
Coupled Nonlinear Aeroelasticity and Flight Dynamics
for Stability Analysis of Flexible Wing Structures

Mario Natella

Te
ch

ni
sc

he
U

ni
ve

rs
ite

it
D

el
ft





Coupled Nonlinear Aeroelasticity and Flight Dynamics
for Stability Analysis of Flexible Wing Structures

by

Mario Natella

in partial fulfillment of the requirements for the degree of

Master of Science
in Aerospace Engineering

at the Delft University of Technology,
to be defended publicly on 11 December, 2015 at 13:00.

Thesis committee: dr. Christos Kassapoglou, TU Delft
dr. ir. R. De Breuker TU Delft
ir. N. Werter, TU Delft
dr. ir. M.M. van Paassen TU Delft

This thesis is confidential.





Declaration

I hereby certify that all material in the present MSc thesis is my own work unless otherwise
referenced.

Mario Natella

iii





Preface

I shall be telling this with a sigh
Somewhere ages and ages hence:
Two roads diverged in a wood, and I -
I took the one less traveled by,
And that has made all the difference.

- Robert Frost

Mario Natella
Delft, The Netherlands

December 2015

v





Alla mia famiglia. Fonte infinita di goia. 1

1To my family. Inexhaustible source of joy.

vii





Acknowledgments

What lays before your eyes is more than a mere technical report presenting my master thesis
work. Behind this document there is the story of a journey, with its ups and downs, side to
side with some people whose support has been vital thoughout this year.

To Roeland and Noud. Thanks for the trust placed in me from the very beginning of
this journey. Thanks for bearing with me in long and interesting discussions, through the
speedbumps along the way and for the invaluable support throughout.

To my family. Inexhaustible source of joy and strength despite the distance.

To Esmay. Because your love and support is invaluable to me.

Voor René. Voor de manier waarop ik ben opgenomen in de familie, waardoor ik mij altijd
thuis heb gevoeld.

Voor Henriëtte en haar gezin. Ik wil jullie bedanken voor de genegenheid zoals alleen een
familie kan geven.

To Mirco. Great friend from the very first day throughout the end of this journey.

To Jacqueline. For always reminding me to look sharp, despite what happens around me.

To Shahrzad. Because your legs can be giving up on you, but there’s always room for one
more squat.

To all my friends in Delft. For making my nights and my time off work memorable.

Por todos os meus amigos na Casa da Sua Mãe. Obrigado para fazer a minha estada no
Brazil inesquecível. Será sempre um prazer ser de volta.

A Giorgio e Francesco. Perché Camigliatello non si potrá mai dimenticare.

A Gregorio, Marco, Angelo, Massimo, Fabio, Otello e tutti quelli che hanno reso i miei
anni a Napoli indimenticabili tra risate, tressette e tarapia tapioco che mai potrá guastare
antani, specialmente se con svergolamento a destra richiamando gli eterni fuochi fatui.

Ed per concludere in bellezza, ad Anna, Sara, Fabrizio, Alfonso, Andrea, Francesco. La
vostra amicizia é stata, é, e sará inestimabile.

ix





Abstract

State-of-the-art wing design philosophy features smart, slender and light structures. In this
context, smart refers to proper smearing of material properties within the design by using
composite materials. The enhanced flexibiliy makes aeroelasticity and flight dynamics more
likely to interact at low frequencies. Effects on wing structures due to the low frequency
coupling have been addressed.

The present work locates in the preliminary design evaluation phase. In this phase,
medium- or low- fidelity approaches are preferred for a quick and reliable evaluation of
conceptual designs, and design optimization at low computational times. The combination
of vortex-lattice method (VLM) and Timoshenko beam theory (TBT) provide a low-fidelity
aeroelastic framework for the evaluation of wing structures at early design stage. Fully
anisotropic materials are modeled. The static aeroelastic analysis can handle large de-
formations and non-linearities. The dynamic aeroelaticity is linear about the nonlinear
deformed configuration to facilitate stability analysis.

The aeroelastic software as such presents a solid framework to start developing more ad-
vanced analysis to be included in preliminary design assessment. The present work builds
from the current aeroelastic formulation, developed by R. De Breuker et al. at the Delft
University of Technology, manipulating the coupled system to model relevant phenomena
associated to flexible aircraft dynamics.

The formulation has been verified against relevant test cases found in literature. The cases
have shown interesting trends with regard to the flight-dynamic stability of a flexible wing
structure that could be conveyed into useful guidelines in case the formulation is applied to
a real-life wing design.

Mario Natella
MSc Student at Delft University of Technology
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1
Introduction

Deep-seated in the work of engineers, irregardless of the particular time in history of tech-
nology, are several aspects utterly unrelated to the physics that characterizes technological
challenges. Said aspects of non-technical nature stem from society, politcs, economics and
our environment. Customary in modern politics is to support world-class technology and
innovation, a trend that encompasses a wide variety of scientific fields. At the same time,
the fallouts of the current economic system are heavily affecting technology, including the
aeronautical sector that is of particular interest in the present work. The combination of
stricter environmental concerns and the need for higher revenue dictated from the private
sector is determining the current, and future design challenges. Common objectives such
as weight reduction, fuel consumption, increased payload, ‘greener’ design are constant in
current aircraft design philosophy.

It is interesting to notice how externally imposed constraints have shaped the wing design
concept and thus have lead to the fundamental thoughts behind the present work. The
strong need for ‘greener’ structures implies weight reduction, a challenge that presents en-
gineers and designers with new problems within the field of elasticity and stress analysis.
Lighter structures feature high flexibility, thus making phenomena of aeroelastic nature the
sizing criteria in wing design.

Since first observed in the early 1900s, aeroelastic phenomena have played a significant role
in wing structural design, and have been a technological challenge for structural designers.
Different ways to account for aeroelasticity in wing design have been investigated during
the years, also depending upon the technological advancement at the time that particular
design dates back. In fact, in the first half on the 20th century, common practice advised
local stiffening of wing structures to avoid aeroelastic instabilities, although the solution
may have not been aligned with weight reduction policies. It was not until the late second
half of the 1900s, that new engineering solutions became feasible since the understanding
of the aeroelastic phenomena had grown more solid and had composite materials found
their way into the aerospace industry.

5



1. Introduction 6

Aircraft structural design philosophy changed significantly since composites have made
their first appearance in aerospace industry and research. In no other circumstances, has
the challenge of weight reduction seemed tangible, and most importantly within our reach.
Weight reduction has made structural flexibility an important concern throughout the de-
sign process, both preliminary and detailed, with particular regard to wing structures and
aeroelastic phenomena. Referring to the work of Shirk et al. (1986), the way to go is em-
bodying “directional stiffness into an aircraft structural design to control aeroelastic deformation
[...] in such a fashion as to affect [...] structural performance [...] in a beneficial way”. These
words define what we know as aeroelastic tailoring.

Aeroelastic tailoring allows for a smart use of materials, proper smearing of properties
throughout the structure and utter control of the response to any perturbation. Neverthe-
less, modern airvehicles design have brought another challenge for structural designers.
The increasing use of light and slender wings leads to structural configurations featuring
low natural frequencies which can easily couple with aircraft motions, as discussed by Patil
(1999), Su (2008), Cesnik et al. (2000, 2001).

Realizing the importance of aircraft motions as a consequence of the enhanced flexibility in
wing structures brings a new challenge at early stages of the design process. Considerations
of this kind are the ones contributing to the development of preliminary analysis tool for
the design of advanced wing structures.

M. Natella MSc Thesis



2
Problem Statement

Common practice in engineering design features three main phases gradually shaping the
initial idea into a real-life design based on fundamental aspects dictated by both the laws
of physics and designers experience. The design process features three distinct phases,
namely conceptual, preliminary and detailed design. Each phase is briefly described for
the sake of a clear understanding of the present work’s position within the design process.

The design process begins with conceptual development. This first phase sees the rise and
fall of myriads of plausible ideas that attempt to realize the design goals. Said ideas are to
be quickly but effectively evaluated in terms of their feasibility and whether or not certain
elemental requirements are being met. At this point, the experienced judgement of profes-
sionals comes in handy. The judgement is based on a set of rules of thumb leading to a
rather accurate and thorough comprehension of crucial matters related to the idea subject
to analysis. The brainstorming process selects a set of design concepts that are reckoned
feasible, innovative and in agreement with the initial project requirements.

Following the conceptual phase of the design process comes the preliminary design phase.
In this phase the concepts are adjusted and remodeled in a trial-and-error fashion accord-
ing to several assessments, both of theoretical and experimental nature. With regard to the
more theoretical part of the preliminary design evaluation, crucial within this phase is the
development of low-fidelity software tools to report on fundamental aspects and features of
the design. To give an example, during the development of a wing structure, one wants to
ensure the design concept is free from any aeroelastic instability and if not, disregard the
concept or tweak it to secure stability within the given flight envelope.

After preliminary assessment, the best set of designs enters the detailed design phase. In
this phase, full-scale, expensive analysis are performed on the model for a thorough eval-
uation and detailed development of the design. Fabrication aspects are also addressed in
this phase.

7



2. Problem Statement 8

Decisive phase within the design process as a whole is the preliminary design phase. In this
phase there is a strong need for quick and realiable methods for design evaluation. More-
over, several phenomena, dictated by related disciplines, are to be accounted for to enhance
the quality of the design. The AETS tool, result of the hard work and dedication of R. De
Breuker et al., at the ASCM/AaM department at the Delft University of Technology, serves
this purpose providing a solid assessment of aeroelastic phenomena in a wing structure.

Current design tendency for civilian aircraft is oriented towards weight saving, a trend that
is dictated by the pressing requirement concerning fuel reduction and the more economical
side of the discussion that pushes for more payload. This inevitably faces engineers with
lighter and more slender wing structures that put aeroelastic phenomena in a completely
different light. Said wing structures also feature a remarkable increase in flexibility that
arises more concerns with regard to stability since with the more flexibility comes large
displacement and low frequency modes that can couple with aircraft rigid motions, as sur-
rogated by the work of Patil (1999), Patil and Hodges (2005), Su (2008), Murua (2012). This
line of reasoning inescapably leads to the realization that aircraft motions, or the flight
dynamic stability, that displays modes at low frequency could become a point of focus at
early phases of the design. Therefore stems the need to incorporate flight dynamics in
low-fidelity software tools suitable for the purposes of preliminary design assessment.

With all this in mind, the present project is to be located within the preliminary design
framework. The project goal can be summarized in the following statement,

with the present MSc thesis, the author aims to develop a low-fidelity flight dynamic model
of an embedded flexible wing. The formulation is to be used in the development of a
coupled aeroelasticity and flight dynamic model for stability assessment of composite wing
structures.

M. Natella MSc Thesis



3
Literature Review

Recently, within the framework of aeroelasticity and flight dynamics of wing structures, sev-
eral works have significantly contributed to the body of knowledge. Detailed mathematical
models have been developed to accurately describe flight dynamics of a flexible aircraft and
elaborate software packages have been built to carry out static, dynamic and modal anal-
ysis on composite wing structures. Particular attention has been given to the interaction
between flight dynamics and aeroelastic phenomena on particular design cases. Studies
of the kind, although not discussing the effects of the coupling on the tailored composite
design, have provided important observations describing crucial phenomena triggered by
the interaction between flight dynamic and aeroelastic modes.

The present chapter reviews some of the relevant studies in the attempt to gather sig-
nificant results and insights regarding the coupling of nonlinear aeroelasticity and flight
dynamics. Each study mentioned in the sections that follow highlights different aspects
of the problem, thus contributing to the process of acquiring the background knowledge
needed for the present project.

3.1. Flight Dynamics
Well-established in engineering practice is the decoupling of flight dynamics and aeroelas-
ticity. A method that is relatively effective (in terms of accuracy and simulation costs) for
aircraft configurations featuring a clear separation in the frequency of aeroelastic modes
and rigid modes. With the development of lighter and more slender wing structures, the
choice of a decoupled system may result in a precarious assumption. Flexible flight dy-
namics is thus needed for a more appropriate analysis framework. Various flight dynamic
formulation in literature are presented. The first concern refers to the choice of a reference
frame for the EOM derivation, a choice that has been proven fundamental for the accuracy
of the analytical description. Several analytical approaches that are customary within the
research field are then presented.

9



3. Literature Review 10

3.1.1. Frames of Reference
A targeted choice of reference frame is fundamental for an efficient derivation of the flight
dynamic equations. In this context we use efficient to refer to a formulation that is accurate
for the purposes of the present work, while simplified in its elemental analytical terms in
order to facilitate the use and solution of the system.

The first concern when selecting the frame of reference is the inertia coupling. Common
practice advices the use of a Lagrangian description in body axes aligned instantaneously
with the principal axes. The formulation as such leads to a diagonal inertia tensor, thus
facilitating derivation and manipulation of the EOM.

It is worth mentioning that the choice of the origin has a significant impact on the
flight dynamic description. A common practice in rigid aircraft dynamics is to locate the
origin of the reference frame at the center of mass. With the increase in flexibility, and
under severe loading conditions, the position of the center of mass varies continuously. A
frame of reference that features this behaviour is referred to as floating reference, Shabana
(1997). The complexity of a flight dynamic description in a floating reference has lead to the
mean axes approximation, Milne (1962), Waszak and Schmidt (1990). Said approximation
stems from the assumption of inertia decoupling between the structural-dynamics and rigid
body equations. This leads to enforcing the linear angular momenta, due to the elastic
deformation, to be zero. The interested reader can investigate the detailed mathematical
formulation of the mean axes constraint, as well as its application and direct impact on
the energy expressions in Meirovitch and Tuzcu (2007), Waszak and Schmidt (1990). The
approach is customary in literature, although its validity is still a major point of discussions
and controversies, as mentioned in Meirovitch and Tuzcu (2007).

3.1.2. Analytical Model
One of the important work on the aeroelastic properties of flexible aircraft has been pre-
sented by VanSchoor and VonFlotow (1990). The study suggests that modeling flexibility
and unsteady aerodynamics is fundamental in order to properly describe aircraft dynamics.
On that note, a study carried out by Waszak and Schmidt (1990) presents an analytical
method in Lagrangian formulation to derive nonlinear equation of a flexible aircraft. A
later study presented by Newman and Schmidt (1991) proposes a reduced order model for
flight dynamics of a flexible aircraft. The method allows to get physical insights of the sys-
tem itself, as well as an approximate expression of zeroes and poles for stability purposes.

The energy approach in Lagrangian formulation as proposed by Waszak and Schmidt
(1990) is suitable to easily generate an accurate description of the flight dynamics of a flex-
ible aircraft, even for unconventional configurations that feature canards or multiple tails.
The system derived as such is fully coupled and nonlinear. On the other hand, although
not as accurate, the reduced model is more appropriate for low-fidelity analysis in prelimi-
nary design. The underlying assumption in the reduced model presented by Newman and
Schmidt (1991) is that the flight dynamics system is linearized about the deformed config-
uration, and therefore the perturbation is assumed relatively small compared to the wing
span. The linear assumption has been widely used in literature. Relevant examples can be
also found in the work of Patil (1999), Su (2008), Murua (2012).

M. Natella MSc Thesis



11 3. Literature Review

3.2. Coupled Aeroelasticity and Flight Dynamics

Important insights about the coupling phenomena are provided in the study by Dowell et al.
(2003). A wing-only type of configuration has been analysed. The configuration as such
serves as a good benchmark to gather data on the coupling effect. Nevertheless, the authors
note that the quality of the analysis and the predictions can be enhanced by more elaborate
configurations, namely wing-horizontal tail, or wing-horizontal and vertical tail, and at last
full aircraft. Important lesson from the study is that the wing-only configuration is suitable
for low-fidelity predictions and preliminary design purposes. More complex configurations
may be taken into account in later stages of the design phase.

The works of Nguyen et al. (2012) and Cesnik and Shearer (2005) present a finite ele-
ment wing model coupled with aircraft motions about the principal axes (roll, pitch, yaw).
These studies highlight the importance of flight dynamics in the aircraft modal response
and flutter onset. The lighter and more slender the wing structure, the more important
it is to consider aircraft motions in the wing design. This consideration becomes crucial
when analysing particular aircraft configurations. On that note the work of Cesnik et al.
(1996, 2000, 2001), reporting on aeroelasticity and flight dynamics of HALE aircraft (High-
Altitude Long Endurance) discusses major aeroelastic effects observed in light and slender
structures. Their results show that large wing deformations due to high-aspect-ratio may
significantly change the aerodynamic load distribution comparing to the undeformed con-
figuration. As a consequence, the linear approach may not be valid. The extent to which the
wing structure deforms will give an indication as to what type of analysis can be performed
in which particular case. The importance of low frequency coupling has been confirmed by
later studies, see Livne and Weishaar (2003).

The work on HALE aircraft has been widely addressed in literature, for the effects of
the flight dynamics coupling are greater in magnitude compared to conventional aircraft
configurations. Important study carried out by Pendaries (1999) highlights the effect of rigid
body motions on the aeroelastic characteristics. The study, again performed on HALE air-
craft, uses a flexible aircraft model compared to an embedded flexible wing model on a
rigid aircraft. Results show minor differences in the flutter onset in both cases. The ob-
served discrepancies can be explained by looking at the rigid-body modes contribution to
the coupling. The study also reports on the effect of the wing stiffness on aeroelastic modes,
or coupled modes.

Remarkable efforts have also been done in the field of conventional aircraft. Cesnik and
Su (2005a) have introduced a nonlinear aeroelastic analysis of a fully flexible aircraft, thus
modeling tails and fuselage. The model allows for a thorough assessment of maneuverabil-
ity, as well as aeroelastic effects on the whole aicraft. Non linear flight dynamics of flexbile
aircrafts has also been presented by Chang et al. (2008). The study reports on the effect of
large deformations on the aeroelastic phenomena. The strong coupling has been identified
as the main cause of the high sensitivities observed in the aeroelastic analysis. In addi-
tion, the study also provides a baseline for a thorough understanding of the significance,
accuracy and limitation of the results obtained at preliminary design level.

MSc Thesis M. Natella



3. Literature Review 12

3.3. Benchmark Studies
A solid baseline is provided by the work of Drela (1999). The study presents a nonlinear
aeroelastic software tool (ASWING) using a nonlinear finite element wing model coupled
with a vortex wake model for steady aerodynamics. The formulation also couples flight
dynamics, including full unsteady terms, and control theory, Drela (2012). The formulation
has been of great influence in literature and paved the way for later studies. It is worth
mentioning is the work of Palacios and Cesnik (2005) that presents an analysis software
tool that can model beam theory and supports different materials formulation, as for ex-
ample piezoelectric materials.

Analysis frameworks for aeroelastic tailoring have been developed more and more in the
last decade. Frameworks of the kind include several disciplines, thus having to rely on sev-
eral experts for the correct validation or verification of results. Important steps have been
made to facilitate the analysis. The flexible wing model developed by Cesnik and Brown
(2002) and Brown (2003) uses a strain-based formulation that allows for a convenient result
validation using strain gauges on the real structure. Although the strain-based approach
implies having to fomulate strain boundary conditions between elements, it is widely used
in aeroelastic software tools.

Numerical tests on different aircraft configurations have been carried out by Patil (1999),
Brown (2003) and Su (2008). The composite beam model adopted in the formulation is
geometrically-exact, and coupled with 2D finite-state unsteady aerodynamics, D. A. Peters
and Torrero (2006). The aircraft is modeled as fully flexible. The equation of motion is
formulated from the virtual work principle, and the fully nonlinear coupled system thus
derived is then linearized about the nonlinear deformed configuration.

A cantilever beam model of a wing has been used for verification purposed by Su
(2008), thus showing good accordance with MSC.Patran/Nastran software package. The
HALE aircraft has been used for numerical studies attempting to predict flutter onset and
divergence speed including rigid body motion. Results from all three studies show good
compliance with the analytical benchmark. For the HALE aircraft configuration, Patil (1999)
estimates the flutter speed at 32.21 m/s, against the 32.51 m/s predicted by the analytical
reference, see also Patil (1997). The difference amounts to 0.9%, thus proving the validity of
both the analytical approach and the respective assumptions.

The formulation as presented in the aforementioned references encompasses a wide
range of aircraft configurations. Stardard fuselage and tails configurations has been inves-
tigated, but the formulation models joined-wing aircraft, flying wings, and blended-wing
bodies, Cesnik and Su (2005b, 2011, 2009).

The studies not only investigate the effect of rigid body motions on aeroelastic stability,
but wing tailoring is also addressed. Ply angle in a composite wing structure has been
proven to be relevant in the assessment of particular aeroelastic phenomena. In support of
this statement, Patil (1999) reports on the change of divergence speed with ply angle, see
Fig. (3.1). In particular, positive ply angles imply favourable bending-twisting coupling, thus
increasing the divergence speed. The exact opposite holds for negative ply angles. Worth
mentioning that the positive orientation is defined with respect to the wing box reference
frame, as described in the aforementioned reference. Flutter is also influenced by both
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flight dynamics and aeroelastic tailoring, although it is more difficult to identify the direct
physical quantities playing a role in the flutter onset.

Figure 3.1: Variation of divergence dynamic pressure with ply angle, Patil (1999).

Thus proving that aeroelastic tailoring and flight dynamics indeed contribute to the
development of advanced composite wing design.

3.4. Summary
To summarise, aircraft flexibility is to be taken into account in the flight dynamics model
for an accurate description of the motions. Studies present a difference in the fully flexible
system and the embedded flexible wing formulation. The former can be more accurate, the
latter more suitable for preliminary design analysis. Main effects of the coupling between
aeroelasticity and flight dynamics result in change of aerodynamic loads, flutter onset and
low frequency modes coupling. On the other hand, the effect on the wing tailored design is
not yet clear, and central point of discussion of the present study.
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4
Thesis Plan

4.1. Methodology
The main hypothesis behind the present research lies in acknowledging that despite the ad-
vancement of state-of-the-art aeroelastic software tools, the extent to which wing structural
design is affected by the coupling between aeroelasticity and flight dynamics is not clearly
understood. The discussion is ongoing, and surrogated by relevant works in different in-
stitutions, research groups all over the world, see Nguyen et al. (2012), Nguyen and Tuzcu
(2012), Cesnik and Shearer (2005).

The first step is to identify the proper flight dynamic model for an accurate description of
aircraft motions. Main works to surrogates the model are presented by Waszak and Schmidt
(1990), VanSchoor and VonFlotow (1990) and Newman and Schmidt (1991), that set the basis
for flight dynamics of a flexible aircraft model. Then it is important to fully understand the
coupling mechanics and implement it. Studies investigating the coupling have been carries
out by Pendaries (1999) and Cesnik and Su (2005a). Finally, once the model is set and
verified, we can start convey the observed trend and results into useful guidelines.

Aerodynamic
Model

EOM of
Flexible Aircraft

Coupled System

Linearized
about nonlinear

deformed
configuration.

Verification Conslusions
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A crucial step within the framework of this research is to convey the results of the analysis
into useful recommendations to be utilized during the preliminary design phase. It is worth
mentioning that preliminary design is the starting point from which stems the optimized
design. On that note, the quality of the optimized design depends upon the quality of the
starting point. Thus, enhancing the quality of preliminary design is expected to increase
the quality of the optimized design as well as improve the computational time needed for
the search.

4.2. Verification Cases
The main intention at this point of the project is to test the flight dynamics code, the
aeroelastic software tool and the coupled system when run on real-life wing design. Par-
ticular attention is to be given to the benchmark case selected. Among the myriad of
studies that can be found in literature, the ones with similar assumptions and similar mod-
els (main focus is to be given to the assumptions behind the flight dynamics model and the
aerodynamic model) will be used for verification and validation purposes. Compliance to
said cases will therefore provide a solid assessment of plausibility and veracity of the results.

Together with benchmark studies provided in the literature, compliance to conventional
software packages is also a valid way of testing. As far as the present study is concerned,
Abaqus is the software package of choice. The reasoning for that lies in the fact that mul-
tiple type of analysis can be easily dealt with simultaneously by defining the different sets
of loads and boundary conditions to describe a particular analysis. Another choice could
be MSC.Patran/Nastran, that although easier to link to other computational software (e.g.
Matlab), requires more elaborate settings to conduct different type of analysis on the same
model.

Standard practice suggests the use of simple structural models, so that the chances of errors
in the input formulation are kept to the lowest. Another aspects that contribute to lowering
modeling errors is the amount of information that can be collected about the test case, and
the assumptions behind the analysis found in literature. In either case, by lowering chances
of modeling errors, the focus can be put on to checking the mathematical formulation.

Having said that, a good test model for the purposes of the present study is a cantilever
beam subject to aeroelastic loads, see the work of Su (2008) for extensive details, and the
3D cantilever bend, with reference to the work of Crisfield and Jelenic (1999). This setting
gives the chance to test the static and dynamic response, as well as the structural part of the
coupled system that includes flight dynamics. Flying-wing configurations are appropriate
models for aeroelastic phenomena of interest as flutter onset, divergence and stability, and
modes of the fully coupled system (namely structure, aerodynamics and flight dynamics).
Depending on which analysis is taken into consideration, it is important to identify the key
physical quantities to monitor and verify. As far as the present project is concerned, lift
distribution, incidence and trim history, bending deflection, twist rotation, flutter speed and
modes are among the quantities of interest since they characterize the wing design and its
performance.
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5
Aeroelastic Framework

This chapter introduces the aeroelastic framework developed by De Breuker et al. (2015),
used as a basis for the development of the current formulation for coupled flight dynamics
and aeroelasticity.

The aeroelastic framework comprises of two models. The structural model is discussed
in Sec. 5.1, whereas Sec. 5.2 covers the aerodynamic model. The aim of this chapter is to
present information about the aeroelastic software that are relevant both for a thorough
understanding and to the development of the current formulation. The interested reader
can find further details in the referenced literature.

5.1. Structural Model
The wing structure is modeled with Timoshenko beam elements described in a corotational
frame of reference (FoR), De Breuker et al. (2015). The corotational frame is rigidly con-
nected to the element and moves with the deformation of the beam at the particular point
. A detailed mathematical derivation of the structural system in a corotational framework
is presented in the the work of Battini and Pacoste (2002). The main advantage presented
by the corotational approach is that the rigid connection renders the direction of the aero-
dynamic element constant irregardless of the local deformation.

A logical chart of the structural analysis is shown in Fig. 5.1. The analysis commences with
the modeling of the structural properties, described in terms of lamination parameters.
Said parameters are then translated in cross-sectional properties assigned to a particular
node locations. The formulation as such is suitable for both analysis and optimization of
composite wing structures. Customary in optimization of composite structure is to opt for
a discrete formulation of the problem, given the discrete nature of the thickness of a com-
posite laminate. However, the introduction of lamination parameter allows for a continuous
formulation of the optimization problem yielding to a convex design space wherein lies the
optimum.

From classical lamination theory (CLT), any given laminate is defined by 15 lamination
parameters and the material invariants, Gurdal et al. (1999). The aeroelastic framework

17
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Figure 5.1: Structural analysis flow chart, De Breuker et al. (2015).

assumes symmetric laminate, thus reducing the lamination parameters to 10 for a thorough
description of the laminate. From this assumption also follows the de-coupling between
in-plane and out-of-plane deformations, and prevention of out-of-plane warping. Unbal-
anced laminate are allowed, thus accounting for the bending-torsion coupling in composite
laminates, a key-stone in aeroelastic tailoring optimization.

Once the laminate has been properly described, the cross-sectional properties are to be
translated in equivalent properties to lump in a specific node of the wing FE model. The
computation of the equivalent properties is performed by means of the cross-sectional mod-
eler, see Fig. 5.1, developed by Willaert et al. (2010). The formulation as such evaluates the
Timoshenko stiffness matrix of a thin-walled cross-section, discretized in N elements. Ma-
terial properties and thickness are assumed constant within an element, although changes
between elements are allowed. From the Timoshenko stiffness matrix, the static response
of the wing is thus determined.

The dynamic analysis, linear about the nonlinear static equilibrium point, is then per-
formed. The cross-sectional modeler feeds the mass matrix evaluated from the area and
inertia properties of the cross-section. Area and inertia are computed under the assumption
of constant density across the section. For analytical details refer to De Breuker et al. (2015).
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19 5. Aeroelastic Framework

Figure 5.2: Linear cross-sectional element of the wing FE model.

Relevant for the purposes of the present work is the stiffness matrix derivation, the reason
for this will become clear in Chap. 6, where the flight dynamic formulation is presented.
Below, mesh generation and the FE model are discussed.

Brief Overview of the FE Model
The beam is modeled with N nodes, and N −1 elements, depending on the input specified
in the input file. The length of the element is then evaluated. The number of mesh points of
each section is determined by rounding up the length of the element divided by the average
element length. The beam orientation is determined by the unit vectors e1, e2 and e3. The
unit vector e1 is defined along the beam as shown in Fig. 5.2,

e1 =
x2 − x1

|x2 − x1|
(5.1)

with 1 and 2 being the two end nodes of the beam element. The unit vector e3 is defined
using e1 and the average chord direction cavg. Note that the average chord direction is the
average of the chord directions at the end nodes. Having said that, unit vector e3 is given
by,

e3 =
e1 × cavg
|e1 × cavg|

(5.2)

The unit vector e2 is derived from e1 and e3 as follows,

e2 =
e3 × e1

|e3 × e1|
(5.3)

For each structural elements thus generated, the local stiffness matrix is determined. The
global matrix is then assembled using the co-rotational framework as developed and dis-
cussed in the work of Battini and Pacoste (2002).

5.2. Aerodynamic Model
The aerodynamic module employed in this work is based on the unsteady vortex-lattice
method. The model is based on the unsteady potential flow theory under the assumption of
incompressible, inviscid and irrotational flow, Werter et al. (2015). The governing equations
can thus be written as,

∇2Φ = 0 (5.4)
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5. Aeroelastic Framework 20

Figure 5.3: Aerodynamic mesh in the aeroelastic framework developed by De
Breuker et al. (2015).

subject to flow tangency (Eq. 5.5) and far-field boundary conditions (Eq. 5.6),

(∇Φ + v∞) · n = 0 (5.5)

lim
d→∞
∇Φ = 0 (5.6)

For a unique solution of the aerodynamic problem, the wake has to be taken into account
making sure that the Kutta condition is satisfied at the trailing edge, see Fig. 5.3 for a visual
representation of the wake in the current aeroelastic framework. This means that the vortex
strength has to be zero at the trailing edge. For the sake of completion, the shed vorticity
can also be calculated remembering that the circulation ΓΓΓ is zero around a curve enclosing
the wing as proven by the Kelvin’s theorem.

Omitting the extensive analytical derivation, that can be found in the work of De Breuker
et al. (2015), from the unsteady flow theory the following set of equations in state space
formulation is obtained as follows,[

Γ̇ΓΓw
α̇αα

]
=

[
K8 K9

0 0

] [
ΓΓΓw
ααα

]
+

[
0
I

]
α̇αα (5.7)

Important for the aeroelastic coupling is the aerodynamic output in terms of forces and
moments acting on the wing. The outputs are then to be lumped to the beam location at
the particular section. Without going into details of the analytical formulation, extensively
illustrated in the work of Werter et al. (2015) and Mohammadi-Amin et al. (2012) 1, the
output equation can be written as follows,[

F
M

]
=
[
L8 L9

] [ ΓΓΓw
ααα

]
+ L7α̇αα (5.8)

The aerodynamic model thus formulated is to be coupled with the structural and flight
dynamic module. The latter is illustrated in the following chapter.

1N.P.M. Werter, R. De Breuker, M.M. Abdalla, Continuous-time state-space unsteady aerodynamic modelling for
efficient aeroelastic load analysis. International Forum on Aeroelasticity and Structural Dynamics, June 2015,
Saint Petersburg, Russia.
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6
Flight Dynamics

This section presents the mathematical formulation that describes the coupled aeroelasticity
and flight dynamics system developed for the purposes of the present project. The flight
dynamic model builds upon the aeroelastic framework, develped by De Breuker et al. (2015).
An embedded flexible wing formulation has been adopted. The aircraft is thus modeled
using rigid fuselage, rigid horizontal and vertical tails, and flexible composite wings.

6.1. Frames of Reference

Let îE, ĵE, k̂E be the unit vectors of an Earth-fixed intertial frame (E-frame), and îB, ĵB, k̂B,
the unit vectors of a body-fixed frame attached to the aircraft (B-frame). With the purpose
of simplifying the analytical description, let us define a third frame of reference that shall
be referred to as body-oriented, identified by the unit vectors îO, ĵO, k̂O . Said frame of
reference originates in the E-frame, but its unit vector are parallel to the B-frame. The
advantages of deriving the equations of motion in a frame thus built will become clear later
in this chapter.
The vector C−O describes the position of the aircraft as a function of time. The orienta-
tion of the B-frame is defined and discussed in Sec. (6.2).

Figure 6.1: Frames of reference.
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6. Flight Dynamics 22

The transformation matrix from the inertial frame E to the B-frame (REtoB) can be written
as a combination of the Euler fundamental rotations φ, θ, ψ, thus,

REtoB = RψRθRφ (6.1)

where Rφ,Rθ and Rψ are given by,

Rφ =

 1 0 0
0 cosφ − sinφ
0 sinφ cosφ

 (6.2)

Rθ =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 (6.3)

Rψ =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 (6.4)

Therefore, with pE and pB being the position of a generic point P on the aircraft in the E-
and B-frame respectively, it follows,

pB = REtoBpE (6.5)

Same logic applies to other quantities, if needed to be transformed in a particular frame.

6.2. Aircraft Orientation
The aircraft orientation is described with elemental rotations φ, θ and ψ about the principal
axes. The formulation is a variant of the Euler formulation that uses 3 different axes to
define the elemental rotations.

Let x, y, z be the body reference frame in its initial undeformed position. The first rotation
φ is defined about the x axis, and defines the intermediate reference frame x, y′, z′. The
second rotation θ is then defined about the y′ axis, thus defining the new intermediate
frame x′, y′, z′′. Third and last rotation ψ is defined about the z′′ axis, and the reference
frame rotates into its final position x′′, y′′, z′′.

Having in mind the orientation definition, the elemental rotations can be related to angular
velocity ωωωT0 = [p q r] as follows,

ωωω0 = Rφ

 φ̇
0
0

+ RθRφ

 0

θ̇
0

+ RψRθRφ

 0
0

ψ̇

 (6.6)

that yields to the nonlinear set of equations,
p = φ̇− ψ̇ sin θ

q = ψ̇ cos θ sinφ+ θ̇ cosφ

r = ψ̇ cos θ cosφ− θ̇ sinφ

(6.7)
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23 6. Flight Dynamics

Figure 6.2: Euler angles in Tait-Bryant fomulation (pitch φ, roll θ, yaw ψ).

6.3. Lagrangian Formulation
Energy method in its Lagrangian formulation has been used to generate the equation of
motion (EOM) of a flexible aircraft model. In its abstract form, once the energy has been
properly formulated, the equation of motion can be written as,

d

dt

∂T

∂χ̇i
− ∂T

∂χi
+
∂U

∂χi
=
∂(δW )

∂χi
(6.8)

where T refers to the total kinetic energy of the system, U the strain and potential energy
and δW the virtual work along the degrees of freedom qi. The degrees of freedom account
for both the structural degrees of freedom and the flight dynamics state. The state vector
χχχ is thus,

χχχT = [δ1
x, δ

1
y , δ

1
z , θ

1
x, θ

1
y, θ

1
z , · · · , δNx , δNy , δNz , θNx , θNy , θNz , x, y, z, φ, θ, ψ]

(6.9)
where δix, δ

i
y, δ

i
z, θ

i
x, θ

i
y, θ

i
z are the structural degrees of freedom of the ith node, and x, y, z, φ, θ, ψ

are the flight dynamics degrees of freedom. The number of equations needed is therefore
6(N + 1), with N being the number of structural nodes.

It is important to remember that the Lagrangian formulation automatically satisfies the
force equilibrium, which for a Newtonian approach one would have to derive separately.
The virtual work δW is given by,

δW = Fδr (6.10)

with F including both forces and moments.
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The equation can be further extended as follows,

δW = F
∂ri
∂qj

δqj (6.11)

where q refers to the state variables. The term ∂ri/∂qj refers to the Jacobian of the applied
forces, and translates the force distribution in generalized forces acting along both the
structural and flight dynamic DoFs. The use of this particular Jacobian will become clear
when we go into more details on the coupling between the aerodynamic and the structural
model.

6.4. Fundamental Description
Let P be a generic point belonging to the aircraft. Its position in the B-frame is described
by the vector rBP defined as,

rBP = r0 + d (6.12)

where r0 is the position of point P in the undeformed configuration, whereas d the defor-
mation vector also defined in the B-frame,

dT = [δx δy δz] (6.13)

Note that the deformation vector is zero for the rigid components (fuselage and tails).
Remembering that the position of the aircraft is given by dEC−O, with,

dEC−O = C−O (6.14)

the position of point P in the BO-frame is,

rBOP = dBOC−O + r0 + d (6.15)

where,
dBOC−O = REtoB(C−O) (6.16)

Its velocity is obtained by the time derivative of rBOP , thus,

vBOP =
d

dt
(REtoBC)− d

dt
(REtoBO) + ṙ0 + ḋ + ω̃ωω0(r0 + d) (6.17)

where ω̃ωω0 is the second order tensor obtained from the angular velocitiy vector ωωωT0 =
[p q r],

ω̃ωω0 =

 0 −r q
r 0 −p
−q p 0

 (6.18)

The velocity can be further manipulated into,

vBOP = ṘEtoBC + REtoBĊ− ṘEtoBO− REtoBȮ + ṙ0 + ḋ + ω̃ωω0(r0 + d) (6.19)

Observing that Ȯ and ṙ0 are both zero, the velocity of point P can be rewritten as,

vBOP = ṘEtoBC + REtoBĊ− ṘEtoBO + ḋ + ω̃ωω0(r0 + d) (6.20)
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25 6. Flight Dynamics

With ΘΘΘ being the aeroelastic angular deformation vector defined about the B-frame axes,

ΘΘΘT = [θx θy θz] (6.21)

the total angular velocity can be thus described by the vector,

ωωωP = ωωω0 + Θ̇ΘΘ (6.22)

The equation only holds for small perturbations about the deformed configuration. A more
elaborate relationship between ωωω and Θ̇ΘΘ is developed in Battini and Pacoste (2002).

6.4.1. Kinetic Energy
Kinetic energy in its fundamental components is,

T = Tw + Tr (6.23)

where Tw describes the contribution to the kinetic energy due to the elastic wing, and Tr the
one due to the rigid parts, namely fuselage and tails. The latter can be further decomposed
into,

Tr = T v
r + T ωr (6.24)

with T v
r accounting for rigid translation, and T ωr for rigid rotation. The total kinetic energy

can be thus written as,
T = Tw + T v

r + T ωr (6.25)

All components are discussed and elaborated in details.

6.4.2. Elastic Wing
The wing has been modeled with Timoshenko beam elements, and therefore the kinetic
energy of a generic element can be written as,

Tel =
1

2

∫
V

ρvTvdV (6.26)

as supported by the work of Chen and Chern (1993), Sabuncu and Evran (2006).
Let χχχs be the state vector of the structural system, defined as,

χχχTs = [δ1
x, δ

1
y , δ

1
z , θ

1
x, θ

1
y, θ

1
z , · · · , δNx , δNy , δNz , θNx , θNy , θNz ] (6.27)

the structural mass matrix is thus given by the Hessian of the kinetic energy in eq. (6.26)
with respect to χχχs,

Mij =
∂2Tel

∂χ̇s
i∂χ̇s

j (6.28)

In Sec. (6.4), the velocity and angular velocity of a generic point P belonging to the aircraft
has been discussed. In case of the an elastic wing model the deformation vectors d, ΘΘΘ are
6= 0, and more importantly both v and ωωω are a function of both the structural DoFs (χχχs)
and the flight dynamic states (that will be referred to as χχχf ). The latter is defined as,

χχχTf = [x, y, z, φ, θ, ψ] (6.29)
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The element kinetic energy can be thus formulated as,

Tw =
1

2

∫
V

ρvT (χχχs,χχχf )v(χχχs,χχχf )dV (6.30)

Recalling the general format of the Lagrangian equation of motion, shown in eq. (6.8), it
follows,

d

dt

∂Tw
∂χ̇i
− ∂Tw
∂χi

=

[
MSS MSF

MT
SF MFF

]
χ̈̈χ̈χ (6.31)

where MSS is the element mass matrix, MFF is the mass matrix related to the flight
dynamics degrees of freedom and MSF couples the flight dynamics degrees of freedom to
the structural ones. Mathematically speaking, the mass matrices can be built by evaluating
the following Hessians of the kinetic energy,

(MSS)ij =
∂2Tw

∂χ̇s
i∂χ̇s

j (MFF )ij =
∂2Tw

∂χ̇f
i∂χ̇f

j (6.32)

(MSF )ij =
∂2Tw

∂χ̇s
i∂χ̇f

j (6.33)

6.4.3. Rigid Fuselage and Tails
Fuselage, horizontal and vertical tails are assumed to be rigid as far as this study is con-
cerned. As discussed in Sec. (6.4.1), the kinetic contribution given by the rigid components
can be split in two parts, namely T v

r accounting for the rigid translation and T ωr for the
rigid rotation. In more details,

T v
r =

1

2
mRvTv T ωr =

1

2
ωωωT Iωωω (6.34)

The relationships hold for constant mass density, and are evaluated about the element cen-
ter of gravity thus canceling out inertia coupling terms.

In a similar fashion as in previous section, from the Lagrangian equation of motion we
have,

d

dt

∂T v
r

∂χ̇i
− ∂T v

r

∂χi
=

[
0 0
0 Mv

R

]
χ̈̈χ̈χ (6.35)

d

dt

∂T ωr
∂χ̇i
− ∂T ωr
∂χi

=

[
0 0
0 Mω

R

]
χ̈̈χ̈χ (6.36)

The assumption of rigid bodies implies that the kinetic energy is not dependent on the
structural degrees of freedom. It therefore follows that the only non-zero Hessians are,

(M v
r )ij =

∂2T v
r

∂χ̇f
i∂χ̇f

j (6.37)

(Mω
r )ij =

∂2T ωr
∂χ̇f

i∂χ̇f
j (6.38)
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6.4.4. Strain Energy
Strain energy is defined as,

Ue =
1

2
χχχTsKχχχs (6.39)

where χχχs is the structural state vector, and K the stiffness matrix of the finite element wing
model. The relevant details regarding the derivation of the stiffness matrix are given in the
work of De Breuker et al. (2015). Since the strain energy is only dependent on the structural
degrees of freedom, any derivative with respect to the flight dynamics degrees of freedom
is zero. Thus, from the Lagrangian equation of motion,

∂Ue

∂χi
=

[
K 0
0 0

]
χχχ (6.40)

6.4.5. Potential Energy
Gravitational energy in its integral form is given by Waszak and Schmidt (1990),

Ug = −
∫
V

gT rρdV (6.41)

where g is the gravitational acceleration vector, and r the position vector. The total gravi-
tational energy can be split in two terms, one for the elastic wing, one for the rigid parts of
the aircraft,

Ug = (Ug)w + (Ug)R (6.42)

Assuming constant mass density, we have,

(Ug)w =
∑
i

migT ri (6.43)

(Ug)R = mRgT r (6.44)

with r evaluated with respect to the element center of gravity. Thus, from the Lagrangian
equation of motion follows,

∂Ug

∂χi
=

[
Kg
SS Kg

SF

(Kg
SF )T Kg

FF

]
χχχ (6.45)

The stiffness matrices can be derived from the Hessians of the potential energy as follows,

(K
g
SS)ij =

∂2Ug

∂χis∂χ
j
s

(K
g
FF )ij =

∂2Ug

∂χif∂χ
j
f

(6.46)

(K
g
SF )ij =

∂2Ug

∂χis∂χ
j
f

(6.47)

6.5. Nonlinear System
The fully nonlinear system obtain with the Lagrangian formulation is shown,{[

MSS MSF

MT
SF MFF

]
+

[
0 0
0 Mv

R

]
+

[
0 0
0 Mω

R

]}
χ̈̈χ̈χ+

{[
K 0
0 0

]
+

[
Kg
SS Kg

SF

(Kg
SF )T Kg

FF

]}
χχχ = R

(6.48)
The vector of generalized forces is unknown, and it is to be determined by coupling the
system to the aerodynamic model. The details are shown in Sec. (6.9).
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6. Flight Dynamics 28

6.6. Linearized System
The fully nonlinear system has been linearized about the nonlinear deformed configuration
(denoted by δ) to facilitate the stability analysis. The underlying assumption is that the state
vector can be written as,

χχχ = χχχδ +ϕϕϕ (6.49)

where χχχδ refers to the state vector in the nonlinear deformed configuration, while ϕϕϕ to
the perturbation. The perturbation is assumed to be reasonably small compared to the
nonlinear deformation. The linearization process is hereby discussed, further details of the
derivation can be found in AppendixA.

Analytical overview

Let us write the nonlinear system in its compact form as,

Mχ̈̈χ̈χ+ Kχχχ = R(χχχ) (6.50)

To simplify the mathematical formulation of the variational equations needed to linearize
the system, the following auxiliary functions are hereby defined,

fff 1 = Mχ̈̈χ̈χ (6.51)

fff 2 = Kχχχ (6.52)

The Taylor expansion of the nonlinear functions fff 1 and fff 2 is,

fff 1 = fff 1(δ) +

(
∂fff i1
∂χ̈̈χ̈χj

)
δ

ϕ̈̈ϕ̈ϕ+

(
∂fff i1
∂χ̇̇χ̇χj

)
δ

ϕ̇̇ϕ̇ϕ+

(
∂fff i1
∂χχχj

)
δ

ϕϕϕ+ o(2) (6.53)

fff 2 = ξξξ2(δ) +

(
∂fff i2
∂χ̈̈χ̈χj

)
δ

ϕ̈̈ϕ̈ϕ+

(
∂fff i2
∂χ̇̇χ̇χj

)
δ

ϕ̇̇ϕ̇ϕ+

(
∂fff i2
∂χχχj

)
δ

ϕϕϕ+ o(2) (6.54)

recalling the assumption in eq. (6.49) the higher order terms can be neglected thus having,

fff 1 ≈ fff 1(δ) +

(
∂fff i1
∂χ̈̈χ̈χj

)
δ

ϕ̈̈ϕ̈ϕ+

(
∂fff i1
∂χ̇̇χ̇χj

)
δ

ϕ̇̇ϕ̇ϕ+

(
∂fff i1
∂χχχj

)
δ

ϕϕϕ (6.55)

fff 2 ≈ fff 2(δ) +

(
∂fff i2
∂χ̈̈χ̈χj

)
δ

ϕ̈̈ϕ̈ϕ+

(
∂fff i2
∂χ̇̇χ̇χj

)
δ

ϕ̇̇ϕ̇ϕ+

(
∂fff i2
∂χχχj

)
δ

ϕϕϕ (6.56)

Since fff 1 is only a function of χ̈̈χ̈χ, and fff 2 only dependent on χχχ, the linear approximations
become,

fff 1 ≈ fff 1(δ) +

(
∂fff i1
∂χ̈̈χ̈χj

)
δ

ϕ̈̈ϕ̈ϕ (6.57)

fff 2 ≈ fff 2(δ) +

(
∂fff i2
∂χχχj

)
δ

ϕϕϕ (6.58)

Substituting the linearized function in the initial equation of motion in eq.(6.50),

fff 1(δ) +

(
∂fff i1
∂χ̈̈χ̈χj

)
δ

ϕ̈̈ϕ̈ϕ+ fff 2(δ) +

(
∂fff i2
∂χχχj

)
δ

ϕϕϕ = R(δ) + R(ϕϕϕ) (6.59)
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where the generalized forces R have been decomposed into the two contributions R(δ) in
the nonlinear deformed configuration and R(ϕ) in the perturbed state. Worth to mention
that the break down of the generalized forces only holds under the small perturbation as-
sumption.

We now note that the following part of the linear equation of motion in eq. (6.5),

fff 1(δ) + fff 2(δ) = R(δ) (6.60)

is nothing other than the solution of the nonlinear deformed configuration. Thus eq.(6.59)
can be reduced to, (

∂fff i1
∂χ̈̈χ̈χj

)
δ

ϕ̈̈ϕ̈ϕ+

(
∂fff i2
∂χχχj

)
δ

ϕϕϕ = R(ϕϕϕ) (6.61)

Where the Jacobians of fff 1 and fff 2 represent the linear mass matrix and the linear stiffness
matrix respectively.

Mlinϕ̈̈ϕ̈ϕ+ Klinϕϕϕ = R(ϕϕϕ) (6.62)

The linear system is now to be coupled to the aerodynamic model in order to determine the
unknown forces on the perturbed state and assess stability about the nonlinear deformed
configuration.

6.7. The Structural State Space
Let us write the coupled structural system as,

Mχ̈̈χ̈χ+ Kχχχ = F (6.63)

For reasons that will become clear when we will discuss the coupling to the aerodynamic
system of equation, it is convenient to rewrite the structural equation is state space format.
It thus follows, [

χ̈χχ
χ̇χχ

]
=

[
000 −M−1K
I 000

] [
χ̇χχ
χχχ

]
+

[
M−1

000

]
F (6.64)

and in a more compact version,

Ẋs = AsXs + BsFs (6.65)
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6.8. The Angle of Attack
Fundamental in the formulation of the coupled system is to define the correct angle of
attack that also includes flight dynamics variables. With reference to the work of Waszak
and Schmidt (1990) and De Breuker et al. (2012), the angle of attack can be formulated as,

ααα = αααair + ΘΘΘ +
Θ̇ΘΘs

V∞
(xxxp − xref) +

q

V∞
(xxxp − xref)−

ḣ̇ḣhs
V∞
− ḣ̇ḣhr
V∞

(6.66)

where αααair is the incidence angle, ΘΘΘ is the combined rotation (that includes both the rigid
rotation and the elastic deformation ΘΘΘs), the term q refers to the pitch rate while ḣ̇ḣhs and ḣ̇ḣhr
are respectively the structural and rigid plunge rates.

6.8.1. Contribution of the combined flexible and rigid rotation
The most delicate term in the equation is the combined rotation angle ΘΘΘ, which is a func-
tion of both χs (the structural DoFs) and χf (the flight dynamic states). In more details,
the problem is that we have to combine the twist rotations θx, θy, θz with the consecutive
rotation angles (Euler angles) φ, θ, ψ. This particular problem does not exist for angular
velocities, which are always additive. We will now explain how to derive the combined
rotation in details.

Let us begin with the rigid component, given in Euler angles. The three consecutive rotation
define the following rotation matrix,

Rr = RψRθRφ (6.67)

with the elemental rotation matrices in φ, θ, ψ are defined in Sec. 6.1.

The amount of rotation that results from the structural deformation is described by three
non-consecutive rotations. This makes the derivation of the rotation matrix less straight
forward compared to the rigid case. Therefore, let us now consider the three rotations in
question, θx, θy, θz, that define the vector θθθs. To this vector we can associate a 3-by-3
skew-symmetric matrix, ΩΩΩ, usually called the spin tensor,

ΩΩΩ = spin(θθθs) =

 0 −θz θy
θz 0 −θx
−θy θz 0

 ≡ −ΩΩΩT (6.68)

The problem we have now is the construction of a rotation matrix Rf (where f stands for
flexible) from the rotation angles θθθs. Considering that Rf is analytical in ΩΩΩ, that tells us that
the Taylor expansion exists and thus the rotation matrix can be written as,

Rf = I +
∑
i

ciΩΩΩ
i (6.69)

At this point, one can refer to the Cayley-Hamilton theorem, Birkoff and MacLane (1996),
that proves the following property of the spin matrix,

ΩΩΩn = −||θθθs||ΩΩΩn−2 (6.70)
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for n ≥ 3, which allows us to write c1 and c2 as,

c1 =
+∞∑
n=0

(−1)n
||θθθs||2n+1

(2n+ 1)!
(6.71)

c2 = 1−
+∞∑
n=0

(−1)n
||θθθs||2n

2n!
(6.72)

that are the generic expressions for the Taylor expansion of the following trigonometric
functions,

c1 = sin ||θθθs|| (6.73)

c2 = 1− cos ||θθθs|| ≡
sin 0.5||θθθs||
||θθθs||

(6.74)

thus the flexible rotation matrix becomes,

Rf = I + sin ||θθθs||ΩΩΩ +
sin 0.5||θθθs||
||θθθs||

ΩΩΩ2 (6.75)

and finally we can write the combined rotation matrix as,

R = RfRr (6.76)

From combined rotation matrix to the amount of rotation
The problem we are now facing is the calculation of the amount of rotation that is dictated
by the rotation matrix. A simple way is advised in the standard theory of finite rotations,
where given a rotation matrix R, the spin tensor associated with the rotation vector is
nothing other than,

ΩΩΩ = logR (6.77)

Let us now introduce the axial operator, such that given a matrix A,

axial(A) =

 A32 − A23

A13 − A31

A21 − A12

 (6.78)

This allows to define the normalized axis of rotation n as,

n = axial(R− RT ) (6.79)

and,

τ =
1

2
||axial(R− RT )|| (6.80)

so that the spin tensor can be expressed in its closed form as,

ΩΩΩ =
sin−1 τ

2τ
n (6.81)

from the spin tensor the rotation vector is obtained by simply reversing the spin operator,

θθθ = spin−1(ΩΩΩ) (6.82)
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Figure 6.3: Vectorial derivation of the angle of attack.

From local rotation to angle of attack
Let us consider an element of the aerodynamic mesh, delimited by the points P1, P2. This
element is subject to a rotation, appropriately translated from the structural mesh, that will
influence on the local angle of attack. We will hereby go into the details of how to transform
the rotations into an angle of attack, see Fig. 6.3.
Let t be the tangent vector to the element, positive from P1 towards P2. Assuming that,

P1 = [x1 y1 z1] (6.83)

P2 = [x2 y2 z2] (6.84)

the tangent vector is defined as,

t =


0

y2 − y1√
(y2 − y1)2 + (z2 − z1)2

z2 − z1√
(y2 − y1)2 + (z2 − z1)2

 =

 0
t2
t3

 (6.85)

It is important to mention that the aerodynamic element between P1 and P2 is not curved.
The tangent vector is important because it is the axis of rotation of the element.
Now, let v be the velocity vector, with coordinates,

vT = [1 0 0] (6.86)

that is perpendicular to the tangent vector t. Finally, their cross-product,

n = t× v (6.87)

is nothing other than the normal to the element with respect to the plane (t,v). The three
vectors form a right-handed base system that will allow to define a robust formulation for
the angle of attack. The base rotation matrix RB is,

RB =

 v t× v t

 (6.88)
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and it is defined in such a way that the following two conditions are true,

v = RT
B

 1
0
0

 (6.89)

t = RT
B

 0
0
1

 (6.90)

From the coordinates of v and t, we have,

n = t× v (6.91)

using the spin operator on t, we have,

n =

 0 −t3 t2
t3 0 0
−t2 0 0

 1
0
0

 =

 0
t3
−t2

 (6.92)

thus the base matrix becomes,

RB =

 1 0 0
0 t3 −t2
0 t2 t3

 (6.93)

We now have all the ingredients to finalize the derivation of the angle of attack.

Consider a vector C0 initially equal to,

C0 = v =

 1
0
0

 (6.94)

that it is then rotated by pre-multiplying by the combined rotation matrix R,

C′ = RC0 (6.95)

and brought into the base system previously defined,

C = RBRC0 (6.96)

The angle of attack is the angle between C and C0 in the plane (v,n). Since all the vectors
are defined in the same local frame of reference, the angle of attack is given by,

α = tan−1

(
Cy
Cx

)
(6.97)

The equation is non-linear in the state variables (in this case only the structural rotations,
and the Euler angles). The angle of attack can be thus approximated as,

α = α0 +
∂α

∂χ
δχ+ o(2) (6.98)
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From eq. 6.97, the variation of α with respect to one of the state variables is given by,

dα ≈ 1

1 +

(
Cy
Cx

)2

dCyCx − CydCx
C2
x

(6.99)

where the variation of C is obtained with the chain rule on eq. 6.96,

dC = RBdRC0 (6.100)

The formulation has three advantages,

• the sign of alpha is directly obtained by the ration Cy/Cx,

• the derivative is defined for any real number, thus showing no singularities,

• the derivative exists if C and C0 are aligned.

The third point is crucial when weighing the different mathematical options to define the
angle of attack. To give an example, another equivalent way to define α is the following,

α = cos−1 (C · C0) (6.101)

assuming both vectors are normalized. Its variation is thus,

dα =
1√

1− (C · C0)2
dC · C0 (6.102)

a function that is singular when,
C · C0 = 1 (6.103)

that means the two vectors are aligned. In case the angle of attack had been formulated
using the arcsin,

α = sin−1 (||C× C0||) (6.104)

with both vector normalized, the variation is again singular if C and C0 are aligned.

6.8.2. Contribution of the plunge rates
As we have seen from eq. 6.66, there is two contributions to the angle of attack due to
the plunge rate. The structural plunge is the local motion of the element described by the
following equation,

ḣs = n · δ̇̇δ̇δs (6.105)

with n being the element normal. Atop of it, we have the rigid plunge that instead is a
function of rigid translations hereby referred to as X,

ḣr = n · Ẋ (6.106)

that applies uniformly to all the elements in the structure.
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6.9. Coupled System
Let us recall the expression of the angle of attack as presented in eq. 6.66,

ααα = αααair + ΘΘΘ +
Θ̇ΘΘs

V∞
(xxxp − xref) +

q

V∞
(xxxp − xref)−

ḣ̇ḣhs
V∞
− ḣ̇ḣhr
V∞

(6.107)

which is an essential term to couple the structural state space (that includes the flight dy-
namic degrees of freedom) to the aerodynamic system of equations. The angle of attack
determines the force distribution on the structure that is the mathematical link between
the two systems, given a proper translation of the forces between the aerodynamic and
the structural mesh. In the current formulation, the transformation is performed using the
nearest neighbor interpolation, refer to De Breuker et al. (2015). The author’s work builds
from the existing aeroelastic coupled system from De Breuker et al. (2015) in the attempt
to extend the system to include the flight dynamic state variables.

In more generic terms, the angle of attack is a function of the following quantities,
• θx, θy, θz
• θ̇sx, θ̇

s
y, θ̇

s
z

• q
• δ̇x, δ̇y, δ̇z
• ẋ, ẏ, ż

It is important to remember that when we refer to the element rotation, it is always in-
tended a combined flexible and rigid rotation. The angular velocity, on the other hand, are
additive and we can thus treat the two components (structural and rigid) as separate.

Three important remarks will now follow before moving into the details of the coupling
equations.

Remark no. 1
The pitch rate q is defined around the y-axis, in the body frame of reference. When calcu-
lating its contribution to the local angle of attack, one should only consider the rotation in
the direction of the element tangent vector (also local axis of rotation). The same holds for
the structural rotation derivatives. Let then t be the tangent vector with coordinates,

tT = [ t1 t2 t3 ] (6.108)

from which we can define the following auxiliary matrices,

T1 =


(t1)1 0 0 . . . 0

0 (t1)2 0 . . . 0
. . .
0 0 0 . . . (t1)Nel


(Nel×Nel)

(6.109)

T2 =


(t2)1 0 0 . . . 0

0 (t2)2 0 . . . 0
. . .
0 0 0 . . . (t2)Nel


(Nel×Nel)

(6.110)
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T3 =


(t3)1 0 0 . . . 0

0 (t3)2 0 . . . 0
. . .
0 0 0 . . . (t3)Nel


(Nel×Nel)

(6.111)

If θθθx, θθθy, θθθz are the x, y and z sturctural rotation on the elements, the components aligned
with the rotation axis are,

(θθθx)t = T1θθθx (6.112)

(θθθy)t = T2θθθy (6.113)

(θθθz)t = T3θθθz (6.114)

Analogously, for the pitch rate (which refers to a rotation about the y-axis in the body frame
of reference), we define the vector,

t2 =


(t2)1

(t2)2

. . .
(t2)Nel

 (6.115)

that allows us to write q in the direction of the rotation axis as,

qt = t2q (6.116)

Remark no. 2
The translation rates, in the three axial directions, are essential for the correct determi-
nation of the effect of a non-zero plunge rate onto the angle of attack. In this case, the
significant contribution is the one in the direction of the element normal vector. In a similar
fashion as in the previous case, we define n as the element normal vector with coordinates,

nT = [n1 n2 n3 ] (6.117)

from which we can define the following auxiliary matrices,

N1 =


(n1)1 0 0 . . . 0

0 (n1)2 0 . . . 0
. . .
0 0 0 . . . (n1)Nel


(Nel×Nel)

(6.118)

N2 =


(n2)1 0 0 . . . 0

0 (n2)2 0 . . . 0
. . .
0 0 0 . . . (n2)Nel


(Nel×Nel)

(6.119)

N3 =


(n3)1 0 0 . . . 0

0 (n3)2 0 . . . 0
. . .
0 0 0 . . . (n3)Nel


(Nel×Nel)

(6.120)
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If δδδx, δδδy, δδδz are the x, y and z sturctural deformation of the elements, the components
aligned with the normal axis are,

(δδδx)n = N1δδδx (6.121)

(δδδy)n = N2δδδy (6.122)

(δδδz)n = N3δδδz (6.123)

For the rigid translation rates ẋ, ẏ, ż, we define the vectors,

n1 =


(n1)1

(n1)2

. . .
(n1)Nel

 (6.124)

n2 =


(n2)1

(n2)2

. . .
(n2)Nel

 (6.125)

n3 =


(n3)1

(n3)2

. . .
(n3)Nel

 (6.126)

that allows us to write the rates in the direction of the rotation axis as,

ẋ̇ẋxn = n1ẋ (6.127)

ẏ̇ẏyn = n2ẏ (6.128)

ż̇żzn = n3ż (6.129)

Remark no. 3
It is always crucial to remember that anglular contributions are not additive. Nevertheless,
when dealing with variation of angular contribution with respect to state variables, the
partial derivatives can be treated as separate terms. This observation will be useful when
writing the angle of attack as a function of the states, with particular regard to the influence
of structural deformations and Euler angles.

Remembering that ΘΘΘ is a function of,

ΘΘΘ = f(θsx, θ
s
y, θ

s
z, φ, θ, ψ) (6.130)

we can linearize its ith term as,

Θi ≈ Θ0 +
∂Θi

∂(θsx)i
δ(θx)i +

∂Θi

∂(θsy)i
δ(θy)i +

∂Θi

∂(θsz)i
δ(θz)i +

∂Θi

∂φ
δφ+

∂Θi

∂θ
δθ+

∂Θi

∂ψ
δψ (6.131)

By the same logic, we can calculate the variation for each and every element, thus defining
the following matrices,

(Tα)1 =
∂Θi

∂(θx)j
(6.132)
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(Tα)2 =
∂Θi

∂(θy)j
(6.133)

(Tα)3 =
∂Θi

∂(θz)j
(6.134)

(Tα)4 =

[
∂Θi

∂φ

∂Θi

∂θ

∂Θi

∂ψ

]
(6.135)

The angle of attack as a function of the states
The equation for the angle of attack is to be related to the state vector of the coupled
system. By means of transformation matrices between the structural and the aerodynamic
mesh, and appropriate boolean matrices 1, the relevant quantities in eq.(6.66) can be written
as,

ΘΘΘx = T1
αHSATΘχχχ (6.136)

ΘΘΘy = T2
αHSATΘχχχ (6.137)

ΘΘΘz = T3
αHSATΘχχχ (6.138)

ΘΘΘ = T4
α

 Tφ

Tθ

Tψ

χχχ (6.139)

Θ̇ΘΘs
x = T1HSATΘ̇s

χχχ (6.140)

Θ̇ΘΘs
y = T2HSATΘ̇s

χχχ (6.141)

Θ̇ΘΘs
z = T3HSATΘ̇s

χχχ (6.142)

q = t2Tqχχχ (6.143)

δ̇̇δ̇δs = N1HSATδ̇s
χχχ (6.144)

δ̇̇δ̇δs = N2HSATδ̇s
χχχ (6.145)

δ̇̇δ̇δs = N3HSATδ̇s
χχχ (6.146)

ẋ = n1Tẋχχχ (6.147)

ẏ = n2Tẏχχχ (6.148)

ż = n3Tżχχχ (6.149)

1The mathematical details of the boolean matrices can be found in Appendix B
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The coupling equations
Let us begin recalling the aerodynamic system of equations as illustrated in eq. 5.7,[

Γ̇ΓΓw
α̇αα

]
=

[
K8 K9

0 0

] [
ΓΓΓw
ααα

]
+

[
0
I

]
α̇ααair (6.150)

including all the contributions to the angle of attack, the system becomes,

[
Γ̇ΓΓw
α̇αα

]
=

[
K8 K9 K9ΞΞΞ1

0 0 0

]


ΓΓΓw
ααα
ΘΘΘ

Θ̇̇Θ̇Θs

q

δ̇̇δ̇δs
ẋ
ẏ
ż


+

[
0
I

]
α̇ααair (6.151)

where ΞΞΞ1 is a matrix that acts on the contributions to the angle of attack, and it is build
based on the three remarks presented before. Details on this matrix can be found in
AppendixC. In a more compact notation, the system can be written as,

[
Γ̇ΓΓw
α̇αα

]
= H1



ΓΓΓw
ααα
ΘΘΘ

Θ̇̇Θ̇Θs

q

δ̇̇δ̇δs
ẋ
ẏ
ż


+ H7α̇ααair (6.152)

The second equation needed at this point is the force equation, again from the aerodynamic
model, presented already in eq. 5.8,

Fa =
[
L8 L9

] [ ΓΓΓw
ααα

]
+ L7α̇ααair (6.153)

that when all contributions to alpha are included becomes,

Fa =
[
L8 L9 L9ΞΞΞ2

]



ΓΓΓw
ααα
ΘΘΘ

Θ̇̇Θ̇Θs

q

δ̇̇δ̇δs
ẋ
ẏ
ż


+ H3


θ̈θθs
q̇

δ̈δδs
ẍ
ÿ
z̈

+ L7α̇ααair (6.154)
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Extensive details on the matrices ΞΞΞ2 and H3 are presented in AppendixD. In a similar
fashion as in the previous case,

Fa = H2



ΓΓΓw
ααα
ΘΘΘ

Θ̇̇Θ̇Θs

q

δ̇̇δ̇δs
ẋ
ẏ
ż


+ H3


θ̈θθs
q̇

δ̈δδs
ẍ
ÿ
z̈

+ L7α̇ααair (6.155)

Note that the equations are still not an explicit function of the structural and flight dynamic
states. Remembering the logic behind the boolean selection matrices, the aerodynamic
model can be written as,

[
Γ̇ΓΓw
α̇αα

]
= H1T1

 ΓΓΓw
ααα
χχχ

+ H7α̇ααair (6.156)

Fa = H2T1

 ΓΓΓw
ααα
χχχ

+ H3T2χ̇̇χ̇χ+ L7α̇ααair (6.157)

We also observe that the vector,  ΓΓΓw
ααα
χχχ

 (6.158)

is nothing other than the states of the fully coupled system (that includes aerodynamics,
structure and flight dynamics). We will refer to this vector as X.

X =

 ΓΓΓw
ααα
χχχ

 (6.159)

The equations are thus, [
Γ̇ΓΓw
α̇αα

]
= H1T1X + H7α̇ααair (6.160)

Fa = H2T1X + H3T2χ̇̇χ̇χ+ L7α̇ααair (6.161)

The aerodynamic equations are now in the right format to be coupled to the structural
system of equations.

From the structural state space in eq. 6.65, we have,

χ̇χχ = Asχχχ+ BsFs (6.162)
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Therefore, in order to finalize the coupling, the aerodynamic forces Fa are to be translated
on generalized forces that act along both the structural and flight dynamic degrees of free-
dom. At this point, we need to refer to the Jacobian matrix of the force vector, mentioned
in Sec. 6.3. The nearest neighbor interpolation gives us a tranformation matrix from aero-
dynamic to structure that allows us to calculate the forces along the structural degrees o
freedom as,

F′s = HASFa (6.163)

Recalling that the Jacobian of the force vector is given by,

(Jf )i,j =
∂ri
∂χj

(6.164)

the force vector becomes,
Fs = JfHASFa = H∗ASFa (6.165)

It is important to remember that the transformation matrix HAS should include the root
note (usually clamped) to translate the reaction forces properly along the new state vector.

With the forces properly transformed, the structural state space becomes,

χ̇χχs = Asχχχ+ BsH
∗
AS Fa (6.166)

from the force expression in eq. 6.161,

χ̇χχs = Asχχχ+ BsH
∗
AS (H2T1X + H3T2χ̇̇χ̇χ+ L7α̇ααair) (6.167)

that can be rearranged as,

(I− BsH
∗
ASH3T2) χ̇̇χ̇χ = (AsT3 + BsH

∗
AS H2T1)X + BsH

∗
ASL7α̇ααair (6.168)

that in a more compact format becomes,

H4χ̇̇χ̇χ = H5X + H6α̇ααair (6.169)

with,
H4 = I− BsH

∗
ASH3T2 (6.170)

H5 = AsT3 + BsH
∗
AS H2T1 (6.171)

H6 = BsH
∗
ASL7 (6.172)

note that the extra matrix T3 is an auxiliary matrix defined such that,

χχχ = T3X ≡
[
0
I

]
X (6.173)

Picking up from eq. 6.174, and solving for χ̇̇χ̇χ,

χ̇̇χ̇χ = H−1
4 H5X + H−1

4 H6α̇ααair (6.174)

and thus,

Ẋ =

[
H1T1

H−1
4 H5

]
X +

[
H7

H−1
4 H6

]
α̇ααair (6.175)

which is the state space formulation of the fully coupled system.
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7
Numerical Verification

This chapter presents the numerical verification of the mathematical formulation developed
for the purposes of the current work.

Two different approaches have been used in selecting benchmark cases. First, similar stud-
ies within relevant literature have been replicated to assess the accuracy of the present
formulation. Second, test cases have been run on standard software packages that provide
a solid reference for verification purposes. ABAQUS FEA® is software package of choice as
far as this study is concerned.

The numerical verification encompasses the formulation in all its submodules, namely struc-
tural, aerodynamic and flight dynamic module. Five different test cases have been selected.
A classic cantilever beam, discussed in Sec. 7.1, and a more complex 3D beam model, known
as the 3D cantilever bend described in Sec. 7.2, see. Crisfield and Jelenic (1999). These first
two models already allow a thorough verification of the formulation in all its modules. For
the sake of completeness, three more test cases are also used. The HALE aircraft model,
Sec. 7.3, used for aeroelastic analyses. In addition to that, a flying-wing and a blended-
wing-body configuration have been chosen for further test cases on the flight dynamic
module.

7.1. Cantilever Beam Configuration

A cantilever beam model of a wing is used for static and dynamic tests of the formulation.
The static test is performed under constant tipload. The dynamic tests are used to verify
the linearized dynamic formulation. An equivalent cantilever beam model has been created
in ABAQUS FEA® , and the same analyses have been run to generate benchmark results.

The set up as such has been widely used for verification purposes in literature, see Goland
(1945), Patil (1999), Su (2008). In the present work, the beam has been discretized with 8
structural elements, thus ensuring fully converged results. Material and geometric proper-
ties of the cantilever beam model can be found in Table 7.1.
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Table 7.1: Material properties of test beam, Su (2008).

Property Value SI Unit

Length 1.00 m
Extensional stiffness 1.00E6 Pa·m2

Torsional stiffness 8.00E1 N·m2

Flatwise bending stiffness 5.00E1 N·m2

Chordwise bending stiffness 1.25E3 N·m2

Mass density 0.10 kg/m
Rotational inertia (x-axis) 1.30E-4 kg·m
Flatwise bending inertia (y-axis) 5.00E-6 kg·m
Chordwise bending inertia (z-axis) 1.25E-4 kg·m

Figure 7.1: Cantilever beam under constant tipload.

7.1.1. Static Test
The cantilever beam is subject to a constant tip load of 150 N, see Fig. 7.1. A quasi-isotropic
composite layup has been adopted. Vertical displacement is shown against the benchmark
given in ABAQUS FEA® in Fig. 7.2. Results are in perfect agreement.

7.1.2. Dynamic Response About Undeformed Configuration
The beam model is now subject to a sinusoidal tip load of 30 sin(20t) N applied to the
undeformed configuration. The dynamic system is solved with adaptive time step in the
current formulation. Different time steps have been used in ABAQUS to assess convergence.
Results shown in Fig. 7.3.

7.1.3. Dynamic Response About Nonlinear Deformed Configuration
The purpose of this test is to verify the dynamic formulation when linearized about a non
linear equilibrium point. Therefore, the cantilever beam is first brought to a non linear
range of deformation by applying a static load of 1000 N. Subsequent to that, the non
linear equilibrium position is perturbed by applying a sinusoidal tip load of 100 sin(20t) N.
Results are shown in Fig. 7.4.
As one can observe, the non linear response generated by ABAQUS FEA® shows the pres-
ence of damping, that is absent in the prediction by the current formulation. As previously
stated, the dynamic system is linear about the non linear deformed configuration. For the
linearization process, the present work uses the linear mass matrix of the non linear de-
formed structure. Therefore, the additional damping and stiffness generated by the non
linear mass matrix is not accounted for, thus explaining the absence of damping in the
system.
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Figure 7.2: Deflection under constant tipload of 150 N.
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Figure 7.3: Deflection under sinusoidal tipload of 30sin 20t N.
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Figure 7.4: Deflection under sinusoidal tipload of 100sin 20t N applied on a
nonlinearly deformed configuration.
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Table 7.2: Material properties of the 3D cantilever bend, Crisfield and Jelenic (1999).

Property Value SI Unit

EA 1E7 Pa·m2

GA2 = GA3 5E6 Pa·m2

EI2 = EI3 8.33E5 N·m2

Figure 7.5: Geometrical details of Crisfield beam model.

7.2. 3D Cantilever Bend
The 3D cantilever bend, as described in Crisfield and Jelenic (1999), is a three-dimensional
curved cantilever beam of 100m radius. The details of the geometry and material properties
are given in Fig. 7.5 and Tab 7.2 respectively.

In the first test, a sinusoidal tip load has been applied to the structure to study its dynamic
response. The purpose of this test is to assess the accuracy of the model and rule out
any possible input error to have a reliable verification of the flight dynamic module. An
equivalent model is build in ABAQUS FEA® to verify the current formulation against. The
dynamic response obtained is illustrated in Fig. 7.6 compared to the benchmark response.

After having verified the input model, the flight dynamic formulation has been tested. In
the second test case, a 6 DOF input motion has been prescribed to the root node to test
the structural response. The input motion is a periodic function in its most general format,

f(t) = A sin(ωt+ φ) (7.1)

From a mathematical point of view, there is two ways to prescribe the input motion. The
first method uses the purely structural system of equations, and it is the solution method
adopted in ABAQUS FEA® . The second, instead, uses the fully coupled system including
the rigid DOFs, and it is adopted in the current formulation. Both approaches are hereby
discussed in details.
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Figure 7.6: Deflection under sinusoidal tipload of 100sin 2t N.

First solution method
In the first solution method, the input motion prescribes a time-dependent boundary con-
dition of the DOFs of the root node, that are referred to as χχχ11. From the structural system
of equations,

Mχ̈̈χ̈χS + KχχχS = R (7.2)

assuming that the state vector can be split as follows,

χχχTS = [χχχ11, χχχ
′
S] (7.3)

with χχχ′S being the independent DOFs (not prescribed by the input motion), the full system
can be rearranged as,[

M11 M1S

MT
1S MSS

] [
χ̈̈χ̈χ1

χ̈̈χ̈χ′S

]
+

[
K11 K1S

KT
1S KSS

] [
χχχ1

χχχ′S

]
=

[
R1

R′S

]
(7.4)

that leads to,
MT

1Sχ̈̈χ̈χ1 + MSSχ̈̈χ̈χ
′
S + KT

1Sχχχ1 + KSSχχχ
′
S = RS (7.5)

Assuming that no external force is acting on the structure, the independent DOFs are
solution of the following system of equations,

MSSχ̈̈χ̈χ
′
S + KSSχχχ

′
S = −MT

1Sχ̈̈χ̈χ1 −KT
1Sχχχ1 (7.6)

It is important to observe that both the input motion and its second derivative contribute
to the input function. In presence of damping, there would be a contribution of the first
derivative of the input motion.

MSc Thesis M. Natella



7. Numerical Verification 48

Time [s]

0 0.5 1 1.5 2 2.5 3 3.5 4

δ
z
 [

m
]

-10

-5

0

5

10

15

Current

ABAQUS

Figure 7.7: Deflection under a 6 DOF input motion applied at the root node.

Second solution method
In the second solution method, the deformation at every node is described by a flexible
and rigid DOF. The input motion in this method prescribes the rigid DOFs of the stucture,
while the flexible DOFs are the only unknown of the system. From the fully coupled system,
that includes the rigid-body degrees of freedom, we have,

Mχ̈̈χ̈χ+ Kχχχ = R (7.7)

can also be used to study the wing response to a flight dynamics input (e.g. sinusoidal
pitch motion applied at the root). From eq. 7.7, remembering that the state vector can be
decomposed in the structural and flight dynamic degrees of freedom, we have,[

MSS MSF

MT
SF MFF

] [
χ̈̈χ̈χS

χ̈̈χ̈χF

]
+

[
KSS KSF

KT
SF KFF

] [
χχχS

χχχF

]
=

[
R′

R′′

]
(7.8)

where χχχS refers to the structural DoFs, defined as,

χχχTS =
[
δ1
x, δ

1
y , δ

1
z , θ

1
x, θ

1
y, θ

1
z , . . . , δ

N
x , δ

N
y , δ

N
z , θ

N
x , θ

N
y , θ

N
z

]
(7.9)

while χχχF is,
χχχTF = [x, y, z, φ, θ, ψ ] (7.10)

Considering the first equation of the system in eq. 7.8,

MSSχ̈̈χ̈χS + MSF χ̈̈χ̈χF + KSSχχχS + KSFχχχF = R′ (7.11)

that is rearranged as follows,

MSSχ̈̈χ̈χS + KSSχχχS = R′ −MSF χ̈̈χ̈χF −KSFχχχF (7.12)
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since the terms MSF χ̈̈χ̈χF and KSFχχχF are input to the system. If R = 0, that refer to a purely
structural analysis, eq. 7.14 describes the wing behaviour under the applied rigid motion.
For aeroelastic analysis with prescribed pitching motion, eq. 7.14 is to be coupled with the
aerodynamic model to be solved. In case of a pure input motion applied to the structure,
with no relative motion with respect to the flow, eq. 7.14 alone suffices to obtain a dynamic
analysis of the structure (since R′ = 0).

The two approaches are equivalent. We can quickly prove the statement by a simple thought
experiment. If we imagine an infinitely stiff structure (perfectly rigid), with the first method
the motion applied to the root point would transfer unchanged to all points in the strucure.
With the second method, the flexible DOFs would be zero, and the position and orientation
of the structure is only dictated by the prescribed input motion.

The structural response due to a 6 DOF input motion is shown in Fig. 7.7. The input motion
adopted for this example is the following,

• x(t) = sin(30t+ 10), y(t) = sin(20t), z(t) = sin(10t)
• φ(t) = sin(5t), θ(t) = sin(10t), ψ(t) = sin(5t+ 10)

The results are in good agreement, further validating the statement about the equivalence
of the two approaches to the problem.

One final comment before moving to the second phase of the verification. The two math-
ematical approaches to applying an input motion present only one fine difference. In the
first approach, where the input is prescribed as a time-dependent boundary condition on
the root node, the system,

MSSχ̈̈χ̈χ
′
S + KSSχχχ

′
S = −MT

1Sχ̈̈χ̈χ1 −KT
1Sχχχ1 (7.13)

results in a vector χχχ′S which is a measure for both the structural deformation and the rigid
applied motion. On the other hand, in the second approach, the system,

MSSχ̈̈χ̈χS + KSSχχχS = −MSF χ̈̈χ̈χF −KSFχχχF (7.14)

separates the two terms, thus it follows,

χχχ′S = χχχS +χχχF (7.15)
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Figure 7.8: Example of HALE concept for air recoinnassance, 2005, NOAA and
NASA Collaboration.

7.3. Highly Flexible Wing Configuration

The High-Altitude Long-Endurance vehicles are aircraft concepts developed for a wide
range of applications, from environmental sensing to telecommunication, and even air
reconnaissance. They feature very slender wings at high aspect ratio, and the main purpose
behind the choise is the optimization of the lift/drag ratio. On the other hand, these wings
undergo large deformations due to their high level of flexibility, and aeroelastic phenomena
become a relevant problem even under conditions that for most aircraft are not reckoned
as extreme.

An example of HALE unmanned airvehicle is illustrated in Fig. 7.8. The aircraft was a 2005
NOAA and NASA cooperation called Altair. Altair is able to reach altitudes of up to 15
kilometers and stay aloft for more than 20 hours.

In this chapter, aeroelastic analyses are performed on high-aspect-ratio wing, in the HALE
aircraft configuration as presented in Patil (1999). In addition to that, the work of Goland
(1945) and Su (2008) are used as benchmark for the purposes of this section. The analysis
covers natural modes, flutter and divergence prediction.

7.3.1. Wing Geometry

The wing model of choice for the aeroelastic analysis features 32m span, with 1m chord.
Sweep and dihedral angle are zero. Further details on the geometry can be found in Fig. 7.9.
Additional properties as provided in the work by Patil (1999) are shown in Table 7.4. The
wingbox geometry refers to the Goland wing, as presented in the work by Goland (1945).
The structural model signifies the standard composite wing model, widely used in literature
for benchmark and feasibility studies. Material properties of the Goland wing are presented
in Table 7.3.
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Figure 7.9: Geometrical detail of the HALE aircraft.
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Table 7.3: Material properties of the Goland wing, Goland (1945).

Property Value SI Unit

E1 20.6E11 Pa
E2 = E3 5.17E9 Pa
G12 3.10E9 Pa
G13 = G23 2.55E9 Pa
ν12 = ν13 = ν23 0.25 -

Table 7.4: Material properties of test HALE configuration, Patil (1999).

Property Value SI Unit

Half span 16 m
Chord 1.00 m
Mass per unit length 0.75 kg/m
Moment of inertia (50% chord) 0.1 kg·m
Spanwise elastic axis 0.5 -
Center of gravity 0.5 -
Torsional rigidity 1E4 N·m2

Flatwise bending rigidity 2E4 N·m2

Chordwise bending rigidity 4E6 N·m2

Table 7.5: Natural modes of current formulation compared to reference data.

Mode Current Analytical Ref. Patil (1999) Su (2008)
[rad/s] [rad/s] [rad/s] [rad/s]

1 2.270 2.245 2.247 2.247
2 14.22 14.03 14.60 14.30
3 31.94 31.05 31.15 31.08
4 31.29 31.75 31.74 31.77
5 39.81 39.36 44.01 41.06

Table 7.6: Flutter and divergence predictions compared to reference data.

Current Brown (2003) Rel. Diff.
[m/s] [m/s] [%]

Flutter Speed 30.5 32.2 -5.2
Divergence Speed 37.0 37.3 -0.8
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7.3.2. Aeroelastic Analysis
The natural modes of the undeformed configuration are shown in Table 7.5, compared to
the analytical reference in Brown (2003), and numerical studies carried by Su (2008) and
Patil (1999). The analysis has been performed to rule out possible errors coming from input
data or the structural module.

Flutter and divergence prediction has been carried at zero angle of attack, at the altitude
of 20000m, typical of HALE aircraft. Air density at the given altitude amounts to 0.0899
kg/m3. Tesults are summarized in Table 7.6. The divergence speed is in excellent agree-
ment, while the flutter speed has been registered with approximately -5% difference.

Despite flutter is predicted at a lower speed, making the current formulation conservative
compared to the reference, the frequency shows excellent agreement when the aeroelastic-
ity is evaluated at the reference speed of 32.51 m/s. Frequency predicted by the current
formulation is 22.9 rad/s, compared to the 22.37 rad/s in Brown (2003), resulting in only
+2.4% relative difference.
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Figure 7.10: Example of blended-wing-body aircraft for military purposes,
Northrop YB-49.

7.4. Blended-Wing-Body Aircraft
The blended-wing-body is a aircraft concept that features a fixed-wing that gradually blends
into a body-structure. The aircraft is designed in such a way that there will be no clear
distinction between the wings and fuselage. Others among the classical components of
a aircarft are usually not adopted, making the blended-wing-body a challengind design
in terms of lateral-directional stability. Historical example of a blended-wing-body air-
craft prototype is the Northrop YB-49, designed and manufactured post World War II, see
Fig. 7.10.

One of the main advantages of adopting a blended-wing-body concept is the remarkable
lift-drag ratio that such a configuration allows. The main reason is that atop of the lift
generated by the wings, the contribution of the body (which is airfoil-shaped) is rather
significant. And a high lift-drag ratio is directly linked to a lower fuel consumption. The
combination of the two advantages has made this aircraft configuration extremely interest-
ing for designers.

Regarding the purposes of this verification study, the blended-wing-body aircraft makes an
appropriate test case to verify the mathematical model that couples aeroelasticity and flight-
dynamics. The reason for said choice is that the current aeroelastic code runs for a wing-
only type of configuration. Fuselage, horizontal and vertical tails, although present as rigid
parts in the flight dynamic formulation, are not accounted for in the aeroelastic module.
The approach to modeling the blended-wing-body is thus the following. Ideally, the aircraft
can be thought of as a wing-only symmetric structure. By applying symmetric boundary
conditions at the middle plane, the problem is reduced to a single flying-wing. The wing
structure is divided in two main property sections (using a Nastran-like terminology), (i) the
inboard property (assigned to the body), (ii) the outboard properties (assigned to the rest
of the wing). Control surfaces are not considered in this study.
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Figure 7.11: Blended-wing-body aircraft. The red dash-dotted line indicates the beam reference axis.

Table 7.7: Body properties of the blended-wing-body aircraft, Cesnik and Su (2010)

Property Value SI Unit

Elastic (reference) axis 0.6438/0.4650 -
Center of gravity 0.6438/0.4650 -
Torsional rigidity 2.25E6 N·m2

Flatwise bending rigidity 7.50E5 N·m2

Chordwise bending rigidity 3.50E7 N·m2

Mass per unit length 50.00 kg/m
Rotational inertia (x-axis) 4.50 kg·m
Flat bending inertia (y-axis) 0.70 kg·m
In-plane bending inertia (z-axis) 22.0 kg·m

Table 7.8: Wing properties of the blended-wing-body aircraft, Cesnik and Su (2010)

Property Value SI Unit

Elastic (reference) axis 0.4650/0.4650 -
Center of gravity 0.4650/0.4650 -
Torsional rigidity 1.10E4 N·m2

Flatwise bending rigidity 1.17E4 N·m2

Chordwise bending rigidity 1.30E5 N·m2

Mass per unit length 6.20 kg/m
Rotational inertia (x-axis) 5.08E-3 kg·m
Flat bending inertia (y-axis) 5.00E-4 kg·m
In-plane bending inertia (z-axis) 4.63E-3 kg·m
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Table 7.9: Flight conditions.

EAS H Mach nz
ID [m/s] [m] [-] [-]

1 68.0 0 0.20 1.0

2 238 0 0.70 1.0

3 23.5 15000 0.20 1.0

4 82.1 15000 0.70 1.0

7.4.1. Analysis Settings
The aircraft, in both its body and wing, is modeled as a beam, as shown in Fig. 7.11. As
discussed in the introduction, the model features two sets of material properties. The prop-
erties assigned to the body are in Tab. 7.7, while Tab. 7.8 refers to the wing properties. A
concentrated mass of 80 kg is positioned in the middle plane, 0.89m in front of the refer-
ence axis. Nine non-structural masses (20 kg each for a total of 180 kg) are then distributed
uniformly in spanwise direction. The analysis settings are with reference to the study from
Cesnik and Su (2010).

In this study we will focus on flight dynamic stability of the blended-wing-body aircraft. In
particular, we will assess stability under two different Mach numbers (M = 0.2, M = 0.7),
and at two different altitude levels (H = 0m, H = 15000m). The analysis in performed in
equivalent airspeed (EAS), thus the air density stays constant at 1.225 kg/m3. For the sake
of completeness, from altitude (H ) and Mach number (M ), the EAS is given by,

EAS = a0M

√
p(H)

p0

(7.16)

with a0 ≈ 340m/s being the speed of sound at sea level, p(H) the static pressure at altitude
H , and p0 = 101325 Pa the static pressure at sea level. The flight conditions used in this
study are summarized in Tab. 7.9.

7.4.2. Flight Dynamic Stability
The current flight dynamic formulation, coupled with the aeroelastic codes De Breuker et
al. (2012), allows for the assessment of symmetric modes of a flexible wing structure, namely
the short-period and the phugoid. We will now go into some details of both modes.

Short-Period Mode
Short-period modes refer to symmetric modes of motion at a constant speed. The angle
of attack and pitch vary periodically during the motion, as well as the velocity vector in
its direction only (its magnitude is constant per definition). The mode features oscillation
at relatively high frequency and damping. The high damping makes the mode barely
noticeable in flight, since it is usually damped in a matter of seconds. This also means that
even if a pilot may notice it, it is still diffult of correct the motion due to the short span of
time in which it occurs.
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Table 7.10: Eigenvalues obtained with current formulation compared to Cesnik and Su (2010).

M = 0.2 M = 0.7
H [m] Real Imag Real Imag

Ph
ug
oi
d 0 Ref. -0.00800 0.0330 -0.000100 0.01350

0 Current -0.00828 0.0367 -0.000167 0.01354
15000 Ref. -0.0331 0.0360 -0.000780 0.01280
15000 Current -0.0336 0.0379 -0.000840 0.0131

Sh
or
t-
Pe
ri
od 0 Ref. -4.39 1.88 -21.00 7.51

0 Current -4.43 1.92 -21.34 7.55
15000 Ref. -1.47 1.09 -7.08 4.26
15000 Current -1.52 1.11 -7.18 4.32

Phugoid Mode
Phugoid mode refers to a symmetric mode of motion at a constant angle of attack, char-
acterized by low frequency and damping. The motion occurs in a longer span of time (if
compared to the phugoid), and displays as a periodic plunge and pitch. The low frequency
at which the motion occurs can trigger the coupling between aeroelastic modes resulting
into instability. It is precisely for this reason that the phugoid is of high interest in stability
assessment and aeroelastic phenomena.

The results of the analysis, compared to the reference found in the relevant literature, are
summarized in Tab. 7.10. The results are in good agreement, with a better match for the
frequencies. Details regarding the mode shapes can be found in Appendix E.

Analysis of Results
Consider the case where the altitude is constant and we vary the Mach number only. With
reference to eq. 7.16, a change in Mach number at constant altitude varies the equivalent
airspeed. Let us now look at the phugoid mode at sea level altitude,

• at M = 0.2, the eigenvalue of the phugoid mode is -0.008828 + 0.03670i, while

• at M = 0.7, the eigenvalue of the phugoid mode is -0.000167 + 0.01354i.

This shows that as we increase the Mach number (at constant H ), the phugoid shifts to-
wards areas in the real-imaginary plane at lower damping and lower frequencies.

For the short-period mode, the following eigenvalues have been obtained (at sea level),

• at M = 0.2, the eigenvalue is -4.43+1.92i, while

• at M = 0.7, the eigenvalue is -21.34+7.55i.

The results for the short period suggest the exact opposite trend observed for the phugoid.
The mode features higher damping and higher frequency as the Mach increases (at constant
H ). The same holds if we look at the eigenvalues at H = 15000m.
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Figure 7.12: Summary of how the flight dynamic modes change with an increase in EAS.
NOTE: te phugoid shifts due to a change in EAS at constant H, the short-period due to a change in EAS at constant M.

Let us now perform the opposite analysis. We will keep the Mach number constant, and
vary the altitude.

If M = 0.2, the following is observed for the phugoid mode,

• at H = 0, the eigenvalue is -0.00828+0.0367i, while

• at H = 15000, the eigenvalue is -0.0336+0.0379i.

The frequency shows little variation resulting from a change in altitude. The damping in-
creases, thus making the mode less dangerous as far as stability is concerned.

For the short-period at M = 0.2, results show that,

• at H = 0, the eigenvalue is -4.43+1.92i, while

• at H = 15000, the eigenvalue is -1.52+1.11i.

We observe that as altitude increases (at constant Mach), the short period lowers both its
frequency and damping.

Note that if a mode shifts towards areas at lower damping and lower frequencies, not only
is the mode more likely to activate a low-frequency coupling with aeroelastic modes, but it
is also moving towards the unstable area. An example is shown in Fig. 7.12. This trend is
really important because it allows us to understand which of the mode becomes critical for
the low-frequency coupling of a flexible wing in flight. With that in mind, we conclude that,

• a change in equivalent airspeed at constant H, makes the phugoid mode more critical
for low-frequency coupling,

• a change in equivalent airspeed at constant M, makes the short-period more likely to
trigger the coupling.
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Table 7.11: Material properties of test flying-wing configuration, Patil and Hodges (2005).

Property Value SI Unit

Elastic (reference) axis 0.25 -
Torsional rigidity 1.65E5 N·m2

Flatwise bending rigidity 1.03E6 N·m2

Chordwise bending rigidity 1.24E7 N·m2

Mass per unit length 8.93 kg/m
Rotational inertia (x-axis) 4.15 kg·m
Flat bending inertia (y-axis) 0.69 kg·m
In-plane bending inertia (z-axis) 3.46 kg·m

Table 7.12: Details of the different settings of the flying-wing configuration, Patil and Hodges (2005).

Empty Heavy SI Unit

Pod mass 27.30 22.70 kg
Payload 27.2 254 kg
Thrust 37.11 37.02 N

7.5. Flying-Wing Configuration
In light of what has been shown in the previous study on flight dynamic stability, the flying-
wing configuration has been analysed. In particular this test case sheds light on the effect of
payload (hence flexibility) on the flight dynamic stability. The connection is rather straight
forward. An increase in payload causes an increase in deformation, thus calls for an in-
crease in structural flexibility.

This section discusses some of the relevant properties of the configuration. The phugoid
mode is evaluated and compared to benchmark found in related literature. More results on
the flying-wing configuration can be investigated in Appendix F.

7.5.1. Properties
The beam equivalent of the flying-wing configuration attempts to reproduce the Helios
concept developed by NASA in 1999. The wing features a span of about 72.8 m, with
a fixed breadth of 2.44 m. The details of the wing configuration are shown in Fig. 7.13.
Additional properties are provided in Patil and Hodges (2005) and shown in Table 7.11.

7.5.2. Analysis Settings
Half of the flying-wing configuration is modeled for symmetry reasons. The model thus
reduced features two pods. The central pod has a mass of 27.30 kg, while the lateral pod
(positioned at 2/3 span) 22.70 kg. The payload can vary from 27.2 kg, referred to as empty
configuration and 254 kg, as heavy configuration. There is a total of 5 propulsive units
along the wing span. The thrust per unit is 37.11 N for the empty configuration, while 37.02
N for the heavy. All details are givens in Table 7.12.
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Figure 7.13: Initial undeformed configuration.
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Figure 7.14: Elastic deformation of the flying-wing configuration at trim.
In red the underformed configuration.

Before assessing flight dynamic stability, the flying-wing is trimmed at the speed of 12.2
m/s in both its empty and heavy configuration. Results of the trim analysis are shown
in Fig. 7.14. As one can observe, the empty configuration remains in the linear range of
deformation, while the heavy configuration reaches a tip displacement of approx. 30% of
the span thus entering the non linear range. In both cases, the flight dynamic stability is
assessed linearly about the deformed configuration.

7.5.3. The Phugoid Mode
The eigenvalues of the phugoid mode are shown in Tab. 7.13 for different payload config-
urations compared to Patil and Hodges (2005). The results show good agreement with
the reference study. An interesting phenomenon is observed in this case, a phenomenon
that proves the severity of the mode in terms of stability as the payload, thus flexibility, is
increased. At maximum payload, the phugoid crosses the imaginary axis into the instable
domain. Both modes are illustrated in Fig. 7.15.

Table 7.13: Phugoid mode of flying-wing configuration.

Payload Current Patil and Hodges (2005) Su (2008)

Full 0.1453 + 0.5309i 0.1470 + 0.586i 0.1070 + 0.498i
Empty -0.1048 + 0.1160i -0.1.08 + 0.142i -0.0077 + 0.086i
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Figure 7.15: Phugoid modes.
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Figure 7.16

Table 7.14: Short-period mode of flying-wing configuration.

Payload Current Patil and Hodges (2005) Su (2008)

Empty -2.73 + 1.68i -2.74 + 1.76i -

7.5.4. The Short-Period Mode
The short period mode has only been found for the configuration at empty payload, as also
reported in Patil and Hodges (2005). The eigenvalues corresponding to the mode are shown
in Tab. 7.14. It is important to notice that the model at full payload is mainly driven by the
unstable phugoid mode. In addition to that, we remember that the wing at full payload
reached a significant amount of deformation in trimmed flight. The deformed U-shape of
the wing leads to an order of magnitude increase in the pitch moment of inertia (due to
non-linear effects), and thus follows a corresponding increase in frequency. As a result of
that, the highly flexible wing does not show a classical short period mode in its deformed
state, provided it is sufficiently loaded.
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8
Conclusions and Future Work

The present work locates within the framework of preliminary design optimization of com-
posite wing structures. The enhanced flexibility of modern structures as a result of the
pressing requirements in terms of weight saving, fuel efficiency and increasing payload has
made stability, in its broader sense, a crucial concern in structural design and optimization.

A flight dynamic description of an embedded flexible wing has been derived and coupled
to the aeroelastic framework developed at the Delft University of Technology by De Breuker
et al. (2015).

The flight dynamic module has been verified on the 3D cantilever bend, the blended-wing-
body and the flying-wing configuration. In either cases, the current formulation predicts
results in the same range of frequencies and damping shown in literature despite the dif-
ferences in the analysis softwares adopted, lack of data regarding the model, assumptions
and analysis settings. Generating an extensive set of benchmark cases would benefit future
developments within the present research field.

Two main trends have been observed in flight dynamic stability when studying how the sta-
bility evolves with increasing equivalent speed. The phugoid mode shows decreasing damp-
ing and frequency with an increase in equivalent speed at constant altitude. A decrease
in damping pushes the design dangerously towards the instable zone at positive damping.
Moreover, the lower the frequency, the higher the chance of low-frequency coupling with
aeroelastic modes, the more recurrent the instabilities. On the other hand, short-period
mode shows a similar trend as a result of an increase in equivalent speed at constant Mach
number.

Interesting results have been obtained when varying the flexibility of the structure, as in
the flying-wing example. The phugoid mode becomes unstable as a result of increasing
the flexibility of the structure. The reason for that it to be found in the large displacement
the structure undergoes in trimmed conditions at full payload. Under the same conditions,
the short period mode has not been found. The relatively high amount of deformation
increases the pitch moment of inertia thus suppressing the mode.
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As it is the case in research, there is always room for improvement and the present work is
not spared. Hereby are some points of improvement in future work,

1. The aeroelastic framework used in current formulation works with a wing-only type
of configuration. The next step would be to include the horizontal and vertical tail.
The fuselage can still be excluded from the aerodynamics because of its negligible
contribution to aerodynamic loads.

2. Aerodynamic control surfaces are to be modeled and included in the aeroelastic
framework. With this addition, lateral-directional flight and stability analysis become
possible and would significantly extend the potentiality of the framework.

3. With the inclusion of tails and fuselage in the aerodynamic and structural module,
the flight dynamic formulation can be extended to fully flexible aircraft. This would
have a significant potential in terms of generation of benchmark cases and analysis.

4. The coupled aeroelasticity and flight dynamic system is to be included in the global
gradient-based optimization to extend the use of the current formulation to a real-
life wing design study. As mentioned at the beginning of this work, including these
concerns at preliminary design level is believed to improve the quality of the design,
thus ensuring a better initial point in an optimization.
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A
Details on the Linear EOM

In Sec. 6.4, it has been shown that the velocity (v) and the angular velocity (ωωω) are a function
of both the structural degrees of freedom, indicated by χχχs, and the flight dynamic states,
indicated by χχχf . The state vector that includes all DOFS, both structural and rigid will be
referred to as χχχ.

v = f(χχχs,χχχf ) (A.1)

ωωω = f(χχχs,χχχf ) (A.2)

Let M be the structural mass matrix, for every point of the wing structure, an auxiliary
vector can be defined,

ξξξT = [v(χχχs,χχχf ),ωωω(χχχs,χχχf )] (A.3)

that allows us to write the kinetic energy as,

T =
1

2
ξξξTMξξξ (A.4)

The term (i, j) of the mass matrix is nothing other than the Hessian of the kinetic energy
with respect to the first derivative of the state vector, thus,

Mi,j =
∂2T

∂χ̇i∂χ̇j
(A.5)

From eq. A.4, we have,

Mi,j =
1

2

∂2

∂χ̇i∂χ̇j

(
ξξξTMξξξ

)
(A.6)

that leads to,

Mi,j =
1

2

∂

∂χ̇j

(
∂ξξξT

∂χ̇i
Mξξξ + ξξξTM

∂ξξξ

∂χ̇i

)
(A.7)

and thus,

Mi,j =
1

2

(
∂2ξξξT

∂χ̇i∂χ̇j
Mξξξ +

∂ξξξT

∂χ̇i
M

ξξξ

∂χ̇j
+
∂ξξξT

∂χ̇j
M

ξξξ

∂χ̇i
+ ξξξTM

∂2ξξξ

∂χ̇i∂χ̇j

)
(A.8)
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From the linearized EOM in eq. 6.61, we know that,(
∂fff i1
∂χ̈̈χ̈χj

)
δ

ϕ̈̈ϕ̈ϕ+

(
∂fff i2
∂χχχj

)
δ

ϕϕϕ = R(ϕϕϕ) (A.9)

where fff 1 and fff 2 are defined as,

fff 1 = Mχ̈̈χ̈χ (A.10)

fff 2 = Kχχχ (A.11)

In particular, the jacobian, (
∂fff i1
∂χ̈̈χ̈χj

)
δ

(A.12)

is nothing other than the mass matrix linearized about the deformed configuration δ. From
eq. A.8, the generic term of the jacobian can be written as,

2M lin
i,j =

∂

∂χ̈k

[(
∂2ξξξT

∂χ̇i∂χ̇j
Mξξξ +

∂ξξξT

∂χ̇i
M

ξξξ

∂χ̇j
+
∂ξξξT

∂χ̇j
M

ξξξ

∂χ̇i
+ ξξξTM

∂2ξξξ

∂χ̇i∂χ̇j

)
χ̈k

]
(A.13)

if we note that,
∂2ξξξT

∂χ̇i∂χ̇j
Mξξξ = ξξξTM

∂2ξξξ

∂χ̇i∂χ̇j
= 0 (A.14)

and,
∂ξξξT

∂q̈k
= 0 (A.15)

the only non-zero terms of the jacobian are,

2M lin
i,j =

∂ξξξT

∂χ̇i
M

ξξξ

∂χ̇j

∂q̈k
∂q̈k

+
∂ξξξT

∂χ̇j
M

ξξξ

∂χ̇i

∂q̈k
∂q̈k

(A.16)

The last term of the derivative is the Kroenecker operator, that in this particular case is
equal to 1, thus,

2M lin
i,j =

∂ξξξT

∂χ̇i
M

ξξξ

∂χ̇j
+
∂ξξξT

∂χ̇j
M

ξξξ

∂χ̇i
(A.17)
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B
Selection Matrices

In this chapter we will discuss the derivation of the selection matrices TΘΘΘ and Tq. The
reason is that the two matrices are the only that operate on a quantity (ΘΘΘ and q) that are
functions of the states. The rest of the selection matrices are purely boolean matrices since
they operate directly on the state variables.

Selection of the combined rotation TΘΘΘ

In Sec.6.8. we discussed how to derive the angle of attack that results from a combined
flexible and rigid rotation ΘΘΘ. We also remember, as presented in eq. 6.97, that the angle of
attack can be calculated as,

α = tan−1

(
Cy
Cx

)
(B.1)

The objective is now to write α, that is non-linear in the state variables, in the following
format,

α = TΘΘΘχχχ (B.2)

with χχχ signifying the state vector. By taking the Taylor expansion of the non-linear equation,
we have,

α = α0 +
∂αi
∂χj

δχj + o(2) (B.3)

recalling that α0 = 0,

α =
∂αi
∂χj

δχj (B.4)

The Jacobian,

Ji,j =
∂αi
∂χj
≡ (TΘΘΘ)i,j (B.5)

is precisely the selection matrix that we were looking for, a matrix that relates the angle of
attack to the state vector.

Let us now go into more details of the selection matrix TΘΘΘ.
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The variation of α with respect to any of the state variables is given by,

dα ≈ 1

1 +

(
Cy
Cx

)2

dCyCx − CydCx
C2
x

(B.6)

Recalling that C is nothing other than,

C = RBR
fRrC0 (B.7)

we have,
dC = RBdR

fRrC0 + RBR
fdRrC0 (B.8)

For the ith element in the structure, the matrix entries are hereby given.

∂αi
∂δx

= 0 (B.9)

∂αi
∂δy

= 0 (B.10)

∂αi
∂δz

= 0 (B.11)

∂αi
∂θx

=
1

1 +

(
Cy
Cx

)2

(
RB

∂Rf

∂θx
RrC0

)
y

Cx − Cy
(
RB

∂Rf

∂θx
RrC0

)
x

C2
x

(B.12)

∂αi
∂θy

=
1

1 +

(
Cy
Cx

)2

(
RB

∂Rf

∂θy
RrC0

)
y

Cx − Cy
(
RB

∂Rf

∂θy
RrC0

)
x

C2
x

(B.13)

∂αi
∂θz

=
1

1 +

(
Cy
Cx

)2

(
RB

∂Rf

∂θz
RrC0

)
y

Cx − Cy
(
RB

∂Rf

∂θz
RrC0

)
x

C2
x

(B.14)

∂αi
∂φ

=
1

1 +

(
Cy
Cx

)2

(
RBR

f∂R
r

∂φ
C0

)
y

Cx − Cy
(
RBR

f∂R
r

∂φ
C0

)
x

C2
x

(B.15)

∂αi
∂θ

=
1

1 +

(
Cy
Cx

)2

(
RBR

f∂R
r

∂θ
C0

)
y

Cx − Cy
(
RBR

f∂R
r

∂θ
C0

)
x

C2
x

(B.16)

∂αi
∂ψ

=
1

1 +

(
Cy
Cx

)2

(
RBR

f∂R
r

∂ψ
C0

)
y

Cx − Cy
(
RBR

f∂R
r

∂ψ
C0

)
x

C2
x

(B.17)
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Selection of the combined rotation Tq

With reference to Sec. 5.6., let us recall eq. 6.143 from the mathematical derivation of current
formulation,

q = t2Tqχχχ (B.18)

The equation as such is a linear relationship between the pitch rate q and the DoF of the
coupled system, signified by χχχ. The generalized nonlinear set of equations that defines the
aircraft orientation is given, 

p = φ̇− ψ̇ sin θ

q = ψ̇ cos θ sinφ+ θ̇ cosφ

r = ψ̇ cos θ cosφ− θ̇ sinφ

(B.19)

Let δδδ be the nonlinear deformed configuration. The set of equation B.19 is now expanded
about the deformed configuration,

p = p(δδδ) +

(
∂p

∂φ

)
δδδ

φ+

(
∂p

∂θ

)
δδδ

θ +

(
∂p

∂ψ

)
δδδ

ψ + o(2)

q = q(δδδ) +

(
∂q

∂φ

)
δδδ

φ+

(
∂q

∂θ

)
δδδ

θ +

(
∂q

∂ψ

)
δδδ

ψ + o(2)

r = r(δδδ) +

(
∂r

∂φ

)
δδδ

φ+

(
∂r

∂θ

)
δδδ

θ +

(
∂r

∂ψ

)
δδδ

ψ + o(2)

(B.20)

Recalling that p(δδδ) = q(δδδ) = r(δδδ) = 0, and neglecting higher order terms in the Taylor
expansion, the set of equations becomes,

p ≈
(
∂p

∂φ

)
δδδ

φ+

(
∂p

∂θ

)
δδδ

θ +

(
∂p

∂ψ

)
δδδ

ψ

q ≈
(
∂q

∂φ

)
δδδ

φ+

(
∂q

∂θ

)
δδδ

θ +

(
∂q

∂ψ

)
δδδ

ψ

r ≈
(
∂r

∂φ

)
δδδ

φ+

(
∂r

∂θ

)
δδδ

θ +

(
∂r

∂ψ

)
δδδ

ψ

(B.21)

or equivalently, in matrix format,

 p
q
r

 =



∂p

∂φ

∂p

∂φ

∂p

∂φ
∂q

∂φ

∂q

∂φ

∂q

∂φ
∂r

∂φ

∂r

∂φ

∂r

∂φ


δδδ

 φ
θ
ψ

 (B.22)

recognizing that the matrix is nothing other than the Jacobian of the angular velocity ωωω
with respect to the Euler angles,

ωωω = Jδδδ

 φ
θ
ψ

 (B.23)
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and finally, the system can be written solely as a function of the state χχχ as follows,

ωωω =

[
0 0
0 Jδδδ

]
χχχ (B.24)

The term Tq is derived from the Jacobian where the partial derivatives in p and r are set
to zero,

T0
q =


0 0 0

∂q

∂φ

∂q

∂φ

∂q

∂φ

0 0 0


δδδ

(B.25)

and thus,

Tq =

[
0 0
0 T0

q

]
(B.26)

The matrix thus built is indeed linear about the nonlinear configuration δδδ and is adopted
in the derivation of the coupled system in the present formulation.
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C
Coupling Terms in the Wake Equation

Hereby the column-wise terms of the matrix ΞΞΞ1 are given.

BαT
1
αHSA (C.1)

BαT
2
αHSA (C.2)

BαT
3
αHSA (C.3)

BαT
4
α (C.4)

BpitchT1HSA (C.5)

BpitchT2HSA (C.6)

BpitchT3HSA (C.7)

Bpitcht2 (C.8)

− 1

V∞
BαN1HSA (C.9)

− 1

V∞
BαN2HSA (C.10)

− 1

V∞
BαN3HSA (C.11)

− 1

V∞
Bαn1 (C.12)

− 1

V∞
Bαn2 (C.13)

− 1

V∞
Bαn3 (C.14)
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D
Coupling Terms in the Aerodynamic

Force Equation

Hereby the column-wise terms of the matrix ΞΞΞ2 are given.

L9BαT
1
αHSA (D.1)

L9BαT
2
αHSA (D.2)

L9BαT
3
αHSA (D.3)

L9BαT
4
α (D.4)(

L9Bpitch + L7Bα
)
T1HSA (D.5)(

L9Bpitch + L7Bα
)
T2HSA (D.6)(

L9Bpitch + L7Bα
)
T3HSA (D.7)(

L9Bpitch + L7Bα
)
t2 (D.8)

− 1

V∞
L9BαN1HSA (D.9)

− 1

V∞
L9BαN2HSA (D.10)

− 1

V∞
L9BαN3HSA (D.11)

− 1

V∞
L9Bαn1 (D.12)

− 1

V∞
L9Bαn2 (D.13)

− 1

V∞
L9Bαn3 (D.14)
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D. Coupling Terms in the Aerodynamic Force Equation 78

The column-wise terms of the matrix H3 are given.

L7BpitchT1HSA (D.15)

L7BpitchT2HSA (D.16)

L7BpitchT3HSA (D.17)

L7Bpitcht2HSA (D.18)

− 1

V∞
L7BαN1HSA (D.19)

− 1

V∞
L7BαN2HSA (D.20)

− 1

V∞
L7BαN3HSA (D.21)

− 1

V∞
L7Bαn1 (D.22)

− 1

V∞
L7Bαn2 (D.23)

− 1

V∞
L7Bαn3 (D.24)
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E
Blended-Wing-Body Aircraft
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(a) M = 0.2 at sea level.
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(b) M = 0.7 at sea level.
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(c) M = 0.2 at H = 15000m.
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(d) M = 0.7 at H = 15000m.

Figure E.1: Phugoid modes.
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(d) M = 0.7 at H = 15000m.

Figure E.2: Short-period modes.
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F
Flying-wing Configuration
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Figure F.1: Short-period oscillation. In red the initial undeformed configuration.
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Figure F.2: Phugoid oscillation. In red the initial undeformed configuration.
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