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A B S T R A C T

Understanding the trapping and diffusion mechanism of hydrogen in vanadium carbide (VC) precipitates is 
crucial for exploring the issue of hydrogen embrittlement in steel. Although there is widespread consensus that 
VC can trap hydrogen, the mechanism by which hydrogen diffuses into VC is still unclear. In this study, we used 
first-principles calculation methods to study the influence of different spacings of carbon vacancies on the 
trapping and diffusion of hydrogen in VC. The increase in the number of C vacancies makes it easier for vacancies 
to trap hydrogen, and hydrogen tend to fill up C vacancies. The diffusion of hydrogen into VC only occurs via 
neighboring C vacancies at a distance of 0.295 nm (connecting vacancies), leading to a diffusion barrier of 
0.63–0.78 eV. This is consistent with experimental results and validates the experimental speculation that the 
diffusion of hydrogen in VC requires a connecting C vacancy grid.

1. Introduction

High-strength steel continues to be the primary material for auto
motive bodies due to its excellent mechanical properties, formability, 
low price and readiness for corrosion protection treatments [1–5]. 
However, as steel strength increases, steels in general show a reduced 
resistance to hydrogen embrittlement [6,7] Research has demonstrated 
that [8–10] the aggregation of diffusible hydrogen to lattice defects such 
as grain boundaries and voids is the primary cause of hydrogen 
embrittlement. And second phases in crystal defects, such as precipitates 
and retained austenite, can be used to stop this long range diffusion as 
they are effective hydrogen traps [11–15]. In automotive steel design 
carbide precipitates are widely used because they can greatly reduce the 
amount of matrix accumulated hydrogen and at the same time improve 
the (quasi-static) mechanical properties [16–20]. Of all the carbides, 
vanadium carbide (VC) is the most commonly used carbide in 
high-strength steel and can be present at levels up to 1.1 vol fraction and 

their presence has been shown to reduce the hydrogen embrittlement 
sensitivity significantly [21–26].

There are still a lot of controversies about the actual hydrogen 
trapping due to VC precipitates, both at the steel-precipitate interface 
and in the interior of precipitates. Takahashi initially proposed that the 
misfit dislocation core at the Fe/V4C3 semi-coherent interface was a 
deep hydrogen trap. However, subsequent studies highlighted the sig
nificance of the carbon (C) vacancy on the (001) surface of the V4C3 
precipitate as of the strongest hydrogen trapping site [27,28]. Based on a 
detailed atom probe tomography (APT) analysis, Chen found that 
hydrogen is trapped in the interior of VC precipitates, and the mea
surements also revealed that the ratio of Vanadium to Carbon is roughly 
4: 3, i.e. the carbides have a very high concentration of C vacancies 
[29–32]. Samanta [33] also discovered that in non-stoichiometric 
NbC0.83, hydrogen atoms are trapped by C vacancies within NbC, 
instead of being trapped at the interface. Liu [34] compared the 
hydrogen trapping capabilities of TiC and (Ti, Mo)C and found that the 
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addition of Mo increases the number of C vacancies in TiC, facilitating 
hydrogen entry into the carbide and enabling greater hydrogen trapping 
capacity.

Computational atomistic studies also emphasized the critical role of 
the C vacancy for hydrogen trapping due to its remarkably low hydrogen 
solution energy in VC [35–38]. Salehin [39] found that a lower carbon 
concentration in carbides allows them to trap more hydrogen atoms. 
Moreover, C vacancies at the VC interface can further enhance the 
hydrogen trapping ability of the trap [40,41]. The energy barrier for 
hydrogen diffusion from the α-Fe matrix to the C vacancy near the 
interface (0.24 eV) is also much lower than that for hydrogen diffusion 
into the defect-free VC (2.13 eV) [42]. For the trapping of C vacancies at 
the interface, both experimental [27,43] and theoretical calculations 
[42,44,45] are considered to be feasible. Taniguchi [46] found a positive 
correlation between the amount of captured hydrogen in martensitic 
steels and the product of the carbide interfacial area and the concen
tration of C vacancies. Moreover, first-principles calculations have 
shown that the hydrogen capture energy of C vacancies at the interface 
is greater than in the Fe matrix. However, for hydrogen trapping within 
the carbide interiors, this has only been observed experimentally [29,47,
48], and information regarding specific hydrogen trapping and diffusion 
mechanisms within carbide precipitates is still very scarce. A high 
binding energy in itself does not create an effective hydrogen binding 
trap, but a high diffusion coefficient is crucial for the hydrogen atoms to 
be able to reach vacancies located well within the actual precipitate 
[49]. It has been shown that the diffusion barrier of hydrogen atoms 
decreases with vacancy concentration, but the diffusion barrier is still 
high (the lowest is 2.12 eV) due to the C vacancies dis connecting (there 
are other C atoms between two C vacancies) [50]. The experimental 
studies suggest that diffusion of hydrogen atoms into the interior of 
carbides may require a continuous lattice of C vacancies [51,52]. 
Research is still scarce on how hydrogen atoms diffuse to the trapping 
sites within VC and their state of trapping.

In this paper, a mechanistic study of hydrogen trapping and diffusion 
behavior of different spacing C vacancies in the VC lattice is carried out 
using first-principles calculations, and the intrinsic mechanisms 
affecting the hydrogen diffusion barrier is analyzed.

2. Theoretical methods

To this aim first-principles calculations of the Vienna ab initio 
simulation package (VASP) [53] based on density functional theory 
have been performed. The calculations are performed for the situation at 
0K and no correction are made to estimate the behaviour at room 
temperature or above, The electron-ion interactions and the 
exchange-correlation potential were treated employing the projector 
augmented wave (PAW) [54] and the generalized gradient 

approximation (GGA) [55] within the Perdew-Burke-Ernzerhof (PBE) 
[56] method, respectively. A plane wave cutoff energy of 520 eV was 
employed in all calculations. The supercell geometry and atomic posi
tions of 2 × 2 × 2 VC supercells were relaxed, with the force and energy 
convergence criteria set at 0.01 eV/Å and 10− 5 eV/cell, respectively. A 
4 × 4 × 4 k-point mesh, following the Monkhorst-Pack [57] method, was 
used for Brillouin zone sampling of VC supercells. The diffusion energy 
barrier of the hydrogen atom in VC was calculated by using the climbing 
image nudged elastic band (CINEB) method [58]. In addition, crystal 
structure visualization was achieved using VESTA software [59].

The ease of forming the nth C vacancy is described by the vacancy 
formation energy (EnVac

f ), which is defined as: 

EnVac
f = EnVac + μC − E(n− 1)Vac (1) 

Where Envac is the energy of the VC supercell with n C vacancies, and μC 
is the average energy of each C atom in graphite. Negative vacancy 
formation energy means that the nth C vacancy is easy to generate.

The solubility of nth hydrogen atom in the m C vacancies can be 
described by the solution energy (EmVac,nH

sol ), which corresponds to the 
ability of the carbide to trap hydrogen atoms from the Fe matrix. This is 
defined as: 

EmVac,nH
sol =

(
EmVac,nH − EmVac,(n− 1)H

)
− (EH − EFe) (2) 

Where EH is the system energy of Fe supercell when a single hydrogen 
atom occupies the most stable site (tetrahedral interstitial between the 
centers of four Fe atoms) [60]. EFe is the system energy of Fe supercell 
without hydrogen atom, and EmVac,nH is the system energy of VC super
cell with n hydrogen atoms in the presence of m C vacancies. A negative 
solution energy indicates that the system can trap n hydrogen atoms, 
while a positive value means that the system can trap up to n-1 hydrogen 
atoms.

3. Results and discussion

Before conducing the calculations for hydrogen trapping and diffu
sion at vacancies, the lattice constant of the defect free VC crystal was 
calculated and found to be 4.157 Å. This value closely aligns with both 
the experimental (4.15 Å [61]) and other theoretical (4.160 Å [62], 
4.177 Å [63]) values. Subsequently, the formation energy of single 
carbon vacancies and double vacancies was considered. The ratios of V 
and C atoms in these two models are 32:31 and 16:15 respectively, 
implying that the level of carbon vacancies is still below the commonly 
observed carbide V4C3. For dual vacancies, different carbon vacancy 
distances were taken into account, their configurations are showed in 
Fig. 1. The vacancy formation energy of a solitary C vacancy is − 1.03 eV. 

Fig. 1. Configurations of VC containing C vacancies and corresponding hydrogen trapping. (a) A single C vacancy. (b1-b5) Two C vacancies at different distances. (c) 
Formation energies of vacancies in different configurations, the dashed line indicates the formation energy of a single C vacancy.
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Considering the formation energy of the second C vacancy, it becomes 
apparent that with the exception of the configuration having an 
inter-vacancy distance of 4.16 Å, the vacancy formation energies for all 
the other configurations are negative. The negative C vacancy formation 
energy indicates ease of formation for such configurations. Therefore, in 
subsequent calculations, configurations with a vacancy distance of 4.16 
Å between the two vacancies are not taken into consideration.

Subsequently, the maximum hydrogen trapping number of a single C 
vacancy is calculated and the results are shown in Fig. 2(a). As the 
number of trapped hydrogen atoms increases, the hydrogen atoms are 
symmetrically distributed around the C vacancy and not in the center of 
the C vacancy. But they all have positive solvation energies. A single C 
vacancy can only trap one hydrogen atom stably, which is consistent 
with the result reported in the literature [49]. The hydrogen trapping of 
the two C vacancies is shown in Fig. 2(b). If neighboring C vacancies 
exist, the solution energy of a single hydrogen atom will be further 
reduced, and the solution energies of the second hydrogen atom is lower 
than that of one hydrogen atom in a single C vacancy. This indicates that 
the presence of neighboring C vacancies can enhance the hydrogen 
trapping ability of C vacancies, and hydrogen atoms tend to fill all C 
vacancies.

The diffusivity of hydrogen atoms within the VC structure containing 
C vacancies is a key condition determining whether the VC can act as a 
stable trap capturing a significant number of hydrogen atoms. Thus, an 

analysis of hydrogen diffusion in VC is essential. Hydrogen diffusion in a 
perfect VC is discussed in the Supplementary Material (Fig. S1). 
Hydrogen atoms alternate between two diffusion paths in a perfect VC, 
with energy barriers of 0.17 eV and 0.32 eV, respectively, making the 
highest energy barrier for hydrogen diffusion 0.32 eV. To put the effect 
of the carbon vacancy on hydrogen diffusion in a proper context, the 
energy barrier of hydrogen atom diffusing from the trigonal interstitial 
of the third nearest neighbor (Tri-V3NN) of C vacancy to C vacancy (Tri- 
V3NN→Tri-V2NN→Vac/Tri-V1NN) and the energy barrier of hydrogen 
atom escaping from C vacancy to the Tri-V3NN site (Vac/Tri-V1NN→Tri- 
V2NN→Tri-V3NN) was studied. The diffusion energy barrier and path of 
hydrogen atom are shown in Fig. 3. The presence of a C vacancy has a 
minimal impact on the energy barrier for hydrogen atom diffusion from 
Tri-V3NN site to Tri-V2NN site (Ein,1

diff ). C vacancy primarily influences the 
energy barrier for hydrogen atoms diffusing from the Tri-V2NN site to the 
C vacancy (Ein,2

diff ). E
in,2
diff is lower than the energy barrier for hydrogen 

diffusion in a perfect VC (0.32 eV). And Ein,2
diff is lower than that of the 

hydrogen atom in α-Fe (0.09 eV [15]), Therefore, the C vacancy attracts 
hydrogen atoms to diffuse towards it. Furthermore, the escape energy 

barriers (Eout
diff = Max

{
EVac/Tri− V1NN→Tri− V2NN

diff , ETri− V2NN→Tri− V3NN

diff

}
, the en

ergy barrier for hydrogen atoms diffusing from the C vacancy to the 
Tri-V3NN site) of stable hydrogen atoms are higher than those of 
hydrogen diffusion in perfect VC. In brief, the presence of a C vacancy, 

Fig. 2. Tydrogen trapping behavior of single C vacancy and double C vacancies. (a) Number of hydrogen trapped in a single vacancy. (b) Solution energy of hydrogen 
in double C vacancies.

Fig. 3. Diffusion of hydrogen atoms near single C vacancy. The diffusion path (a1-a3) and energy barrier diagram (b) of hydrogen atom diffusing into and escaping 
from C vacancy.
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acting as a strong hydrogen trap, effectively reduces the energy barrier 
for the diffusion of hydrogen atom into the C vacancy while raising its 
escape energy barrier. Therefore, it is difficult for hydrogen atoms 
diffusing from the Fe matrix into the interfacial C vacancy to escape from 
the C vacancies into the defect-free VC matrix.

Since it is difficult for hydrogen atoms to diffuse through the path 
mentioned above, hydrogen diffusion through neighboring C vacancies 
is considered, as shown in Fig. 4. The results show that the diffusion 
energy barriers for hydrogen are generally high (>2.1 eV) across all 

configurations except for the configuration with a vacancy spacing of 
2.95 Å (0.63 eV). Therefore, if a hydrogen atom diffuses inside a carbide, 
it prefers to move through connected C vacancy path with a spacing of 
2.95 Å. Similarly, if hydrogen atoms escape from the carbide, they favor 
the same connected C vacancy pathway. The energy required for 
hydrogen escape can be measured via Thermal Desorption Spectroscopy 
(TDS) experiments [64–68], making it possible to compare the calcu
lated diffusion barriers with TDS experimental values. The results show 
that the diffusion energy barrier for a single hydrogen atom through the 
nearest neighboring C vacancy (0.63 eV) aligns with TDS experiments 
(52–67 kJ/mol [22], 53–72 kJ/mol [69], 87.3 kJ/mol [70]). This 
further confirms that hydrogen can diffuse into the carbide interior 
through connected C vacancies.

The trapping and diffusion of hydrogen in the presence of three C 
vacancies with a spacing of 2.95 Å in the VC are considered next, and the 
configuration is obtained by searching for the third most stable C va
cancy on the basis of the configuration of the two C vacancies with a 
spacing of 2.95 Å, which is shown in Fig. 5(a). It was found that the 
formation energy of the third Carbon vacancy is − 0.71eV, implying that 
this configuration is also easy to generate. The hydrogen trapping ability 
from a single vacancy to three vacancies was compared in Fig. 5(b). The 
results indicate that the hydrogen trapping ability of C vacancy for the 
first hydrogen increases with the rise in C vacancy concentration. 
Combining the hydrogen trapping ability of the three C vacancy con
figurations, it can be found that hydrogen atoms tend to occupy the C 
vacancy completely. This further emphasizes the importance of con
necting vacancies.

Following this, the diffusion of a single Hydrogen atom between 

Fig. 4. Diffusion of hydrogen atoms occurs through the near-neighbor C vacancy. (a) Diffusion path and (b) diffusion energy barrier for hydrogen atom.

Fig. 5. Hydrogen trapping in three C vacancies. (a) Three C vacancies config
urations, (b) hydrogen trapping order in three vacancies configuration and (c) 
hydrogen trapping in the C vacancies.

Fig. 6. Single hydrogen atom diffusion in the case of three C vacancies. The diffusion path (a) and the corresponding energy barriers (b).
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vacancies along Vac3→Vac2→Vac1 pathway was calculated, which is 
shown in Fig. 6. The maximum diffusion energy barrier for this pathway 
is calculated to be 0.78eV (75 kJ/mol), which is still in line with the 
results achieved from the TDS experiment (52.0–87.3 kJ/mol). And the 
case of hydrogen atoms undergoing jump diffusion was also considered, 
with the path Vac3→Vac1. However, it was found that hydrogen atoms 
could not diffuse directly from the Vac3 site to the Vac1 site, and that 
hydrogen atoms had to pass through the Vac2 site in order to diffuse to 
the Vac1 site.

Next is the diffusion of hydrogen atoms when there are two hydrogen 
atoms in a configuration with three C vacancies, as shown in Fig. 7(a–d). 
There are two cases: the first one is the jump diffusion of hydrogen atoms 
through the vacancies with a spacing of 5.09 Å, and the path is 
Vac3→Vac1. The second one is the diffusion of hydrogen atoms through 
the nearest-neighboring vacancies with a spacing of 2.95 Å, and the 

paths are Vac2→Vac1, and Vac3→Vac2. The end result from both diffu
sion methods is the same. The diffusion energy barrier in the first case is 
1.34eV, while in the second case, it is 0.77eV. Although the hydrogen 
atom can diffuse by jump diffusion through the first diffusion mode, its 
energy barrier is still high, which implies that diffusion of hydrogen still 
occurs through nearest-neighbor C vacancies. This observation may 
explain the ongoing debate about the APT results related to hydrogen 
trapping sites in VC precipitates. Variations in the experimental pro
cedures in the mentioned literature have eventually led to changes in the 
Carbon vacancy concentration in VC. When consecutive Carbon va
cancies exist, the higher the concentration of C vacancies, the easier it is 
for hydrogen atoms to diffuse from α-Fe into VC precipitates and the 
higher the number of hydrogen atoms that are trapped inside the 
carbide.

In order to understand the reasons affecting the significant 

Fig. 7. Hydrogen diffusion in three C vacancies. The first diffusion path (a) and energy barrier (b) of two hydrogen atoms; the second diffusion path (c) and energy 
barrier (d) of two hydrogen atoms.

Fig. 8. ELF plots at different vacancy spacings. (a) 2.95 Å, (b) 5.09 Å, (c) 5.89 Å, (d) 7.20 Å.
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differences in the diffusion energy barriers of hydrogen atoms at 
different vacancy spacings, Electron Localization Function (ELF) anal
ysis was carried out and the results are shown in Fig. 8. The results show 
that the ELF values near the vacancies fluctuate around 0.5 (uniform 
electron gas state), which does not change with the vacancy spacing. For 
a vacancy spacing of 2.95 Å, there is a connecting uniform electron gas 
between the two vacancies and the saddle point of the diffusion path is 
also on this channel, which makes the obstruction for hydrogen atoms to 
diffuse through this channel to occur lower. This is not the case for other 
vacancy spacing configurations, where the charge density between the 
vacancies fluctuates more, which leads to a rapid increase in the cor
responding diffusion energy barrier.

4. Conclusions

In this paper, hydrogen trapping and diffusion in VC precipitates are 
investigated by first-principles calculations. The results show that 
hydrogen atoms can only diffuse from the Fe matrix to the interior of the 
VC precipitates through a connecting network of C vacancies (C va
cancies with a spacing of 2.95 Å). And increasing vacancy concentration, 
the hydrogen trapping ability of C vacancies is enhanced and hydrogen 
atoms tend to occupy all C vacancies. The energy barrier for hydrogen 
atom diffusion through this pathway is 0.63–0.78 eV (60–75 kJ/mol), 
which is in good agreement with the results obtained by TDS (52.0–87.3 
kJ/mol). Moreover, hydrogen atoms can only diffuse through the 
nearest neighboring C vacancies, and no long range jump diffusion can 
occur. The channels formed by the uniform electron gas between the 
nearest-neighbor vacancies are responsible for the low diffusion energy 
barrier. Therefore, the connectivity of C vacancies is essential for 
hydrogen diffusion into the carbide and the substantial capture of 
hydrogen by VC precipitates.
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