

Delft University of Technology

Understanding MPSoCs
Exploiting memory microarchitectural vulnerabilities of high performance NoC-based
MPSoCs
Sepulveda, Johanna; Reinbrecht, Cezar; Azad, Siavoosh Payandeh; Niazmand, Behrad; Jervan, Gert

DOI
10.1145/3229631.3239367
Publication date
2018
Document Version
Final published version
Published in
Proceedings - 2018 International Conference on Embedded Computer Systems

Citation (APA)
Sepulveda, J., Reinbrecht, C., Azad, S. P., Niazmand, B., & Jervan, G. (2018). Understanding MPSoCs:
Exploiting memory microarchitectural vulnerabilities of high performance NoC-based MPSoCs. In T. Mudge,
& D. N. Pnevmatikatos (Eds.), Proceedings - 2018 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation, SAMOS 2018 (pp. 162-166). Association for Computing
Machinery (ACM). https://doi.org/10.1145/3229631.3239367
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3229631.3239367
https://doi.org/10.1145/3229631.3239367

Understanding MPSoCs: Exploiting Memory Microarchitectural
Vulnerabilities of High Performance NoC-Based MPSoCs

Johanna Sepulveda
Technische Universität München

Munich, Germany
johanna.sepulveda@tum.de

Cezar Reinbrecht
Delft University of Technology

Delft, Netherlands
C.R.Reinbrecht@tudelft.nl

Siavoosh Payandeh Azad,
Behrad Niazmand, Gert Jervan
Tallinn University of Technology

Tallinn, Estonia
siavoosh.azad,behrad.niazmand,

gert.jervan@ttu.ee

ABSTRACT
Multi-Processor Systems-on-Chips (MPSoCs) are the key enabler
technology for current and future applications. However, the high
on-chip connectivity, the programmability and IPs reusability, also
introduce security concerns. Problems arise when applications with
different trust and security levels share the MPSoC resources. One
of the potent threats that MPSoCs see themselves exposed to are
the so-called side-channel attacks (SCA). In this work, we explore
the cache-based side-channel attacks optimized by the communica-
tion structure. We evaluate the vulnerability of the different NoC-
based MPSoC memory configuration against micro-architectural
side channel attacks. Our attack targets an MPSoC AES T-Table im-
plementation. We explore the impact of the MPSoC organization on
the NoC timing attack. We present the huge impact on the memory
organization and present two attack metrics: efficacy and efficiency.
Our results show that NoC-based MPSoCs are vulnerable and that
deep memory hierarchies favor the security of the system.

1 INTRODUCTION
In recent years, Multi-Processor System-on-Chips (MPSoCs) have
become the key enabler technology for many key industries. These
systems integrate a set of different IP-Cores (such as processors, ac-
celerators, peripherals etc.) into one heterogeneous system. These
MPSoCs are used for storing and processing sensitive data in many
critical applications. However, with the emerging of hypercon-
nected semiconductor systems in the age of Internet of Things
(IoT), these MPSoCs are not working in isolation anymore. During
the lifetime of the system, the applications running on the MPSoC
are subject to change and further development and it is essential
for the system to provide software update support. In order to fa-
cilitate such requirement, the MPSoC should be accessed remotely.
However, the remote access privileges open the MPSoCs as a target
to many security attacks.
Side channel attacks exploit the physical behavior of the MP-

SoC under operation, such as heat dissipation, power consumption,
electromagnetic emanation and timing in order to leak sensitive
information. However, many of such attacks require physical access
to the MPSoCs which in many cases might not be possible. This

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SAMOS XVIII, July 15–19, 2018, Pythagorion, Samos Island, Greece

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6494-2/18/07. . . $15.00
https://doi.org/10.1145/3229631.3239367

turns attractive the attacks able to be executed remotely. Timing at-
tacks exploit the micro-architecture of the MPSoCS such as memory
organization, processor configuration and communication infras-
tructure. Meltdown [9] and Spectre [8] attacks are recent examples
of such micro-architectural attacks on MPSoCs.
Previous works have shown that memory-based attacks can be

very effective [3]. Furthermore, the communication infrastructure
in the MPSoC can be exploited to optimize memory-based attacks
[10, 12, 14]. However, in the previous works only the shared caches
have been exploited where in modern MPSoCs, different memory
organizations are available. In this work, we explore for the first
time three memory different organizations: Central, shared and
distributed. We evaluate the efficiency of the attack and the impact
of the attacker’s location in the MPSoC.
The remainder of this paper is organized as follows: Section 2

presents the previous works. The description of the MPSoC and the
memory organizations are presented in sections 3 and 4. Section
5 describes the threat model considered in this work and Section
6 provides the experimental results, comparison and discussion.
Finally section 7 concludes the paper.

2 RELATEDWORK
In a System-on-Chip (SoC) which uses NoC as its communication
infrastructure, the network can be taken advantage by an adversary
to compromise the overall system security. One type of attacks on
NoCs already addressed in the literature is side-channel attacks
(SCA). The goal of the attack is to acquire information regarding the
sensitive data transmitted over the network via taking advantage
of the power consumption, timing information, or electromagnetic
leaks. The focus of this paper is on timing SCA in MPSoCs which
use a shared memory over the network (more specifically cache
timing attacks).
Previous research has shown that NoC timing attacks are practi-

cal. In [15], two mechanisms i.e. random arbitration and adaptive
routing are proposed in order to avoid SCA raising from resource
sharing in NoCs. By isolating the sensitive communication, the net-
work is protected against time-driven attacks. Moreover, by dynam-
ically allocating communication resources, the system is prevented
from possible Denial of Service (DoS) attacks and the mechanisms
do not degrade system performance (unlike approaches such as
[17]). Authors of [10] have introduced a NoC-based cache timing
attack, named Earthquake. This work explores the vulnerabilities
of the differential cache-collision attacks, proposed previously in
[3]. The proposed attack in [10] allows to measure only the first
three rounds of Advanced Encryption Standard (AES), improving
the detection of wide-collisions. Compared to [3], the work in [10]

162

reduces the number of measurements and thus, the overall attack
time.
In [12], a timing side-channel attack, named Prime+Probe for

NoC-based systems is introduced. Despite reducing the search space
by using 80 encryptions, the practical execution of the attack has
limitations regarding synchronization and accuracy. In order to
mitigate the effects of such attack, a secure platform, Gossip NoC
[11] is used to evaluate the improved version of the attack. Authors
of of [14] have investigated cache attacks on SoCs implementing
bus-based communication. In [7], a methodology is proposed based
on probabilistic information flow graph (PIFG), which models the
interaction between the victim program, the attacker program and
the cache architecture. Moreover, a metric named Probability of At-
tack Success (PAS) is introduced. By means of these, the security of
different proposed secure cache architectures are verified and their
resilience to cache side-channel attacks is also evaluated. Authors
of [13] have proposed a secure enhanced NoC router architecture,
which is capable of dynamically configuring the router memory
space according to the communication and security properties of
the traffic. With the proposed approach, they avoid timing attacks
by turning the attacker oblivious of the sensitive traffic.
The previousmentionedworks have explored timing side-channel

attacks (including cache-based attacks in someworks) in NoC-based
MPSoCs. However, they have not yet explored the vulnerability of
the different NoC-based MPSoC memory configuration for micro-
architectural side channel attacks. The experimental results of this
work will show that NoC-based MPSoCs are vulnerable and we
propose countermeasures to avoid such a threat.

3 MPSOC
MPSoCs are a complete computational system integrating multiple
processing elements on the same integrated circuit [?]. They are
organized in tiles, composed of processors, co-processors, hard-
ware accelerators, memories and other Intellectual Property (IP)
cores. Such tiles are interconnected through a Network-on-Chip
(NoC), composed by routers and links, which allows the communica-
tion exchange among the different MPSoC components. Designing
an MPsoC demands the selection of several parameters. MPSoCs
are characterized by four models: i) Computational architecture,
which depends on the organization of the processing structure;
ii) Memory, including the structure to store information; iii) Com-
munication, which depends on the organization of the structure
that performs the data exchange; and iv) Software, including the
programs required to perform the different functionalities of the
MPSoC. Memory organization has a strong impact on the MPSoC
performance. The focus of this work is to study the impact of the
memory organization on the microarchitectural NoC timing at-
tacks. This work uses Bonfire Network on Chip framework [1]. The
targeted NoC has a 2D mesh topology where each tile of the net-
work consists of a wormhole switching router. The communication
between routers is handled using credit-based flow control. Each
input channel of the router consist of an input FIFO buffer and a
routing unit, implemented using logic-based distributed routing
mechanism [6] (removing the need for any routing tables). The out-
put channels are allocated using round-robin. The Bonfire router
does not contain any output buffers. Fig. 1 depicts the block diagram
of the Bonfire router.

Figure 1: block diagram of Bonfire router

The introduction of SoCs in IoT environments promotes the
integration of security primitives such as the Advanced Encryp-
tion Standard (AES). AES is a symmetric key encryption algorithm,
which is able to encrypt 128 bits of data with key lengths of 128 bits
using 10 rounds. The algorithm includes a set of intermediate states
which are operated through 10 rounds. Each state is composed by
the following operations: AddRoundKey (XORing the state with
the current round key), SubByte (byte substitution), ShiftRow (byte
transposition) and MixColumn (matrix multiplication). In order to
improve the performance of AES implementations, the SubByte,
ShiftRow and MixColumn operations operations can be performed
using tables. Such tables which include pre-computed values are
called Transformation tables (T-tables) [5]. In such case, these oper-
ations are reduced to four look-up tables (i.e. T0 - T3) whose entries
are simply XORed. These tables must be stored using the memory
architecture of the MPSoC.

4 MPSOC MEMORY ORGANIZATION
MPSoC architectures are based on memory hierarchies, consisting
in the integration of several levels of cache (L1, L2, L3) and DRAM.
Processors and L1 are sometimes integrated into a single tile. L1
stores the data and instruction data of an application. When a cache
miss occurs on L1, the cache coherency mechanism initiates an
access to the shared L2 cache, located, usually, on another distant
core. The memory hierarchy can be categorized as i) main memory,
where all the data is stored in a big and usually external memory; ii)
shared memory, where a single memory stores the data of different
processors, which may or may not share common memory spaces.
Accesses are managed by the operating system. However, in the
presence of multiple access requests, the shared nature of this type
of memory creates a bottleneck that degrades the performance of
the applications; iii) distributed memory, where several memories
are distributed along the MPSoC’s tiles. Each memory is exclusive
for each processing element, thus avoiding address space sharing.
Despite providing data isolation into the MPSoC, this technique
demands intense communication.

5 THREAT MODEL
To launch a successful timing attack in the NoC, the attacker re-
quires environmental information. Additionally, the victim’s system
should allow actions which, in turn, will enable the malicious soft-
ware to perform the attack.

5.1 Requirements for the attack
More specifically, the conditions of a successful timing attack in
the NoC can be listed as:

163

(1) System Susceptibility: The attacker is able to run malicious
software inside the MPSoC.

(2) Attacker’s Reach: The attacker can directly or indirectly
communicate with the victims.

(3) Sharing the Sensitive Path: The attacker’s observable path
in the network has an intersection with the sensitive path.

System Susceptibility: This condition highlights the vulnera-
bility of the target MPSoC. The attacker can use different techniques
to tamper with the software and to infect an IP. As an example, the
attacker can use malicious software (malware) in order to perform
read/write operations in the restricted memory addresses. This, in
turn, may result in a change in the victim IP’s behaviour, resulting
in an infected IP. Moreover, software weaknesses such as buffer
overflows [4] and other similar techniques can be exploited for such
a purpose.

Attacker’s Reach: This condition highlights the attacker’s abil-
ity to communicate with the attacker’s primary target, for example
via the victim’s processor and the shared cache. Attacker’s first task
after a successful code infection, would be to identify the logical
addresses of the elements. Typical MPSoCs provide system func-
tions which can ask jobs form other IPs. With the main objective
of such interaction being triggering the victim to perform sensitive
operations (e.g. encryption). The attacker has three possibilities to
acquire the logical addresses:

(1) the logical addresses are provided in MPSoC’s datasheet;
(2) functions from an API perform the communication with the

target IPs; or
(3) functions from an API ask the service to a centralized man-

ager, and it passes to the destination IP. This scenario consid-
ers a highly secure system, where the trusted IPs are entirely
isolated.

Sharing the Sensitive Path: Once the attacker has the ability to
trigger a sensitive operation in the victim, to execute a timing attack,
it is crucial for the attacker to observe the victim node’s traffic. To
enable such observation, it is essential that the malicious software
shares sections of the sensitive path. This can be achieved by the
attacker asking the crypto-processor (primary target) to perform
an encryption while asking another service from a different IP-core.
Next, the attacker will test if the established communication traffic
intersects with the sensitive path systematically. If the attacker can
not establish a communication path that satisfies this requirement,
a different IP core must be infected. Due to specific cache access
pattern of AES, it is practical for the attacker to perform such a
search for sensitive traffic.
This process can be further optimized if the MPSoC provides

more implementation details, such as topology and routing algo-
rithm used in NoC.

5.2 Description of the timing attack
The fundamental mechanism exploited by the attack is that the
AES T-tables are accessed depending on the secret key. The goal of
the attacker is to detect whether T-table entries stored on memory
lines have been evicted or not. The attacker should use legitimate
operations (read and write) and exploit the fact that the time to
retrieve information varies according to the amount of memory
misses and hits. Detecting the optimal point of attack may reduce
the attack effort (measured in terms of the time spent to retrieve the
secret key). The optimal point to perform the attack is after the first
round of the AES encryption [14]. In order to detect the first round,

Figure 2: Mapping of MPEG-4 and AES Applications at the

target MPSoC.

the communication structure can be used. By monitoring the shared
NoC, it is possible for the attacker to detect, in a non-intrusive way,
the optimal point in time to probe the memory, as described in [10].
An attacker, which started an AES encryption, is then injecting
packets to the NoC. In order to perform the AES encryption, the T-
tables should be accessed, that result in the injection of a big packet
(integrating several flits) from the memory where the T-tables are
stored, to the AES IP core. As the communication structure is shared,
the injection of the T-table packet causes a contention of the attacker
communication. The degradation of the injection throughput of
the attacker alerts the possible T-Table retrieval. As a consequence,
the attacker can now start a memory attack at the optimal point of
time, thus allowing the faster secret key retrieval, when compared
to a memory attack.

6 EXPERIMENTALWORK
The goal of the experiments is to evaluate the impact on the efficacy
and the efficiency of the NoC Timing Attack over different memory
hierarchy configurations. The retrieval of the secret key of a AES
T-Table implementation was the target of attack. The efficacy of
the attack is defined as the amount of sensitive data observed by
an attacker. The efficiency of the attack measures the amount of
correctly guessed packets during an attack (also referred as true
positives). According to the storage mechanism used to save the
T-Tables, three memory organization were used in the experimental
setup: i) T-Tables of AES at main memory; ii) T-Tables of AES at
a shared cache L2; and iii) T-Tables of AES at a distributed shared
cache L2.
The MPSoC platform used to conduct the experimental work in-

tegrates 12 IP cores which exchange data through a 4x4 mesh-based
NoC. The MPSoC platform is shown in Fig. 2. The communication
structure of the MPSoC is the NoC Bonfire [1]. It uses a XY routing
algorithm and router which is able to store 8 flits at each input
buffer, where each flit is defined as 32 bits.
Usually the AES encryption is not executed in the MPSoC as a

stand-alone application.Multiple traffic is simultaneously generated

164

Figure 3: Communication graphs of each experiment. (a) Main Memory, (b) Shared Cache, and (c) Distributed Shared Cache.

for different applications which is executed concurrently. This fact
produces a increase of the noise in the attacker’s measurements. In
order to emulate this effect, we include, simultaneously with the
AES execution, the MPEG-4. This application was chosen due its
high computation and communication requirements, which include
high level of parallelism, high number of messages exchanged and
high number of memory requests. The MPEG-4 communication
graph and mapping for a 4x4 MPSoC are presented in [16]. The
communication and mapping graphs of the concurrent execution
of the MPEG-4 and AES applications are shown in Fig. 3 and Fig.
2, respectively. In order to speedup the simulation time, traffic
generators were used to emulate the communication behavior.
Fig. 2 highlights the most important IP cores for the experimental

setup. The IP core (1), the RISC processor, is the master processor
responsible to trigger and control theMPEG-4 and AES applications.
The IP core (2) is the cryptographic co-processor used to execute the
AES encryption/decryption. In order to complete the AES operation,
T-Table accesses should be done. IP core (3) and (4) are used to store
the T-Tables. Two potential locations (5) and (6) were chosen as
the possible attacker locations. An attacker located at IP core (5) is
able to observe the traffic close to the AES IP. On the other hand,
an attacker located at (6) is able to observe the traffic closer to the
memories. Both locations share the sensitive path (defined in the
threat model).
In order to perform the NoC Timing Attack, an attacker infects

an IP core of the MPSoC (5 or 6) and starts injecting packets in
the network at higher data rates. Then, the attacker measures the
injection latency of its packets (time require to inject a packet)
in order to understand the network behavior. As a result, a set of
traces are captured and divided in different thresholds, as shown
in Fig. 4. These threshold are variable and define the boundaries
in which sensitive data can be identified. The refinement of the

Figure 4: Injection latency (ns) vs. Simulation time (ns)

boundaries also incurs in the enhance of the success of the attack,
as shown in [12]. Since this task is not trivial, our experiments set
different threshold levels, and put in the final results to understand
the impact of this feature in the efficacy and efficiency of the attack.
Four parameters were varied in order to evaluate the impact of

the MPSoC organization in the attack: i) memory organization; ii)
variation of the network interface buffer sizes (8, 16,32 and 64 flits);
iii) location of the attacker (6 and 5); and iv) threshold (100, 150,
200 and 300). Results are presented in Table 1. The experiments are
described as:

• EXP1: T-Tables of AES at Main Memory - Transmission of
memory blocks of 256 words;

• EXP2: T-Tables of AES at Shared Cache L2 - Transmission
of cache lines of 32 words; and

• EXP3: T-Tables of AES at Distributed Shared Cache L2 -
Transmission of cache lines of 32 words.

According to the results presented at Table 1, the attacker at loca-
tion (6) obtained very good results in the memory configuration of
EXP 1. As the main memory sends blocks of data, the packets that
are injected into the NoC include several flits. As a consequence,
the latency degradation of the attacker is easily observable. Results
show that for the EXP1 configuration, the higher the threshold,
the higher attack efficiency is achieved. However, for the threshold
equal to 300, where only peaks are check, some sensitive infor-
mation can be lost. The attacker was able to observe only 66% of
the packets. For the EXP 1, the threshold equal to 200 presents
the best results, being able to observe 70% of all sensitive packets
(efficacy) with a successful rate (efficiency) of 94%. According to the
results, we can conclude that store the T-Table in the main memory,
without including a memory hierarchy, increases considerable the
vulnerability of the system to NoC-timing attacks.
The results of EXP2 and EXP3 presented lower values of efficacy

and efficiency compared to EXP1. Both use cache memories to store
the T-Tables, which inject smaller packets into the NoC. Hence,
small sensitive packets can be better camouflaged with the normal
NoC traffic, thus turning difficult its detection by the attacker. In
these scenarios, the attacker must select between improving the
efficacy or efficiency of the attack. If the attack requires a higher
amount of sensitive packet detection, the efficacy should be pri-
oritized and the lower thresholds should be used. However, if the
attack requires high quality of detection, the efficiency should be
prioritized, which represents the selection of higher thresholds. For
typical timing attacks, such as the attack proposed by Bernstein [2],
the quality is more important. Consequently, for EXP2 and EXP3,
where few sensitive data is detected, the time to collect sufficient
data to perform the attack increases.

Table 1: Experimental results for percentage of false positives and efficiency for attacks at locations 11 and 5 under different

threshold and buffer size values

Attack Location 06 Attack Location 05
Buffer EXP 1 EXP 2 EXP 3 EXP 1 EXP 2 EXP 3
Size Efficacy Efficiency Efficacy Efficiency Efficacy Efficiency Efficacy Efficiency Efficacy Efficiency Efficacy Efficiency

Threshold

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

8 75% 30% 12% 41% 11% 36% 62% 11% 19% 24% 21% 32%

16 73% 29% 12% 41% 11% 37% 62% 11% 19% 24% 22% 32%

32 73% 29% 12% 41% 11% 37% 62% 11% 19% 24% 22% 32%
100

64 73% 29% 12% 41% 11% 37% 62% 11% 19% 24% 22% 32%

8 73% 49% 6% 48% 6% 37% 57% 17% 12% 27% 13% 35%

16 70% 48% 7% 49% 6% 36% 57% 18% 12% 27% 13% 35%

32 70% 53% 7% 49% 6% 36% 57% 18% 12% 27% 13% 35%
150

64 70% 53% 7% 49% 6% 36% 57% 18% 12% 27% 13% 35%

8 73% 94% 3% 77% 2% 58% 55% 34% 4% 43% 4% 42%

16 70% 94% 3% 77% 2% 58% 55% 36% 4% 43% 4% 41%

32 70% 94% 3% 77% 2% 58% 55% 36% 4% 43% 4% 41%
200

64 70% 94% 3% 77% 2% 58% 55% 36% 4% 43% 4% 41%

8 66% 100% 1% 75% 1% 67% 51% 45% 2% 55% 2% 67%

16 66% 100% 1% 75% 1% 67% 51% 47% 2% 55% 2% 67%

32 66% 100% 1% 75% 1% 67% 51% 47% 2% 55% 2% 67%
300

64 66% 100% 1% 75% 1% 67% 51% 47% 2% 55% 2% 67%

Results show also the effects of the location of the attacker into
the MPSoC. Location (5) obtained the worst values for efficiency
but the best values for efficacy when compared to the attacker in
(6). Since the attacker in (5) was closer to the source of sensitive
packets, more sensitive packets can be observed. On the other hand,
as this attacker was in the middle of the system, the contention on
the attacker communication was noisy. As a consequence a higher
amount of false-positives are produced, thus reducing the attack
efficiency.
Regarding the impact of the buffer size on the attack, the increase

of size turns difficult to the attacker the evaluation of its injection
latency. However, as the latency of sensitive packets is higher than
the time to consume the packets, the impact of them in the attack
was minimal.

7 CONCLUSION
NoC timing attacks are practical. In this paper, we presented an
exploration of the impact of the MPSoC organization on the NoC
timing attack. Four parameters were explored: i) memory organiza-
tion; ii) variation of the network interface buffer sizes; iii) location
of the attacker; and iv) attack threshold. We present two metrics
(efficacy and efficiency) to evaluate the attacks. Experimental re-
sults demonstrate that memory organization has a huge impact on
the security of the MPSoC. The configuration of the MPSoC should
be used to provide performance and security properties.

ACKNOWLEDGMENTS
This work was funded by the German Federal Ministry of Education
and Research (BMBF), grant number 01IS160253 (ARAMiS II).

REFERENCES
[1] 2015. Project Bonfire Network-on-Chip. https://github.com/Project-Bonfire.

(2015).
[2] Daniel J. Bernstein. 2005. Cache Timing Attacks on AES. Available at: https:

//cr.yp.to/antiforgery/cachetiming-20050414.pdf. (April 2005).
[3] Andrey Bogdanov, Thomas Eisenbarth, Christof Paar, and Malte Wienecke. 2010.

Differential Cache-Collision Timing Attacks on AES with Applications to Embed-
ded CPUs. In Topics in Cryptology - CT-RSA 2010, Josef Pieprzyk (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 235–251.

[4] Eric Chien and Péter Ször. 2002. Blended Attacks Exploits, Vulnerabilities and
Buffer-Overflow Techniques in Computer Viruses. In In Proc. of Virus Bulletin
Conf.

[5] Joan Daemen and Vincent Rijmen. 2002. The Design of Rijndael. Springer-Verlag,
Berlin, Heidelberg.

[6] J. Flich and J. Duato. 2008. Logic-Based Distributed Routing for NoCs. IEEE
Computer Architecture Letters 7, 1 (2008), 13–16.

[7] Zecheng He and Ruby B. Lee. 2017. How Secure is Your Cache Against Side-
channel Attacks?. In Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO-50 1́7). ACM, New York, NY, USA, 341–
353. https://doi.org/10.1145/3123939.3124546

[8] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner
Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execu-
tion. In 40th IEEE Symposium on Security and Privacy (S&P’19).

[9] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, and Mike Hamburg. 2018. Meltdown: Reading Kernel Memory from User
Space. In 27th USENIX Security Symposium (USENIX Security 18).

[10] C. Reinbrecht, B. Forlin, A. Zankl, and J. SepÃžlveda. 2018. Earthquake – A
NoC-based optimized differential cache-collision attack for MPSoCs. In 2018
Design, Automation Test in Europe Conference Exhibition (DATE). 648–653. https:
//doi.org/10.23919/DATE.2018.8342090

[11] C. Reinbrecht, A. Susin, L. Bossuet, and J. SepÃžlveda. 2016. Gossip NoC –
Avoiding Timing Side-Channel Attacks through Traffic Management. In 2016
IEEE Computer Society Annual Symposium on VLSI (ISVLSI). 601–606. https:
//doi.org/10.1109/ISVLSI.2016.25

[12] C. Reinbrecht, A. Susin, L. Bossuet, G. Sigl, and J. SepÃžlveda. 2016. Side channel
attack on NoC-based MPSoCs are practical: NoC Prime+Probe attack. In 2016
29th Symposium on Integrated Circuits and Systems Design (SBCCI). 1–6. https:
//doi.org/10.1109/SBCCI.2016.7724051

[13] J. Sepúlveda, D. FlÃşrez, M. Soeken, J. P. Diguet, and G. Gogniat. 2016. Dynamic
NoC buffer allocation for MPSoC timing side channel attack protection. In 2016
IEEE 7th Latin American Symposium on Circuits Systems (LASCAS). 91–94. https:
//doi.org/10.1109/LASCAS.2016.7451017

[14] J. Sepúlveda, M. Gross, A. Zankl, and G. Sigl. 2017. Exploiting Bus Communication
to Improve Cache Attacks on Systems-on-Chips. In 2017 IEEE Computer Society
Annual Symposium on VLSI (ISVLSI). 284–289. https://doi.org/10.1109/ISVLSI.
2017.57

[15] M. J. Sepúlveda, J. P. Diguet, M. Strum, and G. Gogniat. 2015. NoC-Based Protec-
tion for SoC Time-Driven Attacks. IEEE Embedded Systems Letters 7, 1 (March
2015), 7–10. https://doi.org/10.1109/LES.2014.2384744

[16] Suleyman Tosun, Ozcan Ozturk, Erencan Ozkan, and Meltem Ozen. 2015. Appli-
cation mapping algorithms for mesh-based network-on-chip architectures. The
Journal of Supercomputing 71, 3 (01 Mar 2015), 995–1017. https://doi.org/10.1007/
s11227-014-1348-x

[17] Yao Wang and G. Edward Suh. 2012. Efficient Timing Channel Protection for
On-Chip Networks. In Proceedings of the 2012 IEEE/ACM Sixth International
Symposium onNetworks-on-Chip (NOCS ’12). IEEE Computer Society,Washington,
DC, USA, 142–151. https://doi.org/10.1109/NOCS.2012.24

166

