. The IEKF, a relatively recent variant of the EKF, is
particularly suitable for systems with group-affine process models and invariant measurement
models. When applied to such systems, the IEKF exhibits guaranteed state-independent error
dynamics, which proves advantageous in cases of poor or inaccurate system initialization.

While previous studies have highlighted the benefits of the IEKF in poorly initialized systems,
it is unclear whether the IEKF and the multiplicative EKF exhibit significant differences in
performance when the system is already accurately initialized. Therefore, this thesis aims
to investigate whether the IEKF demonstrates improved performance over the MEKF in 3D
pose estimation using inertial measurement units (IMUs).

Specifically, the main research question of this thesis is: How does the estimation accuracy of
the invariant EKF compare to the multiplicative EKF in the context of pose estimation? In
order to gain insight into this, the investigation focuses on three main questions. Firstly, what
are the advantages of utilizing a left-invariant EKF (LIEKF) over an MEKF when dealing with
a left-invariant measurement model, and similarly, what are the benefits of employing a right-
invariant IEKF (RIEKF) over an MEKF when dealing with a right-invariant measurement
model? Secondly, how does the IMU sensor noise magnitude affect the converging performance
of the filters differently? Thirdly, How does the sensor noise magnitude of the external
measurements affect the converging performance of the filters differently?

Additionally to the distinction between the left- and right-IEKF, a similar distinction is
made for the MEKF. This thesis distinguishes between an MEKF with orientation deviation
states resolved in the body frame (MEKF-b) and an MEKF with orientation deviation states
resolved in navigation frame (MEKF-n). This distinction is made since it allows for a more
natural comparison between the IEKF and MEKF.

To conduct the evaluation, extensive simulations are performed, allowing for controlled vari-
ations in these parameters. The simulation results provide insights into the comparative
performance of the IEKF and multiplicative EKF under different conditions, shedding light
on their strengths and limitations in 3D pose estimation with IMUs.
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It was found that the IEKF and MEKF show very comparable results in a large amount of
the applications. The state-independent error dynamics have been shown to be beneficial in
situations where the initial information of the state of the system is uncertain. Furthermore,
the IEKF has been shown to beneficial in certain edge cases. Firstly, the IEKF shows to
be less sensitive to small process noise covariance matrices Q. Secondly, once the gyroscopic
noise becomes very large, the RIEKF showed higher estimation accuracy over the MEKF-n.
The LIEKF did also show a marginal improvement in estimation accuracy over the MEKF-b.
Finally, it was found in this thesis there are two ways that the external measurement noise
influenced the comparison of the estimation accuracy between the IEKF and MEKF. The
MEKF-n showed to be sensitive to a low covariance measurement matrix R and additionally,
the MEKF-b and MEKF-n both seemed to be marginally more affected by higher external
measurement noise than the LIEKF and RIEKF, respectively.

In conclusion, this thesis provides a comprehensive evaluation of the IEKF and MEKF in 3D
pose estimation with IMUs. While the IEKF and MEKF exhibit comparable performance
in many cases, the IEKF’s state-independent error dynamics and its advantages in certain
scenarios highlight its potential superiority over the MEKF. These findings contribute to the
understanding of nonlinear state estimation on matrix Lie groups and offer valuable insights
for selecting the appropriate filter for specific applications.
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Chapter 1

Introduction

In recent years, accurate pose estimation has become increasingly important in a wide range
of fields, including robotics, computer vision, and autonomous navigation [1, 2]. The ability
to precisely estimate the position, orientation and sometimes velocity of objects in three-
dimensional space is crucial for enabling tasks such as object tracking, localization, and map-
ping [2, 3]. To achieve reliable and robust pose estimation, to ensure accuracy, efficiency and
effectiveness, filtering techniques are employed, among which the Extended Kalman Filter
(EKF) has gained significant attention [4, 5].

Nonlinear pose estimation techniques play a crucial role in accurately estimating the position,
orientation and sometimes velocity of objects or systems in various fields, including robotics,
computer vision, and autonomous navigation [1, 2]. Traditional linear estimation methods,
such as the Kalman Filter (KF), are not suitable for handling nonlinear systems. In such
cases, nonlinear pose estimation techniques, like the Extended Kalman Filter (EKF), Particle
Filter, and Unscented Kalman Filter (UKF), have emerged as powerful tools to tackle the
complexities associated with nonlinear dynamics and measurements [4].

The EKF, Particle Filter, and UKF are all nonlinear pose estimation techniques that aim
to estimate the pose of a system based on nonlinear measurements or dynamics. The EKF
approximates the nonlinear system with a linearized model and uses a combination of predic-
tion and update steps to iteratively estimate the pose [4]. The Particle Filter, on the other
hand, employs a particle-based representation of the pose distribution, using a set of weighted
particles to approximate the posterior distribution [4, 6]. The UKF takes a different approach
by using a deterministic sampling technique called the unscented transformation to capture
the statistical properties of the nonlinear system [4, 7].

While each technique has its own strengths and limitations, the focus of this discussion
will be primarily on the EKF. The EKF is widely used in many applications due to its
simplicity, efficiency, and effectiveness in handling nonlinear systems [4, 5]. It is an extension
of the traditional Kalman Filter that incorporates linearization techniques to approximate the
nonlinear system. By linearizing the system around the current estimate, the EKF propagates
the state estimate using linear equations while updating it based on nonlinear measurements.

Master of Science Thesis Niels van der Laan



2 Introduction

The EKF provides an iterative estimation process that yields a posterior distribution of the
pose, taking into account both prediction and measurement update steps [4].

The EKF has found applications in various fields, including robotics, where it is commonly
used for localization, mapping, and navigation tasks [2, 3]. It has also been applied in com-
puter vision for object tracking and augmented reality applications. Despite its widespread
usage, the EKF does have limitations, such as reliance on accurate linearization and the
assumption of Gaussian distributions, which may not always hold true in practice [4, 8].
Nevertheless, with appropriate modelling, the EKF can provide reliable and accurate pose
estimation in many scenarios.

Inertial Measurement Units (IMUs) have emerged as crucial sensor systems for estimating
the state of dynamic systems. An IMU typically consists of a combination of sensors such as
accelerometers, gyroscopes, and sometimes magnetometers. These sensors provide measure-
ments of linear acceleration, angular velocity, and in some cases, the Earth’s magnetic field
[9]. The EKF combines sensor measurements with a dynamic model to estimate the state of
a system. IMUs, with their ability to measure linear acceleration and angular velocity, play
a fundamental role in EKF-based state estimation, particularly in applications involving mo-
tion tracking, navigation, robotics, and virtual reality. The EKF utilizes the measurements
from the IMU sensors to update state estimate over time. The dynamic model describes the
system’s motion and how it evolves over time, while the IMU measurements provide valuable
information about the system’s acceleration and rotational velocity. One key advantage of
using IMUs with the EKF is their ability to provide high-frequency measurements, allowing
for real-time state estimation. These measurements, when integrated over time, provide es-
timates of position, velocity, and orientation. However, IMU measurements are not without
limitations. They are prone to errors and biases, which can accumulate over time, leading to
drift in the estimated state [4]. These errors arise from factors such as sensor noise, bias insta-
bility, and external disturbances. To mitigate these issues, the EKF incorporates a recursive
estimation process that updates the state estimate while compensating for sensor noise and
biases [4].

Furthermore, the EKF can also be combined with other sensors, such as GPS or visual sensors,
to enhance the accuracy of the state estimation. By fusing the measurements from multiple
sensors, including IMUs, the EKF can leverage complementary information and overcome the
limitations of individual sensors [10].

There are specialized variants of the EKF that address specific challenges in pose estimation.
Two notable variants are the Multiplicative EKF (MEKF) and the Invariant EKF (IEKF).
These variants build upon the foundations of the EKF while introducing additional enhance-
ments to improve the accuracy and robustness of pose estimation.

The MEKF extends the EKF by explicitly modelling the orientation in a multiplicative man-
ner, often also referred to as quaternion-based EKF [11]. By representing the orientation
using rotation matrices or quaternions, the MEKF avoids the singularities associated with
Euler angles and provides a more stable and globally consistent representation [12, 13]. This
variant is particularly useful in scenarios where robust orientation estimation is critical, such
as robotics and 3D motion tracking.

The IEKF, on the other hand, is specifically designed to handle state estimation on nonlinear
manifolds, specifically matrix Lie groups. It achieves this by performing updates directly
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1-1 Motivation 3

on the manifold, ensuring that the estimated state remains valid and consistent with the
manifold’s geometry [14]. This is in contrast to the EKF, which relies on linearizations and
can introduce errors when applied to nonlinear systems. In the IEKF, the dynamic model
and measurement model are defined on the manifold itself, accounting for the nonlinearities
of the system. By directly operating on the manifold, the IEKF provides more accurate and
reliable state estimates for nonlinear systems compared to the traditional EKF [14].

It is important to note that for the IEKF, there are two approaches, these are known in
literature as left- and right-invariant Extended Kalman Filtering techniques have also been
developed.

Left-invariant Extended Kalman Filtering (LIEKF) and right-invariant Extended Kalman
Filtering (RIEKF) are two alternative approaches that address the challenges of state esti-
mation on Lie groups or nonlinear manifolds. These techniques employ left or right group
actions, respectively, to maintain consistency with the manifold’s structure during the esti-
mation process.

For the LIEKF, the dynamic model and measurements are transformed using the left group
action. This approach ensures that the filter remains invariant under left group transforma-
tions, enabling accurate and consistent estimation on the manifold. Similarly, the RIEKF
achieves invariance by utilizing the right group action. The choice of employing a left- or
right-IEKF is typically dependent on the type of measurement model used in the filter. A
distinction is made between a left- and right-invariant measurement model, where for the
use of a left-invariant measurement model, the LIEKF is employed to ensure invariant error
dynamics. Whereas for a right-invariant measurement model, the RIEKF is suitable. In this
thesis, a similar distinction is for the MEKF. This study distinguishes between an MEKF
with orientation deviation states resolved in the body frame (MEKF-b) and an MEKF with
orientation deviation states resolved in navigation frame (MEKF-n). This distinction is made
since it allows for a more natural comparison between the IEKF and MEKF.

1-1 Motivation

The IEKF in continuous time was introduced in [8] and in discrete time in [15]. Both these
papers offer the theoretical foundation on which the structure of the IEKF is based. This
foundation is built on the theory of symmetry preserving observers on matrix Lie groups [16,
17]. In [15], mostly the theoretical background with an application presented to simultaneous
localization and mapping (SLAM). The IEKF has been gaining popularity for the application
to SLAM [18, 19, 20, 21], due to its ability to overcome inconsistency issues. Inconsistency in
this case refers to the inability of the EKF output covariance matrix to correctly reflect the
error dispersion [15] and its inability to correctly reflect the unobservabilities of the SLAM
problem [15, 22]. Although the topic of SLAM is a popular one, it is not within the scope
of this research. In [8], two applications are briefly presented that are of interest for this
research, since it discusses the performance of the IEKF compared to that of the EKF or
MEKF.

The first application shows a 2D problem where the heading and position of a car driving
in a circle, are to be estimated. The estimation is done through an EKF and IEKF with
high rate odometry and low rate GPS measurements. They initialize the simulation in two
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4 Introduction

different ways, first with a small initial orientation error and subsequently, with a larger
initial orientation error. The reported results indicate that both filters show comparable
performance in terms of the state estimation error when the initial orientation error is small.
However, this performance quickly differs once the simulation is initialized with a high error
in initial orientation. The IEKF quickly converges to the true trajectory in this simulation,
whereas the EKF does not and shows to slowly converge towards the true trajectory.

The second application involves a 3D problem where a plane flies in a circular motion and
3 landmarks are placed close to the trajectory of the plane. The goal is to perform aided
inertial navigation based on high rate accelerometers’ and gyroscope measurements and low
rate observation of known landmarks. The estimation is done through an IEKF and an
MEKF. This time the simulation is initialized in two different ways, the first simulation is
initialized with very a small or tight process noise covariance matrix Q, whereas the second
simulation is initialized with a relatively bigger or inflated covariance matrix Q. The results
show that the use of a tight covariance matrix Q poses issues for the MEKF where it does not
for the IEKF. They explain this is due to the gains of the MEKF rapidly decreasing during
the transistory phase of the simulation while the attitude error is not reduced enough because
of non-linearities, since the position estimate is affected, the gains are too small to correct
this error. The second simulation shows that artificially inflating the covariance matrix Q in
the filter, to use it as a type of tuning parameter, overcomes this issue for the MEKF and
the estimation seems to be able to converge to the true trajectory, although it still converges
slower to the true trajectory than the IEKF [15].

In [23], the performance of the IEKF is compared with the EKF in a very straightforward
problem. A car with perfect odometry measurements is set on a 2D trajectory with noisy
GPS measurements acting as corrective measurements. In situations where the dynamics
are perfectly known, the linear Kalman filter can handle the situation effectively. In such
cases, the filter’s gains can be initially large if the initial information is inaccurate, gradually
decreasing to zero. However, this ideal scenario poses significant challenges for the EKF. Due
to the presence of nonlinearities, the gains in the EKF can approach zero while the estimation
error has not reduced sufficiently. This can result in a static asymptotic non-zero error or
even divergence, even when the measurements are free from noise [23]. The main result this
paper offers is that the IEKF shows superior performance over the EKF even when the IEKF
is initialized with a very high error in initial attitude and the error in initial attitude for the
EKF is kept relative low. Showing similar findings as the ones presented in [8].

In [24], an invariant Rauch-Tung-Striebel (IRTS) smoother is introduced for pose estimation
on the special Euclian group, SE(3). This is the matrix Lie group consisting of 3D rotation
matrices and position vector. Although this thesis focuses on the IEKF and not on a smoother,
the results in this paper are of interest since the IRTS smoother is very closely related to the
IEKF, since the forward pass of the smoother is identical to the IEKF but with the addition of
a backward pass. The main results from this paper is that when the initialization of the system
is poor, then the IRTS outperforms its multiplicative counterpart. This is in agreement with
the findings in [8, 23] and build on the fact that the error dynamics of the invariant smoother
is not dependent on the state estimate and thus is not influenced when these state estimates
are inaccurate.

In [25], 3D pose estimation is performed for underwater navigation using the Right-IEKF
and compared it to a quaternion based EKF. They make use of IMUs and doppler velocity

Niels van der Laan Master of Science Thesis



1-2 Thesis Goal 5

logs (DVL). They ran a simulation was consisting of a simple descent of the vehicle with
thrusters slightly pushing forward. Then, each filter was run 100 times for the first 2 seconds
of simulation with varying initial starting points. The RIEKF was reported to converge faster
to the true trajectory than its quaternion based counter part. They also reported that the
quaternion based EKF showed issues with converge when the initialization was done with high
uncertainty, whereas the RIEKF did not seem affected at all by this, while having comparable
results in computation time. Again, this agrees with the findings of [8, 23].

The existing literature primarily emphasizes the superiority of the IEKF over the (M)EKF by
demonstrating improved performance through increased uncertainty in the initial estimate.
While [8] briefly discuss the impact of a small process covariance matrix Q, there appears
to be a lack of focus in the literature on examining the influence of sensor and measurement
noise in detail.

1-2 Thesis Goal

The main research question driving this thesis is: "How does the estimation accuracy of the
invariant EKF compare to the multiplicative EKF in the context of 3D pose estimation?".
This research question aims to investigate and compare the performance of the invariant EKF
and the multiplicative EKF specifically in the context of pose estimation. By conducting an
evaluation, we can gain insights into the strengths and weaknesses of each filtering technique
and determine which one provides superior performance in terms of accuracy, stability, and
convergence.

To address this research question, several sub-questions will be explored:

• What are the advantages of utilizing an LIEKF over an MEKF when dealing with a
left-invariant measurement model, and similarly, what are the benefits of employing a
RIEKF over an MEKF when dealing with a right-invariant measurement model?

• How does the IMU sensor noise magnitude affect the converging performance of the
filters differently?

• How does the sensor noise magnitude of the external measurements affect the converging
performance of the filters differently?

The contributions of this thesis are as follows. Firstly, we will investigate the benefits of
utilizing specific variants of the invariant EKF for different measurement models. Specifically,
the use of the Left-Invariant EKF (LIEKF) for left-invariant measurement models and the
Right-Invariant EKF (RIEKF) for right-invariant measurement models will be analyzed and
compared to their suitable multiplicative counterparts, the MEKF-b and MEKF-n. The filters
have been derived in discrete-time in the matrix Lie group of double direct isometries. By
evaluating the performance of these variants in their respective scenarios, we can determine
the advantages and effectiveness of employing specific filters for different pose estimation
applications.

Additionally, we will investigate how the presence of Inertial Measurement Unit (IMU) sensor
noise affects the converging performance of the filters. It is hypothesized that the invariant
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6 Introduction

EKF may exhibit different behavior compared to the multiplicative EKF when subjected to
IMU sensor noise. Understanding these differences will provide valuable insights into the
filters’ robustness and adaptability to noisy measurements.

Furthermore, we will analyze the impact of the quality of external measurements on the
converging performance of the filters. External measurements, such as those obtained from
GPS or vision sensors, play a crucial role in refining pose estimates. By examining how the
filters handle these external measurements differently, we can gain a deeper understanding of
their ability to incorporate additional data sources effectively.

1-3 Thesis Outline

The goal of this thesis is to deepen our understanding of the differences between the invariant
EKF and the multiplicative EKF and how these differences are influenced by various param-
eters, consisting of IMU sensor noise and external measurement sensor noise. To achieve this
objective, the thesis is structured as follows:

Chapter 2 provides the reader with essential background information on matrix Lie groups, the
multiplicative EKF and the invariant EKF. This chapter serves as a foundation for compre-
hending the subsequent discussions and analyses. Furthermore, it explores the existing body
of work on the invariant EKF, including its comparisons with traditional and multiplicative
EKF approaches, specifically for pose estimation. This chapter highlights the strengths and
limitations of each filtering technique, laying the groundwork for the subsequent methodology.

Chapter 3 describes the system models used to represent the sample problem under investi-
gation. This includes the IMU models, the dynamical models and the measurement models.

Chapter 4 delves into the methodology employed in this thesis. First, it discusses the simu-
lation setup. Additionally, it presents the derivations of the variations of the invariant and
multiplicative EKFs in discrete-time for the matrix Lie group of double direct isometries.
This chapter provides a detailed insight into the filtering algorithms employed for the pose
estimation task and the specific choices in the simulation models with the goal of reflecting
realistic scenarios made.

Chapter 5 presents the corresponding results obtained, aiming to address the research ques-
tions posed in this thesis. It provides a comprehensive analysis of the performance of the
invariant EKF and the multiplicative EKF, considering the influence of IMU sensor noise and
external measurement sensor noise. The results shed light on the comparative performance
and robustness of the two filtering techniques.

Finally, Chapter 6 concludes the findings of this thesis, summarizing the key insights and
implications. It also offers recommendations for future research directions, highlighting areas
that warrant further investigation to advance the understanding and application of pose
estimation using the invariant EKF and the multiplicative EKF.

Through this structured approach, this thesis aims to contribute to the existing knowledge
by providing a comprehensive analysis of the invariant EKF and the multiplicative EKF,
specifically focusing on their behavior under different noise conditions.
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Chapter 2

Background Information

2-1 Matrix Lie Groups

2-1-1 Overview

This overview of the theory on matrix Lie groups is based on [26]. A matrix Lie group G is
composed of n × n invertible matrices that are closed under multiplication. This means that
if two elements from G are multiplied together, the resulting matrix is still an element of G
[26]. The matrix Lie algebra associated with G is denoted by g and represents the space of
differential transformations or the tangent space around the identity of G, denoted by T1G.
The matrix Lie algebra is a vector space and is closed under the operation of the matrix
Lie bracket, defined as [A, B] = AB − BA, ∀A, B ∈ g [4]. Additionally, for any X ∈ G and
A ∈ g, we have XAX−1 ∈ g. Moreover, any A ∈ g can be written as A = ξ∧ =

∑n
i=1 ξBi,

where B1, . . . , Bn is a basis for g, also referred to as the generators, and ξ ∈ Rd. Furthermore,
A∨ = [ξ1, . . . , ξn]T = ξ.

The exponential map takes elements from the Lie algebra and maps them to the Lie group.
For matrix Lie groups, this exponential map is the matrix exponential. The matrix logarithm
performs the inverse operation of the matrix exponential and maps elements from the matrix
Lie group to the matrix Lie algebra. This can be summarized as follows: exp(·) : g → G and
log(·) : G → g, so exp(log(X)) = X, ∀X ∈ G, and X = exp

(
ξ∧)

, where ξ ∈ Rd [26].

The matrix representation of the adjoint operator is particularly useful when working with
matrix Lie groups, as it preserves the structure of the group. The adjoint representation of
X is denoted by Ad (X). Then, (Ad (X) ξ)∧ = Xξ∧X−1, which leads to the equation:

X exp(ξ∧)X−1 = exp((Ad (X) ξ)∧). (2-1)

The adjoint representation of an element of the matrix Lie algebra can be defined as follows
[27]: given ξ∧, ζ∧ ∈ g, the adjoint matrix satisfies ad (ζ) ξ = −ad (ξ) ζ, and

ξ∧ζ∧ − ζ∧ξ∧ = (−ad (ζ) ξ)∧ . (2-2)
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2-1-2 Uncertainty Representation

In vector spaces, uncertainty is additive, meaning that it can be added and the resulting
vector is still an element of the same vector space, such that x = x̄ + δx, where δx ∼ N (0, Σ).
However, as mentioned before, matrix Lie groups are not closed under addition but rather
under multiplication. This means that a multiplicative uncertainty must be used, such that
the resulting state is still an element of the same Lie group [28]. Two options then arise to
represent the uncertainty,

X = X̄ exp
(
δξ∧)

, (2-3a)
X = exp

(
δξ∧)

X̄, (2-3b)

where δξ ∼ N (0, Σ). Two additional definitions for the uncertainty can be defined. These
two definitions are given by

X = X̄ exp
(
−δξ∧)

, (2-4a)
X = exp

(
−δξ∧)

X̄. (2-4b)

In this thesis, the definition as in (2-4) is used. These definitions are referred two as left-
invariant and right-invariant uncertainty representations, respectively. These naming conven-
tions are consistent with the left-invariant and right-invariant error definitions, which will be
introduced in section 2-3.

2-1-3 The Baker-Campbell-Hausdorff Formula

It is widely known that two scalar exponential functions can be combined as follows,

exp(a) exp(b) = exp(a + b)

where a, b ∈ R. Unfortunately, this does not hold for matrix exponentials. To compound two
matrix exponentials as in

l = log(exp(m∧) exp(n∧)),

the Baker-Campbell-Hausdorff (BCH) formula can be used [4, 15]. The BCH formula gives a
series expansion, but in particular it ensures

exp(m∧) exp(n∧) = exp(m∧ + n∧ + H),

where H is of the order O(∥m∥2
2 , ∥n∥2

2 , ∥m∥2 ∥b∥2). Herein only a first-order approximation
is considered, being

log(exp(m∧) exp(n∧)) = m∧ + n∧.

This is exact in the case that [m∧, n∧] = 0 [4].

2-1-4 Linearization

As mentioned before, an element of a matrix Lie group can be expressed using the matrix
exponential,

X = exp
(
ξ∧)

.
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2-2 Multiplicative Extended Kalman Filter 9

The matrix exponential can be described by a power series and is defined as follows,

exp
(
ξ∧)

=
∞∑

k=0

1
k!

(
ξ∧)k

,

= I + ξ∧ +
(
ξ∧)2

2 +
(
ξ∧)3

6 + . . .

Considering the case where ξ is small, the small element of Rd is denoted by δξ and δX =
exp

(
δξ∧)

. Seeing that δξ is already considered small, it is commonly assumed that high order
terms like O

(
∥δξ∥2)

can be neglected. This leads to the following approximation,

δX ≈ I + δξ∧. (2-5)

Following this reasoning, the uncertainty representations (2-3a) and (2-3b) can be approxi-
mated as

X = X̄(I + δξ∧), (2-6a)
X = (I + δξ∧)X̄, (2-6b)

respectively. The same approximation can be done on the representations (2-4a) and (2-4b),
which results in

X = X̄(I − δξ∧), (2-7a)
X = (I − δξ∧)X̄, (2-7b)

respectively.

2-2 Multiplicative Extended Kalman Filter

The multiplicative Extended Kalman Filter (MEKF) is a variant of the traditional EKF that
is commonly used for state estimation in systems where the orientation is represented using
rotation matrices or quaternions. The EKF is a recursive estimation algorithm that combines
measurements from sensors with a dynamic model to estimate the state of a system.

In the context of orientation estimation, the MEKF is employed to estimate the attitude or
orientation of an object in three-dimensional space [29, 30]. While there are different ways
to represent orientation, rotation matrices and quaternions are popular choices due to their
mathematical properties and computational efficiency.

When using rotation matrices, the MEKF operates in the space of rotation matrices rather
than the space of Euler angles or other representations. This helps avoid the issues of singu-
larities and nonlinearities that can arise with other representations. The state vector in the
MEKF contains the elements of the rotation matrix, and the dynamic model describes the
evolution of these elements over time. The measurement model relates the observed sensor
measurements to the rotation matrix elements.

Alternatively, quaternions can be used to represent orientation in the MEKF [31]. Quaternions
provide a compact representation and avoid some of the drawbacks associated with rotation
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matrices. The state vector in the MEKF consists of the quaternion elements, and the dynamic
model describes the quaternion propagation. The measurement model relates the sensor
measurements to the quaternion elements [31, 32].
The multiplicative EKF is named so because it employs a multiplicative update step to
estimate the state of the system [31, 9]. This update step is performed in the manifold of
rotation matrices or quaternions, ensuring that the estimated orientation remains valid and
consistent with the constraints imposed by the chosen representation.
This thesis chose to represent the orientation state using rotation matrices rather than quater-
nions. This was to ensure that the similarities between the MEKF and the IEKF are high-
lighted, since the IEKF, in this thesis, also represents the orientation state by a rotation
matrix in its state matrix. The rotation matrices are updated using

Ĉnbk
= Čnbk

exp(δξ̂
ϕ×

bk
),

if the orientation deviation is defined in body frame Fb, this MEKF will be referred to as
MEKF-b, or

Ĉnbk
= exp(δξ̂

ϕ×

nk
)Čnbk

,

if the orientation deviation is defined in navigation frame Fn, this MEKF will be referred to
as MEKF-n.

2-3 Invariant Extended Kalman Filter

In recent years, Barrau and Bonnabel have introduced the Invariant Extended Kalman Filter
(IEKF) [8], building on the theory of symmetry preserving observers on matrix Lie groups [17,
16]. The IEKF exploits the fact that, in robotics, the estimated states are elements of a matrix
Lie group. It has been shown that carefully defining the error leads to state-independent error
dynamics [8], implying that the Jacobians are state-independent. Using this fact, it can be
shown that the IEKF is a locally asymptotically stable observer, no matter the trajectory [8].
Let G ∈ Rn×n be a matrix Lie group and its matrix Lie algebra is denoted by g ∈ Rd×d. Any
element of a matrix Lie group can be expressed using the exponential map,

X = exp
(
ξ∧)

, (2-8)

where ξ∧ ∈ g. Suppose the dynamical system can be described as follows,

Xk = Fk−1(Xk−1, uk−1, wk−1), (2-9)

this represents the most general case, however, an approximation is often used to ease the
derivations. In (2-9), the function is denoted by Fk−1 with a capital letter since it denotes
a function taking matrices as arguments. Before this approximation can be made, it should
restated that there are two types of invariant errors between the true state and its estimate in
invariant filtering, similar to the uncertainty representation in (2-4). These errors are referred
to as the left and right-invariant errors and they are

δXL = X−1X̂, (2-10)
δXR = X̂X−1, (2-11)
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2-3 Invariant Extended Kalman Filter 11

respectively, where X is the true state and X̂ is the estimated state. Now going back to the
approximation of (2-9), letting Fk−1(Xk−1, uk−1, 0) be the true state, then the perturbed state
can be written as

Xk = Fk−1(Xk−1, uk−1, 0) exp
(
w∧

k−1
)

, (2-12)

for the left-invariant error. For the right-invariant error this approximation is

Xk = exp
(
w∧

k−1
)

Fk−1(Xk−1, uk−1, 0), (2-13)

For the properties of the IEKF to hold, the dynamic model must be group affine. The group-
affine definition involves neglecting the noise, meaning that the choice of model does not have
an influence. Choosing the model (2-9), group affine function satisfies,

F(X1X2, u, 0) = F(X1, u, 0)F(I, u, 0)−1F(X2, u, 0), (2-14)

where the subscripts k have been omitted to ease the notation.

The prediction step of the IEKF is given by

X̌k = Fk−1(X̂k−1, uk−1, 0), (2-15)
P̌k = Fk−1P̂k−1FT

k−1 + Lk−1Qk−1LT
k−1. (2-16)

It should be noted here that Fk−1(·) is a function taking matrices as arguments and Fk−1 is
a Jacobian matrix, which should not be confused with each other. The update step of the
IEKF is performed when measurements are available, just as for the EKF. The invariant error
definitions have been introduced, however, it is still unclear when to use what error definition.
This depends on the type of measurement model, there are two types of measurement models,
the left and right-invariant measurement models and they are considered to be

yL
k = Xkbk + ek, (2-17)

yR
k = X−1

k bk + ek, (2-18)

respectively, where bk is some known vector and ek ∼ N (0, Rk). When confronted with a left-
invariant measurement model and a group affine process model, the left-invariant error should
be used. The same goes for the right-invariant error, when confronted with a right-invariant
measurement model. The Kalman gain is computed using

Kk = P̌kHT
k

(
HkP̌kHT

k + MkRkMT
k

)−1
. (2-19)

One might argue that since the measurement model for the MEKF and IEKF are the same,
that therefore Hk and Mk will be the same for both filters. This is, however, not the case,
since by algebra the measurement model for the IEKF gets altered to fit either the left or
the right-invariant measurement model while ensuring that the state Xk is an element of the
matrix Lie group. The covariance is updated using

P̂k = (I − KkHk) P̌k (I − KkHk)T + KkMkRkMT
k KT

k . (2-20)

Detailed applications of the IEKF are worked out and discussed in Chapter 4
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2-4 Related Work

This chapter serves to familiarize the reader with the current existing literature on the topic
of the IEKF and MEKF for pose estimation related to the work presented in this thesis. This
thesis considers pose estimation employed by the IEKF and MEKF on a 3D sample problem
using IMU sensors and GPS or landmark measurements.

In [33], it has been discussed how to employ the IEKF using an accelerometer, gyroscope and
two position receivers to estimate position, velocity and attitude with the IEKF framework.
Since the estimation encompasses attitude, position but also velocity, the relevant matrix Lie
group of the study presented in [33] is the group of double direct isometries, SE2(3). This is
the same Lie group that is considered in this thesis and an overview of this group is presented
in Appendix B-2. To the best of the author’s knowledge, there are limited published works
available on the topic of state estimation using this particular Lie group, consisting of [34,
35, 36]. However, in [34] the focus does not lie on invariant filtering in this Lie group, but
rather on solving the problem regarding linear quadratic regulator control on a quadrotor,
which is not related to the work considered in this thesis. Additionally, in [35] the work is
focused on the Strapdown Inertial Navigation System (SINS) for the initial alignment based
on the group SE2(3). Although, the use of the invariant framework turned out to be helpful
for their situation, especially if the initial misalignment of the attitude was large, which is
in agreement with findings reported in [8, 24], this work is not closely related to the work
considered in this thesis.

The study described in [33] is among the few research efforts that specifically investigate the
group SE2(3) and is closely related to the scope of this thesis. They consider two position
measurements, this corresponds to having two position receivers fixed on a rigid body, where
each of position measurement is of the form

yk = rnk
+ ek,

where rnk
denotes the position of the body and ek is a noise term, this model is identical to the

one considered in this thesis and is discussed in more detail in chapter 3. This measurement
model is left-invariant as it corresponds to the structure (2-17). In [33] only a left-invariant
EKF is considered and it is compared to the MEKF. The LIEKF is derived in continuous-
time. The reported results show that the LIEKF shows improved performance, meaning that
it shows a lower estimation error in the attitude, velocity and position. This is consistent
with other literature [8].

Another study that considers the group SE2(3) and being closely related to this thesis is pre-
sented in [36]. The presented study focuses on using the IEKF on the estimation sideslip angle
in a vehicle and compare its performance to the performance of an EKF. The application of
this study is not relevant for this thesis, however, the problem setup and conclusions drawn
in the study are valuable and provide insight in the performance of the IEKF compared to
the EKF. The study in [36] employs an LIEKF to an estimation problem where IMU mea-
surements, consisting of an accelerometer and a gyroscope, and Global Navigation Satellite
System (GNSS) measurements, which in their case provides measurement updates for the
velocity and position. The reported results are that the IEKF shows little improvement over
the EKF when all states for both methods are well estimated or calibrated. Nonetheless, the
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authors in [36] highlighted that the IEKF offers the advantage of reduced initialization re-
quirements and improved convergence efficiency. This is attributed to the fact that the state
propagation in the IEKF is independent of the state estimate. This is again in agreement
with the findings of [8].

In [37], a quaternion based IEKF is presented for spacecraft attitude estimation. In the other
studies and also in this thesis the orientation was parametrized in the form of rotation ma-
trices as in Appendix A. However, [37] chooses a parametrization in the form of quaternions.
For attitude estimation in 3D, the corresponding matrix Lie group is SO(3) as presented in
Appendix B-1. This is not the Lie group that is used in [37], rather a corresponding Lie
group suited for quaternions described by S3 ×R3 ∈ G, where S3 is the set of unit quaternions
[37, 38]. The available measurements are assumed to be the angular velocity from three-axis
gyroscopes and vector measurements from attitude sensors, such as sun sensors, magnetome-
ters and star trackers. This study has two interesting aspects, firstly, the gyroscopes are
assumed to be biased and bias estimation is performed and secondly, both an LIEKF and
an RIEKF are designed and compared to an MEKF. The first aspect ensures the fact that
because bias estimation is included in the filters, the dynamical model is not group affine.
As was discussed in section 2-3, since the dynamical is not group affine, it is not guaranteed
that the process Jacobian F is state-estimate independent. The second aspect is interesting
due to the fact that both the left-invariant as the right-invariant EKF are employed on the
same system. This means that at best only one of these two filters will have guaranteed mea-
surement model Jacobians H since for the other system the measurement model will not have
the corresponding invariant structure. The available measurement are coming from attitude
sensors which are inherently in body frame. The RIEKF consists of a transformation matrix
taking the measurements from body frame to navigation frame. The LIEKF consists of a
transformation matrix that takes the measurements from navigation frame to body frame.
Due to these transformations, this system with the attitude sensor measurements, will be a
more natural fit for the RIEKF, since the LIEKF has to transform the measurements to navi-
gation frame in order for it to fit the LIEKF structure. This also explains the reported results
in which it was found that the RIEKF showed less dependence on the estimated trajectory
and because of this it also showed more accurate estimation and faster convergence to the
true trajectory than the LIEKF and MEKF. Whereas the LIEKF and MEKF showed very
comparable results.

This thesis has defined two different MEKFs, the difference between these two filters is the
way the orientation deviation is defined, in one filter the orientation deviation is defined in
the body frame and in the other filter this is defined in navigation frame, referred to as
MEKF-b and MEKF-n, respectively. To the authors best knowledge, this distinction has not
yet been made in the context of comparison of the IEKF and MEKF for pose estimation. In
[39], a multiplicative extended Kalman filter (MEKF) is proposed for estimating the relative
state of a multirotor vehicle when operating in an environment where GPS measurements are
unavailable. The MEKF combines data from an inertial measurement unit and an altimeter
with relative-pose updates obtained from either a keyframe-based visual odometry or a laser
scan-matching algorithm. Since the global position and heading states of the vehicle cannot be
directly observed without GPS measurements, the MEKF in this research estimates the state
relative to a local frame that is aligned with the odometry keyframe. They derive the filter
both for traditional dynamics defined with respect to an inertial frame, and for robocentric
dynamics defined with respect to the vehicle’s body frame. They reported that both filters
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showed very similar results, but subtle differences were noticeable in the error dynamics.

Niels van der Laan Master of Science Thesis



Chapter 3

Models

In this thesis, a sample problem is designed. The problem involves 3D pose estimation using
IMUs, consisting of a gyroscope and an accelerometer, and considers both GPS measurements
and relative position measurements.
A body is free to rotate and translate in 3D space. Let Fn be the navigation frame and let
frame Fb be the frame that rotates with the body. Additionally, point w is a reference point
and point z is a point attached to the body. The body is equipped with an IMU consisting
of a gyroscope and an accelerometer.
A graphical representation of the situation is given in Figure 3-1.
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n
−→

2
n
−→

1
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b
−→

3

b
−→

2

b
−→

1

z

r
−→

zw

Figure 3-1: Problem setup.

This research focuses on pose estimation, more specifically, the estimation of orientation, po-
sition and velocity. It is necessary to discuss the underlying models assumed on the dynamics
and the incoming measurements in order to perform a sensible estimation on the before-
mentioned states. This will be the focus of this section. The models that will be discussed
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are the models for the IMU sensors, such as the gyroscope and accelerometer, the models
describing the dynamics of the system and the measurement models, such as global position
measurements and position measurements relative to some known landmark.

3-1 Gyroscope Measurement Models

The gyroscope measures angular velocity ωbn
b of the body frame with respect to the navigation

frame, resolved in the body frame, at each time instance k. It is assumed here that the
travelled distances of the body are relatively small compared to the size of the earth and thus
that the navigation frame can be assumed to be stationary. Additionally, the magnitutde
of the rotation of the earth is assumed to be fairly small compared to the magnitude of the
actual measurements. The gyroscope measurements are assumed to be corrupted by noise
wω

bk
, and are therefore modelled as [9]

uω
bk

= ωbn
bk

− wω
bk

. (3-1)

In [9] it was shown that the gyroscope measurement noise is relatively Gaussian and thus it
is often assumed to be wω

bk
∼ N (0, Qω

k ). It is also assumed that the axes in the sensors are
properly calibrated and that is thus can be assumed that [9]

Qω
k =

 σω2
x 0 0
0 σω2

y 0
0 0 σω2

z

 . (3-2)

In this thesis it is assumed there is no bias on the gyroscope, as including bias estimation in
the system would render the dynamical model no longer group affine [24].

3-2 Accelerometer Measurement Models

The accelerometer measures the specific force fbk
at each time instance k. These measurements

corrupted by noise wa
bk

are modelled as [9]

ua
bk

= fbk
− wa

bk
. (3-3)

Similar as for the gyroscope measurement noise, in [9] it was found that accelerometer mea-
surement noise is relatively Gaussian and is assumed to be wa

bk
∼ N (0, Qa

k), with Qa
k defined

similar to (3-2), provided that the sensors are properly calibrated. It is assumed there is
no bias on the accelerometer, as including bias estimation in the system would render the
dynamical model no longer group affine [24]. It is further assumed that the magnitude of the
Coriolis acceleration is small compared to the magnitude of the accelerometer measurements.
The centrifugal acceleration is often absorbed into the local gravity vector. Incorporating this
information into (3-3), yields [9]

ua
bk

= Cbkn(ank
− gn) − wa

bk
, (3-4)

where ank
represents the linear acceleration in the navigation frame and gn is the gravity

vector.
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3-3 Dynamical models

The dynamical models for this problem are similar to ones considered in [40]. The continuous-
time relations between position, velocity and acceleration are known as

vzw/n
n = drzw

n

dt
, azw/n

n = dvzw/n
n

dt
, (3-5)

the orientation and angular velocity are related as [9]

dCnb

dt
= Cnbω

bn×

b , (3-6)

where Cnb represents the rotation matrix from the reference frame Fb to Fn, see also Appendix
A. These relations can be discretized using an Euler discretization, which could be seen as
a form of a Taylor expansion in which higher-order terms than quadratic are ignored, and
assuming that that the acceleration is constant between each time instance, the dynamics of
the position and velocity can be expressed in terms of the acceleration,

rzkw
n = rzk−1w

n + T vzk−1w/n
n + T 2

2 azk−1w/n
n , (3-7)

vzkw/n
n = vzk−1w/n

n + T azk−1w/n
n , (3-8)

where T is the time step between two samples. For the dynamics of the orientation, the
rotation matrices are updated as

Cnbk
= Cnbk−1 expSO(3)(Tωbn×

b ), (3-9)

where the subscript for the exponential map is used to clarify that it belongs to the matrix
Lie group SO(3), the special orthogonal group, an overview of this can be found in Appendix
B-1. Dynamical models serve to describe the change a state of the system undergoes over
time. The states to be estimated in this research are position, velocity and a parametrization
of the orientation, in this case rotation matrices. The inertial measurements from the IMU
can be used as inputs for the dynamic equation of the aforementioned states. Using (3-1) and
(3-4) and use these as inputs for the dynamics of the system, results in the dynamical model
being  rzkw

n

vzkw/n
n

Cnbk

 =


rzk−1w

n + T vzk−1w/n
n + T 2

2 (Cnbk−1(ua
bk−1

+ wa
bk−1

) + gn)
vzk−1w/n

n + T (Cnbk−1(ua
bk−1

+ wa
bk−1

) + gn)
Cnbk−1 expSO(3)(T (uω

bk−1
+ wω

bk−1
)×)

 . (3-10)

3-4 Position Measurements

Position measurements can be acquired from a Global Positioning System (GPS), or a Global
Navigation Satellite System (GNSS), receiver for example. GPS refers specifically to the
navigation system developed and operated by the United States government. It consists of a
network of satellites orbiting the Earth that transmit signals to GPS receivers on the ground.

Master of Science Thesis Niels van der Laan



18 Models

These signals are used to determine the receiver’s position, velocity, and time information
[41].

On the other hand, GNSS is a more general term that encompasses multiple satellite systems
from different countries and organizations. In addition to GPS, GNSS includes other satellite
systems such as GLONASS (Russia), Galileo (European Union), BeiDou (China), and NavIC
(India). These systems operate independently but are compatible with each other, allowing
receivers to utilize signals from multiple constellations [41].

The main difference, therefore, lies in the scope and coverage. GPS refers specifically to the
American satellite system, while GNSS encompasses a broader range of satellite systems from
different countries. By using multiple satellite constellations within the GNSS framework,
receivers can access a larger number of satellites, leading to improved positioning accuracy,
availability, and reliability [41]. In practice, many modern receivers support both GPS and
GNSS, allowing them to utilize signals from multiple satellite systems.

A simplified model is assumed in this thesis, where the sensors directly measure the position,
this model is given as [9]

yp
nk

= rzkw
n + ep

nk
, (3-11)

where rzkw
n is the position of point z with respect to point w resolved in the navigation

frame, this can graphically be seen in Figure 3-1. Additionally, ep
nk

∼ N (0, Rk), where Rk

is a diagonal covariance matrix, similar to (3-2). These measurements will be referred to as
position measurements or GPS measurements in the remainder of this thesis.

In order to perform Monte Carlo simulations, the initial error of the estimate is taken from a
normal distribution with zero mean and a covariance matrix P0, such that δx0 ∼ N (0, P0) for
the MEKF and δξ0 ∼ N (0, P0) for the IEKF. These initial errors can then be used together
with the true states in order to initialize the filters. For the MEKFs this means

r̂z0w
n = rz0w

n + δr0,

v̂z0w/n
n = vz0w/n

n + δv0,

Ĉnb0 = Cnb0 expSO(3)(δϕ0).

For the LIEKF and RIEKF this initialization is done by taking δT0 = exp(δξ∧
0 ) and then the

initial state can be found using the appropriate error definition to get

T̂L
0 = T0δT0,

T̂R
0 = δT0T0.

3-5 Landmark Position Measurements

Another form of position measurements are from Light Detection and Ranging (LIDAR), or
stereo cameras, for example. The landmark position measurements give information on the
distance and orientation with respect to some known landmarks. The difference with the
position measurements from the previous subsection is that those measurements are in the
navigation frame and the landmark position measurements give information of the position
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in body frame. The position of the ith is denoted by pi, the landmark position measurement
model is then assumed to be [24]

yi
bk

= rpizk
b + ei

bk
, (3-12)

where rpiz
b is the position of landmark i relative to point z resolved in the body frame and

where ei
bk

∼ N (0, Ri
k) with Ri

k a diagonal covariance matrix, similar to (3-2). To show the
information these measurements have on directly on the orientation and position states, this
model is written as

yi
bk

= CT
nbk

(rpiw
n − rzkw

n ) + ei
bk

, (3-13)

where rpiw
n is the known position of the ith landmark relative to point w in the navigation

frame Fn. A graphical representation is given in Figure 3-2.
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Figure 3-2: Problem setup for pose estimation, red crossed represent landmarks.
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Chapter 4

Method

The method chapter of this thesis aims to address the research questions posed at the be-
ginning, specifically focusing on the comparison between the Invariant Extended Kalman
Filter (IEKF) and the Multiplicative Extended Kalman Filter (MEKF). To investigate these
questions, a simulated trajectory is used as the basis for the comparison.

The first question examines the benefits of using a left-Invariant Extended Kalman Filter
(LIEKF) over an MEKF when dealing with a left-invariant measurement model, and similarly,
whether employing a Right-Invariant Extended Kalman Filter (RIEKF) is more advantageous
over an MEKF for a right-invariant measurement model. In order to do this, a distinction
is made for the MEKF in the way the orientation deviation is defined. This can either be
defined as the orientation deviation being resolved in the frame rotating with the body Fb,
further referred to as MEKF-b, or the orientation deviation being resolved in the navigation
frame Fn, further referred to as MEKF-n,. This distinction is made since the MEKF-b is
more closely related to the LIEKF, due to the nature of the left-invariant structure. The
MEKF-n is more closely related to the RIEKF for similar reasons. In order to highlight the
similarities between the IEKF and MEKF, the LIEKF will be compared to the MEKF-b and
the RIEKF will be compared with the MEKF-n.

A sample problem is designed and simulated. The problem involves 3D pose estimation using
IMUs, consisting of a gyroscope and an accelerometer, and considers both GPS measurements
and relative position measurements, as described in chapter 3 and is graphically represented
in Figure 3-1.

4-1 Simulation Setup

This section discusses how the simulation has been setup. A body is to fly around in 3D space,
this could be similar to any unmanned aerial vehicle (UAV). To simulate the trajectory, an
initial value has been set for the orientation, velocity and position. A constant value was
chosen for the acceleration and angular velocity throughout the trajectory, thus the body
was constrained to have a constant change in roll, pitch and yaw. Between each Monte
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Carlo simulation this constant value would be drawn from a normal distribution with a small
variance around a mean value ā and ω̄. The propagation of the trajectory was computed
using the dynamical models (3-7), (3-8) and (3-9) for a time interval of 100 seconds and using
chosen initial. The corresponding true orientation state was then computed at each time step
from the rotation matrix through the logarithmic map by

δξϕ×

k = logSO(3)(Cnbk
).

Landmarks were placed along the trajectory. This was done by randomly placing them with
the space enclosed by the minimum and maximum of the trajectory in each of the three axes.
A typical trajectory with ten placed landmarks is shown in Figure 4-1.

Figure 4-1: A simulated trajectory. The ten landmarks are represented by the red crosses.

Due to the fact that the acceleration and the angular velocity are drawn from a normal
distribution at each Monte Carlo simulation, this trajectory will not be identical for each
Monte Carlo simulation.

The body is equipped with a gyroscope and an accelerometer sensor that both operate at
100 Hz. The IMU sensor data is simulated using the true angular velocity, acceleration
and trajectory information with (3-1) and (3-4) and wω

bk
∼ N (0, Qω

k ), with Qω
k = σ2

ωI and
wa

bk
∼ N (0, Qa

k) with Qa
k = σ2

aI.

Corrective measurements from either the GPS or the relative position to known landmarks
are received at 10 Hz. In order to simulate a visual limit for the body, a threshold value
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of 35 meters for ∥rpiz
b ∥ has been set. This means that if the norm of the distance from the

body to a landmark exceeds this threshold value, then this landmark will not be visible for
the body to observe. This value was chosen in such a manner that the body will be able to
observe multiple landmarks at each instance but not all of them at every instance. The GPS
measurements are modelled using the true trajectory and (3-11) with ep

nk
∼ N (0, Rk) where

Rk = σ2
RI. The relative position measurements to known landmarks are modelled using the

true trajectory and (3-13) with ei
bk

∼ N (0, Rk) where Ri
k = σ2

RI.

4-2 Left-Invariant Extended Kalman Filter Derivation

This section will present the implementation of the left-IEKF or LIEKF on pose estimation
for the system models described in chapter 3. It will follow the reasoning presented in [15] in
combination with [42].
The dynamical model (3-10) needs to be put into a form suitable for the IEKF, meaning
it needs to be an element of a matrix Lie group. The matrix Lie group that encompasses
position, velocity and rotation matrices is known as the matrix Lie group of double direct
isometries, SE2(3) [43]. The state matrix in SE2(3) is denoted by T and is given as

Tk =

 Cnbk
vzkw/n

n rzkw
n

0 1 0
0 0 1

 . (4-1)

For the derivation of the LIEKF, a left-invariant measurement model needs to be considered.
Position measurements are suitable for this, for example from a GPS receiver, as described
in (3-11). A measurement model yielding position measurements is given as

yp
nk

= rzkw
n + ep

nk
, (4-2)

= Tk

[
0
1

]
+

[
ep

nk

0

]
. (4-3)

Comparing the structure of this measurement model to the one given in (2-17), this can be

recognised as a left-invariant model, with Xk = Tk, yL
k = yp

nk
and enk

=
[

ep
nk

0

]
.

A noise matrix Wbk
∈ se2(3) associated with the process noise wbk

=
[

wω
bk

T wa
bk

T wa
bk

T
]T

can be defined as

Wbk
=

 wω×
bk

wa
bk

wa
bk

0 0 0
0 0 0


= w∧

bk
,

where (·)∧ is used as defined in Appendix B-2. As discussed in section 2-3, the dynamics can
be approximated as (2-12), meaning the discrete time dynamical model can be written as the
perturbed state

Tk = F(Tk−1, uk−1) exp(T w∧
bk−1), (4-4)
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by letting F(Tk−1, uk−1) be the true state. So the dynamics can be written as an element of
SE2(3), by substituting in (3-10), as

Tk =

 Cnbk
vzkw/n

n rzkw
n

0 1 0
0 0 1


=

 Cnbk−1 vzk−1w/n
n + T gn rzk−1w

n + T vzk−1w/n
n + T 2

2 gn

0 1 0
0 0 1


 expSO(3)(T uω×

bk−1
) T ua

bk−1
T 2

2 ua
bk−1

0 1 0
0 0 1


 expSO(3)(T wω×

bk−1
) T wa

bk−1
T 2

2 wa
bk−1

0 1 0
0 0 1


Now, approximating the squared sampling time term times the accelerometer noise as just
the sampling time term times the accelerometer noise, yields

Tk ≈

 Cnbk−1 vzk−1w/n
n + T gn rzk−1w

n + T vzk−1w/n
n + T 2

2 gn

0 1 0
0 0 1


 expSO(3)(T uω×

bk−1
) T ua

bk−1
T 2

2 ua
bk−1

0 1 0
0 0 1


 expSO(3)(T wω×

bk−1
) T wa

bk−1
T wa

bk−1

0 1 0
0 0 1



=

 Cnbk−1 vzk−1w/n
n + T gn rzk−1w

n + T vzk−1w/n
n + T 2

2 gn

0 1 0
0 0 1


︸ ︷︷ ︸

F(Tk−1) expSO(3)(T uω×
bk−1

) T ua
bk−1

T 2

2 ua
bk−1

0 1 0
0 0 1


︸ ︷︷ ︸

Ξk−1

exp(T w∧
bk−1) (4-5)

= F(Tk−1)Ξk−1 exp(T w∧
bk−1). (4-6)

Here F(Tk−1) and Ξk−1 are defined to indicate that one term is dependent on just the state
Tk−1 and the other term is only dependent on the accelerometer and gyroscope inputs. From
this derivation it can be concluded that, albeit not exact for these dynamical models, the
dynamical models can be approximated to be equal to (4-4). As mentioned in section 2-3,
for the IEKF to have error dynamics that are trajectory independent, the dynamical model
must be group affine. Group affine systems satisfy (2-14) [15]. This equation (2-14) can be
adapted to the matrix Lie group as

F(T1T2, u) = F(T1, u)F(I, u)F(T2, u). (4-7)

So first, it must be verified that this condition holds, in the following derivation notation
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associated with the time step and the reference frames are omitted for clarity, let

T1T2 =

 C1 v1 r1
0 1 0
0 0 1


 C2 v2 r2

0 1 0
0 0 1


=

 C1C2 C1v2 + v1 C1r2 + r1
0 1 0
0 0 1

 .

Substituting this as the argument into F(T, u) as defined in (4-5), leads to

F(T1T2, u) = F(T1T2)Ξk−1

=

 C1C2 C1v2 + v1 + T g C1r2 + r1 + T (C1v2 + v1) + T 2

2 g
0 1 0
0 0 1

 Ξk−1. (4-8)

Then, compute

F(I, u)−1 =


 I T g T 2

2 g
0 1 0
0 0 1

 Ξk−1


−1

= Ξ−1
k−1

 I −T g −T 2

2 g
0 1 0
0 0 1

 ,

substituting this into (4-7), yields

F(T1T2, u) =

 C1 v1 + T g r1 + T v1 + T 2

2 g
0 1 0
0 0 1

 Ξk−1Ξ−1
k−1

 I −T g −T 2

2 g
0 1 0
0 0 1


 C2 v2 + T g r2 + T v2 + T 2

2 g
0 1 0
0 0 1

 Ξk−1

=

 C1 v1 + T g r1 + T v1 + T 2

2 g
0 1 0
0 0 1


 C2 v2 r2 + T v2

0 1 0
0 0 1

 Ξk−1

=

 C1C2 C1v2 + v1 + T g C1(r2 + T v2) + r1 + T v1 + T 2

2 g
0 1 0
0 0 1

 Ξk−1,

which is equal to (4-8), so (4-7) is satisfied and the dynamical model can be concluded to be
group affine.
Propagation The time update is performed by using the left-invariant error definition, which
for the case of the matrix Lie group SE2(3) is equal to [42],

δŤk = (Tnbk
)−1Ťnbk

(4-9)
= (F(Tk−1)Ξk−1 exp(T w∧

bk−1))−1F(T̂k−1)Ξk−1

= exp(−T w∧
bk−1)Ξ−1

k−1F(Tk−1)−1F(T̂k−1)Ξk−1. (4-10)
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Taking the following left-invariant error definition

δTk = (Tnbk
)−1T̂nbk

=

 CT
nbk

−CT
nbk

vzkw/n
n −CT

nbk
rzkw

n

0 1 0
0 0 1


 Ĉnbk

v̂zkw/n
n r̂zkw

n

0 1 0
0 0 1



=

 CT
nbk

Ĉnbk
CT

nbk
(v̂zkw/n

n − vzkw/n
n ) CT

nbk
(r̂zkw

n − rzkw
n )

0 1 0
0 0 1


= exp(δξ∧

k ).

This way, the errors are defined to be

δCk = CT
nbk

Ĉnbk
= expSO(3)

(
ξϕ×)

,

δvzkw/n
n = CT

nbk
(v̂zkw/n

n − vzkw/n
n ) = Jξv,

δrzkw
n = CT

nbk
(r̂zkw

n − rzkw
n ) = Jξr.

Then, to ease the notation, let

vk−1 = vzk−1w/n
n + T gn, (4-11a)

v̂k−1 = v̂zk−1w/n
n + T gn, (4-11b)

rk−1 = rzk−1w
n + T vzk−1w/n

n + T 2

2 gn, (4-11c)

r̂k−1 = r̂zk−1w
n + T v̂zk−1w/n

n + T 2

2 gn, (4-11d)

such that the following yields,

F(Tk−1)−1F(T̂k−1) =

 CT
nbk−1

−CT
nbk−1

vk−1 −CT
nbk−1

rk−1
0 1 0
0 0 1


 Ĉnbk−1 v̂k−1 r̂k−1

0 1 0
0 0 1


=

 CT
nbk−1

Ĉnbk−1 δF12 δF13
0 1 0
0 0 1

 ,

where

δF12 = CT
nbk−1(v̂k−1 − vk−1)

= CT
nbk−1(v̂zk−1w/n

n − vzk−1w/n
n )

= δvzkw/n
n ,

δF13 = CT
nbk−1(r̂k−1 − rk−1)

= CT
nbk−1(r̂zk−1w

n − rzk−1w
n + T (v̂zk−1w/n

n − vzk−1w/n
n ))

= δrzk−1w
n + Tδvzk−1w/n

n .

Niels van der Laan Master of Science Thesis



4-2 Left-Invariant Extended Kalman Filter Derivation 27

This results in

F(Tk−1)−1F(T̂k−1) =

 δCk−1 δvzk−1w/n
n δrzk−1w

n + Tδvzk−1w/n
n

0 1 0
0 0 1

 .

Substituting this expression into (4-10), defining Ψk−1 = expSO(3)(T uω×
bk−1

) and dropping the
notation on the reference frames in δvzk−1w/n

n and δrzk−1w
n such that these are denoted by

δvk−1 and δrk−1, respectively, for a more compact derivation, gives

δŤk = exp(−T w∧
bk−1)Ξ−1

k−1F(Tk−1)−1F(T̂k−1)Ξk−1

= exp(−T w∧
bk−1)

 ΨT
k−1 −TΨT

k−1ua
bk−1

−T 2

2 ΨT
k−1ua

bk−1

0 1 0
0 0 1


 δCk−1 δvk−1 δrk−1 + Tδvk−1

0 1 0
0 0 1


 Ψk−1 T ua

bk−1
T 2

2 ua
bk−1

0 1 0
0 0 1



= exp(−T w∧
bk−1)

 ΨT
k−1 −TΨT

k−1ua
bk−1

−T 2

2 ΨT
k−1ua

bk−1

0 1 0
0 0 1


 δCk−1Ψk−1 TδCk−1ua

bk−1
+ δvk−1

T 2

2 δCk−1ua
bk−1

+ δrk−1 + Tδvk−1
0 1 0
0 0 1


= exp(−T w∧

bk−1) ΨT
k−1δCk−1Ψk−1 TΛ + ΨT

k−1δvk−1
T 2

2 Λ + ΨT
k−1(δrk−1 + Tδvk−1)

0 1 0
0 0 1

 ,

where Λ = ΨT
k−1(δCk−1 − I)ua

bk−1
. This can be linearized by letting δŤk ≈ I + δξ̌

∧
k , δCk−1 ≈

I + δξ̌
ϕ
k−1

×
, δvk−1 = Jδξ̌

v
k−1, δrk−1 = Jδξ̌

r
k−1, J ≈ I and exp(−T w∧

bk−1
) ≈ I − Tδw∧

bk−1
, and

ignoring terms of order O(
∥∥δξk−1

∥∥
2

∥∥∥δwbk−1

∥∥∥
2
). This results in

I + δξ̌
∧
k−1 = (I − Tδw∧

bk−1)

 ΨT
k−1(I + δξ̌

ϕ
k

×
)Ψk−1 Z12 Z13

0 1 0
0 0 1



= (I − Tδw∧
bk−1)

 I + (ΨT
k−1δξ̌

ϕ
k−1)× Z12 Z13

0 1 0
0 0 1

 ,
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where

Z12 = TΨT
k−1δξ̌

ϕ
k−1

×
ua

bk−1 + ΨT
k−1δξ̌

v
k−1

= −TΨT
k−1ua

bk−1
×δξ̌

ϕ
k−1 + ΨT

k−1δξ̌
v
k−1,

Z13 = T 2

2 ΨT
k−1δξ̌

ϕ
k−1

×
ua

bk−1 + ΨT
k−1(δξ̌

r
k−1 + Tδξ̌

v
k−1)

= −T 2

2 ΨT
k−1ua

bk−1
×δξ̌

ϕ
k−1 + ΨT

k−1(δξ̌
r
k−1 + Tδξ̌

v
k−1).

This can then be continued by

I + δξ̌
∧
k = (I − Tδw∧

bk−1)

I −

 (ΨT
k−1δξ̌

ϕ
k−1)× Z12 Z13

0 0 0
0 0 0




= (I − Tδw∧
bk−1)

I +

 ΨT
k−1δξ̌

ϕ
k−1

Z12
Z13


∧

= (I − Tδw∧
bk−1)

I +


ΨT

k−1δξ̌
ϕ
k−1

−TΨT
k−1ua

bk−1
×δξ̌

ϕ
k−1 + ΨT

k−1δξ̌
v
k−1

−T 2

2 ΨT
k−1ua

bk−1
×δξ̌

ϕ
k−1 + ΨT

k−1(δξ̌
r
k−1 + Tδξ̌

v
k−1)


∧

= (I − Tδw∧
bk−1)

I +


 ΨT

k−1 0 0
−TΨT

k−1ua
bk−1

× ΨT
k−1 0

−T 2

2 ΨT
k−1ua

bk−1
× TΨT

k−1 ΨT
k−1


 δξ̌

ϕ
k−1

δξ̌
v
k−1

δξ̌
r
k−1




∧
= (I − Tδw∧

bk−1)(I + (Fk−1δξ̌k−1)∧)

≈ I + (Fk−1δξ̌k−1)∧ − Tδw∧
bk−1

Then finally, the following dynamic equation can be found

δξ̌k = Fk−1δξ̌k−1 + Lk−1δwbk−1 , (4-12)

with

Fk =

 ΨT
k−1 0 0

−TΨT
k−1ua

bk−1
× ΨT

k−1 0
−T 2

2 ΨT
k−1ua

bk−1
× TΨT

k−1 ΨT
k−1

 , (4-13)

and

Lk = −T I (4-14)

Measurement update In order to update the state estimates, position measurements are

Niels van der Laan Master of Science Thesis



4-2 Left-Invariant Extended Kalman Filter Derivation 29

used and these are modelled as (4-3). The innovation is given by [15]

zk = Ť−1
k (yp

nk
− y̌p

nk
)

= Ť−1
k (Tk

[
0
1

]
+

[
ep

nk

0

]
− Ťk

[
0
1

]
)

= δŤk

[
0
1

]
+ Ť−1

k

[
ep

nk

0

]
+

[
0
1

]
.

This can be linearized by letting δŤ−1
k ≈ I − δξ̌

∧
k and ep

nk
= ēp

nk
+ δep

nk
with ēp

nk
= 0, such

that,

zk ≈ (I − δξ̌
∧
k )

[
0
1

]
+ Ť−1

k

[
δep

nk

0

]
+

[
0
1

]

= −δξ̌
∧
k

[
0
1

]
+ Ť−1

k

[
δep

nk

0

]

= −

 δξ̌
ϕ
k δξ̌

v
k δξ̌

r
k

0 0 0
0 0 0

 [
0
1

]
+ Ť−1

k

[
δep

nk

0

]

=

 −δξ̌
r
k

0
0

 + Ť−1
k

[
δep

nk

0

]

= Hkδξ̌k + Mk

[
δep

nk

0

]
, (4-15)

where

Hk =
[

0 0 −I
0 0 0

]
, (4-16)

and

Mk = Ť−1
k . (4-17)

It can be noted that the bottom rows of the innovation (4-15) is always equal to 0, so it can
be reduced to

zk = Hkδξ̌k + Mkδep
nk

, (4-18)

where

Hk =
[

0 0 −I
]

, (4-19)

and

Mk = ČT
nbk

. (4-20)

A summary of the equations for the LIEKF when employed for pose estimation using position
measurements, is given in Algorithm 1.
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Algorithm 1 Left-Invariant Extended Kalman Filter
Inputs: Measurement data yp

nk
and its covariance matrices.

Outputs: An estimate of the state matrix and the covariance matrix for k = 1, . . . , N .

1. Initialize with rz1w
n , vz1w/n

n , Ĉnb1 and P̂1

2. for k = 2, . . . , N do
(a) Prediction. Compute

Ťk = F(T̂k−1)Ξk−1, (4-21a)
P̌k = Fk−1P̂k−1FT

k−1 + Lk−1Q̂k−1LT
k−1, (4-21b)

where F(Tk−1) and Ξk−1 are defined as in (4-5), Fk−1 is defined as in (4-13) and
Lk−1 is defined as in (4-14).

(b) Update. Compute

Kk = P̌kHT
k

(
HkP̌kHT

k + MkRkMT
k

)−1
,

zk = Ť−1
k (yp

nk
− y̌p

nk
).

Then, to update the state matrix and the covariance estimate, compute

T̂k = Ťk exp(−(Kkzk)∧) (4-22)
P̂k = (I − KkHk) P̌k (I − KkHk)T + KkMkRkMT

k KT
k , (4-23)

where Hk and Mk are computed following (4-19) and (4-20), respectively.
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4-3 Multiplicative EKF with Orientation Deviation States in Body
Frame

This section will present the implementation of the MEKF for the use of pose estimation with
the orientation deviation being defined as resolved in body frame, referred to as MEKF-b.
This section will be based on the derivations and results shown in [40]. Instead of expressing
the parametrization of the linearization point in quaternions, it will be expressed in terms of
rotation matrices.
The orientation is modelled such that it is in terms of a linearization point parametrized as
a rotation matrix Cnbk

and an orientation deviation parametrized as a rotation vector δϕbk
.

The orientation can be modelled as

Cnbk
= C̄nbk

exp(δϕ×
bk

), (4-24a)

and the linearization of the position and velocity states are modelled as

rzkw
n = r̄zkw

n + δrzkw
n , (4-24b)

vzkw/n
n = v̄zkw/n

n + δvzkw/n
n . (4-24c)

Propagation The time update is performed by using the dynamical model and updating the
linearization point. Firstly, a linearized dynamic equation for the position will be derived,
this is done by using the dynamics for the position state in (3-10) and substituting in (4-24),
which gives

r̄zkw
n + δrzkw

n = r̄zk−1w
n + δrzk−1w

n + T (v̄zk−1w/n
n + δvzk−1w/n

n )

+ T 2

2 (C̄nbk−1 exp(δϕ×
bk−1

)(ua
bk−1 + w̄a

bk−1 + δwa
bk−1) + gn)

≈ r̄zk−1w
n + δrzk−1w

n + T v̄zk−1w/n
n + Tδvzk−1w/n

n

+ T 2

2 (C̄nbk−1(I + δϕ×
bk−1

)(ua
bk−1 + w̄a

bk−1 + δwa
bk−1) + gn)

= r̄zk−1w
n + δrzk−1w

n + T v̄zk−1w/n
n + Tδvzk−1w/n

n

+ T 2

2 gn + T 2

2 C̄nbk−1(ua
bk−1 + w̄a

bk−1) + T 2

2 C̄nbk−1δwa
bk−1

+ T 2

2 C̄nbk−1δϕ×
bk−1

(ua
bk−1 + w̄a

bk−1) + T 2

2 C̄nbk−1δϕ×
bk−1

δwa
bk−1 ,

where wa
bk

= w̄a
bk

+ δwa
bk

with w̄a
bk

= 0, which is consistent with wa
bk

∼ N (0, Qa
k). Ignoring

terms of order O(
∥∥∥δϕbk−1

∥∥∥
2

∥∥∥δwa
bk−1

∥∥∥
2
) and subtracting the nominal dynamical equation

r̄zkw
n = r̄zk−1w

n + T v̄zk−1w/n
n + T 2

2 (C̄nbk−1(ua
bk−1 + w̄a

bk−1) + gn), (4-25)

then yields the following linearized dynamic equation for position,

δrzkw
n ≈ δrzk−1w

n + Tδvzk−1w/n
n + T 2

2 C̄nbk−1δϕ×
bk−1

ua
bk−1 + T 2

2 C̄nbk−1δwa
bk−1

= δrzk−1w
n + Tδvzk−1w/n

n − T 2

2 C̄nbk−1ua
bk−1

×δϕbk−1 + T 2

2 C̄nbk−1δwa
bk−1 (4-26)
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Following a similar procedure, a linearized dynamic equation for the velocity will be derived.
To do so, substitute (4-24) into the dynamics of the velocity state in (3-10), this gives

v̄zkw/n
n + δvzkw/n

n = v̄zk−1w/n
n + δvzk−1w/n

n

+ T (C̄nbk−1 exp(δϕ×
bk−1

)(ua
bk−1 + w̄a

bk−1 + δwa
bk−1) + gn)

≈ v̄zk−1w/n
n + δvzk−1w/n

n

+ T (C̄nbk−1(I + δϕ×
bk−1

)(ua
bk−1 + w̄a

bk−1 + δwa
bk−1) + gn)

= v̄zk−1w/n
n + δvzk−1w/n

n + T gn + T C̄nbk−1(ua
bk−1 + w̄a

bk−1) + T C̄nbk−1δwa
bk−1

+ T C̄nbk−1δϕ×
bk−1

(ua
bk−1 + w̄a

bk−1) + T C̄nbk−1δϕ×
bk−1

δwa
bk−1 .

Again ignoring terms of order O(
∥∥∥δϕbk−1

∥∥∥
2

∥∥∥δwa
bk−1

∥∥∥
2
) and subtracting the nominal dynamical

equation

v̄zkw/n
n = v̄zk−1w/n

n + T (C̄nbk−1(ua
bk−1 + w̄a

bk−1) + gn), (4-27)

the following linearized dynamic equation for the velocity state can be derived,

δvzkw/n
n ≈ δvzk−1w/n

n + T C̄nbk−1δwa
bk−1 + T C̄nbk−1δϕ×

bk−1
ua

bk−1

= δvzk−1w/n
n − T C̄nbk−1ua

bk−1
×δϕbk−1 + T C̄nbk−1δwa

bk−1 . (4-28)

In the MEKF the time update for the orientation deviation is performed by using the dy-
namical model to update the linearization point as

Čnbk
= Ĉnbk−1 exp(T uω×

bk−1). (4-29)

To derive the linearized dynamic equation for the orientation deviation, take the dynamics
for the rotation matrix in (3-10) and substitute in (4-24a) and (4-29), which gives

C̄nbk
exp(δϕ×

bk
) = C̄nbk−1 exp(δϕ×

bk−1
) exp(T (uω

bk−1 + wω
bk−1)×),

exp(δϕ×
bk

) = C̄−1
nbk

C̄nbk−1 exp(δϕ×
bk−1

) exp(T (uω
bk−1 + wω

bk−1)×)

= exp(T u×
bk

)−1 exp(δϕ×
bk−1

) exp(T (uω×
bk−1 + wω×

bk−1))

= exp(T u×
bk

)−1 exp(δϕ×
bk−1

) exp(T uω×
bk−1) + exp(T wω×

bk−1)

using (2-1) and also using from section B-1 that the adjoint representation of an element of
SO(3) is equal to that same element of SO(3), this can be further simplified to

exp(δϕ×
bk

) = exp((exp(T uω×
bk−1)−1δϕbk−1)×) + exp(T wω×

bk−1).

Then, using the BCH formula yields,

δϕ×
bk

= (exp(T uω×
bk−1)−1δϕbk−1)× + T wω×

bk−1 ,

δϕbk
= exp(−T uω×

bk−1)δϕbk−1 + T wω
bk−1 (4-30)
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where wω
bk

= w̄ω
bk

+ δwω
bk

with w̄ω
bk

= 0, which is consistent with wω
bk

∼ N (0, Qω
k ).

Combining the linearized dynamic equations, gives the following linearized dynamical model,

 δrzkw
n

δvzkw/n
n

δϕbk

 =


δrzk−1w

n + Tδvzk−1w/n
n − T 2

2 C̄nbk−1ua×
bk−1

δϕbk−1 + T 2

2 C̄nbk−1δwa
bk−1

δvzk−1w/n
n − T C̄nbk−1ua×

bk−1
δϕbk−1 + T C̄nbk−1δwa

bk−1

exp(−T uω×
bk−1

)δϕbk−1 + Tδwω
bk−1



= Fk

 δrzk−1w
n

δvzk−1w/n
n

δϕbk−1

 + Lk

[
δwa

bk−1

δwω
bk−1

]
.

An expression for the Jacobians can then be found, these are given by

Fk =


I T I −T 2

2 C̄nbk−1ua×
bk−1

0 I −T C̄nbk−1ua×
bk−1

0 0 exp(−T uω×
bk−1

)

 , (4-31)

and

Lk =

 T 2

2 C̄nbk−1 0
T C̄nbk−1 0

0 T I

 (4-32)

Measurement update To update the state estimates, position measurement are used. These
measurements are given by (4-2). Then substituting in (4-24b) and using that ep

nk
= ēp

nk
+δep

nk

with ēp
nk

= 0, which is consistent with ep
nk

∼ N (0, Rk), yields

ȳp
k + δyp

nk
= r̄zkw

n + δrzkw
n + ēp

nk
+ δep

nk
,

and subtracting the nominal equation ȳp
k = r̄zkw

n then gives

δyp
nk

= δrzkw
n + δep

nk
(4-33)

= Hk

 δrzk−1w
n

δvzk−1w/n
n

δϕbk−1

 + Mkδep
nk

.

From this equation an expression for the Jacobians Hk and Mk can be found, which are given
by

Hk =
[

I 0 0
]

(4-34)

and

Mk = I, (4-35)

respectively.
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After the measurement udate, the linearization point will be updated. In [40], the relineariza-
tion is considered as the measurement update of the linearization point, so this updates Čnbk

to Ĉnbk
as

Ĉnbk
= Čnbk

exp(δϕ̂
×
bk

). (4-36)

The update for the position and velocity states are performed in a manner that is identical as
for the original EKF. A summary of the equations for the MEKF with orientation deviation
states in body frame when employed for pose estimation, is given in Algorithm 2.

4-4 Right-Invariant Extended Kalman Filter Derivation

The implementation of the right-IEKF or RIEKF on pose estimation is discussed in this
section. It follows the reasoning presented in [15] in combination with [42]. The dynamical
model (3-10) will again be used. As was discussed in section 4-2, the matrix Lie group
suitable for estimating position, velocity and rotation matrices, is denoted by SE2(3). The
state matrix Tk is given as (4-1).
For the derivation of the RIEKF, a right-invariant measurement model needs to be consid-
ered. Relative position measurements relative to the body, for example measurements from
a LIDAR or camera measurements of known landmarks relative to the body are suitable for
this. A measurement model yielding relative position measurements has been discussed in
3-5 and is given as

yi
bk

= CT
nbk

(rpiw
n − rzkw

n ) + ei
bk

. (4-42)

Comparing the structure of this measurement model to the one given in (2-18), this can be
recognised as a right-invariant model.
For the RIEKF, the dynamical model can be approximated as (2-13), doing so means that
the dynamical model can be written as the perturbed state

Tk = exp(T w∧
bk−1)F(Tk−1, uk−1), (4-43)

by letting F(Tk−1, uk−1) be the true state. So the dynamics (3-10) are written as

Tk =

 Cnbk
vzkw/n

n rzkw
n

0 1 0
0 0 1


= exp(T wbk−1

∧)

 Cnbk−1 vzk−1w/n
n + T gn rzk−1w

n + T vzk−1w/n
n + T 2

2 gn

0 1 0
0 0 1


︸ ︷︷ ︸

F(Tk−1) expSO(3)(T uω×
bk−1

) T ua
bk−1

T 2

2 ua
bk−1

0 1 0
0 0 1


︸ ︷︷ ︸

Ξk−1

(4-44)

= exp(T w∧
bk−1)F(Tk−1)Ξk−1. (4-45)
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Algorithm 2 Multiplicative EKF with orientation deviation states in body frame
Inputs: Measurement data yk and its covariance matrices.
Outputs: An estimate of position, velocity, the rotation matrix and the covariance matrix
for k = 1, . . . , N .

1. Initialize with rz1w
n , vz1w/n

n , Ĉnb1 and P̂1

2. for k = 2, . . . , N do
(a) Prediction. Compute

řzkw
n = r̂zk−1w

n + T v̂zk−1w/n
n + T 2

2 (Ĉnbk−1ua
bk−1 + gn), (4-37a)

v̌zkw/n
n = v̂zk−1w/n

n + T (Ĉnbk−1ua
bk−1 + gn), (4-37b)

Čnbk
= Ĉnbk−1 exp(T u×

bk−1
), (4-37c)

P̌k = Fk−1P̂k−1FT
k−1 + Lk−1Q̂k−1LT

k−1, (4-37d)

where Fk−1 is defined as in (4-31) and Lk−1 is defined as in (4-32).
(b) Update. Compute

Kk = P̌kHT
k

(
HkP̌kHT

k + MkRkMT
k

)−1
,

zk = yk − h(Čnbk
).

Then, to update the state and covariance estimate, compute

δξ̂k =

 δξ̂
r
k

δξ̂
v
k

δξ̂
ϕ
k

 =

 r̂zkw
n − řzkw

n

v̂zkw/n
n − v̌zkw/n

n

δϕ̂bk

 (4-38)

= Kkzk, (4-39)
P̂k = (I − KkHk) P̌k (I − KkHk)T + KkMkRkMT

k KT
k , (4-40)

where Hk and Mk are computed following (4-34) and (4-35), respectively.
(c) Relinearization. Compute

r̂zkw
n = řzkw

n + δξ̂
r
k, (4-41a)

v̂zkw/n
n = v̌zkw/n

n + δξ̂
v
k, (4-41b)

Ĉnbk
= Čnbk

exp(δξ̂
ϕ
k

×
). (4-41c)
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The measurement model (4-42) can be expressed in terms of the state matrix Tk as yi
bk

0
1

 =

 CT
nbk

−CT
nbk

vzkw/n
n −CT

nbk
rzkw

n

0 1 0
0 0 1


 rpiw

n

0
1

 +

 ei
bk

0
0


= T−1

k

 rpiw
n

0
1

 +

 ei
bk

0
0

 . (4-46)

This measurement model is of the form (2-18), which shows that this model is indeed right-
invariant and it is therefore suitable for the RIEKF.
Propagation Equivalent to its left-invariant counterpart, the time update is performed by
using the right-invariant error definition. Before doing this, the following right-invariant error
definition,

δTk = T̂nbk
(Tnbk

)−1

=

 Ĉnbk
v̂zkw/n

n r̂zkw
n

0 1 0
0 0 1


 CT

nbk
−CT

nbk
vzkw/n

n −CT
nbk

rzkw
n

0 1 0
0 0 1



=

 Ĉnbk
CT

nbk
v̂zkw/n

n − Ĉnbk
CT

nbk
vzkw/n

n r̂zkw
n − Ĉnbk

CT
nbk

rzkw
n

0 1 0
0 0 1


= exp(δξ∧

k ),

ensures that the following errors can be defined

δCk = Ĉnbk
CT

nbk
= expSO(3)

(
ξϕ×)

,

δvzkw/n
n = v̂zkw/n

n − Ĉnbk
CT

nbk
vzkw/n

n = Jξv,

δrzkw
n = r̂zkw

n − Ĉnbk
CT

nbk
rzkw

n = Jξr.

Now, for the time update, the right-invariant error definition in the case of the matrix Lie
group SE2(3) is used to find an expression for the state update. This error definition is given
as

δŤk = Ťnbk
(Tnbk

)−1 (4-47)
= F(T̂k−1)Ξk−1(exp(T w∧

bk−1)F(Tk−1)Ξk−1)−1

= F(T̂k−1)F(Tk−1)−1 exp(−T w∧
bk−1), (4-48)

where F(T̂k−1) is defined as in (4-44). Using the definitions in (4-11) to ease the notation,
the following expression can be derived,

F(T̂k−1)F(Tk−1)−1 =

 Ĉnbk−1 v̂k−1 r̂k−1
0 1 0
0 0 1


 CT

nbk−1
−CT

nbk−1
vk−1 −CT

nbk−1
rk−1

0 1 0
0 0 1


=

 δCk δF12 δF13
0 1 0
0 0 1

 , (4-49)
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where

δCk = Ĉnbk−1CT
nbk−1 ,

δF12 = v̂k−1 − CT
nbk−1CT

nbk−1vk−1

= v̂zk−1w/n
n + T gn − CT

nbk−1CT
nbk−1(vzk−1w/n

n + T gn)

= δvzk−1w/n
n + T gn − T CT

nbk−1CT
nbk−1gn

= δvzk−1w/n
n + T (I − δCk)gn,

δF13 = r̂k−1 − CT
nbk−1CT

nbk−1rk−1

= r̂zk−1w
n + T v̂zk−1w/n

n + T 2

2 gn − CT
nbk−1CT

nbk−1(rzk−1w
n + T vzk−1w/n

n + T 2

2 gn)

= δrzk−1w
n + Tδvzk−1w/n

n + T 2

2 (I − δCk)gn.

Substituting these definitions into (4-48), yields

δŤk =

 δCk δvzk−1w/n
n + T (I − δCk)gn δrzk−1w

n + Tδvzk−1w/n
n + T 2

2 (I − δCk)gn

0 1 0
0 0 1


exp(−T w∧

bk−1)

This can be linearized by letting δŤk ≈ I + δξ̌
∧
k , δCk−1 ≈ I + δξϕ×

k−1, δvzk−1w/n
n = Jδξv

k−1,
δrzk−1w

n = Jδξr
k−1, J ≈ I and exp(−T w∧

bk−1
) ≈ I − Tδw∧

bk−1
, and ignoring terms of order
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O(
∥∥δξk−1

∥∥
2

∥∥∥δwbk−1

∥∥∥
2
). This results in

I + δξ̌
∧
k ≈

 I + δξϕ×

k−1 δξv
k−1 + T (−δξϕ×

k−1)gn δξr
k−1 + Tδξv

k−1 + T 2

2 (−δξϕ×

k−1)gn

0 1 0
0 0 1


(I − Tδw∧

bk−1)

=

I +

 δξϕ×

k−1 δξv
k−1 − Tδξϕ×

k−1gn δξr
k−1 + Tδξv

k−1 − T 2

2 δξϕ×

k−1gn

0 0 0
0 0 0




(I − Tδw∧
bk−1)

=

I +

 δξϕ×

k−1 δξv
k−1 + T g×

n δξϕ
k−1 δξr

k−1 + Tδξv
k−1 + T 2

2 g×
n δξϕ

k−1
0 0 0
0 0 0




(I − Tδw∧
bk−1)

=

I +

 δξϕ
k−1

δξv
k−1 + T g×

n δξϕ
k−1

δξr
k−1 + Tδξv

k−1 + T 2

2 g×
n δξϕ

k−1


∧ (I − Tδw∧

bk−1)

=

I +


 I 0 0

T g×
n I 0

T 2

2 g×
n T I I


 δξϕ

k−1
δξv

k−1
δξr

k−1




∧ (I − Tδw∧
bk−1)

= (I + (Fk−1δξ̌k−1)∧)(I − Tδw∧
bk−1)

≈ I + (Fk−1δξk−1)∧ − Tδw∧
bk−1

Then finally, the following dynamic equation can be found

δξ̌k = Fk−1δξk−1 + Lk−1δwbk−1 , (4-50)

with

Fk =

 I 0 0
T g×

n I 0
T 2

2 g×
n T I I

 , (4-51)

and

Lk = −T I (4-52)

Although (4-43) is mathematically consistent for a right-invariant error definition, this does
not accurately describe the way noise enters the system. The dynamical system considered
here has sensor noise coming in through the accelerometer and gyroscope, which are both
resolved in the body frame Fb. The right matrix multiplication in (4-43) between the noise
term and the state, which has the rotation matrix Cnbk

incorporated in it, is mathematically
incorrect. As has been derived in section 4-2, the noise enters the system in a way more
consistent with the left-invariant definition. So instead of using the right-invariant assumption
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on the dynamical model, the left-invariant dynamical model assumption (4-4) will be used.
The derivation using the left-invariant model assumption will be covered next.

Substituing (4-4) into the right-invariant error definition yields

δŤk = Ťnbk
(Tnbk

)−1 (4-53)
= F(T̂k−1)Ξk−1(F(Tk−1)Ξk−1 exp(T w∧

bk−1))−1

= F(T̂k−1)Ξk−1 exp(−T w∧
bk−1)(F(Tk−1)Ξk−1)−1

= F(T̂k−1)Ξk−1 exp(−T w∧
bk−1)(F(T̂k−1)Ξk−1)−1F(T̂k−1)Ξk−1(F(Tk−1)Ξk−1)−1

= exp(−T (Ad
(

F(T̂k−1)Ξk−1
)

wbk−1)∧)F(T̂k−1)Ξk−1(F(Tk−1)Ξk−1)−1

= exp(−T (Ad
(

F(T̂k−1)Ξk−1
)

wbk−1)∧)F(T̂k−1)F(Tk−1)−1, (4-54)

where the adjoint representation (2-1) was used. Substituting in (4-49) into (4-54)

δŤk = exp(−T (Ad
(

F(T̂k−1)Ξk−1
)

wbk−1)∧) δCk δvzk−1w/n
n + T (I − δCk)gn δrzk−1w

n + Tδvzk−1w/n
n + T 2

2 (I − δCk)gn

0 1 0
0 0 1

 (4-55)

Again, this can be linearized by letting δŤk ≈ I+δξ̌
∧
k , δCk−1 ≈ I+δξϕ×

k−1, δvzk−1w/n
n = Jδξv

k−1,
δrzk−1w

n = Jδξr
k−1, J ≈ I and exp(−T w∧

bk−1
) ≈ I − Tδw∧

bk−1
, and ignoring terms of order
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O(
∥∥δξk−1

∥∥
2

∥∥∥δwbk−1

∥∥∥
2
). This results in

I + δξ̌
∧
k ≈ (I − T (Ad

(
F(T̂k−1)Ξk−1

)
δwbk−1)∧) I + δξϕ×

k−1 δξv
k−1 + T (−δξϕ×

k−1)gn δξr
k−1 + Tδξv

k−1 + T 2

2 (−δξϕ×

k−1)gn

0 1 0
0 0 1


= (I − T (Ad

(
F(T̂k−1)Ξk−1

)
δwbk−1)∧)I +

 δξϕ×

k−1 δξv
k−1 − Tδξϕ×

k−1gn δξr
k−1 + Tδξv

k−1 − T 2

2 δξϕ×

k−1gn

0 0 0
0 0 0




= (I − T (Ad
(

F(T̂k−1)Ξk−1
)

δwbk−1)∧)I +

 δξϕ×

k−1 δξv
k−1 + T g×

n δξϕ
k−1 δξr

k−1 + Tδξv
k−1 + T 2

2 g×
n δξϕ

k−1
0 0 0
0 0 0




= (I − T (Ad
(

F(T̂k−1)Ξk−1
)

δwbk−1)∧)

I +

 δξϕ
k−1

δξv
k−1 + T g×

n δξϕ
k−1

δξr
k−1 + Tδξv

k−1 + T 2

2 g×
n δξϕ

k−1


∧

= (I − T (Ad
(

F(T̂k−1)Ξk−1
)

δwbk−1)∧)

I +


 I 0 0

T g×
n I 0

T 2

2 g×
n T I I


 δξϕ

k−1
δξv

k−1
δξr

k−1




∧
= (I − T (Ad

(
F(T̂k−1)Ξk−1

)
δwbk−1)∧)(I + (Fk−1δξ̌k−1)∧)

≈ I + (Fk−1δξk−1)∧ − T (Ad
(

F(T̂k−1)Ξk−1
)

δw∧
bk−1

Then finally, the following dynamic equation can be found

δξ̌k = Fk−1δξk−1 + Lk−1δwbk−1 , (4-56)

with

Fk =

 I 0 0
T g×

n I 0
T 2

2 g×
n T I I

 , (4-57)

and

Lk = −TAd
(

F(T̂k−1)Ξk−1
)

(4-58)

Measurement update To update the state estimates, position measurements relative to
known landmarks are used. These measurements are modelled as (4-46). Whenever such a
measurement is available, the state estimate is corrected following

T̂k = exp(−(Kkzk)∧)Ťk.
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The innovation for a right-invariant system, for the ith landmark, is given by zi
k

0
0

 = Ťk


 yi

bk

0
1

 −

 y̌i
bk

0
1




= Ťk

T−1
k

 rpiw
n

0
1

 +

 ei
bk

0
0

 − T−1
k

 rpiw
n

0
1




= δTk

 rpiw
n

0
1

 + Ťk

 ei
bk

0
0

 −

 rpiw
n

0
1

 .

This can then be linearized by letting δŤk ≈ I + δξ̌
∧
k and ei

nk
= ēi

nk
+ δei

nk
with ēi

nk
= 0, such

that,  zi
k

0
0

 ≈ (I + δξ̌
∧
k )

 rpiw
n

0
1

 + Ťk

 δei
bk

0
0

 −

 rpiw
n

0
1


= δξ̌

∧
k

 rpiw
n

0
1

 + Ťk

 δei
bk

0
0



=

 δξ̌
ϕ×

k δξ̌
v
k δξ̌

r
k

0 0 0
0 0 0


 rpiw

n

0
1

 + Ťk

 δei
bk

0
0



=

 rpiw
n δξ̌

ϕ×

k + δξ̌
r
k

0
0

 + Ťk

 δei
bk

0
0



=

 −rpiw
×

n δξ̌
ϕ
k + δξ̌

r
k

0
0

 + Ťk

 δei
bk

0
0


=

 −rpiw
×

n 0 I
0 0 0
0 0 0

 ξ̌k + Ťk

 δei
bk

0
0


= Hi

kξ̌k + Mi
k

 δei
bk

0
0

 , (4-59)

where

Hi
k =

 −rpiw
×

n 0 I
0 0 0
0 0 0

 , (4-60)

and

Mi
k = Ťk. (4-61)
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It can be noted that the bottom rows of the innovation (4-59) are always equal to 0, so it can
be reduced to

zi
k = Hi

kδξ̌k + Mi
kδei

nk
, (4-62)

where

Hi
k =

[
−rpiw

×
n 0 I

]
, (4-63)

and

Mi
k = Čnbk

. (4-64)

For all m landmarks, these Jacobians then become,

Hk = row
ı=1,...,m

[
−rpiw

×
n 0 I

]
, (4-65)

and

Mk = diag(Čnbk
, . . . , Čnbk

). (4-66)

A summary of the equations for the RIEKF when employed for pose estimation using position
measurements relative to known landmark positions, is given in Algorithm 3.

4-5 Multiplicative EKF with Orientation Deviation States in Nav-
igation Frame

This section will present the implementation of the MEKF for the use of pose estimation
with the orientation deviation being defined as resolved in the navigation frame, referred to
as MEKF-n. This section will be based on the derivations and results shown in [40, 9]. Instead
of expressing the parametrization of the linearization point in quaternions, it will be expressed
in terms of rotation matrices. Instead of using GPS measurements, for the derivation of this
MEKF the relative position measurement model (4-42) will also be considered, in order to
compare this MEKF to the RIEKF.

The orientation is modelled such that it is in terms of a linearization point parametrized as
a rotation matrix Cnbk

and an orientation deviation parametrized as a rotation vector ϕnk
.

The orientation can be modelled as

Cnbk
= exp(δϕ×

nk
)C̄nbk

, (4-70)

and the linearization of the position and velocity states are modelled as (4-24b) and (4-24c),
respectively.

Propagation The time update is done by using the dynamical model and updating the
linearization point. The linearized dynamic equation for the position will be derived first.
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Algorithm 3 Right-Invariant Extended Kalman Filter
Inputs: Measurement data yi

k, for i = 1, . . . , m, and its covariance matrices.
Outputs: An estimate of the state matrix and the covariance matrix for k = 1, . . . , N .

1. Initialize with rz1w
n , vz1w/n

n , Ĉnb1 and P̂1

2. for k = 2, . . . , N do
(a) Prediction. Compute

Ťk = F(T̂k−1)Ξk−1, (4-67a)
P̌k = Fk−1P̂k−1FT

k−1 + Lk−1Q̂k−1LT
k−1, (4-67b)

where F(Tk−1) and Ξk−1 are defined as in (4-44), Fk−1 is defined as in (4-51) and
Lk−1 is defined as in (4-52).

(b) Update. Compute

Kk = P̌kHT
k

(
HkP̌kHT

k + MkRkMT
k

)−1
,

zk = Ťk(yp
nk

− y̌p
nk

).

Then, to update the state matrix and the covariance estimate, compute

T̂k = exp(−(Kkzk)∧)Ťk (4-68)
P̂k = (I − KkHk) P̌k (I − KkHk)T + KkMkRkMT

k KT
k , (4-69)

where Hk and Mk are computed following (4-65) and (4-66), respectively.
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This is done by substituting (4-70), (4-24b) and (4-24c) into the dynamics for the position in
(3-10), which yields

r̄zkw
n + δrzkw

n = r̄zk−1w
n + δrzk−1w

n + T (v̄zk−1w/n
n + δvzk−1w/n

n )

+ T 2

2 (exp(δϕ×
nk−1)C̄nbk−1(ua

bk−1 + w̄a
bk−1 + δwa

bk−1) + gn)

≈ r̄zk−1w
n + δrzk−1w

n + T v̄zk−1w/n
n + Tδvzk−1w/n

n

+ T 2

2 ((I + δϕ×
nk−1)C̄nbk−1(ua

bk−1 + w̄a
bk−1 + δwa

bk−1) + gn)

= r̄zk−1w
n + δrzk−1w

n + T v̄zk−1w/n
n + Tδvzk−1w/n

n

+ T 2

2 gn + T 2

2 C̄nbk−1(ua
bk−1 + w̄a

bk−1) + T 2

2 C̄nbk−1δwa
bk−1

+ T 2

2 δϕ×
nk−1C̄nbk−1(ua

bk−1 + w̄a
bk−1) + T 2

2 δϕ×
nk−1C̄nbk−1δwa

bk−1 ,

where wa
bk

= w̄a
bk

+δwa
bk

with w̄a
bk

= 0, which is consistent with wa
bk

∼ N (0, Qa
k). Ignoring terms

of order O(
∥∥∥δϕnk−1

∥∥∥
2

∥∥∥δwa
bk−1

∥∥∥
2
) and subtracting the nominal dynamical equation (4-25), the

following linearized dynamic equation for position can be derived,

δrzkw
n ≈ δrzk−1w

n + Tδvzk−1w/n
n + T 2

2 δϕ×
nk−1C̄nbk−1ua

bk−1 + T 2

2 C̄nbk−1δwa
bk−1

= δrzk−1w
n + Tδvzk−1w/n

n − T 2

2 (C̄nbk−1ua
bk−1)×δϕnk−1 + T 2

2 C̄nbk−1δwa
bk−1 (4-71)

Following a similar procedure, a linearized dynamic equation for the velocity will be derived.
To do so, substitute (4-70), (4-24b) and (4-24c) into the dynamics of the velocity state in
(3-10), this gives

v̄zkw/n
n + δvzkw/n

n = v̄zk−1w/n
n + δvzk−1w/n

n

+ T (exp(δϕ×
nk−1)C̄nbk−1(ua

bk−1 + w̄a
bk−1 + δwa

bk−1) + gn)

≈ v̄zk−1w/n
n + δvzk−1w/n

n

+ T ((I + δϕ×
nk−1)C̄nbk−1(ua

bk−1 + w̄a
bk−1 + δwa

bk−1) + gn)

= v̄zk−1w/n
n + δvzk−1w/n

n + T gn + T C̄nbk−1(ua
bk−1 + w̄a

bk−1) + T C̄nbk−1δwa
bk−1

+ Tδϕ×
nk−1C̄nbk−1(ua

bk−1 + w̄a
bk−1) + Tδϕ×

nk−1C̄nbk−1δwa
bk−1 .

Again ignoring terms of order O(
∥∥∥δϕnk−1

∥∥∥
2

∥∥∥δwa
bk−1

∥∥∥
2
) and subtracting the nominal dynam-

ical equation (4-27), the following linearized dynamic equation for the velocity state can be
derived,

δvzkw/n
n ≈ δvzk−1w/n

n + Tδϕ×
nk−1C̄nbk−1ua

bk−1 + T C̄nbk−1δwa
bk−1

= δvzk−1w/n
n − T (C̄nbk−1ua

bk−1)×δϕnk−1 + T C̄nbk−1δwa
bk−1 . (4-72)
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In the MEKF the time update for the orientation deviation is performed by using the dy-
namical model to update the linearization point as

Čnbk
= Ĉnbk−1 exp(T u×

bk
). (4-73)

To derive the linearized dynamic equation for the orientation deviation, take the dynamics
for the rotation matrix in (3-10) and substitute in (4-70) and (4-73), which gives

expSO(3)(δϕ×
nk

)C̄nbk
= expSO(3)(δϕ×

nk
)C̄nbk−1 expSO(3)(T (uω

bk−1 + wω
bk−1)×),

expSO(3)(δϕ×
nk

) = expSO(3)(δϕ×
nk

)C̄nbk−1 expSO(3)(T (uω
bk−1 + wω

bk−1)×)C̄−1
nbk

= expSO(3)(δϕ×
nk

)C̄nbk−1 expSO(3)(T (uω
bk−1 + wω

bk−1)×) expSO(3)(−T uω×
bk−1)C̄−1

nbk−1

= expSO(3)(δϕ×
nk

)C̄nbk−1 expSO(3)(T wω
bk−1

×)C̄−1
nbk−1

using (2-1) and also using from section B-1 that the adjoint representation of an element of
SO(3) is equal to that same element of SO(3), this can be further simplified to

exp(δϕ×
nk

) = expSO(3)(δϕ×
nk

) expSO(3)(T (C̄nbk−1wω
bk−1)×).

Then, using the BCH formula yields,

δϕ×
nk

= δϕ×
nk

+ T (C̄nbk−1wω
bk−1)×,

δϕnk
= δϕnk

+ T C̄nbk−1wω
bk−1 (4-74)

where wω
bk

= w̄ω
bk

+ δwω
bk

with w̄ω
bk

= 0, which is consistent with wω
bk

∼ N (0, Qω
k ).

Combining the linearized dynamic equations, gives the following linearized dynamical model, δrzkw
n

δvzkw/n
n

δϕnk

 =


δrzk−1w

n + Tδvzk−1w/n
n − T 2

2 (C̄nbk−1ua
bk−1

)×δϕnk−1 + T 2

2 C̄nbk−1δwa
bk−1

δvzk−1w/n
n − T (C̄nbk−1ua

bk−1
)×δϕnk−1 + T C̄nbk−1δwa

bk−1

δϕnk−1 + T C̄nbk−1δwω
bk−1



= Fk

 δrzk−1w
n

δvzk−1w/n
n

δϕnk−1

 + Lk

[
δwa

bk−1

δwω
bk−1

]
.

An expression for the Jacobians can then be found, these are given by

Fk =

 I T I −T 2

2 (C̄nbk−1ua
bk−1

)×

0 I −T (C̄nbk−1ua
bk−1

)×

0 0 I

 , (4-75)

and

Lk =

 T 2

2 C̄nbk−1 0
T C̄nbk−1 0

0 T C̄nbk−1

 (4-76)
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Measurement update In order to update the state estimates, relative position measure-
ments to known landmark positions are used, these measurements are modelled as (4-42).
To get a linearized measurement model, substituting in (4-24b) and (4-70), and using that
ei

bk
= ēi

nk
+ δei

nk
with ēi

nk
= 0, which is consistent with ei

nk
∼ N (0, Ri

k), yields

ȳi
k + δyi

k = (exp(δϕ×
nk

)C̄nbk
)T(rpiw

n − r̄zkw
n − δrzkw

n ) + ēi
nk

+ δei
nk

≈ C̄T
nbk

(I − δϕ×
nk

)(rpiw
n − r̄zkw

n − δrzkw
n ) + ēi

nk
+ δei

nk
.

Subtracting the nominal equation ȳi
k = C̄T

nbk
(rpiw

n − r̄zkw
n ) and again ignoring terms of order

O(
∥∥∥δϕnk−1

∥∥∥
2

∥δrzkw
n ∥2), then gives

δyi
k = −C̄T

nbk
δrzkw

n − C̄T
nbk

δϕ×
nk

(rpiw
n − r̄zkw

n ) + C̄T
nbk

δϕ×
nk

δrzkw
n + δei

nk

≈ −C̄T
nbk

δrzkw
n + C̄T

nbk
(rpiw

n − r̄zkw
n )×δϕnk

+ δei
nk

= Hi
k

 δrzk−1w
n

δvzk−1w/n
n

δϕnk−1

 + Mkδei
nk

.

From this equation an expression for the Jacobians Hk and Mk can be found, which are given
by

Hi
k =

[
−C̄T

nbk
0 C̄T

nbk
(rpiw

n − r̄zkw
n )×

]
and

Mk = I,

respectively. For all m landmarks these then become

Hk = row
ı=1,...,m

(
[

−C̄T
nbk

0 C̄T
nbk

(rpiw
n − r̄zkw

n )×
]
), Mk = I. (4-77)

After the measurement udate, the linearization point will be updated. In [9], the relineariza-
tion is considered as the measurement update of the linearization point, so this updates Čnbk

to Ĉnbk
as

Ĉnbk
= exp(δϕ̂

×
nk

)Čnbk
. (4-78)

The update for the position and velocity states are performed in a manner that is identical as
for the original EKF. A summary of the equations for the MEKF with orientation deviation
states in navigation frame when employed for pose estimation, is given in Algorithm 4.
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Algorithm 4 Multiplicative EKF with orientation deviation states in navigation
frame

Inputs: Measurement data yi
k, for i = 1, . . . , m and its covariance matrices.

Outputs: An estimate of position, velocity, the rotation matrix and the covariance matrix
for k = 1, . . . , N .

1. Initialize with rz1w
n , vz1w/n

n , Ĉnb1 and P̂1

2. for k = 2, . . . , N do
(a) Prediction. Compute

řzkw
n = r̂zk−1w

n + T v̂zk−1w/n
n + T 2

2 (Ĉnbk−1ua
bk−1 + gn), (4-79a)

v̌zkw/n
n = v̂zk−1w/n

n + T (Ĉnbk−1ua
bk−1 + gn), (4-79b)

Čnbk
= Ĉnbk−1 exp(T u×

bk−1
), (4-79c)

P̌k = Fk−1P̂k−1FT
k−1 + Lk−1Q̂k−1LT

k−1, (4-79d)

where Fk−1 is defined as in (4-75) and Lk−1 is defined as in (4-76).
(b) Update. Compute

Kk = P̌kHT
k

(
HkP̌kHT

k + MkRkMT
k

)−1
,

zk = yk − h(Čnbk
).

Then, to update the state and covariance estimate, compute

δξ̂k =

 δξ̂
r
k

δξ̂
v
k

δξ̂
ϕ
k

 =

 r̂zkw
n − řzkw

n

v̂zkw/n
n − v̌zkw/n

n

δϕ̂nk

 (4-80)

= Kkzk, (4-81)
P̂k = (I − KkHk) P̌k (I − KkHk)T + KkMkRkMT

k KT
k , (4-82)

where Hk and Mk are computed following (4-77).
(c) Relinearization. Compute

r̂zkw
n = řzkw

n + δξ̂
r
k, (4-83a)

v̂zkw/n
n = v̌zkw/n

n + δξ̂
v
k, (4-83b)

Ĉnbk
= exp(δξ̂

ϕ
k

×
)Čnbk

. (4-83c)
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Chapter 5

Results

5-1 Simulation Parameters

Two sets of simulations have been set up. In the first set of simulations, the LIEKF and the
MEKF-b are compared. In the second set of simulations, the RIEKF and the MEKF-n are
compared.

In order to perform Monte Carlo simulations, the initial error of the estimate is taken from a
normal distribution with zero mean and a covariance matrix P0, such that δx0 ∼ N (0, P0) for
the MEKF and δξ0 ∼ N (0, P0) for the IEKF. These initial errors can then be used together
with the true states in order to initialize the filters. For the MEKFs this means

r̂z0w
n = rz0w

n + δr0,

v̂z0w/n
n = vz0w/n

n + δv0,

Ĉnb0 = Cnb0 expSO(3)(δϕ0).

For the LIEKF and RIEKF this initialization is done by taking δT0 = exp(δξ∧
0 ) and then the

initial state can be found using the appropriate error definition to get

T̂L
0 = T0δT0,

T̂R
0 = δT0T0.

The IMU sensor measurement sensor noise standard deviations were set to σa = 0.05 m/s2,
σω =

√
π

6 rad/s. This corresponds to a variance of 5 degrees per second for the gyroscope. The
GPS and landmark measurement sensor noise standard deviations were set to σR =

√
0.05

m. Typical standard deviations of GPS signals in smartphones have been reported to be
roughly around 3m [44], the higher end of quality receivers such as GNSS have been reported
to have standard deviations as low as approximately 10cm [45], so the chosen value for σR

is on the lower side. The initial errors are taken from a normal distribution with covariance
P0 = diag(σ2

ϕI, σ2
vI, σ2

r I), where σϕ = π
36 rad/s, σv0 = 0.05 m/s, and σr0 = 0.05 m.
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5-2 Simulation Results

As mentioned in the previous section, the initial state estimates and sensor noises were taken
from normal distributions with set values for the standard deviation. Two sets of simulations
have been set up in which the IEKF and the MEKF are compared in terms of the root mean
square (RMS) of the norm of the estimation error. The first set encompasses the filters cor-
responding to the left-invariant measurements, the GPS measurements. The second set uses
the right-invariant measurements, the relative position measurements to known landmarks.
The set-up of both sets of simulations is identical, all of the standard deviations for the initial
estimates and sensor noises for the filters will remain constant except at each trial one of
them will be incrementally increased from 0 to 1. At each increment a set number of Monte
Carlo simulations will be performed. The figures show the mean of the RMS of the norm
error of each state estimate, next to this each figure shows the 95% of the RMS of the norm
of the errors of all Monte Carlo simulations at each increment.

5-2-1 Left-Invariant Measurements

As mentioned before, for the left-invariant measurements GPS measurements are used. To
check the influence of the error on the initial estimate of each of the three states, this error
is incrementally increased from 0 to 1 with increments of 0.1, for each state and at each
increment 100 Monte Carlo simulations have been performed.

5-2-1-1 Increasing Initial Error

These results clearly show a reduced estimation accuracy of the MEKF when the error on
the initial orientation estimate gets increased, whereas the performance of the IEKF for the
estimation of the velocity and position, stays reasonably constant. In Figure 5-2 the norm of
the estimation error for each state is shown plotted over time for two different runs when the
error in the initial orientation estimate is was increased to its highest value on the range of
Figure 5-1.

These results agree with the findings reported in current literature, such as [24, 8]. This is
not surprising since in [15, 8] it was claimed that when the dynamical model is group affine
and the measurement model fits either the left- or the right-invariant structure, then the error
dynamics are independent of the state of the system. Translating this to the situation at hand,
with a group affine dynamical model and a left-invariant measurement model, means that it
is guaranteed for the IEKF to not have a dependence of the state estimate, while this does
not necessarily hold for the MEKF, and thus a poor initial estimate will potentially influence
the MEKF more than the IEKF. Looking at the Jacobians corresponding to the propagation
and the update of the system also confirms this claim. The Jacobian corresponding to the
propagation of the LIEKF are as follows

Fk =

 ΨT
k−1 0 0

−TΨT
k−1ua

bk−1
× ΨT

k−1 0
−T 2

2 ΨT
k−1ua

bk−1
× TΨT

k−1 ΨT
k−1

 , (5-1)
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(a) Increasing the initial orientation error. (b) Increasing the initial velocity error.

(c) Increasing the initial position error.

Figure 5-1: RMS of the norm of the error when increasing the initial error.

where Ψk−1 = expSO(3)(T uω×
bk−1

), and the Jacobian corresponding to the update is

Hk =
[

0 0 −I
]

, (5-2)

whereas the Jacobian corresponding to the propagation of the MEKF-b is given as

Fk =


I T I −T 2

2 C̄nbk−1ua
bk−1

×

0 I −T C̄nbk−1ua
bk−1

×

0 0 exp(−T uω×
bk−1

)

 , (5-3)

and the Jacobian for the update is

Hk =
[

I 0 0
]

. (5-4)

From (5-1) it can be observed that the Fk for the LIEKF does not depend on any state
estimate of the system, but the propagation of the MEKF-b does depend on the orientation
of the system. Although that both filters use the same dynamical models to propagate the
state, the Jacobians associated with the linearization of the dynamics are used to propagate
the state covariance matrix, which in turn is used in the computation of the Kalman gain.
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Figure 5-2: The norm of the estimation error for each state when increasing the initial orientation
error to δξϕ = 1 rad for two different single simulation runs.

Since that the propagation Jacobian (5-3) has multiple occurrences of the orientation estimate
embedded in the rotation matrices, it can be explained that the MEKF-b is not guaranteed
to converge to the true trajectory. The shaded area of the MEKF in Figure 5-1a shows a large
error in the estimation of the states whilst the mean of these estimates remains significant
but relatively lower. This indicates that the estimation of the states does not converge to the
true state in a large portion of the simulations but not for all simulations. The increase of the
error in the initial estimates of the velocity and position does not show a significant change in
the performance of either filter. This is also not expected since there is no clear indicator why
either filter would diverge as a result from this increase, unlike for the orientation estimate.

5-2-1-2 Increasing Sensor Noise

Next, the influence of the amplitude of the sensor noises on the performance of both filters
are considered. The results of incrementally increasing each of the different sensor noises are
shown in Figure 5-3.

The errors on the state estimate when increasing the noise on the accelerometer measurements
seem to be almost identical. There is a clear distinction, however, the error in the estimation
of the velocity and position for the MEKF-b is larger when there is no accelerometer sensor
noise. Similar behaviour has been reported in [8], they reported that the MEKF suffers
from having small or tight Q matrices. The terminology tight reflects that this concerns
covariance matrices and a tight process noise covariance matrix means that the filter assumes
higher accuracy of the sensors. This is the result of the Kalman gains of the MEKF rapidly
decreasing during the transistory phase of the simulation while the attitude error is not
reduced enough because of non-linearities, since the position estimate is affected, the gains
are too small to correct this error [8]. In Figure 5-4, the norm of the estimation error is shown
plotted over time. From this it can be seen that the attitude error is indeed not reduced,
however, although a slight difference in position estimation error can be seen between the two
filters, it seems that the GPS measurements are able to correct it for the MEKF.

In this case the accelerometer noise is zero and the Qa is set to a very small value, namely
10−6I, in order to prevent having an empty covariance matrix. Figure 5-5 shows the results
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(a) Increasing the amplitude of the noise
on the accelerometer.

(b) Increasing the amplitude of the noise
on the gyroscope.

(c) Increasing the amplitude of the noise
on the GPS measurements.

Figure 5-3: RMS of the norm of the error when increasing the amplitude of the sensor noise.

of incrementally increasing the accelerometer noise on a smaller interval, from 0 to 0.2 m/s2

with increments of 0.02, to find where the effect of having a small covariance matrix Q starts
to decrease. It also shows that increasing this covariance matrix at zero noise does indeed
improve the performance for the MEKF-b.

The increase of the gyroscope sensor noise shows a small but increasing difference in the error
of the velocity and position estimate between the LIEKF and the MEKF-b. There is no
clear indication as to why this should be expected to be observed. Both filters experience an
increase in the error of the orientation deviation estimate with an increasing gyroscope sensor
noise. A possible explanation could be that since the MEKF-b is state estimate dependent,
the rotation matrix in (5-3), it might experience more influence of the increasing error on the
orientation deviation estimate on top of the fact that the body experiences a constant rotation
throughout the trajectory. This increase in the error of the orientation estimate is difficult
to correct for since the only corrective update is done through position measurements from a
GPS, which does not offer information on the true orientation. In Figure 5-6 the estimation
error is plotted over time for a single simulation when the noise on the gyroscope is increased.
It can be seen that indeed both filters are experiencing issues regarding the correction of the
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Figure 5-4: The norm of the estimation error for each state with zero accelerometer noise.

orientation. Both filters also show that the estimation errors of the velocity and position do
tend to increase within GPS measurement updates in a very similar manner. The MEKF-b
seems to have the harshest increases in error between the measurement updates, albeit very
comparable to the LIEKF.

The increasing GPS measurement noise shows a small difference in the estimation done by
the LIEKF and MEKF-b, slightly favoring the LIEKF at higher sensor noise. There is no
clear indication why the LIEKF should be performing better in this situation. It might be
that during the transient phase of the simulation, the LIEKF shows a better performance.
However, at steady state, the estimate should be close enough to the true trajectory that
the state-dependence of the MEKF-b should no longer be of an influence. In Figure 5-6
the estimation error is plotted over time for a single simulation when the noise on the GPS
measurements is increased. This does indeed show that the state-dependence of the MEKF-
b does not seem to heavily influence the state estimation. There is a small improvement
noticeable between the estimation accuracy of the LIEKF over the MEKF-b.

5-2-2 Right-invariant measurements

The same set of simulations are performed using right-invariant measurements, the relative
position measurements to known landmarks. Similar as for the left-invariant measurements,
100 Monte Carlo simulations have been performed at each increment. Firstly, these sim-
ulations are performed using ten landmarks with known position randomly placed across
the trajectory. After this, the same set of simulations is performed using only three known
landmarks.
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(a) Increasing the amplitude of the noise
on the accelerometer on smaller interval.

(b) Increasing the amplitude of the noise
on the accelerometer on smaller interval
with increased Qa at zero noise.

Figure 5-5: RMS of the norm of the error when increasing the amplitude of the accelerometer
sensor noise.

0 10 20 30 40 50 60 70 80 90 100
0

1

2

0 10 20 30 40 50 60 70 80 90 100
0

1

2

0 10 20 30 40 50 60 70 80 90 100
0

0.5

0 10 20 30 40 50 60 70 80 90 100
0

0.5

0 10 20 30 40 50 60 70 80 90 100
0

1

2

0 10 20 30 40 50 60 70 80 90 100
0

1

2

Figure 5-6: The norm of the estimation error over time for each state when increasing the noise
on the gyroscope to σω = 1 rad/s (left) and on the GPS measurements to σR = 1 m (right).

5-2-2-1 Ten Landmarks with Known Position

5-2-2-1-1 Increasing Initial Error

First the influence of incrementally increasing the initial error on the states is checked, the
results of these simulations regarding the increase of the initial orientation error are shown in
Figure 5-7, the results regarding increasing the initial position and velocity errors are shown
in Appendix C since these do not offer new insights or clear differences between the RIEKF
and MEKF-n.
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(a) RMS of the norm of the error for 100
simulations.
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(b) Norm of the estimation error over
time for one simulation at δξϕ = 1 rad.

Figure 5-7: Increasing the initial orientation error with 10 known landmarks.

From these figures it can be seen that, although not as prevalent, similar to the left-invariant
measurements an increase in the estimation error can be observed for the MEKF-n with an
increasing error in the initial orientation deviation. There is also an increase noticeable for
the RIEKF with the increasing error in the initial orientation deviation. This comes from
the fact that with an increased initial estimation error, the time to converge and settle takes
slightly longer. The same holds for the error of MEKF-n, unlike for the MEKF-b, it does not
diverge from the true trajectory but instead it needs a longer time to converge to the true
trajectory. Just as for the left-invariant measurements, an influence of the initial orientation
deviation was to be expected for the MEKF-n. Looking at the propagation (5-5) and update
(5-6) Jacobians of the MEKF-n shows multiple occurrences of the orientation deviation state
estimate,

Fk =

 I T I −T 2

2 (C̄nbk−1ua
bk−1

)×

0 I −T (C̄nbk−1ua
bk−1

)×

0 0 I

 , (5-5)

Hk = row
ı=1,...,m

(
[

−C̄T
nbk

0 C̄T
nbk

(rpiw
n − r̄zkw

n )×
]
). (5-6)

Similar to the left-invariant measurement simulations, increasing the initial velocity or posi-
tion estimates does not reveal a significant difference between the RIEKF and MEKF-n.

5-2-2-1-2 Increasing Sensor Noise

Next the influence of increasing the sensor noises are considered. The results of incrementally
increasing the standard deviation of each sensors noise are shown in Figure 5-8.

As can be observed Figure 5-8, both filters show almost identical performance results when
increasing each of the sensors noises. Unlike for the MEKF-b the MEKF-n does not seem to
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(a) Increasing the amplitude of the noise
on the accelerometer.

(b) Increasing the amplitude of the noise
on the gyroscope.

(c) Increasing the amplitude of the noise
on the landmark position measurements.

Figure 5-8: RMS of the norm of the error when increasing the amplitude of the sensor noise
with 10 known landmarks.

be suffering from small a Q due to the accelerometer noise being close to zero. Increasing
the gyroscopic noise also does not reveal a difference in performance between the RIEKF
and MEKF-n, unlike for the LIEKF and the MEKF-b. This is likely due to the nature of
the right-invariant measurements, these measurements are position measurements relative to
known landmarks and therefore have information on the orientation explicitly embedded in
them, as can be seen in (3-13). This raises the question whether having less relative position
measurements at each time instance, and thus decreasing the information for the update step,
could influence the performance of the filters.

5-2-2-2 3 Landmarks with Known Position

The simulations performed here are done to check if decreasing the information at each
update step, could potentially influence the performance of the RIEKF and MEKF-n. The
total amount of known landmarks along the trajectory is reduced to 3 landmarks instead of
the former 10 landmarks.
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5-2-2-2-1 Increasing Initial Error

Similar to before, first the influence of increasing the error in the initial estimate of the states
is checked. The results of these simulations regarding the increase of the initial orientation
error are shown in Figure 5-9, the results regarding increasing the initial position and velocity
errors are shown in Appendix C since these do not offer new insights or clear differences
between the RIEKF and MEKF-n.

(a) RMS of the norm of the error for 100
simulations.
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(b) Norm of the estimation error over
time for one simulation at δξϕ = 1 rad.
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(c) Norm of the estimation error over
time for one simulation at δξϕ = 1 rad.

Figure 5-9: Increasing the initial orientation error with 3 known landmarks.

A clear difference is visible in the performance of the MEKF-n now when compared to having
access to a total of 10 known landmarks. The MEKF-n shows to have more issues with
converging to the true trajectory, which can be seen from the two different simulations in
Figure 5-9. This happens more frequently now that it has less information during the update
steps while incrementally increasing the initial orientation deviation. This agrees with the
findings for the similar trial for the MEKF-b and can be traced back to the occurrences of
the orientation deviation in the filters linearization (5-5) and (5-6). Incrementally increasing
the initial position and velocity errors did not show any significant difference between both
filters.
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5-2-2-2-2 Increasing Sensor Noise

Again, the influence of incrementally increasing each of the sensor noise is checked and shown
in Figure 5-10.

(a) Increasing the amplitude of the noise
on the accelerometer.

(b) Increasing the amplitude of the noise
on the gyroscope.

(c) Increasing the amplitude of the noise
on the landmark position measurements.

Figure 5-10: RMS of the norm of the error when increasing the amplitude of the sensor noise
with 3 known landmarks.

Contrary to what was seen when the total number of landmarks was 10, there is a clear differ-
ence between the performance of the RIEKF compared to the MEKF-n when incrementally
increasing each of the sensor noise. The change in the accelerometer noise shows a similar
trend as it did for the MEKF-b. However, instead of taking longer to converge to the true
trajectory due to a small Q as it did for the MEKF-b, the MEKF-n does not always seem to
converge at all. This can be concluded from the mean line of the MEKF-n being relatively low
but its shaded area, containing 95% of the simulation data, shows quire a disparity between
the estimation errors. Figure 5-11 shows that the MEKF-n does indeed not converge to the
true trajectory when the accelerometer noise is zero.
The increase in the standard deviation for the gyroscopic noise also starts to show a worse
performance for the MEKF-n compared to the RIEKF. For the MEKF-b this was also true,
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Figure 5-11: The norm of the estimation error for each state with zero accelerometer noise.

albeit more subtle as it did the error increased for the MEKF-b but it did not completely
diverge from the trajectory. There is no clear indication why this behaviour should be ex-
pected to be observed. However, this could come from the fact that in the Jacobians for
the propagation (5-5) and the measurement update (5-6) for the MEKF-n, multiple instances
of the orientation deviation in terms of the rotation matrix are observed. This could mean
that once the orientation estimation starts to be influenced by an input of the gyroscopic,
which contains higher levels of noise, the linearization of the system starts to become less
accurate. On top of this, (5-6) is also dependent on the position estimate, but since the
position estimate is influenced by having less accurate propagation and update Jacobians,
a poor position estimate could also influence this linearization. However, this influence of
the position estimate in itself should not be too significant, since that would have been more
apparent from the trial where just the error in the initial position estimate was increased.

The trial of incrementally increasing the standard deviation for measurement noise shows
highly erroneous behaviour for the MEKF-n whilst the RIEKF does not suffer from this.
This behaviour was not shown by the MEKF-b. This seems to be the effect of having a very
tight R = 10−6I when there is no measurement noise. This tight R in combination with the
body only seeing 1 landmark due to the set threshold for the maximum range for the first
part of some of the trajectories. This can be seen in Figure 5-12. Once the body registers a
second landmark, the error in the orientation seems to get correctly updated, but this induced
a large error in the velocity estimation.

To test to see whether inflating or increasing the Q in the trial for the increase of the accelerom-
eter noise and inflating or increasing the R in the trial for the increase of the measurement
noise, new simulations have been performed using these increased covariance matrices. The
simulation are shown in Figure 5-13

These results show that the issues bothering the MEKF-n can be overcome by inflating the
Q when the accelerometer noise is set to zero. Additionally, the issues of diverging results
when the measurement noise is zero are also less prevalent when the covariance matrix R
is increased. Although, it also shows that increasing the noise on the measurements does

Niels van der Laan Master of Science Thesis



5-2 Simulation Results 61

0 10 20 30 40 50 60 70 80 90 100
0

2

0 10 20 30 40 50 60 70 80 90 100
0

50

0 10 20 30 40 50 60 70 80 90 100
0

50

Figure 5-12: The norm of the estimation error for each state with zero landmark measurement
noise.

have a negative impact on the performance of the MEKF-n. This could be the results of the
MEKF-n having dependencies on the rotation matrix and position estimate in the linearized
measurement update (5-6).
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(a) Increasing the amplitude of the noise
on the accelerometer, with an increased
covariance matrix Q.

(b) Increasing the amplitude of the noise
on the landmark position measurements,
with an increased covariance matrix R.

Figure 5-13: RMS of the norm of the error when increasing the amplitude of the sensor noise
with 3 known landmarks.
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Chapter 6

Conclusions and Future Work

6-1 Conclusions

In this thesis an in-depth evaluation of pose estimation is done for the invariant EKF and
the multiplicative EKF. In order to do this, the goal of this thesis was to answer the main
research question:

How does the estimation accuracy of the invariant EKF compare to the multi-
plicative EKF in the context of pose estimation?

To answer this question, three sub-questions were posed. The results discussed in this thesis,
led to the following answers.

What are the advantages of utilizing an LIEKF over an MEKF when dealing
with a left-invariant measurement model, and similarly, what are the benefits of
employing a RIEKF over an MEKF when dealing with a right-invariant mea-
surement model?

As has been covered in other work such as [8, 15], in the case of a high error in the initial
orientation, both the LIEKF and the RIEKF show superior accuracy over the MEKF-b and
the MEKF-n, respectively. This is due to the convergent properties of the IEKF theory and
the state dependence in the linearization of the MEKF. These are not novel ideas and serve
as confirmation of what was already known, in the case of low accuracy of the initialization of
the filters, the IEKF is still guaranteed to converge to the true trajectory, whereas the MEKF
is not and has been reported to occasionally diverge from the true trajectory. Consequently,
if the situation allows for the utilization of either a left- or a right-invariant measurement
model, it would be beneficial to employ the LIEKF or RIEKF over the MEKF-b and MEKF-
n, respectively. However, these findings do not encompass the full scope of possibilities as
IMU and measurement sensor noise also play a role, which leads us to the next sub-question.

How does the IMU sensor noise magnitude affect the converging performance of
the filters differently?
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The LIEKF and MEKF-b and the RIEKF and MEKF-n were compared to each other in
terms of estimation error over a range of standard deviations for the accelerometer noise
and the gyroscopic noise. The MEKF-b showed to converge slower than the LIEKF when
confronted with very small accelerometer noise, with the standard deviation being in the
range of σa = 0 − 0.12 m/s2. This is issue can be mitigated by inflating the associated
covariance matrix Qa to a bigger value. In [8], it was also discussed that the MEKF suffers
from small or tight process covariance matrices and was shown that inflating this matrix
overcomes this issue. For the MEKF-n similar results were found when confronted with very
little accelerometer noise. In this case it was more severe than just converging slower than
the RIEKF, since the MEKF-n also showed instances were it would fail to converge to the
true trajectory. To get a feeling for this range of the standard deviation, a high-end IMU
sensor from Bosch such as the BMI088 has reportedly a noise density of 175 µg/

√
Hz, which

at a sampling rate of 100 Hz is equivalent to a standard deviation of about ∼ 0.017 m/s2. So
the range at which the MEKF-b experiences issues due to a small process covariance matrix
Q is a very feasible range.
The behaviour for the LIEKF and MEKF-b when confronted with an increasing standard
deviation for the gyroscopic noise showed to be very similar at the lower ranges. However,
a slight change in performance was noticeable between the LIEKF and MEKF-b starting
from σω = 0.2 rad/s going up, but became more apparent from σω = 0.4 rad/s onwards.
The mean RMS error of the velocity and position estimates was consistently higher for the
MEKF-b than the LIEKF. This difference is likely due to the left-invariant measurements
being absolute position measurements and offering no correction for the orientation deviation.
Since in the linearized dynamics of the MEKF-b there is a dependency on this orientation
deviation in terms of the rotation matrix, the MEKF-b seems to suffer more from this lack of
correction in the orientation estimate. This might be confirmed by the results of increasing the
gyroscopic noise for the RIEKF and MEKF-n. In the first set of simulations, both filters have
corrective position measurements relative to up to ten landmarks. Since these measurements
are relative to a known position, this also includes orientation information. This results in
no clear drop in performance for both the RIEKF and MEKF-n even though the gyroscopic
noise is increased. However, looking at the second set of simulations, where both filters only
have position measurements relative to up to three known landmarks, the performance of
the MEKF-n seems to be heavily influenced by the increase in gyroscopic noise. Just as for
the MEKF-b the linearized dynamics are dependent on the orientation estimate. Since the
corrective measurements offer less information, compared to having ten known landmarks,
the MEKF-n starts to show that it is not always able to converge to the true trajectory
starting from around σω = 0.5 − 0.6 rad/s upwards. To get a feeling of this range for the
standard deviation, the same high-end Bosch IMU sensor, reports a noise density of 0.014
◦/s/

√
Hz for the gyroscope. At a sampling rate of 100 Hz, this gives a standard deviation of

∼ 2.4 ∗ 10−4 rad/s. This indicates that for typical IMU sensors the non-converging issues of
the MEKF-n and also the lower performance of the MEKF-b compared to the LIEKF, are
unlikely to be noticeable. However, it does suggest that the MEKF is more susceptible to
issues related to robustness compared to the IEKF.
From these results it can be concluded that IMU sensor noise does have more impact on the
MEKF than on the IEKF. To the best knowledge of the author, this has not yet been reported
in current literature and seem to a novel result.
How does the sensor noise magnitude of the external measurements affect the
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converging performance of the filters differently?
It was briefly touched upon in the answer on the previous sub-question, for the right-invariant
measurements, the relative position measurements, the number of landmarks made quite a
difference. The MEKF-n showed to have almost identical performance to the RIEKF when
both filters had access to the relative position information of up to ten landmarks. However,
reducing this information to having a maximum of three landmarks, showed that in several
scenarios of different combinations of sensor and measurement noise, the MEKF-n does not
always have the ability to converge to the true trajectory.

Apart from this, the MEKF-n shows to not always converge to the true trajectory when the
measurement noise is zero and the covariance matrix R is very small. Inflating this covariance
matrix seems to solve this issue. This is likely due to the fact that there is a threshold range
at which the body can see a landmark, because of this at certain periods of time during
the trajectory, the body will only see one landmark. At points where it suddenly sees more
landmarks it seems to over-correct itself, this might be due to large gains since these are
proportional with the inverse term of the covariance matrix R. The results of increasing the
measurements noise for the MEKF-n and RIEKF when the covariance matrix R is increased
at zero noise, shows that increasing the noise on the measurements does have a negative
impact on the performance of the MEKF-n. This could be the results of the MEKF-n having
dependencies on the rotation matrix and position estimate in the linearized measurement
update.

The LIEKF and MEKF-b very comparable results with the increase of the noise on the GPS
measurements. The LIEKF seems to have a slightly better performance, but this difference
with the MEKF-b is very minimal and is too small to be able to conclude a real difference.

To conclude the answer to this question, the quality of the measurements seem to have an
impact on the converging capabilities of the MEKF. The MEKF-n shows to be sensitive
to small a small measurement covariance matrix R when the information it gets from the
measurements is limited. Additionally, due to the state-dependence of the linearization of the
MEKF-n, it seems to be affected more by higher measurement noise than the RIEKF. To the
best knowledge of the author, this result has not yet been reported in current literature and
seems to be a novel idea.

Overall, the following can be concluded from this thesis and the main research question
can be answered as follows, the IEKF and MEKF show very comparable results in a large
amount of the applications. It should be noted that these results were drawn from one
sample problem using two different types of measurement models in a simulated environment,
so it cannot be stated that the IEKF will always show superior estimation accuracy in these
scenarios. Nonetheless, the state-independent error dynamics have been shown to be beneficial
in situations where the initial information of the state of the system is uncertain. Apart from
this, the IEKF has been shown to beneficial in certain edge cases. Firstly, the IEKF shows to
be less sensitive to small process noise covariance matrices Q. Secondly, once the gyroscopic
noise becomes very large, the RIEKF showed higher estimation accuracy over the MEKF-n.
The LIEKF did also show a marginal improvement in estimation accuracy over the MEKF-b.
However, it is important to note that such high levels of noise are typically not encountered in
most real-world applications, making the significance of this observation limited in practical
scenarios. Finally, there seem to be two ways that the external measurement noise influenced
the comparison of the estimation accuracy between the IEKF and MEKF. The MEKF-n
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showed to be sensitive to a low covariance measurement matrix R and additionally, the MEKF-
b and MEKF-n both seemed to be marginally more affected by higher external measurement
noise than the LIEKF and RIEKF, respectively.

6-2 Future Work

This thesis focuses on comparing the performance of the invariant extended Kalman filter
(IEKF) and the multiplicative extended Kalman filter (MEKF) under different measurement
scenarios, either GPS measurements or relative position measurements. While the MEKF
can handle both GPS and relative position measurements simultaneously, the IEKF possesses
the capability to utilize both measurement models by performing a switch between left- and
right-invariant errors [24, 46]. It could prove of interest to compare the performance of the
LIEKF with the MEKF-b, as well as RIEKF with the MEKF-n when both GPS and relative
position measurements are employed.

The evaluated systems in this thesis satisfy the necessary conditions for the IEKF to guarantee
state-estimate independent error dynamics. However, it is worth exploring scenarios where
the dynamical model is not group affine and the measurement models are not invariant, such
as incorporating sensor bias in the state. Assessing the performance of the IEKF compared to
the MEKF in such cases would help identify potential benefits of using an invariant framework
even when the error dynamics are not guaranteed to be state-independent.

Furthermore, considering that the Jacobians of the IEKF are no longer exact in non-group
affine scenarios with non-invariant measurement models, incorporating an iterative step into
the IEKF and comparing it with an iterative MEKF variant could prove beneficial. This
iterative approach may enhance the estimation accuracy and convergence properties of both
filters.
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Appendix A

Parametrization of Orientation
Representation

A critical aspect of the ability to estimate how objects are moving around the world, is the
ability to parametrize its orientation, or rotation. This section will serve as an overview of
the different parametrizations of rotations.

A-1 Rotation Matrix

There are two different ways of interpreting rotations, the so-called active and passive ro-
tations [47]. The active rotations describe the operator that rotates a vector ua resolved in
reference frame Fa, to a vector resolved in the same frame, for example,

va = Rua,

where the subscript denotes that this concerns the components of the vector resolved in Fa.
Active rotations are not very relevant in this research and will not be elaborately discussed.
Passive rotations, also referred to as rotation transformations, correspond to the orientation
of one reference frame to another. In other words, for example, it corresponds to the mapping
of a vector ua resolved in reference frame Fa to frame Fb, so

ub = Cbaua,

where [4]
Cba = F−→b · F−→

T
a .

Rotation matrices have the following properties,

C ∈ R3×3, det(C) = 1 and CTC = I. (A-1)

All rotation matrices that satisfy these properties belong to the special orthogonal group
SO(3), the properties governing matrices belonging to this group are further covered in sec-
tion B-1.
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Appendix B

Matrix Lie Groups

B-1 The Special Orthogonal Group SO(3)

This overview of the properties of SO(3) is based on [4, Ch. 7]. The special orthogonal group
SO(3) represents three dimensional rotations and is the set of valid rotation matrices:

SO(3) =
{

C ∈ R3×3 | CTC = I, det C = 1
}

.

SO(3) has three degrees of freedom in rotation. The associated Lie algebra for SO(3) is

so(3) =
{

ϕ× ∈ R3×3 | ϕ ∈ R3
}

,

where ϕ× is the skew-symmetric representation of ϕ and is given by

ϕ× =

 ϕ1
ϕ2
ϕ3


×

=

 0 −ϕ3 ϕ2
ϕ3 0 −ϕ1

−ϕ2 ϕ1 0

 .

The adjoint representation of an element of SO(3) is equal to that element, Ad (C) = C.
The same holds for the adjoint representation of an element of so(3), ad

(
ϕ×)

= ϕ×. The
exponential map from so(3) to SO(3) is given by the Rodrigues formula,

exp
(
ϕ×)

= cos ϕI + (1 − cos ϕ)aaT + sin ϕa×,

where ϕ = ∥ϕ∥ and a = ϕ/ϕ. The logarithmic map from SO(3) to so(3) is given by

log(C) = (aϕ)×,

where the angle ϕ is given by

ϕ = cos−1
(tr(C − 1)

2

)
+ 2πm,

and the axis a is given by

a = 1
2 sin ϕ

 C2,3 − C3,2
C3,1 − C1,3
C1,2 − C2,1

 .
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B-2 The Group of Double Direct Isometries SE2(3)

The group of double direct isometries was introduced in [8, 43]. This overview of the properties
of SE2(3) is based on [43]. The group SE2(3) represents poses with the addition of a velocity
state, as

SE2(3) =

T =

 C v r
0 1 0
0 0 1

 ∈ R5×5 | C ∈ SO(3), v, r ∈ R3

 .

The inverse of T is defined as [48]

T−1 =

 CT −CTv −CTr
0 1 0
0 0 1

 .

The associated matrix Lie algebra of SE2(3) is

se2(3) =
{

Ξ = ξ∧ ∈ R5×5 | ξ ∈ R9
}

,

where

ξ∧ =

 ξϕ

ξv

ξr


∧

=

 ξϕ×
ξv ξr

0 0 0
0 0 0

 ∈ R5×5, ξϕ, ξv, ξr ∈ R3.

The exponential map from se2(3) to SE2(3) is given by

exp(ξ∧) =

 expSO(3)

(
ξϕ×)

Jξv Jξr

0 1 0
0 0 1

 ,

where J is

J = sin ϕ

ϕ
I +

(
1 − sin ϕ

ϕ

)
aaT + 1 − cos ϕ

ϕ
a×, (B-1)

where ϕ = ∥ξϕ∥ and a = ξϕ/ϕ. The logarithmic map from SE2(3) to se2(3) is

log(T) =

 logSO(3)(C) J−1v J−1r
0 0 0
0 0 0

 ,

where J−1 is given by

J−1 = ϕ

2 cot ϕ

2 I +
(

1 − ϕ

2 cot ϕ

2

)
aaT − ϕ

2 a×. (B-2)

The adjoint operator for SE2(3) is given by [48]

Ad (T) =

 C 0 0
v×C C 0
r×C 0 C

 ∈ R9×9.
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Its inverse is given by [48]

Ad (T)−1 = Ad
(

T−1
)

=

 CT 0 0
−CTv× CT 0
−CTr× 0 CT

 ∈ R9×9.

The adjoint operator for se(3) is given by

ad (ξ) =

 ξϕ× 0 0
ξv× ξϕ× 0
ξr× 0 ξϕ×

 ∈ R9×9.
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Appendix C

Supplementary Results

In this appendix the results omitted in chapter 5 are shown.

(a) Increasing the initial velocity error. (b) Increasing the initial position error.

Figure C-1: RMS of the norm of the error when increasing the initial error in velocity and position
with 10 known landmarks.
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(a) Increasing the initial velocity error. (b) Increasing the initial position error.

Figure C-2: RMS of the norm of the error when increasing the initial error in velocity and position
with 3 known landmarks.
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Glossary

List of Acronyms

KF Kalman Filter
EKF Extended Kalman Filter
UKF Unscented Kalman Filter
MEKF Multiplicative Exxtended Kalman Filter
IEKF Invariant Extended Kalman Filter
LIEKF Left-Invariant Extended Kalman Filter
RIEKF Right-Invariant Extended Kalman Filter
MEKF-b MEKF with orientation deviation resolved in body frame
MEKF-n MEKF with orientation deviation resolved in navigation frame
IMU Inertial Measurment Unit
GPS Global Positioning System
RMS Root Mean Square
SLAM simultaneous localization and mapping
IRTS Invariant Rauch-Tung-Striebel
DVL doppler velocity logs
BCH Baker-Campbell-Hausdorff
LIDAR Light Detection and Ranging
GNSS Global Navigation Satellite System
UAV Unmanned Aerial Vehicle

List of Symbols

(·)× Cross operator for so(3)

Master of Science Thesis Niels van der Laan



80 Glossary

(·)T Transpose
(·)∨ Operator mapping an element of g to Rn

(·)∧ Operator mapping an element of Rn to g

Rn The vector space of real n-dimensional vectors
Rn×m The vector space of real n-dimensional vectors
Sn The set of unit quaternions
Fb Body reference frame
Fn Navigation reference frame
0 Zero matrix
Cnb Rotation matrix of Fn relative to Fb

I Identity matrix
P Covariance matrix
Q Process noise covariance matrix
R Measurement noise covariance matrix
rzw The position of point z relative to point w
rn The position resolved in Fn

vzw/n The velocity of point z relative to point w with respect to Fn

r−→ The position vector
ωbn Angular velocity of Fb relative to Fn

Ad Adjoint operator for G
ad Adjoint operator for g
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