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ON THE ACTION OF LIPSCHITZ FUNCTIONS ON

VECTOR-VALUED RANDOM SUMS

JAN VAN NEERVEN AND MARK VERAAR

Abstract. Let X be a Banach space and let (ξj)j≥1 be an i.i.d. sequence of
symmetric random variables with finite moments of all orders. We prove that

the following assertions are equivalent:
(1) There exists a constant K such that

(

E

∥

∥

∥

n
∑

j=1

ξjf(xj)
∥

∥

∥

2) 1

2
≤ K‖f‖Lip

(

E

∥

∥

∥

n
∑

j=1

ξjxj

∥

∥

∥

2) 1

2

for all Lipschitz functions f : X → X satisfying f(0) = 0 and all finite
sequences x1, . . . , xn in X.

(2) X is isomorphic to a Hilbert space.

For Banach spaces X and Y let Lip0(X,Y ) denote the Banach space of all
Lipschitz continuous functions f : X → Y satisfying f(0) = 0 with norm ‖f‖Lip :=
Lf , the Lipschitz constant of f . Our main result relates the action of functions
f ∈ Lip0(X,Y ) on random sums in X with the cotype and type of X and Y ,
respectively. Since the best constants are obtained for Gaussian variables, we state
the result for this case first.

Theorem 1. Let X and Y be Banach spaces with dimX = ∞ and dimY ≥ 1, and

let (γj)j≥1 be a sequence of independent standard Gaussian random variables. The

following assertions are equivalent:

(i) For all finite sequences x1, . . . , xn ∈ X, all scalars a1, . . . , an > 0, and all

f1, . . . , fn ∈ Lip0(X,Y ) we have

(

E

∥

∥

∥

n
∑

j=1

γja
−1
j fj(ajxj)

∥

∥

∥

2) 1

2 ≤ K
(

max
1≤j≤n

‖fj‖Lip

)

(

E

∥

∥

∥

n
∑

j=1

γjxj

∥

∥

∥

2) 1

2

,

where K is a constant depending on X and Y only.

(ii) For all finite sequences x1, . . . , xn ∈ X there exist scalars a1, . . . , an > 0
such that for all f ∈ Lip0(X,Y ) we have

(

E

∥

∥

∥

n
∑

j=1

γja
−1
j f(ajxj)

∥

∥

∥

2) 1

2 ≤ K‖f‖Lip

(

E

∥

∥

∥

n
∑

j=1

γjxj

∥

∥

∥

2) 1

2

,

where K is a constant depending on X and Y only.

Date: February 1, 2008.
2000 Mathematics Subject Classification. Primary: 46C15, Secondary: 46B09, 47B10.
Key words and phrases. Lipschitz functions, type 2, cotype 2, isomorphic characterization of

Hilbert spaces, Dvoretzky’s theorem.
The authors are supported by the ‘VIDI subsidie’ 639.032.201 in the ‘Vernieuwingsimpuls’

programme of the Netherlands Organization for Scientific Research (NWO) and by the Research
Training Network HPRN-CT-2002-00281.

1

http://arXiv.org/abs/math/0504452v1


2 JAN VAN NEERVEN AND MARK VERAAR

(iii) X has cotype 2 and Y has type 2.

If (i) or (ii) holds with constant K, then the Gaussian cotype 2 constant of X and

the Gaussian type 2 constant of Y satisfy Cγ2 (X) ≤ K and T γ2 (Y ) ≤
√

2K.

Proof. The implication (i)⇒(ii) is trivial.
(ii)⇒(iii): First we prove that X has cotype 2 with Cγ2 (X) ≤ K. Fix a norm

one vector y0 ∈ Y and define f ∈ Lip0(X,Y ) by f(x) := ‖x‖y0. Since ‖f‖Lip = 1 it
follows that for x1, . . . , xn ∈ X we have, with the a1, . . . , an > 0 as in (ii),

n
∑

j=1

‖xj‖2 = E

∥

∥

∥

n
∑

j=1

γjf(xj)
∥

∥

∥

2

= E

∥

∥

∥

n
∑

j=1

γja
−1
j f(ajxj)

∥

∥

∥

2

≤ K2
E

∥

∥

∥

n
∑

j=1

γj xj

∥

∥

∥

2

.

Next we prove that Y has type 2 with T γ2 (Y ) ≤ K
√

2. By an observation in [5]
we have

(1) T γ2 (Y ) = sup
{

E

(∥

∥

∥

n
∑

j=1

γj yj

∥

∥

∥

2) 1

2

: n ≥ 1, ‖y1‖ = · · · = ‖yn‖ = n− 1

2

}

.

Fix an integer n ≥ 1 and vectors y1, . . . , yn ∈ Y of norm 1. Let (ej)
n
j=1 be the

standard unit basis of l2n and let ε > 0 be arbitrary and fixed. Since dimX = ∞,
by Dvoretzky’s theorem [4] we can find an isomorphism T from l2n onto an n-
dimensional subspace X0 of X such that ‖T ‖ ≤ 1 + ε and ‖T−1‖ = 1. Let

(2) xj := Tej, j = 1, . . . , n.

Clearly, 1 ≤ ‖xj‖ ≤ 1 + ε and for all 1 ≤ j 6= k ≤ n and a, b ∈ R we have

(3) ‖axj − bxk‖ ≥ ‖T−1‖−1‖aej − bek‖ =
√

a2 + b2.

Define ϕj : X → R by

ϕj(x) := max
{

0, 1 −
√

2‖x− xj‖
}

.

Then ϕj is Lipschitz continuous with Lipschitz constant ‖ϕj‖Lip ≤
√

2, we have
ϕj(xj) = 1, and ϕj ≡ 0 outside the open ‘sector’

Vj :=
{

x ∈ X : ∃t > 0 such that ‖tx− xj‖ < 1
2

√
2
}

.

Note that 0 /∈ Vj . We claim that the sectors Vj are disjoint. Indeed, given x ∈ Vj
we choose t > 0 such that ‖tx− xj‖ < 1

2

√
2. Then for j 6= k and all s > 0,

‖sx− xk‖ ≥ ‖t−1sxj − xk‖ − ‖t−1sxj − sx‖
(∗)
>

√

t−2s2 + 1 − 1
2 t

−1s
√

2
(∗∗)

≥ 1
2

√
2.

In (∗) we used (3) and the choice of t, while (∗∗) follows from the inequality√
c2 + 1 − 1

2c
√

2 ≥ 1
2

√
2.

Define ψj : X → R by

ψj(x) := ajϕj
(

a−1
j x

)

,

where the a1, . . . , an > 0 are chosen as in (ii). Then ψj is Lipschitz continuous with

Lipschitz constant ‖ψj‖Lip ≤
√

2, we have ψj(ajxj) = aj , and ψj ≡ 0 outside Vj .
Define f : X → Y by

f(x) :=

n
∑

j=1

ψj(x)yj .
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It is clear that f(0) = 0 and f(ajxj) = ajyj . We claim that f ∈ Lip0(X,Y ) with

‖f‖Lip ≤
√

2. If x, x′ ∈ Vj for some j, then by the disjointness of Vj with the other
Vk’s and the fact that ‖yj‖ = 1 we obtain

‖f(x) − f(x′)‖ = ‖yj‖ |ψj(x) − ψj(x
′)| ≤

√
2 ‖x− x′‖.

If x ∈ Vj and x′ ∈ Vk for j 6= k, we choose convex combinations ξ and ξ′ of x and
x′, say ξ = (1 − s)x + sx′ and ξ′ = (1 − t)x + tx′ with 0 ≤ s ≤ t ≤ 1, such that
ξ ∈ ∂Vj and ξ′ ∈ ∂Vk. Clearly, f(ξ) = f(ξ′) = 0. It follows from the previous case
that

‖f(x) − f(x′)‖ ≤ ‖f(x) − f(ξ)‖ + ‖f(ξ′) − f(x′)‖
≤

√
2‖x− ξ‖ +

√
2‖ξ′ − x′‖

=
√

2(s+ (1 − t))‖x− x′‖ ≤
√

2‖x− x′‖.
The case where x ∈ Vj and x′ /∈ ⋃

k Vk is handled similarly. Finally if x, x′ /∈ ⋃

k Vk,
then f(x) = f(x′) = 0. This concludes the proof of the claim.

Recalling that f(0) = 0, ‖f‖Lip ≤
√

2, ‖T ‖ ≤ 1 + ε, ‖yj‖ = 1, we obtain

E

∥

∥

∥

n
∑

j=1

γj yj

∥

∥

∥

2

= E

∥

∥

∥

n
∑

j=1

γj a
−1
j f(ajxj)

∥

∥

∥

2

≤ 2K2
E

∥

∥

∥

n
∑

j=1

γj xj

∥

∥

∥

2

≤ 2K2(1 + ε)2E

∥

∥

∥

n
∑

j=1

γj ej

∥

∥

∥

2

= 2K2(1 + ε)2
n

∑

j=1

‖yj‖2.

By (1) this proves that Y has type 2 with T γ2 (Y ) ≤ K
√

2(1 + ε). Since ε > 0 was
arbitrary, the proof is complete.

(iii)⇒(i): Assume that X has cotype 2 and Y has type 2. For all x1, . . . , xn ∈ X ,
a1, . . . , an > 0, and f1, . . . , fn ∈ Lip0(X,Y ) we have

E

∥

∥

∥

n
∑

j=1

γja
−1
j fj(ajxj)

∥

∥

∥

2

≤ T γ2 (Y )2
(

max
1≤j≤n

‖fj‖Lip

)2
n

∑

j=1

a−2
j ‖ajxj‖2

≤ T γ2 (Y )2
(

max
1≤j≤n

‖fj‖Lip

)2
Cγ2 (X)2E

∥

∥

∥

n
∑

j=1

γjxj

∥

∥

∥

2

.

�

By a celebrated theorem of Kwapień [8], a Banach spaceX has type 2 and cotype
2 if and only if X is isomorphic to a Hilbert space. Thus if we take X = Y in the
theorem, then assertion (iii) may be replaced by:

(iii)′ X is isomorphic to a Hilbert space.

In Theorem 1 we may replace the Gaussian sequence (γj)j≥1 by a Rademacher
sequence (rj)j≥1, in which case we obtain the estimates

Cr2 (X) ≤ K and T r2 (Y ) ≤ 2√
π
K.

Here Cr2 (X) and T r2 (Y ) denote the Rademacher cotype 2 constant of X and the
Rademacher type 2 constant of Y , respectively. For the second estimate we recall
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from [9, Lemma 4.5] that T r2 (X) ≤ 1
mγ

1

T γ2 (X), where mγ
1 := E |γj | =

√

2/π and

that by an observation in [5] we have

(4) T γ2 (Y ) = sup
{

E

(
∥

∥

∥

n
∑

j=1

rj yj

∥

∥

∥

2) 1

2

: n ≥ 1, ‖y1‖ = · · · = ‖yn‖ = n− 1

2

}

.

The proof of (ii)⇒(iii) may now be repeated verbatim.
For Banach spaces X with the finite Lipschitz extension property it is possible

to give a considerable simpler proof of Theorem 1.
Next let (ξj)j≥1 be an arbitrary sequence of i.i.d. symmetric random variables

with E |ξj |2 = 1. We denote by T ξ2 (X) and Cξ2 (X) the ξ-type 2 and ξ-cotype 2
constant of a Banach space, respectively. By a standard randomization argument,

every Banach space X with (co)type 2 has ξ-(co)type 2 with constants T ξ2 (X) ≤
T r2 (X) and Cξ2 (X) ≤ Cr2 (X). Conversely, if X has ξ-type 2, then again by [9,
Lemma 4.5],

(

E

∥

∥

∥

n
∑

j=1

rjxj

∥

∥

∥

2) 1

2 ≤ 1

mξ
1

(

E

∥

∥

∥

n
∑

j=1

ξjxj

∥

∥

∥

2) 1

2 ≤ 1

mξ
1

T ξ2 (X)
(

n
∑

j=1

‖xj‖2
)

1

2

,

where mξ
1 := E |ξj |. It follows that X has type 2 with T r2 (X) ≤ 1

mξ
1

T ξ2 (X). If X has

ξ-cotype 2 and all moments of ξj are finite, then X has finite cotype (we are grateful
to Tuomas Hytönen for pointing this out to us). In fact, by means of elementary
estimates it can be shown that c0 does not have finite ξ-cotype. The Rademacher
cotype 2 of X then follows from the Maurey-Pisier theorem; cf. [9, Section 9.2].

At the expense of slightly worse estimate for the type 2 constant it is possible
to generalize Theorem 1 to sequences of random variables (ξj)j≥1 as above. This
is achieved by a slightly modified argument which does not require normalizations
as in (1) and (4) and which has the additional virtue that for each n the scalars
a1, . . . , an are allowed to depend not only on the vectors x1, . . . , xn but also on the
function f .

Theorem 2. Let X and Y be Banach spaces with dimX = ∞ and dimY ≥ 1,
and let ξ = (ξj)j≥1 be a sequence of i.i.d. random variables with E |ξj |2 = 1. The

following assertions are equivalent:

(i) For all f1, . . . , fn ∈ Lip0(X,Y ), all finite sequences x1, . . . , xn ∈ X, and all

scalars a1, . . . , an > 0 we have

(

E

∥

∥

∥

n
∑

j=1

ξja
−1
j fj(ajxj)

∥

∥

∥

2) 1

2 ≤ K
(

max
1≤j≤n

‖fj‖Lip

)

(

E

∥

∥

∥

n
∑

j=1

ξjxj

∥

∥

∥

2) 1

2

,

where K is a constant depending on X and Y only.

(ii) For all f ∈ Lip0(X,Y ) and all finite sequences x1, . . . , xn ∈ X there exist

scalars a1, . . . , an > 0 such that

(

E

∥

∥

∥

n
∑

j=1

ξja
−1
j f(ajxj)

∥

∥

∥

2) 1

2 ≤ K‖f‖Lip

(

E

∥

∥

∥

n
∑

j=1

ξjxj

∥

∥

∥

2) 1

2

,

where K is a constant depending on X and Y only.

(iii) X has ξ-cotype 2 and Y has ξ-type 2.

If (ii) holds, then Cξ2 (X) ≤ K and T ξ2 (Y ) ≤ (1 + 2
√

2)K. If the ξj have finite

moments of all orders, then (iii) is equivalent to
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(iv) X has cotype 2 and Y has type 2.

Proof. Only the proof that Y has ξ-type 2 in the implication (ii)⇒(iii) needs to be
adapted. Fix arbitrary nonzero vectors y1, . . . , yn ∈ Y . Following the arguments in
the proof of (ii)⇒(iii) in Theorem 1, we replace (2) by

xj := ‖yj‖Tej, j = 1, . . . , n,

and define ϕj : X → R by ϕ(0) = 0 and

ϕj(x) := max
{

0, 1 −
√

2(1 + ε)dj(x)
}

‖x‖,

where dj : X \ {0} → R is the function

dj(x) :=
∥

∥

∥

x

‖x‖ − xj
‖xj‖

∥

∥

∥
.

Then ϕj is Lipschitz continuous with ‖ϕj‖Lip ≤ Lε := 2
√

2(1 + ε) + 1, we have
ϕj(axj) = a‖xj‖ for all a > 0, and ϕj ≡ 0 outside the sector

Vj :=
{

x ∈ X \ {0} : dj(tx) <
1
2

√
2(1 + ε)−1

}

.

As before, Vj and Vk are disjoint for j 6= k. Indeed if x ∈ Vj , then for j 6= k we
have

∥

∥

∥

x

‖x‖ − xk
‖xk‖

∥

∥

∥
≥

∥

∥

∥

xj
‖xj‖

− xk
‖xk‖

∥

∥

∥
−

∥

∥

∥

xj
‖xj‖

− x

‖x‖
∥

∥

∥

>
√

‖Tej‖−2 + ‖Tek‖−2 − 1
2

√
2(1 + ε)−1

≥
√

2(1 + ε)−1 − 1
2

√
2(1 + ε)−1 = 1

2

√
2(1 + ε)−1,

which shows that x /∈ Sk. Define f : X → Y by

f(x) =

n
∑

j=1

ϕj(x)
yj

‖xj‖
.

Then f(0) = 0, f(axj) = ayj = af(xj) for a > 0, and f is Lipschitz continuous
with ‖f‖Lip ≤ Lε. With the a1, . . . , an > 0 as in (ii), estimating as before we obtain

E

∥

∥

∥

n
∑

j=1

ξj yj

∥

∥

∥

2

= E

∥

∥

∥

n
∑

j=1

ξj a
−1
j f(ajxj)

∥

∥

∥

2

≤ ‖f‖2
LipK

2(1 + ε)2
n

∑

j=1

‖yj‖2.

This proves that Y has ξ-type 2 with

T ξ2 (Y ) ≤ K‖f‖Lip(1 + ε) ≤ K
(

1 + 2
√

2(1 + ε)
)

(1 + ε).

Since ε > 0 was arbitrary, the proof is complete. �

If the ξj have finite moments of all orders, for X = Y we obtain an isomorphic
characterization of Hilbert spaces as before.

Theorems 1 and 2 bear a striking resemblance to [1, Proposition 1.13] which
states that X has type 2 and Y has cotype 2 if and only if every uniformly bounded
family T in L (X,Y ) is R-bounded. Recall that T is called R-bounded if there
exists a constant K such that for all choices x1, . . . , xn ∈ X we have

(

E

∥

∥

∥

n
∑

j=1

rj Tjxj

∥

∥

∥

2) 1

2 ≤ K
(

E

∥

∥

∥

n
∑

j=1

rj xj

∥

∥

∥

2) 1

2

.
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This result is elementary (it suffices to consider suitably chosen families of rank
one operators) and the role of the Rademacher variables can be replaced by any
i.i.d. sequence of mean zero random variables with finite second moment. The
precise relationship between [1, Proposition 1.13] and our results remains unclear,
since we see no obvious way to relate finitely many linear operators in L (X,Y )
to a single nonlinear function in Lip0(X,Y ). In this connection it is worthwhile
to point out that it appears to be an unsolved open problem whether for every
pair of Banach spaces X and Y there exists a constant c(X,Y ) such that, given
any distinct elements x1, . . . , xn ∈ X and elements y1, . . . , yn ∈ Y , there exists a
Lipschitz function f : X → Y satisfying f(xj) = yj for all j = 1, . . . , n and

(5) ‖f‖Lip ≤ c(X,Y ) max
1≤j,k≤n
j 6=k

‖yj − yk‖
‖xj − xk‖

.

The important point here is that c(X,Y ) should be independent of n. Indeed, it
was shown in [6] that for fixed n, (5) can be achieved with a constant c(n,X, Y ) of
order logn.

As an application of Theorem 1 we will prove next that Lip0(X) acts in the
operator ideal γ(l2, X) of γ-radonifying operators from l2 to X if and only if X is
isomorphic to a Hilbert space.

Let H be a Hilbert space. We denote by γ(H,X) the completion of the vector
space of all finite rank operators u : H → X with respect to the norm

(6) ‖u‖γ(H,X) := sup
(

E

∥

∥

∥

∑

j

γj uhj

∥

∥

∥

2) 1

2

.

The supremum is taken over all finite orthonormal systems (hj) in H . As is well
known, γ(H,X) is an operator ideal in the sense that for all bounded linear oper-

ators v : H̃ → H and w : X → X̃ we have wuv ∈ γ(H̃, X̃) and

‖wuv‖γ(H̃,X̃) ≤ ‖w‖ ‖u‖γ(H,X) ‖v‖.

For more information we refer to [3, Chapter 12].
We will be interested in the particular case where H equals L2 := L2(S,Σ, µ)

for some σ-finite measure space (S,Σ, µ) and uφ : L2 → X is an integral operator
of the form

uφh =

∫

S

h(s)φ(s) dµ(s), h ∈ L2,

for suitable functions φ : S → X . Operators in γ(L2, X) arising in this way have
been investigated recently in [7]. If φ is a simple function, i.e., a function of the form
∑n
j=1 1Sj

⊗ xj with vectors xj taken from X and disjoint sets Sj ∈ Σ satisfying

0 < µ(Sj) < ∞, it is easily checked that uφ ∈ γ(L2, X) and by considering the

orthonormal functions hj := µ(Sj)
− 1

2 1Sj
, the γ-norm of φ is computed as

(7) ‖uφ‖2
γ(L2,X) = E

∥

∥

∥

n
∑

j=1

γjuφhj

∥

∥

∥

2

= E

∥

∥

∥

n
∑

j=1

γj µ(Sj)
1

2xj

∥

∥

∥

2

.

The subspace of all u ∈ γ(L2, X) of the form u = uφ for some simple function
φ : S → X will be denoted by γsimple(L

2, X). An easy approximation argument
shows that this is a dense subspace of γ(L2, X).
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If X has type 2, the mapping φ 7→ uφ defined for simple functions φ as above,
extends to a continuous embedding from L2(X) := L2(S,Σ, µ;X) into γ(L2, X).
Indeed, for a simple function φ =

∑n
j=1 1Sj

⊗ xj we have, using (7),

(8)

‖uφ‖2
γ(L2,X) = E

∥

∥

∥

n
∑

j=1

γj µ(Sj)
1

2xj

∥

∥

∥

2

≤ T γ2 (X)2
n

∑

j=1

µ(Sj)‖xj‖2 = T γ2 (X)2‖φ‖2
L2(X),

and the claim follows by a density argument. Similarly, if X has cotype 2, then
uφ 7→ φ extends to a continuous embedding from γ(L2, X) into L2(X).

If φ =
∑n
j=1 1Sj

⊗xj is a simpleX-valued function, then for each f ∈ Lip0(X,Y ),

f(φ) =

n
∑

j=1

1Sj
⊗ f(xj)

is a simple Y -valued function. In this way we obtain a mapping f̃ : γsimple(L
2, X) →

γsimple(L
2, Y ) by putting

f̃(uφ) := uf(φ).

We are interested in conditions ensuring that f̃ extends to a Lipschitz continu-
ous mapping from γ(L2, X) to γ(L2, Y ). From f(0) = 0 we see that a necessary
condition is that there should exist a constant K such that

‖uf(φ)‖γ(L2,Y ) ≤ K‖f‖Lip‖uφ‖γ(L2,X)

for all simple functions φ : S → X . The next result gives a converse and relates
both conditions to the geometry of the spaces X and Y .

Theorem 3. Let X and Y be Banach spaces, let L2 := L2(S,Σ, µ) as before, and

assume that dimX = ∞, dim Y ≥ 1, and dimL2 = ∞. Let (γj)j≥1 be a sequence

of independent standard Gaussian random variables. The following assertions are

equivalent:

(i) For all f ∈ Lip0(X,Y ) and all simple functions φ : S → X we have

‖uf(φ)‖γ(L2,Y ) ≤ K‖f‖Lip‖uφ‖γ(L2,X),

where K is a constant depending on X and Y only.

(ii) X has cotype 2 and Y has type 2.

If (i) holds, then Cγ2 (X) ≤ K and T γ2 (Y ) ≤
√

2K, and for all f ∈ Lip0(X,Y ) the

mapping f̃ uniquely extends to an element of Lip0(γ(L
2, X), γ(L2, Y )) satisfying

‖f̃‖Lip ≤ Cγ2 (X)T γ2 (Y )‖f‖Lip.

Proof. (i)⇒(ii): Let x1, . . . , xn ∈ X be arbitrary. By the σ-finiteness of (S,Σ, µ)
and the assumption that dimL2 = ∞ there exist disjoint sets S1, . . . , Sn ∈ Σ satis-
fying 0 < µ(Sj) <∞ for j = 1, . . . , n and define φ : S → X by φ :=

∑n
j=1 hj ⊗ xj ,
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where hj = µ(Sj)
−1/2

1Sj
for all j. It follows from (7) that for all f ∈ Lip0(X,Y ),

(

E

∥

∥

∥

n
∑

j=1

γjµ(Sj)
1

2 f
(

µ(Sj)
− 1

2 xj
)

∥

∥

∥

2) 1

2

= ‖uf(φ)‖γ(L2,Y )

≤ K‖f‖Lip‖uφ‖γ(L2,X) = K‖f‖Lip

(

E

∥

∥

∥

n
∑

j=1

γjxj

∥

∥

∥

2) 1

2

.

By an application of Theorem 1 with aj = µ(Sj)
− 1

2 we obtain (ii).
(ii)⇒(i): Assume that X has cotype 2 and Y has type 2 and fix f ∈ Lip0(X,Y ).

For simple functions φ, ψ : S → X we have, by (8) and its cotype 2 analogue,

‖f̃(uφ) − f̃(uψ)‖γ(L2,Y )

= ‖uf(φ) − uf(ψ)‖γ(L2,Y ) ≤ T γ2 (Y )‖f(φ) − f(ψ)‖L2(Y )

≤ T γ2 (Y )‖f‖Lip‖φ− ψ‖L2(X) ≤ Cγ2 (X)T γ2 (Y )‖f‖Lip‖uφ − uψ‖γ(L2,X).

Since γsimple(L
2, X) is dense in γ(L2, X) it follows that f̃ has a unique Lipschitz

continuous extension from γ(L2, X) to γ(L2, Y ) with ‖f̃‖Lip ≤ Cγ2 (X)T γ2 (Y )‖f‖Lip.
This proves the final assertion, and (i) follows by taking ψ = 0. �

Theorem 3 is motivated by the result from [10, 11] that a function φ : (0, T ) → X
is stochastically integrable with respect to a Brownian motion if and only if the
operator uφ is well defined and belongs to γ(L2(0, T ), X). The question whether

f̃ extends continuously to γ(L2(0, T ), X) for all f ∈ Lip0(X,X) thus amounts to
asking whether f(φ) is stochastically integrable whenever φ has this property. This
question arises naturally in the study of stochastic differential equations inX driven
by multiplicative noise satisfying Lipschitz conditions; cf. [2] for the Hilbert space
case. Theorem 3 applied to X = Y shows that in general the answer is negative
unless X is isomorphic to a Hilbert space.

Acknowledgment – We thank Tuomas Hytönen and the anonymous referee for
helpful remarks.
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