
An Elliptic Curve Cryp-
tography Acceleration
Core for OpenVPN on
an FPGA Softcore

N. J. Versluis

Te
ch
ni
sc
he
U
ni
ve
rs
ite
it
D
el
ft

An Elliptic Curve Cryptography
Acceleration Core for OpenVPN on

an FPGA Softcore

by

N. J. Versluis

in partial fulfillment of the requirements for the degree of

Master of Science
in Embedded Systems

at the Delft University of Technology,
to be defended publicly on Tuesday June 30th, 2020 at 14:00.

Supervisor: Dr. ir. A. J. Van Genderen
Thesis committee: Dr. ir. J. S. S. M. Wong, TU Delft, CE

Dr. S. Picek, TU Delft, Cyber Security
Ir. T. van Leeuwen, Technolution

Q&CE-CE-MS-2020-07

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

ii

Abstract

Elliptic Curve Cryptography (ECC) performance is a major performance bottleneck when serving many
VPN clients from a single server on a low-frequency FPGA softcore CPU. Using an area-efficient Elliptic
Curve Point (ECP) multiplication accelerator core on the same FGPA, a much higher amount of clients
can be served using the same FPGA chip.
Using the accelerator core, the obtained speedup ranges from 1.6x in a suboptimal configuration up to
7x with a configuration that maximizes the use of ECC when connecting new clients to the server. In
this optimal configuration, the total amount of clients that can be served by a single OpenVPN server
increases from 80 in the base case, to 350 in the accelerated case.

Contents

1 Introduction 1
1.1 Background Information . 1

1.1.1 OpenVPN-NL . 1
1.1.2 Elliptic Curve Cryptography . 2
1.1.3 Side-channel attacks . 2
1.1.4 Large-number mathematics . 2
1.1.5 Platform . 3

1.2 Research question . 3
1.3 Related Work . 4
1.4 Contents . 4

2 Performance Analysis 5
2.1 Setup . 5

2.1.1 Devices . 5
2.1.2 Network . 5
2.1.3 Software . 6

2.2 Measurement method . 6
2.3 OpenVPN Performance Bottlenecks . 9
2.4 Verification . 10
2.5 Copy benchmarks . 12
2.6 Measurements . 12
2.7 Selected function for acceleration . 14

3 Design 17
3.1 Design goals . 17
3.2 FPGA Acceleration Core . 17

3.2.1 Large-number modular mathematics . 18
3.2.2 Elliptic Curve Point addition and doubling. 21
3.2.3 Elliptic Curve Point multiplication. 21

3.3 Optimizations . 22
3.4 Communication. 22

3.4.1 FPGA side of communication . 22
3.4.2 OpenVPN side of communication . 23

3.5 Validation . 24

4 Results 29
4.1 Resource usage . 29
4.2 Benchmarks. 30
4.3 Accelerator runtime . 30

5 Conclusion 33
5.1 Future work . 33

Bibliography 35

iii

1
Introduction

1.1. Background Information
1.1.1. OpenVPN-NL
A Virtual Private Network (VPN) is a piece of software used to connect to a remote network from an-
other network. It is often used to securely access business networks over the internet, so it is possible
to access devices on the local network, while not being physically connected to that network. Open-
VPN is a popular free, open-source VPN server and client application used to set up a VPN connection
between a server and (multiple) client(s). It consists of two layers: The control path and the data
path. Both paths run on the same UDP connection, but the OpenVPN software has a multiplexer inside
that can distinguish between these two paths.

The control path is used to set up the connection. First, a TLS connection is established. Then,
the keys to be used for the data path are exchanged using this TLS connection. After that, the con-
nection switches to the data path, which will handle the actual network communication. In order to
be able to serve a large amount of clients with a single server, both the data path and control path
must be fast enough to handle the load of many simultaneous connections. The data path needs to
be able to encrypt and decrypt all incoming and outgoing data fast enough, and the control channel
must be able to set up connections quickly. This thesis focuses on the scenario where the data path
is already sufficiently fast, but the control path can not establish connections to new clients fast enough.

A control path bottleneck could occur for the following two reasons: First, in order to achieve for-
ward secrecy, OpenVPN encryption keys are valid for one hour maximum and are also refreshed for
each new session. This means that every hour, the control path has to reconnect to each currently con-
nected client, thus establishing a new TLS connection for each client. Therefore, on a low-performance
CPU, this connection time can be a limiting factor for the maximum amount of connected clients. Sec-
ond, in case of a server restart, all clients will attempt to reconnect simultaneously, causing a lot of
control paths to be created at once. In this case, the control path creation needs to happen quickly in
order to prevent long timeouts on the client side.

Transport Layer Security (TLS) is a combination of cryptographic protocols designed for secure com-
munication over an insecure network. TLS mainly consists of four parts: Key exchange, block cipher,
authentication and integrity checks.
Key exchange is the method used to exchange the used encryption keys.
The block cipher indicates the way in which the sent encryption keys will be used to encrypt data.
Authentication is used to make verify that the entity sending or receiving the data is actually the entity
that they claim to be.
Integrity checks use a message authentication algorithm to verify that the originally sent message has
not been tampered with by a third party during transmission.
All of these factors can be easily determined when looking a the name of the used TLS ciphersuite. For
example, a ciphersuite used by OpenVPN is ECDHE-RSA-AES256-GCM-WITH-SHA384.

1

2 1. Introduction

In this example, the ciphersuite indicates that ECDHE is used as the key exchange method, RSA used
for authentication, AES256-GCM used as block cipher, and finally SHA384 as its message authentication
algorithm.

OpenVPN-NL is a fork of the OpenVPN project, maintained by Fox-IT. Its main distinguishing fea-
tures from the regular OpenVPN software suite are more strict cryptography requirements (less secure
protocols and ciphers have been removed), and the use of mbedTLS instead of OpenSSL for its cryp-
tography library.
mbedTLS is an open-source cryptography library written in C. The goal of the project is to provide
efficient cryptography support to embedded platforms, where performance often comes at a premium.
The supported ciphers for OpenVPN-NL include RSA for both key exchange and authentication, ECDH
for key exchange and SHA for integrity checking. Authentication algorithm ECDSA is unfortunately
omitted, but still tested in this thesis, since it benefits greatly from ECP acceleration and could be in-
cluded in a later release of OpenVPN-NL.

1.1.2. Elliptic Curve Cryptography
Elliptic Curve Cryptography (ECC) is a cryptography method based on Elliptic Curves. An elliptic curve
is an algebraic curve defined by an equation of the form 𝑦ኼ = 𝑥ኽ + 𝑎𝑥 + 𝑏. When projecting this
curve onto a finite field, this mathematical system allows for operations using large, modular integers
that can be used for cryptography. The base concept is that point multiplications, that is multiplying
a coordinate with a scalar, on the curve are calculated with acceptable computational cost, but very
difficult to reverse.
This means that one can easily calculate 𝑌 = 𝑛 ∗ 𝑋, but if one has 𝑋 and 𝑌, 𝑛 is near impossible to
retrieve within a short amount of time.
These point multiplications can take long to calculate by simply adding a point to itself 𝑛 times for
large 𝑛, but many algorithms aimed at reducing this computation time exist. Most of these algorithms
consist of two more basic ECP calculations: ECP doubling (𝑌 = 2𝑋), and ECP adding (𝑌 = 𝑋 + 𝑍).
Compared to RSA, the numbers needed for a similar amount of cryptographical strength are signifi-
cantly smaller[1], making ECC popular on embedded systems, where performance often comes at a
premium because of power usage, cost or heat.

ECC is performed on an elliptic curve, but many curves of such a type exist. Therefore, selecting
curves that are cryptographically secure has been an important point of discussion. The North Ameri-
can National Institute of Standards and Technology (NIST) has released its own specifications of certain
elliptic curves that are recommended by the institute. These elliptic curves are therefore known as the
NIST curves.
One of these curves, using 384-bit integers is called NIST P-384. Since the largest, and therefore also
most cryptographically secure curve supported by OpenVPN-NL is the NIST P-384 curve, this thesis
will focus on accelerating cryptographical operations on this curve. The only other curve supported by
OpenVPN-NL is the NIST P-256 curve, which is essentially the same type of curve, but with 256-bit
numbers, and therefore less secure.

1.1.3. Side-channel attacks
Side-channel attacks are attacks on the cryptography that try to obtain data on the used private key by
looking at indirect data, such as power usage and timing. For instance, when looking at the amount of
time between a response of the cryptography suite, one might determine that the key is even if it takes
a little more or less time, if the used cryptographical calculation takes a different amount of time on
even or odd numbers. When designing a cryptography accelerator, it is important to keep side channel
attacks in mind, because a faster cryptography calculation that is not secure, would be meaningless.

1.1.4. Large-number mathematics
Cryptography algorithms use large integer numbers. For instance, in NIST P-384, 384-bit numbers are
used.
However, most modern CPUs have either 32-bit or 64-bit registers. Therefore, cryptography suites

1.2. Research question 3

often use Multiple-Precision Integers (MPIs). mbedTLS also makes use of MPIs for its large number
representation.
These MPIs are essentially arrays of numbers that are the maximum size of the aforementioned regis-
ters, used to represent large numbers. However, since the CPU ALU can not fit these large numbers,
algorithms are needed to perform basic operations on these MPIs, such as addition, multiplication and
shifting.
A Field Programmable Gate Array (FPGA) does not have register size limitations imposed on them, so
they have great potential for acceleration of the large-number mathematics that are often at the core
of cryptography algorithms.

1.1.5. Platform
The softcore CPU platform used in this thesis is the Frenox. This is a proprietary RISC-V softcore CPU,
developed by Technolution1 that can be programmed onto an FPGA. RISC-V is a free, open-source
Instruction Set Architecture (ISA) specification, that can be used to create processors that adhere to
the RISC-V standard and thus can run code compiled for RISC-V.
The Frenox-S core used in this thesis runs at 50 MHz, adhering to the RV32IMA spec, which means it
is 32-bit, and has support for base Integer instructions, integer Multiplication and division, and Atomic
instructions. A 100 MHz version of the core also exists, but it is not compatible with the used develop-
ment board.
The aforementioned development board is a Terasic Cyclone V Starter Kit, containing an Intel (formerly
Altera) Cyclone-V 5CGXFC5C6F27C7N FPGA chip.

In order to estimate performance with different software and hardware configurations, a Frenox
emulator called Fremu is also available. Fremu is a PC program that is made to emulate behaviour of
Frenox accurately. This means that, if something runs for 10 seconds in Fremu time, one can expect
it to also take 10 seconds on Frenox. The only exception is cache behaviour, which always assumes a
cache hit, which is an unrealistic scenario, so performance might actually be a little slower than Fremu
suggests.

It should be noted that Fremu time is not equal to real time. This means that, when profiling a
certain program on Fremu, the profiled code might return a run time of 10 seconds, but the emulator
could run for 20 seconds of real time. In this case, that means that, on a real Frenox core, this opera-
tion would have taken 10 seconds.

This means that in order to make Fremu time close to real time, the PC running Fremu determines
the frequency that Fremu can maximally emulate near (but not completely at) real time.
A fast PC might emulate a Frenox running at 20 MHz in real time, while a slower PC might cap out at
5 MHz. Running close to real time is necessary, since OpenVPN communicates with the outside world,
and running too slow or fast might cause connections to time out. Real time in- and output is also
convenient for user interaction with the emulator.

1.2. Research question
This work is aimed at finding a way to increase the amount of simultaneous OpenVPN-NL channels that
can be maintained on a 100 MHz Frenox softcore.
The assumed scenario is that the amount of clients that can be served is bottlenecked by the control
channel of OpenVPN.
The maximum amount of clients that can be served simultaneously is defined as the amount of clients
that can connect within five minutes, since this emulates the scenario of a full reboot where all clients
have to reconnect at once, without timing out too often.

1https://www.technolution.eu

https://www.technolution.eu

4 1. Introduction

1.3. Related Work
While there are papers studying OpenVPN or mbedTLS performance[2][3][4], the authors of those
works focus on throughput, rather than control channel performance and maximum amount of con-
nected clients. Furthermore, the authors only assess the performance, but do not identify the bottle-
necks that use the most computational time when running OpenVPN. Also, none of the authors give
suggestions for increasing OpenVPN performance.

Elliptic Curve Cryptography has been in use for some time now, so of course there are already quite
a few research papers relevant to ECC acceleration. Many area-efficient and fast designs have been
proposed already:
In [5], the authors describe an ECP multiplier that is reasonably area-efficient and quite fast for 191-
bit keys over a GF(191) curve. This accelerator uses a Karatsuba-Ofman multiplier for large integer
multiplications, and the Montgomery point multiplication algorithm. Their results show a design using
about 18k slices on a Xilinx XCV2600E platform, with about 63 us of computation time. However, this
design might grow significantly larger when using 384-bit numbers for the curve.
The authors of [6] implemented an accelerator design on a Cyclone V using around 29k ALMs, and
achieved a computation time of around 3.64ms with a frequency of 100MHz, using a Karatsuba-Ofman
multiplier and using an RSD-based prime field for 256-bit curves. However, this design would be too
large to fit on the used FPGA in this thesis. In [7], the Toom-Cook algorithm is used for multiplication,
resulting in a design using 43K LUTs on a Virtex-4 FPGA.
The author of [8] explores the use of DSPs for cryptographical computations, and the modular multi-
plier presented in design has also been implemented for the accelerator used in this thesis.
There are many more papers still that focus on ECC acceleration [9–18]. However, none of the authors
have ever tested their accelerators using actual software interfacing with the accelerator itself, which
this thesis will also take into account by modifying the OpenVPN-NL source code to actually use the
accelerator.
This of course means that an interface to handle communication between the FPGA, Linux and Open-
VPN has to fit in the FPGA as well.
The NIST itself provides a reference document [19] with recommended algorithms for ECC computa-
tions on NIST elliptic curves.

1.4. Contents
In this thesis, first, in chapter 2, performance of OpenVPN on Frenox is analyzed, after which bottlenecks
are identified. Furthermore, communication speed between Frenox and a theoretical accelerator core
is examined in order to evaluate communication overhead of a potential accelerator.
Then, multiple accelerator scenarios are simulated in order to estimate the performance benefit of
accelerating certain pieces of code. After that, an accelerator type is chosen. In chapter 3, the design
of both the communication protocol and the accelerator core are presented. Furthermore, the actual
implementation of the accelerator core is discussed. In chapter 4, the results of the implemented
accelerator are presented for multiple scenarios, and the resource usage is shown.
Finally in chapter 5, the conclusion of this thesis is presented.

2
Performance Analysis

In this section, the performance of OpenVPN-NL is analyzed, with the objective of identifying bottle-
necks suitable for acceleration.

2.1. Setup
In order to benchmark OpenVPN-NL performance, the following setup is used:

2.1.1. Devices
For the measurement setup, two identical PCs are used. Their specifications can be fond in table 2.1.
One PC is set up to hold an OpenVPN server, running either natively, or emulated on a RISC-V platform.

Table 2.1: Server and Client PC specifications

SerYer PC and Client PC
CPU 4-Core Intel i5-3570 @ 3.4 GHz (x86-64)
RAM 8GB DDR3
Storage 480GB SATA SSD
Network Gigabit NIC, connected to Fast Ethernet (10/100) switch
OS Ubuntu 18.04 LTS x64

The Fremu emulator is set to run at 7.5 MHz in order to make console output seem real-time, since
that is the maximum frequency the Server PC can handle without losing close to real-time behaviour.
Its specifications can be found in table 2.2.

Table 2.2: Fremu specifications

)remu
CPU 1-Core Frenox @ 7.5 MHz (RV32IMA)
RAM 512MB
Network NAT, static IP
OS Linux 4.15.0 RV32, Buildroot, BusyBox

A second PC is used to run the clients that will connect to the OpenVPN server. Each client will
run inside its own Virtual Machine (VM), with each VM being assigned a single CPU core and 768MB of
RAM. Detailed specifications of the VM can be found in table 2.3. The program used for virtualization
is VirtualBox (6.0). With 1 core being reserved for the host OS, the client machine can run up to three
client VMs simultaneously.

2.1.2. Network
Both the server and client PC are connected to the same internal network, on the same 100 mbit/s
ethernet switch. The client VMs all have their own IP and MAC address, with the IP range being the

5

6 2. Performance Analysis

Table 2.3: Client VM specifications

Client 9M
CPU 1-Core Intel i5-3570 @ 3.4 GHz (x86-64)
RAM 768MB
Storage 10GB SSD
Network Bridged adapter, unique MAC address
OS Debian 9 Xfce x64

same as that of the client PC, because their virtual adapters are bridged.
The Fremu gets assigned an IP address in a different range from the server PC, since it uses NAT for

its virtualized network adapter. In order to bypass this, the server PC is configured with IP forwarding
so it can direct packets to and from devices in the server/client PC IP range.

2.1.3. Software
The following software was used in order to run the measurements:

Server: Fremu compiled for x86. A 32-bit ISA was used to guarantee compatibility with the 32-bit
libraries used on Frenox.
Endianness between x86 and RISC-V is identical, so no conversion has to happen for data exchanged
between the RISC-V platform and the x86 server emulating the accelerator.

Frenox/Fremux: OpenVPN-NL 2.4.7, cross-compiled for RV32IMA.

Clients: OpenVPN-NL 2.4.7 without any modifications, compiled for x64.

EasyRSA 3.0.6 was used to generate certificates for the key exchange.

The used ciphersuites for OpenVPN are ECDHE-RSA-AES256-GCM-WITH-SHA384 and ECDHE-ECDSA-
AES256-GCM-SHA384. They are abbreviated as ECDHE-RSA and ECDHE-ECDSA respectively further
on in this document.

2.2. Measurement method
In order to establish a baseline, performance measurements without any acceleration have to be done
first. These measurements were performed as follows:

On Fremu, a bash script starts up the OpenVPN server, and then sends a command to the Clien-
tHost PC via SSH. The ClientHost PC then connects to the VMs containing the OpenVPN clients. These
client machines automatically divide the amount of requested clients between each other. For example,
when requesting 9 clients from Fremu, with 3 client machines, each machine will launch 3 clients.
In order to simulate the worst-case scenario, the startup of the clients is synchronized to happen si-
multaneously. An option to start the clients in staggered fashion, with a customizable delay between
each client launch was also added. After completing the run, the OpenVPN server and client log files
are copied to the Server PC for analysis.

The built-in log entries of OpenVPN were used to determine the amount of time between the first
client connection request and the last client connection confirmation.
Furthermore, when the log setting was set to most verbose, using option –verb 9, very detailed
logging data would be output, at the cost of performance. The general shape of these log files can be
found in listing 2.1.
A log parser was written in Python in order to identify large time gaps between log entries, indicating
that a function used a large amount of computation time between log entries. Since the log also
contained the file and line number that spawned the entry, this allowed for identification of parts of
the source code that needed to be benchmarked further.

2.2. Measurement method 7

Server PC ClientHost PC

ClientHost
OS

Client VM 1

Fremu
Client 1

Client n-2

Client VM 2

Client 2

Client n-1

Client VM 3

Client 3

Client n

... ...

...

Server OS

OpenVPN
Server

start_clients(n)

OpenVPN Connection

Figure 2.1: Measurement setup with Fremu

Server PC ClientHost PC

ClientHost
OS

Client VM 1

Frenox

Client 1

Client n-2

Client VM 2

Client 2

Client n-1

Client VM 3

Client 3

Client n

... ...

...

OpenVPN
Server

start_clients(n)

OpenVPN Connection

UARTServer OS

Figure 2.2: Measurement setup with Frenox

Listing 2.1: Generalized OpenVPN log file example snippet with verbosity set to level 9

... 15:04:42 2020 us=427794 ... /ssl_tls.c:3096): [message]

... 15:04:42 2020 us=431313 ... /ssl_tls.c:3108): [message]

... 15:04:42 2020 us=434322 ... /ssl_srv.c:3435): [message]

... 15:04:42 2020 us=437955 ... /ssl_srv.c:3084): [message]

... 15:04:44 2020 us=296745 ... /ssl_srv.c:3136): [message]

... 15:04:44 2020 us=301802 ... /ssl_srv.c:3136): [message]

... 15:04:44 2020 us=306539 ... /ssl_srv.c:3136): [message]

... 15:04:44 2020 us=311674 ... /ssl_srv.c:3136): [message]

... 15:04:44 2020 us=315423 ... /ssl_srv.c:3136): [message]

... 15:04:44 2020 us=319996 ... /ssl_srv.c:3136): [message]

... 15:04:44 2020 us=324590 ... /ssl_srv.c:3136): [message]

... 15:04:44 2020 us=329124 ... /ssl_srv.c:3136): [message]

... 15:04:44 2020 us=333357 ... /ssl_srv.c:3229): [message]

... 15:04:44 2020 us=338618 ... /ssl_srv.c:3280): [message]

These more in-depth, custom benchmarks were done by using the clock_gettime function, which
stores the time at which the aforementioned function was called with near-nanosecond accuracy. By
calling the same function again after the code to be benchmarked, and measuring the difference, the
amount of time spent running the function could be measured. An example of the measurement code
can be found in listing 2.2.

Listing 2.2: Benchmarking code used to measure code performance

8 2. Performance Analysis

#ifdef TL_BENCHMARK
struct timespec t_start, t_end;
clock_gettime(CLOCK_MONOTONIC, &t_start);

#endif

/* Code to be benchmarked here */

#ifdef TL_BENCHMARK
clock_gettime(CLOCK_MONOTONIC, &t_end);
long t_end_s = t_end.tv_sec - t_start.tv_sec;
long t_end_ns = t_end.tv_nsec - t_start.tv_nsec;
if (t_end_ns < 0) {

t_end_ns += 1000000000;
t_end_s--;

}
printf(”--> [name] -----------------> = %2ld.%09ld s\n”,

t_end_s, t_start_ns - t_end_ns);
#endif

A snippet of output from using this method in parts of the source code that have been identified
as potential bottlenecks can be found in listing 2.3. Since the total time of a function can only be
measured after its subroutines have all finished, indentation was used to show which benchmarked
parts are a subroutine of a different part.
Every indentation is equal to a function call, so in the example in listing 2.3, the MPI GCD function
consists of the MPI GCD Init + Copy, LSB + RSHift, Shift + Sub and LShift + Copy
subroutines.

Listing 2.3: Benchmark log file example snippet. Prints indented to the right above a line indicate that they are subfunctions of
that function

--------------> Invert Jacobian --------------> = 0.000254900 s

--------------------------> MPI InvMod init --------------------------> = 0.000021600 s

----------------------------> MPI GCD Init+Copy ----------------------------> = 0.000093500 s

----------------------------> LSB + RShift ----------------------------> = 0.000030900 s

----------------------------> Shift+Sub(284 loops)----------------------------> = 0.011622200 s

----------------------------> LShift + Copy ----------------------------> = 0.000088400 s

--------------------------> MPI GCD --------------------------> = 0.013634900 s

--------------------------> MPI ModCpyLset --------------------------> = 0.000311800 s

----------------------------> Nested loop 1 ----------------------------> = 0.000226100 s

----------------------------> 3x MPI sub ----------------------------> = 0.000178900 s

----------------------------> Nested loop 2 ----------------------------> = 0.000031400 s

--------------------------> 284 core loops --------------------------> = 0.064572400 s

--------------------------> Finalize --------------------------> = 0.000070800 s

--------------> Normalize Jacobian --------------> = 0.081754400 s

----------> Calculate comb ----------> = 0.671043100 s

------> ECP mul ------> = 1.804750700 s

------> ECP zero check ------> = 0.000032300 s

------> MPI copy ------> = 0.000054900 s

--> Calculate shared secret --> = 1.816833600 s

Key Exchange = 1.817474800 s

By searching for routines that take a long time, but can no longer be split up into subroutines with
one subroutine also taking a long time, the bottlenecking functions can be found. For example, if a
function takes 2 seconds, but consists of 4000 loops that take 500 microseconds, that function would
be a prime candidate for acceleration.

2.3. OpenVPN Performance Bottlenecks 9

In order to establish the minimum amount of time that would still be realistic to accelerate without
copy overhead becoming too large, the amount of time it would take to copy data to and from the
accelerator is also established further on in this report in section 2.5.

In order to make sure no important functions were missed, the total time spent on benchmarked
functions was compared to the total run time. If these are near equal, except for a few milliseconds,
it is safe to assume no other important functions exist.

2.3. OpenVPN Performance Bottlenecks
After identifying the routines that were most likely to cause a bottleneck in performance, using the
benchmarking method described in listing 2.2, acceleration of these routines was simulated. This was
done by using Fremu to simulate the resulting performance in case a perfect accelerator would be
connected to Frenox.
This functionality was achieved by writing function inputs from Fremu to shared memory as would
also be done with the real accelerator. The communication protocol used to do this is explained in
section 3.4.2.
The emulator would take this input from memory, pause Fremu execution, calculate the result using
the original mbedTLS function, but running on the Server PC instead. The communication protocol will
be described more in-depth in section 3.4.2
The emulator would then place the result in the expected shared memory location, and resume Fremu
execution. Fremu would then read the result of the simulated accelerator from memory and copy it
back to the appropriate variables in OpenVPN.
Performance-wise, from the viewpoint of Fremu, this means that the emulated platform sees the result
of the accelerator back in memory after a single clock cycle. Of course this is not a realistic scenario,
but it does show the maximum potential for acceleration that could be obtained.

The results of these simulations can be found in table 2.5. In this table, the functions with the
largest impact on performance can be found, as well as the amount of time that could maximally be
saved per client connection by accelerating it. In table table 2.4, the speedup with all accelerators
simulated at the same time can also be found. This is of course not a realistic scenario, since it would
be very difficult to create an accelerator core that could accelerate all of these functions while still being
area-efficient, but it does show the potential gains of accelerating just a few functions.

Accelerator disabled Accelerator enabled Speedup
Connection time(s) 2.106 0.115 18.31 x

Table 2.4: Average connection time of a single client for extrapolated 100MHz Frenox server, default and accelerated

Accelerated function None
ecp
mul
comb

ecp pre-
compute
comb

ecp
mul

mpi
exp
mod

mpi
inv
mod

mpi
gcd

mpi
mod
mpi

Connection time (s) 2.106 1.896 1.632 1.392 0.891 1.946 2.061 2.055
Improvement (s) 0 0.210 0.474 0.714 1.215 0.160 0.045 0.051
Speedup (x) 1 1.111 1.290 1.513 2.364 1.082 1.034 1.025

Table 2.5: Connection time reduction per client per accelerated function, averaged across 3 clients

Some behavioral differences were also observed between the case of all clients connecting simul-
taneously, and clients connecting in staggered manner, with a short amount of time in between each
connection request. When all clients connected simultaneously, the TLS routine of OpenVPN would
first perform all key exchanges, and then all authentication sequences. With staggered connections,
OpenVPN would perform a key exchange and authentication for one client, and then move on to the
next.
The resulting performance difference was measured and can be found in table 2.6. The final impact
on performance appeared to be negligible, so this effect was not monitored anymore after performing

10 2. Performance Analysis

these benchmarks. The average connection time is slightly lower than in table 2.4, but this can be
explained by the fact that the results in table 2.6 were averaged across more clients, which was needed
to properly investigate the effect of staggering. Averaging across more clients slightly reduces certain
overhead effects.

Connection time (s) Default performance
Staggered startup 2.067
Simultaneous startup 2.042

Table 2.6: Average connection time of a single client for extrapolated 100MHz Frenox server

Keep in mind these numbers assume perfect acceleration. That is because of the use of the emula-
tor, the acceleration result will always be ready after a single clock cycle. This is caused by the fact that
memory operations are blocking calls in the emulator, and the emulator calculates the ”accelerator”
result during a memory write operation.

The total speedup in table 2.4 does not match with the combined improvements of accelerating each
function separately. However, this can be explained by the fact that some functions are co-dependent;
by accelerating some functions, other functions will be called less often, or even not at all, because
they used to be called by a function that is now accelerated.

Furthermore, mpi_inv_mod will have less of an effect when averaged over more clients, since
its most heavy calculation is only executed during its first connection. This means that by far the
largest influence on performance comes from ecp_mul and mpi_exp_mod. This is somewhat to be
expected, since ECP multiplication is the main operation used in the ECC part of the ECDHE key ex-
change. Furthermore large modular exponentiation is the most computationally expensive part of the
RSA signature algorithm. This indicates that the ECDHE and RSA parts of the TLS ciphersuite are the
most computationally intensive.

2.4. Verification
Since all of these results are simulated, some verification is in order to see if these simulations match
performance on the real Frenox. Since it is impossible to compare accelerator performance, since
that would require the accelerators to be already implemented on Frenox, the non-accelerated case is
compared.

Linear extrapolation based on the clock speed of Femu is not an ideal method to estimate perfor-
mance on the real-world system.
The results obtained in the previous section were calculated by taking the performance at 7.5 MHz, and
assuming computation time scales linearly with clock speed. This means that a run time of 10 seconds
at 7.5 MHz would be estimated to run 10 ∗ (7.5/100) = 0.75s.

Although the amount of instructions per second a processor can execute generally scales close to
linearly with clock speed, this is not guaranteed when moving to a different platform where other as-
pects that can impact performance, such as cache size and memory speed, differ as well.

In fig. 2.3, performance measurements on both Frenox and Fremu can be compared. The mea-
sured data is a five-run average, with three connecting clients. The time represented is the average
connection time of a single client, so the five-run average divided by three. The amount of clients
was set to three, since this meant one client per VM, so per-VM performance has no impact on the
measurements. It would technically be possible to connect more clients per VM, but this would cause
connection attempts to time out in the 10 MHz scenario due to limited performance when attempting
to serve all clients at once.

Performance is different on Frenox than expected from Fremu. Unfortunately, real-world perfor-
mance is significantly lower than performance emulated on Fremu. At higher frequencies, this dif-
ference converges to about a factor 1.8, as can be seen in table 2.8. A first suspect might be that
performance does not scale linearly with clock frequency, since Frenox runs at 50 MHz instead of the

2.4. Verification 11

0 10 20 30 40 500

10

20

30

40

50

ኾዀ
.ኻ

ኼኺ
.ኺኻ

ኻኽ
.ኺኼ

ዃ.ዀ
ዀ

዁.዁
኿

ኼኻ
.ኺ኿

ኻኺ
.኿ኼ

዁.ኺ
ኼ

኿.ኼ
ዀ

ኾ.ኼ
ኻ

Clock frequency (MHz)

Ti
m
e
pe
r
co
nn
ec
tio
n
(s
)

Frenox average connection time for various clock speeds

Frenox measurement
Fremu emulation

Figure 2.3: Amount of time needed to connect to a single client

7.5 MHz that Fremu runs at.

To verify this, Frenox performance was measured at 10, 20, 30, 40 and 50 MHz, after which the
performance of the clock frequencies below 50 MHz was extrapolated to 50 MHz. For example, the
run time of a single client at 10 MHz would be divided by 5, since that assumes linear scaling to 50 MHz.

When comparing the extrapolated connection times at 10, 20, 30 and 40, performance does scale
near linearly, though not quite entirely, especially for lower frequencies like the 7.5 MHz used with
Fremu. This leads to the conclusion that the scaling applied to the results from Fremu are somewhat
inaccurate with regards to real-world performance. A suspected reason for this is that in Fremu, the
emulator always behaves as if variables requested from memory are in cache, which is not a realistic
real-world scenario that is independent of clock frequency.
This does, however, not mean that the discovered bottlenecks are invalid. In fact, they still use up
the same percentage of time. This just means that real-world performance can be expected to benefit
even more from acceleration than the simulated case, since the real-world measurement is actually
slower than the emulated case.

12 2. Performance Analysis

Clock Frequency (MHz) Frenox runtime (s) 50 MHz extrapolation (s) Error (s) Error (%)
10 46.10 9.22 1.47 15.9
20 20.01 8.00 0.25 3.1
30 13.02 7.81 0.06 0.8
40 9.66 7.72 0.03 0.4
50 7.75 7.75 0 0

Table 2.7: 50 MHz extrapolated Frenox runtime compared to actual runtime at 50 MHz

Clock Frequency (MHz) Difference (slowdown)
10 2.19 x
20 1.90 x
30 1.85 x
40 1.84 x
50 1.84 x

Table 2.8: Factor of time extra needed to connect a Frenox client when compared to Fremu extrapolation

2.5. Copy benchmarks
A very fast accelerator is meaningless when the overhead of communicating with the accelerator is
larger than the amount of execution time the accelerator would save.
In order to prevent this scenario from occurring, a series of copy benchmarks were performed.

In order to measure the performance impact of copying data to and from shared memory between
Frenox and the accelerator, a benchmark program was written in C, which copies random 32-bit words
to and from the shared memory area. The total time that was needed to write to the memory and
then read the data back was measured. Since this amount of time is expected to be quite low for small
amounts of data, the amount of time needed to create a timestamp was also taken into account, so
that the measurement itself did not add to the measured time.

The benchmark program runs each test 6 times, ignores the first result and records the lowest copy
time measured. The ignoring of the first result is done to remove memory assignment effects, since
memory will already be assigned when running the server for multiple clients.
This is necessary since the Linux kernel does not immediately allocate memory when using the malloc
function of C. Only when data is actually assigned for the first time, will the memory be allocated.

Taking the lowest result out of five runs is done to remove the effect of other programs taking up
CPU time while the benchmark is running. This is because Frenox is still a single core CPU running a
full Linux kernel, so it is quite possible that the scheduler runs a different program for a short moment
while the benchmark is still running, especially for longer runs with larger amounts of data.

2.6. Measurements
The resulting copy performance measurements can be found in fig. 2.4.

While writing the aforementioned benchmarking program, a small discrepancy in measurement data
was discovered when copying less than 32 words. When digging further into the kernel, it was found
that the implementation of memcpy used in Linux for RISC-V has assembler optimizations that behave
differently when copying less than 32 words, causing the write actions to no longer be word-aligned in
memory. However, the accelerator expects the data to be word-aligned. Therefore, when copying less
than 32 words, they are simply assigned manually in a loop. When copying larger amounts, memcpy
is used. This is what causes the sudden fall in copy time at 32 words in the graphs.

Another option would be to support bit masking for memory access in the accelerator, since mem-
cpy does supply a correct bit mask when copying data byte-wise. The resulting performance when
using bit masking and always using memcpy can be found in fig. 2.5. A slight performance increase can

2.6. Measurements 13

10ኺ 10ኻ 10ኼ 10ኽ 10ኾ 10኿ 10ዀ10ኺ

10ኻ

10ኼ

10ኽ

10ኾ

10኿

10ዀ

ኻዃ

዁.ዂ ዀ.ኾ ኿.዁ ኿.ኾ
዁

ኽ.዁ኽ.ኾ
ዂ
ኽ.ኺ
ኽ
ኼ.ዂ ኼ.኿

ዂ
ኼ.ኾ
዁
ኼ.ኾ
ኽ
ኼ.ኽ
ዂ

ኼ.ኽ
ዀ

ኼ.ኽ
኿

ኼ.ኽ
ኾ
ኼ.ኽ
ኾ ኼ.ዀ

኿
ኼ.ዀ
኿

ኼ.ዀ
ዃ

ኼ.ዀ
ዂ

ኻዃ

ኽዃ
ዀኾ

ኻኻኾ
ኻዀኾኻኾዂ

ኻ዁ኾ
ኼኼ዁
ኼዂኺ

኿ኻዀ

ዃዂዂ

ኻ,ኾዀኺ

ኼ,ኽዂኺ

ኾ,዁ኻዀ

ዃ,ኽዂዂ

ኻ዁,኿኿ኼ

ኼኽ,ኽዂኺ

ዀዀ,ኼኾኺ

ኻ.ኽኼ ⋅ ኻኺ Ꮇ

ኼ.ዀዃ ⋅ ኻኺ Ꮇ

ዀ.዁ ⋅ ኻኺ Ꮇ

Amount of words copied

Cl
oc
k
tic
ks
sp
en
t

Execution time of copy function on Frenox without bit masking

Per word
Total

Figure 2.4: Amount of clock ticks Frenox needs to copy a word to or from memory, with manual copy if ጾ32 words are copied
to prevent memcpy byte-wise copy

be found when copying between 20 and 30 words. With less than 20 words, performance is actually
slightly slower than copying manually, probably due to the overhead of calling the memcpy function
instead of immediately copying the data. Since the performance impact of implementing bit masking
is negligible, it was chosen to not implement it, and instead perform write operations of less than 32
words manually, word-by-word, in a loop.

For communication, the efficiency of memmap, the C function used to access the shared memory,
needs to be evaluated for this use case. If it takes a significant amount of copy time, it might be
worth it to also measure performance for Direct Memory Access (DMA)-based communication. DMA
could potentially be faster since it does not use up CPU cycles, but it also takes more time and effort
to implement and could cause cache coherency issues.
Furthermore, a memmap-based interface is already necessary for setting certain control flags (later in-
troduced in section 3.4.2), so implementing data transfers using memmap comes at the cost of very
little extra effort and time.
In the case of accelerating ecp_mul, which uses 384-bit words:
A 384-bit number consists of 12 words. When looking at fig. 2.4, the expected amount of clock cycles
spent copying a word of sizes near 10 words costs about 6.4 clock cycles per word. For four numbers,
this becomes 4 ∗ 12 ∗ 6.4 ≈ 308 clock cycles. When reading the result, only the resulting X-, Y- and
Z-coordinates need to be loaded, so that would take 3 ∗ 12 ∗ 6.4 ≈ 231 cycles, for a total copy cost of

14 2. Performance Analysis

10ኺ 10ኻ 10ኼ 10ኽ 10ኾ 10኿ 10ዀ10ኺ

10ኻ

10ኼ

10ኽ

10ኾ

10኿

10ዀ

ኾዃ

ኻዃ
.ዀ዁

ኻኽ
.ዂ

዁.ኻ
ኾ.ዂ
኿
ኾ.ኾኽ.዁

ኽ
ኽ.኿ ኽ.ኺ

ኾ
ኼ.ዂ
ኻ

ኼ.኿
ዂ

ኼ.ኾ
዁
ኼ.ኾ
ኽ
ኼ.ኽ
ዂ

ኼ.ኽ
ዀ

ኼ.ኽ
኿
ኼ.ኽ
ኾ
ኼ.ኽ
ኾ ኼ.ዀ

኿
ኼ.ዀ
኿

ኼ.ዀ
኿

ኼ.ዀ
ዂ

ኾዃ
኿ዃ

ዀዃ ዁ኻ
ዃ዁
ኻኼኽ
ኻኾዃ
ኻ዁኿
ኼኼዂ
ኼዂኻ

኿ኻ዁

ዃዂዃ

ኻ,ኾዀኻ

ኼ,ኽዂኻ

ኾ,዁ኻ዁

ዃ,ኽዂዃ

ኻ዁,኿኿ኽ

ኼኽ,ኽዂኻ

ዀዀ,ኼኾኻ

ኻ.ኽኼ ⋅ ኻኺ Ꮇ

ኼ.ዀ኿ ⋅ ኻኺ Ꮇ

ዀ.ዀዃ ⋅ ኻኺ Ꮇ

Amount of words copied

Cl
oc
k
tic
ks
sp
en
t

Execution time of copy function on Frenox with bit masking

Per word
Total

Figure 2.5: Amount of clock ticks Frenox needs to copy a word to or from memory using only memcpy

308 + 231 = 539 cycles per accelerator call.
When running at 100 MHz, the amount of time spent on this copy operation becomes 5.39 us, which
is a negligible amount of time compared to the average time spent on an operation for OpenVPN, as
was shown in section 2.3. In the case of ECDHE, the ecp_mul function is called twice per connecting
client, so the total time per client would be 10.78 us, which is still negligible compared to the total run
time of more than 700 ms.
In the case of mpi_exp_mod acceleration, used for RSA:
In OpenVPN-NL, RSA uses up to 2048-bit numbers, which comes down to 64-word numbers, in which
case copying data costs about 3.25 cycles per word. Writing two numbers for exponentiation input and
reading one back would cost approximately 3 ∗ 64 ∗ 3.25 ≈ 624 cycles. Since the RSA exponentiation
function is ran twice per client, this comes down to about 12.48 us of copy time, which is still negligible
compared to the 1.21 s of time spent on mpi_exp_mod.
Therefore, it was chosen not to use DMA-based communication, but to use the much simpler to imple-
ment memmap-based communication.

2.7. Selected function for acceleration
As can be seen from table 2.5, The largest gains are possible during the mpi_exp_mod computation
of the RSA signature process. A second contender is the ecp_mul function, which is executed during

2.7. Selected function for acceleration 15

the ECDHE key exchange. However, since RSA acceleration has already been done at Technolution,
the company at which this thesis is written, and considering the fact that in the future, ECDSA can be
used to replace RSA, which also uses ecp_mul, in the end the choice was made to create an ecp_mul
accelerator, or an Elliptic Curve Point (ECP) multiplier.

3
Design

3.1. Design goals
The design of the ECP multiplication accelerator was made with the following design goals in mind:

• The design has to fit next to the Frenox core on an Altera Cyclone V-5CGXFC5C6 chip. This comes
down to a maximum resource utilization of around 20,000 ALMs.

• The accelerator should be resistant to side-channel attacks, especially time-based ones.

• The accelerator should be fast enough to provide a noticeable speedup when compared to the
calculation time in C on the Frenox core.

• The accelerator should be usable with most server hardware and software platforms, and should
not depend on CPU ISA or OS-specific properties.

• It should be feasible to implement and test the accelerator design within a few months.

The largest challenge of these constraints is the resource utilization. Multiple complex mathematical
operations on large integers are needed to compute an ECP multiplication. An ALM on a Cyclone V-chip
contains 4 registers and 2 logic blocks, so care has to be take in order to make the design fit and be
routable.
The final constraint is a reminder that the goal of this work is not to design the most efficient or fast
accelerator core, but one that shows a decent improvement in order to demonstrate the effect of an
accelerator core on OpenVPN control path performance.

3.2. FPGA Acceleration Core
As mentioned in section 2.7, it was decided to accelerate the ecp_mul function. This function performs
Elliptic Curve Point (ECP) multiplication, by adding a point 𝑃 to itself a scalar 𝑛 amount of times. In
order to speed up computation, an ECP doubling function also exists.

In order to be able to perform ECP multiplication using an accelerator core, three layers of compu-
tations must be implemented in hardware. They are:

1. Large-number integer modular maths: addition, subtraction, multiplication and halving.

2. ECP adding and doubling algorithms.

3. ECP multiplication algorithm.

Each higher-numbered layer can be computed using the computations of the layer below it. For
instance, ECP doubling requires modular addition, subtraction and multiplication. The final top-level
architecture can be found in fig. 3.1. Note that the modular multiplier is shared between the ECP adder
and doubler. This is needed in order to fit the design. As will later on be shown in chapter 4, the

17

18 3. Design

modular multiplier is the largest component in the entire accelerator, and having two of them would
make the design impossible to fit on the used FPGA.
Performance impact of this shared architecture is present, but not very high. The measured simulation
time for a single ECP Multiplication at 50 MHz went from ±13 ms to ±15 ms, which is acceptable
considering the space savings gained.

ECP Accelerator

ECP Multiplier

Controller

ECP Adder ECP Doubler

Modular Multiplier
Modular Adder

and
Subtractor

Modular Halver
Modular Adder

and
Subtractor

Figure 3.1: Acceleration core toplevel

An elliptic curve is a two-dimensional curve, so points on the curve are of the affine (𝑥, 𝑦) form.
However, in order to simplify the computations, the used algorithm for ECP multiplication uses projective
coordinates. These projective coordinates also contain a 𝑧-coordinate, and are thus of the form (𝑥, 𝑦,
𝑧).
Converting from affine to projective coordinates is very simple: (𝑥, 𝑦) → (𝑥, 𝑦, 1). However, converting
back is not quite so simple, and requires in its computations a modular inverse to be found.

In order to save resources and development time, the output result of the accelerator will be in pro-
jective coordinates (𝑧 ≠ 1). Therefore, the result will have to be normalized to affine coordinates in or-
der to keep mbedTLS support. This can be done in software using the built-in ecp_normalize_jac()
function of mbedTLS, at the cost of some performance.

3.2.1. Large-number modular mathematics
For the large-number mathematics, the design makes use of modern FPGA features, such as the fast
carry chain adder and the built-in DSP blocks, which contain a multiply-accumulate (MACC) block.

Multiplication
The DSP blocks inside the Cyclone V FPGA have a maximum input size of 18x18 bits. Since our input
is 384-bit, a multiplication algorithm is needed where the input is divided up into smaller parts.
Since 384 is nicely divisible by 16, the decision was made to make use of 24 DSP blocks, each with
a 16x16 multiplication. The input variables were then split up into arrays of 16-bit words, and the
Comba method, also known as schoolbook multiplication, was used to compute the final result. The
computation of each partial product can be parallellized in such a way that every DSP is used every
cycle, greatly reducing computation speed. An example of this can be seen in fig. 3.2

The resulting design can be found in algorithm 1.
First, the partial products are computed, and when a partial product is ready, it is accumulated into
the final result. In order to cycle through the inputs needed for the partial products, a sliding input
window was used instead of an input multiplexer in order to save on used area.

3.2. FPGA Acceleration Core 19

Standard multiplication A x B in product
scanning form with single ℓ-bit multiplier

Parallel comba multiplication of A x B
using the MACC function of n DSPs

a0b0

a1b0

a0b1

a2b0

a1b1

a0b2

a3b0

a2b1

a1b2

a0b3

a3b1

a2b2

a1b3

a3b2

a2b3

a3b3

a3b0

a2b1

a1b2

a0b3

a2b0

a1b1

a0b2

a1b0

a0b1

a0b0

a3b1

a2b2

a1b3

a3b2

a3b3a2b3

DSP #4DSP #3DSP #2DSP #1

ACCUMULATOR

s0

s1

s2

s3

s4 s5 s6

s0

s1

s2

s3

s4

s5

s6

Figure 3.2: Parallel Comba multiplication using multiple DSPs. Image taken from [8]

This sliding window takes the two input integers, and rotates them so that each DSP can use a set part
(for instance bits 16 to 31) of the input variables without needing a multiplexer to select the correct
part of the input variables.

The DSP parallelization can be seen in a simulation of the design, found in fig. 3.3. On the horizontal
axis of that image is time, while the vertical axis represents the DSP number, with DSP #1 at the top.
The blue line clearly divides the two phases of partial multiplication.

However, this design outputs a 768-bit result, while modular arithmetics dictate that the end result
should still be 384 bits in size. In other words, a modulo operation needs to be applied to the multipli-
cation result.

Figure 3.3: Large number Comba multiplication. The blue line represents the barrier between the two phases

Fortunately, the NIST P384 curve has a specific algorithm that can be used to quickly determine
the value of a 768-bit number modulo the 𝑝384 prime number, which is a 384-bit prime number used
by NIST to define the P-384 curve. This algorithm was provided by the NIST in [19], and the used
implementation of that algorithm can be found in algorithm 2.

The result of this modulo calculator is the final result of modular multiplication.

20 3. Design

Algorithm 1: mul(a, b): 384-bit non-modular number multiplication using 24 16x16 DSPs
𝑟 = 𝑎 ∗ 𝑏, 𝑃 is array containing 24 partial products
𝑛𝑢𝑚_𝑑𝑠𝑝 ← 24
𝑖𝑛_𝑎_𝑤𝑖𝑛𝑑𝑜𝑤_1 ← 𝑎
𝑖𝑛_𝑎_𝑤𝑖𝑛𝑑𝑜𝑤_2 ← 𝑎
𝑖𝑛_𝑏_𝑤𝑖𝑛𝑑𝑜𝑤_1 ← 𝑏
𝑖𝑛_𝑏_𝑤𝑖𝑛𝑑𝑜𝑤_2 ← 𝑏
for 𝑖 ← 0 to 𝑛𝑢𝑚_𝑑𝑠𝑝 do

𝑃(𝑖) ← 0
for 𝑖 ← 0 to 𝑛𝑢𝑚_𝑑𝑠𝑝 do

for 𝑗 ← 0 to 𝑛𝑢𝑚_𝑑𝑠𝑝 do
if 𝑗 < 𝑖 then

// First half of partial multiplications
𝑃(𝑖) ← 𝑃(𝑖) + 𝑖𝑛_𝑎_𝑤𝑖𝑛𝑑𝑜𝑤_1 ∗ 𝑖𝑛_𝑏_𝑤𝑖𝑛𝑑𝑜𝑤_1

else if 𝑖𝑠_𝑑𝑜𝑛𝑒(𝑖) = 𝐹𝑎𝑙𝑠𝑒 then
// First half of accumulation
𝑟 ← (𝑟፜ፚ፫፫፲[15...0] || 𝑟[767...0])
𝑟፜ፚ፫፫፲ ← (0𝑥0000 || 𝑟፜ፚ፫፫፲[31...16]) + 𝑃(𝑖)
𝑃(𝑖) ← 0
𝑖𝑠_𝑑𝑜𝑛𝑒(𝑖) ← 𝑇𝑟𝑢𝑒

if 𝑖 + 1 + (𝑛𝑢𝑚_𝑑𝑠𝑝 − 𝑗) < 𝑛𝑢𝑚_𝑑𝑠𝑝 then
// Second half of partial multiplications
𝑃(𝑖) ← 𝑃(𝑖) + 𝑖𝑛_𝑎_𝑤𝑖𝑛𝑑𝑜𝑤_2 ∗ 𝑖𝑛_𝑏_𝑤𝑖𝑛𝑑𝑜𝑤_2

// Rotate input
𝑖𝑛_𝑎_𝑤𝑖𝑛𝑑𝑜𝑤_1 ← 𝑖𝑛_𝑎_𝑤𝑖𝑛𝑑𝑜𝑤_1 ror 16
𝑖𝑛_𝑏_𝑤𝑖𝑛𝑑𝑜𝑤_1 ← 𝑖𝑛_𝑎_𝑤𝑖𝑛𝑑𝑜𝑤_1 rol 16
if j ! 1 then

𝑖𝑛_𝑎_𝑤𝑖𝑛𝑑𝑜𝑤_2 ← 𝑖𝑛_𝑎_𝑤𝑖𝑛𝑑𝑜𝑤_2 rol 16
𝑖𝑛_𝑏_𝑤𝑖𝑛𝑑𝑜𝑤_2 ← 𝑖𝑛_𝑎_𝑤𝑖𝑛𝑑𝑜𝑤_2 ror 16

for 𝑖 ← 0 to 𝑛𝑢𝑚_𝑑𝑠𝑝 do
// Second half of accumulation
𝑟 ← (𝑟፜ፚ፫፫፲[15...0] || 𝑟[767...0])
𝑟፜ፚ፫፫፲ ← (0𝑥0000 || 𝑟፜ፚ፫፫፲[31...16]) + 𝑃(𝑖)

return 𝑅

Addition and subtraction
Addition and subtraction is done by using the fast carry chain adder built into the FPGA.
The final result should be checked to see if it has not become larger than the modulo. If it has become
larger, the modulo needs to be subtracted from it once.
However, since we want execution to be constant in time, this modulo subtraction is always performed
and stored to a different register. Then, the check is performed. If the result was smaller than the
modulo, it will be returned, if not, the subtracted result will be returned. The resulting design can be
found in algorithm 3

Halving
Since division by two can be done by a simple right-shift of the binary representation of an even number,
this is exactly what is done. If the number is even, the bit representation is shifted right by one bit. If
the number is uneven, we can simply add the 𝑝384 prime to it, since that prime is an uneven number.
However, since we added the exact number that we modulate by, the represented number is still the
same (𝐴 + 𝑝384 mod 𝑝384 = 𝐴). Since we want to have constant-time execution, this addition is
always performed, and the either the increased or actual input will be shifted for the final result.
The resulting implementation can be found in algorithm 4

3.2. FPGA Acceleration Core 21

Algorithm 2: mul_mod(a) NIST P384 Modulo for 768-bit input:
𝑟 = 𝑎 mod 𝑝ኽዂኾ , || is the concatenation operator.
Input number 𝑎 is divided up into 24 32-bit pieces, represented by 𝑎፧ in this algorithm
𝑡 ← (𝑎ኻኻ 𝑎ኻኺ 𝑎ዃ 𝑎ዂ 𝑎዁ 𝑎ዀ 𝑎኿ 𝑎ኾ 𝑎ኽ 𝑎ኼ 𝑎ኻ 𝑎ኺ)
𝑠ኻ ← (0 0 0 0 0 𝑎ኼኽ 𝑎ኼኼ 𝑎ኼኻ 0 0 0 0)
𝑠ኼ ← (𝑎ኼኽ 𝑎ኼኼ 𝑎ኼኻ 𝑎ኼኺ 𝑎ኻዃ 𝑎ኻዂ 𝑎ኻ዁ 𝑎ኻዀ 𝑎ኻ኿ 𝑎ኻኾ 𝑎ኻኽ 𝑎ኻኼ)
𝑠ኽ ← (𝑎ኼኺ 𝑎ኻዃ 𝑎ኻዂ 𝑎ኻ዁ 𝑎ኻዀ 𝑎ኻ኿ 𝑎ኻኾ 𝑎ኻኽ 𝑎ኻኼ 𝑎ኼኽ 𝑎ኼኼ 𝑎ኼኻ)
𝑠ኾ ← (𝑎ኻዃ 𝑎ኻዂ 𝑎ኻ዁ 𝑎ኻዀ 𝑎ኻ኿ 𝑎ኻኾ 𝑎ኻኽ 𝑎ኻኼ 𝑎ኼኺ 0 𝑎ኼኽ 0)
𝑠኿ ← (0 0 0 0 𝑎ኼኽ 𝑎ኼኼ 𝑎ኼኻ 𝑎ኼኺ 0 0 0 0)
𝑠ዀ ← (0 0 0 0 0 0 𝑎ኼኽ 𝑎ኼኼ 𝑎ኼኻ 0 0 𝑎ኼኺ)
𝑑ኻ ← (𝑎ኼኼ 𝑎ኼኻ 𝑎ኼኺ 𝑎ኻዃ 𝑎ኻዂ 𝑎ኻ዁ 𝑎ኻዀ 𝑎ኻ኿ 𝑎ኻኾ 𝑎ኻኽ 𝑎ኻኼ 𝑎ኼኽ)
𝑑ኼ ← (0 0 0 0 0 0 0 𝑎ኼኽ 𝑎ኼኼ 𝑎ኼኻ 𝑎ኼኺ 0)
𝑑ኽ ← (0 0 0 0 0 0 0 𝑎ኼኽ 𝑎ኼኽ 0 0 0)
𝑑ኻ ← 𝑝ኽዂኾ − 𝑑ኻ
𝑟 ← 𝑡 + 2 ∗ 𝑠ኻ + 𝑠ኼ + 𝑠ኽ + 𝑠ኾ + 𝑠኿ + 𝑠ዀ + 𝑑ኻ − 𝑑ኼ − 𝑑ኽ
for 𝑖 ← 0 to 3 do

if 𝑟 < 𝑝ኽዂኾ then
𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑟

𝑟 ← 𝑟 − 𝑝ኽዂኾ
return 𝑟𝑒𝑠𝑢𝑙𝑡

Algorithm 3: mod_add(a, b, sub): Modular addition and subtraction
𝑟 = 𝑎 + 𝑏 or 𝑟 = 𝑎 − 𝑏 if 𝑠𝑢𝑏 flag is set to 𝑇𝑟𝑢𝑒
if 𝑠𝑢𝑏 = 𝑇𝑟𝑢𝑒 then

𝑐 ← 𝑎 − 𝑏
else

𝑐 ← 𝑎 + 𝑏
𝑑 ← 𝑐 − 𝑝ኽዂኾ
if 𝑐 > 𝑝ኽዂኾ then

𝑟 ← 𝑑
else

𝑟 ← 𝑐
return 𝑟

3.2.2. Elliptic Curve Point addition and doubling
ECP addition and doubling is done according to the ECP addition algorithm recommended by NIST in
[19].
These algorithms make use of the basic mathematical operations defined in section 3.2.1.
For some steps in the algorithm, a temporary variable is needed in order to be able to perform them
using only the available elementary operations.
These temporary values are marked as 𝑡፭ in the implementation algorithms. The original step that was
replaced with some extra temporary steps can be found between brackets in the final step using the
𝑡፭ variable

For clarity reasons, the usage of the basic mathematical algorithms mul_mod, add_mod and
halve_mod have been replaced by the ∗, +/− and /2 operators respectively in these algorithms.

The final results can be found in algorithm 6 and algorithm 5.

3.2.3. Elliptic Curve Point multiplication
For the ECP multiplication, an algorithm called the Montgomery Ladder[20] is used. This algorithm
makes use of the ECP doubling and addition operations defined in section 3.2.2. Since the amount
of loops is constant, and each function is always called simultaneously, this algorithm is resistant to
time-based side-channel attacks, and sufficiently resistant to power-based attacks.
The algorithm can be found in algorithm 7.

22 3. Design

Algorithm 4: halve_mod(a): Modular halving
𝑟 = 𝑎/2
𝑏 ← 𝑎 + 𝑝ኽዂኾ
if 𝑎 𝑚𝑜𝑑 2 = 1 then

return 𝑏 >> 1
else

return 𝑎 >> 1

3.3. Optimizations
For the ECP addition and doubling, intermediate results are stored to and loaded from blockram com-
ponents to save additional register and LUT usage. In the case of addition, this saves seven 384-bit
registers, while in the case of doubling, it saves five 384-bit registers. Performance impact of this load
and store is minimal; in simulation ony 3 ms difference was measured per ECP multplication.

In the Montgomery Ladder algorithm, described in algorithm 7, results of ECP addition and ECP
doubling are stored in intermediate values 𝑅0 and 𝑅1. However, since the implemented ECP adder
and doubler already have registers in which their results are stored, their output can be directly used
as input for the next cycle.

This results in the algorithm which can be found in algorithm 8, and saves 6 registers of 384 bits
in size (two projected coordinates). As can be seen, this algorithm still retains the properties of being
constant in execution time (the amount of loops has not changed) and being constant in power, since
for every loop, both ecp_add and ecp_double are running.
The only compromise is that the doubler needs a 2-input mux to be able to select between doubler or
adder output, however the size of the 2-input mux far outweighs the size of size 384-bit registers.

3.4. Communication
A communication method needs to be established in order for OpenVPN to be able to actually use the
accelerator.
This section describes the memory architecture and communication protocol used to exchange data
between the accelerator core on one side, and OpenVPN running on the Frenox core on the other side.

3.4.1. FPGA side of communication
Using an in-house Register Description Language (RDL) developed by Technolution, a shared memory
area can be added to Frenox. Once added in the RDL file, the shared memory will show as a Userspace
I/O device in Linux. It can be accessed through /dev/uio.
Since the UIO device used for the accelerator was the first UIO device to be added, it can be accessed
at /dev/uio0. Using native C function memmap, this shared memory area can be mapped and made
accessible to the C source code of OpenVPN.

This shared memory are consists of two areas: the data area, used for writing input and output
data to and from the accelerator, and the control area, used for setting and reading flags.

Control memory contains three registers:

• start: Control register used to tell the accelerator that input is waiting for it in memory

• done: Status register the accelerator can set to tell the Frenox core that its output is waiting for
it in memory

• debug: Status register used to check the current state of some accelerator signals in case an
error occurs.

3.4. Communication 23

Algorithm 5: ecp_double(S): NIST ECP Doubling Algorithm using only elementary opera-
tions:
Return 2𝑆 where 𝑆 = (𝑆፱, 𝑆፲, 𝑆፳). 𝑡፭ represents a temporary value.
𝑡ኻ ← 𝑆፱
𝑡ኼ ← 𝑆፲
𝑡ኽ ← 𝑆፳
if 𝑡ኽ = 0 then

return (1, 1, 0)
𝑡ኾ ← 𝑡ኽ ∗ 𝑡ኽ
𝑡኿ ← 𝑡ኻ − 𝑡ኾ
𝑡ኾ ← 𝑡ኻ + 𝑡ኾ
𝑡኿ ← 𝑡ኾ ∗ 𝑡኿
𝑡፭ ← 𝑡኿ + 𝑡኿
𝑡ኾ ← 𝑡፭ + 𝑡኿ (𝑡ኾ ← 3 ∗ 𝑡኿)
𝑡ኽ ← 𝑡ኽ ∗ 𝑡ኼ
𝑡ኽ ← 𝑡ኽ + 𝑡ኽ
𝑡ኼ ← 𝑡ኼ ∗ 𝑡ኼ
𝑡኿ ← 𝑡ኻ ∗ 𝑡ኼ
𝑡፭ ← 𝑡኿ + 𝑡኿
𝑡ኾ ← 𝑡፭ + 𝑡፭ (𝑡ኾ ← 4 ∗ 𝑡኿)
𝑡ኻ ← 𝑡ኾ ∗ 𝑡ኾ
𝑡፭ ← 𝑡኿ + 𝑡኿
𝑡ኻ ← 𝑡ኻ − 𝑡፭ (𝑡ኻ ← 𝑡ኻ − 2 ∗ 𝑡኿)
𝑡ኼ ← 𝑡ኼ ∗ 𝑡ኼ
𝑡፭ ← 𝑡ኼ + 𝑡ኼ
𝑡፭ ← 𝑡፭ + 𝑡፭
𝑡ኼ ← 𝑡፭ + 𝑡፭ (𝑡ኼ ← 8 ∗ 𝑡ኼ)
𝑡኿ ← 𝑡኿ − 𝑡ኻ
𝑡኿ ← 𝑡ኾ ∗ 𝑡኿
𝑡ኼ ← 𝑡኿ − 𝑡ኼ
return (𝑡ኻ, 𝑡ኼ, 𝑡ኽ)

Each register is one word in size to allow for easy reading and writing since Frenox uses the AXI4Lite1

bus internally and AXI4L memory access is on a per-word basis.

As can be seen in fig. 3.4, control memory size is 3 words and starts at 0x00001000. Data memory
is 128 32-bit words in size and starts at 0x00000000. The accelerator expects the input coordinates to
be written to the memory in one continuous area, 48 words (four times a 384-bit number) in size. The
output data will be stored in the next 36 words after the input words (three 384-bit numbers).

3.4.2. OpenVPN side of communication
In order to facilitate communication from OpenVPN with the FPGA accelerator core, a C library was
written. This library simplifies addressing the correct memory regions with macros and contains func-
tions to write the mbedTLS MPIs that OpenVPN uses to memory correctly, as well as reading them
back. For the Fremu performance testing mentioned in chapter 2, additional functions to write more
advanced classes to the shared memory region were also added, but these are unused in the final
result.

Data can be copied in multiple granularities:
Bytes, words, MPIs, Elliptic Curve Points, and ECP groups. Each larger object is built out of multiple

smaller objects. For example, an EC Point consists of three MPIs. An ECP group contains the full con-
text of the elliptic curve algorithm that is being calculated. The only exception is bytes, which are first
converted to words. This is because Frenox only writes aligned on a per-word basis, and writing only
words means we do not have to use bit masking on the accelerator side to re-align byte-sized writes.

1https://www.xilinx.com/products/intellectual-property/axi_lite_ipif.html

https://www.xilinx.com/products/intellectual-property/axi_lite_ipif.html

24 3. Design

CONTROL
0x0000100C

0x00001008

0x00001004

0x00001000

0x00001100

DATA

START

DONE

DEBUG

0x00000000

UNUSED

Figure 3.4: Accelerator shared memory layout (Bytes)

Copying is done manually for sizes smaller than 32 words, because the aforementioned optimized
memcpy implementation in chapter 2 might use byte-sized writes for smaller sized copy actions. From
33 words and up memcpy is used, since it is significantly faster due to its architecture-specific opti-
mizations.

The library can also be used to enable or disable acceleration of certain functions. It can also be
used to enable or disable benchmarking. Furthermore, extra memory checks can be enabled at the
cost of a little performance due to the extra operations needed for checking. Most of these functions
were used during debugging, and are left out of the final version. The way to enable or disable the
aforementioned features is by setting the correct flags during software compilation.

Locations of variables in data memory are automatically managed in the write and read functions,
which increment the offset by the amount of words moved after a write or read action. This way, offset
errors are not possible, as long as reading and writing of variables happens in the same order and the
offset counter gets properly reset after each acceleration cycle.

The accelerator library also contains a function to run the accelerator after copying is done. It does
the following:
- Flip the start flag to 1 and then back to 0 to send a start pulse
- Wait for the done flag to become 1
- Return so the read process can begin

The waiting for the done flag to become 1 is done via polling. When simulating the accelerator
design in a VHDL simulator, the computational time for the entire accelerator was quickly found to be
in the millisecond range, so the performance penalty of polling for a flag compared to the total run
time of the accelerator was found to be negligible.

3.5. Validation
For validation of the accelerator output, the NIST provides a set of test values in its document contain-
ing the mathematical algorithms [19]. These test variables were used as a baseline to verify correct
operation.
First, a Python prototype of the algorithm that was to be implemented in hardware was written in order

3.5. Validation 25

to verify correct operation of the algorithm and architecture.
After correct functionality was verified, the VHDL hardware design of each subcomponent of the ECP
multiplier, and finally the ECP multiplier itself, was simulated using a VHDL simulator.
This was done using a Python program called cocotb 2, which makes it possible to send simulated
AXI4L inputs and read AXI4L outputs to and from Python. The NIST-provided input values were sent
from cocotb, and the end result was read from the simulated accelerator AXI4L output, and then com-
pared to the expected result.
After all output variables were verified using the predetermined test variables, a random test was also
added, which generated random keys using Python library pycryptodome.
From this key, a coordinate on the NIST P384 curve was extracted, and multiplied by a random scalar
using the ECP multiplication function built into the pycryptodome library. The same coordinate and
scalar were then sent to the accelerator, and the end result was compared. During a weekend, across
a total of more than 400 VHDL simulation runs in 72 hours, no errors were found.
Finally, OpenVPN was modified to send its ECP multiplication input to the accelerator core, but also still
calculate the result in software. There results were then compared in order to verify that the results
were the same ones that OpenVPN-NL was expecting.

2https://github.com/cocotb/cocotb

https://github.com/cocotb/cocotb

26 3. Design

Algorithm 6: ecp_add(S, T): NIST ECP Addition Algorithm using only elementary opera-
tions:
Return 𝑆 + 𝑇 where 𝑆 = (𝑆፱, 𝑆፲, 𝑆፳) and 𝑇 = (𝑇፱, 𝑇፲, 𝑇፳). 𝑡፭ represents a temporary value.
𝑡ኻ ← 𝑆፱
𝑡ኼ ← 𝑆፲
𝑡ኽ ← 𝑆፳
𝑡ኾ ← 𝑇፱
𝑡኿ ← 𝑇፲
if 𝑇፳ ≠ 1 then

𝑡ዀ ← 𝑇፳
𝑡዁ ← 𝑡ዀ ∗ 𝑡ዀ
𝑡ኻ ← 𝑡ኻ ∗ 𝑡዁
𝑡዁ ← 𝑡ዀ ∗ 𝑡዁
𝑡ኼ ← 𝑡ኼ ∗ 𝑡዁𝑡዁ ← 𝑡ኽ ∗ 𝑡ኽ

𝑡ኾ ← 𝑡ኾ ∗ 𝑡዁
𝑡዁ ← 𝑡኿ ∗ 𝑡዁
𝑡኿ ← 𝑡ኻ − 𝑡ኾ
𝑡኿ ← 𝑡ኼ − 𝑡኿
if 𝑡ኾ = 0 then

if 𝑡኿ = 0 then
return (0, 0, 0)

else
return (1, 1, 0)

𝑡፭ ← 𝑡ኻ + 𝑡ኻ
𝑡ኻ ← 𝑡፭ − 𝑡ኾ (𝑡ኻ ← 2 ∗ 𝑡ኻ − 𝑡ኾ)
𝑡፭ ← 𝑡ኼ + 𝑡ኼ
𝑡ኼ ← 𝑡፭ − 𝑡኿ (𝑡ኼ ← 2 ∗ 𝑡ኼ − 𝑡኿)
if 𝑇፳ ≠ 1 then𝑡ኽ ← 𝑡ኽ ∗ 𝑡ዀ
𝑡ኽ ← 𝑡ኽ ∗ 𝑡ኾ
𝑡዁ ← 𝑡ኾ ∗ 𝑡ኾ
𝑡ኾ ← 𝑡ኾ ∗ 𝑡዁
𝑡዁ ← 𝑡ኻ ∗ 𝑡዁
𝑡ኻ ← 𝑡኿ ∗ 𝑡኿
𝑡ኻ ← 𝑡ኻ − 𝑡዁
𝑡፭ ← 𝑡ኼ + 𝑡ኼ
𝑡዁ ← 𝑡዁ − 𝑡፭ (𝑡዁ ← 2 ∗ 𝑡ኻ)
𝑡኿ ← 𝑡኿ ∗ 𝑡዁
𝑡ኾ ← 𝑡ኼ ∗ 𝑡ኾ
𝑡ኼ ← 𝑡኿ − 𝑡ኾ
𝑡ኼ ← 𝑡ኼ/2
return (𝑡ኻ, 𝑡ኼ, 𝑡ኽ)

Algorithm 7: ecp_mul(d, P): Montgomery Ladder Elliptic Point Multiplication algorithm
𝑅ኺ ← 0
𝑅ኻ ← 𝑃
for 𝑖 ← 𝑚 to 0 do

if 𝑑። = 0 then
𝑅ኺ ← ecp_double(𝑅ኺ)
𝑅ኻ ← ecp_add(𝑅ኺ, 𝑅ኻ)

else
𝑅ኺ ← ecp_add(𝑅ኺ, 𝑅ኻ)
𝑅ኻ ← ecp_double(𝑅ኻ)

return 𝑅ኺ

3.5. Validation 27

Algorithm 8: ecp_mul(d, P): Optimized Montgomery Ladder Elliptic Point Multiplication
algorithm
𝑎𝑑𝑑_𝑜𝑢𝑡 ← ecp_add(0, 𝑃)
if 𝑑። = 0 then

𝑑𝑜𝑢𝑏𝑙𝑒_𝑜𝑢𝑡 ← ecp_double(0)
else

𝑑𝑜𝑢𝑏𝑙𝑒_𝑜𝑢𝑡 ← ecp_double(𝑃)
for 𝑖 ← 𝑚 to 0 do

𝑎𝑑𝑑_𝑜𝑢𝑡 ← ecp_add(𝑎𝑑𝑑_𝑜𝑢𝑡, 𝑑𝑜𝑢𝑏𝑙𝑒_𝑜𝑢𝑡)
if 𝑑። = 0 then

𝑑𝑜𝑢𝑏𝑙𝑒_𝑜𝑢𝑡 ← ecp_double(𝑎𝑑𝑑_𝑜𝑢𝑡)
else

𝑑𝑜𝑢𝑏𝑙𝑒_𝑜𝑢𝑡 ← ecp_double(𝑑𝑜𝑢𝑏𝑙𝑒_𝑜𝑢𝑡)
return 𝑑𝑜𝑢𝑏𝑙𝑒_𝑜𝑢𝑡

4
Results

With the design fully tested and simulated, it was synthesized and programmed onto the FPGA. This
section describes the obtained results, both from a resource usage and a performance standpoint.

4.1. Resource usage
The FPGA resources used by each component can be found in table 4.1. Furthermore, as expected,
24 DSP Blocks were used for the multiplier.
In this table, the ”Own” values are used for components that have other components from this table
as subcomponents in their design. The ”Own” part shows the added resources when removing the
resources used by their subcomponents in this table.
As can be seen, the largest component is the modular multiplier. This is the main reason why the
multiplier was shared between both the ECP doubler and adder; the design would not fit with two
multipliers. As mentioned before in chapter 3, though, performance impact of this shared multiplier
was only minimal, so it was worth the trade-off. The second largest are the ECP adder and the multiplier
itself, with the ECP doubler following closely.

ALUTs Registers ALMs Own ALUTs Own Registers Own ALMs
Full design 17865 22219 13648.6
Control and data 1690 1642 1141.4
ECP Multiplier 16165 50577 12506.7 2755 3896 2806.9
ECP Adder 4938 6279 3772.4 3269 3569 2539.6
ECP Doubler 2959 4730 2025.0 1681 3197 1299.1
Mod Multiplier 5513 5670 3897.7
Mod Adder 1276 1551 729.4
Mod Halver 393 1159 503.3

Table 4.1: Resource usage on FPGA during synthesis and place & route

The resulting total resource usage was 85% when including Frenox, as can be seen in table 4.2.
However, due to size limitations, the maximum frequency of 50 MHz could no longer be attained for both
components. As a result, lowering the frequency to 40 MHz was needed. However, when synthesizing
the accelerator in a standalone scenario, the 50 MHz frequency can be reached, as can be seen in
table 4.3. Therefore, with a larger FPGA, this problem can be resolved.

Available With Frenox Standalone
Logic utilization (ALMs) 29080 24,815 13,983
Logic utilization (%) 100 85 48

Table 4.2: Resource usage compared to available ALMs

29

30 4. Results

With Frenox Standalone
Frequency (MHz) 42.28 50.19

Table 4.3: Maximum achievable frequency

4.2. Benchmarks
With the accelerator functional, and communication between OpenVPN and the accelerator functional,
benchmarking the performance is the next logical step. The presented benchmark results were obtained
by running both the Frenox core and accelerator at 40 MHz. Six clients started a connection at the
same time, and their average connection time was measured across five runs.

The first tested scenario is the current one; using ECDHE-RSA for key exchange and authentication
respectively. This is the scenario that would occur when using the accelerator core with the current
allowed cryptography settings in OpenVPN-NL. The results can be found in table 4.4.

In the ECDHE-RSA scenario, a slight improvement of 1.6x, or a reduction of about 4.5 seconds per
client can be measured, but as mentioned earlier in section chapter 2, RSA has the largest performance
impact, and this has not been accelerated.
Therefore, the end result is a noticeable improvement, albeit not a very large one. If we would want to
be able to reconnect all our clients within five minutes, the maximum amount of clients in the scenario
has risen from ±30 clients to ±50 clients.
Extrapolated to 100 MHz, this would be ±80 clients in the default scenario and ±130 clients in the
accelerated case.

Accelerator disabled Accelerator enabled Speedup
Connection time (s) 9.27 5.75 1.61 x

Table 4.4: Average connection time of a single client for 40MHz Frenox server, default and accelerated, using ECDHE-RSA

However, when using ECDSA instead of RSA for the authentication step, the results are much more
impressive. A speedup of more than 7 x can be achieved compared to the default performance. Even
compared to the default ECDHE-RSA connection time of 9.27s, speedup is still more than 4.5 x. At 40
MHz, the amount allowed clients in order to allow for a full reconnect under five minutes is already
±145, and when extrapolated to 100 MHz, this becomes a total of ±350 clients.

Accelerator disabled Accelerator enabled Speedup
Connection time (s) 14.30 2.03 7.04 x

Table 4.5: Average connection time of a single client for 40MHz Frenox server, default and accelerated, using ECDHE-ECDSA

4.3. Accelerator runtime
As can be seen in table 4.6, the total time it takes to run the accelerator is around 39 ms. However,
since the result is still in projected coordinates, it still has to be converted to affine coordinates in
software, which takes around 75ms. Therefore, the total time of the ecp_mul function call becomes
around 114 ms. at maximum.

For ECDHE-RSA, the ecp_mul routine is called twice. Therefore, in the accelerated case of the
5.75 seconds for ECDHE-RSA, about 0.228 seconds are occupied by ECP multiplication, while the rest
of the time is spent on other routines.
This means that further improving accelerator performance, for instance by using a larger design that
also computes the conversion back to affine coordinates, would not have a significant impact on the
total performance.

For ECDHE-ECDSA, the ecp_mul routine is called seven times, resulting in a total estimated time
of 0.798s out of 2.03, which is a significant amount of time. In this case, further optimizing accelera-
tor performance might be beneficial, especially considering the fact that coordinate transformation in
hardware could save up to a theoretical maximum of 525 ms per connected client.

4.3. Accelerator runtime 31

Software Hardware, without transform Hardware + software transform
Runtime (s) 2.500 0.039 0.114

Table 4.6: Average runtime of ECP multiplication at 40 MHz in software and hardware

5
Conclusion

OpenVPN running on an FPGA softcore can greatly benefit from cryptographical acceleration when
attempting to speed up the control channel, in order to increase the maximum amount of connected
clients per server.
The two largest contributing functions to overall computation time are mpi_exp_mod, a function that
performs large-number exponential modular multiplications which are used for RSA signing in the TLS
protocol, and ecp_mod, a function that takes care of Elliptic Curve Point multiplication, which is used
in the ECDHE key agreement protocol and ECDSA, which is used for key signing.
A relatively simple accelerator with low area usage can result in a speedup of up to 1.6 times when
using ECDHE-RSA, and up to 7 times when using ECDHE-ECDSA, allowing the server to serve up to
350 clients, instead of the default 80. This is in the case where all clients should be able to connect
within five minutes. Should this constraint be loosened, even more clients could easily be supported
by the same FPGA accelerator core.
The accelerator core design could be fit on the same FPGA as the softcore CPU, which means it comes
at little to no additional cost.

5.1. Future work
Since the presented accelerator core consists of modular subcomponents, performance and area usage
could still be optimized by improving either individual subcomponents, or adding a subcomponent that
can handle the transformation from projective coordinates back to affine coordinates. Especially in
when using ECDHE-ECDSA, this could yield significant performance benefits.
Furthermore, the current version of the accelerator only supports NIST P-384 as a curve. Alternative
implementations that support multiple curves might also be an interesting avenue to pursue, although
this would certainly come at the cost of additional area usage.

33

Bibliography

[1] F. Mallouli, A. Hellal, N. Saeed, and F. Alzahrani, A survey on cryptography: Comparative study
between rsa vs ecc algorithms, and rsa vs el-gamal algorithms, (2019) pp. 173–176.

[2] D. Ismoyo and R. Wardhani, Block cipher and stream cipher algorithm performance comparison
in a personal vpn gateway, (2016) pp. 207–210.

[3] M. Kramer, F. Gerstmayer, and J. Hausladen, Evaluation of libraries and typical embedded systems
for ecdsa signature verification for car2x communication, (2018) pp. 1123–1126.

[4] J. Qu, T. Li, and F. Dang, Performance evaluation and analysis of openvpn on android, (2012)
pp. 1088–1091.

[5] L. Rodríguez Henríquez, N. A. Saqib, and A. Díaz-Pérez, A fast parallel implementation of elliptic
curve point multiplication over gf(2m), Microprocessors and Microsystems 28, 329 (2004).

[6] H. Marzouqi, M. Al-Qutayri, K. Salah, D. D. Schinianakis, and T. Stouraitis, A high-speed fpga
implementation of an rsd-based ecc processor, IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 24, 1 (2015).

[7] J. Ding, S. Li, and Z. Gu, High-speed ecc processor over nist prime fields applied with toom-cook
multiplication, IEEE Transactions on Circuits and Systems I: Regular Papers PP, 1 (2018).

[8] T. Güneysu, High performance ecc over nist primes on commercial fpgas, (2008).

[9] H. Marzouqi, M. Al-Qutayri, K. Salah, and H. Saleh, A 65nm asic based 256 nist prime field ecc
processor, (2016) pp. 1–4.

[10] K. Salah, An fpga implementation of nist 256 prime field ecc processor, (2013).

[11] H. Selma and H. M’hamed, Elliptic curve cryptographic processor design using fpgas, (2015) pp.
1–6.

[12] T. Wu and R. Wang, Fast unified elliptic curve point multiplication for nist prime curves on fpgas,
Journal of Cryptographic Engineering (2019), 10.1007/s13389-019-00211-9.

[13] S. Shohdy, A. El-Sisi, and N. Ismail, Fpga implementation of elliptic curve point multiplication
over gf(2191), (2009) pp. 619–634.

[14] S. Nn, V. Sridhar, and D. Patawardhan, Fpga based efficient elliptic curve cryptosystem processor
for nist 256 prime field, (2016) pp. 194–199.

[15] S. Liu, L. Ju, X. Cai, Z. Jia, and Z. Zhang, High performance fpga implementation of elliptic curve
cryptography over binary fields, (2014) pp. 148–155.

[16] A. Chatterjee and I. Sengupta, High-speed unified elliptic curve cryptosystem on fpgas using
binary huff curves, (2012) pp. 243–251.

[17] K. Loi and S.-B. Ko, Scalable elliptic curve cryptosystem fpga processor for nist prime curves, IEEE
Transactions on Very Large Scale Integration (VLSI) Systems 23, 1 (2015).

[18] M. Hossain, E. Saeedi, and Y. Kong, High-speed, area-efficient, fpga-based elliptic curve crypto-
graphic processor over nist binary fields, (2015) pp. 175–181.

[19] NIST, Mathematical routines for the nist prime elliptic curves, (2015).

[20] P. L. Montgomery, Speeding the pollard and elliptic curve methods of factorization, (1987).

35

http://dx.doi.org/10.1016/j.micpro.2004.03.003
http://dx.doi.org/ 10.1109/TVLSI.2015.2391274
http://dx.doi.org/ 10.1109/TVLSI.2015.2391274
http://dx.doi.org/ 10.1109/TCSI.2018.2878598
http://www.hyperelliptic.org/tanja/conf/ECC08/slides/Tim-Gueneysu.pdf
http://dx.doi.org/ 10.1007/s13389-019-00211-9
http://dx.doi.org/ 10.1109/TVLSI.2014.2375640
http://dx.doi.org/ 10.1109/TVLSI.2014.2375640
https://apps.nsa.gov/iaarchive/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/mathematical-routines-for-the-nist-prime-elliptic-curves.cfm

	Introduction
	Background Information
	OpenVPN-NL
	Elliptic Curve Cryptography
	Side-channel attacks
	Large-number mathematics
	Platform

	Research question
	Related Work
	Contents

	Performance Analysis
	Setup
	Devices
	Network
	Software

	Measurement method
	OpenVPN Performance Bottlenecks
	Verification
	Copy benchmarks
	Measurements
	Selected function for acceleration

	Design
	Design goals
	FPGA Acceleration Core
	Large-number modular mathematics
	Elliptic Curve Point addition and doubling
	Elliptic Curve Point multiplication

	Optimizations
	Communication
	FPGA side of communication
	OpenVPN side of communication

	Validation

	Results
	Resource usage
	Benchmarks
	Accelerator runtime

	Conclusion
	Future work

	Bibliography

