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Abstract 
Introduction 
Patient-ventilator asynchrony (PVA) poses a significant challenge in the management of mechanically 

ventilated patients, contributing to adverse clinical outcomes. Current methods of detecting PVA rely on 

visual assessment by clinicians, leading to subjectivity and inconsistency. Therefore, there is a need for 

automated techniques to identify PVA accurately and efficiently. In this study, we explore the application 

of supervised and unsupervised machine learning algorithms to develop an automatic detection system 

for PVA.  

Methods 
This study was conducted at the ICU of the LUMC in Leiden, the Netherlands. Patients eligible for 

inclusion were mechanically ventilated with an esophageal balloon inserted. Data collected included flow, 

Paw, and Pes curves, which were labelled using an open-source data labeling platform and processed in 

Python. Supervised CNN models were trained for different ventilation modes, while unsupervised 

techniques, utilizing Mahalanobis distance, were explored for data pre-labeling. The discriminative 

capability of the models was assessed using AUROC values. 

Results 
25 patients were included in this study and labelled by clinicians. Using an unsupervised machine learning 

technique based on the Mahalanobis distance for data pre-labeling, a threshold of 3.5 was selected, 

resulting in a 95% accuracy in correctly identifying normal breaths. Creating different CNN models for 

automating the detection of PVA the results demonstrate the discriminative capability of the various 

models across all ventilation modes, PSV and PCV ventilation. They can differentiate between normal and 

abnormal breaths, as indicated by the AUROC values of 0.85(±0.08), 0.83 (±0.12), and 0.80 (±0.28) 

respectively. 

Discussion 
This study investigated the application of machine learning techniques to analyse ventilation data in 

critical care settings. Through a combination of unsupervised and supervised learning methods, we have 

explored the automation of the labelling process and the development of predictive models for 

identifying patient-ventilator asynchronies (PVAs). 
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Introduction 
In the intensive care unit (ICU) mechanical ventilation plays a crucial role in supporting critically ill 
patients with respiratory difficulties (1). Ventilation can partially assist a patient's breathing, and take 
over completely if necessary. The purpose of ventilation is to provide optimal respiratory support to 
patients. However, it is sometimes seen that the ventilation and breathing of patients are not properly 
synchronised to each other. This leads to patient-ventilator asynchrony (PVA)(2). This phenomenon 
happens when the timing of the ventilator-assisted breaths mismatches the patient's respiratory 
effort (3-5). There are different types of PVAs occurring during the different phases of inhalation and 
exhalation (6).  
 
Currently, the diagnosis of PVA relies on visual analysis of ventilator waveforms, specifically pressure 
and flow curves (7), for this continuous bedside monitoring of the ventilator is required, which is not 
feasible in clinical practice. Consequently, there is an underdiagnosis of PVA, leading to uncertainty 
regarding its incidence (8). The sensitivity of visual analysis based on flow and volume curves is low, 
ranging from 16-28% (9). 
 
PVA has potential negative effects on clinical outcome measures. It is known to have an association 
with a higher work of breathing, leading to excessive strain on the respiratory muscles. This, in turn, 
can lead to more dyspnoea and discomfort (4, 10). Several studies have described the effect of PVA 
on clinical outcomes. These show that PVA may be associated with prolonged mechanical ventilation 
and ICU length of stay. However, the effects of PVA on mortality have been inconsistent. This 
suggest that further research is needed to determine its role in mortality outcome (11).  
In addition, it appears that different types of asynchronies have different effects on clinical outcome 
measures. Specifically for reverse triggering, it is hypothesised that there is an association between 
signs of patient improvement and reverse triggering. Additionally, it has been observed that PVA 
tends to occur in clusters and that these clusters have the greatest impact on clinical outcome 
measures (12, 13). To identify the occurrence of clusters of PVA, continuous monitoring is necessary.  
 
Automatic detection algorithms can assist in the diagnosis of PVA using the ventilator waveforms of 
mechanically ventilated patients. Presently, two types of algorithms have been developed in a 
research-based environment: rules-based and machine learning algorithms. However, no algorithm 
is currently suitable for clinical use as all are still in a research setting (14). Current algorithms 
developed consist of data solely based on ventilator’s flow and pressure curves (Paw).  
However, the use of reference signals from patients, such as oesophageal pressure measurement, which 
involves placing a balloon in the oesophagus to measure lung and chest wall mechanics and 
transpulmonary pressure during mechanical ventilation, or diaphragmatic electrical activity, can provide 
more information about the patient's respiratory effort and lead to increased PVA detection (5, 15). The 
addition of oesophageal pressure (Pes) to the algorithm leads to the diagnosis of more PVAs and a 
deeper understanding of the patient’ s ventilation process (16, 17).   
 
Automatic detection of PVA with the use of an algorithm brings several potential benefits. An 
algorithm allows continuous monitoring, which also leads to better accuracy of diagnosis and a 
reduction in workload. This, in turn, allows adequate response to the patient’s ventilator strategy 
when detecting many asynchronies. In addition, with continuous monitoring, data can be collected, 
allowing insightful mapping of the clinical effect of the occurrence of PVAs. 
 
This study aims to develop an automatic detection algorithm capable of recognizing PVA in 
mechanically ventilated patients using flow, Paw, and Pes curves. To achieve this, two machine 
learning techniques are investigated: supervised and unsupervised machine learning. 
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Supervised machine learning techniques are well known in medical research, especially when 
dealing with large labelled datasets (18). Convolutional neural networks (CNNs), a subset of 
supervised learning, are particularly suited to our clinical problem. CNNs excel at automatic 
identifying relevant patterns in labelled data, using the large amount of underlying information 
available and can develop an algorithm based on these patterns. The algorithm can then 
automatically recognise new unlabelled data and label it based on the data in the algorithm (19). 
 
Unsupervised machine learning offers an interesting alternative, as it does not require labelled data 
and is known for its ability to recognise patterns without the labelled data, as example mostly used 
to detect anomalies, in line with the aim of this study. Unsupervised machine learning relies on 
identifying groups of data based on similarities and differences. 
 
In summary, to gain more insight into PVA detection and its clinical consequences, the aim of the 
study is to develop an detection algorithm that can automatically recognise PVA in mechanically 
ventilated patients based on the flow, Paw and Pes curve. This research explores opportunities 
within supervised and unsupervised machine learning to address this clinical problem. 
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Background 
Medical Background 

Mechanical ventilation and ventilation modes 
As stated in the introduction, numerous patients in the ICU require mechanical ventilation due to their 

respiratory needs. Mechanical ventilation is used in different modalities, during this study three different 

modalities are used including, pressure support ventilation (PSV), pressure controlled ventilation (PCV), 

and (semi-)closed loop ventilation. In this study, the C-6 mechanical ventilators manufactured by 

Hamilton Medical are used.  

With PSV, the patient triggers every breath. PSV provides an amount of pressure (Psupp) during 

inspiration, to reduce the effort of breathing and support the spontaneously breathing patient. To use 

this modality, you must also set the timing of the inspiration by adjusting the expiratory trigger sensitivity 

(ETS). This setting determines the duration of inspiration relative to expiration (20). 

In PCV ventilation, all breaths are pressure-controlled and mechanical, regardless of whether they are 

triggered by the patient or the ventilator. This means that pressure is delivered at a constant level with 

the volume depending on the pressure settings, inspiration time, and the resistance and compliance of 

the patient's lungs. In this context, Pcontrol refers to the pressure set on top of the positive end-

expiratory pressure (PEEP), while frequency and the inspiration expiration ratio (I:E) define the breathing 

cycle. The pressure ramp (PRamp) setting determines how quickly the ventilator increases the delivered 

pressure to reach the desired level (20).  

The study also used (semi)closed-loop ventilation, a ventilation method that continuously monitors the 

patient's status and adapts to their needs. Several forms of this modality are available, including adaptive 

support ventilation (ASV), a ventilation mode that maintains a preset minimum minute ventilation (the 

total volume of air that is breathed in and out by a person in a minute). This mode assumes an optimal 

breathing pattern and adjusts inspiratory pressure and machine frequency based on changing patient 

characteristics (20, 21). 

Diagnosis of PVA 
Currently, the method used to detect PVA is by visually examining the ventilation curves at the bedside 

using pressure and flow curves. However, research has shown that clinicians in intensive care units 

identify only a third of all PVAs, suggesting that the true incidence of PVAs is underestimated. 

Inexperienced staff are even less likely to recognise PVA  (9). To improve and simplify the diagnosis of 

PVA, adding a reference signal from the patient is important. There are two options for reference signals 

in mechanically ventilated patients: the oesophageal pressure (Pes) or the electrical activity of the 

diaphragm (EAdi) (22). The oesophageal pressure (Pes) was used in this study. 

Oesophagus pressure (Pes) 
As described above, adding the Pes improves the diagnosis of PVA, and therefore, the Pes curve plays a 

significant role in the context of ventilation (16). The Pes curves provides valuable information regarding 

the patient’s respiratory effort and the initiation of inhalation. The oesophageal pressure curve is 

particularly useful in detecting patient-ventilator asynchronies, as it serves as a reliable marker to identify 

abnormalities in the timing and coordination between the patient's respiratory effort and the mechanical 

support provided by the ventilator. The Pes measurements enhances the accuracy and effectiveness of 
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asynchrony detection during ventilation (23). In the LUMC, an oesophageal balloon is inserted into each 

patient who is predicted to require mechanical ventilation for over 24 hours.  

Types of Patient-Ventilator Asynchronies (PVA)  
Patient-ventilator asynchrony occurs when there is a mismatch between the patient and the ventilator. 

There are several types of asynchronies: early cycling also known as short cycling or premature cycling, 

delayed cycling also known as late cycling or prolonged cycling, auto-triggering, ineffective triggering also 

known as ineffective inspiratory effort (IEE), double triggering, reverse triggering, and flow asynchronies. 

The asynchronies can be divided in the following categories: cycling asynchronies, trigger asynchronies 

and flow asynchronies. Examples of the different asynchronies can be seen in figure 1. 

Cycling asynchronies: Early cycling and delayed cycling 

Early cycling occurs when expiration of the ventilator begins before the inspiratory effort of the patient is 

complete. This can be easily visualised using the Pes curve, see figure 1. Where the expiratory phase 

begins before the inspiratory effort is complete. This form of asynchrony is more common in PCV than in 

PSV. In PCV, the inspiratory time is set, whereas in PSV, the expiratory trigger sensitivity (ETS) is defined. 

This value represents a percentage of the peak inspiratory flow at which the ventilatory cycles from 

inspiration to exhalation (24, 25). However, it is important to note that in PSV, higher percentages of the 

set peak flow can lead to more early cycling, this results in a shorter inspiratory time and therefore may 

the ventilator terminate inspiration before the patient has completed their full breath (26). This 

asynchrony can lead to double triggering (see trigger asynchronies) (6, 27).  

Delayed cycling occurs when the ventilator’s inspiratory time is longer than the inspiratory effort of the 

patient. Mechanical insufflation continues after the inspiratory effort of the patient has stopped, or even 

during expiration. This can be seen with an upward trend in the Pes curve during the mechanical breath, 

indicating that the inspiration effort has stopped. This can be caused by a prolonged inspiration time set 

by the ventilator, or an air leak. Risk factors for delayed cycling are chronic obstructive pulmonary disease 

(COPD) and asthma and can contribute to hyperinflation in these patients (6). In PSV, this asynchrony 

occurs when the ETS is set too low; by increasing the ETS, the expiratory phase is prolonged and the 

inspiratory phase is shortened (24).  

Trigger asynchronies: Auto-triggering, Ineffective triggering, Double triggering, Reverse triggering 

Auto-triggering occurs when the ventilator delivers a mechanical breath without an inspiratory effort. 

This can occur from factors related to the ventilator system or related to the patient. Ventilator-related 

causes include air leaks within the system,  excessively high trigger sensitivity, with the threshold for a 

trigger set to a low value, or due to water accumulation in the ventilator tubing. On the other hand, 

patient-related factors can be intrathoracic pressure fluctuations induced by cardiac activity. The Pes 

curve serves as a visual tool for detecting auto-triggering, where an absence of a triggered breath can be 

seen (6, 27). 

With ineffective triggering, there is an inspiratory effort from the patient without the machine 

administering mechanical breathing. Several factors can contribute to ineffective triggering, including low 

trigger sensitivity with a high trigger threshold value , respiratory muscle weakness, reduced respiratory 

drive, inadequate programmed positive end-expiratory pressure (PEEP) and dynamic hyperinflation 

(auto-PEEP) (2, 27, 28).   
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Double triggering occurs when during one inspiratory effort from the patient two mechanical breaths are 

delivered. Double triggering leads to breath stacking, which is known to have adverse effects. Factors 

that can cause double triggering are a short ventilator inspiratory time. Risk factors for double triggering 

are patients with acute respiratory distress syndrome (ARDS) and protective ventilation (2, 27).  

Reverse triggering occurs when mechanical breath delivered by the ventilator triggers a neural response 

in the patient, leading to involuntary patient effort and diaphragmatic contraction. This results in a 

sequence of two consecutive mechanical breaths without adequate expiratory time. The first breath is 

initiated by the ventilator, based on controlled ventilation, the second breath is initiated by the patient 

due to a reflex contraction of the diaphragm (17). ARDS is a known risk factor for reverse triggering. if it 

occurs periodically or synchronously with different patterns it is mostly seen in awake sedated patients 

(27). 

Flow asynchronies occur when the flow generated by the ventilator does not meet the flow required by 

the patient. This type of asynchrony occurs mainly in volume-controlled ventilation (2). As volume-

controlled ventilation is not used on the ICU at the LUMC, it will not be discussed further here.   

 
Figure 1. Examples of different forms of Patient-Ventilator Asynchrony, with the asynchrony marked in 
pink. 
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Technical Background  
Artificial intelligence (AI) is a rapidly advancing field of 

computer sciences that focuses on creating intelligent agents 

that can perform tasks that typically require human-level 

intelligence (29). Machine Learning  (ML) is a subfield of AI 

that focuses on the development of algorithms and statistical 

models that enable computer systems to learn from and make 

predictions or decisions based on input data (30). Machine 

learning can be broadly categorized into two types: supervised 

and unsupervised techniques.  

Supervised learning 
In supervised learning, the algorithm is trained using labelled 

data, which has been annotated or categorized by humans. The labelled data helps the algorithm to learn 

to recognize specific patterns in each class, making it capable of performing predictions on new, unseen 

data. The disadvantage of supervised learning is that it requires labelled data, which is known as a time 

consuming process (31). 

Deep learning 

Deep learning is a subset of machine learning that uses multiple layers of learning.  Each layer has its own 

function within the neural network, and in deep learning, more layers are used to extract key information 

from the data, making it a more advanced learning technique. Unlike classical machine learning, where 

the user has to select the important features, deep learning automatically selects the features using the 

multiple layers. This is a significant advantage of deep learning (32).  

Convolutional neural network (CNN) 

CNN also referred to as ConvNet is a supervised deep learning technique that is used for solving complex 

problems. CNN is a technique that is mainly used for classification based on contextual information (33). 

And is mostly used in image classification, object recognition and speech recognition (33, 34).    

A typical CNN model has a single input and output layer with multiple hidden layers. With  A CNN model 

is built of several components, including a convolutional layer, pooling layer, activation function and fully 

connected layer.   

To address the aim of this study, a CNN model was developed for image classification. The model takes 

images as input and predicts the content of the image. For the purposes of this thesis, the input data to 

the CNN was assumed to be an image. To do this, the existing patient data from the ventilator must be 

converted into an image using resizing techniques, which will be explained in more detail in the Methods 

section. 

Convolutional layer 

The first step of a CNN involves the convolutional layer. Feature extraction is a crucial step within the 

convolutional layer, wherein the most informative features for classification of the input data, in this case 

an image are identified and extracted. For the feature extraction in the CNN model a convolutional 

operations takes place which involves moving a kernel across the input data, a 2D image, enabling the 

extraction of distinctive features. This process is based on convolutions between the kernel and the input 

data, which highlight relevant patterns within the image (35, 36).  

 
Figure 2. Fields of Artificial Intelligence 
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In image processing, convolution is a mathematical operation between the input image, often 

represented as 'f', and a small mathematical matrix, typically referred to as a 'kernel' or 'filter', denoted 

as 'w'. The image is multiplied with the kernel to extract the most important features. 

The mathematical expression for the convolution operation is shown in equation (1) (37) (38): 

 g = f ∗ w  (1) 
   

where 'g' represents the resulting filtered image, also known as the feature map that highlights certain 

features of the input image, 'f' is the original input image, and 'w' is the kernel or filter (39). It is 

important to note that this seemingly simple equation conceals a complex process, which is 

demonstrated in equation (2). 

 
g(x, y) =  ∑ ∑ f(x − m, y − n)w(m, n)

∞

n

∞

m

  (2) 

 

Equation 2 explains how each pixel in the filtered image is formed by considering its surroundings in the 

original image and weighting them by the values represented in the convolution kernel. 

The convolution process involves using a small kernel and systematically sliding it over the image. The 

convolution process involves multiplying the kernel's values with the pixel values in the image at each 

position and then adding them together to obtain a filtered image. The schematic overview of a 

convolution operation can be seen in figure 3. 

 
Figure 3. Schematic overview of a convolution operation (1). 

 

Activation Function 

After the convolutional layer, a non-linear activation function such as ReLU (Rectified Linear Unit) is 

applied to introduce non-linearity into the neural network. By introducing non-linearity into the model, 

the CNN model becomes capable of learning and representing more complex and nonlinear patterns in 

the data (40).  
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Pooling Layer 

After the activation function, a pooling layer is applied to reduce the dimensions of the extracted 

features, which helps reduce computation time (41). Various types of pooling layers exist, with max 

pooling being a common choice for CNNs. This method reduces dimensionality by retaining only the most 

significant information from the input data. Typically, a window size of 2x2 is used for max pooling. This 

window moves over the input data, retaining only the highest value within the window. As the pooling 

window moves across the input feature map, it selects the highest value within the window to generate 

the output. This technique reduces dimensionality while retaining the most important information (33, 

39). The process of Max pooling with the use of a 2x2 kernel can be seen in figure 4.  

 

Figure 4. Example of an application with an 2x2 max-pooling 

(42) 

After the application of convolutional and pooling operations, the next step in the CNN-process are the 

fully connected layers also known as the hidden layers. This takes the output of the convolutional and 

pooling layers and predicts the best label to the image.  Before entering the fully connected layers, the 

data is flattened into a 1-dimenional array for preprocessing (36).  

Overview of a CNN model is visualized in figure 5.  

 
Figure 5. Schematic overview of a CNN model 

 

During training, the CNN network determines the optimal parameters for achieving the best model 

performance using backpropagation and a loss function.       The loss function compares predicted and 

actual outcomes, with a high loss indicating incorrect predictions and a low loss indicating accurate 

predictions. Backpropagation is the process by which the model learns, iteratively adjusting its 
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parameters based on the gradient of the loss function. This process improves the model's performance to 

achieve the highest possible accuracy (43). 

A great advantage of CNNs lies in their ability to automatically learn relevant features from raw image 

data, eliminating the need for manual feature selection. The automatic feature extraction improves the 

model ability to handle complex visual patterns and variations, making CNNs highly effective in image 

classification tasks.  

Unsupervised learning 
In contrast to supervised learning, unsupervised learning aims to discover patterns, structures or 

relationships in unlabelled data. It explores data without predefined labels. Unsupervised machine 

learning can be broadly categorized into four main techniques (44):  

1. Clustering is a method in unsupervised machine learning that groups similar data points together 

based on their characteristics. This helps identify patterns or groupings in the data that may not 

be immediately apparent. Based on this information data that is similar to each other can be 

grouped together.  

2. Dimensionality reduction techniques, like principal component analysis (PCA)  These techniques 

aim to reduce the number of features or dimensions in a dataset while preserving as much 

information as possible. This can be useful for tasks such as data visualization, feature selection, 

or noise reduction. This can be useful for tasks like data visualization and noise reduction (45).  

3.  Generative models, These models can learn the underlying distribution of the data and generate 

new samples that resemble the original data. This can be useful for tasks such as data 

generation, anomaly detection, and data augmentation (46).    

4. Anomaly Detection, this technique involves identifying data points that deviate significantly from 

the norm or expected behavior. Anomaly detection methods can be statistical or machine 

learning-based and are used to identify outliers or anomalies in the data. 

There are several types of techniques that can be used to detect anomalies, one of which is distance-

based techniques. Distance-based techniques involve the determination of the similarity of the data 

points with respect to each other. Data points that are similar to each other are considered to be close 

together in the feature space, while data points that are dissimilar are far apart. Outliers, or anomalies, 

are data points that are significantly different from the rest of the data, and therefore have the least 

similarity to other data points (47).  

This study will utilize a CNN algorithm that requires labelled breaths images as input data to recognize 

PVA. Labelling breaths and distinguishing normal from abnormal breaths is a time-consuming task due to 

the prevalence of normal respiratory data compared to PVA data. In the context of this study, 

unsupervised machine learning techniques can provide an option for automatic labelling, making the 

labelling process less time-consuming. Automated data labelling is best achieved through the use of 

anomaly detection methods, as PVAs are considered abnormal breaths and therefore behave like 

anomalies. 

The main objective of this master’s thesis is to develop a supervised CNN machine learning algorithm 

capable of detecting patient-ventilator asynchrony automatically.  Additionally, as a secondary research 

objective is to identify an unsupervised machine learning technique for data labelling, with the goal of 
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automating labelling process for a subset of the data and, as a result, reducing the time necessary for 

labeling the entire dataset.  
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Methods 
Data collection 
This study was conducted at the ICU of the LUMC in Leiden, the Netherlands. Patients who were 

mechanically ventilated and had an esophageal balloon inserted were eligible for inclusion.  Esophageal 

balloon placement is contraindicated in patients with specific conditions, including oesophageal varices 

grade 3 or higher, recent gastrointestinal bleeding (<1 month, relative), thrombocytopenia < 50 (relative), 

gastroesophageal malignancy, history of gastroesophageal surgery, other diseases of the oesophagus or 

thorax that may lead to complications or unreliable measurements, and pneumonectomy (48). Once 

eligible patients were identified, a memory box was connected to the ventilator to record relevant data, 

including Paw, flow, volume and Pes curves, along with additional information of het ventilator, such as 

time, breath number and the timing of inspiration and expiration. Each patient’s data was recorded at 

least once per admission, providing up to 5 hours of available data per recording. Ethical approval for this 

study was obtained from the non-WMO committee of division 1 of the LUMC, protocol number 2022-

061, and informed consent was obtained from the patient’s legal representative.  

Data Labelling 
In order to prepare the ventilator data to be used for the training of the machine learning model, the 

captured patient data was labelled using the open source data labelling platform Label-Studio (49). This 

platform allows for simultaneous labelling of all the respiratory curves, including the Paw, Pes and flow 

curves. To ensure accuracy and consistency in the labelling process, a data annotation protocol was 

written and followed during the labelling process. The data annotation protocol can be found in Appendix 

B. An hour of data with the most asynchronies, referred to as the region of interest (ROI), was extracted 

from each patient’s recording. This data was then annotated by a single clinician following the developed 

protocol. The data was categorized into different labels representing different types of asynchrony. These 

labels include reverse triggering, auto-triggering, ineffective effort during expiration (IEE), early cycling, 

delayed cycling, double triggering, cough, peristalsis, and other artefacts. Data classified as ‘normal’ was 

not labelled during the label process in Label-Studio, but was automatically labelled as ‘normal’ when 

loaded into Python. To ensure the highest quality of labelling, four clinicians with expertise in PVA 

performed the annotation process. Once the annotation was completed the time series data was 

downloaded from Label-Studio and further processed in Python.  

Data pre-processing in Python: 
After annotating the time series dataset, the data is retrieved from Label-Studio and stored in a CSV file, 

which is imported into Python. This dataset now includes the annotations provided by clinicians, where 

each time series data point has a label. In addition to the Paw, pes and flow curves the dataset is added 

with information from Hamilton Medical. This information consists of the breath number, where each 

breath is numbered since the start of ventilation, the moment of inspiration or expiration, and whether 

the breath is initiated by the patient or delivered as a controlled breath by the mechanical ventilator.   

This research is a follow-up to an earlier study on developing an algorithm to automatically detect PVA. In 

the previous study, we chose to use a CNN algorithm to automatically detect the PVA, this was done 

using images of a single breath as data input. To create this image, the existing patient data must first be 

cut into individual breaths from which an image can be created. The further segmentation process is 

further described below.  
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Step 1: Data segmentation 
The previous study on automatic PVA detection already used an algorithm to split patient data into 

separate breaths. Further visual analysis shows that this algorithm did not work optimally with multiple 

breath cycles where it was supposed to be one breath cycle. The basis of this algorithm was to detect the 

start and end of an inspiration in order to frame a single breath in an image, based on flow acceleration 

and the moment the flow switched from positive to negative or vice versa. However, Figure 6 shows that 

the algorithm failed to detect the start of inspiration. This algorithm led to incorrect splitting where 

multiple breaths were combined where they should have been one breath. This can be seen in figure 7.  

 
Figure 6. Problems detecting Inspiration with the time series data 

 

To solve this problem, a new method of 

splitting the data into separate breaths 

was investigated and a method using 

information from the Hamilton Medical 

ventilator was chosen. The ventilator 

registers when inspiration starts and 

stops, based on this information the data 

can be segmented into individual breath 

cycles. The exact method used to 

determine the start of inhalation and 

exhalation by the ventilator is not entirely 

clear, but it is based on information from 

when the ventilator starts and stops the 

mechanical ventilation administered. 

 

Figure 7. Multiple breaths captured in a single breath 
frame 
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In equation 3, the variable ‘start’ represent the indices of 

the start of the inspiration used in this algorithm. 

‘start_insp’ represents the starting point provided by the 

Hamilton Medical ventilator, and ‘RR’ denotes the most 

frequently observed respiratory rate during the data 

recording period. This equation calculates the appropriate 

starting point for each data window, ensuring that each 

respiratory cycle depicted captures one complete breath 

cycle along with relevant contextual information. An 

example of a single breath cycle is shown in Figure 8. 

 

 

 

 

Step 2: Scaling the data 
The time series data is now segmented into individual 

breaths and includes the information from Hamilton 

whether the breath is a patient-triggered or a ventilator-

provided breath, based on the information given by the ventilator. 

A single breath cycle consists of the Paw, flow, and Pes curves. These curves have different units of 

measurement, resulting in variations in their magnitudes when plotted together in a single image. To 

optimize the visual representation of these curves and retain their detail within the image, a 

normalization process is applied. This approach effectively scales the data to have a standard deviation of 

1 while centering it around the mean value. By doing so, all three curves can be clearly visualized within 

the same image, an example can be seen in figure 9. 

During the patient recording, regular patient care continued, so it is possible that during the recording, 

the oesophageal balloon was temporarily disconnected for patient care. During the disconnection or 

deflation of the balloon, there is no accurate measurement present of the Pes signal. Therefore, signals 

where the Pes curve is 0 or is non-informative are removed.  

Step 3: Converting signals to images.  
After scaling the time series of the respiratory signals, the next step in the pre-processing phase relates to 

visualisation, i.e. converting the 1D time series signals into 2D images. This is done using line plots where 

the horizontal x-axis represents time and the vertical y-axis represents the scale values of the Paw, Pes 

and Flow curves, so that each image has a size of Lx3x1, where L is the time length of the breath. The 

three channels represent the three different curves, the Paw, the Pes and the Flow curve. An example of 

the visualisation of the image can be seen in figure 9.  

 
𝑠𝑡𝑎𝑟𝑡 = 𝑠𝑡𝑎𝑟𝑡_𝑖𝑛𝑠𝑝 − ( 

1

10
∗

60

𝑅𝑅
∗ 50 𝐻𝑧) (3) 

 

Figure 8. Example of an segmented 
breath 
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The dataset consists of respiratory data from multiple patients, resulting in varying respiratory rates and 

breaths cycle sizes. To ensure uniform image sizes for machine learning model training, a zero-padding 

technique is applied. This adjust the breath image size to match the largest image in the dataset creating 

consistent dimensions. The smaller images are filled with 'empty' information at the edges so that this 

does not affect the rest of the process. This means that zeros are added to the sides. This enhances the 

model’s ability to effectively analyse respiratory patterns.  

 

Figure 10. data input of breath image with zero padding at the 
end of the curve 

 

 

Figure 9. Preprocessing process. A = original breath, B = breath with the normalized curves, C = normalized 
curves combined into one image 
Paw = pressure, Pes = Oesophageal pressure 
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Mahalanobis distance 
During this research, the Mahalanobis distance was used several times. This statistical metric measures 

similarity/dissimilarity between a data point (breath) and distribution. In the context of multivariate data, 

where different variables contribute to the overall distribution, the Mahalanobis distance is particularly 

useful. The formula used to calculate the Mahalanobis distance can be found below (50):  

 

In equation 4: 

- D corresponds to the mahalanobis distance 

- x represents the vector of data 

- m represents the vector of mean values 

- C-1 represents the inverse covariance matrix 

- T indicates the transpose operation 

The Mahalanobis distance serves a dual purpose: it detects outliers within the dataset and quantifies the 

dissimilarity or proximity of data points to the center of the data distribution. In this context, the center 

of the data distribution represents the mean of the data. The Mahalanobis distances takes into account 

the covariance structure of the data and calculates how many data and standard deviations away a data 

point is from the mean. Data points that are closer to the mean have lower Mahalanobis distances, while 

those farther away have higher distances. This distance metric is commonly used for anomaly detection 

and for identifying data points that deviate significantly from the expected data distribution. An example 

of the Mahalanobis distance of the breaths and their distribution is shown in Figure 11. 

By using the Mahalanobis distance for each breath, a clear distinction can be made between normal 

breaths and those containing artefact/asynchronies. This distinction is achieved by identifying breaths 

with the largest Mahalanobis distance as potential outliers, while also recognising normal breaths based 

on those with the smallest Mahalanobis distance.  

The breath datapoints can be effectively visualized in the feature space using PCA and the Mahalanobis 

distance. This visualisation allows for a clear representation of the distribution of breaths along with their 

corresponding labels. Figure 11 presents an illustrative example of this distribution, providing valuable 

insights into how different breaths are spatially distributed with their respective labels.  

It can be seen that the centre of the distribution is normally labelled breaths. The artefact labelled 

breaths are in the plots seen as outliers. In addition to the normal distribution there is also a group of 

breaths labelled as reverse triggering. This shows that the labels are clustered together and that the 

labels are distributed as their own distribution. This leads to the hypothesis that an unsupervised 

machine learning technique can be used to distinguish between the different types of PVA. 

 𝐷 =  √(𝑥 − 𝑚)𝑇 ∙ 𝐶−1 ∙ (𝑥 − 𝑚) (4) 
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Figure 11. Breaths as datapoint visualised using Principal Component Analysis and the Mahalanobis 
distance 

 

Unsupervised machine learning: create pre-annotations 
A notable disadvantage of this study is that there is no database available for patient-ventilator 

asynchrony data.  As a result, all data collection and labelling tasks have to be undertaken by ICU 

researchers at the LUMC. This is particularly labour intensive in a healthcare setting where time is already 

a limited resource. To speed up some of the time-intensive labelling process, the use of an unsupervised 

machine learning algorithm was explored, with the use of the Mahalanobis distance, to determine the 

feasibility of partially automating the labelling process.  

In automating the labelling process, there is a particular interest in labelling ‘normal’ breaths in advance 

or automatically, as most of the data is ‘normal’, causing it to be the most time-consuming labelling 

activity. It is therefore investigated whether the Mahalanobis distance can be used as an unsupervised 

machine learning algorithm to automatically distinguish between normal and abnormal breaths. This is 

possible because most of the breaths in het dataset are normal, and so this becomes the centre of the 

data, so based on the Mahalanobis distance formula above, the normal breaths get the smallest 

Mahalanobis distance.  To automatically distinguish between the normal and abnormal breaths, a 

threshold of Mahalanobis distance is searched for, below which the breaths are always normal.  

To establish a threshold, we utilise data from patients that have already been manually labelled by 

clinicians. It was visually verified that breaths labelled by clinicians were actually normal breaths. By using 

different thresholds, we determined the range within which 95% of breaths were classified as normal. 

This percentage was chosen to avoid missing too many normal breaths, which would require manual 

labelling. If the threshold is lowered significantly, the Mahalanobis distance may label asynchronous 

breaths as normal. It is important to avoid both of these situations. Various thresholds were tested using 

a histogram of the labelled data, which displayed the most frequent Mahalanobis distance per label. In 

particular, the Mahalanobis distances of the normally labelled breaths were considered. 
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To determine the threshold, the following formula has been used:  

𝐷95 =
(∑ 𝐷𝑛𝑜𝑟𝑚𝑎𝑙< 𝑡ℎ𝑟)

∑ 𝑁𝑛𝑜𝑟𝑚𝑎𝑙 
 𝑥 100%   (4)  

- D95 represents the Mahalanobis distance threshold where 95% of the normal breaths are 
labeled as normal 

- Dnormal is the Mahalanobis distance of normal breaths of a patient labelled by clinicians 

- Thr is a chosen threshold for the mahalanobis distance 

- Nnormal is the total count of normal breaths of a patient labelled by clinicians 

 
Equation 4 establishes the percentage of breaths that can be accurately pre-labelled using the 

unsupervised machine learning algorithm. This is achieved by dividing the number of breaths with a 

Mahalanobis distance less than the threshold by the total number of normal breaths. This process is 

repeated for several thresholds, and the threshold that prelabels more than 95% correctly is used for 

prelabelling the breaths. 

Labelled data 
Visual analysis of the recorded patient data revealed that certain breaths were inaccurately labelled, 

particularly those labelled with the label ‘normal’. These breaths had visual artefacts indicating possible 

mislabelling. The Mahalanobis distance was used to access the abnormality of the breaths. From the 

breaths that were labelled normal, it was also found that the breaths with the visual artefacts had a 

Mahalanobis distance greater than 10, which is a clear deviation from the normal distribution. This can 

also be seen by creating a histogram of all the Mahalanobis distance of all the breaths and their 

corresponding labels, as shown in figure 12. This histogram shows that all breaths labelled as normal 

exhibit Mahalanobis distances falling within the range of 0 to 5. It is presumed that any breaths with a 

distance exceeding 10 deviates significantly form the norm and is considered an anomaly. This 

assumption aligns with visual evidence, as depicted in figure 13. In order to train the machine learning 

model with the correct data, the breaths that are anomalies, with a Mahalanobis distance >10 and are 

labelled ‘normal’ by the clinicians were changed to the label ‘other artefacts’.  

 

 

Figure 12. Histogram of the mahalanobis 
distance of all breaths from patient 11. 
 

Figure 13. Wrong label to a normal breath, 
showing a breath with artefacts 
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CNN Model  

Architecture 
A CNN model consists of multiple layers, which are described in the technical background section. In this 

study, an existing CNN model built on TensorFlow was used, and its architectural details are shown 

below.  The architecture of the CNN model remains unchanged, with the exception of the input data 

format. The new input data format changed from the conventional 300x3x1 dimension to Lx3x1, where L 

is the time length of the largest breath.  

The CNN model consists of four blocks, each containing a 2D convolutional layer, a batch normalization 

layer, and an activation function that uses ReLU. Additionally, pooling is included in each block. After 

these four blocks, there is a fully connected layer with a softmax filter, followed by a dropout layer. 

A visualisation of the architecture of the CNN model is shown in figure 14 and more information on the 

layers of the CNN in table 1.  

 
Figure 14. Schematic overview of the architecture of the CNN model 
 

 

 

Table 1. Overview of the different layers of the CNN model 

Layers  Types  Dilation 
rate  

Activation 
function  

Output shapes  Size of 
kernel  

No. of 
kernels  

Stride  No. of 
parameters  

0  Input  -  -  300 x 3  -  -  -  0  
1  2D Convolution  1  ReLU  300 x 3 x 16  50 x 1  16  1  816  
2  Batch 

Normalization  
-  -  300 x 3 x 16  -  -  -  1200  

3  2D Max Pooling  -  -  150 x 2 x 16  2 x 2  -  2  0  
4  2D Convolution  2  ReLU  150 x 2 x 32  10 x 1  32  1  5152  
5  Batch 

Normalization  
-  -  150 x 2 x 32  -  -  -  600  

6  2D Max Pooling  -  -  75 x 1 x 32  2 x 2  -  2  0  
7  2D Convolution  2  ReLU  75 x 1 x 64  5 x 1  64  1  10304  
8  Batch 

Normalization  
-  -  75 x 1 x 64  -  -  -  300  

9  2D Max Pooling  -  -  38 x 1 x 64  2 x 2  -  2  0  
10  2D Convolution  3  ReLU  38 x 1 x 32  3 x 1  32  1  6176  
11  Batch 

Normalization  
-  -  38 x 1 x 32  -  -  -  152  

12  2D Max Pooling  -  -  19 x 1 x 32  2 x 2  -  2  0  
13  Fully connected  -  ReLU  256  -  -  -  155904  
14  Fully connected  -  Softmax  6  -  -  -  1542  
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Data input 
 Significant differences exist in the normal breathing patterns between different ventilation modes. 

Figure 15 and 16 show the PSV (spontaneous) and PCV (P-CMV) normal breathing patterns, respectively. 

To train the machine learning algorithm accurately, different machine learning models are developed for 

each ventilation mode. This can be achieved by categorising the patient's breaths according to data from 

the Hamilton ventilator, distinguishing between a mechanical breath (PCV) and a supporting breath 

(PSV). 

 

 

 
Figure 15. PSV – normal breath  Figure 16. PCV – normal breath 

 
 

As a result, the patient data is classified into two main groups: PCV data or PSV data. This division serves 

as the basis for creating two separate and specialised machine learning models. One model deals 

exclusively with PCV data while the other one is specifically designed for PSV breathing data. In addition 

to the PCV and the PSV modes, the LUMC ICU also uses a (semi)closed-loop ventilation mode, specifically 

the Adaptive Support Ventilation (ASV) mode. ASV allows the patient to initiate breaths independently 

while also providing controlled mechanical breaths if the patient's spontaneous breathing is insufficient. 

Due to the use of both controlled and supported breaths in this ventilation mode, the development of a 

machine learning model for this specific ventilation mode is challenging, as the data provided by 

Hamilton is not sufficient to differentiate between ASV mode and PSV or PCV. Therefore, patient-

triggered breaths are part of the spontaneous group and machine-triggered controlled breaths are part 

of the P-CMV group. This may lead to the division of breaths from a single patient in both the 

spontaneous and P-CMV groups. 

In addition to the PSV and PCV models, a further model has been developed using the entire dataset 

(ALL), consisting of all breaths of all patients, both spontaneous and controlled. Therefore, a total of three 

models have been created, namely ALL, PSV, and PCV. 

Cross-validation 
Following the completion of data pre-processing, the dataset undergoes division into distinct groups for 

model training. To minimize the risk of overfitting, the Leave-One-Out-Cross Validation (LOOCV) method 
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is used. With this method the dataset is divided into multiple groups, with each cross-validation iteration 

involving one group serving as the validation set while the model is trained on the remaining groups (51). 

In a more specific context, during a  

LOOCV fold, the data of a particular patient is intentionally excluded from the training process to prevent 

the model's exposure tio that specific patient's breaths. Subsequently, the model's performance is then 

assessed using the withheld patient data to evaluate its generalization capabilities to previously unseen 

examples (52).  

In addition to the validation set for each fold, a distinct test dataset was also created, which is entirely 

excluded from the model’s training. The model’s performance on this test set is subsequently evaluated.  

The process of a leave-one-group-out cross-validation is shown in Figure 17 (52).  

 

Performance  
A number of different performance measures are used to assess the performance of the model. To 

understand the principles of these performance metrics, it is first necessary to introduce the following 

concepts that are shown in table 2:  

Table 2. Confusion matrix based on normal breathing an Patient-Ventilator Asynchrony (PVA) 

 PVA Normal breathing 

Model predicts PVA True Positive (TP) False Positive (FP) 

Model predicts Normal breating False Negative (FN) True Negative (TN) 

 

The following performance metrics were used: 

Sensitivity, also known as the true positive rate, represents the proportion of actual positive cases (PVA) 

that the model correctly identifies. It measures the model’s ability to correctly classify PVA cases as 

positive. So sensitivity shows the model ability in correctly identifying positive cases, a crucial aspect in a 

clinical context. The formula to calculate the sensitivity can be seen in formula 7 (53).  

 

Figure 17. Schematic overview of Leave-One-Out-Cross Validation 
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Specificity: Specificity shows the model's ability to accurately identify negative cases, which is of great 

importance in clinical applications. In this context, how good is the model's ability to correctly classify 

normal breaths as normal? The formula to calculate the specificity is seen in formula 8 (53).  

 

 AUROC (Area Under the Receiver Operating Characteristic Curve): The AUROC is a performance metrics 

that is used to evaluate classification models. It assesses the  

model’s capability to distinguish between positive and 

negative cases, the discrimination of the model, and is 

widely recognized as a golden standard for evaluating model 

performance. In the context of PVA and normal breathing, 

the AUROC measures how well the model can discriminate 

between these two categories. An example of the ROC curve 

can be seen in figure 18. The AUROC is based on sensitivity 

(y-axis) and 1-specificity (false positive rate) (x-axis).  

1-specificity, is known as the false positive rate, which is the 

proportion of actual negative cases (normal breathing) that 

the model incorrectly classifies as positive (PVA). It measures 

the tendency of the  model to misclassify normal breathing as PVA (54).  

The AUROC is the area under the ROC curve and can be and can be classified into the following 

performance classes (54, 55) (56). 

- AUROC of 0.5 suggests no discrimination 

- AUROC < 0.6 poor discrimination 

- AUROC of 0.6-0.75 possibly helpful 

- AUROC  > 0.75 clearly useful.  

F1-score: The F1-score combines two crucial metrics: precision (also known as positive predictive value), 

which measures the model's ability to make correct positive predictions, the proportion of correctly 

identified positive cases out of all cases predicted as positive. And recall also known as the sensitivity 

captures the model’s ability to find all the positive cases, measuring the proportion of correctly identified 

positive cases out of all actual positive cases. 

The F1-score is displayed in a score between 0 and 1. This metric proves particularly valuable in scenarios 

with imbalanced datasets, such as those in this study where normal breaths are far more frequent than 

PVA instances.  

 
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)
 (7) 

 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =   

𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑒𝑣𝑒

(𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 

 
(8) 

 

Figure 18.  Example of an ROC curve 
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Accuracy:  Accuracy shows the proportion of correctly classified cases out of the total predictions made 

by the model.  

 

 

Final Validation 
During this research, several machine learning models were created and compared. To validate the 

model’s performance, new patient data that is not previously seen by the model is predicted. These 

predictions, generated for individual breaths with the new data, are loaded into Label-Studio, the 

annotation program. This approach enables clinicians, who have expertise in data labelling, to evaluate 

the accuracy of the model in classifying unseen data. As clinicians are presently the most widely used and 

only validated option for detecting PVA, it is important to consider their objectivity and precision in this 

task.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
𝐹1 =   

2 ∗ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
=  

2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (5) 

 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   

(𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒)

(𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 (6) 
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Results 
Data collection 
Between January 2023 and August 2023, a total of 25 patients were included and labelled. Among them, 

12 were ventilated in PSV mode, 6 in PCV, 5 in ASV mode ((semi)closed-loop ventilation), and 2 received 

ventilation through both PCV and ASV during the recording. Clinical characteristics are detailed in Table 3. 

From these patients, a total of 39.856 breaths were analysed. Details on the PVA types and their 

respective quantities per patient are available in Appendix C. 

 

Unsupervised Machine learning 
The Mahalanobis distance was used as an unsupervised machine learning algorithm to partially automate 

the labelling process.  

A first step is to determine the threshold for distinguishing between normal and abnormal breaths. An 

essential step in this process was the analysis of Mahalanobis distance histograms per patient generated 

from previously labelled data. These histograms were constructed based on the Mahalanobis distance 

calculated from the mean and covariance of normal breaths from each patient. The histograms show all 

the Mahalanobis distances of all the breaths of a patient. To determine an appropriate threshold for pre-

labelling breaths as normal, different thresholds were investigated. The percentage of breaths correctly 

classified as normal was determined using the formula given in the Methods section.   

Table 3. Patient characteristics 

Patient Age 
(years) 

Gender Reason for admission ICU length of 
stay (days) 

Length of MV 
(days) 

Ventilation 
mode 

1 40 Female Cardiac disease 17 17 d SPON 
2 48 Male Cardiac disease 67 50 SPON 
3 75 Female Sepsis 28 28 ASV 
4 61 Male Postoperative 19 15 SPON 
5 65 Female Sepsis 56 44 SPON 
6 57 Female Respiratory disease 7 7 P-CMV/ASV 

7 55 Male Respiratory disease 7 6 P-CMV 

8 44 Male Cardiac disease 50 46 SPON 
9 39 Female Acute liver failure 8 8 SPON 

10 58 Male Cardiac disease 81 57 SPON 
11 73 Male Respiratory disease 6 6 P-CMV 

12 56 Male Cardiac arrest 46 46 SPON 

13 64 Male Respiratory disease 11 9 SPON 

14 61 Male Respiratory disease 6 6 *T SPON 

15 56 Female Respiratory disease 51 47 i-ASV 

16 73 Male Cardiac arrest 34 26 SPON 
17 75 Male Respiratory disease 46 34 P-CMV 

18 69 Male Cardiac disease 27 27 P-CMV 
19 62 Male Liver disease 22 4 i-ASV 
20 67 Male Liver disease 120 72 i-ASV 
21 64 Male Cardiac disease 2 2 P-CMV 
22 66 Male Respiratory disease 18 18 i-ASV 
23 61 Male Postoperative 83 83 Spon 
24 58 Male Respiratory disease 19 3 P-CMV 
25 44 Male Respiratory disease 7 6 P-CMV 

SPON = PSV (supportive ventilation), ASV = (semi)closed-loop ventilation, i-ASV = (semi)closed-loop ventilation, P-CMV = PCV  
(controlled ventilation) 
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Data from 13 patients were used because the data from these patients had already been manually 

labelled and were therefore available and could be used to determine the threshold; this threshold could 

then be used in the study and it was not necessary to label all the data that had not yet been labelled. 

The new unsupervised machine learning technique was then applied to additional patients. 

 

After analysing the results, a threshold of 3.5 was selected, resulting in a 95% accuracy in correctly 

identifying normal breaths, as shown in Table 4.  

After applying this threshold, the process of pre-annotating new unlabelled data becomes possible. When 

unlabelled data is loaded and pre-processed, any breath with a Mahalanobis distance less than 3.5 is 

assigned the 'normal' label. In order to use the pre-annotations, the labels must be constrained to a 

format compatible with Label-Studio and aligned with the structure of the original dataset. Labels 

originally assigned to whole breaths were transformed into labels assigned to individual data points. 

These modifications allowed the data to be imported into Label-studio with pre-annotated information 

(Figure 19). 

Table 4. Threshold Mahalanobis distance 

Patients/Threshold 5 4,5 4 3,5 3 

1 97.07  97.99 99.15  99.48  99.69 

2 98.64 99.27 99.56  99.88  100.0 

3 93.75 94.77 94.59  95.24  97.66  

4 99.31 99.40 99.59  99.51  99.45 

5 99.85 99.91 99.94  99.97  99.96  

6 99.55 99.55 99.64  99.87 100.0, 

7 99.79 99.79 99.79  99.79 99.78 

8 98.45 98.67 98.89  99.10 99.43 

9 99.66 100.0 100.0 100.0 100.0 

10 99.94 100.0 100.0 100.0 100.0 

11 99.84 99.84  100.0 100.0 100.0 

12 16.73 40.82  76.19 96.0 100.0 

13 96.60 97.08 97.57 97.93 98.17 
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In Figure 19, it is observed that only breaths that are likely to be abnormal require labelling. The pre-

annotated data is accurately labelled as normal, resulting in a reduced labelling time.   

 

Supervised machine learning 
As described in the methods three different CNN models were built during this study based on the 

different ventilation modalities. Table 5, 6 and 7 presents the performance metrics of all different models 

(ALL, PSV and PCV), including AUC, F1 score, accuracy, specificity and sensitivity.  

Table 1. Performance of the supervised machine learning models 
 

Ventilation modes: ALL AUC F1 Accuracy Specificity Sensitivity 

Auto triggering* 0.69 (0.09) 0.84 (0) *  0.99 (0.02) 0.99 (0.01) * 0.83 (0) * 
Cough 0.84 (0.08) 0.48 (0.22) 0.98 (0.02) 0.99 (0.01) 0.48 (0.25) 
DT* 0.91 (0.19) 0 

 
0 0 

Delayed cycling 0.61 (0.04) 0.66 (0.43) 0.97 (0.03) 0.96 (0.05) 0.65 (0.44) 
IEE* 0.41 *(0.11) 0.86 (0) *  0.98 (0.03) 0.94 (0.02) * 0.9 (0) * 
Other artefacts 0.81 (0.35) 0.6  (0.2) 0.98 (0.02) 0.99 (0.02) 0.61 (0.21) 
Peristalsis 0.83 (0.23) 0.34 (0.27) 0.98 (0.02) 0.99 (0.01) 0.42 (0.2) 
Premature cycling 0.67 (0.11) 0.18 (0.34) 0.99 (0.01) 0.99 (0.01) 0.79 (0.1) 
RT 0.73 (0.13) 0.43 (0.44) 0.98 (0.01) 0.99 (0.01) 0.76 (0.28) 
normal 0.84 (0.13) 0.96 (0.04) 0.96 (0.03) 0.72 (0.19) 0.97 (0.07) 

*Based on limited evidence, interpretation should be approached with caution. 

 

Figure 19. Pre-annotations using unsupervised machine learning 
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The results indicate that patient-ventilator asynchronies do not occur uniformly across ventilation modes. 

As seen in the results, there are 5 classes in the PCV mode: Cough, Other artefacts, Peristalsis, RT and 

normal. This is because controlled ventilation requires less or no inspiratory effort from the patient, so 

there are fewer instances of asynchrony.  

Furthermore, there is considerable variability in the frequency of asynchrony events among patients. 

Thus, great care is necessary when interpreting the AUC score for auto triggering, double triggering (DT), 

and IEE. 

 

 

 

 

 

 

 

 

 

 

Table 2. Performance of PCV model 

Ventilation modes: P-CMV AUC F1 Accuracy Specificity Sensitivity 

Cough 0.91 (0.17) 0 0.65 (0.46) 0 0 

Other artefacts 0.84 (0.31) 0.43 (0.36) 1 (0) 0.88 (0.31) 0.42 (0.36) 
Peristalsis 0.85 (0.08) 0 0.97 (0.04) 0 0 

RT 0.82 (0.12) 0.64 (0.39) 0.97 (0.03) 0.96 (0.05) 0.67 (0.41) 
normal 0.86 (0.12) 0.85 (0.28) 0.91 (0.14) 0.77 (0.26) 0.86 (0.29) 

Table 3. Performance of the PSV model 

Ventilation modes: SPON AUC F1 Accuracy Specificity Sensitivity 

Auto triggering 0.74 (0.09) 0 0.97 (0.05) 0 0 
Cough 0.87 (0.09) 0.3 (0.09) 0.94 (0.09) 0.98 (0.02) 0.14 (0.12) 
DT 0.93 (0.21) 0 0.99 (0) 0 0 
Delayed cycling 0.54 (0.04) 0 0.85 (0.28) 0 0 
IEE 0.49 (0.03) 0 0.91 (0.12) 0 0 
Other artefacts 0.79 (0.20) 0.25 (0.15) 0.78 (0.22) 0.77 (0.25) 0.52 (0.2) 
Peristalsis 0.81 (0.09) 0.25 (0.18) 0.95 (0.04) 0.98 (0.02) 0.27 (0.29) 
Premature cycling 0.68 (0.04) 0 0.96 (0.05) 1 (0) 0 
normal 0.80 (0.23) 0.74 (0.29) 0.77 (0.19) 0.62 (0.17) 0.79 (0.25) 
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AUROC curves for Normal breaths 
Figures 20, 21 and 22 illustrate the AUROC curves for three distinct models: one trained on all ventilation 

modes, one specific for PSV and one for PCVV ventilation. These AUROC curves show the classification 

performances of normal breaths.  

  

Figure 20. Performance for the normal breaths, 
model = ALL 

Figure 21. Performance for the normal breaths, 
Model = SPON 

 

 

 
Figure 22. Performance for the normal breaths. Model = P-
CMV 
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These results demonstrate the discriminative capability of the various models across all ventilation 

modes, PSV and PCV ventilation. They can differentiate between normal and abnormal breaths, as 

indicated by the AUROC values of 0.85(±0.08), 0.83 (±0.12), and 0.80 (±0.28) respectively. However, it can 

be observed that there is significant variation in the model’s ability to distinguish distinct patterns of 

respiration between patients, suggesting substantial differences in ventilation patterns from patient to 

patient. 

Reverse Triggering 
Below are the AUROC curves for reverse triggering of the model trained on all ventilation modes (Figure 

23)  and P-CMV mode (Figure 24).  

  

Figure 23. Performance RT, model = ALL 
 

Figure 24. Performance RT, model = P-CMV 
 

 

 

 

The results indicate that reverse triggering of the P-CMV model performs better (AUROC = 0.82 (0.12)) 

compared to its performance across all ventilation modes (AUROC = 0.73 (0.13)). Reverse triggering, is 

known to be an asynchrony found mostly in controlled breaths.  The AUROC curves of the other PVAS and 

for the artefacts can be seen in appendix C and D respectively.  

 

 

Table 4. Performance of the model for Reverse Triggering 
 

Performance Reverse Triggering ALL P-CMV 

AUC 0.73 (0.13) 0.82 (0.12) 
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Adjusting Scaling Factors for Improved Prediction 
Based on current data, it seems that the algorithm struggles to accurately predict certain PVAs, due to 

limited data. Specifically, occurrences of IEE and delayed cycling are infrequent and often involve only a 

few breaths out of thousands in a single patient. This results in the training set for the model existing 

solely on data from these PVAs, collected from a single patient that provided an adequate number of 

examples for training. Scaling factors are introduced to address the limitation of the models’ lack of 

exposure to data from multiple patients. The scaling factors also known as weight classes are used to 

improve the accuracy of recognising small classes. When using class weights, misclassifying smaller 

classes is penalised more heavily than larger classes. This emphasises the importance of correctly 

classifying the smaller classes, improving their recognition accuracy. Assigning higher weights to minority 

classes encourages the model to learn better representations for these classes, resulting in more 

balanced predictions overall. 

The scaling factors modify the likelihood of a breath belonging to a specific class, originally set a threshold 

of 0.5. For classes with a smaller dataset, the probability is increased, favouring classification into those 

categories. The probability for the normal category stayed the same at 0.5.  

 

The selected scaling values are determined through trial and error. It is important to note that adjusting 

scaling factors can be beneficial for categories with limited data. This adjustment is particularly effective 

for premature cycling and IEE, but less so for delayed cycling. This suggest that the challenge with 

delayed cycling may not be solely attributed to the lack of data but could have other explanations.  

 

 

 

 

 

 

 

Table 5. AUC values before and after adjusting the scaling factors 
 

Ventilation modes: ALL Scaling Factor AUC Scaling Factor AUC 

Auto triggering 0.5 0.69 (0.09) 0.7 0.89 (0.06) 

Cough 0.5 0.84 (0.08) 0.5 0.84 (0.09) 

DT 0.5 0.91 (0.19) 0.7 0.93 (0.18) 

Delayed cycling 0.5 0.61 (0.04) 0.75 0.48 (0.02) 

IEE 0.5 0.41 *(0.11) 0.7 0.76 (0.04) 

Other artefacts 0.5 0.81 (0.35) 0.5 0.87(0.07) 

Peristalsis 0.5 0.83 (0.23) 0.5 0.76 (0.24) 

Premature cycling 0.5 0.67 (0.11) 0.7 0.89 (0.02) 

RT 0.5 0.73 (0.13) 0.6 0.67 (0.01) 

normal 0.5 0.84 (0.13) 0.5 0.90 (0.15) 

AUC = Area Under the Curve     
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Validation by Clinicians 
As an additional evaluation, an clinician assessed the predictions of the model on new unseen data 

consisting of an hour of data from three different patients. The clinical validation showed that the ALL, 

PSV and PCV models display varied capabilities in identifying various PVAs. The PCV model's predictions 

revealed certain types of PVAs that were unique to PSV breathing and could not occur during the PCV 

modality, as illustrated in Figure 25. Upon close examination, it became apparent that while the breaths 

were correctly labelled, there were instances of PSV breathing in the PCV dataset. This challenge in 

distinguishing between PCV and PSV breaths is likely due to the ASV mode, which combines two distinct 

types of ventilation. To ensure proper training of the PCV model, breaths with labels of PVAs that 

matched PSV breathing were excluded from the dataset. The model was subsequently trained on five 

categories: normal, reverse triggering, cough, peristalsis, and other artifacts. The results showed a 

significant improvement in the predictions of the PCV model.  

Figure 26 demonstrates that the model's predictions improved after eliminating breaths with PVA labels 

that only occur with PSV ventilation. These findings demonstrate the significance of choosing a distinct 

model for each ventilation mode, as certain PVAs are associated with particular modes of ventilation. 

No statistics were performed on the clinical validation as it was only reviewed by one clinician and it was 

not accurately estimated per breath whether the predictions were correct or not.  However, the number 

of correctly predicted breaths can be found in Appendix F. 

 

Figure 25. Predictions from the P-CMV model before removing the PVAs that occur only in PSV 
ventilation. Green = Peristalsis, light orange = premature cycling 
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Figure 26. Predictions from the P-CMV model after removing the PVA types of the PSV ventilation. 
Purple = normal, pink = reverse triggering 
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Discussion 
The findings of this study show that an CNN machine learning model is capable of differentiating between 

normal and abnormal (Patient-Ventilator asynchrony and artefacts) breaths. In addition, it is possible to 

create a different CNN model for each specific ventilation modality.  The current model can distinguish 

between normal and abnormal respirations. However, it is difficult to predict specific patient-ventilator 

asynchronies and artefacts within the abnormalities. 

This study examined the efficacy of an unsupervised machine learning algorithm to automatically pre-

label regular breaths using the Mahalanobis distance. The threshold of 3.5 provides a 95% accuracy for 

detecting normal breaths compared to abnormal breaths.  

Limitations 
This study has multiple limitations which are discussed below. 

Quality of the labelled data. 

It is very important to feed a CNN with high quality data. The detection algorithm can only be as good as 

the data it is trained with. But there are some concerns about the quality. 

 First, the ventilation data was manually labelled by one of four clinicians with expertise in mechanical 

breathing. Preferably, every patient should be labelled by more than one clinician and discrepancies 

discussed to enhance the quality of labelling.  

Second, there is insufficient data available about the inter- and intra-observer variability of labelling 

asynchrony. Several studies have looked at the sensitivity of clinicians in detecting PVA, showing that the 

sensitivity increases when clinicians have access to additional patient information such as the Pes. With 

an improvement of sensitivity from 53% to 66% (57).  Conversely another study reported a sensitivity of 

55% (9). These results show that not all present PVAs in the data are detected by clinicians and suggest 

that there may therefore be intra- and inter-observer variability in the detection of PVAs. Further 

research is needed to validate this intra- and interobserver variability.   
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Third, the labelling process has now been set up in 

such a way that one label can be placed in a single 

breath. However, in practice we find that sometimes 

there are several labels in 1 breath. The decision has 

now been made to use the most prominent PVA. An 

example of an breath with multiple labels can be 

seen in figure 27, where both delayed cycling and IEE 

are present in the breath, where IEE was chosen as 

the most prominent label. This manner of labelling 

leads to less uniform labelling and a loss of quality of 

the labelled data.  

This machine learning model is based on ventilation 

data from 25 different patients. After visualising the 

data, it became clear that there is considerable 

variability in the breathing patterns among 

individuals. This makes training the CNN model 

difficult because there is a wide range of normal 

breathing, especially considering that future patients' 

breathing patterns will also vary. In addition, certain 

types of PVA are found to be particularly common in 

a few patients, namely delayed cycling, early cycling 

and ineffective triggering, so the model learns these 

PVAs specifically in the breathing patterns of these 

patients. It can be seen that when the model is validated, it has difficulty recognising these PVAs in 

patients other than those where they are common. This causes the model to overfit on certain PVAs. 

Currently, inconsistencies in the accurate segmentation of breaths affect the effectiveness of the 

algorithm. This segmentation currently depends on data provided by the ventilator, which is a limitation 

as this dependence contributes to the occurrence of PVA. During this segmentation of data into individual 

breaths, instances of reverse trigger asynchronies are sometimes divided into two breaths (figure 28 A & 

B), hindering the model’s learning process, while sometimes they are categorised as a single breath 

(figure 29). This discrepancy depends on whether the ventilator identifies it as a single breath. Therefore, 

the current method of breath segmentation is insufficient as it solely relies on machine properties.  

Therefore, it is recommended that subsequent studies use the patient signal, specifically the esophageal 

pressure (Pes), as the basis for labelling and preprocessing data for input to the model. The machine 

signal can then be used to identify patient-ventilator asynchronies and weaknesses in the ventilation 

machine. 

Furthermore, it has been observed that the data provided by the ventilator regarding the breath is not 

always accurate. For example, in Figure 30, a patient-triggered breath is classified by the ventilator as 

machine-triggered, with the result that it is included in the PCV group. This inconsistency in the input 

data is a challenge for the training of the model. 

 

Figure 27. Example of an breath with two 
different PVAs.  
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Figure 28 a. Example of reversed triggering splitted in two 
images (a and b) for one asynchrony 

Figure 28 b. Example of reversed triggering splitted in two 
images (a and b) for one asynchrony 

 

 

 

 

Figure 29. Example of an reverse triggering breath in one 
image captured 

Figure 30. Example of an PSV breath registered by the 
machine as an PCV breath 

 

Recommendations 
A key recommendation for future research is to use a method that utilises the entire multivariate 

timeseries data, including the flow, Paw and Pes curves, instead of segmenting the breathing data into 

single breaths. This approach eliminates the dependence on individual breath segmentation, which has 

been identified as a problem in this study, since the PVAs largely consist of problems in triggering and 

start inspiration. A recent other study by Bakkes et al. (2023) which also developed an algorithm to 

automatically detect PVA used a U-net algorithm which is a subtype of a CNN algorithm developed just 

like the one in this study. The inputs to this algorithm are also segmented breaths (58). However there 

are possible alternatives these could include a Recurrent Neural Network (RNN), which is a deep-learning 

technique that can use timeseries data as input and also of variable length which is a major advantage, it 

is also known to be useful in many medical time-series classification problems (59). Two studies (Zhang et 

al. (2020) and van de Kamp et al. (2024)) have been conducted to automatically detect PVA using an RNN 

algorithm. The results of these studies demonstrate the potential of using an RNN network to 

automatically detect PVA (60, 61).   

Another alternative is by using a rule-based algorithm. In particular, the combination of machine learning 

and a rule-based algorithm could offer significant advantages. This study demonstrates that a rule-based 

algorithm can distinguish between normal and abnormal respirations. This can be extended to other 
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asynchronies. For example, a distinguishment between premature cycling and delayed cycling and normal 

breaths can be made by examining the onset and termination of breaths and their alignment with the PES 

curve. If there is a difference of more than 100 milliseconds between these timing points, it can be 

identified as a PVA. 

Currently there are no clear definitions of different PVAs. At this moment there are ambiguous definitions 

found in the existing literature, which prevent the definition of precise criteria and lead to confusion in 

classification (2, 6, 7). This lack of clarity makes it difficult to define and categorise different types of PVA, 

and complicates data annotation as there are no definitive guidelines. As a result, achieving model 

consistency can be difficult due to the variation in how different individuals interpret these definitions. To 

ensure agreement on PVA, it is important to review the ventilator graphs with a group of at least three 

people. If at least two people identify a particular asynchrony, it can be labelled as such. However, this 

process can be time-consuming. 

Further perspectives 
Anomaly detection in multivariate time-series data remains a challenging field that is currently under 

investigation.  However, there are upcoming algorithms that now use time-series as input. The algorithm 

for automatic detection of PVA has promising future prospects, with plans to eventually implement it in a 

ventilator. To detect PVA at bedside, it is necessary to have the ability to detect it in real-time. Future 

research should focus on ensuring correct data input for the model, including proper labelling and 

segmentation. Further research is required to develop a reliable algorithm for real-time PVA detection. 

With accurately labelled and segmented data, it is possible to develop an effective algorithm for 

automatic PVA detection. 

Conclusion 
This study investigated the application of machine learning techniques to analyse ventilation data in 

critical care settings. Through a combination of unsupervised and supervised learning methods, we have 

explored the automation of the labelling process and the development of predictive models for 

identifying patient-ventilator asynchronies (PVAs). Our findings demonstrate the effectiveness of utilizing 

the Mahalanobis distance as an unsupervised algorithm to pre-annotate normal breaths, thereby 

streamlining the data labelling process. Furthermore, our supervised learning models, tailored to 

different ventilation modalities, exhibited promising performance in distinguishing between normal and 

abnormal breaths 
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Appendix  
A. Data Annotation Protocol 

 

Data annotation protocol for patient-ventilator asynchrony  
  

The following labels can be assigned to the data:   

- Reverse triggering  

- Auto triggering  

- Ineffective effort during expiration (IEE)   

- Premature cycling  

- Delayed cycling   

- Double triggering  

  

- Cough   

- Peristalsis   

- Other artefacts   

  

PAWON = the onset of airway pressure (beginning of ventilator pressurization)  

PAWOFF = the termination of airway pressure (end of insufflation)  

PESON = the onset of esophageal pressure (beginning of inspiratory effort)  

PESOFF = the termination of esophageal pressure (end of inspiratory effort)  

  

Criteria for annotation:   

1. Normal breath (no need to annotate these cycles)  

A. Mandatory or assisted breath  

B. PESON and PAWON occur simultaneously, with a ±100 ms error margin  2. 

Reverse trigger – three criteria:   

A. Mandatory breath: PAWON does not start with a negative deflection  

B. Presence of negative PES signal  

C. PESON
 occurs >100 ms after PAWON but before PAWOFF  

3. Auto triggering:  

A. Mandatory breath: PAWON does not start with a 

negative deflection  

B. Absence of negative PES signal 4. Ineffective effort 

during expiration:   

A. Mandatory or assisted breath  

B. PESON occurs after PAWOFF (i.e., during ventilator expiration)  

5. Premature cycling:   

A. Assisted breath: PAWON starts with a negative deflection  

B. PESON and PAWON occur simultaneously, with a ±100 ms error margin C. 

PAWOFF occurs >100 ms before PESOFF  

6. Delayed cycling:  

A. Assisted breath: PAWON starts with a negative deflection  
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B. PESON and PAWON occur simultaneously, with a ±100 ms error margin C. 

PAWOFF occurs >100 ms after PESOFF  

7. Double triggering:  

A. First breath is an assisted breath that starts with a negative deflection  

B. PESON of first effort and PAWON of first breath occur simultaneously, with a 

±100 ms error margin  

C. PAWON of second breath occurs before PESOFF of first effort  

8. Cough:  

A. Sharp inhalation and exhalation spikes in the flow waveform  

B. Presence of simultaneous disturbances in the PAW and PES signal  

  

9. Peristalsis  

A. (Multiple) positive deflection(s) in the PES signal with a higher amplitude than 

average patient efforts  

B. Absence (or minimal presence) of simultaneous disturbances in the PAW and 

flow signal  

10. Other artefacts: anything that is not a normal breath and does not meet the 

criteria outlined above  

  

It is possible to assign more than one label to one breath, for example:   

- Delayed cycling + IEE  

- Double triggering + IEE  

  
Figure 1. An example showing that a cycle could have two labels. Both cycles that form the double triggering 

event should be annotated as DT. Meanwhile, the second breath can also be annotated as IEE. DT: double 

triggering; IEE: ineffective effort during expiration.   
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B .  PVA Types per Patient 

 

 

 

 

 

 

 

 

 

 

Table 6. Different types of patient-ventilator asynchrony per patient and their amounts 

Patient 
Auto 

triggering 
Cough DT 

Delayed 
Cycling 

IEE 
Other 

artefacts 
Peristalsis 

Premature 
cycling 

RT Normal 

1  113 5 0 0 17 197 102 0 933 

2 0 58 12 0 0 306 24 0 0 1220 

3 0 7 6 10 0 32 83 8 503 583 

4 0 57 0 0 0 24 12 0 0 924 

5 0 16 0 0 0 131 21 0 0 7162 

6 0 58 0 0 0 93 47 0 139 1002 

7 0 0 0 0 1 31 12 2 6 1501 

8 0 3 0 4 0 58 37 0 4 851 

9 0 52 8 0 0 21 29 1 0 920 

10 5 5 0 0 0 18 39 0 0 1604 

11 0 0 0 0 0 5 9 0 541 645 

12 0 3 0 581 205 8 6 0 6 43 

13 0 1 0 28 4 77 0 1 0 797 

14 121 0 0 0 0 29 51 125 0 625 

15 2 43 15 0 0 20 197 1 0 1821 

16 0 122 0 37 63 41 8 2 6 1361 

17 0 0 0 0 0 2 13 0 912 272 

18 0 0 0 0 0 7 2 0 0 1191 

19 0 0 0 0 0 149 0 0 0 595 

20 0 0 0 0 0 29 19 0 674 635 

21 0 0 0 0 0 5 3 0 0 974 

22 0 0 2 0 0 21 15 2 0 2145 

23 0 2 0 0 0 10 161 0 0 1879 

24 0 0 0 0 0 27 0 0 0 1671 

25 0 0 0 0 0 26 0 0 1 1645 

Total 128 540 48 660 273 1187 985 244 2792 32999 
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C. AUC performances from the ALL model 
 

  
Figure 31. AUROC curve of delayed cycling Figure 32. AUROC curve of Ineffective triggering 

  
Figure 33. AUROC curve of double triggering Figure 34. AUROC curve for auto triggering 
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Figure 35. AUROC curve of premature cycling 
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D. Other Artefacts 
Below are the AUROC curves for the artefacts: peristalsis, cough and other artefacts. It can be seen that 

the model can distinguish these from other breaths. An advantage of these artefacts is that they occur in 

every patient, giving the model a wide range of training data.  

  

Figure 36. AUROC curve for peristalsis on the ALL 
model based on all patients 

Figure 37. AUROC curve for cough based on the 
ALL model on all patients 

  

Figure 38. AUROC curve for other artefacts based 
on the ALL model on all patients 
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E. Performances of clinical validation by experts 
 

Table 11. Clinical validation of the PSV model - This table presents the count of correct and 
incorrect detections for each ventilation mode, along with the total count for each category.  

Patient-ventilator 
asynchrony 

Correct Incorrect – (correct: 
normal) 

Total 

autotriggering 0 9 9 

Other artefacts 0 2 2 

Normal 55 0 55 

Peristalsis 0 10  10 

Total 55 21 76 

 

Table 12. Clinical validation of the PCV model - This table presents the count of correct and 
incorrect detections for each ventilation mode, along with the total count for each category.  
Patient-ventilator 
asynchrony 

Correct Incorrect (correct: 
normal) 

Incorrect (correct: 
peristalsis)  

Total 

Premature Cycling 0 6 0 6 

Peristalsis 5 20 0 25 

IEE 0 5 1 6 

Reverse trigger 0 0 4 4 

Total 5 31 5 41 

 

Table 13. Clinical validation of the ALL model - This table presents the count of correct and 
incorrect detections for each ventilation mode, along with the total count for each category.  

Patient-ventilator 
asynchrony 

Correct Incorrect – 
(correct: normal) 

Incorrect – 
(correct: 
peristalsis)  

Total 

Normal 38 0 0 38 

Reverse triggering 1 1 26 0 37 

Peristalsis 2 3 0 5 

Artefacts 2 7 0 9 

Cough 2 29 1 32 

Total 55 65 1 121 

 

 
 


