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Summary

The goal of this thesis is to look into the possibilities of making origami neutrally stable. This is wanted
because the inherent stiffness of origami mechanisms introduces unwanted artifacts such as a higher
actuation force, and the mechanism not following the theoretical kinematics. By making an origami
mechanism neutrally stable the inherent stiffness of the pattern can be removed, and with that the un-
wanted artifacts as well.

Two different strategies are explored, both a form of static balancing. With static balancing, two ele-
ments are balanced against each other. In the origami application, this means that two creases are
balanced against each other. For the first strategy, a negative stiffness crease is combined with a pos-
itive stiffness crease. And for the second strategy two equal but opposite constant moment creases
are balanced. To achieve this a negative stiffness, or constant moment crease needs to be designed.

For the negative stiffness crease, a design was made where a flat sheet with a slot in the middle
was prestressed into a saddle form. This showed bi-stable behavior, and with that negative stiffness.
The range of negative stiffness was too short to be relevant for origami. And the prestressing proved
hard to model. For the constant moment crease, a convex crease was designed, which did not need
to be prestressed. This was easier to model, and three different geometries were found that showed
a constant moment. By optimizing these geometries a constant moment over a range of 80° was found.

To check if the model is correct, a prototype experiment was performed. The optimized geometry was
3D printed and tested under the same boundary conditions that were present in the model. The results
of the prototype experiment matched the results of the model, thereby validating it.
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Introduction

Origami is usually known as an art form, where 3D-figures are created by folding flat sheets of paper.
This has become a source of inspiration for designing mechanisms, because origami is scalable, and
has the potential to switch between different states. This makes origami mechanisms applicable to
many fields [1]. For these reasons origami mechanisms is a growing research field. This can be seen
by looking at the papers containing "Origami mechanisms” in google scholar, 75 % of these were writ-
ten in the past four years.

Within most mechanisms there is usually an input and an output, where a force or displacement on the
input actuates the output. In an origami pattern each cell acts like a separate mechanism with an input
and an output, these are chained together so that the output of the one cell is also the input of the next
cell. How the pattern deforms is often determined using the rigid origami concept. This breaks down
the movement of the pattern to just its kinematics [2]. This is because the stiffness ratio between the
facets and the creases is assumed to be infinite, so all the deformations in the pattern happen in the
creases.

In reality however this is not what happens. The facets are not rigid but they have a stiffness, and so
do the creases. This means that there is a finite stiffness ratio between the facets and the creases, and
not all deformations happen in the creases anymore. This introduces artifacts in the system which will
make it no longer follow the theoretical kinematics [3]. This can be seen in a simple origami tessella-
tion. If one cell is completely folded all the other cells should also fold completely. But what happens
is that the adjacent cells will only partly fold and cells even further away will hardly be affected by the
first cell. This can be a problem in origami mechanisms. For example, when used as a transmission,
the output will not necessarily follow the input in the intended way. Another advantage of mechanisms
with theoretically correct kinematics is that they can be easily used for deployable structures. This is a
structure that is folded such that it can be deployed in one continuous motion [4]. When the kinematics
of such a structure are theoretically correct it can be fully deployed by only actuating one cell. So far
researchers have focused on reducing the stiffness of the creases to approach the infinite stiffness
ratio. This can be done by making the crease thinner, perforating the crease, or reducing the Young'’s
modulus of the crease. These methods are the focus of the literature survey which can be found in
chapter 2. In this survey a research gap is found under prestress, what is meant with this is that the
stiffness of origami mechanism can be removed with the use of prestress. This can be achieved with
the technique of static balancing.

In static balancing two different elements are combined to create zero-stiffness. There are two ways to
achieve this. Firstly, it is possible to create one element with a negative stiffness and combine this with
an element that has an equally large positive stiffness [5]. This gives a downward sloped and an equally
upward sloped moment-angle characteristic, these two elements need to be prestressed into the right
position such that the two slopes added up equal zero, this will result in a combined moment-angle
characteristic with a flat region at zero. Secondly, two constant moment elements can be combined.
One of these elements needs to be flipped around, this will give the two elements an equal but opposite
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constant moment. These will again need to be prestressed such that the constant moment ranges of
the two elements overlap. Then together they will form a mechanism that is statically balanced. This
was demonstrated by Radaelli, [6].

These two different methods can be applied to origami by using the creases as balancing elements. So
either a crease with a negative stiffness is combined with a positive stiffness crease, or two constant
moment creases are combined. A normal crease already has a positive stiffness, so to achieve this
way of static balancing, either a negative stiffness crease, or a constant moment crease is needed.

In this thesis, multiple designs for both zero stiffness or constant moment creases are explored. With
the goal to use them for statically balancing a Miura-ori pattern. This is achieved through modeling
these creases in a FEM program and optimizing them for their needed properties, either negative stiff-
ness or a constant moment, in their moment-angle characteristics.

In chapter 2, the literature survey which led to the idea of the thesis can be found. Then in chapter 3,
the design of a constant moment crease, and its application into origami mechanisms is presented in a
paper format. This is followed by the discussion and conclusion. In the appendixes some extra analyses
are shown, as well as supplementary information, such as how the creases can be implemented into
origami, the concept generation of both negative stiffness and constant moment creases, and details
on how the modeling was performed.
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Literature review on achieving theoretical kinematics in origami and
metamaterial mechanisms

Edward van Wijk

Abstract—Origami mechanisms are mechanisms that are cre-
ated by folding a flat sheet into a 3D structure. These mechanisms
are usually designed with the rigid origami method. Here it
is assumed that the facets are infinitely stiff, and the creases
are frictionless hinges. In reality, however, both the facets and
the creases have a stiffness. This causes origami mechanisms
to not follow their theoretical kinematics. In this review, an
overview is given of the different methods that are used to
approximate the theoretical kinematics in these mechanisms.
These methods are categorized into four different techniques and
these are subdivided into multiple strategies. Finally, a division
is made between compliant and metamaterial mechanisms, and
origami mechanisms. From the results, it can be concluded that
decreasing the crease stiffness does not work well enough to
create proper kinematics as it often has to be combined with a
method from a different category. However, a research gap is
found under prestress that offers the opportunity to decrease the
crease stiffness to such a point that an origami mechanism can
follow its theoretical kinematics.

I. INTRODUCTION

Origami is the art of paper folding. In origami, flat paper
sheets can be constructed into 3D structures. This is an
attractive property for engineers as it allows the manufacturing
of complex 3D shapes with simple 2D fabrication methods.
Therefore there has been an increasing amount of research
into using this concept to develop mechanisms. This can be
seen from the dates of papers containing ~origami mechanism”
found in Google Scholar. Of these papers, 58% were written
in the past four years.

What is often seen in mechanisms is that a force or dis-
placement on one part moves another part of that mechanism.
For an origami mechanism, this means that by actuating one
cell of the pattern the whole pattern will move along. How this
pattern will move is often determined using the rigid origami
concept. Here the origami is modeled as rigid facets connected
by frictionless hinges. This makes designing these mechanisms
a matter of kinematics [25]. This is the case because the
stiffness ratio between the facets and the creases is infinite.
This means that all deformations happen in the creases and
not in the facets. In reality, however, these origami facets are
not rigid but have a certain stiffness, and the creases are not
frictionless hinges but also have a stiffness. This results in a
finite stiffness ratio which means that the facets will deform
as well. Furthermore, the creases can also deform in other
directions other than the bending direction because they are
not ideal hinges. This introduces artifacts in the system which
will make it no longer follow the theoretical kinematics [19].
This can be seen when a tessellation is locally actuated, in
theory, all cells should have the same angles so the tessellation
should deform globally, but in practice, the tessellation will

only deform locally with the cells adjacent to the actuated
cell compressing more than the cells further away.

In this literature review, the techniques that help origami
mechanisms to follow their theoretical kinematics are ex-
plained and categorized. In this categorization, compliant
mechanisms and metamaterial mechanisms are also included.
This is done because some of the techniques that are seen in
these areas could also be used in origami mechanisms. Thus
including these other areas will give a better view of research
gaps in origami mechanisms.

In the methods section, the proposed categories of the cate-
gorization will be explained. The strategies to achieve some of
these categories will be explained in their 1 respective sections
under the results. There, the found literature will also be
categorized according to this categorization. For every strategy,
compliant and metamaterial mechanisms will be discussed
first, followed by origami mechanisms. In the discussion, the
observed similarities between papers, which became apparent
through the categorization, are discussed.

II. METHODS

Most papers do not report on problems with the kinematical
correctness of their mechanisms and use different methods
to still allow their mechanisms to function properly. The
techniques used were found in papers regarding origami,
metamaterial, and compliant mechanisms. These techniques
are divided into four categories (Fig. 1). The first category
is decreasing crease stiffness. This is based on the fact
that an infinite stiffness ratio between the facets and the
creases is needed for proper kinematics. By decreasing the
stiffness of the creases this can be approximated. The second
category is individual cell actuation. Here every cell within
the mechanism has its own actuator. When this actuation is
equal over all cells, they will all move into the same shape.
The third category is external constraints. This encompasses
mechanisms that have external constraints or boundary condi-
tions that only allow for movement following the theoretical
kinematics. This is often accomplished by connecting multiple
cells rigidly together and actuating them all at the same time.
The final category is real hinges. This again uses the fact
that an infinite stiffness ratio is needed. Hinges that are not
compliant do not have a stiffness. Therefore, using these
hinges as creases gives zero-stiffness creases. This results in
an infinite stiffness ratio. To achieve the first two categories
multiple strategies can be thought of. These will be discussed
in their respective sections. Finally, for the first three categories
and their strategies a division can be made between origami
mechanisms and metamaterial or compliant mechanisms.
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Fig. 1. Visualization of the proposed categorization.

The division between these two is that origami mechanisms
can be folded flat, where metamaterial and compliant mech-
anisms are fabricated in 3D and will stay that way. For the
fourth category, real hinges, this division is not made as using
real hinges in a mechanism excludes it from being a compliant
mechanism.

III. RESULTS

A. Decreasing crease stiffness

In the rigid origami theory, it is assumed that the stiffness
ratio between the facets and the creases is infinite. Because
infinitely stiff facets do not exist, the only way to realize this
is to reduce the crease stiffness to zero. If the creases have
no stiffness at all, the mechanism will follow the theoretical
kinematics. In origami, the important crease stiffness is its
bending stiffness, for a flat crease with a rectangular cross-
section this stiffness is defined by the expression: K = %
Here E is the young’s modulus. [ is the area moment of inertia
expressed in the thickness ¢ and width w as I = “{—t; Finally,
L is the length of the crease (Fig. 2). From this, there are four
options to decrease the bending stiffness of a crease which
are:

1) Decreasing the crease thickness
2) Decreasing the crease width

3) Decreasing the Young’s modulus
4) Increasing the crease length

-

Fig. 2. Dimensions of the crease.

The most effective way to do this is by decreasing the
thickness as this scales the stiffness by the power three [22].
Decreasing the width and Young’s modulus is also often seen,
but increasing the length is not. Although it does help to
decrease the stiffness it also allows more motions like torsion
which is not wanted in the creases. Therefore this technique is
not used. Another method of decreasing the stiffness is using
a prestressed counter stiffness. By prestressing, for example,
a beam, into a buckled state, it can get a negative stiffness.
By coupling this prestressed beam to a different element the
stiffnesses can cancel each other, given that their stiffnesses are
opposite but equal. This combination will result in a statically



balanced mechanism.

1) Decreasing crease thickness: C. Reducing material
thickness to create a joint is common practice in compliant
mechanism design. A notch joint is a clear example of this.
In Howell’s book, compliant mechanisms [8], a notch joint
can be seen in multiple mechanisms. For example a bistable
switch (Fig. 3). Another example is the microgripper from
Raghavendra [24] (Fig. 4). Here the arm pivots around the
right hinge while it is being actuated by the piston on the
left. The metamaterial mechanisms from Ion [10] can also be

Actuation lever

Living hinges

Flexural

ivot
Contacts p

Fig. 3. Bistable switch with notch joints, Howell [8].

Fig. 4. Mesh of one arm of a microgripper, Raghavendra [24].

classified under decreasing crease thickness. The mechanisms
are constructed by square cells that can shear, these cells are
laser cut from rubber, or 3D printed. In the cut pattern, the
corners of the cell are left thinner than the edges (Fig. 5).
The produced mechanisms are in the centimeter range, but
with the laser cutting technique, the sizes could be increased
or decreased. How small they can be produced is dependent
on the resolution of the laser cutter. On the other end, the
maximum size depends on the bed size. Due to the overall
flexibility of the mechanisms they do not follow the proper
kinematics too well.

O. In Kuribayashi [15], a self-deployable origami stent-graft
is described. This stent can be folded compactly to be inserted
more easily into an artery, and will then deploy automatically.

Fig. 5. Shear cells where the corners are thinner than the edges, Ion [10].

The stent is made out of an SMA foil, in this foil grooves
are etched which define the crease pattern (Fig. 6). Due to the
etching technique that is used this is only possible for thin
materials, and thus, for small mechanisms. The foil used for
the stent is 0.070 mm thick, and the stent is approximately 5
cm long. Reducing the crease thickness was not enough to get
proper kinematics, this can be concluded from the fact that
all the creases still need to be individually actuated. Onal [22]

Fig. 6. SMA foil with etched creases, Kuriabayashi [15].

tried to use thinner creases in his worm robot. This robot is
designed using a waterbomb base pattern which is rolled into
a tube (Fig. 8). This pattern, which has a negative poison ratio,
can contract axially which gives it a peristaltic motion. This,
combined with frictional anisotropy, i.e. the frictional forces
in the backward direction are greater than those in the forward
direction, yields a net forward motion. The robot is fabricated
from a polymer sheet. The creases were engraved at first. This,
however, did not work properly. The engraving was only done
on one side of the sheet, which caused an asymmetry in the
folding, also repeatability was hard to achieve as the crease
lines were weakened by the laser. Another example where thin
creases were not adequate is from Iniguez-Rabago [9]. In his
paper research is done into the multistability of an origami-
inspired metamaterial. The metamaterial is constructed by
extruding different kinds of polyhedrons. Theoretically, these
structures should have multiple stable configurations. First,
50pm thick mylar is used for the hinges. However, with these
hinges, the theoretical stable states were non-existent in the
produced prototypes.

2) Decreasing crease width: C. In Sung [27], research is
done into foldable joints. These joints are designed using the
origami principle. The fold lines of the origami pattern are



perforated during the laser cutting process, which effectively
decreases the width of the crease. The joints are made from
0.051 mm and 0.127 mm thick polyester film. This method
can be applied on the centimeter scale, for thicker hinges it
probably would not work that well, as crease stiffness scales
to the power three with the thickness. How well the theoretical
kinematics are followed is not shown in the paper, but looking
at the figures does give insight into this (Fig. 7). The facets
are still very thin and far from rigid, this gives the impression
that movements not allowed by the theoretical model are still
possible.

Fig. 7. Foldable joints with perforated creases, Sung [27].

O. The perforation technique is also used for a worm robot
by Onal [22], which has been discussed previously. To remedy
the asymmetry of the engraved crease, it is now perforated
(Fig. 8). The stiffness is still decreased but the crease is now
symmetric and not the whole length of the crease is affected
by the laser making the process more repeatable. Finally,
the required stiffness of the creases is easily controlled by
adjusting perforation density. Just like the foldable joints, the
worm robot is in the centimeter scale, but as explained above
it is difficult to scale up. The theoretical kinematics are still
not fully realized as the robot needs an actuator throughout all
the individual cells.

3) Decreasing Young’s modulus: C. In compliant mecha-
nisms, joints can also be made of flexible materials. Some
theory on these joints is explained by Bejgerowski [4] (Fig.
9) and Gouker [7] (Fig. 10). A downside of using two materials
is that manufacturing becomes more complicated. In these
papers, multi-material molding is used to manufacture these
joints which makes the process easier.

0. Kaspersen [13] made a design for a flat kirigami actuator
that lifts a part out of its plane when it is pulled on (Fig. 11).
The actuator is made from a combination of wood and fabric.
The wood is used for the stiff facets, these facets are put on
a fabric pattern which is cut in the shape of the actuator. The
size of the actuator is in the centimeter scale, with the used
fabrication technique it is likely that this could be scaled up to
meters, like suggested in the paper. The theoretical kinematics
seem to be followed reasonably, this is in part due to the large
stiffness ratio between the wooden facets and fabric hinges,
but also because only one cell is made leaving it no room but
to follow the proper kinematics. In Tachi [28] a combination of

Fig. 8. Worm robot with perforated creases, Onal [22].

Rigid Link

Fig. 9. A rigid link is connected to a flexible hinge, Bejgerowski [4].

rigid panels on fabric is used as well(Fig. 12). The prototype
that is manufactured is of the decimeter scale, but the paper
also envisions using this principle at the meter scale or even
bigger. No prototypes were constructed that show how well
the theoretical kinematics are followed, but as the panels are
much stiffer than the fabric it would probably perform well.
Iniguez-Rabago [9] also uses a two material approach for an
origami mechanism. As discussed before, at first a thin mylar
was used for the hinges, but as this did not work the mylar was
replaced by elastomeric hinges with a lower Young’s modulus.
This increased the number of theoretical stable points that were
found from O to 6 out of 8 (Fig. 13). This is not completely
proper, but it is a good result. The prototypes are made at
the centimeter scale, scaling this up or down should not be
a problem as the stiffness ratio between the facets and the
creases will stay the same. However, its possible size will be
limited by the resolution of the 3D-printer and its maximum
size. An origami soft gripper developed by Li [16], comprises
of two different materials. Rigid PET facets are glued on two
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Fig. 10. Soft material is used in between hard material to create a hinge,
Gouker [7].

Fig. 11.
Kaspersen [13].

Flat kirigami actuators with rigid wooden facets on a fabric,

sides of a flexible PVC layer. For valley folds a gap is left
between the PET, for mountain folds a cut is made (Fig. 14).
The size of the gripper is in the centimeter scale and could
be scaled up as the stiffness ratio between the PET facets
and PVC creases do not scale with size. The gripper does
not follow the theoretical kinematics too well, but as it is a
soft gripper this does actually help. This way the gripper can
deform around asymmetric objects to grip them from all sides.
It is also helped by vacuum actuation which deforms the whole
gripper at the same time.

fabric for hinge

exterior panels interior panels

particles

Fig. 12. Rigid panels on a fabric, Tachi [28].
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Fig. 13. Multistable states of a prismatic metamaterial. No stable states
are found with the mylar hinges, and six are found with the silicon hinges,
Iniguez-Rabago [9].
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Fig. 14. Origami gripper (a) Two layers of PET are glued onto a PVC layer.
(b) For valley creases, a gap is left between the PET facets and for mountain
creases, a cut is made. (c) Prototype of the gripper, Li [16].

4) Prestress: C. In Merriam [20], prestress is used to
reduce the stiffness of a compliant joint. This concept could
also be applied to origami mechanisms and has the potential
to completely remove the stiffness of the creases resulting in a
perfect following of the theoretical kinematics. However, there
are no publications that look into this possibility.



B. Individual cell actuation

The kinematics of an origami mechanism can be improved
by actuating all its cells or creases individually. When each
cell is locally subjected to the same actuation force, the whole
mechanisms will have a uniform global deformation. This is
also what should happen according to the theory. Actuating all
cells individually seems like a tedious task, especially when
there are multiple cells. However, with the methods found
in the literature, this can be easily done. Different strategies
were found to conveniently actuate multiple cells. The first
one that will be looked at is shape memory alloy (SMA). This
is an alloy that can be deformed when it is cold, but it will
return to its undeformed shape when heated up. This property
can be used in origami mechanisms to actuate all the cells at
once by heating the whole mechanism. Another method that
uses temperature is based on thermal expansion. Materials will
expand when they are heated up and shrink when cooled. This
can be used as a simple linear actuator, but by connecting two
materials with different thermal expansion coefficients it can
also generate a bending motion. This is due to the fact that
one layer will expand more than the other layer it is connected
to, this will generate a bending of both materials. The third
strategy is using pneumatics. By pushing pressurized air into a
closed space this can be inflated to actuate a mechanism, then
by depressurizing, the mechanism can return to its original
state. This same method can also be used using fluids, making
hydraulics the final strategy under the category individual cell
actuation.

1) SMA: C. SMA is used as an actuator in compliant
mechanisms. In Sreekumar [26], a platform mounted on an
elastic pillar is connected to three SMA wires which can be
used to move the platform (Fig. 15). It is also used in Balaji
[3]. Here a pipe crawler is designed which is a mechanism
that can crawl along a pipe. Two rings are connected by an
SMA actuator, one ring clamps the pipe while the other one
is released and pulled towards the clamped ring. They then
switch state and the loose ring is pushed away, this gives a
forward motion which is caused by the SMA actuator.

O. SMA is also used by Kim [14] to create a self-deployable
origami structure. The SMA is woven through the whole
structure (Fig. 17), and when it is heated up the origami
deforms such that the shape is locked. This greatly increases
the total stiffness of this mechanism. An origami sheet of
89 by 63 mm is used, with that, the structure belongs in
the centimeter scale. The actuation of the structure does
not generate a movement but only increases its stiffness by
locking the cell. This locking is achieved by heating the whole
structure to 70 °C. Because the structure has to cool down
naturally, the actuation frequency has to stay low. However,
this is also what the structure is designed for. The prototype in
the fully activated state is 4 cm tall. Scaling up the structure
and the thickness of the SMA wire would contribute to an
even longer cooldown time. Using the SMA actuators on every
cell makes sure that the theoretical kinematics are followed.
SMA is also used in the worm robot of Onal [22], which

Fig. 15. A platform on an elastic pole connected to three SMA wires,
Sreekumar [26].

Fig. 16. (a) The pipe crawler with (b) an SMA U-shape that actuates it, Balaji
[3].

also features perforated creases to reduce its stiffness. A single
SMA wire is woven through each segment of the origami tube
(Fig. 18), this makes the contractions around the perimeter
of the tube more even. The SMA wire takes 6 seconds to
passively cool down before it can be contracted again. This
has a big influence on the actuation frequency and makes the
robot slow at an average forward velocity of 18.5 mm/min. As
mentioned before the robot is in the centimeter scale, scaling
up the robot and with that, the SMA wires would increase
the cooldown time, thus this is not feasible. Reducing its
size would however have a positive effect on the cooldown
time. Because one wire is used and the contraction over the
whole tube is even the robot follows the theoretical kinematics.
The stent-graft from Kuribayashi [15], which is also discussed
under decrease crease thickness (Fig. 6), also uses SMA.
Opposed to the designs of Kim and Onal, here the entire
mechanism is made from an SMA foil. At a temperature of 46
°C, the stent will deploy on its own. It takes approximately 60
seconds to fully deploy. For most mechanisms this is too slow,
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Fig. 17. SMA wires are woven through an origami pattern to act as its
actuator, Kim [14].

Fig. 18. SMA wire (red dashed line) woven through the origami pattern of
a robot worm, Onal [22].

however as a stent only needs to deploy once and then never
again, speed is not a problem for this application. The SMA
foil has a thickness of 0.070 mm, and the length of the stent
is approximately 5 cm. The thicker the foil the longer it will
take to fully deploy the stent. Because the whole stent heats
up as one, all the cells of the pattern will deform equally. This
means that the stent follows its theoretical kinematics.

2) Thermal expansion: C. Thermal actuation is mostly seen
in micromechanisms. This is because on a small scale it is
easier to change material temperature, which is the driving
force of a thermal actuator. Baker [2] designed a switch
that uses thermal actuators in a fishbone pattern. When the
temperature is increased all the skewed beams will expand and
move the middle beam they are connected to. Other examples
can be seen in Howell [8].

O. Just like with SMA for this method the system is actuated
by temperature change, however, Boatti [5] uses a bilayer
plate with two different materials that have a different thermal
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expansion coefficient. When heated up one layer will expand
more than the other and the plate will bend. This is applied on
a Miura-ori pattern where half of one cell consists out of the
bilayer plate, and the other half is just a monolayer plate (Fig.
19). When the temperature changes, the crease angle of the
bilayer plate will change. Heating the Miura-ori sheet from 20
°C to 70 °C expands the sheet as expected. Because every cell
deforms the same amount the expansion is uniform over the
whole sheet as the theoretical kinematics would predict. As it
is actuated by temperature and it takes time to heat up and
cool down the origami this actuation technique is quite slow.
The size of the origami is in the decimeter range, it could
be scaled down, but scaling it up more would mean that the
actuation frequency would drop even more. This is because
the thicker the sheet, the more time heating, and cooling it
takes.

Maonolayer Plate
C— Tt

paper

Bilayer Plate

== Stiff Crease

S X

Fig. 19. A Miura-ori cell with on one side a monolayer plate, and on the
other side a bilayer plate, Boatti [5].

== Soft Crease

N

3) Pneumatic: C. Pressurized air is used by Overvelde [23]
to make a mechanical metamaterial. In their approach, an
origami-like design is used where each cell is an extruded
cube (Fig. 20a). A combination of multiple of these cells
forms a mechanism which can transform into multiple shapes.
To switch between these shapes every extrusion of the cube
has an air pocket on its hinge which can be pressurized
to actuate that hinge (Fig. 20b). By actuating the hinges in
the correct order the whole structure can move into different
states. The prototype is made from three layers, two outer
layers of polyethylene terephthalate and one inner layer of
double-sided tape. The cells are folded from these layers and
using revealed parts of the tape to connect them. The whole
structure is on the decimeter scale. It can be actuated at a high
frequency as, unlike with the previous two strategies, actuation
is active in both ways. This means that both the pressurization
and depressurization can be done with an actuator instead of
having to wait for one of these steps. Because not every hinge
in the mechanism has an air pocket the theoretical kinematics
are not followed exactly, however for this application enough
actuators are implemented to make it work.

0. A different way to utilize air pressure is to cover an
origami skeleton with an airtight layer, by adding negative
pressure to this airtight mechanism the origami skeleton is
pressed on from all sides. In Deshpande [6], the origami
skeleton is a bellow pattern that can expand and contract.
Adding a negative pressure will contract the skeleton allowing



a b
Air pocket
_ Sleeve
Pocket prgssurized
Fig. 20. (a) A unit cell made of an extruded cube. (b) Extrusion with air

pocket on one hinge which can be pressurized to fold the cell, Overvelde
[23].

it to be used as an actuator. The skeleton is made from paper
and is covered with latex. The actuator is 20 cm long in its
most stretched position. The actuator can be actuated fast as
the pressure can be increased and decreased immediately after
each other. The proper kinematics are also followed well due
to the latex pressing on the whole skeleton at the same time.
The origami soft gripper from Li [16] (Fig. 14) also uses
pneumatic actuation. The structural origami is encased by an
airtight latex-rubber balloon. The whole gripper is only a few
centimeters long but can hold loads up to 120 N. This indicates
that scaling up the mechanism would not be a problem for the
power that the vacuum pump can deliver. Nothing is reported
on how fast the gripper is actuated but with the pneumatic
actuation, it will be relatively quick. With the overall actuation
of the gripper, the theoretical kinematics are followed better,
however, as mentioned earlier it is a soft gripper that deforms
to the shape of the gripped object. This means that it is not
always wanted to follow the theoretical kinematics properly.
4) Hydraulic: O. Li [18] investigated the possibilities for
pneumatics in origami. Two Miura-ori sheets are put on top of
each other with space in between which acts as a fluid channel.
By regulating the volume of the fluid in these channels the size
of the structure can be increased or decreased. The prototype
is manufactured at the centimeter scale, this could be scaled
up as hydraulics offer the possibility for high pressure which
can also move larger actuators. The actuation speed is also fast
as like with air pressure, an immediate switch can be made
between inflation and deflation. Using pressure in between two
sheets assures an even distribution of the force per cell. This
results in a good following of the theoretical kinematics. In

Fluid channels with pressure and volume control
SOTPTR T s
(Tl =2y
J0mP T >

Fig. 21. Two Miura-ori sheets on top of each other with fluid channels in
between them, Li [18].

another paper [17] Li looks at a slightly different approach.
Here an origami structure is used as a skeleton, around which
a fluid-tight layer is put. By filling this layer with fluid,
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or extracting it, the skeleton is extended or shortened. The
actuators are manufactured at both the centimeter and the
decimeter scale. The second one can lift a 22 kg load 20 cm.
This load indicates that bigger actuators would be possible
as well. Again hydraulics offer the opportunity to actuate the
mechanism fast. Due to the distributed pressure, the skeleton
deforms as the theoretical kinematics would predict.

Pin = Pout
Pout| Pin

AP=0

Fluid out Pin < Pout

»*
Contraction
Fluid out Pm << Pou{
Contraction

AP<0

Fig. 22. An origami skeleton with a fluid-tight layer around it, enabling the
contraction of the skeleton, Li [17].

C. External constraints

External constraints can be used to force origami and
metamaterial mechanisms into their designed kinematics. By
placing constraints in the right positions motions of these
mechanisms that are not part of the theoretical kinematics can
be stopped. C. In a paper by Ion [11] a design for changing
material textures is proposed. This mechanism is originally
smooth, but when it is compressed spikes will pop out (Fig.
23). This mechanism is implemented for different uses. One
of the prototypes is a shoe that can change the grip of its
sole (Fig. 25). In this case, the designed mechanism is the
shoe sole. One end of the sole is fixed to the back of the
shoe while the other end is connected to a string. Its state
is manually changed by pulling this string which compresses
the sole. This leaves no room for the mechanism to move
differently than the theoretical kinematics. Another application
is a door handle whose texture can be changed. A knob at the
end of the handle can be turned, this winds up strings that are
connected to the other end of the handle. The handle is now
compressed between the knob and its end (Fig. 24). This again
makes sure the mechanism follows its theoretical kinematics.
The mechanism is manufactured using a 3D printer.



Fig. 23. (a) Textured objects consist of many (b) unit cells, which (c) pop
out of the object’s surface when compressed, Ion [11].

Fig. 24. (a) This shoe sole is flat by default. (b) The user transforms it into a
treaded sole it by pulling a string, e.g., when it starts snowing. (c) Note that
the sole is functional and robust enough to walk on, Ion [11].

External constraints are also used by Lin [19] at the micro-
scale. Here a metamaterial is designed using Miura-ori tubes
which are coupled together to form one mechanism. This
is produced using a two-photon polymerization direct laser
writing technique. The whole structure is around 100pm, with
this technique this cannot be scaled up as it is only possible
to print small objects with it. The goal of the mechanism
is to have different stiffness in different directions. This is
tested by putting the mechanism in between two plates that
compress it. By having the plates as boundary conditions the
mechanism will compress as the theoretical kinematics predict.
The metamaterial mechanisms from Ion [10], which are also
discussed under Decreasing crease thickness, also use external
boundaries. The shear cells that are used are encased by rigid
beams on all sides which only leave one degree of freedom
for the whole cell. This has as a result that the mechanisms
follow the theoretical kinematics.

L'L'L'.,lq‘
NININE 2. 0. 0N
';‘;‘l!‘«‘

Fig. 27. Shear cells that are constrained at the outside, Ion [10].
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strings

Fig. 25. A door handle whose texture can be changed by turning the knob
on the front, Ion [11].
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Fig. 26. Metamaterial made of Miura-ori tubes which is clamped between
two plates, Lin [19].

0. Babaee [1], uses these constraints for a kirigami shoe
grip. This is a flat mechanism that can be fixed underneath a
shoe and when actuated becomes spiky to increase the grip
of the shoe. The kirigami sheet is rigidly connected to the
front and back of the sole, the actuation happens when the
curvature of the sole changes and with that the kirigami is
extended (Fig. 28). Because the sheet is connected over the
full length across the front and back, all the cells in between
these connection points are actuated with the same force and
follow the theoretical kinematics. The grips are laser cut from
0.051 mm thick steel and are 11 x 7 cm.



Fig. 28. Shoe grips that get more grip when the curvature of the sole changes,
Babaee [1].

D. Real Hinges

O. Real hinges are used by Jasim [12], as a way to fold
solar panels into a Miura-ori pattern (Fig. 29). This allows a
large area to be folded compactly in one continuous motion.
In this pattern, the facets are made of solar panels and they
are connected by simple hinges. Due to the stiffness of the
solar panels, combined with the strength of the hinges this
technique can be used to create mechanisms in the meter
range. Furthermore with the use of this technique the solar
panel can be folded while following the theoretical kinematics.
Another example is Torggler’s Triangle door [29] (Fig. 30).

Fig. 29. A solar panel that can be folded in a Miura-ori pattern, Jasim [12].

This is a form of kinetic art where a door can be opened
and closed by folding it. The wooden panels of the door are
connected by hinges, this allows it to bend towards the open
position. The door is around 1 by 2 meters, making it a large
origami mechanism. This is again possible due to the stiff
facets and strong hinges. Because of this the door also follows
the theoretical kinematics, as the rigid panels will not deform.
A kinetic sculpture is designed by Morgan [21] to demonstrate
the offset panel technique (Fig. 31). This is a method within
thick origami where thick panels are stacked next to each
other when folded. The sculpture is made of one heavy base
plate made of MDF, the rest of the facets are made of lighter
foam board. These facets are all connected using hinges. The
sculpture is more than a meter tall, making it a large origami

Fig. 30. Kinetic door by Torggler [29].

mechanism. This can be achieved due to the light foam board
and strong hinges. The whole mechanism can be unfolded
by pulling on only one of the panels. When this is done the
mechanism becomes a flat plate, which means it follows the
theoretical kinematics.

Fig. 31. Kinetic sculpture to demonstrate offset panels, Morgan [21].
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IV. DISCUSSION

By structuring the different ways people deal with achieving
correct kinematics in origami mechanisms, it becomes clear
that not all methods are effective. A method is deemed
effective when the designed mechanism works as intended.
Most papers that use a technique that reduces the crease
stiffness need to combine this with a different method like
individual cell actuation or external constraints. Together with
these techniques, the mechanisms work as intended, and their
kinematics follow the theory.

Another example of decreasing stiffness that does not work
is seen in the origami-inspired metamaterial from Iniguez-
Rabago [9]. In the theoretical model, eight stable states are
present for the metamaterial, but in the prototype with thin
hinges none of these states were stable. This is a clear ex-
ample of the theoretical kinematics not being followed. After
changing the thin hinges out with a more flexible material, six
out of eight stable states were found in this prototype.

A clear size difference between methods also becomes
apparent (Fig. 32). Decreasing crease thickness or width is
used for rather small mechanisms in the centimeter range.
These smaller mechanisms are in turn actuated using SMA
or thermal expansion. When two different materials are used
for the facets and the creases larger mechanisms can be
constructed. These range from the centimeter scale up to the
meter scale. The pneumatic and hydraulic actuation also allow
for larger mechanisms. These mechanisms are generally in
the decimeter range. The real hinges also stand out as this
method is used for even larger mechanisms at the meter range.
External constraints are an exception to this pattern and are
found throughout all sizes, from micrometer to decimeter.

Strategy
Real Hinges _
Hydraulic
Pneumatic
Thermal expansion
SMA
Decrease Young's modulus _
Decrease crease Width _
Decrease crease thickness _
Extemal consiaints | [
» Size

pm mm cm dm m

Fig. 32. Size differences between the strategies.

Finally, a research gap appeared, the use of prestress to
decrease the stiffness of a crease has not been researched for
origami mechanisms. However this does show potential from
its application in compliant mechanisms.
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V. CONCLUSION

In this survey, the techniques that improve the kinematics of
origami mechanisms have been categorized and explained. In
most papers regarding origami mechanisms, these techniques
were not explicitly mentioned but were still present in the
designs. The techniques are subdivided into four categories,
decreasing crease stiffness, individual cell actuation, external
constraints, and real hinges.

From this categorization was found that the current methods
used to decrease the stiffness of the creases are not adequate
for letting mechanisms follow their theoretical kinematics. A
clear example of this was provided by the origami-inspired
metamaterial that did not have any of its stable states when
manufactured. But it could also be seen because mechanisms
that relied on decreased crease stiffness were almost always
combined with a technique from a different category. These
combinations of techniques provided good kinematic behav-
ior, but they also limited the possible applications of these
mechanisms because often specific boundary conditions were
applied, or an intricate actuation system was implemented.
However, a research gap was found in prestressed creases that
can accomplish static balancing. This technique has not been
applied to origami mechanisms but could decrease the crease
stiffness of a mechanism up to a point where the theoretical
kinematics are followed.

Also, a clear picture of mechanism sizes originated from
this categorization. Changing only the crease dimensions of
a mechanism, such as thickness or width is suitable for
small structures in the centimeter range. For structures in the
decimeter range, it is more common to use a different material
for the creases with a lower Young’s modulus. This is the
case because as a mechanism is scaled with a factor .S, the
stiffness of the crease scales with a factor S3. So the bigger the
mechanism becomes, the harder it is to create flexible creases.
Using a material with a lower Young’s modulus helps to create
these flexible creases. This approach could also be used for
the meter scale, just like the real hinges which are also best
used at this scale. The real hinges are made of different parts
and need assembling, on a small scale this can be tedious,
but on a larger scale, this is easier. An added benefit is that
the hinges do not have to be flexible and thus can be made
as rigid as needed, this allows for heavier mechanisms to
be possible. For the different actuation methods, SMA and
thermal expansion can be used on a smaller scale. Because
they are temperature-dependent increasing their size will also
increase their response time, which is generally not wanted.
For larger mechanisms, pneumatic and hydraulic systems can
be used. These actuators can deliver enough force to actuate
large mechanisms and can be easily scaled up if needed.

With the categorization in this literature survey, a clearer
image is created of the techniques which are used to make
origami mechanisms have proper kinematic behavior. This
review can be used to help with the design of a kinematically
correct mechanism, and it points out research opportunities for
better performing techniques.
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DESIGN OF A CONSTANT MOMENT CREASE FOR USE IN NEUTRALLY STABLE
ORIGAMI

Edward van Wijk

ABSTRACT

Origami mechanisms are mechanisms that are inspired
by the art of origami. They have the potential to be used in
different applications. However, a problem is that the stiff-
nesses of their creases introduce unwanted artifacts. Such
as larger actuation forces, and a lack of proper kinematics.
In this paper, a constant moment crease is designed, which
can be used to statically balance an origami mechanism,
that way removing its stiffness. The crease has a convex
shape and has two corrugated facets on its sides. The con-
stant moment is realized through modeling the crease in a
FEM program and optimizing it for a constant moment.
This model is validated by a prototype experiment. The
result of the paper is a crease that has a constant moment
over a range of 80°.

1 Introduction

Origami is a technique where structures are created by
folding flat sheets. This is best known from artworks but
it is also interesting for engineers. Origami has become a
source of inspiration for engineers. This is because it is
scalable, and has the potential to switch between different
states. This makes it applicable in many fields [1]. There-
fore more and more research is being done into origami
mechanisms. A problem with origami mechanisms is that
the stiffness of the creases introduces artifacts into the sys-
tem which are not wanted [2]. For example, the actuation
force increases when the mechanism is actuated. Another
problem is that the kinematics of an origami pattern do
not follow the theory anymore. In theory, every cell in an
origami pattern should have the same deformation, but if
there is stiffness in the mechanisms, the actuated cell will
be the most deformed, and the cells connected to it will
not be deformed as much. There are multiple ways that
researchers use to negate these artifacts, most are aimed at
decreasing the crease stiffness in the mechanism. This can
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be done by decreasing the crease thickness [3, 4], perforat-
ing the crease [5], or decreasing the Young’s modulus of the
crease [6-8]. But using these strategies will never give a
truly zero stiffness crease.

A zero stiffness mechanism could be achieved with the
concept of static balancing. This is a concept where two
different elements are combined to balance each other. If
these two elements are combined in parallel, their moment-
angle characteristics are summed up. If this sum equals
zero over a certain range, the system is statically balanced
in the domain of this range.

This can be achieved by balancing an element with a
flat moment-angle characteristic with a mirrored version of
itself. These two elements need to be prestressed into the
right position such that the constant moment regions over-
lap, this will result in a statically balanced mechanism. This
is demonstrated by Radaelli [9] for multiple mechanisms
such as a four- or six-bar linkage. Compliant mechanisms
with a constant moment have already been designed, two
examples are by Hou, [10] and Gandhi, [11]. With a con-
stant moment crease and static balancing, the stiffness of
the creases in an origami mechanism could become truly
zero.

However, this previous research does not focus on
origami mechanisms, therefore, these constant moment
mechanisms are difficult to implement into an origami pat-
tern. Tape springs have also been shown to exhibit a con-
stant moment during bending [12, 13]. This could have
a potential for origami, but this technique is not optimal.
Firstly, a tape spring is usually longer than that it is wide,
whereas a crease is usually wider than that it is long. And
secondly, there is not an exact point where the tape spring
bends, because it has the same cross-section over its whole
length.

In this paper, a constant moment crease is designed,
which has a constant moment over a relevant range of mo-
tion for an origami mechanism. The crease is a convex



shape and this convexity is gradually reversed when the
crease is bending. This crease is modeled in a FEM pro-
gram, together with two corrugated facets attached to it.
This model is then validated by a prototype experiment.

In the methods section, the approach to find a constant
moment crease is explained. The model and optimization
are discussed, as well as the test setup. This is followed by
the results where both the obtained moment-angle charac-
teristics of both the model and the prototype experiment
can be found. In the discussion, it is explained what the re-
sults look like and why this is the case. Together with how
the creases could be implemented into an origami pattern.
Finally, a conclusion on the performance of the creases is
drawn from this discussion.

2 Methods
2.1 Neutrally stable origami

How a constant moment crease can be used to make
origami neutrally stable is explained on the basis of a Miura-
ori tesselation, which is a pattern of identical origami cells.
In FIGURE 1, a schematic of the creases of one Miura-ori
cell can be seen. The solid lines represent mountain folds,
these creases are folded upwards. The dashed lines represent
valley folds, these creases are folded downwards. Multiple
of these cells can be chained together to make a Miura-ori
tessellation. There is an equal number of mountain and
valley folds in every unit cell. This means that the number
of creases folding upwards is equal to the number of creases
folding downwards. This allows balancing every valley fold
with its opposite mountain fold.

Mountain
Valley

FIGURE 1: Schematic of Miura-ori fold lines, the amount of
mountain and valley creases is equal.

If a fold line has a constant moment this needs to be
balanced by an opposite constant moment of equal mag-
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nitude. The same crease can be used for this so that the
constant moment is equal for both creases. To make the
constant moment of one crease oppose the constant mo-
ment of another crease they need to bend in opposing di-
rections, so one crease should bend clockwise while the other
bends counterclockwise. Because in this method mountain
and valley folds are balanced, all the creases can be placed
the same side up. Because half of the creases bend into a
mountain and the other half into a valley, as many creases
will bend clockwise as counterclockwise, this will give the
needed effect of opposing moments. One final step needed
to achieve this is the pre-stressing into the constant mo-
ment area. This can be done by bending the crease until
it reaches its constant moment region and assembling it in
that configuration into the Miura-ori pattern.

2.2 Concept

The design of a constant moment crease starts with a
predetermined shape. This shape consists out of a convex
crease with a positive Gaussian curvature, which has corru-
gated facets on both sides (FIGURE 2). The convex shape
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FIGURE 2: Shell concept with a convex crease and corrugated
facets

was chosen because its positive Gaussian curvature has po-
tential for bi-stable behavior, like a push bubble toy that
can be turned inside out. This bi-stability however only
exists for very thin shells, with thicker shells the stiffness of
the material will add to the stiffness of the geometry and
the negative stiffness will be replaced by zero stiffness. So a
not-too-thin ellipsoid-shaped shell has the potential to cre-
ate a constant moment. The facets are implemented into
the design so it is possible to look at the behavior of the
crease in combination with the facets. This makes the re-
sults more similar to how they would perform in an actual
origami pattern. A corrugation is chosen to give the facets
more stiffness than the crease while simultaneously keeping
the thickness of both the facets and the crease the same.



2.3 Simulation

To check if this shape will have a range with a constant
moment, it is numerically modeled with an isogeometric
analysis framework [14]. This is based on the Kirchhoff-
Love plate theorem and a linear isotropic material law. A
geometry can be modeled by describing it in several control
points. The code will fit a B-spline, which is attracted to
these control points, this will result in a surface, which is
given a thickness to create a shell. The control points of
the facets are defined by the parameters from Table 1 and
FIGURE 3. The corrugations are equally spaced along the
length of the shell, and the ends taper off to the side of
the crease. The control points of the crease are arranged
in a 3x7 grid, and all lie on an ellipsoid. This ellipsoid is
located between the two facets and is defined by a rectangle
that is made up by the crease width and the length, the
ellipsoid height, and a scaling factor in y-direction. The
ellipsoid is drawn through the four corners of the rectangle,
with the ellipsoid height being the distance in z-direction
between the corners of the rectangle and the highest point
on the ellipsoid. Finally, a scaling factor is used to define
the circularity of the ellipsoid. This scaling factor scales the
radius of the ellipsoid in y-direction compared to the radii
in x- and z-direction.

The resulting shell can be seen in red in FIGURE 2.
Onto the sides of the shell beams are added, these are
shown in blue. These beams have a stiffness multiple or-
ders of magnitudes higher than the stiffness of the shell
itself. These mostly follow the side profile of the shell, but
two beams are drawn from the edges of the shell to the
middle, only offset by 5 mm in the x-direction. These two
points are known as pilot points. these are the points that
the constraints are applied to, and because the beams are
multiple orders stiffer than the shell, these constraints are
passed on to the edge of the shell. The shell is bend by
rotating one of the pilot points around the y-axis and con-
straining its other degrees of freedom. Then the second
pilot point is constrained in z-translation, this allows it to
rotate and move closer to the other axis.

To find a constant moment, a sensitivity analysis of the
parameters from TABLE 1 was done. All the parameters
were fixed to a constant value except for one, this parame-
ter was varied. For each different value of this parameter, a
simulation was run, and from this, the moment-angle char-
acteristic was plotted. This way it was possible to see which
parameter influenced the shell in such a way that it exhib-
ited a constant moment.

From this approach, three different geometries were
found that showed initial signs of a constant moment. For
these three geometries, the thickness of the shell was also
varied. The FEM code also provides an animation of the
deformation of the shell, this can give more insight into why
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Wy Flange width

W; Taper width

w Crease width

L Length

H. Corrugation height

H, Ellipsoid height

Sy | Scaling factor of ellipsoid in y-direction

TABLE 1: Parameter definitions

FIGURE 3: Parameters that define the control points of the
geometry

the moment-angle characteristic looks like it does. With the
initial results that show a potential for a constant moment
crease, a further search can be done to find a moment-angle
characteristic with better performance. This performance
is based on two factors, the flatness of the characteristic
and the range of motion over which this flatness is present.
This is achieved by using an optimization algorithm, this
algorithm varies multiple variables at each iteration to find
the lowest value for an objective function. By setting the
flatness between two points as the objective, the algorithm
will find the flattest curve possible within the given parame-
ters. The flatness of the interval is defined as the normalized
Root Mean Square Error (RMSE) with respect to the aver-
age moment on that interval. First, this average moment is
calculated using equation 1. Here n is the number of data
points on the interval. With this average, the RMSE and
normalized RMSE are calculated according to equations 2
and 3.

= T M (1)

n



(2)

Normalized RMSE = RRA/I;[SE

3)

There are three variables that the algorithm can use to
minimize the Normalized RMSE: W, S, and H,. These vari-
ables allow for the ellipsoid part to change in shape, while
the facets will keep their shape. This is chosen because
previous results showed that the shape of the ellipsoid has
more influence on the moment-angle characteristic than the
shape of the facets. Also, by keeping the numbers of vari-
ables low the calculation time of the optimization will stay
short. The optimization algorithm used is the fminsearch
algorithm from the MATLAB optimization toolbox, aside
from variables and an objective this algorithm also needs a
starting point. For this, the best results from the previous
modeling stage were used. Because the objective function
only takes into account the flatness of the moment-angle
characteristic, the range of this flatness needs to be spec-
ified as well. Running this optimization will only provide
the flattest option within the specified range. To increase
the range over which a constant moment is present, the
optimization range is manually increased after each opti-
mization run, with the result of each previous smaller range
as a starting point for the search of a larger range. When
the optimization algorithm can no longer find a constant
moment over the whole range the range will no longer be
increased.

For a second optimization, the crease definition was
changed. The control points of the crease are no longer
defined by an ellipsoid. The control points still consist out
of a 3 by 7 grid, however, the heights of the seven points
through the middle are defined by four independent pa-
rameters, namely H1, H2, H3, and H4. The height of the
points on the side is dependent on the height of their adja-
cent point, and scaled by a scale factor S. This is visualized
in FIGURE 4. Because the heights of the middle control
points are independent of each other the optimization al-
gorithm has more freedom to choose different shapes. This
offers more flexibility compared to the ellipsoid definition
of the previous optimization.
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FIGURE 4: 2D representation of new optimization parameters

2.4 Prototype experiment

Next to the modeling, there was also an experimen-
tal validation performed. This was done to validate if the
modeled data represents the shell in reality. For this, the
same constraints are needed as used in the model. This was
realized with the test setup in FIGURE 5. The shell is 3D-

FIGURE 5: Test setup with a force sensor connected via a wire
to the pulley, and two inclinometers fixed onto the axes

printed using multi-jet fusion, made of the material PA 12.
Two steel axes are glued onto the shell, at the point where
the rigid beams were modeled. One of the axes is only al-
lowed to rotate, it is constrained by two ball bearings in a
frame. The other axis is only constrained in the z-direction,
this is achieved by connecting two ball bearings to the axis



and allowing those to roll in a slot. A pulley is mounted on
the first axis, to which a braided steel wire is connected and
rolled around. By pulling on the wire, the pulley is rotated
and a moment is applied to the axis. The force in the wire
is measured with a FUTEK Miniature S-Beam Jr. Load
Cell LSB200, with a maximum force of 45N. The angles of
both axes are measured with two separate SEIKA NG4i in-
clinometers, which can measure an angle up to 160°. These
are connected to the axes. The wire can be pulled mechan-
ically on a test bench, this ensures a constant rotation of
the pulley, which gives a repeatable result.

Six shells with the same geometry were used in the ex-
periment. Three of these were 3D-printed with a thickness
of 0.4 mm, and the other three with a thickness of 0.5 mm.
However, there was a variation of thickness in the proto-
types. The different thicknesses of the shells are shown in
TABLE 2. These values are an average of multiple mea-
surements with a micrometer. A micrometer is designed
to measure a flat object between its flat spindle and anvil.
Because the prototypes are curved two bearing balls were
connected to the spindle and anvil of the micrometer, this
allowed for measurements of the curved surface. The aver-
age thickness of the three thicker shells is 0.66 mm, and for
the three thinner shells this is 0.57 mm. These values are
used in the model for a moment-angle characteristic that
can be compared to the experiment result. For this com-
parison, the model also needs the Young’s modulus of the
material. For this, a Young’s modulus of 900 MPa was used.

Prototype 1 2 3 4 ) 6

0.675 0.660 0.632| 0.578 0.577 0.562

Thickness [mm]

TABLE 2: Thickness of the prototypes, a difference between two
print thicknesses can be seen, but the thicknesses are still varied

3 Resuits

In this section results of the modeling, and the results
of the prototype experiment are shown. This is ordered
into the three different geometries that showed a constant
moment. With the sensitivity analysis, one variable was
found for each geometry that showed a constant moment
behavior, this is shown in the first FIGURES: 7a, 8a, and
10a. In the same figures, a variation of the thickness of the
entire shell is also shown, FIGURES: 7b, 8b, and 10b. This
is followed by the result of the optimization combined with
a depiction of the different states of the shell, FIGURES:
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6, 9, and 11. In these figures, an orange line is plotted,
this indicates the range over which the optimization was
performed. The dimensions of the facets are the same for
all simulations and can be found in TABLE 3. Here also the
dimensions of the initial geometries of the creases are shown.
The dimensions of the optimized geometries can be found in
TABLE 4, together with the achieved range of motion where
there is a constant moment, and the normalized root mean
square error, which represents the flatness of the constant
moment.

Facets We W L H,
o] | fmm] | fmm] | mm)

40 10 120 10

Crease w H. Sy t
] | frn] | | fom)

FIGURE 7a 50 varied 2 0.5
FIGURE 7b 50 6 2 varied

FIGURE 8a 100 | varied 2 0.5
FIGURE 8b 100 30 2 varied

FIGURE 10a | varied 15 2 0.5
FIGURE 10b 40 15 2 varied

TABLE 3: Geometry 1 parameter dimension in meters

For Geometry 3 a prototype experiment was performed,
the results of which are split into two graphs. FIGURE
12 shows the moment-angle characteristic of the model to-
gether with the hysteresis loops of the three thicker proto-
types. FIGURE 13 shows the moment-angle characteristic
of the model together with the hysteresis loops of the three
thinner prototypes.



Hy H; Hj Hy S W¢ RoM | Error

] | fuon] | ] | fom] | [ | o] | [deg) | ]
FIGURE 6 1.6 5.4 6.5 5.6 | 0.67 | 20.0 15 | 0.013
FIGURE 9 | 198 | 32.7 | 38.3 | 244 | 0.67 | 20.0 50 | 0.024
FIGURE 11 | 54 11.8 | 13.0 | 18.9 | 0.67 | 20.0 80 | 0.048

TABLE 4: Parameter dimensions for the second optimization in meters

3.1 Geometry 1

Here the results of the first geometry are shown. First,
in FIGURE 7a, a variation of the height of the ellipsoid is
shown. At a height of 6 mm a constant moment appears
between 10° and 25°. Then in FIGURE 7b, a variation
of the thickness of the shell is displayed. In FIGURE 6,
the optimized moment-angle characteristic can be seen to-
gether with the different states the shell is in. The numbers
of the states correspond to the numbered positions on the
moment-angle characteristic. Here there also is a constant

moment between 10° and 25°.

0.08 1

Moment-angle characteristic
— Optimization range

Reaction Moment [Nm]

15 20
Angle [deg]

FIGURE 6: Optimization of the first geometry with deformation
states, there is a constant moment between 10° and 25°
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Here the results of the second geometry are shown.
First, in FIGURE 8a, a variation of the height of the el- 00 50 100 150 200
lipsoid is shown. At a height of 30 mm a constant moment Angle [deg]
appears between 45° and 60°. Then in FIGURE 8b, a vari- (b) Moment-angle characteristics for varied thick-
ation of the thickness of the shell is displayed. In FIGURE nesses, the thicker shells have a higher moment, but
9, the optimized moment-angle characteristic can be seen a lower stiffness on the constant moment range

together with the different states the shell is in. The opti-

mization gives a constant moment between 40° and 90°. FIGURE 10
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3.3 Geometry 3

Here the results of the third geometry are shown. First,
in FIGURE 10a, a variation of the width of the crease is
shown. At a width of 40 mm, a constant moment appears.
Then in FIGURE 10b, a variation of the thickness of the
shell is displayed. In FIGURE 11, the optimized moment-
angle characteristic can be seen together with the different
states the shell is in. This optimization gives a constant
moment between 80° and 160°.
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FIGURE 11: Optimization of the third geometry with deforma-
tion states, there is a constant moment between 80° and 160°

3.4 Prototype experiment

In FIGURE 12, the measured moment-angle character-
istics of the three thicker shells are shown together with
the moment-angle characteristic of the model with a thick-
ness of 0.66 mm, which is the average thickness of the three
prototypes. The measured hysteresis loops show a similar
shape to the curve predicted by the model. In FIGURE
13, the measured moment-angle characteristics of the three
thinner shells are shown together with the moment-angle
characteristic of the model with a thickness of 0.57 mm,
which is the average thickness of the three prototypes. Two
of these shells were too thin to fully deform back, this is
why their hysteresis loops end at 43° and 56°, instead of 0°.
The shapes of the hysteresis loops are similar to the curve
predicted by the model.
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FIGURE 12: Hysteresis loops of the three thicker shells, they
have a similar shape to the moment-angle characteristic of the
model
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FIGURE 13: Hysteresis loops of the three thinner shells, they
have a similar shape to the moment-angle characteristic of the
model

4 Discussion

From the results section, three different geometries were
found that can work as a constant moment crease. The
findings are discussed below per geometry. The results of
the prototype test and the implementation of the crease into
origami are discussed separately.



4.1 Geometry 1

By tuning the height of the crease to the right param-
eter a constant moment appears for this geometry. The
crease is only slightly convex compared to the other ge-
ometries. By reducing the thickness of the overall shell the
moment is decreased, but the stiffness which is the slope of
the moment is decreased as well. This is expected because
a thinner shell has a lower bending stiffness.

The optimization gives a shorter range of motion than
the other geometries, but the error is also smaller, so the
moment is more constant. The range of motion could be
increased, but that will make the error go up more, and the
moment becoming less constant. The crease of the opti-
mized shape does not resemble the ellipsoid anymore. The
middle point on the shell is actually lower than its neighbor-
ing points, just like in geometry 2. The deformation states
show what the shell looks like at different points on the
moment-angle characteristic. At point 2 the middle ridge of
the right facet forces the crease into a snapped state around
this ridge. This gives a valley around the middle ridge. This
valley expands over the whole length of the crease. After
this at point 3, the whole crease snaps into a valley. The
first snapped state and the expansion over the length of the
crease can be more clearly seen in the third geometry (FIG-
URE 11), because it is more convex. The constant moment
occurs while the valley is expanding along the crease.

4.2 Geometry 2

In the second geometry, a wider and more convex crease
is used. By varying the convexity, the moment-angle curve
transitions from a positive stiffness to a negative stiffness,
around the 50° to 60° mark. This implies that somewhere
between these curves a constant moment can be found. Like
with the first geometry, an increase in the thickness will
increase the moment and the stiffness of the curve. This
could be used to balance out the negative stiffness part of
the curve, as the negative stiffness is mainly a result of the
shape. By increasing the thickness, the positive stiffness of
the shell is increased and balances out the negative stiffness
of the shape.

Compared to the first geometry, the optimization yields
a longer range of motion, but its error is bigger. The range
of motion can be expanded but this would be done at the
cost of the constant moment. This can be explained due to
the sine shape of the curve. A perfect constant moment can
only be achieved for an infinitesimally small interval. When
optimizing this geometry on a larger interval the best solu-
tion will still be a sine wave. And the larger the optimiza-
tion range the larger the amplitude of this sine wave needs
to be to cover the entire range. Just like geometry 1, there
is no sign of an ellipsoid anymore in the optimized shape.
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The middle point of the crease is again lower than its neigh-
boring points. From the deformation states, it is difficult
to see what happens with the shell that provides the con-
stant moment. There are no parts of the shell that buckle
or snap into a new position like with geometry 1. Therefore
it can be assumed that due to the bending deformation, the
geometry changes in such a way that the bending moment
stays constant.

4.3 Geometry 3

Finally, a shell with a crease height that is in between
the previous two was modeled. Here the width of the crease
was varied which resulted in a constant moment between
100° and 160°. Similar to the previous geometries, a higher
thickness also means a higher moment. However, the stiff-
ness at the constant moment range seems to decrease with
a higher thickness, the stiffness at the range before that be-
haves as expected and increases with the crease thickness.
Why the stiffness decreases on the constant moment range
will be discussed further down.

The optimized range with a constant moment is even
larger than geometry 2. But the error is also larger. In
FIGURE 11, the states of the shell during deformation can
be found. Like with geometry 1, the middle ridge snaps the
crease (point 2), and the valley that originates from that,
spreads across the length of the crease. This leaves a ridge
and a valley next to each other (point 3). When the shell
is bent further, the valley grows. The valley appears to
become flatter, this decreases the moment that is needed to
bend the geometry. After this, the ridge is being pushed
away completely by the valley, which increases the moment
again. At point 4 the ridge is completely displaced by the
valley.

In FIGURE 14, the moment-angle characteristic of a
flat crease between the corrugated facets is shown. First,
there is a positive stiffness and the moment needed to bend
grows. This is what is expected when bending a flat crease.
However, after bending 135° the stiffness becomes negative,
and the moment decreases. This can be explained due to
how the model is constrained. The moment on the driv-
ing axis is balanced by a normal force on the other axis.
When the shell is bent, these axes get closer to each other,
shortening the arm on which the normal force works. This
decreases the moment and causes negative stiffness. To get
a constant moment, the geometry should first add a neg-
ative stiffness part, and then after 135° a positive stiffness
part. This is also what happens in the shell, as described
above. Which causes the constant moment. The effect of
the constraints can also explain the decreasing stiffness at
a higher thickness. A thicker shell will also need a higher
moment to deform, which causes a higher reaction force.
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FIGURE 14: Moment-angle diagram of a flat crease between

corrugated facets, at first it has a positive stiffness, but after

135°, it has a negative stiffness

This means that when the arm becomes shorter the nega-
tive stiffness is steeper due to the higher reaction force.

4.4 Prototype experiment

The characteristics of the prototype follow the curve of
the model, which validates that the model correctly calcu-
lates the moment-angle characteristics of the crease. The
magnitudes are also comparable, however, this is because
the right Young’s modulus in the model was chosen to
achieve this. The Young’s modulus of 3D printed PA 12
can be variable and is also dependent on the printing direc-
tion. A study by O’Connor [15] showed a Young’s modulus
around 1200 MPa. In the model, a Young’s modulus of 900
MPa was used. This is significantly lower, but it gave a
fitting curve for two different thicknesses. This means that
the model can give the proper moment-angle characteristic
when tuned correctly.

The thickness differed per tested shell, this explains the
difference in moment between the prototypes. Two shells
were too thin to fully deform back after bending. They
reached a second stable point, and the shell was not stiff
enough to push through that point. The other four shells
did not have this problem.

What can also be seen is that the thickest shell, Proto-
type 1, shows a negative stiffness instead of a constant mo-
ment. This was also observed during the parameter study
when the thickness of the shell was varied. Here a thicker
shell caused more negative stiffness.

An inconsistency with the model is found for proto-
types 2 and 3. While bending back to the initial position
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the shell snaps which causes a step in the curve around
100°. This only happened in these two shells so it is likely
that this is caused by a difference in the production of the
shells. Another inconsistency with the model is the hystere-
sis. During the bending of the shell, the needed moment is
higher than when the shell is bent back. To verify if this
hysteresis comes from the test setup, the shell was replaced
by a 1 kg mass that was suspended from the pulley. This
yielded a hysteresis loop with two constant moment lines,
one for pulling the weight up and one for letting it back
down. The lower moment line was at a height of 99% of the
upper moment line. So only a small amount of hysteresis
can be attributed to the test setup. This indicates that the
hysteresis is inherent to the shell itself.

4.5 Implementation into origami

With the achieved constant moment of the crease, it
could be implemented into an origami pattern to make it
neutrally stable. The range of this neutral stability can be
up to 80°. This however would only work for origami mech-
anisms where the creases have similar boundary conditions
as the model, so a moment on one side of the crease, and a
height constraint on the other side. If geometry 2 is used, a
range of motion of 50° can be achieved. For different bound-
ary conditions, the geometry needs to be optimized again.
This became apparent by running the model with a moment
constraint on both pilot points. The moment-angle charac-
teristics of geometries 1 and 2 look similar to the charac-
teristics that were initially found in the sensitivity analysis.
So with a new optimization step, it should be possible to
achieve a constant moment with different boundary condi-
tions. This optimization was also performed which again
resulted in two constant moment creases. Using the same
constraints for geometry 3 gives a moment angle character-
istic with a positive stiffness on the range where there was
previously a constant moment. This is expected because
the previous constraints contribute to the negative stiffness.
Without this negative stiffness from the constraints, there
is no longer a constant moment. It will also be difficult
to regain a new constant moment with another optimiza-
tion because the entire negative stiffness component should
come from the geometry, instead of the boundary condi-
tions. It was also tried to optimize this geometry for these
other boundary conditions. This did indeed not result in a
constant moment crease.

Pre-stressing can be made easier with this design by
putting the facets on an angle relative to the crease, then if
this is the correct angle, the facets can be straightened and
the crease will reach its constant moment region. Putting
the facets on an angle should not influence the behavior
of the crease as long as the connection between the facets



and the crease is kept the same. With such a neutrally sta-
ble origami pattern the theoretical stiffness ratio between
the facets and the crease is infinite. This means that the
origami pattern will move according to the theoretical kine-
matics of the rigid origami concept [16], which will make
origami mechanisms more predictable and easier to design,
as their movements are just a matter of kinematics. Fur-
thermore, moving neutrally stable mechanisms does not re-
quire any energy, this means that these mechanisms can be
more efficient than non-balanced mechanisms.

5 Conclusion

In this paper, three designs of a constant moment crease
were shown, each with its own constant moment range.
Also, a model was developed that optimizes these creases
for a constant moment. And this model was validated by a
prototype experiment. Although the constant moments of
the found geometries are dependent on the boundary con-
ditions of the crease, this should not be a problem, because
the model can be used to optimize the creases for different
boundary conditions. The prototype experiment showed
that there is hysteresis in the shells, this makes the shells
difficult to use for a static balancing purpose because this
assumes that the moment-angle characteristic is a line and
not a loop. This problem can be solved by fabricating the
crease out of a material that does not show hysteresis.

For implementation into origami mechanisms, either
the second or third geometry is the most feasible. The third
geometry can provide a range of motion up to 80°, which
makes it suitable for more applications. However, because
its constant moment depends heavily on the constraints of
the mechanism, it can only be applied to a mechanism with
similar constraints to what was used for the model. The
second geometry on the other hand has with 50° a smaller
range of motion, but because this geometry is not too de-
pendent on the constraints it can be applied to more kinds
of origami mechanisms. The first geometry could be used
in applications that need less than 15° range of motion, but
this is not much for an origami mechanism.
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Discussion

The model and experiment of the proposed negative stiffness crease showed only a short range of
motion. This range is not relevant for origami mechanisms. There were also some modeling difficul-
ties encountered. The prestressing of the shell before deforming it meant that the model would often
not converge. With a model that can handle these calculations better a search for a longer range of
negative stiffness could be done. If this range becomes relevant for origami such a negative stiffness
crease could be used for the static balancing of origami mechanisms.

The constant moment crease gave more success. Two geometries were found with a constant moment
on a relevant range for origami mechanisms. This constant moment was however dependent on the
boundary conditions that were applied to the crease. This was mainly the case for Geometry 3 which
could not be optimized into a constant moment crease for boundary conditions other than the initial
asymmetric boundary conditions. For Geometry 2 this was however not a problem, with symmetric
boundary conditions the crease could also achieve a constant moment.

The results of the prototype experiment were similar to the results of the model. This validates the
model. One thing the model does not take into account is hysteresis, this is present in the experiment
results. Checking the test setup with a weight attached, instead of the shell, showed little hysteresis.
From this, it can be concluded that the hysteresis is inherent to the shell. Manufacturing the shell from
a different material, such as a metal could decrease the hysteresis. Getting rid of the hysteresis from
the shell is essential for using it in a neutrally stable origami mechanism. For this, two equal constant
moment creases are needed, and their constant moments need to be at the same magnitude no matter
in which direction they are bending. With hysteresis, the magnitude of the constant moment changes
with the bending direction so therefore it is necessary to remove the hysteresis from the shell.

To obtain a moment-angle characteristic with a similar magnitude to the experiment results, the model
needed to be adjusted by choosing the right young’s modulus. With a Young’s modulus of 900 MPa,
the experiment results were similar to the model. The Young’'s modulus of 3D printed PA 12 can be
variable and is also dependent on the printing direction. A study by O’Connor [7], showed a Young’s
modulus around 1200 MPa. This is significantly higher than the Young’s modulus used in the model.
To verify if the correct Young’s modulus is used a three-point bending test could be performed on a flat
shell with the same thickness as the prototypes. If the Young’s modulus found from this is not similar
to the used Young’s modulus, but is closer to the 1200 MPa, the magnitudes of the moment-angle
characteristics of the prototypes would be smaller than that of the model. This difference in magnitude
could be attributed to the variation in the thickness of the shell. It could be the case that the shell is
actually thinner than the measured values.
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Conclusion

In this thesis, an idea is proposed to apply static balancing to origami mechanisms. With an analysis,
it is shown that this can be achieved by combining two creases that balance each other. This can
be done in two different ways, firstly by combining a negative stiffness crease with a positive stiffness
crease, and secondly by combining two constant moment creases.

An initial investigation into a negative stiffness crease was done. Where some insight into the modeling
of these types of creases was gained. With the taken approach the negative stiffness range was too
short for implementation into origami. However, with a better-suited modeling approach, this range
could be increased.

Furthermore, a constant moment crease was designed and tested. This crease showed a constant
moment over a range that is suitable to origami mechanisms. The model that was used for the design
was also validated with the prototype experiment. Although the constant moment is dependent on what
boundary conditions are applied to the crease, with the validated model, creases can be adapted to
new boundary conditions.
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Extra Analysis

For a better understanding of the working of the designed crease, some extra analysis was done. This
is briefly explained in the paper, but more detailed in this appendix

A.1. Symmetrical boundary condition

The boundary constraints of the model have a big influence on how the shell behaves. In the paper an
asymmetrical boundary condition is used, where one side of the shell is subjected to a moment around
the y-axis, and the other side only has a z-direction constraint. This asymmetry was chosen over sym-
metric constraints because in practice it would be very difficult to perfectly deform a shell symmetrically.

However, an analysis of a shell with symmetrical boundary conditions was still performed. This was
done to get more insight into the effects that the boundary conditions have on the moment-angle char-
acteristic of the shell. One side of the shell was fully constrained with an applied rotation around the
y-axis, while the other side had an equal but opposite rotation around the y-axis and was constrained
in z-direction. This was done for the three optimized geometries that are discussed in the paper, the
moment-angle characteristics can be found in Figures A.1-A.3.
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Figure A.1: Moment-angle characteristic of geometry 1 with symmetric constraints, there is no constant moment but it shows
potential for an optimization
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Figure A.2: Moment-angle characteristic of geometry 2 with symmetric constraints, there is no constant moment but it shows
potential for an optimization
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Figure A.3: Moment-angle characteristic of geometry 3 with symmetric constraints, there is no constant moment and not much
potential for an optimization

It becomes clear that the boundary constraints have a significant influence on the moment-angle char-
acteristics of the shells. The shells do not show a constant moment anymore. For geometry 1 and 2, the
moment-angle characteristics are similar to those that were initially found during the sensitivity study.
This shows potential for a new optimization that could deliver a constant moment again. For geometry
3 however, the range where there was previously a constant moment now has a positive stiffness. This
proves again that a part of the negative stiffness, that balances the stiffness of the shell, comes from
the boundary conditions. Because this negative stiffness part is gone with the new boundary conditions
it will be difficult to regain a constant moment with a new optimization, because the negative stiffness
needed for that now needs to come from the geometry.

To test this hypothesis the three different geometries were optimized for this new boundary condition
with symmetric constraints. The resulting moment-angle characteristics can be seen in Figures A.4 -
A.6. For geometry 1 the moment becomes a lot more constant with the optimization, it is only still in
a sine shape which the optimizer could not get completely rid of. But with an NRMSE of 0.015, the

result is comparable to the optimization for the asymmetric boundary conditions where the NRMSE
was 0.013.
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Figure A.4: Moment-angle characteristic of geometry 1 optimized for symmetric constraints, with a constant moment

The optimization of geometry 2 is even better than the optimization for asymmetric boundary conditions.
The obtained NRMSE of 0.0004 is 60 times smaller than the NRMSE of 0.024 which was found for the
asymmetric boundary conditions. This can be explained by the fact that the shell deforms symmetrically
under the symmetric boundary conditions, this means that the part of the shell that provides a constant
moment during bending, is now located on both sides of the shell, and both these sides are actuated
simultaneously. This doubles the potential range of the constant moment, and keeping the range the
same as used with the asymmetrical boundary conditions makes it easier for the optimizer to find a
constant moment over this range,
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Figure A.5: Moment-angle characteristic of geometry 2 optimized for symmetric constraints, with a constant moment

For geometry 3 no constant moment was found, as expected. Where there was previously a constant
moment, there is now a positive stiffness. This means that the negative stiffness that came from the
boundary conditions was needed, and could not be replaced by negative stiffness coming from the
geometry.
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A.2. Hysteresis in the test setup
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Figure A.6: Moment-angle characteristic of geometry 3 optimized for symmetric constraints, without a constant moment

A.2. Hysteresis in the test setup
The results from the prototype experiment show a lot of hysteresis in the system. To check if this is

inherent to the shell, or that it is caused by the test setup an extra experiment was performed. The
shell was replaced by a 1 kg mass, which was suspended from the pulley, this can be seen in Figure
A.7. The pulley was also connected to the test bench which rotated the pulley, and with that lifted the
mass. Then the mass was let down again. The resulting hysteresis loop can be seen in Figure A.8.

Figure A.7: Test setup with a 1 kg mass instead of a shell

Although a small amount of hysteresis can be seen, this is not nearly as much as observed in the
prototype experiments. The average moment while pulling the mass upwards is 0.341 Nm, and the
average moment while letting the mass back down is 0.336 Nm. This is 99% of the original moment.
From this, it can be concluded that the hysteresis in the prototype experiment is not caused by the test

setup.

A.3. Shell measurements
The thickness of the shells that were 3D printed varied between the six shells that were ordered. To

know the average thicknesses of the shells they were measured with the use of a micrometer. This
on its own was not adequate to measure the thickness of the shell, because a regular micrometer is
designed to measure a flat surface between its spindle and anvil. Because the shells are curved the
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Figure A.8: Hysteresis loop of the test setup with a 1 kg mass, there is only a small amount of hysteresis compared to the
prototype experiment

values read on the micrometer will be higher than the real thickness of the shells. This problem can be
resolved by measuring the thickness between two point contacts, so two bearing balls were added to
the micrometer, this can be seen in Figure A.9.

Each shell is measured on 6 different points which are marked in Figure A.10. The result of the individual
measurements, together with the average thickness and the standard deviation can be seen in Table
A1,

Figure A.9: Two bearings are connected to the micrometer to ensure that the thickness of the shell is measured with a point
contact
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Figure A.10: Shell with markings of where the measurements are done

Measurement: | 1 [mm] | 2[mm] | 3[mm] | 4 [mm] | 5[mm] | 6 [mm] | Avg [mm] | o [mm]
Prototype 1 0.68 0.68 0.65 0.67 0.68 0.69 0.675 0.014
Prototype 2 0.67 0.65 0.68 0.70 0.61 0.65 0.66 0.031
Prototype 3 0.63 0.66 0.68 0.63 0.59 0.60 0.63 0.034
Prototype 4 0.59 0.61 0.58 0.61 0.55 0.53 0.58 0.033
Prototype 5 0.56 0.56 0.63 0.59 0.53 0.59 0.58 0.034
Prototype 6 0.51 0.48 0.59 0.61 0.56 0.62 0.56 0.056

Table A.1: Measurements of the shells, together with the average and standard deviation



Implementation into origami

B.1. Static balancing

A zero stiffness origami mechanism can be achieved with multiple strategies. Two of these are ex-
plained in this appendix with the focus on applying it to a Miura-ori tessellation. Firstly, static balancing
with a combination of negative stiffness creases and positive stiffness creases is explained. And sec-
ondly, static balancing with constant moment creases is explained.

With static balancing two elements are combined in parallel with the goal of making this combination
energy neutral. Meaning that the energy level of the combined mechanism does not change while
the mechanism is moved. This energy of the system can be plotted in an energy plot, which can be
derived by integrating the moment-angle characteristic. So by designing a mechanism with the right
moment-angle characteristic, and combining this with another mechanism, an energy-neutral system
can be achieved.

B.2. Applied to origami

This combining of mechanisms can be seen in origami as the combining of creases. An origami pattern
exists out of multiple facets that are linked together with creases. These creases can be seen as simple
mechanisms that bend. For this bending to happen a certain moment is needed. This can be seen in
the moment-angle characteristic. However, combining two creases is not that straightforward because
a Miura-ori pattern is defined by two different angles. In Figure B.1 these are named «; and «as. These

Figure B.1: A unit cell from a Miura-ori tesselation,(Lv [8])

two angles both change differently as the Miura-ori is moved. From Lv [8] we get the formulas of these

angles as a function of ¢:
02
o =cos™ ! |1 — 2% (B.1)
as = cos™! [1 — 2cot® ftan®(¢/2)]

One way of balancing the creases against each other is by balancing one crease that is described by «;
with another crease that is described by «s, this will keep the cell symmetrical. For a statically balanced

39



B.3. Negative stiffness 40

structure, the sum of the reaction moments of both creases needs to be 0 [Nm] at every angle. So, if
the moment-angle diagram of one of the curves is known, this first needs to be translated to the angle
of the other crease before they can be balanced out. This translation can be done using the equations
from equation B.1. From the first equation ¢ can be written in terms of a;:

¢ = arccos (1 — sin? 3(1 — cos o)) (B.2)

Then ¢ can be substituted in the equation for as, this way as is written as a function of «;. And the
moment-angle characteristics of both creases can be displayed as a function of ;.

B.3. Negative stiffness

Two elements that can balance each other are a positive and a negative stiffness. A positive stiffness
can be found in any normal crease, for a negative stiffness generally a bi-stable mechanism is used.
In Figure B.2, the moment-angle characteristics of two hypothetical creases are shown. Crease 1 is bi-
stable and has a negative stiffness range, and crease 2 is a normal crease with a positive stiffness that
is equal in magnitude to the negative stiffness of crease 1. The combined moment-angle characteristic
shows a constant moment, but this is not at 0 [Nm]. Therefore the system is not yet statically balanced.
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Figure B.2: Moment-angle characteristics of a shell with a partly negative stiffness and a shell with a positive stiffness together
with their sum, this combination gives a constant moment at 3 [Nm]

This can still be achieved with these two creases. For this, the moment-angle characteristic of crease
2 needs to be shifted to the right. This shift can be achieved by manufacturing crease 2 into a state
where it is in equilibrium at a 45° angle. Then when the total system is assembled the crease needs to
be bent back to a 0° angle. The resulting moment-angle characteristic can be seen in Figure B.3. Now
the combined moment-angle characteristic shows a constant moment at 0 [Nm]. In Figure B.4, the
energy plots of the creases and the combined system can be seen, and this shows a constant energy
for the combined system.
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Figure B.3: Moment-angle characteristics of a shell with a partly negative stiffness and a prestressed shell with a positive
stiffness together with their sum, this combination gives a constant moment at 0 [Nm]
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B.4. Constant moment

Another way of balancing can be achieved with two constant moments. In Figure B.5, two moment-
angle characteristics are shown. These are both of the same hypothetical shell, but because one of
these is turned upside down and rotated the other way crease 1 gives a positive constant moment and
crease 2 a negative constant moment.

Crease 1
15| Crease 2
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Figure B.5: Moment-angle characteristics of two opposing shells

These two creases in this configuration are not statically balanced, for this their moment-angle charac-
teristics need to be shifted again. In this case, they are shifted 45° towards the middle for both creases.
This can be achieved like explained previously by manufacturing the creases under an angle of 45°
and bending them back before the assembly. The resulting moment-angle characteristic in Figure B.6
shows a constant moment at 0 [Nm]. And the energy plot in Figure B.7 shows a constant energy.
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Figure B.6: Moment-angle characteristics of two opposing prestressed shells together with their sum, this combination gives a
constant moment at 0 [Nm]
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Concept Generation

C.1. Introduction

In this appendix the process of generating the concepts is described. The project was started with the
aim to balance an origami mechanism with a combination of a negative stiffness and a positive stiffness
crease. So this will be the focus of most of this appendix as well. Later on in the project the focus was
shifted to the use of a constant moment crease, this is briefly mentioned in this appendix, but more
thoroughly explained in the paper in Chapter 3.

C.2. Concepts

For a zero stiffness origami mechanism, a negative stiffness rotational crease needs to be created. A
negative stiffness can often be found in bistable mechanisms, so that is what was looked at. The first
concept is a simple strip with a rectangular hole in the middle. The two red points on the sides of this
hole are pulled together which gives the strip a saddle shape (Figure C.1b). This results in the strip
having two stable states which can be achieved by bending it along its length.

(a) Schematic of concept 1 (b) Prototype of concept 1
Figure C.1
The second concept is made from the patterns shown in Figure C.2a. The red lines are connected to

each other which causes the middle strip to buckle. This gives the concept its bistability as the middle
beam can snap into a convex or concave shape.

(a) Schematic of concept 2 (b) Prototype of concept 2

Figure C.2
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..

Figure C.3: Concept 3

The third concept comes from Jeong [9], it is a ring with a cross in the middle, the cross is connected
to the ring with members that are slightly longer than the minimum distance between the cross and the
ring (Figure C.3). As can be seen in the figure this mechanism also has two stable states.

C.3. Evaluation

From the made prototypes the behaviour of the concepts could be evaluated. Concept 1 did have a
snap through behaviour which indicates a negative stiffness. However, it did not always bent perfectly
along its own length but instead it would twist between the two stable states. This twist felt like the
mechanism moved in a shape that had a lower energy level than when it was folded straight. This
behaviour was reduced by making more holes in one strip which can be seen in Figure C.4.

(a) Schematic of concept 1.2 (b) Prototype of concept 1.2
Figure C.4
In the first prototypes the holes are wide, for implementation in an origami mechanism it is preferred to

have slimmer creases. This is also possible with this concept which can be seen in Figure C.5. This
prototype also showed negative stiffness while being less wide.

Figure C.5: Concept 1.3

The second concept did not show the required behaviour. Although it did have two stable points there
was no negative stiffness. To get to the other stable point the mechanism has to be bent past that
stable point before the middle strip snaps trough, then the when the mechanism is released it will fold
back to its new stable point.

The third concept did work, however it is a complicated design which would be difficult to scale down
for applications in origami mechanisms.
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Concept 1 is the only concept that shows both a negative stiffness, and a potential to be integrated
in an origami mechanism. Therefore, this concept is chosen to be modelled in order to find its exact
properties.

C.4. Boundary constraints

The concept of implementation into an origami pattern is based on rigid facets that are connected to the
creases. The most straightforward way to connect the crease to the facet is to make a slot where the
crease just fits in to, and then clamp the crease into that slot. These clamping beams were 3D printed
and had an interface that could easily interact with a test bench. This can be seen in Figure C.6.

Figure C.6: Fully clamped shell, the shell is slightly twisted

The problem with this method of clamping is that after pre-stressing the two beams are not parallel
anymore but they are slightly twisted. This is because due to the pre-stressing the side of the crease
is not a straight line anymore but it is curved. Forcing this curve back into a straight slot gives more
tension in the shell which deforms it. To solve this problem, the shell was only clamped in on the corners,
like in Figure C.7. The holes in the middle of the clamping beam allow the curve in the shell to exist
and so there are no extra stresses introduced into the shell.

Figure C.7: Shell only clamped on the corners, the shell is not twisted

C.5. Initial testing

On the prototype of this final concept an initial test was done to see how the shell would behave. The
lower beam was clamped to the world, while through the loop of the upper beam a rod was placed with
two washers connected to either side of the loop. By pulling or pushing on this rod, the washers would
move the loop, and with that the shell. The rod was mounted on a testbench, this machine can only
move in a straight line, so while the shell was bending the top beam would move in an arc, changing
its height. Therefore, the loop is made longer so that it can bend without touching the rod.

The result can be seen in Figure C.8. It can be seen that the negative stiffness region is short, but also
that there are two separate regions where there is a negative stiffness. An origami mechanism can only
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Figure C.8: Force-displacement characteristic of the prototype test, there is only a short range of negative stiffness, as well as
a step in the negative stiffness

be balanced over a certain range of motion, and how big this is depends on the length of the negative
stiffness. So a short region with negative stiffness can only make an origami mechanisms neutrally
stable over a short range of motion. Also the fact that the negative stiffness happens in two stages
makes it harder to use for static balancing. When the shell is bend it will eventually snap to its mirrored
shape, there are however two points that need to snap to the other side to achieve the mirrored shape,
these two points are circled red in Figure C.7. During the testing these two points did not snap through
at the same time but one after another, this causes the negative stiffness to be divided into two parts.

C.6. Bowl shape

Fixing the problem of the snap happening at two different times could be done by only using half of the
geometry. Then only one snap is needed and there won’t be a problem anymore. However, keeping
the crease symmetric will probably turn out better when trying to align multiple creases. So another
solution would be to move the gaps to the outside, and keep the ridge that buckles in the middle. This
way the two points that need to snap through are connected and might influence each other. Prototypes
of this concept can be seen in Figure C.9. Here the first prototype has a long ridge between the two
holes. So here the two points circled in red are far apart which still allows them to snap one by one. In
the second prototype the ridge is shorter and these two points are closer together. Because of this, the
two points in this prototype both snap at the same time.
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(a) Bowl shaped shell with more space between the gaps, the red (b) Bowl shaped shell with less space between the gaps, the red
circles highlight the points that need to snap through circles highlight the points that need to snap through

Figure C.9

C.7. Convex crease with corrugated facets

With the current concept there are a few obstacles that are difficult to overcome. The negative stiffness
that is achieved so far does not show much potential for the use in an origami mechanism due to its
small range of motion. Also the facets that the creases are supposed to be combined with turned out
too big and heavy for the creases. On the modeling side the combination of the rigid clamping, and
needed pre-stress makes it hard to create a realistic model. More on this can be found in Appendix D.

To create a mechanism that can be modelled realistically a few thing need to change. The clamping
had a big influence on the deformation of the shell, this is because it was very close to the crease,
which deforms. If the clamping can be placed further away from the crease, it should have less of an
effect on the deformation of the crease. By adding the facets already in the model this can be achieved.
This means that the facets need to be the same thickness as the creases. The facets are kept stiffer
than the creases by using a corrugation in the facets. This way the geometry provides most of the
stiffness. Because prestressing also brought problems for a realistic model, the new crease should not
depend on prestressing for its negative stiffness. For this the bowl shape was chosen. In a prestressed
state the bowl already showed negative stiffness and a bistable behaviour. This combined resulted in
a convex shaped crease, with two corrugated facets on the sides, this can be seen in Figure C.10.

[

= A2 ]

Figure C.10: Concept with a convex crease and corrugated facets

Because the new concept does not use prestress it is likely that the crease will not be bistable. Even
with the convex shape, the initial position of the crease will have a energy level of zero, an inverted
position will have a higher energy level, and is possibly not even stable. This has consequences for
finding negative stiffness in the crease. What is more likely is that what would have been a negative
stiffness for a prestressed crease will now transform into a zero stiffness due to the stiffness of the shell
which will be added to it. However, this should not be a problem as with a zero stiffness, or constant
moment, a neutrally stable origami pattern can still be achieved. This is explained in Appendix B.



Modeling

D.1. Crumple zone

The previously explained concept is modeled in the ShellMech software, this is an isogeometric analy-
sis framework [10], which is based on the Kirchhoff-Love plate theorem and a linear isotropic material
law. A geometry can be created by defining control points in a 3D space, a surface is made up of
B-splines that are attracted to these control points. This surface is then given a thickness which results
in a shell. This shell can be deformed and the stresses and reaction forces can be calculated from this.
One limiting factor is that the software can only work with continuous shells, this is a problem for our
concept as there is a hole in it. To overcome this, the hole is replaced by a so-called crumple zone
(Figure D.1). This allows the shell to more easily deform in the middle as if there was a gap in the
geometry.

(a) Geometry of the model with a crumple zone (b) Side view of the model with a crumple zone

Figure D.1

The prestress is modeled by applying two equal and opposite forces on the red points from Figure C.1b.
These forces deform the shell to its prestressed state in the first iteration of the solver. The distance
between the two points where the force is applied is locked after which a second solution is made where
the shell is bent along its length with this it is possible to evaluate the moment-angle diagram of the
shell and to see if there is negative stiffness.

The geometry is defined by a grid of control points through which a spline is drawn. The control points
that correspond to the geometry of Figure D.1 can be seen in Figure D.2. This grid is defined by 7
variables which are defined in Figure D.3, here the front and side views of the grid are shown together
with the variables.
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Figure D.2: Grid of control points of the geometry
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(a) Front view of the grid, with the used variables (b) Side view of the grid, with the used variables

Figure D.3

To get a better picture of these shells’ possible moment angle characteristics, the variables were indi-
vidually varied. For each variable, except for L2, 5 different values were used, and for all these slightly
different shapes the moment angle diagrams were obtained. This whole process was done for 4 dif-
ferent variations on the geometry where the number of ridges in the crumple zone was changed. The
example in Figure D.1 has 5 ridges, the other models had 1, 3, and 7 ridges. The resulting moment
angle diagrams can be found in figures D.4 through D.7. The titles of the smaller graphs indicate which
variable is varied, and the red dots indicate the local minima and maxima. This is done to get a better
view of the length of the negative stiffness regime.

What becomes apparent from these figures is that for all the combinations that were used the range
of negative stiffness never exceeded more than 5°. This is unfortunately too small to be relevant for
origami mechanisms. An attempt was made to optimize the geometry for a longer range of negative
stiffness. For this, the local maximum and minimum were found, the objective was the angle at the
local maximum minus the angle at the local minimum. However, this did not yield much better results.
This was in part because the local minimum and maximum are discrete, they are dependent on the
time steps that the model takes. So if one of these extremes suddenly shifts a time step a very different
result was found. This could be improved by increasing the number of time steps, however, this would
also increase the calculation time. This was also part of the problem, the model already took a long
time to calculate the deformations of the complex shape. These two problems combined made it very
difficult to optimize the geometry.
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Figure D.4: Moment angle diagrams of the shape with one ridge
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Figure D.5: Moment angle diagrams of the shape with three ridges
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Figure D.6: Moment angle diagrams of the shape with five ridges
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Figure D.7: Moment angle diagrams of the shape with seven ridges
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D.2. Hole with decreased thickness

As was just explained, a drawback of this crumple zone is that the more ridges are implemented the
more complex the geometry becomes. There are more points needed on the grid to define the geom-
etry, this causes longer computation times for the code, which came especially apparent during the
optimization process. Therefore, a simpler solution was implemented, by staying more true to the orig-
inal concept of a shell with a hole in it. Because the code still can only work with continuous shells a
true hole can’t be modeled. But the thickness of the shell can be decreased at the place where the
hole should be (Fig. D.8).

Figure D.8: Model with decreased thickness

Another improvement that was made is the way of prestressing. The forces pulling the hole together
were replaced by bending the shell. The distance between the two points is still locked after the shell is
bent. The shell is then bent back the other way to analyze its moment-angle characteristic. Prestress-
ing the shell with the use of bending is more constant. The exact angle that the shell should bend to
can be used as an input. When using the two forces for the prestressing the prestress angle is not
only dependent on these forces, but also on how easily the geometry deforms. So the prestress angle
between two different shells can vary for the same prestress force. Another problem with using the
force for prestressing is the lack of a moment arm in the new geometry. This new geometry is flat, and
adding a force will not bend the shell. For this to happen a small extra force perpendicular to the shell
is needed, to give it an initial bending.

Just like the model of the crumple zone the sides of the crease are modeled as fully clamped. From
prototyping, it became apparent that this did not work well, and only clamping the corners showed bet-
ter results. To simulate this in the model, the beams in the middle could not just be deleted. That would
mean that the middle beam nodes were floating free and the solver would be unable to solve this. So
instead, the stiffness of the middle beams was decreased to simulate a lack of clamping. There are two
ways to define the beams, firstly, beam nodes are connected one after another, and the corner nodes
also connect to the pilot point. The second method is to connect each node separately to the pilot point.
This second method is a lot stiffer. The stiffness of the clamp can be decreased by combining these
two methods. This is done by connecting the outer nodes directly to the pilot point, and the middle
node to each other as per the first method to define the beams. This can be seen in Figure D.9, where
the beams are shown in blue.

There was still a difference between the modeling and the prototype. Namely, the shell in the model is
completely clamped in all directions. In the prototype however the shell is clamped into a slot which still
allows it to contract along this slot, which in the model is along the y-axis. At this point, however, the
model depended on too many approximations, such as the hole, which is just a patch with a decreased
thickness, and the clamping of the middle that is still there, only less stiff than the clamping on the
outside. Therefore a new concept was used.
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(a) First method with directly connected beam (b) Second method with beam nodes
nodes connected to pilot point (c) Combination of the two methods
Figure D.9

D.3. Convex crease
The new concept can be found in Appendix C. For this concept first a sensitivity study was performed,
and later the concept was optimized.

D.3.1. Sensitivity analyses

The problems that there were so far with the model can be solved with a new concept where a convex
crease is used in combination with corrugated facets. The rigid beams are connected to these corru-
gated facets, and because the facets are already stiffer than the crease they should not deform much.
This means that the rigid beams do not have much influence on the deformation of the shell. The new
concept can also be modeled as a continuous shell, which the used FEM program was designed for.
Finally, the shell does not need to be prestressed anymore, which means less calculation time.

The control points of the facets are defined by the parameters from Table D.1 and Figure D.10. The
corrugations are equally spaced along the length of the shell. And the end of the taper connects to the
side of the crease. The control points of the crease are arranged in a 3x7 grid, and all lie on an ellipsoid.
This ellipsoid is located between the two facets and is defined by a rectangle made up of the crease
width and the length, the ellipsoid height, and a scaling factor in y-direction. The ellipsoid is drawn
through the four corners of the rectangle, with the ellipsoid height being the distance in z-direction
between the corners of the rectangle and the highest point on the ellipsoid. Finally, a scaling factor
is used to define the circularity of the ellipsoid. This scaling factor scales the radius of the ellipsoid in
y-direction compared to the radii in x- and z-direction.

Flange width
Taper width
Crease width
Length
Corrugation height
Ellipsoid height
Scaling factor of ellipsoid in y-direction

@%S(Fh%ﬁﬁ

Table D.1: Parameter definitions
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Figure D.10: Parameters that define the geometry

D.3.2. Optimization

An optimization of the shell was done to find the geometry with the best moment-angle characteristic.
The objective that needs to be minimized is the flatness between two points. The flatness of the interval
is defined as the normalized Root Mean Square Error (RMSE) with respect to the average moment on
that interval. First, this average moment is calculated using equation D.1. Here n is the number of data
points on the interval. With this average, the RMSE and normalized RMSE are calculated according to
equations D.2 and D.3.

v = 2= M (D.1)
n
“ 2
o (3 1)
RMSE = ; S (D.2)
Normalized RMSE = RI\J/\I;E (D.3)

If the moment is constant over the whole interval a new optimization is done over a longer interval, with
the result of the previous optimization as a starting point. This is repeated until there is no longer a
constant moment over the interval.

This was firstly performed with the fminsearch algorithm from the MATLAB optimization toolbox, and
the optimization parameters W, H., and .S,,.

For a better optimization of the shell, more freedom was given to the geometry, which allowed the
optimizer to find a better result. The control points of the crease are no longer defined by an ellipsoid.
They still consist out of a 3 by 7 grid, however, the heights of the seven points through the middle are
defined by 4 independent parameters, namely H1, H2, H3, and H4. The height of the points on the side
is dependent on the height of their adjacent point, and scaled by a scale factor S. This is visualized in
Figure D.11. In this second optimization, the used optimization parameters were H1, H2, H3, and H4.
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Figure D.11: 2D representation of new optimization parameters
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