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Abstract 
 
This thesis discusses the theory, circuit design, software design and measurements of 
an atto-Farad resolution closed-loop impedance measurement bridge circuit for 
capacitive sensors implemented using commercial off the shelf components. 
A lock-in amplifier (LIA) method is used here. The capacitive sensor embedded in an 
impedance bridge is driven at 10MHz or higher by two inverting excitation sources 
(AD9959) that can adjust frequency, phase and amplitude with a certain resolution (32 
bits, 14 bits and 10bits respectively). These parameters can be set through a graphical 
user interface (GUI). When the output signal is nulled by changing the amplitude of the 
excitation signal, the unknown capacitor value can be calculated. A simple test 
impedance bridge has been fabricated to measure a fixed impedance value of the 
capacitor sensor using the LIA measurement approach. The obtained results 
(capacitance and resistance values) are in good agreement with what we obtained using 
an alternative approach (AH2700A, is an ultra-precision capacitance bridge with 
0.16ppm resolution at 1000Hz). The circuit has a 24.1ppm resolution at 10Hz 
bandwidth when the input frequency is 10MHz. 
 
Keywords: Capacitive sensor, Lock-in amplifier, Closed-loop impedance bridge  
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Introduction 
1.1 Motivation 
Nowadays, sensors play an important role in various fields such as industry, defense, and 
communications. Since the development of MEMS technology in the 1960s, the share of MEMS 
sensors has continued to increase. Compared with traditional sensors, MEMS sensors have some 
characteristics: small size, light-weight, low cost, low power consumption, high reliability, suitable for 
mass production, and easy to integrate [1,2]. What’s more, sensors and processing circuits can be 
integrated on a single IC using CMOS technology, while having higher response speed and smaller 
package size than mechanical sensors. Meanwhile, the feature size at the micron level makes it possible 
to perform functions that some traditional mechanical sensors cannot achieve. 
A capacitive sensor is a conversion device, based on capacitive coupling, that can measure and detect 
a physical quantity or mechanical quantity with the capacitance change. It is widely used in the 
measurement of displacement, pressure, humidity, the composition of compounds and so on. In 
particular, with the continuous feature of MEMS design and processing technology, lots of capacitive 
sensor products have been developed. For example, MEMS devices with comb drives [3], which are 
widely used in a variety of sensor applications, such as those that measure the position, speed and 
acceleration of moving objects, force, pressure, liquid levels, dielectric properties and flow materials 
[4]. Among the popular transduction mechanisms, capacitive sensing has been widely used because of 
its good noise performance, low-temperature coefficient, high sensitivity, and excellent compatibility 
[5]. The disadvantage is that the processing circuit is more complex [6]. The small size of the MEMS 
sensors determines that the capacitance of the sensitive capacitor is unlikely to be large, typically in 
the pF range. The change in the micro-capacitance caused by these physical quantities is even smaller, 
typically fF or even aF. Such a small amount of the capacitance change is a challenge to the design of 
the detection circuit. Conventional methods of building detection circuits using discrete components 
are not able to adapt to the decreasing trend of sensor capacitances. The use of dedicated interface 
integrated circuits for detection and processing can be the first choice for capacitive sensors. 
According to the impedance spectroscopy technique [7], these sensors (especially gas sensor in this 
design) can be equivalent to a simple circuit shown in Figure 1-1, due to the properties of the dielectric 
materials, there is a parallel parasitic resistance (shunt resistance) as the loss term. Typical values for 
this resistance are usually hundreds of kiloohms to hundreds of megaohms when the sensing 
capacitance is in the range of picofarads. This model can help researchers to analyze and measure them 
easily. 

 
Figure 1-1 A simple electrical model of the capacitive sensor  
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In some applications, the change in the capacitance value due to a measurand is much smaller than the 
sensor offset capacitance [8]. There is a resolution problem when this offset capacitance is not stable. 
A half-a-bridge structure can be a possible solution [9]. This solution also has the advantages of CM 
rejection of interfering effects, including temperature drift, which means it can compensate for the 
environmental effects by using this structure [9]. To obtain high accuracy and resolution impedance 
sensing, as shown in Figure 1-2, a bridge configuration is chosen, where the unknown impedance is 
compared against a high accuracy or identical reference impedance. 

Vout

Cx

CREF

RX

RREF

Vin+

Vin-

 
Figure 1-2 Half bridge configuration of a capacitive sensor 

In many modern sensor applications, especially in MEMS devices, this reference sensor can be an 
identical sensor which is not exposed to the physical quantity to be measured. For instance, in a gas 
sensor, an identical sensor can be the reference which is in a reference gas at the same temperature or 
environment. 

1.2 Readout approaches 
Current-voltage (I-V), bridge and resonant methods are three fundamental ways to measure impedance 
(including capacitance). 
For I-V method, the basic structure is shown in Figure1-3. According to the Ohm’s law, the unknown 
impedance (Zx) can be calculated from measured voltage and current values. Calculate current using 
the voltage measurement across an accurately known reference resistor (R), Zx can be expressed as: 

𝑍𝑍𝑋𝑋 =
𝑉𝑉1
𝐼𝐼

=
𝑉𝑉1
𝑉𝑉2
𝑅𝑅 (1 − 1) 

In practice, placement of resistor at high end impedes the requirement to accurately measure the 
differential signals in the presence of high common-mode voltages. Usually, a specialized operational 
amplifier is used for this purpose. Sometimes an RF transformer is used in place of R to obtain the 
high-end sensor [10]. The transformer, however, limits the low end of the applicable frequency range 
[11]. 
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Figure 1-3 Simple structure of I-V method 

The I-V method has a simple structure. It is mainly suitable for grounded device measurement and 
suitable to probe-type test needs. However, this method has low accuracy, and the operating frequency 
is limited based on the transformer used in the probe [12].  
The basic structure of the bridge method is shown in Figure 1-4, connect the oscillator or signal 
generator to the two ends of the AC bridge. The four components of the bridge are Z1, Z2, Z3, and ZX, 
respectively. When the bridge reaches equilibrium (adjust the reference impedance (Z2) until no current 
flows through the detector (D)), and the relationship between the unknown impedance (ZX) and the 
other three components is: 

𝑍𝑍𝑋𝑋 =
𝑍𝑍1
𝑍𝑍2
𝑍𝑍3 (1 − 2) 

 
Figure 1-4 Simple structure of bridge method 

Various types of bridge circuits for various applications use different combinations of L, C and R 
components to act as bridge elements. The bridge method has high accuracy, but because of the need 
to balance the bridge, it does not work in fast, repeated and continuous measurement. 
As shown in Figure 1-5, the electrical model of the resonant approach in series mode is presented 
(parallel mode is also feasible, series and parallel connections are available for a wide range of 
impedance measurements). Adjust the oscillator or signal generator frequency to make the circuit 
resonate. At resonance, the series impedance of the RLC tank is at a minimum value, the capacitive 
reactance of CX (often accompanied by a leakage resistance RX) and the inductive reactance of L are 
equal (1/ω∙CX=ω∙L, where ω is the angular frequency of oscillator), so that CX can be obtained. Due 
to the very low loss of the measurement circuit, Q values (quality factor) should be as high as possible 
for the resonant method. 
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Figure 1-5 Basic structure of the resonant method 

The resonant approach shows good accuracy in quality of inductance measurement (good Q accuracy 
up to high Q), but it has a low impedance measurement accuracy, and there is a need for resonance 
tuning [12].  
Meanwhile, all these methods are sensitive to parasitic capacitances, which can impair the 
measurement capacitance and need more complex circuitry to eliminate their effect [13].  

In the last few years, there have been many articles reporting the high-resolution readout circuits of 
the capacitive sensor [14-25]. These interface designs of the high-precision capacitive sensor are mainly 
divided into two directions: a continuous time processing method and a discrete time processing 
method. 

1.2.1 Discrete-time processing method 
Discrete-time processing circuits are mainly switched-capacitor (SC) readout circuit, including analog 
switches, capacitors, and operational amplifiers. It works by moving charge into and out of the 
capacitor when the switch is on and off, which makes them more suitable to use within integrated 
circuits, where the precisely specified resistors and capacitors are not economical to build [26]. So, this 
kind of way has been proposed in some articles with capacitive sensor [14,15,16], including a capacitive 
gas sensor [17]. The capacitive sensing is based on the capacitance-to-voltage converter, the same 
foundation on which SC circuit operates. The SC circuit provides a virtual ground and robust dc biasing 
at the sensing node so that the sensed signal is insensitive to parasitic capacitance and undesirable 
charging [27]. However, the drawbacks of this readout circuit are also apparent: Clock Feedthrough, 
Channel Charge Injection, Noise Aliasing, Input Signal Bandwidth Limits and so on. The basic 
structure of the SC circuit is shown in Figure 1-6. 

ϕ1 

ϕ2

CX

CREF

VREF+

VREF-

Cp LPF
Vout

Cint

Φreset

 
Figure 1-6 Switch-capacitor circuit 
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In a switched capacitor circuit, the sense (CX) and reference (CREF) capacitors are charged with 
opposite polarity voltages and a packet of charge proportional to the capacitance difference is 
integrated on the input feedback capacitor (Cint) [28], so the output voltage can be expressed as: 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟
∆𝐶𝐶
𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖

(1 − 3) 

For a general case, a single sense capacitor with a fixed reference capacitor equal to the sense rest 
capacitance (CREF=CX0) is assumed [28]. The readout circuit detects the capacitance change (ΔC= CX-
CREF). 
The correlated double sampling (CDS) technique is usually used to eliminate 1/f noise of the circuit 
[29-32] effectively. The wideband thermal noise sources of the amplifier and the switches are sampled at 
the high impedance nodes of the circuit and aliased into the baseband frequency range. That of 
feedback capacitor dominates the sampled switch noise (also referred to as kT/C noise) because this 
capacitance is typically small to increase the output voltage. Also, by appropriately selecting the circuit 
topology, the sampling noise of the sensing and reference capacitor remains the same and cancel each 
other [28]. 

1.2.2 Continuous-time processing method 
For continuous-time processing method, there are mainly two approaches to measure the capacitance 
of capacitive sensor: ac-bridge with voltage amplifier [18-21]and trans-impedance amplifier [22-25] with 
the fundamental principle of lock-in amplifier (LIA) techniques. 

The basic structure of LIA is shown in Figure 1-7. An input signal (signal of interest) with high 
frequency is generated, compared with thermal noise, the flicker noise of the amplifier should be 
inessential at this time. Then, the signal with noise components is amplified and go through a phase 
sensitive detector (mixer, chopper or demodulator, which acts as a synchronous rectifier) via reference 
signal (sinewave or square wave). After this process, the signal of interest is demodulated back to the 
baseband, while the flick noise of the amplifier is modulated to a higher frequency. A low-pass filter 
with a suitable cutoff frequency will filter out the flicker noise and obtain a narrow noise bandwidth. 
Finally, an excellent output DC signal can be obtained without 1/f noise. The detail of this part will 
discuss in section 2.3. 

 
Figure 1-7 Principle of operation of LIA [33] 

 
1.2.2.1 Ac-bridge with voltage amplifier 
As shown in Figure 1-8, the basic configuration of ac-bridge is presented, it consists of a square-wave 
drive circuit, a half-bridge capacitive sensor, a voltage-mode amplifier, a synchronous demodulator, 
and a low-pass filter. The two ac signals (square wave) with 180˚ phase difference drive a half-bridge 
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consisting of the sense capacitance and reference capacitance. When a differential sensing capacitor is 
available, a full-bridge configuration can also be formed [28]. The amplitude of the bridge output is 
proportional to the capacitance change (ΔC), after this signal is amplified and demodulated, the output 
voltage can be expressed as: 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅
∆𝐶𝐶

2𝐶𝐶𝑋𝑋0 + 𝐶𝐶𝑝𝑝
𝐴𝐴𝑣𝑣 (1 − 4) 

where Av is gain of the amplifier. 
So, it can be seen that this kind of circuit is significantly affected by the parasitic capacitance (Cp), 
which will reduce the resolution of the readout circuit. 

ϕ1 

ϕ2

CX

CREF

VREF+

VREF-

Amp
LPF

Vout

Sync.
Demod.Cp

 
Figure 1-8 Basic structure of ac-bridge with voltage amplifier 

1.2.2.2 Transimpedance amplifier 
Figure 1-9 shows the transimpedance amplifier configuration. Similar to the ac-bridge with voltage 
amplifier, it is mainly composed of a sinewave drive circuit (The drive signal needs to be sinusoidal to 
avoid errors induced by harmonic distortion, and the phase difference between the two sine wave 
signals is maintained at 180˚), a half-bridge capacitive sensor, an operational amplifier, a synchronous 
demodulation circuit, and a low-pass filter circuit. Different from the ac-bridge with voltage amplifier, 
due to the presence of the op-amp and feedback resistor (RF), the output of the half-bridge is held at 
the “virtual ground” point, which reduces the effect of parasitic capacitance (Cp). Meanwhile, because 
of the “virtual ground” point, the currents passing through ZX (Input impedance) and ZF (Feedback 
impedance) are balanced through the op-amp, and the current through the input impedance is 
proportional to the operational amplifier output voltage, the output voltage of the amplifier is given by: 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = −
𝑉𝑉𝑖𝑖𝑖𝑖
𝑍𝑍𝑋𝑋

∗ 𝑍𝑍𝐹𝐹 (1 − 5) 

where ZX = 1/(s*ΔC) and ZF = RF/(1+sRFCF). When RF is bigger enough, ZF can be approximated as 
1/(s*CF) and Vout can be expressed as: 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = −
𝑉𝑉𝑖𝑖𝑖𝑖
∆𝐶𝐶

∗ 𝐶𝐶𝐹𝐹 (1 − 6) 

The circuit can be regarded as a charge amplifier. 
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CX

CREF

Amp
LPF

Vout

Sync.
Demod.

Cp

CF

V+

V-

RF

ZX

ZF

 
Figure 1-9 Transimpedance amplifier readout scheme 

1.2.3 Comparison and choice 
Compared with the SC readout method, the continuous-time detection method does not have the 
aliasing phenomenon (noise folding effects [34]) introduced in the discrete-time detection circuit due to 
the sampling principle. Also, charge integration using a switched capacitor front-end [35] suffers from 
the parasitic electrical coupling of switching noise, and a continuous-time (CT) charge integrator front-
end [36] does not suffer from kT/C noise. Although SC readout circuit has high integration density and 
smaller area (switches area is smaller than resistor) by CMOS technology, it needs clock circuit to 
control switches and not suited for high frequency, which means this kind of circuit is complicated and 
cannot eliminate the effect of parasitic resistance very well. Therefore, continuous-time detection 
circuits that can operate at higher frequencies are a good choice. Also, for ac-bridge with voltage 
amplifier, there are several techniques, such as bootstrapping, that try to reduce the effect of these 
parasitic capacitances. In this technique, a unity-gain voltage amplifier is used along with a guard 
electrode surrounding the measurement electrodes to eliminate the voltage difference over them [37]. 
However, the resolution of capacitance is determined by the thermal noise floor of the amplitude and 
is still a function of the overall parasitic capacitance regardless of the feedback for boot-strapping [28].  

Current measurement can be a good way to replace bootstrapping. It consists of a low-input-impedance 
transimpedance amplifier (TIA) that senses the current through the sensor and eliminates the voltage 
variations at the input nodes, which can minimize the effects of the capacitive parasitic [38]. So, the 
transimpedance amplifier with the LIA technique is chosen as a primary operation circuit in this design. 
In order to reach a higher resolution, the transimpedance amplifier with the LIA technique can operate 
in a closed-loop, which is called a self-balanced bridge or auto-balancing bridge. The unknown sensor 
impedance is obtained by balancing the bridge in “auto-tuning” configuration employing, as variable 
impedance, an automatic adjustable resistor or capacitor [39-42]. 

1.2.4 Basic principle and prior art of self-balanced bridge 
The block diagram of the self-balanced bridge is shown in Figure 1-10. 
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Figure 1-10 Block diagram of the self-balanced bridge measurement 

In this technique, the signal generator generates AC signals to drive the impedance bridge. After the 
impedance bridge, there is an error voltage (ΔV), which is caused by the variation of capacitance. The 
readout circuit collects this voltage and sent to the feedback circuit for further processing. Then the 
feedback circuit produces a corresponding voltage signal or controls the signal generator to make the 
error voltage is equal to zero. Finally, the impedance bridge is in equilibrium. Generally speaking, a 
self-balanced strategy can be considered as a negative feedback-based system whose aim is to 
minimize or null a specific error signal [43]. The capacitance change can also be calculated from the 
voltage relationship of the feedback circuit, the signal generator and the reference impedance (The 
specific calculation will be discussed in Chapter 4). 
1.2.4.1  The prior art 
Some approaches based on the self-balanced bridge measurement have been published before. In this sub-
section, some of the prior works are introduced, with a summary in the end. 
 [P. Holmberg, IEEE Trans. Instrum. Meas. 1995] [44] 

Figure 1-11 shows the block diagram of the capacitive sensor bridge circuit. 

 
Figure 1-11 Schematic of the measurement system, where ΔC is the transducer variation of interest 

[44]. 
The impedance bridge circuit is originally of De Sauty type [45], which is an AC bridge works on the 
principle of Wheatstone’s bridge. This bridge is used to determine the capacity of an unknown 
capacitor C2 in terms of the capacity of a standard known capacitor C3 [46]. R1 and R4 are pure resistors 
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(non-inductive resistors). The simplicity of this method is offset by the impossibility of obtaining a 
perfect balance if both the capacitors are not free from the dielectric loss [47]. A perfect balance can 
only be obtained if air capacitors are used. R1, R4, C2 and C3 are connected in a De Sauty type as shown 
in the Figure 1-12. 

 
Figure 1-12 De Sauty bridge 

However, in this approach (Figure 1-11), De Sauty bridge has been modified with two opamps (A1 and 
A2) and a multiplier (M1). Amplifier A1 set a zero voltage, and a capacitive current is generated that 
depends on Cs through R1, and amplifier A2 is a current-to-voltage converter to build a virtual ground 
(Eliminate the influence of parasitic capacitance). Any capacitance change (ΔC) generates a voltage at 
the A1 output, which in turn develops a current for A2 [44]. The multiplier (M1) and the control signal 
(UC) are used to balance the bridge circuit, or a voltage-controlled amplifier can be used to replace the 
multiplier (M1). Through a control signal, the main task of this measurement system is to adjust the 
amplitude of an ac signal in an electronic way. UC is selected in such a way that the bridge output (Udc) 
is zero. 
 [P. Mantenuto, IEEE Sensors J. 2014] [42] 

This measurement technique also presents a capacitance-to-voltage conversion work in continuous 
time, by using a particular impedance bridge based on the modified De Sauty bridge structure (Fig. 1-
13): a reference capacitance (C), a sensing capacitance (CSEN), a fixed resistance (R) and a voltage-
controlled resistor (VCR). In some proposed papers [48,49], the analog multiplier AD633 is used as VCR 
(named RVCR), the equivalent resistance value can be expressed as: 

𝑅𝑅𝑉𝑉𝑉𝑉𝑉𝑉 =
10𝑅𝑅𝐼𝐼𝐼𝐼

10 − 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
(1 − 7) 

where RIN is a user-settable internal resistance, and VCTRL is the external signal (It should be a DC 
voltage with -10V to 10V range) to adjust the VCR properly. 
In order to maintain the balance of the impedance bridge, a feedback circuit can be used to adjust the 
output of the multiplier (AD633) to generate a signal VA that tends to follow VB, the error signal ΔV 
= A(VA-VB) is therefore forced to zero, where A is the amplifier gain. Then, according to synchronous 
demodulation of ΔV performed with the mixer (Demodulator multiplier), while using the voltage 
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integrator (OA, RINT, and CINT) and the voltage divider (RD1, RD2), the high-frequency signal 
components are removed and provide the useful information (VCTRL). The feedback signal VCTRL is 
DC component of the error signal ΔV. So, the capacitance variation can be expressed as: 

𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = C
𝑅𝑅𝐼𝐼𝐼𝐼
𝑅𝑅 �

10
10 − 𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶

� (1 − 8) 

in case of the bridge in equilibrium (ΔV = 0). 

 
Figure 1-13 The interface with VCR balance [42] 

 [B. Hu, Meas. Sci. Technol. 2016] [50] 

 

Figure 1-14 Block diagram of the digital auto-balancing bridge [50]. 
As shown in Figure 1-14, the main signal source Va generates an ac signal to the DUT (Zx). If the range 
resistor current Ir is not equal to the DUT current Ix, an unbalanced current Id is generated and flows 
into the null detector (D). DLIA demodulates the error voltage Vd into I (In-phase) and Q (Quadrature). 
After the ABB controller obtains them, a DSP algorithm is run to continuously adjust the amplitude 
and phase of the second signal source Vb. This signal is fed back through the range resistor Zr to 
eliminate the DUT current. Therefore, the unbalanced current is closed to zero and the value of DUT 
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can be calculated. 
There are also some instruments with self-balanced bridge method for impedance analysis, such as: 
Keysight 4294A [51], Keysight E4991B [52], Solartron 1260A [53], Andeen-Hagerling 2700A [54] and so 
on. For example, AH2700A has 0-20KHz frequency range and -0.165μF to 1.65μF capacitance range, 
the best resolution of the device is 0.16ppm @ 1KHz, it only needs 0.4s to do a full precision 
measurement and 0.03s to repeat measurement on the same DUT. 
1.2.4.2 Summary of Prior Art 
In conclusion, the basic measurement principles for measuring capacitance variation based on the self-
balanced bridge are known. The introduced techniques have mainly been implemented using PCBs or 
bench-top instruments. 
For the De Sauty bridge, it gives accurate results only when the capacitances without dielectric losses, 
which means if capacitive sensors have parasitic resistances, this kind of bridge will cause some errors. 
The resolution of the capacitive sensor can also be affected by the resistance (thermal noise) in De 
Sauty bridge. 
In addition, there are also some points that have not yet been investigated:  
1. Use a simpler circuit structure. 
2. Increase the upper-frequency limit of the input signal to eliminate the effect of parasitic resistance. 
3. Improve the system resolution with interpolation method (software). 
So, a simpler structure, higher resolution self-balanced bridge system with wide frequency range will 
be presented in this thesis. 

1.3 Our solution 
Our approach uses two impedances (sensors) in a half-bridge impedance measurement bridge 
configuration, as shown in Figure 1-15. A four-channel DDS (Direct Digital Synthesis) chips drive 
both impedances via buffer amplifiers. Both arms of the bridge are driven by sinusoidal signals with 
the same frequency and accurate phase relation. This can be conveniently implemented over a wide 
frequency range by modern DDS chips. 

DDS

 
 Buffer

 Buffer

Cx

CREF

RX

RREF

Capacitive
Sensor

R1

C1

Amp
High-gain 
amplifier

Lock-in amp and 
low-pass filter

A/D 
converterComputer

Adjust amplitude and 
phase

 
Figure 1-15 The whole structure of the readout system 
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Then the output of the impedance bridge is amplified by a high-gain amplifier and a narrow-band lock-
in amplifier, after that, the output will be digitized by a high-resolution ADC and shows on the 
computer. By adjusting the amplitude and the phase by the computer, the output of the bridge can be 
nulled. Finally, the value of the unknown impedance can be obtained by the ratio of the two driving 
signals. The expressions of the impedance are: 

𝑅𝑅𝑋𝑋 =
𝑉𝑉1𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑉𝑉2

1
(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝜔𝜔𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

(1 − 9) 

𝐶𝐶𝑋𝑋 = −
𝑉𝑉2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜔𝜔𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)

𝑉𝑉1𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
(1 − 10) 

Where V1 is the input amplitude of the unknown impedance, V2 is the input amplitude of the reference 
impedance, ω is the angular frequency of the input and ϕ is the phase difference between the two inputs. 
The specific formula derivation will be introduced in section 3.1.3. 
The resolution of the used DDS in term of phase is very high (14bit) however the resolution in terms 
of amplitude is only 10-bit. So, the output signal of the bridge cannot be nulled completely, which 
means there will be a signal remaining. This remaining output signal should be interpolated to achieve 
the required very high resolution, which can be expressed as: 

𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 × �
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣�
×

1
1024

(1 − 11) 

where step value is change of 1bit value of the DDS at 10MHz. 
In addition, in order to eliminate the influence of parasitic resistance further, an increase of the signal 
frequency is needed (10MHz or more). 
The approach also aims for circuit solutions that can be integrated into a single CMOS chip. The 
prototype described in this thesis uses many commercially available components. 
In the prototype, the aim of a system that can measure the impedance of capacitive sensor devices in 
the range of 22pF to 47pF with a 24ppm resolution @10Hz comparable with the best impedance 
bridges (the AH2700 from Andeen Hagerlin with the range of -0.165μF to 1.65μF and 0.16ppm 
resolution @1000Hz [54]) available now. The system described here should operate over a wider range 
of frequencies (up to 10MHz or more) to meet different types of capacitive sensors and aims to measure 
small capacitances of sensors typically in the pF range. 
The ultimate goal would be to integrate the approach into a dedicated CMOS chip with a standard bus 
interface as a commercial product. 
 

1.4 Outline of the Thesis 
Chapter 1 Introduction 
In this chapter, the need and basic idea of impedance measurement are provided at first, three basic 
detection ways of capacitive sensors are described, then the approach (self-balance bridge based on 
LIA measurement) of this thesis is presented. 
Chapter 2 Lock-in amplifier (LIA) 
The principle of the lock-in amplifier is shown in this chapter. Also, comparisons of analog and digital 
LIAs are introduced. 
Chapter 3 Hardware design 
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Each part of the readout circuit is described in detail. Moreover, simulations of some circuits are also 
presented. The main emphasis is the charge amplifier. 
Chapter 4 Software design 
The programming methods of DDS, ADC and so on are given in this chapter. 
Chapter 5 Measurement results 
Performance test of the whole system is introduced in this chapter, and then these results will be 
compared with other works. 
Chapter 6 Conclusion 
Summarizes the contributions of the thesis. Furthermore, future performance improvements are 
highlighted. 
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Chapter 2 
Lock-in Amplifier (LIA): Background & 
Theoretical analysis 
In this chapter, the background and theoretical analysis of the lock-in amplifier are presented in four 
parts, starting with the principle of correlation detection, which includes autocorrelation and cross-
correlation; followed by the principle of LIA, including basic concepts and compositions of LIA, 
among these compositions, the phase-sensitive detector is highlighted. Then, some characteristics 
between analog LIA and digital LIA is discussed, basic requirement of the circuit has been determined 
as well. Based on all these, the conclusion is given in the end. This chapter gives the overall information 
for the circuit-level design. 

2.1 Principle of correlation detection 
In the weak signal detection and extraction technology, two types of signals are involved, one is a 
useful signal (signal of interest) and the other is noise. The former has a certain law; it can be repeated 
and expressed as a time-related deterministic function. However, the latter does not show a certain 
pattern, because the noise at different times is not related. There are two ways of detection: the first 
one is called autocorrelation, it uses the characteristic of the signal itself to find the signal, which means 
it is the correlation of a signal with a delayed copy of itself as a function of delay [1]. The other way is 
called cross-correlation, it uses the relationship of correlation between two signals to eliminate the 
effect of noise and improve signal to noise ratio [2]. Correlation detection is a way that utilizes 
correlation theory to measure signal, mainly by suppressing noise and maximizing bandwidth 
limitation [3]. 

2.1.1 Autocorrelation method 
Model of autocorrelation shows in Figure 2-1. 
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Figure 2-1 Schematic of autocorrelation 

The useful input signal can be expressed as: 
𝑠𝑠(𝑡𝑡) =  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔0𝑡𝑡 +  𝜑𝜑) (2 − 1) 

Where A is amplitude, ω0 is angular frequency, and φ is the initial phase. 
So total input signal is: 

𝑥𝑥(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) + 𝑛𝑛(𝑡𝑡) =   𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔0𝑡𝑡 +  𝜑𝜑) + 𝑛𝑛(𝑡𝑡) (2 − 2) 
The two channels of the correlation receiver are receiving input signals simultaneously; the delay plays 
a role in delaying the input signal for a period of time τ. The multiplier receives the signals from two 
paths respectively, after the operation of multiplier and integrator, in turn, it is easy to get output Rx(τ). 
In case of changing the delay time separately, the corresponding output signals are obtained one by 
one, so the relation curve between correlation function and the delay time can be found, which reflects 
the degree of correlation of information function values for different time τ, then the autocorrelation 
output is: 

𝑅𝑅𝑥𝑥𝑥𝑥(τ) =  lim
𝑇𝑇→∞

1
𝑇𝑇
� 𝑥𝑥(𝑡𝑡)𝑥𝑥(𝑡𝑡 − τ)𝑑𝑑𝑑𝑑
𝑡𝑡0+𝑇𝑇

𝑡𝑡0
  

    =  𝑅𝑅𝑠𝑠𝑠𝑠(τ) +  𝑅𝑅𝑠𝑠𝑠𝑠(τ) +  𝑅𝑅𝑛𝑛𝑛𝑛(τ) +  𝑅𝑅𝑛𝑛𝑛𝑛(τ) (2 − 3) 
In which 

𝑅𝑅𝑠𝑠𝑠𝑠(τ) =  lim
𝑇𝑇→∞

1
𝑇𝑇
� 𝐴𝐴2𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔0𝑡𝑡 +  𝜑𝜑)𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔0𝑡𝑡 − 𝜔𝜔0τ +  𝜑𝜑)𝑑𝑑𝑑𝑑
𝑡𝑡0+𝑇𝑇

𝑡𝑡0
(2 − 4) 

𝑅𝑅𝑠𝑠𝑠𝑠(τ) =  lim
𝑇𝑇→∞

1
𝑇𝑇
� 𝐴𝐴𝐴𝐴(𝑡𝑡 − τ)𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔0𝑡𝑡 +  𝜑𝜑)𝑑𝑑𝑑𝑑
𝑡𝑡0+𝑇𝑇

𝑡𝑡0
(2 − 5) 

𝑅𝑅𝑛𝑛𝑛𝑛(τ) =  lim
𝑇𝑇→∞

1
𝑇𝑇
� 𝐴𝐴𝐴𝐴(𝑡𝑡)𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔0𝑡𝑡 − 𝜔𝜔0τ +  𝜑𝜑)𝑑𝑑𝑑𝑑
𝑡𝑡0+𝑇𝑇

𝑡𝑡0
(2 − 6) 

𝑅𝑅𝑛𝑛𝑛𝑛(τ) =  lim
𝑇𝑇→∞

1
𝑇𝑇
� 𝑁𝑁(𝑡𝑡)𝑁𝑁(𝑡𝑡 − τ)𝑑𝑑𝑑𝑑
𝑡𝑡0+𝑇𝑇

𝑡𝑡0
(2 − 7) 

The noise is a random quantity and cannot be expressed as a time-dependent deterministic function, 
which means s(t) and n(t) are uncorrelated. Therefore, their mean value is zero, and Rsn(τ) = 0 and 
Rns(τ) = 0 is obtained. As τ increases, Rnn(τ) → 0, when τ increases sufficiently large, Rxx(τ) = Rss(τ) is 
obtained. The useful signal s(t) can be obtained from the autocorrelation function Rxx(τ), which carries 
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some information about the useful signal s(t)[4]. 

2.1.2 Cross-correlation method 
Cross-correlation function reflects the correlation between two different signals, the realization of the 
schematic shown in Figure 2-2. 

R(t)
Input signal

x(t) = s(t) + n(t)

Reference signal
y(t)

Multiplier

Delay

Integrator

 
Figure 2-2 Schematic of cross-correlation 

Set the total input signal as: 
𝑥𝑥(𝑡𝑡) = 𝑠𝑠(𝑡𝑡) + 𝑛𝑛(𝑡𝑡) =   𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔0𝑡𝑡 +  𝜑𝜑) + 𝑛𝑛(𝑡𝑡) (2 − 8) 

Set reference signal as: 
𝑦𝑦(𝑡𝑡) = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜔𝜔1𝑡𝑡 +  𝜑𝜑0) (2 − 9) 

Where B is amplitude, ω1 is angular frequency and φ0 is the initial phase. 
When the two signals pass through the multiplier, the result is: 

𝑅𝑅(𝑡𝑡) = � 𝑥𝑥(𝑡𝑡) ∙ 𝑦𝑦(𝑡𝑡)𝑑𝑑𝑑𝑑 = 
𝑡𝑡1

𝑡𝑡0
� [(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝜔𝜔0 +  𝜑𝜑) + 𝑁𝑁(𝑡𝑡)) ∙ 𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠(𝜔𝜔1𝑡𝑡 +  𝜑𝜑0)𝑑𝑑𝑑𝑑]
𝑡𝑡1

𝑡𝑡0
 

          =  𝐴𝐴𝐴𝐴 2⁄ � {𝑐𝑐𝑐𝑐𝑐𝑐[(𝜔𝜔0 − 𝜔𝜔1)𝑡𝑡 + 𝜑𝜑 − 𝜑𝜑0] − 𝑐𝑐𝑐𝑐𝑐𝑐[(𝜔𝜔0 + 𝜔𝜔1)𝑡𝑡 + 𝜑𝜑 + 𝜑𝜑0]}𝑑𝑑𝑑𝑑
𝑡𝑡1

𝑡𝑡0
 

          +� 𝐵𝐵𝐵𝐵(𝑡𝑡) sin(𝜔𝜔1𝑡𝑡 +  𝜑𝜑0)𝑑𝑑𝑑𝑑
𝑡𝑡1

𝑡𝑡0
 

= 𝑅𝑅𝑠𝑠𝑠𝑠(𝜔𝜔0,𝜔𝜔1,𝜑𝜑,𝜑𝜑0) + 𝑅𝑅𝑛𝑛𝑛𝑛(𝜔𝜔0,𝜔𝜔1,𝜑𝜑,𝜑𝜑0)                                        (2 − 10) 
 
Which 
𝑅𝑅𝑠𝑠𝑠𝑠(𝜔𝜔0,𝜔𝜔1,𝜑𝜑,𝜑𝜑0) 

= 𝐴𝐴𝐴𝐴 2⁄ � {𝑐𝑐𝑐𝑐𝑐𝑐[(𝜔𝜔0 − 𝜔𝜔1)𝑡𝑡 + 𝜑𝜑 − 𝜑𝜑0] − 𝑐𝑐𝑐𝑐𝑐𝑐[(𝜔𝜔0 + 𝜔𝜔1)𝑡𝑡 + 𝜑𝜑 + 𝜑𝜑0]}𝑑𝑑𝑑𝑑
𝑡𝑡1

𝑡𝑡0
 (2 − 11) 

is the cross-correlation output of the useful signal (signal of interest) and the reference signal, and 

𝑅𝑅𝑛𝑛𝑛𝑛(𝜔𝜔0,𝜔𝜔1,𝜑𝜑,𝜑𝜑0) =  � 𝐵𝐵𝐵𝐵(𝑡𝑡) sin(𝜔𝜔1𝑡𝑡 + 𝜑𝜑0)𝑑𝑑𝑑𝑑
𝑡𝑡1

𝑡𝑡0
 (2 − 12) 

is the cross-correlation output of the noise and the reference signal. 
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(a) Input signal is 1KHz 

 
(b) Input signal is 1.1KHz 

 
(c) Output of integrator 

Figure 2-3 The integral output of two signals 
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When ω0 ≠ ω1, since the two components of Rxy are periodic functions and mean value is 0, the output 
signal of the correlator is 0 after the integrator and integration time are the common periods of the two 
signals, as shown in Figure 2-3. This means that the frequency ω0 of the reference signal must be equal 
to the frequency ω1 of the useful signal. The reference signal can be expressed as: 

𝑦𝑦(𝑡𝑡) = 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜔𝜔0𝑡𝑡 +  𝜑𝜑0) (2 − 13) 
From section 2.1.1, because the noise and the reference signal are uncorrelated, the equation 2-12 is 
equal to 0. Then, combining the equation 2-10 with the equation 2-13, and assuming that the integral 
time constant of the integrator is T, and the integration time t = T, the final result of cross-correlation 
is: 

𝑅𝑅(𝑡𝑡) =
1
𝑇𝑇
� 𝐾𝐾𝑣𝑣

AB
2

{𝑐𝑐𝑐𝑐𝑐𝑐[(𝜔𝜔0 − 𝜔𝜔0)𝑡𝑡 + 𝜑𝜑 − 𝜑𝜑0] − 𝑐𝑐𝑐𝑐𝑐𝑐[(𝜔𝜔0 + 𝜔𝜔0)𝑡𝑡 + 𝜑𝜑 + 𝜑𝜑0]}𝑑𝑑𝑑𝑑
𝑇𝑇

0
 

=  
𝐾𝐾𝑣𝑣𝐴𝐴𝐴𝐴

2
cos(𝜑𝜑 − 𝜑𝜑0)                                                                         (2 − 14) 

where Kv is integral gain. 
According to the equation 2-14, the output of the cross-correlation is a DC signal, and the value of this 
DC signal is related to the two input signals and phase difference. 
Comparing equations 2-3 and 2-10, it is shown that the cross-correlation detection uses an external 
reference signal and can effectively avoid the noise impact of the signal under test in the self-
correlation detection. Therefore, the signal to noise ratio of the cross-correlation detection system is 
higher than the self-correlation detection system. In addition, the cross-correlation function can also 
reflect the phase difference between the two signals, if the phase of one of the signals is known, then 
the phase of the other signal can be determined [5]. Thus, the cross-correlation algorithm is better than 
the autocorrelation algorithm. In this paper, the design of lock-in amplifier is based on the cross-
correlation method. 

2.2 Basic principle of a lock-in amplifier (LIA) 
A lock-in amplifier is a device that can be used for weak signal detection by using the principle of 
cross-correlation, which is a phase-sensitive signal detection amplifier [6-8]. 
During the measurement, noise is a disturbing signal. Among these noises, white noise and 1/f noise 
provide more significant influence on instrument equipment [9,10]. The presence of noise in the system 
can adversely affect the useful signal and the useful signal is often hidden by it. In order to reduce the 
influence, a narrow-band filter is usually used to increase SNR of the signal. However, the filter also 
has its limitations: The Q value (The ratio of the center frequency to the passband width) is limited by 
the hardware part of the filter, which affects its ability to extract useful signals and filter noise at a 
higher level [11-14]. 
As shown in Figure 2-4, the elemental composition of the lock-in amplifier is introduced, which mainly 
includes: signal channel, reference channel, phase sensitive detector (PSD) and lowpass filter (LPF) 
[15-17]. 
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Test signal

Reference signal

Signal 
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VREF(t)

VO(t)

 
Figure 2-4 Structure diagram of the lock-in amplifier 

2.2.1 Signal channel 
The signal channel mainly performs the basic processing on the corresponding test signal (signal of 
interest). For example, the signal is amplified properly so that the test signal can reach the 
corresponding working level before entering the phase sensitive detector or use the band-pass filter to 
filter the signal in order to eliminate the influence of higher harmonics on the measurement results [18]. 
The first part of the signal channel is generally a preamplifier, the main consideration is the input signal 
is really small, it could be mV, μV or even more weak, then the input of the primary task is to amplify 
the input signal, which requires a high input impedance Ri, low output impedance Ro and higher 
voltage gain. 

2.2.2 Reference channel 
The reference signal generally uses the same frequency as the test signal with a sinusoidal signal or a 
square wave signal to achieve the selection of the signal under test. Reference channel (it consists of 
the trigger circuit, the frequency conversion circuit and the phase shift circuit [19,20].) can be used to 
adjust DC of the reference signal, amplify or attenuate the reference signal to meet the input 
requirements. In addition, the reference channel can also adjust the phase of the reference signal 
according to different system requirements so as to achieve the best detection result. 

2.2.3 Phase-sensitive detector (PSD) 
Phase-sensitive detector (PSD) is the most critical and essential part of the lock-in amplifier. It takes 
the reference signal as a standard and picks out the signal components of the reference signal with the 
same frequency from the input signal [8]. After the filtering process, the output contains the amplitude 
and phase information of the effective component, which can calculate the amplitude and phase of the 
valid part of the test signal. 

2.3 The principle of phase sensitive detector (PSD) 
The phase-sensitive detector is a vital part of the lock-in amplifier [19], usually using a multiplier as a 
phase-sensitive detector, which multiplies the test signal Vs with a reference signal Vref. Therefore, in 
a sense, the phase-sensitive detector here is equivalent to a multiplier, which is also equivalent to a 
modulator [21,22]. 
Taking a sine wave as an example, let the test signal Vs and the reference signal Vref be: 

𝑉𝑉𝑠𝑠 =  𝐴𝐴𝑠𝑠 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔𝑛𝑛𝑡𝑡) (2 − 15) 
𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 =  𝐴𝐴𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡 +  𝜃𝜃) (2 − 16) 

respectively. 
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Where As and Ar are the amplitudes of the test signal and the reference signal respectively, ωn and ω0 
are the angular frequencies respectively, and θ is the phase difference between them. So, the output of 
the multiplier can be expressed as: 
𝑉𝑉𝑃𝑃 =  𝑉𝑉𝑠𝑠𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐴𝐴𝑠𝑠 𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝑛𝑛𝑡𝑡)𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐(𝜔𝜔0𝑡𝑡 +  𝜃𝜃) 

      = 0.5𝐴𝐴𝑠𝑠𝐴𝐴𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐[(𝜔𝜔𝑛𝑛 − 𝜔𝜔0)𝑡𝑡 + 𝜃𝜃] + 0.5𝐴𝐴𝑠𝑠𝐴𝐴𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐[(𝜔𝜔𝑛𝑛 + 𝜔𝜔0)𝑡𝑡 + 𝜃𝜃] (2 − 17) 
This shows that the output results appear the difference frequency component and sum frequency 
component. From section 2.1.2, ωn and ω0 should be equal, so equation 2-17 becomes: 

𝑉𝑉𝑃𝑃 =  0.5𝐴𝐴𝑠𝑠𝐴𝐴𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃 + 0.5𝐴𝐴𝑠𝑠𝐴𝐴𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐(2𝜔𝜔0𝑡𝑡 +  𝜃𝜃) (2 − 18)
As shown in Figure 2-5, the frequency spectrum of the output signal is shifted to ω = 0 and ω = 2ω0. 
The shape does not change after the spectrum is moved, and the signal amplitude at this time depends 
on the product of As and Ar. 

 
Figure 2-5 Schematic of spectrum shift 

If the phase sensitive detection circuit connected to the low-pass filter, the sum frequency component 
of the high-frequency components will be filtered out. At this time, the circuit output is: 

𝑉𝑉𝑂𝑂 =  0.5𝐴𝐴𝑠𝑠𝐴𝐴𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃) (2 − 19) 
In practical applications, the reference signal also uses a square wave. Assuming that the test signal is 
a sine wave, as shown in formula 2-15 and the reference signal is a square wave, which can be 
expressed as: 

𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟  =  
4
𝜋𝜋
𝐴𝐴𝑟𝑟�

(−1)𝑛𝑛+1

2𝑛𝑛 − 1

∝

𝑛𝑛=1

cos[(2𝑛𝑛 − 1)𝜔𝜔0𝑡𝑡 +  𝜃𝜃] (2 − 20) 

At this point, after the phase-sensitive detector, the output is: 

              𝑉𝑉𝑃𝑃 = 𝑉𝑉𝑠𝑠 × 𝑉𝑉𝑟𝑟𝑟𝑟𝑟𝑟 = 𝐴𝐴𝑠𝑠 cos(𝜔𝜔𝑛𝑛𝑡𝑡) ×
4
𝜋𝜋
𝐴𝐴𝑟𝑟�

(−1)𝑛𝑛+1

2𝑛𝑛 − 1

∝

𝑛𝑛=1

cos[(2𝑛𝑛 − 1)𝜔𝜔0𝑡𝑡 + 𝜃𝜃] 

=
2𝐴𝐴𝑠𝑠𝐴𝐴𝑟𝑟
𝜋𝜋

�
(−1)𝑛𝑛+1

2𝑛𝑛 − 1

∝

𝑛𝑛=1

cos[(𝜔𝜔𝑛𝑛 + (2𝑛𝑛 − 1)𝜔𝜔0)𝑡𝑡 + 𝜃𝜃]

+
2𝐴𝐴𝑠𝑠𝐴𝐴𝑟𝑟
𝜋𝜋

�
(−1)𝑛𝑛+1

2𝑛𝑛 − 1

∝

𝑛𝑛=1

cos[(𝜔𝜔𝑛𝑛 − (2𝑛𝑛 − 1)𝜔𝜔0)𝑡𝑡 + 𝜃𝜃] (2 − 21)

 

It can be seen that the sum frequency component and the difference frequency component also appear. 
After the low-pass filter, the sum frequency component can be filtered out, the difference frequency 
component will show in the output of the filter, and the output is: 
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𝑉𝑉𝑂𝑂′ =
2𝐴𝐴𝑠𝑠𝐴𝐴𝑟𝑟
𝜋𝜋

�
(−1)𝑛𝑛+1

2𝑛𝑛 − 1

∝

𝑛𝑛=1

cos[(𝜔𝜔𝑛𝑛 − (2𝑛𝑛 − 1)𝜔𝜔0)𝑡𝑡 + 𝜃𝜃] (2 − 22) 

When ωn = (2n-1)ω0(n=1,2,3……), the DC component will appear in the above result, and their 
amplitudes will decrease by a factor of 1/(2n-1). This phenomenon is called the harmonic response of 
the phase-sensitive detector [20]. The schematic diagram is shown in Figure 2-6. 

 
Figure 2-6 The first five harmonic transmission windows of PSD [20] 

The transmission windows are centered on the odd harmonics of the reference frequency and the 
maximum magnitude of each window is weighted by the magnitude of its associated reference Fourier 
components [20]. The signal must be in one of the transmission windows before the phase sensitive 
detector outputs a response. A test signal must be coherent with One or more reference Fourier 
component so that a ‘true’ d.c. response can be obtained [20]. 
However, the most common way to eliminate the effects of harmonics is to add a band-pass filter in 
the signal path whose center frequency is ω0, so that it filters out the higher harmonics first, leaving 
only the first harmonic information. Then, the output is: 

𝑉𝑉𝑂𝑂 =
2𝐴𝐴𝑠𝑠𝐴𝐴𝑟𝑟
𝜋𝜋

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (2 − 23) 

It can be seen that no matter whether the reference signal is a sine wave or a square wave, the output 
result after the phase-sensitive detector and the filter are not only related to the signal amplitude but 
also to the phase information between the two signals, 
Therefore, the phase-sensitive detector can measure amplitude and phase simultaneously. 
Sine waves are useful for systems that require high frequency (above 1MHz) carriers, for instance, 
systems that must measure very low capacitance. Sine waves are also preferred for high-precision 
circuits. Compared with the square wave excitation, the slew rate of the amplifier is reduced by a factor 
of 10, and low-frequency amplifiers can be used. Sine waves are essential for high-gain bridge circuits, 
as a good null is more easily achieved without the presence of harmonic energy from the square wave 
excitation [23].  
Although square waves are easy to integrate on a single-chip system and are suitable for low-gain 
systems such as motion detectors with wide linear operation, it must be careful to avoid the effects of 
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instability and non-linearity which are produced by the amplifier when it reaches its limit slew rate for 
circuit using square wave modulation, and in order to obtain a good wave shape, amplifier bandwidth 
must be a factor of 10 higher than for sine wave circuits [23]. In this paper, Due to the relatively stable 
performance of the sine wave, the sine wave excitation is used as the reference signal in the lock-in 
amplifier system. 
In order to show the output more intuitively, Figure 2-7 shows the waveforms of input and the output 
of the phase-sensitive detector under different phase shifts, where ωn = ω0 = 1KHz, and As = Ar =1V 
in the equations 2-15 and 2-16 respectively. As shown in Figure 2-7(a), when θ = 0°, the output 
waveforms of the phase-sensitive detector are above 0V, and the maximum DC value can be obtained 
through the integrator or low-pass filter; when θ = 90°, as shown in Figure 2-7(b), after the phase-
sensitive detector, the output waveforms are evenly split between the positive part and negative part, 
then the DC component is 0 after filtering; when θ = 180°, the output waveform is shown in Figure 2-
7(c), the principle is the same as (a), but the output is opposite to (a) and below 0V, at this moment, 
the DC value is the negative maximum after filtering. 

(a) θ = 0° (b) θ = 90° (c) θ = 180°  
Figure 2-7 Input and output waveform diagram of the phase-sensitive detector with different phase 

2.4 Analog LIA and Digital LIA 
Depending on the dynamic reserve of the instrument, signals up to 1 million times smaller than noise 
components and translates to a signal-to-noise ratio as low as -120dB, potentially fairly close by in 
frequency, can still be sure detected [24]. It can improve the Q factor by a million times. All these show 
that the system design can have many advantages by using the lock-in amplifier. With the ever-
changing technology, the performance of the lock-in amplifier is even more powerful: the new dual-
phase digital lock-in amplifier, multi-channel lock-in amplifier, precision lock-in amplifier and so on. 
They have a very high gain and gain accuracy. At present, the core device (PSD) of the commercial 
lock-in amplifier is being replaced by DSP (Digital Signal Processor), which further enhances its 
performance [25,26]. 
Currently, the commonly used lock-in amplifier on the market has two types: analog and digital. By 
comparing them, it finds that the former has characteristics such as early start, fast speed, but poor 
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parameter stability and flexibility, the latter is developed with the development of digital technology, 
and it uses high-speed ADC to sample signals at high speed, so this has high requirements for 
microprocessor [21,27-29]. 

2.4.1 Analog LIA 
Analog LIA, as the name implies, which digitizes the signals only after the analog mixing stage before 
or after low-pass filter. There are some analog elements like voltage-controlled oscillators, low-noise 
amplifiers, mixers and simple RC filters for signal processing [30]. 
Figure 2-8 shows the functional block diagram of a typical analog lock-in amplifier, such as the 
PerkinElmer Instruments models 5109, 5110, 5209 and 5210. Dual-phase instruments include all of 
the sections shown whereas those sections within the dotted line are omitted in single phase units [29]. 

 
Figure 2-8 The functional block diagram of commercial analog LIA [29]  

2.4.2 Digital LIA 
For digital lock-in amplifier, the analog input signal is converted to the digital domain by an analog-
to-digital converter (ADC) immediately, and all following steps are then carried out numerically by 
digital signal processing (DSP) [30]. 
Figure 2-9 shows the functional block diagram of a typical high-performance digital lock-in amplifier, 
such as UHFLI Instrument [31]. 
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Figure 2-9 The functional block diagram of commercial digital LIA [31] 

The speed, resolution and linearity of ADC and DAC are continuously improved, so the transformation 
of analog to digital is promoted. This development has helped to lift the frequency range, input noise 
and dynamic reserves to new limits. In addition, digital signal processing is less prone to errors due to 
s mismatches of signal paths, such as crosstalk and drift caused by temperature changes. Moreover, 
the biggest advantage of the digital approach may be that it can analyze signals in multiple ways 
simultaneously without losing SNR [31]. Compared with the commercial digital lock-in amplifier, the 
analog method shows in Figure 2-7 is outdated. The most of the lock-in amplifiers are implemented 
on DSP and microcontroller with DSP features at this moment. 
However, these kinds of commercial lock-in amplifier show high costs and weights, having very 
complex architectures [21], which means they can only measure and analyze in the lab. There is also 
another limitation for digital LIA, in order to avoid DC offset and maintain a stable sampling rate, the 
maximum frequency of operation is limited to half the sampling rate. 
For sensor applications, especially for capacitive gas sensors, a portable lock-in amplifier is needed, 
but most of them are designed for specific applications (e.g., motor and turbine fault control). In the 
literature, several implementations of analog LIA and digital LIA can be found. These LIAs have some 
characteristics, such as low power consumption, compact size, low price and lightweight but are 
mainly designed for low-frequency phase-sensitive detection with, typically, very high response times 
[18,32-35]. To overcome these limitations, a simple, portable, low-cost and analog LIA is proposed, which 
capable to measure amplitude variations of sinewave signals at frequency up to 10 MHz with response 
times of few milliseconds for fast and weak signal detection sensing applications, especially for the 
capacitive gas sensor. 
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2.5 Conclusion 
This chapter makes an in-depth study of the Background & Theoretical analysis of the lock-in amplifier. 
The theoretical models and techniques of correlation detection are analyzed in depth, including 
autocorrelation and cross-correlation. The cross-correlation method provides the basic theory for the 
lock-in amplifier. By testing two sinewave signals with 1KHz and 1.1KHz and output by the integrator, 
it can be seen that the detection effect is best when the frequency of the reference signal is equal to the 
frequency of the useful signal. Then, the important part of the lock-in amplifier such as signal channel, 
reference channel and the phase-sensitive detector are described, and the core device (PSD) of the 
lock-in amplifier is emphatically introduced. After comparing the characteristics of analog lock-in 
amplifier and digital lock-in amplifier as well as their current status, the basic requirement of the lock-
in amplifier for this design has been determined.  
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Chapter 3 
Hardware design and Simulation 
In this section, circuit-level design and analysis of the interface circuit will be presented. The design 
of the front-end circuit is divided into three parts: DDS, pre-amplifier and charge amplifier. This is 
followed by the design of the second-order amplifier. After that, the mixer and lowpass filter are shown 
in section 3.3. Finally, a summary of this chapter will be provided. 

3.1  Front-end design 
The front-end can be divided into several sub-sections: DDS, Pre-amplifier, capacitive sensor and 
charge amplifier. 
The whole structure of the front-end is shown in Figure 3-1. 

DDS

 
 Pre-
Amp

 
 Pre-
Amp

Cx

CRef

RX

RREF

Capacitive
Bridge

R1

C1

Vout

 
Figure 3-1 The structure of front-end  
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3.1.1 Direct digital synthesizer (DDS) 
In order to drive the capacitive sensor and provide the reference signal for lock-in amplifier, a signal 
generator is needed. After considering the accuracy and cost of the entire system, DDS is selected. 
Direct Digital Synthesis (DDS) is a mixed/analog-signal processing technique that uses a fixed-
frequency precision clock source as a reference to generate a frequency-tunable and phase-tunable 
output signal. In essence, by the scaling factor set forth in a programmable binary tuning word, the 
reference clock frequency is “divided down” in a DDS architecture. The tuning word is 24-48 bits long 
typically which allows a DDS implementation to provide a very high output frequency tuning 
resolution [1]. 
Simplest form of DDS is shown in Figure 3-2, it can be implemented from a frequency reference (often 
a crystal or SAW oscillator), a numerically controlled oscillator (NCO) and a digital-to-analog 
converter (DAC). 
In this case, the reference oscillator provides a stable time base for the system and determines the 
frequency accuracy of the DDS. It provides the clock for the NCO, then, NCO generates a discrete-
time, quantized version of the desired output waveform (mainly sinusoidal) at its output, and the digital 
word contained in the Frequency Control Register controls the period of the output waveform in the 
meantime. The DAC converts the sampled, digital waveform into an analog waveform. The output 
reconstruction filter rejects the spectral replicas produced by the zero-order hold inherent in the analog 
conversion progress [2]. 

Fclk

 
Figure 3-2 Simple block diagram of Direct Digital Synthesizer [2] 

As a DDS, AD9959 is a good choice, since it consists of four independent channels and provides 
independent frequency, phase, and amplitude control on each channel, which is very suitable for this 
design. Some other characteristics of the AD9959: 0.12 Hz frequency tuning resolution, 14-bit phase 
offset resolution, 10-bit output amplitude scaling resolution, 200MHz bandwidth. 
The serial I/O port of AD9959 provides an SPI-compatible mode of operation; this operation mode 
can be used to communicate with the microcontroller. The connection between STM32 and AD9959 
is shown in Figure 3-3. By means of these commands, the simple sine wave with adjustable amplitude, 
frequency and phase could be generated. The specific software part will be described in section 4.2.3. 
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Figure 3-3 Control Pins 

3.1.2 Pre-Amplifier 
After measuring AD9959 through the oscilloscope, the amplitude is 0.236V when the frequency is up 
to 10MHz, so a pre-amplifier is required to increase the drive capability of the input signal. At the 
same time, due to the limited input range (-1V to 1V) of the mixer (AD835), the gain of the pre-
amplifier can be set to 2-4V/V. 
3.1.2.1 Design of Pre-amplifier 
According to the above requirements, the gain is set to 2.4V/V, the bandwidth is 10MHz, a low-noise 
(For high resolution) is also needed. Finally, THS3001 is chosen as the pre-amplifier chip; it has a very 
fast slew rate (6500-V/µs), a 420-MHz bandwidth, and 40-ns settling time. In addition, it offers only 
3mV (max) input offset voltage and 1.6nV/√Hz when frequency is 10MHz and gain is 2. 
There are two ways for amplification: Non-inverting and Inverting. For non-inverting mode, it has a 
larger input impedance, but it does not have a virtual ground, which produces a large common-mode 
voltage. Thus, this way has weak anti-interference ability. For inverting mode, it has almost opposite 
cases. Also, in the inverting mode, there is no resistance from the non-inverting input to ground, but 
the non-inverting mode will certainly be driven from a source with a non-zero source resistance. This 
non-zero source resistance provides a path for the non-inverting input noise current and the source 
resistance also has an associated thermal noise, it causes the non-inverting configuration has two 
additional noise sources [4]. In reality, a stable amplifier is quite essential, so the inverting mode is 
could be better. 
The one channel of pre-amplifier is shown in Figure 3-4, through the above analysis, the default way 
is set to inverting mode, it can be changed into non-inverting mode by replacing some resistors, the 
gain of inverting mode can be written as: 

𝑉𝑉𝑜𝑜 = −
𝑉𝑉𝑉𝑉1
𝑅𝑅12

∗ 𝑉𝑉𝐼𝐼𝐼𝐼 (3 − 1) 

where VR1 is a variable resistor. By setting the value of VR1, it could be easy to get a suitable value. 



34 
 

 
Figure 3-4 Schematic of pre-amplifier 

3.1.2.2 Simulation 
Before the real circuit is realized, a simulation is necessary; there are lots of useful information from 
simulation, such as gain, bandwidth and noise. 
When gain is 2.4, the input signal is a sinewave signal with 10MHz frequency as well as 0.236V 
amplitude. The structure and some results show in Figure 3-5. The main characteristics of THS3011 with 
feedback network are simulated in Multisim and tabulated in Table 3-1.  

Table 3-1 Main characteristics of the pre-amplifier circuit 
Gain Input-referred noise 

[nV/√Hz] 
Output-referred noise 

[nV/√Hz] 
Input Offset 

[mV] 
Bandwidth 

[MHz] 
2.4 6.59@10M 15.65@10M 0.2 57.90 

When the impedance bridge is balanced, the output current is 0, according to the equation 1-10, the 
capacitance value can be obtained. However, due to the resolution limit of the input signal (10-bit 
amplitude), there are some remaining bits. Taking the 32pF reference capacitor as an example, the 
capacitance to be measured is 47 pF, and equation 1-10 can be simplified to: CX =-V2*CREF*cosϕ/V1, 
where V2 is 0.57V and ϕ is 180degree. At this point, it can be calculated that V1 is about 0.39V. In fact, 
V1 has only 10-bit in the system, so the remaining bits will generate a voltage of 0.27mV and step 
value is 0.23mV approximately. The output noise of the preamplifier is 49.49nV (15.65*√10, 10Hz is 
the bandwidth of the low-pass filter), which is much smaller than remaining voltage, so the noise of 
the preamplifier meets the requirements of the system. 

 
(a) Simulation test bench 
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(b) Noise of the pre-amplifier circuit 

 
(c) The gain in 10MHz and -3dB bandwidth (shows in -dB) 

Figure 3-5 Result of simulation 
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3.1.3 Capacitive sensor and charge amplifier 
As shown in Figure 3-6, after the input signal balances the capacitive sensor, a weak signal with 
specific information comes out (remaining bits of DDS, which is μV level), so an ultra-low noise 
charge amplifier is needed. Due to the properties of the dielectric materials, there is a parallel parasitic 
resistance (shunt resistance) as the loss term, typical values for this resistance are usually hundreds of 
kiloohms to hundreds of megaohms when the sensing capacitance is in the range of picofarads. 
According to equation 3-2 and 3-3, the parasitic resistance also affects the output signal accuracy of 
the sensor, in order to reduce this error and improve the accuracy of the system, a high-frequency (up 
to 10MHz) signal source is necessary (At higher frequencies, the impedance of the capacitive circuit 
becomes smaller, eliminating the effect of the resistive feedback path effectively). In order to bias the 
amplifier properly (offer a DC path for the input bias current of the amplifier) and prevent the output 
voltage from drifting over time until the op-amp saturates (due to the finite output offset voltage and 
the input bias current), a feedback resistor (RF) is required. 

𝑍𝑍𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅//𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ∗

1
𝑗𝑗𝑗𝑗𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 + 1
𝑗𝑗𝑗𝑗𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅

=
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

1 + 𝑠𝑠𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
(3 − 2) 

 

𝑍𝑍𝑋𝑋 =
𝑅𝑅𝑋𝑋

1 + 𝑠𝑠𝐶𝐶𝑋𝑋𝑅𝑅𝑋𝑋
(3 − 3) 

 

IREF

IxZX

ZREF

V1*sin(ω t)

V2*sin(ω t+ϕ )

RF

IIN

CF

 
Figure 3-6 Basic structure of the capacitive sensor and charge amplifier 

In order to calculate the capacitor and resistor value when the system become stable (output is equal 
to 0), the formula of Rx and Cx are needed. 
When IIN = 0, 

𝑉𝑉𝑋𝑋
𝑍𝑍𝑋𝑋

= −
𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅
𝑍𝑍𝑅𝑅𝑅𝑅𝑅𝑅

(3 − 4) 

Where Vx = V1*sin(ωt) and VREF = V2*sin(ωt+ϕ) = V2*(sin(ωt) cosϕ + cos(ωt) sinϕ). 
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Then, according to the Laplace transform, 

𝑉𝑉1 ∗
ω

(𝑠𝑠2 + 𝜔𝜔2)
𝑍𝑍𝑋𝑋

= −
𝑉𝑉2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∗

ω
(𝑠𝑠2 + 𝜔𝜔2) + 𝑉𝑉2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∗

s
(𝑠𝑠2 + 𝜔𝜔2)

𝑍𝑍𝑅𝑅𝑅𝑅𝑅𝑅
(3 − 5) 

Next, compute ZX, 

𝑍𝑍𝑋𝑋 = −
𝑉𝑉1𝜔𝜔

𝑉𝑉2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑉𝑉2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

1 + 𝑠𝑠𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
= −

𝑉𝑉1𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑉𝑉2𝜔𝜔(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝜔𝜔𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

1 + 𝑉𝑉2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜔𝜔𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝑉𝑉2𝜔𝜔(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝜔𝜔𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) 𝑠𝑠

(3 − 6) 

              =
𝑅𝑅𝑋𝑋

1 + 𝑠𝑠𝐶𝐶𝑋𝑋𝑅𝑅𝑋𝑋
  

So finally,  

𝑅𝑅𝑋𝑋 = −
𝑉𝑉1𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑉𝑉2

1
(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝜔𝜔𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

(3 − 7) 

𝐶𝐶𝑋𝑋 =

𝑉𝑉2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜔𝜔𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)
𝑉𝑉2𝜔𝜔(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝜔𝜔𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

𝑉𝑉1𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑉𝑉2𝜔𝜔(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝜔𝜔𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)

= −
𝑉𝑉2(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝜔𝜔𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑠𝑠𝜙𝜙)

𝑉𝑉1𝜔𝜔𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
(3 − 8) 

3.1.3.1 Noise analysis 
A brief theoretical noise analysis can be helpful before proceeding with the and design and the 
simulation, which can maximize the signal-to-noise ratio (SNR). Figure 3-7 shows the main noise 
sources in the charge amplifier [6]. The output noise density can be expressed as: 

𝑒𝑒𝑛𝑛𝑛𝑛 = �𝐼𝐼𝑁𝑁𝑁𝑁2 × (𝑍𝑍𝐹𝐹)2 + 𝑒𝑒𝐴𝐴2 × �1 +
𝑍𝑍𝐹𝐹

1 (𝐶𝐶𝐼𝐼𝐼𝐼 + 𝐶𝐶𝑃𝑃)𝑠𝑠⁄ �
2

+ 𝑒𝑒𝑅𝑅𝑅𝑅2 × �
1

1 + 𝑅𝑅𝐹𝐹𝐶𝐶𝐹𝐹𝑠𝑠
�
2

(3 − 9) 

𝑍𝑍𝐹𝐹 =
𝑅𝑅𝐹𝐹

1 + 𝑅𝑅𝐹𝐹𝐶𝐶𝐹𝐹𝑠𝑠
(3 − 10) 

where s = j× 2πf, CIN is the sensing capacitance and CP is the input parasitic capacitance of the 
amplifier. 
If CP can be ignored, the second term will be reduced even further if frequencies well above the high-
pass filter’s pole are considered [6]. So, equation 3-9 can be simplified to: 

𝑒𝑒𝑛𝑛𝑛𝑛 = �𝐼𝐼𝑁𝑁𝑁𝑁2 × �
𝑅𝑅𝐹𝐹

1 + 𝑅𝑅𝐹𝐹𝐶𝐶𝐹𝐹𝑠𝑠
�
2

+ 𝑒𝑒𝐴𝐴2 × �1 +
𝐶𝐶𝐼𝐼𝐼𝐼
𝐶𝐶𝐹𝐹
�
2

+ 𝑒𝑒𝑅𝑅𝑅𝑅2 × �
1

1 + 𝑅𝑅𝐹𝐹𝐶𝐶𝐹𝐹𝑠𝑠
�
2

(3 − 11) 

For further analysis, the pole (the term 1+RFCFs) can be considered constant when the CF capacitance 
value is decreased and at the same time the RF resistance value is increased. From equation 3-11, it can 
be seen that all three terms would increase when RF increases. The voltage noise corresponding to the 
first term would increase; the voltage noise related to the op-amp (the second term of the equation) 
would increase linearly with RF; and the voltage noise related to the feedback resistance (the third term) 
would also increase. Following the thermal noise of the resistance, expressed as eRF = √4KTRF, where 
K is the Boltzmann’s constant, 1.38*10-23JK-1, and T is the temperature in K. Simultaneously, the 
gain(-CIN/CF) of charge amplifier would increase with RF as CF becomes smaller. This increase of 
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signal with RF will be similar to any increase of the first two noise terms in equation 4-13, but bigger 
than the increase of the third noise term, therefore improving the overall SNR [6]. Another thing to 
notice that the RF resistance value cannot be increased without limit, because high resistance values 
are extremely difficult to implement on a PCB. Also, the RF combined with the input bias current (Iib) 
of the amplifier generates a non-negligible output DC offset of the amplifier. Furthermore, from the 
noise point of view, a sensor with more parasitic capacitance is less desirable. 

ISensor
CP INA

eA

CF

RF

eRF

CIN

Amplifier ModelSensor Model

VOUT

─ 

+

 
Figure 3-7 Noise sources of the charge amplifier 

Based on the above analysis, LTC6268-10 is a good choice. It is a single 4GHz FET- input operational 
amplifier with extremely low input bias current (±3fA) and low input capacitance (0.45pF). It has an 
ultra-low input-referred current noise (7fA/√Hz@100KHz) and voltage noise(4.0nV/√Hz@1MHz) 
making it an ideal choice for high-impedance sensor amplifiers. It is also a decompensated op amp 
that is gain-of-10 stable [7]. According to the equation 3-11 and the example in section 3.1.2.2, it is 
possible to calculate the output noise and the input-referred noise of the charge amplifier when T, RF 
and CF are 298 in K, 250MΩ and 5pF respectively, eno is equal to 67.20nV/√Hz and eni is equal to 
4.25nV/√Hz. So, input-referred noise is 13.44nV (4.25 * √10, 10Hz is the bandwidth of the low-pass 
filter), compared to the remaining voltage in section 3.1.2.2, which is much smaller than remaining 
voltage, so the noise of the charge amplifier meets the requirements of the system. 
If parasitic resistance is considered, then equation 3-9 can be expressed as: 

𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛 =

⎷
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𝑍𝑍𝐹𝐹
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�
2 (3 − 12) 

𝑍𝑍𝐼𝐼𝐼𝐼 =
𝑅𝑅𝐼𝐼𝐼𝐼

1 + 𝑅𝑅𝐼𝐼𝐼𝐼𝐶𝐶𝐼𝐼𝐼𝐼𝑠𝑠
(3 − 13) 

where RIN is a parasitic resistance in parallel with the sensing capacitor. 
Because RIN is a MΩ level so that equation 3-12 can be simplified to: 
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𝑒𝑒𝑛𝑛𝑛𝑛𝑛𝑛 =
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2 (3 − 14) 

Do the same calculations as above, the output-referred noise and input-referred noise density with 
different parasitic resistance values(enop) are tabulated in Table 3-2. 

Table 3-2 Input/output referred noise with different RIN 
         RIN 

 

Noise density 

 
1MΩ 

 
3.3MΩ 

Input-referred noise 4.25 nV/√Hz 4.25 nV/√Hz 
output-referred noise 67.201 nV/√Hz 67.200 nV/√Hz 

As we can see from Table 3-2, the noise provided by the parasitic resistance is very small compared to 
when there is no parasitic resistance, and the larger the parasitic resistance, the less noise, but these 
differences are entirely negligible. 
3.1.3.2 Charge amplifier based on LTC6268-10 
The schematic of the LTC6268-10 circuit is shown in Figure 3-8, it operates on ±2.5V supply and 
works at inverting configuration. When setting the value of the feedback resistor, the trade-off between 
bandwidth and DC offset must be made, according to the input bias current, input offset, signal 
frequency and capacitor value of the sensor, RF and CF are 250MΩ and 5pF respectively. 
In this design, in order to reduce the interference of the external environment, the metallic shield is 
used. Meanwhile, it is also possible to protect high-impedance nodes in the circuit from surface leakage 
currents by using an active guard ring (The guard ring is a ring of copper driven by a low-impedance 
source and has the same voltage as the high impedance node. It is usually input pin of the amplifier) 
on PCB. 

 
Figure 3-8 Schematic of the LTC6268-10 

3.1.3.3 Simulation 
As shown in Figure 3-9 (a), the basic simulation structure is built in LTspice, it has sinewave input 
with 10MHz frequency and 0.236V amplitude, R2 (RF) and C3 (CF) are 250MΩ and 5pF respectively, 
C1 is regarded as a capacitive sensor with 20pF due to the real capacitive sensor. 
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From Figure 3-9 (b) and (c), the gain is 12.04dB (4V/V) and the input/output referred noise density is 
5.15nV/√Hz and 20.61nV/√Hz respectively at 10MHz. According to the above analysis, this 
simulation meets the requirements of the charge amplifier. 

  
(a) Simulation test bench 

 
(b) Gain @10MHz  

 
(c) Input/output referred noise density 
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Figure 3-9 Result of simulation 
Furthermore, in order to verify the noise and parasitic resistance analysis in section 3.1.3.2, the same 
structure was built in the simulation (Figure 3-10), and the results are shown in Table 3-3. 

 
Figure 3-10 Simulation test bench with an impedance bridge 

It can be seen that these simulation results are closed to the calculation in section 3.1.3.2, gain 
@10MHz meets the requirement also. However, there are many ideal components in the simulation; 
the actual circuit still needs to be verified by measuring these characteristics. 

Table 3-3 Charge amplifier performance with impedance bridge in simulation 
Characteristics Without RIN RIN =3.3MΩ 

Gain 9.54dB (3V/V) 9.54dB (3V/V) 
Input-referred noise density 4.29 nV/√Hz 4.29nV/√Hz 
output-referred noise density 67.84nV/√Hz 67.84nV/√Hz 

3.2 Second amplifier 
Due to the bandwidth limitation of the charge amplifier, the balanced output is still weak (μV level), 
in order to provide enough amplitude (mV) for the further stage, the high gain amplifier (20V/V) with 
large GBP is required.  

3.2.1 High-gain amplifier 
According to the above request, OPA846 is suitable for this design; it has a low input noise voltage 
(1.2nV/√Hz ), a high gain-bandwidth product (1.75GHz) and a large CMRR (110dB). It is also 
optimized for a flat frequency response at a gain of +10V/V and is stable down to gains as low as 
+7V/V. 



42 
 

 
Figure 3-11 Structure of the Second amplifier 

 
The design way is shown in Figure 3-11, there are two pins connect with non-inverting input and 
inverting input respectively, which provide an easy way to choose the different mode for input. In the 
schematic design, taking into account the DC offset at output result, a capacitor is usually applied at 
the output of the op-amp (10nF is suitable for 10MHz frequency). 

3.2.2 Simulation 
For high gain amplifier in section 3.2.1, the basic simulation circuit is shown in Figure 3-12, it has 
sinewave input with 10MHz frequency, 0.05V amplitude and 20V/V (About 26.02dB) gain, works in 
inverting mode. It can be seen that the gain is 26.02dB @10MHz, the -3dB bandwidth is 211MHz and 
the input voltage noise density is 1.53nV/√Hz at 10MHz, which meet the requirement of the high-gain 
amplifier. 

 
(a) Simulation test bench 
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(b) Noise analysis 

 

(c) AC sweep 
Figure 3-12 Simulation result 

3.3 Phase-sensitive detector and low-pass filter 
Since the signal works at high frequency, MCU cannot collect it directly, phase sensitive detector and 
low-pass filter can bring their real effect here. The schematic of PSD and LPF are shown in Figure 3-
13. 
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Figure 3-13 Circuit design of PSD and LPF 

3.3.1 Mixer (PSD) 
Analog multiplier can work as a mixer easily, which has more simple circuit structure than chopper at 
high frequency (10MHz or even higher).  
The suitable analog multiplier for this design is AD835, and it is a complete four-quadrant, voltage 
output analog multiplier. The linear product of its X and Y voltage inputs can be generated with a −3 
dB output bandwidth of 250MHz. The slew rate is 1000 V/us and it costs 20 ns for the settling time to 
0.1% typically. However, it has a large output offset (up to ±75mV), this offset is eliminated by 
software in this design (see Chapter 4 for details.). 
The on-resistance (RON), charge injection and leakage current are main parameters of the analog 
switch should be considered for the chopper. In theory, they should be as small as possible. The low 
RON reduces the input signal losses and minimizing RON and the parasitic capacitor can also improve 
the linearity of RON versus VIN over temperature and voltages. The small charge injection can 
decrease output voltage change by ±ΔVOUT (a few millivolts). The low leakage current and a high 
on-off current ratio (This ratio describes the ability of a device to switch from the on state to the off-
state) provide more accuracy VOUT and almost ideal floating ±1 switch. 
After consideration of transition time (turn-on and turn-off time should be less because of the high 
frequency), there are some suitable switches, such as ADG711, 74HC4066 and TS3A4751. The first 
reason is transition time, for 10MHz sinewave signal, one cycle needs 100ns, but transition time of 
most of the switches are longer than 10ns, it can cause signal distortion. The other main reason is the 
power supply, most of the switches with a small transition time are the single power supply, some of 
them are smaller than 5V, if these kinds of switches are used in this design, the circuit would be more 
complicated. 
In conclusion, AD835 can be the best choice as a multiplexer. 

3.3.2 Lowpass filter 
In this part, it has two different lowpass filter, which provides the final output signal (DC signal). The 
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first is 2 cascaded 2nd order Sallen-Key lowpass filter (OPA2227), which can be built by cascading two 
building blocks made of the second-order low-pass filter. Its topology is shown in Figure 3-14. 

Input R1 R2 C1

C2

R3

R4 C3

C4

─ 

+

─ 

+

Vout

 

Figure 3-14 2 cascaded 2nd-order Sallen-Key topology 
The transfer function H(s) and its cut-off frequency fc are expressed as: 

𝐻𝐻(𝑠𝑠) =
1

1 + 𝐶𝐶1(𝑅𝑅1 + 𝑅𝑅2)𝑠𝑠 + 𝐶𝐶1𝐶𝐶2𝑅𝑅1𝑅𝑅2𝑠𝑠2
×

1
1 + 𝐶𝐶3(𝑅𝑅3 + 𝑅𝑅4)𝑠𝑠 + 𝐶𝐶3𝐶𝐶4𝑅𝑅3𝑅𝑅4𝑠𝑠2

(3 − 14) 

𝑓𝑓𝑐𝑐1 =
1

2𝜋𝜋�𝐶𝐶1𝐶𝐶2𝑅𝑅1𝑅𝑅2
 𝑎𝑎𝑎𝑎𝑎𝑎 𝑓𝑓𝑐𝑐2 =

1
2𝜋𝜋�𝐶𝐶3𝐶𝐶4𝑅𝑅3𝑅𝑅4

(3 − 15) 

Because the output is DC signal, fc1 and fc2 can be 10Hz (it can also filter the frequency of the network 
50 Hz from the power supply), which can filter high-frequency signal from the mixer. The values of the 
resistors and capacitors are chosen by software from TI shows in Figure 3-13. 
The other one is Butterworth 4th order low-pass switched-capacitor filter (TLC04), which can adjust 
the cut-off frequency by a potentiometer, the Clock to the cutoff-frequency ratio (fclock/fco) is 50.07 and 
the formula of fclock is 1/1.69*RC. 

3.3.3 Simulation 
For 2 cascaded 2nd order Sallen-Key lowpass filter, it is input parameters are set as a sinewave with 
20MHz frequency, 1V amplitude and 0.5V DC offset. Simulation circuit and results show in Figure 3-
15, where the gain is 1V/V, -3dB bandwidth is 9.95Hz. 

 
(a) Simulation circuit 
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(b) -3dB bandwidth and gain in 20MHz frequency 

Figure 3-15 Simulation circuit and results of the lowpass filter 

3.4 MCU and its subsidiary system 
This part consists of a 24-bit ADC (ADS1256), a 32-bit flash microcontroller (STM32F103RB) and 
some chips for connection. The specific control method will be shown in section 4.2. The topology of 
this part is shown in Figure 3-19. 

3.4.1 MCU 
There are many factors to consider when choosing an MCU, for example, the speed of data processing, 
price cost, and internal resources. 
So, there are three aspects to take into account when choosing an MCU: 
(1). The role of MCU in the entire design and the complexity of the task: In this design, MCU is mainly 
responsible for AD9959 control, signal acquisition, signal data processing and communication with 
PC. 
(2). Simplify the design of the entire system: The more integrated functional unit of MCU, the better. 
In this case, not only simplifies the system design but also increase the reliability of the system. 
(3). System production costs: Replacement cost should be low, which can reduce the cost of MCU and 
system. 
Based on the above four factors, STM32F103RB is chosen, which is the first 32-bit RISC (Reduced 
Instruction Set) processor based on the ARM®Cortex®-M3 architecture, which provides high code 
efficiency and shows the high performance of the ARM core on storage of typically 8- and 16-bit 
systems. This series microprocessor operating frequency is 72MHz, and the built-in Flash memory up 
to 128Kbytes. The chip has many advantages, rich internal resources, its excellent performance as 
shown in Table 3-4: 
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Table 3-4 STM32F103RB characteristic 
7-channel DMA controller Low-power (2.0-3.6V) 

2 x 12-bit, 1 μs A/D converters (up to 16 
channels) 

Up to 51 fast I/O ports 

Seven timers Up to 2 SPIs (18 Mbit/s) 
20 Kbytes of SRAM Up to 3 USARTs 

3.4.2 ADC 
After the low-pass filter, continuous DC signals are generated, by using the analog-to-digital converter 
to collect and transmit them to MCU for processing. 
There are generally two options for ADC: an integrated analog-to-digital converter in the 
microcontroller and an external analog-to-digital converter, which depend on the accuracy of the 
system. In order to obtain an accurate output, external high-precision ADC is used. According to the 
system performance requirements (10-bit amplitude and 14-bit phase resolution), considering the 
technical information provided, price and other factors, this design uses the ADS1256 as ADC of the 
circuit. 
The ADS1256 is a high-speed, low-noise, 24-bit ADC that provides a complete high-resolution 
measurement solution for analog signal. Its data rate of up to 30kSPS, the analog signal input voltage 
is 0-5V, and the digital signal output voltage is 1.8V to 3.6V. Standard operating mode power 
consumption is only 38mW [8]. Communication is handled over an SPI-compatible serial interface. 
As shown in Figure 3-16, the whole structure of the ADC circuit is presented. Because this chip does 
not have an internal reference, the external voltage reference (REF3225) is needed, which provides a 
2.5V with 0.01% error and very low-temperature drift. 

 
Figure 3-16 Schematic of ADC 

Because the software portion of the analog-to-digital converter has not been debugged, the 16-bit ADC 
in the data acquisition box (DAQ, NI6363) is used to collect the data.  

3.4.3 Remaining circuits 
There are also some parts show in Figure 3-19, the USB interface provides 5V from PC and the voltage 
supply circuit generates 3.3V for MCU, serial communication module (MAX3232 and serial port 
interface), JTAG interface and AD9959 interface are used as a communication interface with PC or 
chips. 
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3.5 Overall noise analysis 
For further stage, in order to determine which part is the main noise source, noise analysis of the entire 
system is still needed. The noise model of the whole system is shown in Figure 3-17, where the 
reference capacitance is 32pF and the unknown capacitance is 47pF. 
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Figure 3-17 The noise model of the entire system 

For DDS, its noise sources are mainly composed of truncation error, phase noise, quantization noise 
and harmonic noise [9]. The truncation error is generated by the truncation of the phase register, the 
phase noise is generated by the reference clock jitter, the quantization noise and harmonic noise are 
caused by the resolution and nonlinearity of the DAC (core part of DDS). The output noise is mainly 
caused by the quantization noise, it produces some remaining bits (voltage) for the self-balanced bridge; 
however, this noise is eliminated in the software by interpolation method, which increases the 
resolution of the system. For specific value of the remaining noise sources, they can be measured with 
the spectrum analyzer. 
Moreover, the amplitude and phase noise from both DDS channels are subtracted in the bridge circuit 
as shown in the figure below. 
For the uncorrelated noise the output noise of the charge amplifier can be written as: 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜2����� =
𝐶𝐶𝐹𝐹2

𝐶𝐶𝑥𝑥2
𝑉𝑉𝑛𝑛1𝑢𝑢2������ +

𝐶𝐶𝐹𝐹2

𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟2
𝑉𝑉𝑛𝑛2𝑢𝑢2������ (3 − 16) 

Since both channels are derived from the same DDS RF signal some correlation between the channels 
is expected. Since both channels are in opposite phase the noise will be reduced the correlated noise 
sources can be subtracted written as: 

�𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜2����� =
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𝐶𝐶𝐹𝐹
𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟

�𝑉𝑉𝑛𝑛2𝑐𝑐2������ (3 − 17) 
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Figure 3-18 Simplified schematic for noise analysis from the DDS. 
For pre-amplifier, there are six separate noise sources: the thermal noise of the 3 resistances (en,R1, en,R2 
and en,R3), the current noise in each input of amplifier (IN+ and IN-) and the amplifier internal voltage 
noise (en). Assuming each noise is uncorrelated, the total equivalent input noise density (eni) is 
calculated by using the following equation: 

𝑒𝑒𝑛𝑛𝑛𝑛 = �(𝑒𝑒𝑛𝑛)2 + (𝐼𝐼𝑁𝑁+ × 𝑅𝑅3)2 + (𝐼𝐼𝑁𝑁− × (𝑅𝑅1||𝑅𝑅2))2 + 4𝑘𝑘𝑘𝑘𝑅𝑅3 + 4𝑘𝑘𝑘𝑘(𝑅𝑅1||𝑅𝑅2) (3 − 18) 

Where k is Boltzmann’s constant = 1.380658 × 10−23, T is Temperature in degrees Kelvin, R1 || R2 is 
parallel resistance of R1 and R2, 4kT*(R1 || R2) is equal to 4kTR1*(R1 || R2)2 plus 4kTR2*(R1 || R2)2. 
To obtain the equivalent output noise density of the op amp, just multiply eni by the amplifier gain. 

𝑒𝑒𝑛𝑛𝑛𝑛 = 𝑒𝑒𝑛𝑛𝑛𝑛𝐴𝐴𝑣𝑣 = 𝑒𝑒𝑛𝑛𝑛𝑛 �
𝑅𝑅2
𝑅𝑅1
� (3 − 19) 

Where Av is the amplifier gain in inverting mode. 
According to the datasheet of THS3001, the equivalent output noise density of pre-amplifier is 
12.0nV/√Hz. 
For charge amplifier, the specific analysis has been introduced in section 3.1.3, the equivalent output 
noise density of charge amplifier is 67.2nV/√Hz. 
For high-gain amplifier, it has the same structure as the pre-amplifier, so the equivalent output noise 
density of high-gain amplifier can be easily calculated with the datasheet of OPA846, which is 31.49 
nV/√Hz. 
For mixer (AD835), noise sources consist of the product noise, phase noise and low frequency drift. 
The product noise can be regarded as the main noise source, which is 50nV/√Hz. 
Except the noise sources of the DDS, the above output noise density can be put together to calculate 
the overall output noise density, it can be expressed as: 

12.0 × 𝑁𝑁𝑁𝑁𝐶𝐶 × 𝑁𝑁𝑁𝑁𝐻𝐻 × 𝑁𝑁𝑁𝑁𝑀𝑀 + 67.2 × 𝑁𝑁𝑁𝑁𝐻𝐻 × 𝑁𝑁𝑁𝑁𝑀𝑀 + 31.5 × 𝑁𝑁𝑁𝑁𝑀𝑀 + 12.0 × 𝑁𝑁𝑁𝑁𝑀𝑀 + 50 (3 − 18) 
where NGC is the noise gain (15.8V/V) of the charge amplifier, NGH is the noise gain (20V/V) of the 
high-gain amplifier and NGM is the noise gain (1V/V) of the mixer. 
So, the overall output noise density is 5229.5nV/√Hz, and output noise is 16.5μV (5229.5 * √10, 10Hz 
is the bandwidth of the low-pass filter). 
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Also, as can be seen from the data sheet of the DAQ, the random noise is 17μV when the full scale of 
analog input is 100mV. Finally, the output noise of the whole system (without DDS) is 33.5μV, where 
the noise of the ADC (17μV) and the noise of the pre-amplifier (12μV) are the main noise sources, and 
refer the output noise back into the input of the charge amplifier, the equivalent input-referred noise of 
the entire system can be obtained, which is 0.11μV.  
According to the previous analysis in section 3.1.2, the step value of input signal at charge amplifier 
stage is 553.13μV, then based on the equation 1-11, the equivalent capacitance change (without the 
equivalent noise from the DDS) at input of charge amplifier is 6.2aF. 

3.6 Conclusion 
In this chapter, the circuit-level analysis, design and simulation of the lock-in amplifier are introduced. In 
the front-end circuit design, principle and communication structure of DDS are discussed, then noise 
analysis, circuit structure and simulation of pre-amplifier and charge amplifier are presented. For a second-
order amplifier, it is a high-gain amplifier, the main function of this amplifier is amplified the weak signal 
for the further stage with a high gain. Furthermore, a comparison between mixer and chopper is presented, 
mixer is chosen as PSD device; there are two low-pass filters: 4th order sallen-key low-pass filter with fixed 
cut-off frequency and Butterworth 4th order low-pass switched-capacitor filter with changeable cut-off 
frequency, which can help ADC obtain an excellent DC signal, the simulation of mixer and low-pass filters 
are given also. After that, the noise analysis of the whole system is given. Finally, the MCU design with 
ADC and some interface have been briefly introduced. The detailed connection between each hardware is 
described in Appendix I. 
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Figure 3-19 Schematic of Master control board 
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Chapter 4 
Software design 
In this chapter, the software design of lock-in amplifier is presented. The flow chart of system design is 
given at first. Then, the modular programming is divided into six parts: Initialization, interrupt DDS 
interface, A/D interface, D/A interface and MATLAB GUI. Finally, a summary of this section will be 
provided. 

4.1 System software design 
The work of the lock-in amplifier not only requires the normal operation of the hardware circuit, but 
also the design of the system software directly affects the final performance of the lock-in amplifier. 
In this paper, the Keil5.0 software as a main software development platform of the microcontroller 
(STM32), all of the system control parts of the program are completed on this development platform, 
which is simple and easy to complete the ARM system software development. Then the data is sent, 
collected and processed through the host computer (MATLAB GUI). The overall design flow chart for 
the lower computer (STM32) is shown in Figure 5-1. 
The working process of the main program software is: After the initialization of the system program, 
waiting for the command word generation, then select the module according to different control words. 
For example, if the AD9959 is selected, its system frequency and VCO status can be set at first, and 
then frequency, amplitude, and phase of each channel can be adjusted by MATLAB GUI. 
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Figure 4-1 Overall software flow chart of the system 

4.2 Modular programming 
For the complex program, separating program modules are easier to write and handle.  

4.2.1 Initialization module 
The initialization process is mainly a set of the initial state of the entire software, including pin 
configuration and initialization of the relevant GPIO port, the system clock initialization, serial port 
initialization, DDS initialization, A/D initialization, interrupt program initialization and so on. The 
process of initializing the program is correct or not directly related to the correctness of the next 
functional program. 

4.2.2 Interrupt module 
For this system, serial port transfers data from MATLAB to MCU, so USART interrupt is needed, by 
writing a receive interrupt program in specific interrupt function (USART1_IRQHandler) with a 
specific data format ('&' '@' 'channel number' '@' 'frequency' '*' 'phase' '*' 'amplitude' '#'), when 
MATLAB send any data, MCU will pause the current work and enter the interrupt program, then 
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process the data transferred by MATLAB and complete the corresponding instructions according to 
the specific data format, after MCU finishes the work from an interrupt program, it will continue to 
complete previous work. 

4.2.3 A/D interface module 
The driving process of A/D converter mainly depends on STM32 SPI (Serial Peripheral Interface) 
interface, it is a synchronous, full duplex serial interface, there are two completely independent SPI 
controllers, the maximum data transfer rate is 1/8 of the clock rate, which can be configured as master 
or slave according to the direction of data transfer. The SPI interface timing diagram is shown in Figure 
4-2, where CPOL is the polarity of the clock signal SS is the slave select and CPHA is the clock phase. 
For example, if CPOL=0, the base value of the clock is zero. For CPHA=0, data are captured on the 
clock’s rising edge and data are propagated on a falling edge. 

 
Figure 4-2 SPI timing diagram 

In the preparation of the driver ADC, it requires a combination of the chip operation timing and the 
SPI operation timing of MCU to complete. The main work process is as follows: connect the pin to the 
corresponding SPI interface and initialize it, then set the master (STM32) and slave (ADS1256), write 
a function to send and receive one byte of data through the SPI and call that function in the main 
function of AD sampling. When making a call, the chip select is required firstly, then send the 
appropriate SPI commands to set the register to complete the appropriate function, and finally, start 
the AD sampling process.  

4.2.4 DDS interface module 
Similar to ADC, AD9959 register configuration is written through the SPI port, including channel 
selection, channel control, frequency control word, phase control word, and the amplitude control word, 
after writing these control words, a rising edge of UPDATE is given to make AD9959 work and get 
the output signal. 
The four channels of the AD9959 share a single set of register addresses. This address sharing 
mechanism allows them to write the same data to all configuration registers of four channels 
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simultaneously. When it is necessary to set four channels differently, the data for each channel can be 
written independently by setting the channel to enable bits. 
So, the main work process is:  
1) Send a DDS reset signal, so that the internal registers of AD9959 could be the initial state.  
2) Set system frequency (reference frequency times PLL multiplication factor from 4 to 20) as 500MHz. 
3) Channel 0 enable bit is set, all other channels enable bits are set to 0.  
4) The serial I/O port is used to send the frequency control word, phase control word and amplitude 
word required by channel 0.  
5) The channel 1 enable bit set to 1, and other channels enable bits are set to 0.  
6) The serial I/O port is used to send the frequency control word, phase control word and amplitude 
word required by channel.  
7) Similarly, send channel 2 and channel 3 frequency control word, phase control word, and amplitude 
word.  
8) Send I/O UPDATE signal, enable AD9959 output. 

4.2.5 MATLAB GUI 
There are many ways to receive data on PC. VC ++ should be typical but considering that MATLAB 
is more suitable for signal processing, MATLAB serial communication is used. For MCU, the work of 
STM32 includes clock, interrupt, IO port, serial port, AD, DA and DDS initialization, then start the 
conversion and send data to serial port. It is important to note that when sends two consecutive data to 
the serial port (such as high 8bits and low 8bits of 16-bit data), the transmission completion flag (TC) 
cannot be queried when the first data is completely sent. When checking the transmission completion 
flag, the second data will overwrite the first one. The solution is to check the flag of the transmit data 
register empty (TXE). 
When using MATLAB to receive serial data, serial port objects (includes the baud rate, stop bits, parity 
way, input and output buffer size) need to create and initialize, then open the serial port, call the 
callback function when a specific serial communication event occurs and close the serial port in the 
main function at last. 
The main work process is shown in Figure 4-3, which aims at calculating the capacitor value of sensors, 
it has five steps: 
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Figure 4-3 Flow chart of MATLAB GUI 

Step 1. Receive OUTPUT data, preprocess the data with smooth and average function in MATLAB. 
Step 2. Plot the output data in the coordinate system in real time and determines whether the output 
data satisfies -1mV ≤ output data ≤ 1mV (in order to judge the system is stable or not). If the system 
is stable, using the following formula to calculate Step Value (Changes of output when input changes 
1bit), Capacitor Value (using the interpolation way) and Resistor Value, then display their value in the 
GUI interface (Cx is shown as C and Rx is shown as R in Figure 4-4), otherwise go to Step 3. 

𝐶𝐶𝑥𝑥 = −
𝐶𝐶𝐶𝐶0𝐴𝐴𝐴𝐴𝐴𝐴
𝐶𝐶𝐶𝐶2𝐴𝐴𝐴𝐴𝐴𝐴

× 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝐶𝐶2) − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝐶𝐶0)] (4 − 1) 

                                             −
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
×

1
1024

× 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =
(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝐶𝐶𝐶𝐶2𝐴𝐴𝐴𝐴𝐴𝐴 + 4) − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝐶𝐶𝐶𝐶2𝐴𝐴𝐴𝐴𝐴𝐴 + 1))

3
(4 − 2) 
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𝑅𝑅𝑥𝑥 =
𝐶𝐶𝐶𝐶0𝐴𝐴𝐴𝐴𝐴𝐴
𝐶𝐶𝐶𝐶2𝐴𝐴𝐴𝐴𝐴𝐴

×
1

2 × 𝜋𝜋 × 𝑓𝑓 × 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑠𝑠𝑠𝑠𝑠𝑠[𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝐶𝐶2) − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝐶𝐶0)]
(4 − 3) 

Where CH0Amp and CH2Amp are amplitudes of channel 0 and channel 2 of DDS respectively, CREF 
is the reference capacitor, CREF *(output/step value)/1024 is interpolated to achieve the required very 
high resolution of capacitor value. 
Step 3. If the output data is bigger than 1mV, set CH2Amp = CH2Amp – 1 then save CH2Amp value, 
calculate Capacitor Value with the following formula and show it in the GUI interface (Cx is shown as 
Cfix in Figure 4-4), otherwise enter Step 4. 

𝐶𝐶𝑥𝑥 = −
𝐶𝐶𝐶𝐶0𝐴𝐴𝐴𝐴𝐴𝐴
𝐶𝐶𝐶𝐶2𝐴𝐴𝐴𝐴𝐴𝐴

× 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 × 𝑐𝑐𝑐𝑐𝑐𝑐[𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝐶𝐶2) − 𝑝𝑝ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝐶𝐶𝐶𝐶0)] (4 − 4) 

 
Step 4. If the output data is smaller than -1mV, set CH2Amp = CH2Amp + 1 and do the same thing as 
Step 3. 
Step 5. Repeat the above steps in the Timer. 
As shown in Figure 4-4, the MATLAB GUI is presented, which consists of 6 parts: Communication, 
Work clock, Channel, OUTPUT, Step Value and Impedance Value. Communication part has the 
selection of cluster communication port (COM), the baud rate, open and close serial port; reference 
clock, PLL and VCO of DDS are included in work clock part, which can set system frequency; 4 
channels of DDS with frequency-tunable, phase-tunable and amplitude-tunable are shown in Channel 
part; data of the lock-in amplifier output sends to OUTPUT part; and Step Value part shows the 1 bit 
output value in real-time, which is ready for calculation of interpolation; final values of capacitor and 
resistor is shown in Impedance part.  
Click the Open button to connect STM32, then click Load CH0, Load CH1, Load CH2 and Load CH3 
to send information of frequency, phase and amplitude to STM32 and AD9959 respectively, after Start 
button, data processing program is working and Impedance value can be obtained from GUI. 

 
Figure 4-4 Structure of MATLAB GUI 
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4.3 Conclusion 
In this chapter, the whole structure of the program is presented, a flow chart of the overall software 
system is shown at first, then it is divided into six sections: initialization, interrupt, A/D interface, DDS 
and MATLAB GUI. Each section has a briefly introduce with working principle, a basic idea and 
operation of MATLAB GUI are introduced as well. 
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Chapter 5 
Measurement Results 
In this chapter, measurement results of the whole system are presented. The measurement setup, 
including all PCBs, power and measurement equipment are presented first. Then, a hardware test has 
been done for each part and the characteristics of them are shown. After that, the measurement results 
obtained using both AH2700 and the realized system are presented. Finally, a summary of this chapter 
is provided. 

5.1 Measurement Setup 
In order to start measurement, building the measurement setup is necessary. An overview of the 
equipment setup is depicted in Figure 5-1. 

STM32
and
DDS

Charge 
amplifier

Second-order 
amplifier

PSD and low-
pass filter

ADC
(DAQ)Computer

Provide 5V power supply by 
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analysis
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Pre-
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Figure 5-1 Overview of the measurement equipment setup 
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In this measurement, some equipment has been used: 
1. Power Supply 
It provides ±5V and Ground (GND) for pre-amplifier, Second-order amplifier, PSD and low-pass filter, 
±2.5V and Ground (GND) for charge amplifier as well. 
2. Spectrum/Network Analyzer 
The Spectrum/Network analyzer measures both amplitude and phase properties, which can provide 
useful information about transfer function, gain, -3dB frequency and phase margin of each amplifier. 
It can also detect the magnitude of an input signal versus frequency within the full frequency range of 
the instrument [1], which can check the output signal of the mixer. 
3. Metal box 
A metal box is used for shielding of the PCB during measurement, in order to eliminate the external 
environment interference. 
4. STM32 (MCU) and DDS 
The MCU provides the control signal for DDS, and DDS can generate a sine wave signal to drive the 
whole hardware system. 
5. Data acquisition board (DAQ) 
The data acquisition board reads out the results from the hardware (the final output signal comes out 
from the low-pass filter) and transfers them to the PC as feedback. 
6. PC 
The PC controls the DAQ and processes the measurement results to calculate the capacitor and resistor 
values. 
A photo including all the measurement equipment is shown in Figure 6-2 and Figure 6-3. 

 
Figure 5-2 A photo of the measurement equipment. 1: MCU and DDS; 2: pre-amplifier; 3: capacitor 

bridge and charge amplifier in a metal box; 4: second-order amplifier in a metal box; 5: PSD and 
LPF in a metal box; 6: data acquisition board; 7: power supply. 
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Equipment number 1 to 7 is used for the closed loop impedance measurement (in Figure 5-2), which 
form a complete detect system; while network analyzer is applied for the spectrum measurement and 
AC analysis (gain and phase) (section 5.2). 

5.2 Hardware Test 
Four circuits need to be tested: pre-amplifier, charge amplifier, low-noise amplifier, and mixer. 
As shown in Figure 5-3, it is the analysis of pre-amplifier, because of the power splitter, this signal has 
some loss. When the frequency is 10MHz, input resistor is 1K Ohm and feedback resistor is 2.4K Ohm, 
the ideal gain can be calculated, which is 7.60dB, the real gain can be obtained from Figure 5-3(a) is 
7.27dB. Also, the cut-off frequency is about 34.69MHz. Because there is a 10nF input capacitor, it has 
some attenuation at low frequencies. Compared with the simulation results, due to the ideal 
components in simulation software, the loss and some tolerance from resistors in a real situation, this 
gain and cut-off frequency are reasonable. 

 
(a) Gain @10MHz 

 
(d) -3dB bandwidth 

Figure 5-3 Bode plot of pre-amplifier 
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For charge amplifier, 10pF and 22pF are chosen as input capacitances to do the test, as shown in Figure 
5-4, when the frequency is 10MHz, input capacitor is 22pF, feedback capacitor is 5pF and feedback 
resistor is 250MΩ, the ideal gain is 12.87dB. Because of loss and some tolerance from the capacitor, 
the real gain is 12.39dB; there is a peak at 59.81MHz due to the characteristic of the chip itself 
(LTC6268-10). The same situation, when the input capacitor is 10pF, the ideal gain is 6.02dB, the real 
gain can be obtained from Figure 5-4(c) is 5.714dB, and the peak at about 61.36MHz. 
Compared with simulation results, there is a considerable difference in the bandwidth and peak 
frequency, after using the new board and replacing a new chip, the bandwidth is the same as shown in 
Figure 5-4. This might be due to the model of the opamp is not updated, or some components are ideal 
in the software. However, this is not a problem for our system because the maximum input frequency 
is 10MHz. 

 

(a) Gain @10MHz when input capacitor is 22pF 

 
(b) Frequency and gain of peak when input capacitor is 22pF 
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(c) Gain @10MHz when input capacitor is 10pF 

 
(d) Frequency and gain of the peak when the input capacitor is 10pF 

Figure 5-4 Bode plot of the charge amplifier 
For a high-gain amplifier, the ideal gain is 26.02dB when the frequency is 10MHz, input resistor is 50 
Ohm and the feedback resistor is 1K Ohm. From Figure 5-5, because of the power splitter, the input 
signal has some loss, it can be seen that the real gain is 24.07dB and -3dB frequency is about 113MHz. 
Compared with the simulation results, there is a considerable difference in the bandwidth, after using 
the new board and replacing a new chip, the bandwidth is the same as shown in Figure 5-5. This might 
be due to the model of the opamp is not updated in the software. However, this is not a problem for 
our system because the maximum input frequency is 10MHz. 
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(a) Gain @10MHz 

 
(b) -3dB bandwidth 

Figure 5-5 Bode plot of high-gain amplifier 
The spectrum analysis of mixer is shown in Figure 5-6 when the frequency of input signal and the 
reference signal are 10MHz. It has a quite nice output (75.41mV) at 20MHz, while the remaining 
harmonics have normal attenuation. Meanwhile, after measurement, since the mixer has an offset 
(about 24mV), this offset is removed by software method, the DC output (-80.29mV) of the mixer can 
be obtained on GUI, it can be seen that the mixer is working properly and meets the expectations of 
the design. 
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(a) Spectrum analysis of mixer 

Figure 5-6 Spectrum analysis of mixer when input frequency is 10MHz 
From the above measurement, it can be seen that the whole hardware system is working properly up 
to 10MHz, but the input voltage range needs to be considered to avoid harmonic distortion. Meanwhile, 
the peak of the charge amplifier also needs to be considered in the future; this peak may affect the 
stability of the system when it works at 10MHz frequency, replacing this chip with higher bandwidth 
chips or picking similar chips without a peak. 

5.3 System Result 
As shown in Figure 5-7, in order to get resolution and stability of this closed-loop system, a simple 
test impedance bridge is needed. Simulate a capacitive sensor by using two ultra-stable over 
temperature and voltage capacitors. 

 
Figure 5-7 Test impedance bridge 

In this test, five different value capacitors are selected, and 33pF is used as a reference capacitor. 
Because these capacitors have ±5% tolerance, get relative accurate capacitance values are essential, 
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which can reduce certain value errors for data processing. Table 5-1 shows values (different frequency, 
external environment, and pin distance can cause a few changes of value) of the capacitor by using the 
Andeen-Hagerling 2700A Ultra-precision Capacitance Bridge at 1000Hz frequency. 

Table 5-1 Capacitor value 
Value (pF) 
22.15168 
28.78325 
32.25574 

(Reference) 
33.27435 
46.41213 
48.23594 

When starting the system first, detect the output and subtract output offset (minus an average of a 
thousand data of output without input connection) is needed, a 48.23594pF test capacitor is used, then 
click the start button on GUI, the specific DDS parameters and capacitor value are shown in Figure 5-
8. 

 
Figure 5-8 Result of the system when CREF is 32.25574pF 

It can be seen that signal frequency is 10MHz, CH0 provides a drive signal for reference capacitor, 
CH2 provides a drive signal for the unknown capacitor and CH1 provide a drive signal for PSD (mixer) 
as a reference signal. From section 3.1.3, in order to make IIN = 0, they need a 180-degree phase shift. 
However, in real situation, wire has a very small resistance, it can cause a phase shift between two 
different capacitor value, by using the following formula, when RWire = 0.1Ohm, CREF = 32.25774pF 
and Cx =  48.23594pF, it can be calculated the phase shift of them, where φREF = -89.988˚ and φX = 
-89.983˚, because AD9959 only has 14bit resolution (0.022˚) of phase, so this phase shift between 
capacitors can be ignored here. 

φ = arctan �−
1

𝜔𝜔𝜔𝜔𝜔𝜔�
(6 − 1) 
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With more output data, some noise might be averaged out, so for each unknown capacitor, 3000 
capacitor values have been recorded at least. From Figure 5-9, it can be seen that the distribution of 
capacitance values shows a Gaussian distribution, which means that the average of these values is a 
fixed value (The average of thermal noise is 0). Figure 5-9(b) shows the Gaussian fit curve (red curve), 
μ and σ are mean value and standard deviation value respectively, they can be considered the ideal 
result of this measurement. Therefore, it is possible to calculate the relative real capacitance value and 
effective noise (RMS noise, it serves as a standard to assess the resolution of this measurement process) 
of the capacitor.  

  
(a) (b) 

Figure 5-9 (a). 3000 data of 48.23594pF; (b). Distribution of 48.23594pF 
Table 5-2 shows the characteristic of the system when CREF = 32.25574pF and CX = 48.23594pF, 
according to interpolate the remaining output signal and change it into capacitor value, which can 
improve the resolution of the system (Better than 10-bit input). So, with some calculations, the RMS 
of noise is 1.17fF and capacitor value is 48.46236pF. Moreover, there are two different relative 
capacitor values between two devices, the main reasons are: 
1. The simple test impedance bridge on breadboard provides extra parasitic capacitance. 
2. The SMA connectors could provide additional interference. 
3. Metal box (Shielding box) connects ground with the circuit or not also affects the measurement of 

the capacitance. 
In order to decrease these effects and improve accuracy, next step can be built a new PCB with all 
these circuits and a test impedance bridge, try to use shielding cables as well, which can eliminate 
parasitic capacitance from cable and breadboard, then put it in a larger metal box to obtain a better 
shielding.  

Table 5-2 Characteristic of the system when CREF = 32.25574pF and CX = 48.23594pF 
CX (AH2700) Average of CX Error Step value RMSE of CX Resolution 
48.23594pF 

±0.25fF 
48.46236pF 

±1.17fF 
0.47% 1.4mV ±1.17fF ±24.14ppm 

Furthermore, as a comparison, the 48.23594pF is tested again in the same situation when frequencies 
are 2MHz and 5MHz respectively, the basic set and capacitor value are shown in Figure 5-10. 
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(a) The result of 48.23594pF on GUI (2MHz) 

  
(b) 3000data of 48.23594pF @2MHz     (c) Distribution of 48.23594pF (2MHz) 

 
(d) The result of 48.23594pF on GUI (5MHz) 
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(e) 3000 data of 48.23594pF @5MHz    (f) Distribution of 48.23594pF (5MHz) 

Figure 5-10 Results of 48.23594pF @2MHz and 5MHz  
And the characteristics of the system when frequencies are 2MHz and 5MHz is depicted in Table 5-
3. 

Table 5-3 Characteristic of the system when CX = 468.23594pF @2MHz and 5MHz 
Frequency CX (AH2700) Average of CX Error Step value RMSE of CX Resolution 
2MHz 48.23594pF 

±0.25fF 
48.03936pF 

±0.71fF 
0.40% 2.2mV ±0.71fF ±14.74ppm 

5MHz 48.23594pF 
±0.25fF 

48.03671pF 
±0.81fF 

0.41% 1.8mV ±0.81fF ±16.80ppm 

From Table 5-2, Table 5-3 and Figure 5-11, it can be seen that when the frequency is decreased, the 
resolution has a certain increase, this is due to the characteristics of the DAC (the core component of 
DDS) [2]. In addition, due to the phase shift caused by the input resistance, the error of the capacitor 
has some changes at different frequencies, and the phase shift needs to be considered in the later work. 

 
Figure 5-11 Resolution of the system with different frequency when CX = 48.23594pF 

Similarly, the distribution, relative real capacitor value and RMS of noise can be obtained for each 
capacitance at 10MHz. 
For 46.41213 pF, the GUI, output data and distribution are shown in Figure 5-12, characteristic of 
the system when CX = 46.41213 pF is depicted in Table 5-4. 
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(a)  

 
   (b)            (c) 

Figure 5-12 (a). The result of 46.41213pF on GUI; (b).3000 data of 46.41213pF; (c). Distribution of 
46.41213pF 

Table 5-4 Characteristic of the system when CX = 46.41213pF 
CX (AH2700) Average of CX Error Step value RMSE of CX Resolution 
46.41213pF 

±0.24fF 
46.64645pF 

±1.47fF 
0.50% 1.3mV ±1.47fF ±31.45ppm 

As shown in Figure 5-13, the stability of the whole circuits can be tested, let them run about 2 hours 
(18000 output data), then check the data on GUI and workspace, calculate RMS of noise and capacitor 
value and compare them with previous data. 

Table 5-5 The results from two time periods 
Average of CX 

(18000) 
Average of CX 

(3000) 
RMSE of CX 

(18000) 
RMSE of CX 

(3000) 
Resolution 

(18000) 
Resolution 

(3000) 
46.64648pF 

±1.50fF 
46.64645pF 

±1.47fF 
1.50fF 1.47fF ±32.11ppm ±31.45ppm 

As you can see from Table 5-5, the output relative capacitor value and RMS of noise do not have too 
much error between two different time periods for 10-bit input amplitude. The stability of the whole 
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circuit is fine, but the external environment still provides some interference, which causes a little bit 
shift of the capacitor value, and the resolution has become even worse. 

 
(a)      (b) 

Figure 5-13 (a).18000 data of 46.41213pF; (b). Distribution of 46.41213pF 
For 33.27435 pF, the GUI, output data and distribution are shown in Figure 5-14, characteristic of 
the system when CX = 33.27435 pF is shown in Table 5-6. 

 
(a) 
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(b)             (c) 

Figure 5-14 (a). The result of 33.27435pF on GUI; (b).3000 data of 33.27435pF; (c). Distribution of 
33.27435pF 

Table 5-6 Characteristic of the system when CX = 33.27435pF 
CX (AH2700) Average of CX Error Step value RMSE of CX Resolution 
33.27435pF 

±0.17fF 
33.42156pF 

±2.36fF 
0.44% 0.98mV ±2.36fF ±70.55ppm 

For 28.78325 pF, the GUI, output data and distribution are shown in Figure 5-15, characteristic of 
the system when CX = 28.78325 pF is shown in Table 5-7. 

 
(a) 
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(b)            (c) 

Figure 5-15 (a). The result of 28.78325pF on GUI; (b).3000 data of 28.78325pF; (c). Distribution of 
28.78325pF 

Table 5-7 Characteristic of the system when CX = 28.78325pF 
CX (AH2700) Average of CX Error Step value RMSE of CX Resolution 
28.78325pF 

±0.15fF 
28.55268pF 

±1.41fF 
0.80% 1.1mV ±1.41fF ±49.52ppm 

For 21.57155 pF, the GUI, output data and distribution are shown in Figure 5-16, characteristic of 
the system when CX = 21.57155 pF is shown in Table 5-8. 

 
(a) 



76 
 

 
(b)            (c) 

Figure 5-16 (a). The result of 22.15168pF on GUI; (b).3000 data of 22.15168pF; (c). Distribution of 
22.15168pF 

Table 5-8 Characteristic of the system when CX = 22.15168pF 
CX (AH2700) Average of CX Error Step value RMSE of CX Resolution 
22.15168pF 

±0.11fF 
21.98710pF 

±3.57fF 
0.74% 0.61mV ±3.57fF ±162.28ppm 

From Table 5-2 to Table 5-8, five capacitor values can be obtained; there are 0.2pF to 0.3pF error 
between this system measurement and AH2700A, the resolution of the final value between different 
capacitances is shown in Figure 5-17. 

 
Figure 5-17 The resolution of the final value between different capacitances 

Meanwhile, the resolution of this system can be calculated when 48.23594pF is used. From Table 5-
2, the resolution is equal to 0.00117pF/48.46236pF when input frequency is 10MHz, which is 
±24.14ppm @10Hz (parts per million). Compared with expectations (the impedance of capacitive 
sensor devices in the range of 22pF to 47pF with a 24ppm resolution @10Hz), the actual resolution is 
very close to this goal. However, it can be seen that the capacitance value becomes larger and the 
resolution is higher, but the resolution of 28.55268pF is better than that of 33.42156pF. This is because 
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the output signal of the impedance bridge is weak after the balance and the shielding method is not 
good enough, so it is easily interfered by the external environment (near people, mobile phones, etc.), 
the strength of the interference may have a certain impact on the resolution, which causes the above 
phenomenon. If the system can be tested in a more stable and less interference environment and 
improve the shielding way, the resolution might be better than 24ppm. 
When parasitic resistance needs to be considered, we added a test impedance bridge could add some 
different resistors to simulate parasitic resistance and see what has changed in the output. 
So, put 1M, 3.3M, 10M and 33M Ohm resistors in parallel with the unknown capacitance respectively 
(pick 48.23594pF as the unknown capacitor), the phase shift between parasitic resistance and the 
unknown capacitor can be obtained by calculation (Equation 4-3). However, because of the 14-bit 
phase resolution, 1-bit step has about 0.022˚, the phase of the GUI will be approximated to the 
corresponding 14-bit phase in AD9959, it can cause certain errors for resistance and capacitance values, 
the value of each resistance, phase shift and resolution of capacitance are tabulated in Table 5-9. 

Table 5-9 Accuracy of resistance and resolution of the system with different  
      Actual value 

Real value 
1M Ohm 3.3M Ohm 10M Ohm 33M Ohm 

Phase (Actual) 180.0189˚ 180.0057˚ 180.0019˚ 180.0006˚ 
Phase (Real) 180.019˚ 180.006˚ 180.002˚ 180.001˚ 

Resistance value 0.982M Ohm 3.116M Ohm 9.370M Ohm 18.820M Ohm 
Accuracy 1.8% 5.6% 6.3% 43.0% 

Resolution of capacitance 24.44 24.26 24.34 24.15 
With the higher phase resolution, the higher accurate resistor can be obtained. Also, it can be seen that 
the resolution of capacitance has some shift, however, based on the noise analysis and simulation 
results of the charge amplifier, the noise provided by the parasitic resistance is very small, and the 
impact on the resolution of the system is minimal. When the resolution of the system is increased to 
aF or higher, the noise provided by the parasitic resistance limits the system resolution. The difference 
in resolution shows in Table 5-9 may be mainly caused by external interference. 

5.4 Conclusion 
In this chapter, the different capacitors are measured by two methods: self-balanced bridge based on 
LIA measurement and, for comparison, AH2700 capacitance bridge measurement. The results are 
summarized in Table 5-10. 

Table 5-10 Summary of results 
C value form AH2700 C value from this system 
22.15168pF±0.11fF 21.98710pF±3.57fF 
28.78325pF±0.15fF 28.55268pF±1.41fF 
33.27435pF±0.17fF 33.42156pF±2.35fF 
46.41213pF±0.24fF 46.64645pF±1.47fF 
48.23594pF±0.25fF 48.46236pF±1.17fF 

The resolution of this system still needs to be improved by better shielding and better test bridge, the 
resolution is about 24.14ppm @10Hz when input amplitude is only 10-bit as well as 10MHz input 
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frequency, the system also has ±14.74ppm and ±16.80ppm resolution @10Hz when input frequencies 
are 2MHz and 5MHz, and AH2700 has 0.16ppm resolution @1000Hz from 10pF to 100pF. 
Also, the different parasitic resistances are measured, the results show that the phase resolution and 
resistance value can cause significant errors and effects on the system, which makes the accuracy of 
the capacitance value worse. 
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Chapter 6 
Conclusions and Future Work 
6.1 Conclusions 
Due to an increasing demand for the measurement of small changes in capacitances, it is clear that 
high resolution, high accuracy, high speed and very stable new readout circuits are required. 
There are three main approaches for the measurement of the impedance value of capacitive sensors: 
switched-capacitor readout [1-4], ac-bridge with voltage amplifier [5,6,7] and transimpedance amplifier 
[8-11] based on lock-in amplifier measurement. In this work, because the system needs to work at higher 
frequencies and eliminate the effects of parasitic capacitance while increasing the resolution of the 
system, we apply the closed-loop transimpedance amplifier based on LIA measurement technique 
(self-balanced bridge). Several studies, PCB implementations and instruments of the self-balanced 
bridge readout have been reported in the literature [12-15]. Compared with these implementations (Table 
6-1), this implementation shows a nice resolution with a simple structure, but the accuracy still needs 
to be improved. After comparing the characteristics of analog lock-in amplifier and digital lock-in 
amplifier from literature, a simple and portable self-balanced bridge system is proposed. 

Table 6-1 Performance comparison 
Reference Frequency range [Hz] C range [F] C accuracy (err%) Resolution (ppm) 
[13] n.a. 200p-400p 0.03% 75 
[15] 50-20K -0.165μ-+1.65μ 0.005% 0.16@1KHz 
This work 2M-10M (tested) 22p-47p n.a. 24.14@10MHz 

 
In the circuit level design, it is composed of four main parts: an MCU board with serial port provides 
control commands for DDS and communicates with the computer. A four channels DDS is used as a 
signal generator, which has 10-bit amplitude resolution, 14-bit phase resolution and 0.12Hz frequency 
tuning resolution. A four channels pre-amplifier can increase the amplitude of the signal from DDS 
with a certain gain. A Charge amplifier with femto-ampere bias current is required whenever the 
difference of currents or voltage is small and needs to be accurately measured, which provide a certain 
gain by -CIN/CF. A low-noise amplifier with a high gain can increase the signal from the charge 
amplifier with less noise. A mixer and low-pass filter convert the input signal into a DC signal finally. 
Prepare for further increases in frequency while reducing the effects of parasitic resistance and noise, 
leave some margin for each amplifier is necessary. Simulation results of the circuit-level design have 
been analyzed in terms of signal amplitude, noise and offset. 
In the software design, by using the MATLAB GUI as a control center, it can realize the 
communication to the MCU, the control of the signal generator and the DAQ, which provides a simple 
interface for the whole system. 
For measurement, together with a simple test impedance bridge and a DAQ board on which the digital 
part of the readout circuit has been implemented, a fully-functional interface-based readout approach 
has been realized. 
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According to the noise analysis of the whole system and comparison with measurement results, the 
output noise is 33.5μV and 52.4μV respectively. As you can see, there is a significant difference in 
output noise because the noise of the DDS is not obtained, and it may also involve errors caused by 
temperature drift and other external interference. Therefore, combined with the previous analysis in 
section 3.5, the DDS, preamplifier and ADC are the three main noise sources, for further improvement 
of the system resolution, it is a good choice to start with these three components. 
The same capacitors have been measured by using two different methods: the proposed closed-loop 
impedance bridge with LIA measurement using this system, and, for comparison, a high-resolution 
capacitive bridge (AH2700A) is chosen. The measured capacitors show good resolution with only 10-
bit amplitude resolution (about 31.52fF with 32.25574pF reference capacitor). The capacitor values 
have a little bit of change with different parasitic resistances due to phase shift and lower resolution 
phase compensation. Since the system does not achieve a proper shielding and calibration, the accuracy 
of the system still is worse than AH2700A and the capacitance value shows a certain error. Furthermore, 
because of the phase resolution of DDS, the accuracy of resistance is not so good when resistance 
becomes larger. The total power consumption of these designed PCBs is 1.85W. Finally, the 
specifications of the whole system are shown in Table 6-2. 

Table 6-2 Specifications of the system 
Range of 

capacitance 
Resolution 

without 
interpolation 

Resolution of 
capacitor(2MHz) 

Resolution of 
capacitor(5MHz) 

Resolution of 
capacitor(10MHz) 

22-47pF 31.52fF ±14.74ppm 
@10Hz 

±16.80ppm 
@10Hz 

±24.14ppm 
@10Hz 

 

6.2 Future work 
In order to obtain a higher resolution and accuracy, the proposed sensor interface could be further 
improved; there are various things can be considered in future work to improve the performance: 
1. Use a better DDS with a higher amplitude resolution, which can improve the resolution and 

accuracy of the capacitive sensor directly. There are also DDS chips with 12-bit amplitude and 16-
bit phase resolution so that these chips can be used in future work. 

2. Decrease the resistance values of pre-amplifier, change a new op-amp of pre-amplifier with lower 
input current noise density and use a higher resolution ADC can also improve the system resolution 
significantly. 

3. Build all functions of PCBs in a new PCB entirely with the better circuit layout, build a new PCB 
for the test impedance bridge as well, they can eliminate more errors from cables and parasitic 
capacitance from PCB. 

4. Increase the upper limit of the input signal frequency so that the influence of parasitic resistances 
can be further reduced, which means the accuracy of the system can be improved. 

5. Make an integrated version of the self-balanced bridge system with a standard bus interface as a 
commercial product. 

6. To reduce the cost of the system, all components except the microcontroller and DDS can be 
considered to be fabricated into an integrated chip using CMOS technology. However, the noise, 
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offset, bias current/voltage and bandwidth of the amplifier and multiplier (especially the charge 
amplifier part) are bottlenecks. At the same time, according to the accuracy and resolution 
requirements of the system and the capacitance range of the sensor, the amplifier, multiplier and 
its feedback circuit need different design choices. Finally, by simplifying the software module, the 
entire feedback system can be controlled by the microcontroller only, using a touchscreen or 
wireless (personal computer) to operate circuit, so that the system can be made into a handheld 
device or even simpler. 

7. Do measurement with real sensors, in this way, the working performance of the circuit can be 
further verified. 

8. Consider the phase shift from resistance in the wire and capacitance, for high accuracy, 0.01Ohm 
resistance still causes an unignored phase shift. Also, the parasitic resistance (Mega Ohm to Giga 
Ohm) and capacitance in parallel cause a phase shift, so for high resolution and accuracy systems, 
phase compensation is necessary. 

9. Improve the software, which can decrease the measurement time significantly. 
10. Do temperature test, use a better reference capacitor with temperature stabilization in an oven, may 

be needed to achieve better accuracy. 
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Appendix I PCB layout 
 
For Figure I-1 (a), it is an MCU board with STM32 (U1), ADC (U4), DAC (U10) and some interface, 
where JTAG1 is the interface to download the program, P4 is the interface to connect the DDS 
(AD9959) and COM is the interface to communicate with PC. For Figure I-1 (b), it is a Pre-amplifier 
board, where IN1 is connected with CH1 of DDS, OUT1 is connected with IN1 of mixer, IN2 is 
connected with CH0 of DDS, IN3 is connected with CH2 of DDS, OUT2 and OUT3 is connected with 
the reference capacitor and the unknown capacitors (the test impedance bridge) respectively. For 
Figure I-1 (c), it is a charge amplifier board, where J13 is connected with the output of the impedance 
bridge, and P4 or J14 is connected with J3 of LNA board. For Figure I-1 (d) it is a low-noise amplifier 
board, where OUT1 is connected with IN2 of the mixer. For Figure I-1 (e) it is a PSD and LPF board, 
using a jumper to connect two pins at the bottom of P1, OUT1 can be a connector for network analyzer, 
J2 is the output of the system and P2 is the ground of board. 

 
(a) 
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(b) 

 
(c) 
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(d) 

 
(e) 

Figure I-1: (a). MCU layout; (b). Pre-amplifier layout; (c). Charge amplifier layout; (d). Low-noise 
amplifier layout; (e). PSD and LPF layout 
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Appendix II C code 
/*========================================================== 
// function: AD9959 Demo 
// date:  2017/3/6 
// note:   
// write:  Lin 
==========================================================*/ 
 
/* Includes ------------------------------------------------------------------*/ 
 
 
//#include "hw_config.h" 
#include "AD9959_V1.h" 
#include "TCL5615.h" 
#include "ads1256.h" 
#include "fliter.h" 
#include "datadis.h" 
#include <stdlib.h> 
#include <ctype.h> 
#include <string.h> 
#include <stdio.h> 
#include <math.h> 
unsigned char System_Flag=1;  // External signal control 
unsigned char UART1_RX_Flag=0; 
unsigned int Time1_Counter, Time2_Counter, Time3_Counter, Time4_Counter, System_Count, 
RXfreCount; 
unsigned char UART1_Rx_Datas[64],Uart1_Rx_Counter=0; 
//unsigned char UART1_Rx_Datas[64] =  
{'&','C','H','0','\0','1','2','3','4','5','0','0','0','0','.','2','2','\0','1','2','3','.','4','4','4','\0','1','2','3','3','\0','#'},Uart1_
Rx_Counter=0; 
 
unsigned long System_Frequency = 500000;// Working frequency of AD9959 
unsigned char Manual_Flag; 
 
unsigned char Haed_String[18]=" AD9958/59  CH0 "; 
unsigned char Fre_String[18]="F:100000000.12Hz"; 
unsigned char Phase_String[18]="Phase:   180.123"; 
unsigned char Amplitude_String[18]="Amplitude:  1023"; 
unsigned char Ch_Index=0; 
unsigned char Type_Index=2; 
unsigned char Position_Index=0; 
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unsigned long Set_Ref=1; 
unsigned long Ch_Data[4][3]; 
unsigned char Updata_Flag; 
double Ch_Data_double[4][3] = {0.0}; 
volatile unsigned long results = 0;   
unsigned char buff[12] = {0}; 
int fputc(int ch, FILE *f) 
{ 
 USART_SendData(USART1, (unsigned char) ch); 
 while (USART_GetFlagStatus(USART1, USART_FLAG_TC) == RESET); 
  
 return (ch); 
} 
/************************ Supplementary code*************************** 
***********/ 
void Set_System_double(void) 
{ 
 GPIO_Configuration(); 
 USART_Configuration(); 
 TIM_Configuration(); 
 NVIC_Configuration(); 
 AD9959_Init(); 
 TCL5615_init(); 
 SPI_ADS1256_Init(); 
 ADS1256_GPIO_init();         // Initialization 
 ADS1256_Init(); 
 UART1_RX_Flag = 0; 
  Ch_Data_double[0][0]=1000000.12; 
 Ch_Data_double[0][1]=0.111; 
 Ch_Data_double[0][2]=1023; 
 Ch_Data_double[1][0]=1000000.12; 
 Ch_Data_double[1][1]=120; 
 Ch_Data_double[1][2]=1023; 
 Ch_Data_double[2][0]=1000000.12; 
 Ch_Data_double[2][1]=240.123; 
 Ch_Data_double[2][2]=1023; 
 Ch_Data_double[3][0]=1000000.12; 
 Ch_Data_double[3][1]=90.332; 
 Ch_Data_double[3][2]=1023; 
 dis_menu_double(0); 
  
 ch_sw(0);//channel one 
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  AD99959_phase_double(Ch_Data_double[0][1]);//0 
 AD9959_Amp(Ch_Data_double[0][2]); 
 AD9959_frequency_double(Ch_Data_double[0][0]); 
 ch_sw(1);// channel two 
  AD99959_phase_double(Ch_Data_double[1][1]);//0 
 AD9959_Amp(Ch_Data_double[1][2]); 
 AD9959_frequency_double(Ch_Data_double[1][0]); 
 ch_sw(2);// channel three 
  AD99959_phase_double(Ch_Data_double[2][1]);//0 
 AD9959_Amp(Ch_Data[2][2]); 
 AD9959_frequency_double(Ch_Data_double[2][0]); 
 ch_sw(3);// channel four 
  AD99959_phase_double(Ch_Data_double[3][1]);//0 
 AD9959_Amp(Ch_Data_double[3][2]); 
 AD9959_frequency_double(Ch_Data_double[3][0]); 
 IO_Update(); 
  
 UART1_RX_Flag=0; 
  Uart1_Rx_Counter=0; 
} 
/******************************************************************************* 
* Function Name  : main. 
* Description    : Main routine. 
* Input          : None. 
* Output         : None. 
* Return         : None. 
*******************************************************************************/ 
/***************main function****************************************** 
**********/ 
int main(void) 
{ 
// unsigned char loop_flag; 
  
 Set_System_double();  
 while (1) 
 { 
  if(UART1_RX_Flag) // Serial port instruction 
  { 
    if(UART1_Rx_Datas[0]=='&'  && UART1_Rx_Datas[31]=='#')// 
    { 
      //uart_datas_dispose(); 
     uart_datas_dispose_double(); 
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    } 
/*******************Supplementary code********************************* 
**************/ 
    //9 Character data totally 
    else if(UART1_Rx_Datas[32]=='@' && UART1_Rx_Datas[41]=='#') 
    { 
      uart_datas_dispose_add(); 
    } 
    else if(UART1_Rx_Datas[42]=='*' && UART1_Rx_Datas[44]=='#') 
    { 
      uart_datas_tcl5615_add(); 
    } 
/*******************Supplementary code******************************** 
***************/ 
     
    Uart1_Rx_Counter = 0; 
    UART1_RX_Flag=0; 
  } 
  if(RXfreCount > 1) 
  { 
    RXfreCount = 0; 
    //results = (Filter(ADS1256_MUXP_AIN1 | ADS1256_MUXN_AINCOM)); 
     results++; 
   if(results == 4096) 
    results = 0; 
   //sprintf(buff, "%ld", results); 
    printf("%04ld",results); 
  } 
 } 
} 
#ifdef USE_FULL_ASSERT 
/******************************************************************************* 
* Function Name  : assert_failed 
* Description    : Reports the name of the source file and the source line number 
*                  where the assert_param error has occurred. 
* Input          : - file: pointer to the source file name 
*                  - line: assert_param error line source number 
* Output         : None 
* Return         : None 
*******************************************************************************/ 
void assert_failed(uint8_t* file, uint32_t line) 
{ 
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  /* User can add his own implementation to report the file name and line number, 
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ 
 
  /* Infinite loop */ 
  while (1) 
  {} 
} 
#endif 
 
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/ 
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Appendix Ⅲ MATLAB code 
 
function varargout = matlabserialstm32(varargin) 
% MATLABSERIALSTM32 MATLAB code for matlabserialstm32.fig 
%      MATLABSERIALSTM32, by itself, creates a new MATLABSERIALSTM32 or raises the 
existing 
%      singleton*. 
% 
%      H = MATLABSERIALSTM32 returns the handle to a new MATLABSERIALSTM32 or the 
handle to 
%      the existing singleton*. 
% 
%      MATLABSERIALSTM32('CALLBACK',hObject,eventData,handles,...) calls the local 
%      function named CALLBACK in MATLABSERIALSTM32.M with the given input 
arguments. 
% 
%      MATLABSERIALSTM32('Property','Value',...) creates a new MATLABSERIALSTM32 or 
raises the 
%      existing singleton*.  Starting from the left, property value pairs are 
%      applied to the GUI before matlabserialstm32_OpeningFcn gets called.  An 
%      unrecognized property name or invalid value makes property application 
%      stop.  All inputs are passed to matlabserialstm32_OpeningFcn via varargin. 
% 
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%      instance to run (singleton)". 
% 
% See also: GUIDE, GUIDATA, GUIHANDLES 
 
% Edit the above text to modify the response to help matlabserialstm32 
 
% Last Modified by GUIDE v2.5 10-May-2018 20:39:14 
 
% Begin initialization code - DO NOT EDIT 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @matlabserialstm32_OpeningFcn, ... 
                   'gui_OutputFcn',  @matlabserialstm32_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
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    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
% End initialization code - DO NOT EDIT 
 
 
% --- Executes just before matlabserialstm32 is made visible. 
function matlabserialstm32_OpeningFcn(hObject, eventdata, handles, varargin) 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to matlabserialstm32 (see VARARGIN) 
global All_Com 
    All_Com = get(handles.Com,'string'); 
global All_baud 
    All_baud=get(handles.Baud,'string');   
global Dev_Serial  
    Dev_Serial = instrhwinfo('serial'); 
global Usable_Port 
    Usable_Port = Dev_Serial.SerialPorts; 
% Choose default command line output for matlabserialstm32 
set(handles.Multiplier_Factor,'value',20); 
handles.output = hObject; 
global count k  
count = 0; 
k=1; 
 
data2_save=[0,0]; 
data_Cx_save=[0,0]; 
save data_save data2_save data_Cx_save 
% save('data_save','data2_save','-append'); 
axes(handles.OUTPUT); 
    hold on 
 
% 2018.5.2 lin 
% % % Create a capture card channel 
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global DaqCh ch2 ch1 t 
 
% DaqCh = daq.getDevices; 
DaqCh = daq.createSession('ni'); 
DaqCh.Rate = 1818181.8182; 
DaqCh.DurationInSeconds = 0.01; 
% DaqCh.IsContinuous = 1;  
 
ch2 = DaqCh.addAnalogInputChannel('Dev1','ai1','Voltage');% Channel 2 is channel 2 of the stm32 
device generator, and ai0 is the channel 0 of the capture card. 
 
% ch1 = DaqCh.addAnalogInputChannel('Dev1','ai1','Voltage'); 
t = timer('period',0.4,'TimerFcn',{@dealDACdata, 
handles},'BusyMode','queue','ExecutionMode','fixedRate'); 
 
% Update handles structure 
guidata(hObject, handles); 
% UIWAIT makes matlabserialstm32 wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
function dealDACdata(hObject, eventdata, handles) 
global DaqCh  
global Dev_Serial 
global count  
global  k data h x  
format long 
data = startForeground(DaqCh); 
data1 = data(1000:17000); 
datadeal = smooth(data1,16000); 
data2 = mean(datadeal(100:15900)); 
% plot(data2); 
%fprintf('ch2 volatge：%f\t',data2); 
    data2 = data2-0.02332; 
%     data2=str2num(char(vpa(data2,9))); 
    b=char(vpa(data2*1000,6));%resolution of data 
    data_now=data2; 
%     set(handles.outputVol,'string',num2str(data2)); 
    set(handles.outputVol,'string',b); 
%     if fix(count) == 1 
%         count=0 
% %         clearpoints(h); 
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% % 
@(hObject,eventdata)matlabserialstm32('OUTPUT_CreateFcn',hObject,eventdata,guidata(hObject)) 
%         axes(handles.OUTPUT); 
%         cla reset  
%     else 
%     end 
    figure('visible','off'); 
    axes(handles.OUTPUT); 
    plot(handles.OUTPUT,count,data_now,'ro'); 
    hold (handles.OUTPUT,'on') 
%      drawnow  
    count=count+1; 
    if count==1 
        axis auto 
    else 
    end 
     
if  data2 > 0.001%V 
    serialinfo = get(Dev_Serial); 
    if strcmp(serialinfo.Status,'open') 
        ch2fre = str2double(get(handles.CH2Fre,'string')); 
        set(handles.CH2Fre,'string',char(sprintf('%012.2f',ch2fre))); 
        ch2fre = get(handles.CH2Fre,'string'); 
        ch2fre = sprintf('%012s',ch2fre); 
 
        ch2pha = str2double(get(handles.CH2Ph,'string')); 
        set(handles.CH2Ph,'string',char(sprintf('%07.3f',ch2pha))); 
        ch2pha = get(handles.CH2Ph,'string'); 
        ch2pha = sprintf('%07s',ch2pha); 
 
        ch2amp = get(handles.CH2Amp,'string'); 
        ch2amp = int32(str2double(ch2amp))-1; 
        set(handles.CH2Amp,'string',char(sprintf('%07.3f',ch2amp))); 
        ch2amp = num2str(ch2amp); 
        ch2amp = sprintf('%04s',ch2amp); 
 
        fprintf(Dev_Serial,'&CH2'); 
        fprintf(Dev_Serial,ch2fre); 
        fprintf(Dev_Serial,ch2pha); 
        fprintf(Dev_Serial,ch2amp);  
        fprintf(Dev_Serial,'%c','#'); 
        %%%%%2018.5.3 
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        data_save=load('data_save'); 
        data2_save=data_save.data2_save; 
        data_Cx_save=data_save.data_Cx_save; 
        data2_save(k,:)=[data2,str2double(ch2amp)] 
        save('data_save','data2_save','-append') 
         
        data_ampCH2=str2num(get(handles.CH2Amp,'string')); 
        data_ampCH0=str2num(get(handles.CH0Amp,'string')); 
        phaseCH2=(str2num(get(handles.CH0Ph,'string'))/180)*pi; 
        phaseCH0=(str2num(get(handles.CH2Ph,'string'))/180)*pi; 
        data_Cx=(-1)*(data_ampCH0/data_ampCH2)*32.25574*cos(phaseCH2-phaseCH0); 
        data_Cx=char(vpa(data_Cx,8));%save 8 wei data 
        set(handles.edit_Cvalue,'string',data_Cx); 
         
        data_Cx_save(k,:)=[str2num(data_Cx),data_ampCH2]; 
        save('data_save','data_Cx_save','-append') 
        k=k+1; 
%         set(handles.edit_Cvalue,'string',num2str(data_Cx)); 
        FreCH0=str2num(get(handles.CH0Fre,'string')); 
        if sin(phaseCH2-phaseCH0)==0 
            data_Rx=inf; 
        else 
            
data_Rx=(data_ampCH2/data_ampCH0)/(2*pi*FreCH0*32.25574/(10^12)*sin(phaseCH2-
phaseCH0)); 
        end 
        data_Rx=char(vpa(data_Rx,8)); 
        set(handles.edit_Resistor,'string',data_Rx); 
    else 
        errordlg('Don’t worry, just open the serial port'); 
    end 
elseif data2 < -0.0007%v 
    serialinfo = get(Dev_Serial); 
    if strcmp(serialinfo.Status,'open') 
        ch2fre = str2double(get(handles.CH2Fre,'string')); 
        set(handles.CH2Fre,'string',char(sprintf('%012.2f',ch2fre))); 
        ch2fre = get(handles.CH2Fre,'string'); 
        ch2fre = sprintf('%012s',ch2fre); 
 
        ch2pha = str2double(get(handles.CH2Ph,'string')); 
        set(handles.CH2Ph,'string',char(sprintf('%07.3f',ch2pha))); 
        ch2pha = get(handles.CH2Ph,'string'); 
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        ch2pha = sprintf('%07s',ch2pha); 
 
        ch2amp = get(handles.CH2Amp,'string'); 
        ch2amp = int32(str2double(ch2amp))+1; 
        set(handles.CH2Amp,'string',char(sprintf('%07.3f',ch2amp))); 
        ch2amp = num2str(ch2amp); 
        ch2amp = sprintf('%04s',ch2amp); 
 
        fprintf(Dev_Serial,'&CH2'); 
        fprintf(Dev_Serial,ch2fre); 
        fprintf(Dev_Serial,ch2pha); 
        fprintf(Dev_Serial,ch2amp);  
        fprintf(Dev_Serial,'%c','#'); 
        %2018.5.3 
        data_save=load('data_save'); 
        data2_save=data_save.data2_save; 
        data_Cx_save=data_save.data_Cx_save; 
        data2_save(k,:)=[data2,str2double(ch2amp)] 
        save('data_save','data2_save','-append') 
        data_ampCH2=str2num(get(handles.CH2Amp,'string')); 
        data_ampCH0=str2num(get(handles.CH0Amp,'string')); 
        phaseCH2=(str2num(get(handles.CH0Ph,'string'))/180)*pi; 
        phaseCH0=(str2num(get(handles.CH2Ph,'string'))/180)*pi; 
        data_Cx=(-1)*(data_ampCH0/data_ampCH2)*32.25574*cos(phaseCH2-phaseCH0); 
        data_Cx=char(vpa(data_Cx,8));%save 8 wei data 
        set(handles.edit_Cvalue,'string',data_Cx);% Here data_Cx is a string form, if you want to 
save, the next step is to convert it to num, then save 
        data_Cx_save(k,:)=[str2num(data_Cx),data_ampCH2]; 
        save('data_save','data_Cx_save','-append'); 
        k=k+1; 
%         set(handles.edit_Cvalue,'string',num2str(data_Cx)); 
        FreCH0=str2num(get(handles.CH0Fre,'string')); 
        if sin(phaseCH2-phaseCH0)==0 
            data_Rx=inf; 
        else 
            
data_Rx=(data_ampCH2/data_ampCH0)/(2*pi*FreCH0*32.25574/(10^12)*sin(phaseCH2-
phaseCH0)); 
        end 
        data_Rx=char(vpa(data_Rx,8)); 
        set(handles.edit_Resistor,'string',data_Rx); 
    else 
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        errordlg(' Don’t worry, just open the serial port '); 
    end    
else 
        data_ampCH2=str2num(get(handles.CH2Amp,'string')); 
        data_ampCH0=str2num(get(handles.CH0Amp,'string')); 
        phaseCH2=(str2num(get(handles.CH0Ph,'string'))/180)*pi; 
        phaseCH0=(str2num(get(handles.CH2Ph,'string'))/180)*pi; 
        data_save=load('data_save'); 
        data2_save=data_save.data2_save; 
        data_Cx_save=data_save.data_Cx_save; 
        data_A=data2_save(:,2); 
        num_data_A=size(data_A,1); 
%  
%         if (num_data_A>5)&&((data_A(num_data_A,1)-data_A(num_data_A-
4,1))>0)%&&((data_A(num_data_A-1)-data_A(num_data_A-5))/4>0) 
%             lib1=find(data_A==(data_ampCH2-4)); 
%             lib2=find(data_A==(data_ampCH2-1)); 
%         else 
          
        if (num_data_A>4)&&(data_A(num_data_A)==data_A(num_data_A-
1))&&(data_A(num_data_A-2)==data_A(num_data_A-1))&&(data_A(num_data_A-
3)==data_A(num_data_A-2))&&(data_A(num_data_A-3)==data_A(num_data_A-4)) 
            data2_zhuangtai=true; 
        else 
            data2_zhuangtai=false; 
        end 
         
%         if data2_zhuangtai 
            lib1=find(data_A==(data_ampCH2+1)); 
            lib2=find(data_A==(data_ampCH2+4)); 
%         end 
        if size(lib1,1)==1 
            lib1=lib1; 
        else 
            lib1=max(lib1); 
        end 
        if size(lib2,1)==1 
            lib2=lib2; 
        else 
            lib2=max(lib2); 
        end 
        if isempty(lib1)||isempty(lib2) 
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            lib1=find(data_A==(data_ampCH2-4)); 
            lib2=find(data_A==(data_ampCH2-1)); 
            if size(lib1,1)==1 
                lib1=lib1; 
            else 
                lib1=max(lib1); 
            end 
            if size(lib2,1)==1 
                 lib2=lib2; 
            else 
                 lib2=max(lib2); 
            end 
            if isempty(lib1)||isempty(lib2) 
               data_stepValue=0; 
            else 
               data_stepValue=(data2_save(lib2,1)-data2_save(lib1,1))/3; %average value 
            end 
        else 
            data_stepValue=(data2_save(lib2,1)-data2_save(lib1,1))/3; % average value 
        end 
        if data2_zhuangtai 
            data_stepValue=data_stepValue; 
        else 
            data_stepValue=0; 
        end 
        if data_stepValue==0 
            data_Cx=(-1)*(data_ampCH0/data_ampCH2)*32.25574*cos(phaseCH2-phaseCH0); 
        else 
            data_Cx=(-1)*(data_ampCH0/data_ampCH2)*32.25574*cos(phaseCH2-
phaseCH0)+(data2/data_stepValue)*(1/1024)*32.25574; 
        end 
         
        data_stepValue=char(vpa(data_stepValue*1000,2)); 
        data_Cx=char(vpa(data_Cx,8)); 
        set(handles.edit_stepValue,'string',data_stepValue); 
        set(handles.edit_Cvalue,'string',data_Cx); 
        data2_save(k,:)=[data2,data_ampCH2]; 
        save('data_save','data2_save','-append') 
        data_Cx_save(k,:)=[str2num(data_Cx),data_ampCH2];%同上 
        save('data_save','data_Cx_save','-append') 
        k=k+1; 
end     
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% --- Outputs from this function are returned to the command line. 
function varargout = matlabserialstm32_OutputFcn(hObject, eventdata, handles)  
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
 
 
function CH0Ph_Callback(hObject, eventdata, handles) 
% hObject    handle to CH0Ph (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of CH0Ph as text 
%        str2double(get(hObject,'String')) returns contents of CH0Ph as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function CH0Ph_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH0Ph (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function CH1Ph_Callback(hObject, eventdata, handles) 
% hObject    handle to CH1Ph (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of CH1Ph as text 
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%        str2double(get(hObject,'String')) returns contents of CH1Ph as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function CH1Ph_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH1Ph (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function CH2Ph_Callback(hObject, eventdata, handles) 
% hObject    handle to CH2Ph (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of CH2Ph as text 
%        str2double(get(hObject,'String')) returns contents of CH2Ph as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function CH2Ph_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH2Ph (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function CH1Fre_Callback(~, eventdata, handles) 
% hObject    handle to CH1Fre (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% tempdata = str2double(get(hObject,'string')); 
% set(hObject,'string',char(sprintf('%012.2f',tempdata))); 
% Hints: get(hObject,'String') returns contents of CH1Fre as text 
%        str2double(get(hObject,'String')) returns contents of CH1Fre as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function CH1Fre_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH1Fre (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function CH3Ph_Callback(hObject, eventdata, handles) 
% hObject    handle to CH3Ph (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of CH3Ph as text 
%        str2double(get(hObject,'String')) returns contents of CH3Ph as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function CH3Ph_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH3Ph (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function CH0Fre_Callback(hObject, eventdata, handles) 
% hObject    handle to CH0Fre (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of CH0Fre as text 
%        str2double(get(hObject,'String')) returns contents of CH0Fre as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function CH0Fre_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH0Fre (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on slider movement. 
function CH2Sli_Callback(hObject, eventdata, handles) 
% hObject    handle to CH2Sli (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.CH2Sli,'SliderStep',[0.001,0.001]) 
Va=get(hObject,'Value'); 
if rem(Va,1)~=0 
    set(hObject,'Value',fix(Va)); 
end 
set(handles.CH2Amp,'String',num2str(get(hObject,'Value'))); 
% set(handles.CH2Amp,'String',get(hObject,'Value')); 
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 
 
 
% --- Executes during object creation, after setting all properties. 
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function CH2Sli_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH2Sli (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
 
 
% --- Executes on slider movement. 
function CH3Sli_Callback(hObject, eventdata, handles) 
% hObject    handle to CH3Sli (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.CH3Amp,'String',get(hObject,'Value')); 
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 
 
 
% --- Executes during object creation, after setting all properties. 
function CH3Sli_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH3Sli (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
 
 
% --- Executes on slider movement. 
function CH0Sli_Callback(hObject, eventdata, handles) 
% hObject    handle to CH0Sli (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 
set(handles.CH0Amp,'String',get(hObject,'Value')); 
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% --- Executes during object creation, after setting all properties. 
function CH0Sli_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH0Sli (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
 
 
% --- Executes on slider movement. 
function CH1Sli_Callback(hObject, eventdata, handles) 
% hObject    handle to CH1Sli (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.CH1Amp,'String',get(hObject,'Value')); 
% Hints: get(hObject,'Value') returns position of slider 
%        get(hObject,'Min') and get(hObject,'Max') to determine range of slider 
 
 
% --- Executes during object creation, after setting all properties. 
function CH1Sli_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH1Sli (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: slider controls usually have a light gray background. 
if isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor',[.9 .9 .9]); 
end 
 
 
 
function CH2Fre_Callback(hObject, eventdata, handles) 
% hObject    handle to CH2Fre (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of CH2Fre as text 
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%        str2double(get(hObject,'String')) returns contents of CH2Fre as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function CH2Fre_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH2Fre (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function CH3Fre_Callback(hObject, eventdata, handles) 
% hObject    handle to CH3Fre (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of CH3Fre as text 
%        str2double(get(hObject,'String')) returns contents of CH3Fre as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function CH3Fre_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH3Fre (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function CH0Amp_Callback(hObject, eventdata, handles) 
% hObject    handle to CH0Amp (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.CH0Sli,'value',str2double(get(hObject,'string'))); 
% Hints: get(hObject,'String') returns contents of CH0Amp as text 
%        str2double(get(hObject,'String')) returns contents of CH0Amp as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function CH0Amp_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH0Amp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function CH1Amp_Callback(hObject, eventdata, handles) 
% hObject    handle to CH1Amp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.CH1Sli,'value',str2double(get(hObject,'string'))); 
% Hints: get(hObject,'String') returns contents of CH1Amp as text 
%        str2double(get(hObject,'String')) returns contents of CH1Amp as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function CH1Amp_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH1Amp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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function CH2Amp_Callback(hObject, eventdata, handles) 
% hObject    handle to CH2Amp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.CH2Sli,'value',str2double(get(hObject,'string'))); 
% Hints: get(hObject,'String') returns contents of CH2Amp as text 
%        str2double(get(hObject,'String')) returns contents of CH2Amp as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function CH2Amp_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH2Amp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function CH3Amp_Callback(hObject, eventdata, handles) 
% hObject    handle to CH3Amp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
set(handles.CH3Sli,'value',str2double(get(hObject,'string'))); 
% Hints: get(hObject,'String') returns contents of CH3Amp as text 
%        str2double(get(hObject,'String')) returns contents of CH3Amp as a 
%        double9uc9b2 
 
 
% --- Executes during object creation, after setting all properties. 
function CH3Amp_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to CH3Amp (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
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%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function RefClk_Callback(hObject, eventdata, handles) 
% hObject    handle to RefClk (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
crystal_fre = str2double(get(hObject,'string')); 
if crystal_fre<20 ||crystal_fre>30 
    errordlg(' The crystal reference clock frequency range can only be 20Mhz~30Mhz '); 
    set(hObject,'string','25'); 
    return; 
end 
% Hints: get(hObject,'String') returns contents of RefClk as text 
%        str2double(get(hObject,'String')) returns contents of RefClk as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function RefClk_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to RefClk (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on selection change in Multiplier_Factor. 
function Multiplier_Factor_Callback(hObject, eventdata, handles) 
% hObject    handle to Multiplier_Factor (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: contents = cellstr(get(hObject,'String')) returns Multiplier_Factor contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from Multiplier_Factor 
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% --- Executes during object creation, after setting all properties. 
function Multiplier_Factor_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Multiplier_Factor (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on button press in Vco_Switch. 
function Vco_Switch_Callback(hObject, eventdata, handles) 
% hObject    handle to Vco_Switch (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hint: get(hObject,'Value') returns toggle state of Vco_Switch 
 
 
% --- Executes on button press in Load. 
 
% --- Executes on selection change in Com. 
function Com_Callback(hObject, eventdata, handles) 
global Usable_Port 
global All_Com 
global All_baud 
global Dev_Serial 
if isempty(Usable_Port) 
    errordlg('Connect the serial port, insert USB '); 
else 
    num = numel(Usable_Port);% Check to see how many serial ports are inserted. 
    % Get the currently selected port number and compare it with the port number actually inserted 
by the computer. 
    % If the selected one matches the actual insert, create a serial port object. 
    handles.COM_value = 0; 
    for i = 1:num 
        if strcmpi(All_Com{get(handles.Com,'Value')},Usable_Port{i}) 
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            handles.COM_value = i; 
            guidata(hObject,handles);   
            break; 
        else 
            handles.COM_value = 0; 
            guidata(hObject,handles);   
        end 
    end 
    if handles.COM_value == 0 
        errordlg('Pick the correct serial port number pls '); 
    else 
    % Create a serial port object 
    Dev_Serial = 
serial(Usable_Port{handles.COM_value},'BaudRate',str2double(All_baud{get(handles.Baud,'Value')
}),... 
              'OutputBufferSize',1000,'InputBufferSize',1000);  
     
    set(handles.Open,'Enable','on');% The port number is selected to allow the serial port to be opened, 
indicating that the serial port object has been established.                       
    end 
         
    
end 
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
    if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
        set(hObject,'BackgroundColor','white'); 
    end 
% hObject    handle to Com (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: contents = cellstr(get(hObject,'String')) returns Com contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from Com 
 
function  RXcallback(hObject, event, handles) 
%UNTITLED  
global k data h  flag  
flag = 0; 
% data(k) = zeros(100,1); 
if hObject.BytesAvailable ~= 0 
head = fscanf(hObject,'%c',4); 
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data(k) = str2double(head); 
% set(handles.outputVol,'string',data(k));%2018.5.3 
end 
% if flag == 0 
%  addpoints(h,x(k),data(k)); 
%  drawnow  
% end 
% if flag == 1 
%  addpoints(h,x(k),data(k)); 
%  drawnow; 
%  flag = 0; 
% end 
% if  k == 100 && flag~= 1 
%     clearpoints(h); 
%     k = 1;flag = 1; 
% end    
% k = k+1; 
 
 
 
     
     
% --- Executes during object creation, after setting all properties. 
function Com_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Com (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
 
% --- Executes on selection change in Baud. 
function Baud_Callback(hObject, eventdata, handles) 
% hObject    handle to Baud (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global All_baud 
global Dev_Serial 
stopasync(Dev_Serial); 
Dev_Serial.baudrate = str2double(All_baud{get(handles.Baud,'Value')}); 
% Hints: contents = cellstr(get(hObject,'String')) returns Baud contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from Baud 
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% --- Executes during object creation, after setting all properties. 
function Baud_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to Baud (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on button press in Open. 
function Open_Callback(hObject, eventdata, handles) 
% hObject    handle to Open (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Do not modify the serial port number after opening 
% Open the program when it is not open. When it is opened, it will prompt: it is already open, which 
is not equal to 0. 
global Dev_Serial  
 
judge = strcmp(get(hObject,'BackgroundColor'),'r'); 
if  judge == 0 && handles.COM_value ~= 0 
    set(handles.Com,'Enable','off'); 
    set(handles.Baud,'Enable','off'); 
    Dev_Serial.BytesAvailableFcn = @(hObject,event) RXcallback(hObject, event,handles); 
    Dev_Serial.BytesAvailableFcnMode='byte';         % Set event trigger to accept trigger  
    Dev_Serial.timeout = 0.01; 
    Dev_Serial.BytesAvailableFcnCount = 4;  
    fopen(Dev_Serial);  %Open serial port 
    set(hObject,'BackgroundColor','r'); 
    set(hObject,'Enable','off'); 
end 
     
% --- Executes on button press in Close. 
function Close_Callback(hObject, eventdata, handles) 
% hObject    handle to Close (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% 
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% Find the serial port object 
scoms = instrfind; 
% Try to stop and close the delete serial port object 
if ~isempty(scoms) 
    stopasync(scoms); 
    fclose(scoms); 
%     delete(scoms); 
end 
% delete(instrfindall); 
set(handles.Com,'Enable','on'); 
set(handles.Open,'Enable','on'); 
set(handles.Open,'BackgroundColor','w'); 
set(handles.Baud,'Enable','on'); 
% --- Executes on button press in LCH1. 
function LCH1_Callback(hObject, eventdata, handles) 
% hObject    handle to LCH1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUID  ATA) 
global Dev_Serial 
 serialinfo = get(Dev_Serial); 
if strcmp(serialinfo.Status,'open') 
 
    ch1fre = str2double(get(handles.CH1Fre,'string')); 
    set(handles.CH1Fre,'string',char(sprintf('%012.2f',ch1fre))); 
    ch1fre = get(handles.CH1Fre,'string'); 
    ch1fre = sprintf('%012s',ch1fre); 
    ch1pha = str2double(get(handles.CH1Ph,'string')); 
    set(handles.CH1Ph,'string',char(sprintf('%07.3f',ch1pha))); 
    ch1pha = get(handles.CH1Ph,'string'); 
    ch1pha = sprintf('%07s',ch1pha); 
    ch1amp = get(handles.CH1Amp,'string'); 
    ch1amp = int32(str2double(ch1amp)); 
    ch1amp = num2str(ch1amp); 
    ch1amp = sprintf('%04s',ch1amp); 
    fprintf(Dev_Serial,'&CH1'); 
    fprintf(Dev_Serial,ch1fre); 
    fprintf(Dev_Serial,ch1pha); 
    fprintf(Dev_Serial,ch1amp); 
    fprintf(Dev_Serial,'%c','#'); 
else 
    errordlg(' Don’t worry, just open Serial Port '); 
end 
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% --- Executes on button press in LCH2. 
function LCH2_Callback(hObject, eventdata, handles) 
% hObject    handle to LCH2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global Dev_Serial  
 serialinfo = get(Dev_Serial); 
if strcmp(serialinfo.Status,'open') 
    ch2fre = str2double(get(handles.CH2Fre,'string')); 
    set(handles.CH2Fre,'string',char(sprintf('%012.2f',ch2fre))); 
    ch2fre = get(handles.CH2Fre,'string'); 
    ch2fre = sprintf('%012s',ch2fre); 
     
    ch2pha = str2double(get(handles.CH2Ph,'string')); 
    set(handles.CH2Ph,'string',char(sprintf('%07.3f',ch2pha))); 
    ch2pha = get(handles.CH2Ph,'string'); 
    ch2pha = sprintf('%07s',ch2pha); 
     
    ch2amp = get(handles.CH2Amp,'string'); 
    ch2amp = int32(str2double(ch2amp)); 
    ch2amp = num2str(ch2amp); 
    ch2amp = sprintf('%04s',ch2amp); 
     
    fprintf(Dev_Serial,'&CH2'); 
    fprintf(Dev_Serial,ch2fre); 
    fprintf(Dev_Serial,ch2pha); 
    fprintf(Dev_Serial,ch2amp);  
    fprintf(Dev_Serial,'%c','#'); 
else 
    errordlg(' Don’t worry, just open Serial Port ');  
end 
 
% --- Executes on button press in LCH3. 
function LCH3_Callback(hObject, eventdata, handles) 
% hObject    handle to LCH3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global Dev_Serial 
 serialinfo = get(Dev_Serial); 
if strcmp(serialinfo.Status,'open') 
    ch3fre = str2double(get(handles.CH3Fre,'string')); 
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    set(handles.CH3Fre,'string',char(sprintf('%012.2f',ch3fre))); 
    ch3fre = get(handles.CH3Fre,'string'); 
    ch3fre = sprintf('%012s',ch3fre); 
    ch3pha = str2double(get(handles.CH3Ph,'string')); 
    set(handles.CH3Ph,'string',char(sprintf('%07.3f',ch3pha))); 
    ch3pha = get(handles.CH3Ph,'string'); 
    ch3pha = sprintf('%07s',ch3pha); 
    ch3amp = get(handles.CH3Amp,'string'); 
    ch3amp = int32(str2double(ch3amp)); 
    ch3amp = num2str(ch3amp); 
    ch3amp = sprintf('%04s',ch3amp); 
    fprintf(Dev_Serial,'&CH3'); 
    fprintf(Dev_Serial,ch3fre); 
    fprintf(Dev_Serial,ch3pha); 
    fprintf(Dev_Serial,ch3amp); 
    fprintf(Dev_Serial,'%c','#'); 
else 
    errordlg(' Don’t worry, just open Serial Port '); 
end 
 
% --- Executes on button press in LCH0. 
function LCH0_Callback(hObject, eventdata, handles) 
% hObject    handle to LCH0 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global Dev_Serial 
 serialinfo = get(Dev_Serial); 
if strcmp(serialinfo.Status,'open')  
    ch0fre = str2double(get(handles.CH0Fre,'string')); 
    set(handles.CH0Fre,'string',char(sprintf('%012.2f',ch0fre))); 
    ch0fre = get(handles.CH0Fre,'string'); 
    ch0fre = sprintf('%012s',ch0fre); 
    ch0pha = str2double(get(handles.CH0Ph,'string')); 
    set(handles.CH0Ph,'string',char(sprintf('%07.3f',ch0pha))); 
    ch0pha = get(handles.CH0Ph,'string'); 
    ch0pha = sprintf('%07s',ch0pha); 
    ch0amp = get(handles.CH0Amp,'string'); 
    ch0amp = int32(str2double(ch0amp)); 
    ch0amp = num2str(ch0amp); 
    ch0amp = sprintf('%04s',ch0amp); 
    fprintf(Dev_Serial,'&CH0'); 
    fprintf(Dev_Serial,ch0fre); 
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    fprintf(Dev_Serial,ch0pha); 
    fprintf(Dev_Serial,ch0amp); 
    fprintf(Dev_Serial,'%c','#'); 
else 
    errordlg(' Don’t worry, just open Serial Port '); 
end 
 
 
% --- Executes on button press in Load. 
function Load_Callback(hObject, eventdata, handles) 
% hObject    handle to Load (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Vco_Switch is not enabled by default 
global Dev_Serial 
vco = get(handles.Vco_Switch,'value'); 
if vco == 0 
    vco = '0'; 
else 
    vco = '1'; 
end 
CurrMulFac = get(handles.Multiplier_Factor,'value'); % obtain the input reference clock 
if CurrMulFac<4 ||CurrMulFac>20 
    CurrMulFac = 1; 
    set(handles.Multiplier_Factor,'value',CurrMulFac); 
end 
    Sysclk = str2double(get(handles.RefClk,'string'))*CurrMulFac; 
if Sysclk<0 ||Sysclk>500 
    errordlg('Reset frequency and multiple'); 
    return; 
end 
if Sysclk > 255 && vco ~= '1' 
    errordlg('Open VCO please'); 
    return; 
end 
 serialinfo = get(Dev_Serial); 
if strcmp(serialinfo.Status,'open')% If the serial port is open, then works 
    Sysclk = num2str(Sysclk); 
    Sysclk = sprintf('%03s',Sysclk); 
    CurrMulFac = num2str(CurrMulFac); 
    CurrMulFac = sprintf('%02s',CurrMulFac); 
    fprintf(Dev_Serial,'%c','@'); 
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    fprintf(Dev_Serial,Sysclk); 
    fprintf(Dev_Serial,CurrMulFac);  
    fprintf(Dev_Serial,'%c',vco); 
    fprintf(Dev_Serial,'%c','#');   
else 
    errordlg(' Don’t worry, just open Serial Port '); 
end 
 
 
% --- Executes on selection change in outputVol. 
function outputVol_Callback(hObject, eventdata, handles) 
% hObject    handle to outputVol (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% set(handles.outputVol,'color','r'); 
% Hints: contents = cellstr(get(hObject,'String')) returns outputVol contents as cell array 
%        contents{get(hObject,'Value')} returns selected item from outputVol 
global Dev_Serial 
serialinfo = get(Dev_Serial); 
if strcmp(serialinfo.Status,'open') 
    strval = get(hObject,'string'); 
    fprintf(Dev_Serial,'%c','*'); 
    strval = sprintf('%05s',strval); 
    fprintf(Dev_Serial,'%s',strval); 
    fprintf(Dev_Serial,'%c','\0'); 
    fprintf(Dev_Serial,'%c','#'); 
else 
    set(hObject,'BackGroundColor','w'); 
end 
 
% --- Executes during object creation, after setting all properties. 
function outputVol_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to outputVol (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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% --- Executes during object creation, after setting all properties. 
% function OUTPUT_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to OUTPUT (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
% clc;  
% global k h x 
% k = 1; 
% set(hObject,'Xlim',[0,50]); 
% set(hObject,'Ylim',[-2048,2048]);%[0,4096]); 
% h =  animatedline('color','r');%('parent',h1,'color','r');; 
% numpoints = 100; 
% x = linspace(0,20,numpoints); 
 
% Hint: place code in OpeningFcn to populate OUTPUT 
 
 
% --- Executes on button press in begingetcartdata. 
function begingetcartdata_Callback(hObject, eventdata, handles) 
% hObject    handle to begingetcartdata (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global t count k 
% if ishandle(t) 
%     start(t) 
% else 
%     fprintf('Restart Software') 
% end 
if get(handles.begingetcartdata,'value') 
    start(t) 
else 
    stop(t) 
%     delete(t) 
end 
 
 
 
% --- Executes during object creation, after setting all properties. 
function begingetcartdata_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to begingetcartdata (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    empty - handles not created until after all CreateFcns called 
%timer creat 
 
 
 
function edit_Cvalue_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_Cvalue (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit_Cvalue as text 
%        str2double(get(hObject,'String')) returns contents of edit_Cvalue as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit_Cvalue_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_Cvalue (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
 
function edit_stepValue_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_stepvalue (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit_stepvalue as text 
%        str2double(get(hObject,'String')) returns contents of edit_stepvalue as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit_stepValue_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_stepvalue (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
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% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
 
 
% --- Executes on button press in pushbutton_clear. 
function pushbutton_clear_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton_clear (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
global count 
axes(handles.OUTPUT) ; 
cla reset 
count=0; 
hold on 
 
 
 
function edit_Resistor_Callback(hObject, eventdata, handles) 
% hObject    handle to edit_Resistor (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: get(hObject,'String') returns contents of edit_Resistor as text 
%        str2double(get(hObject,'String')) returns contents of edit_Resistor as a double 
 
 
% --- Executes during object creation, after setting all properties. 
function edit_Resistor_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to edit_Resistor (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns called 
 
% Hint: edit controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor')) 
    set(hObject,'BackgroundColor','white'); 
end 
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