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Abstract-Existing work on Counterfactual Explanations (CE) 
and Algorithmic Recourse (AR) has largely focused on single 
individuals in a static environment: given some estimated model, 
the goal is to find valid counterfactuals for an individual 
instance that fulfill various desiderata. The ability of such 
counterfactuals to handle dynamics like data and model drift 
remains a largely unexplored research challenge. There has also 
been surprisingly little work on the related question of how 
the actual implementation of recourse by one individual may 
affect other individuals. Through this work, we aim to close 
that gap. We first show that many of the existing methodologies 
can be collectively described by a generalized framework. We 
then argue that the existing framework does not account for 
a hidden external cost of recourse, that only reveals itself when 
studying the endogenous dynamics of recourse at the group level. 
Through simulation experiments involving various state-of-the­
art counterfactual generators and several benchmark datasets, 
we generate large numbers of counterfactuals and study the 
resulting domain and model shifts. We find that the induced 
shifts are substantial enough to likely impede the applicability of 
Algorithmic Recourse in some situatious. Fortunately, we find 
various strategies to mitigate these concerns. Our simulation 
framework for studying recourse dynamics is fast and open­
sourced. 

Index Terms-Algorithmic Recourse; Counterfactual Explana­
tions; Explainable AI; Dynamic Systems 

I. INTRODUCTION 

Recent advances in Artificial Intelligence (AI) have pro­

pelled its adoption in scientific domains outside of Computer 

Science including Healthcare, Bioinformatics, Genetics and 

the Social Sciences. While this has in many cases brought 

benefits in terms of efficiency, state-of-the-art models like 

Deep Neural Networks (DNN) have also given rise to a 

new type of problem in the context of data-driven decision­

making. They are essentially black boxes: so complex, opaque 

and underspecified in the data that it is often impossible 
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to understand how they actually arrive at their decisions 

without auxiliary tools. Despite this shortcoming, black-box 

models have grown in popularity in recent years and have at 

times created undesirable societal outcomes [1]. The scientific 

community has tackled this issue from two different angles: 

while some have appealed for a strict focus on inherently 

interpretable models [2], others have investigated different 

ways to explain the behaviour of black-box models. These 

two sub-domains can be broadly referred to as interpretable 

AI and explainable AI (XAI), respectively. 
Among the approaches to XAI that have recently grown 

in popularity are Counterfactual Explanations (CE). They 

explain how inputs into a model need to change for it to 

produce different outputs. Counterfactual Explanations that 

involve realistic and actionable changes can be used for the 

purpose of Algorithmic Recourse (AR) to help individuals 

who face adverse outcomes. An example relevant to the Social 

Sciences is consumer credit: in this context, AR can be 

used to guide individuals in improving their creditworthiness, 

should they have previously been denied access to credit 

based on an automated decision-making system. A meaningful 

recourse recommendation for a denied applicant could be: 

"If your net savings rate had been 10% of your monthly 
income instead of the actual 8%, your application would 
have been successful. See if you can temporarily cut down on 
consumption. " In the remainder of this paper, we will use both 

terminologies-recourse and counterfactual-interchangeably 

to refer to situations where counterfactuals are generated with 

the intent to provide individual recourse. 

Existing work in this field has largely worked in a static 

setting: various approaches have been proposed to generate 

counterfactuals for a given individual that is subject to some 

pre-trained model. More recent work has compared different 

Authorized licensed use limited to: TU Delft Library. Downloaded on June 02,2023 at 08:37:08 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 1. Dynamics in Algorithmic Recourse: (a) we have a simple linear 
classifier trained for binary classification where samples from the negative 
class (y = 0) are marked in orange and samples of the positive class (y = 1)  
are marked in blue; (b) the implementation of AR for a random subset of 
individuals leads to a noticeable domain shift; (c) as the classifier is retrained 
we observe a corresponding model shift; (d) as this process is repeated, the 
decision boundary moves away from the target class. 

approaches within this static setting [3]. In this work, we go 

one step further and ask ourselves: what happens if recourse 

is provided and implemented repeatedly? What types of dy­

namics are introduced and how do different counterfactual 

generators compare in this context? 

Research on Algorithmic Recourse has also so far typically 

addressed the issue from the perspective of a single individual. 

Arguably though, most real-world applications that warrant 

AR involve potentially large groups of individuals typically 

competing for scarce resources. Our work demonstrates that 

in such scenarios, choices made by or for a single individual 
are likely to affect the broader collective of individuals in ways 

that many current approaches to AR fail to account for. More 

specifically, we argue that a strict focus on minimizing the 

private costs to individuals may be too narrow an objective. 

Figure 1 illustrates this idea for a binary problem involving 

a linear classifier and the counterfactual generator proposed by 

Wachter et al. [ 4]: the implementation of AR for a subset of 

individuals immediately leads to a visible domain shift in the 

(blue) target class (b), which in turn triggers a model shift (c). 

As this game of implementing AR and updating the classifier 

is repeated, the decision boundary moves away from training 

samples that were originally in the target class (d). We refer 

to these types of dynamics as endogenous because they are 

induced by the implementation of recourse itself. The term 

macrodynamics is borrowed from the economics literature 
and used to describe processes involving whole groups or 

societies. 

that creditworthiness decreases in the bottom-right direction. 

Then we can think of the outcome in panel (d) as representing 

a situation where the bank supplies credit to more borrowers 

(blue), but these borrowers are on average less creditworthy 

and more of them can be expected to default on their loan. 

This represents a cost to the retail bank. 

Example 1.2 (Student Admission). Suppose Figure 1 relates to 

an automated decision-making system used by a university in 

its student admission process. Assume that the two features are 

meaningful in the sense that the likelihood of students com­

pleting their degree decreases in the bottom-right direction. 

Then we can think of the outcome in panel (b) as representing 

a situation where more students are admitted to university 

(blue), but they are more likely to fail their degree than 

students that were admitted in previous years. The university 
admission committee catches on to this and suspends its efforts 

to offer Algorithmic Recourse. This represents an opportunity 

cost to future student applicants, that may have derived utility 

from being offered recourse. 

Both examples are exaggerated simplifications of potential 

real-world scenarios, but they serve to illustrate the point 

that recourse for one single individual may exert negative 

externalities on other individuals. 

To the best of our knowledge, this is the first work investi­

gating endogenous macrodynamics in AR. Our contributions 

to the state of knowledge are as follows: firstly, we posit 

a compelling argument that calls for a novel perspective on 
Algorithmic Recourse extending our focus from single individ­

uals to groups (Sections II and III). Secondly, we introduce an 

experimental framework extending previous work by Altmeyer 

[5], which enables us to study macrodynamics of Algorithmic 

Recourse through simulations that can be fully parallelized 

(Section IV). Thirdly, we use this framework to provide a first 

in-depth analysis of endogenous recourse dynamics induced by 

various popular counterfactual generators proposed in [4], [6], 

[7], [8] and [9] (Sections V and VI). Fourthly, given that we 
find a substantial impact of recourse, we propose and assess 

various mitigation strategies (Section VII). Finally, we discuss 

our findings in the broader context of the literature in Section 

VIII, before pointing to some of the limitations of our work 

as well as avenues for future research in Section IX. Section 
X concludes. 

II. BACKGROUND 

In this section, we provide a review of the relevant literature. 

First, Subsection II-A discusses the existing research within 

the domain of Counterfactual Explanations and Algorithmic 

Recourse. Then, Subsection 11-B presents some of the previous 

work on the measurement of data and model shifts. 

We think that these types of endogenous dynamics may be 

problematic and deserve our attention. From a purely technical 
perspective, we note the following: firstly, model shifts may 

inadvertently change classification outcomes for individuals 

who never received recourse. Secondly, we observe in Figure 
1 that as the decision boundary moves in the direction of 

the non-target class, counterfactual paths become shorter. We 

think that in some practical applications, this can be expected 
to generate costs for involved stakeholders. To follow our 

argument, consider the following two examples: A. Algorithmic Recourse 

Example 1.1 (Consumer Credit). Suppose Figure 1 relates to 

an automated decision-making system used by a retail bank 

to evaluate credit applicants with respect to their creditworthi­

ness. Assume that the two features are meaningful in the sense 
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A framework for Counterfactual Explanations was first 

proposed in 2017 by Wachter et al. [4] and has served as 

the baseline for many methodologies that have been proposed 

since then. Let M : X r+ Y denote some pre-trained model 
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that maps from inputs X E X to outputs Y E Y. Then we 
are interested in minimizing the cost1 C = cost(x') incurred 
by individual x when moving to a counterfactual state x' such 
that the predicted outcome M(x') corresponds to some target 
outcome y*: 

min cost(x') s. t. M(x') = y* (1) x'EX 
For implementation purposes, (1) is typically approximated 

through regularization: 

x' = arg min yloss(M(x'), y*) + .Acost(x') (2) x' 
In the baseline work [4], the cost function is proxied 

by some distance metric based on the simple intuition that 
perturbations of x are costly to the individual. For models 
that are differentiable and produce smooth predictions, (2) 

can be solved through gradient descent. This summarizes the 
approach followed in [4] which we refer to simply as Wachter, 

the name of the first author, in the remainder of this paper. 
Many approaches for the generation of Algorithmic Re­

course have been described in the literature since 2017. An 
October 2020 survey by Karimi et al. laid out 60 algorithms 
that have been proposed since 2014 [10]. Another survey 
published around the same time by Verma et al. described 29 

algorithms [11]. Different approaches vary primarily in terms 
of the objective functions they impose, how they optimize said 
objective (from brute force through gradient-based approaches 
to graph traversal algorithms), and how they ensure that 
certain requirements for CE are met. Regarding the latter, 
the literature has produced an extensive list of desidemta 
each addressing different needs. To name but a few, we are 
interested in generating counterfactuals that are close [4], 

actionable [12], realistic [6], sparse, diverse [8] and if possible 
causally founded [13]. 

Efforts so far have largely been directed at improving the 
quality of Counterfactual Explanations within a static context: 
given some pre-trained classifier M : X r-+ Y, we are inter­
ested in generating one or multiple meaningful Counterfactual 
Explanations for some individual characterized by x. The 
ability of Counterfactual Explanations to handle dynamics like 
data and model shifts remains a largely unexplored research 
challenge at this point [11]. We have been able to identify 
only one recent work by Upadhyay et al. that considers the 
implications of exogenous domain and model shifts in the 
context of AR [14]. Exogenous shifts are strictly of external 
origin. For example, they might stem from data correction, 
temporal shifts or geospatial changes [14]. Upadhyay et al. 
[14] propose ROAR: a framework for Algorithmic Recourse 
that evidently improves robustness to such exogenous shifts. 

As mentioned earlier, research has so far also generally 
focused on generating counterfactuals for single individuals 
or instances. We have been able to identify only one existing 
work that investigates black-box model behaviour towards a 

I Equivalently, others have referred to this quantity as complexity or simply 
distance. 

group of individuals [15]. The authors propose an optimiza­
tion framework that generates collective counterfactuals. We 
provide a motivation for doing so from the perspective of 
endogenous macrodynamics of Algorithmic Recourse. 

B. Domain and Model Shifts 

Much attention has been paid to the detection of dataset 
shifts - situations where the distribution of data changes over 
time. Rabanser et al. suggest a framework to detect data drift 
from a minimal number of samples through the application 
of two-sample tests [16]. This task is a generalization of the 
anomaly detection problem for large datasets, which aims to 
answer the question if two sets of samples could have been 
generated from the same probability distribution. Numerous 
approaches to anomaly detection have been summarized [17]. 

Another well-established research topic is concept drift: situ­
ations where external variables influence the patterns between 
the input and the output of a model [18]. For instance, Gama et 
al. offer a review of the adaptive learning techniques which can 
handle concept drift [19]. Less previous work is available on 
the related topic of model drift: changes in model performance 
over time. Nelson et al. review how resistant different machine 
learning models are to model drift [20]. Ackerman et al. offer a 
method to detect changes in model performance when ground 
truth is not available [21]. 

In the context of Algorithmic Recourse, domain and model 
shifts were first brought up by the authors behind ROAR 
[14]. In their work, they refer to model shifts as simply any 
perturbation D. to the parameters of the model in question: M. 
While this also sets the baseline for our analysis here, it is 
worth noting that in [14] these perturbations are mechanically 
introduced. In contrast, we are interested in quantifying model 
shifts that arise endogenously as part of a dynamic recourse 
process. In addition to quantifying the magnitude of shifts D., 
we aim to also analyse the characteristics of changes to the 
model, such as the position of the decision boundary and the 
overall decisiveness of the model. We have not been able to 
identify previous work on this topic. 

C. Benchmarking Counteifactual Generators 

Despite the large and growing number of approaches 
to counterfactual search, there have been surprisingly few 
benchmark studies that compare different methodologies. This 
may be partially due to limited software availability in 
this space. Recent work has started to address this gap: 
firstly, [22] run a large benchmarking study using differ­
ent algorithmic approaches and numerous tabular datasets; 
secondly, [3] introduce a Python framework-CARLA-that 
can be used to apply and benchmark different methodolo­
gies; finally, CounterfactualExplanations. jl [5] 

provides an extensible and fast implementation in Ju­
lia. Since the experiments presented here involve exten­
sive simulations, we have relied on and extended the Ju­
lia implementation due to the associated performance ben­
efits. In particular, we have built a framework on top 
of CounterfactualExplanations. jl that extends 
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the functionality from static benchmarks to simulation ex­
periments: AlgorithmicRecourseDynamics. jl2• The 
core concepts implemented in that package reflect what is 
presented in Section IV of this paper. 

Ill. GRADIENT-BASED RECOURSE REVISITED 

In this section, we first set out a generalized framework 
for gradient-based counterfactual search that encapsulates the 
various Individual Recourse methods we have chosen to use in 
our experiments (Section III-A). We then introduce the notion 
of a hidden external cost in Algorithmic Recourse and extend 
the existing framework to explicitly address this cost in the 
counterfactual search objective (Section III-B). 

A. From Individual Recourse . . .  

We have chosen to focus on gradient-based counterfactual 
search for two reasons: firstly, they can be seen as direct 
descendants of our baseline method (Wachter); secondly, 
gradient-based search is particularly well-suited for differen­
tiable black-box models like deep neural networks, which we 
focus on in this work. In particular, we include the following 
generators in our simulation experiments below: REVISE [7], 

CLUE [9], DiCE [8] and a greedy approach that relies on 
probabilistic models [6]. Our motivation for including these 
different generators in our analysis is that they all offer slightly 
different approaches to generating meaningful counterfactuals 
for differentiable black-box models. We hypothesize that gen­
erating more meaningful counterfactuals should mitigate the 
endogenous dynamics illustrated in Figure 1 in Section I. This 
intuition stems from the underlying idea that more meaningful 
counterfactuals are generated by the same or at least a very 
similar data-generating process as the observed data. All else 
equal, counterfactuals that fulfil this basic requirement should 
be less prone to trigger shifts. 

As we will see next, all of them can be described by the 
following generalized form of Equation (3): 

s' = arg min {yloss(M(f(s')) , y*) + .Acost(f(s'))} (3) s'ES 
Here s' = { s�} K is a K -dimensional array of counterfac­

tual states and f : S r-+ X maps from the counterfactual 
state space to the feature space. In Wachter, the state space 
is the feature space: f is the identity function and the num­
ber of counterfactuals K is one. Both REVISE and CLUE 
search counterfactuals in some latent space S instead of the 
feature space directly. The latent embedding is learned by a 
separate generative model that is tasked with learning the data­
generating process (DGP) of X. In this case, f in Equation (3) 

corresponds to the decoder part of the generative model, that 
is the function that maps back from the latent space to inputs. 
Provided the generative model is well-specified, traversing the 
latent embedding typically yields meaningful counterfactuals 
since they are implicitly generated by the (learned) DGP [7]. 

2The code has been released as a package: https://github.com/pat-alt/ 
AlgorithmicRecourseDynamics.jl. 

421 

CLUE distinguishes itself from REVISE and other coun­
terfactual generators in that it aims to minimize the predictive 
uncertainty of the model in question, M. To quantify predictive 
uncertainty, Antoran et al. [9] rely on entropy estimates for 
probabilistic models. The greedy approach proposed by Schut 
et al. [6], which we refer to as Greedy, also works with the 
subclass of models M c M that can produce predictive 
uncertainty estimates. The authors show that in this setting 
the cost function cost(·) in Equation (3) is redundant and 
meaningful counterfactuals can be generated in a fast and 
efficient manner through a modified Jacobian-based Saliency 
Map Attack (JSMA). Schut et al. [6] also show that by 
maximizing the predicted probability of x' being assigned to 
target class y*, we also implicitly minimize predictive entropy 
(as in CLUE). In that sense, CLUE can be seen as equivalent to 
REVISE in the Bayesian context and we shall therefore refer 
to both approaches collectively as Latent Space generators3• 

Finally, DiCE [8] distinguishes itself from all other gen­
erators considered here in that it aims to generate a diverse 
set of K > 1 counterfactuals. Wachter et al. [4] show that 
diverse outcomes can in principle be achieved simply by 
rerunning counterfactual search multiple times using stochastic 
gradient descent (or by randomly initializing the counterfac­
tual)4. In [8] diversity is explicitly proxied via Determinantal 
Point Processes (DDP): the authors introduce DDP as a 
component of the cost function cost(s') and thereby produce 
counterfactuals s1, ... , sK that look as different from each 
other as possible. The implementation of DiCE in our library 
of choice-CounterfactualExplanations. jl-uses 
that exact approach. It is worth noting that for k = 1, DiCE 
reduces to Wachter since the DDP is constant and therefore 
does not affect the objective function in Equation (3). 

B. . . . towards Collective Recourse 

All of the different approaches introduced above tackle the 
problem of Algorithmic Recourse from the perspective of 
one single individual5• To explicitly address the issue that 
Individual Recourse may affect the outcome and prospect 
of other individuals, we propose to extend Equation (3) as 
follows: 

s' = arg min {yloss(M(f(s')) , y*) s'ES 
+ .A1cost(f(s')) + .A2extcost(f(s'))} 

(4) 

Here cost(f(s')) denotes the proxy for private costs faced 
by the individual as before and .A1 governs to what extent 

3 In fact, there are several other recently proposed approaches to counterfac­
tual search that also broadly fall in this same category. They largely differ with 
respect to the chosen generative model: for example, the generator proposed 
by Dombrowski et al. [23] relies on normalizing flows. 

4Note that (3) naturally lends itself to that idea: setting K to some value 
greater than one and using the Wachter objective essentially boils down to 
computing multiple counterfactuals in parallel. Here, yloss( ·) is first broad­
casted over elements of s' and then aggregated. TI!is is exactly how counter­
factual search is implemented in CounterfactualExplanations. jl. 

5DiCE recognizes that different individuals may have different objective 
functions, but it does not address the interdependencies between different 
individuals. 
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that private cost ought to be penalized. The newly introduced 
term extcost(f(s')) is meant to capture and address external 
costs incurred by the collective of individuals in response to 
changes in s'. The underlying concept of private and external 
costs is borrowed from Economics and well-established in that 
field: when the decisions or actions by some individual market 
participant generate external costs, then the market is said to 
suffer from negative externalities and is considered inefficient 
[24]. We think that this concept describes the endogenous 
dynamics of algorithmic recourse observed here very well. As 
with Individual Recourse, the exact choice of extcost( ·) is not 
obvious, nor do we intend to provide a definitive answer in 
this work, if such even exists. That being said, we do propose 
a few potential mitigation strategies in Section VII. 

IV. MODELLING ENDOGENOUS MACRODYNAMICS IN 

ALGORITHMIC RECOURSE 

In the following , we describe the framework we propose 
for modelling and analyzing endogenous macrodynamics in 
Algorithmic Recourse. We introduce this framework with the 
ambition to shed light on the following research questions: 

Research Question IV.l (Endogenous Shifts). Does the re­
peated implementation of recourse provided by state-of-the-art 
generators lead to shifts in the domain and model? 

Research Question IV.2 (Costs). If so, are these dynamics 
substantial enough to be considered costly to stakeholders 
involved in real-world automated decision-making processes? 

Research Question IV.3 (Heterogeneity). Do different coun­
terfactual generators yield significantly different outcomes in 
this context? Furthermore, is there any heterogeneity concern­
ing the chosen classifier and dataset? 

Research Question Iv.4 (Drivers). What are the drivers of 
endogenous dynamics in Algorithmic Recourse? 

Below we first describe the basic simulations that were gen­
erated to produce the findings in this work and also constitute 
the core of AlgorithrnicRecourseDynarnics. jl-the 
Julia package we introduced earlier. The remainder of this 
section then introduces various evaluation metrics that can 
be used to benchmark different counterfactual generators with 
respect to how they perform in the dynamic setting. 

A. Simulations 

The dynamics illustrated in Figure 1 were generated through 
a simple experiment that aims to simulate the process of 
Algorithmic Recourse in practice. We begin in the static setting 
at time t = 0: firstly, we have some binary classifier M that 
was pre-trained on data V = V0 U V1, where V0 and V1 
denote samples in the non-target and target class, respectively; 
secondly, we generate recourse for a random batch of B 
individuals in the non-target class (V0). Note that we focus our 

attention on classification problems since classification poses 
the most common use-case for recourse6• 

In order to simulate the dynamic process, we suppose that 
the model M is retrained following the actual implementation 
of recourse in time t = 0. Following the update to the model, 
we assume that at time t = 1 recourse is generated for yet 
another random subset of individuals in the non-target class. 
This process is repeated for a number of time periods T. To 
get a clean read on endogenous dynamics we keep the total 
population of samples closed: we allow existing samples to 
move from factual to counterfactual states but do not allow any 
entirely new samples to enter the population. The experimental 
setup is summarized in Algorithm 1 .  

Algorithm 1 Simulation Experiment 
1: procedure EXPERIMENT(M, V, G) 
2: E +- 0 1> Initialize evaluation E. 

3: t +- 0 

4: while t < T do 

5: batch c V0 1> Sample from V0 (assignment). 
6: batch+- G(batch) 1> Generate counterfactuals. 
7: M +- M(V) 1> Retrain model. 
8: E +- eval(M, V) U E 1> Update evaluation. 
9: t +- t + 1 1> Increment t. 

10: end while 

11 :  return E, M, V 
12: end procedure 

Note that the operation in line 4 is an assignment, rather than 
a copy operation, so any updates to 'batch' will also affect V. 
The function eval(M, V) loosely denotes the computation of 
various evaluation metrics introduced below. In practice, these 
metrics can also be computed at regular intervals as opposed 
to every round. 

Along with any other fixed parameters affecting the counter­
factual search, the parameters T and B are assumed as given 
in Algorithm 1. Still, it is worth noting that the higher these 
values, the more factual instances undergo recourse throughout 
the entire experiment. Of course, this is likely to lead to 
more pronounced domain and model shifts by timeT. In our 
experiments, we choose the values such that the majority of the 
negative instances from the initial dataset receive recourse. As 
we compute evaluation metrics at regular intervals throughout 
the procedure, we can also verify the impact of recourse when 
it is implemented for a smaller number of individuals. 

Algorithm 1 summarizes the proposed simulation experi­
ment for a given dataset V, model M and generator G, but 
naturally, we are interested in comparing simulation outcomes 
for different sources of data, models and generators. The 
framework we have built facilitates this, making use of multi­
threading in order to speed up computations. Holding the 
initial model and dataset constant, the experiments are run for 

6To keep notation simple, we have also restricted ourselves to binary 
classification here, but AlgorithmicRecourseDynamics. jl can also 
be used for multi -class problems. 
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all generators, since our primary concern is to benchmark dif­

ferent recourse methods. To ensure that each generator is faced 

with the same initial conditions in each round t, the candidate 

batch of individuals from the non-target class is randomly 

drawn from the intersection of all non-target class individuals 

across all experiments {EXPERIMENT(M, V, G)} f=1 where J 
is the total number of generators. 

B. Evaluation Metrics 

We formulate two desiderata for the set of metrics used 

to measure domain and model shifts induced by recourse. 

First, the metrics should be applicable regardless of the 

dataset or classification technique so that they allow for the 

meaningful comparison of the generators in various scenarios. 

As knowledge of the underlying probability distribution is 

rarely available, the metrics should be empirical and non­

parametric. This further ensures that we can also measure 

large datasets by sampling from the available data. Moreover, 

while our study was conducted in a two-class classification 

setting, our choice of metrics should remain applicable in 

future research on multi-class recourse problems. Second, the 

set of metrics should allow capturing various aspects of the 

previously mentioned magnitude, path, and pace of changes 

while remaining as small as possible. 

1) Domain Shifts: To quantify the magnitude of domain 

shifts we rely on an unbiased estimate of the squared popula­

tion Maximum Mean Discrepancy (MMD) given as: 

where X = {x1, ... , xm}, X = {x1, ... , xn} represent 

independent and identically distributed samples drawn from 

probability distributions X and X respectively [25]. MMD is a 

measure of the distance between the kernel mean embeddings 

of X and X in a Reproducing Kernel Hilbert Space, 1l [26]. 

An important consideration is the choice of the kernel function 

k( · , ·) . In our implementation, we make use of a Gaussian 

kernel with a constant length-scale parameter of 0.5. As the 

Gaussian kernel captures all moments of distributions X and 

X, we have that MMD(X,X) = 0 if and only if X= X. 
Conversely, larger values M M D(X, X) > 0 indicate that it 

is more likely that X and X are different distributions. In our 

context, large values, therefore, indicate that a domain shift 

indeed seems to have occurred. 

To assess the statistical significance of the observed shifts 

under the null hypothesis that samples X and X were drawn 

from the same probability distribution, we follow [27]. To 

that end, we combine the two samples and generate a large 

number of permutations of X+ X. Then, we split the permuted 
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data into two new samples X' and X' having the same 

size as the original samples. Under the null hypothesis, we 

should have that MMD(X',X') be approximately equal 

to MMD( X, X). The corresponding p-value can then be 

calculated by counting how often these two quantities are not 

equal. 

We calculate the MMD for both classes individually based 

on the ground truth labels, i.e. the labels that samples were 

assigned in time t = 0. Throughout our experiments, we 

generally do not expect the distribution of the negative class 

to change over time - application of recourse reduces the size 

of this class, but since individuals are sampled uniformly the 

distribution should remain unaffected. Conversely, unless a 

recourse generator can perfectly replicate the original prob­

ability distribution, we expect the MMD of the positive class 

to increase. Thus, when discussing MMD, we generally mean 

the shift in the distribution of the positive class. 

2) Model Shifts: As our baseline for quantifying model 

shifts, we measure perturbations to the model parameters 

at each point in time t following [14]. We define � = 

II ()t+ 1 -Ot 112, that is the euclidean distance between the vectors 

of parameters before and after retraining the model M. We 

shall refer to this baseline metric simply as Perturbations. 

We extend the metric in Equation (5) to quantify model 

shifts. Specifically, we introduce Predicted Probability MMD 

(PP MMD): instead of applying Equation (5) to features 

directly, we apply it to the predicted probabilities assigned 

to a set of samples by the model M. If the model shifts, the 

probabilities assigned to each sample will change; again, this 

metric will equal 0 only if the two classifiers are the same. We 

compute PP MMD in two ways: firstly, we compute it over 

samples drawn uniformly from the dataset, and, secondly, we 

compute it over points spanning a mesh grid over a subspace of 

the entire feature space. For the latter approach, we bound the 

subspace by the extrema of each feature. While this approach 

is theoretically more robust, unfortunately, it suffers from the 

curse of dimensionality, since it becomes increasingly difficult 

to select enough points to overcome noise as the dimension 

D grows. 

As an alternative to PP MMD, we use a pseudo-distance 

for the Disagreement Coefficient (Disagreement). This metric 

was introduced in [28] and estimates p(M(x) =1- M'(x)), that 

is the probability that two classifiers disagree on the predicted 

outcome for a randomly chosen sample. Thus, it is not relevant 

whether the classification is correct according to the ground 

truth, but only whether the sample lies on the same side of the 

two respective decision boundaries. In our context, this metric 

quantifies the overlap between the initial model (trained before 

the application of AR) and the updated model. A Disagreement 

Coefficient unequal to zero is indicative of a model shift. The 

opposite is not true: even if the Disagreement Coefficient is 

equal to zero, a model shift may still have occurred. This is 

one reason why PP MMD is our preferred metric. 

We further introduce Decisiveness as a metric that quantifies 

the likelihood that a model assigns a high probability to its 

classification of any given sample. We define the metric simply 
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as tt l:�0(cr(M(x)) -0.5)2 where M(x) are predicted logits 
from a binary classifier and cr denotes the sigmoid function. 
This metric provides an unbiased estimate of the binary 
classifier's tendency to produce high-confidence predictions in 
either one of the two classes. Although the exact values for 
this metric are not important for our study, they can be used 
to detect model shifts. If decisiveness changes over time, then 
this is indicative of the decision boundary moving towards 
either one of the two classes. A potential caveat of this metric 
in the context of our experiments is that it will to some degree 
get inflated simply through retraining the model. 

Finally, we also take a look at the out-of-sample Perfor­

mance of our models. To this end, we compute their F-score 
on a test sample that we leave untouched throughout the 
experiment. 

V. EXPERIMENT SETUP 

This section presents the exact ingredients and parameter 
choices describing the simulation experiments we ran to 
produce the findings presented in the next section (VI). For 
convenience, we use Algorithm 1 as a template to guide us 
through this section. A few high-level details upfront: each 
experiment is run for a total of T = 50 rounds, where in each 
round we provide recourse to five per cent of all individuals 
in the non-target class, so Bt = 0.05 * N'f0• All classifiers 
and generative models are retrained for 10 epochs in each 
round t of the experiment. Rather than retraining models from 
scratch, we initialize all parameters at their previous levels 
( t -1) and backpropagate for 10 epochs using the new training 
data as inputs into the existing model. Evaluation metrics are 
computed and stored every 10 rounds. To account for noise, 
each individual experiment is repeated five times? 

A. M-Classifiers and Generative Models 
For each dataset and generator, we look at three differ­

ent types of classifiers, all of them built and trained using 
Flux. jl [29]: firstly, a simple linear classifier-Logistic 
Regression-implemented as a single linear layer with sig­
moid activation; secondly, a multilayer perceptron (MLP); and 
finally, a Deep Ensemble composed of five MLPs following 
[30] that serves as our only probabilistic classifier. We have 
chosen to work with deep ensembles both for their simplicity 
and effectiveness at modelling predictive uncertainty. They are 
also the model of choice in [6]. The network architectures are 
kept simple (top half of Table 1), since we are only marginally 
concerned with achieving good initial classifier performance. 

The Latent Space generator relies on a separate generative 
model. Following the authors of both REVISE and CLUE 
we use Variational Autoencoders (VAE) for this purpose. As 
with the classifiers, we deliberately choose to work with fairly 
simple architectures (bottom half of Table I). More expressive 
generative models generally also lead to more meaningful 

7In the current implementation, we use the same train-test split each time to 
only account for stochasticity associated with randomly selecting individuals 
for recourse. An interesting alternative may be to also perform data splitting 
each time, thereby adding an additional layer of randomness. 

TABLE I 
NEURAL NETWORK ARCHITECTURES AND TRAINING PARAMETERS. 

MLP 

VAE 

Data Hidden Dim. Latent Dim. Hidden Layers Batch Dropout Epochs 

Syuthetic 32 100 

Real-World 64 2 500 0.1 100 

Syuthetic 32 2 100 

Real-World 32 8 250 

Linearl separable Moons 

� 

Fig. 2. Synthetic classification datasets used in our experiments. Samples 
from the negative class (y = 0) are marked in blue while samples of the 
positive class (y = 1) are marked in orange. 

counterfactuals produced by Latent Space generators. But in 
our view, this should simply be considered as a vulnerability 
of counterfactual generators that rely on surrogate models to 
learn realistic representations of the underlying data. 

B. V-Data 
We have chosen to work with both synthetic and real­

world datasets. Using synthetic data allows us to impose 
distributional properties that may affect the resulting recourse 
dynamics. Following [14], we generate synthetic data in JR2 to 
also allow for a visual interpretation of the results. Real-world 
data is used in order to assess if endogenous dynamics also 
occur in higher-dimensional settings. 

1) Synthetic data: We use four synthetic binary classifica­
tion datasets consisting of 1000 samples each: Overlapping, 

Linearly Separable, Circles and Moons (Figure 2). 
Ex-ante we expect to see that by construction, Wachter 

will create a new cluster of counterfactual instances in the 
proximity of the initial decision boundary as we saw in Figure 
1. Thus, the choice of a black-box model may have an impact 
on the counterfactual paths. For generators that use latent space 
search (REVISE [7], CLUE [9]) or rely on (and have access 
to) probabilistic models (CLUE [9], Greedy [6]) we expect 
that counterfactuals will end up in regions of the target domain 
that are densely populated by training samples. Of course, this 
expectation hinges on how effective said probabilistic models 
are at capturing predictive uncertainty. Finally, we expect to 
see the counterfactuals generated by DiCE to be diversely 
spread around the feature space inside the target class8• In 
summary, we expect that the endogenous shifts induced by 
Wachter outsize those of all other generators since Wachter is 
not explicitly concerned with generating what we have defined 
as meaningful counterfactuals. 

8 As we mentioned earlier, the diversity constraint used by DiCE is only 
effective when at least two counterfactuals are being generated. We have 
therefore decided to always generate 5 counterfactuals for each generator and 
randomly pick one of them. 
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2) Real-world data: We use three different real-world 

datasets from the Finance and Economics domain, all of which 

are tabular and can be used for binary classification. Firstly, 

we use the Give Me Some Credit dataset which was open­

sourced on Kaggle for the task to predict whether a borrower 

is likely to experience financial difficulties in the next two 

years [31], originally consisting of 250,000 instances with 11 
numerical attributes. Secondly, we use the UCI defaultCredit 

dataset [32], a benchmark dataset that can be used to train 

binary classifiers to predict the binary outcome variable of 

whether credit card clients default on their payment. In its 

raw form, it consists of 23 explanatory variables: 4 categorical 

features relating to demographic attributes and 19 continuous 

features largely relating to individuals' payment histories and 

amount of credit outstanding. Both datasets have been used in 

the literature on AR before (see for example [3], [7] and [12]), 
presumably because they constitute real-world classification 

tasks involving individuals that compete for access to credit. 

As a third dataset, we include the California Housing 

dataset derived from the 1990 U.S. census and sourced through 

scikit-learn [34]. It consists of 8 continuous features that can 

be used to predict the median house price for California 

districts. The continuous outcome variable is binarized as fj = 
lly>median(Y) indicating whether or not the median house price 

of a given district is above the median of all districts. While 

we have not seen this dataset used in the previous literature on 

AR, others have used the Boston Housing dataset in a similar 

fashion [6]. We initially also conducted experiments on that 

dataset, but eventually discarded it due to surrounding ethical 

concerns [35]. 
Since the simulations involve generating counterfactuals for 

a significant proportion of the entire sample of individuals, we 

have randomly undersampled each dataset to yield balanced 

subsamples consisting of 5,000 individuals each. We have 

also standardized all continuous explanatory features since our 

chosen classifiers are sensitive to scale. 

C. G-Generators 
All generators introduced earlier are included in the ex­

periments: Wachter [4], REVISE [7], CLUE [9], DiCE [8] 
and Greedy [6]. In addition, we introduce two new generators 

in Section VII that directly address the issue of endogenous 

domain and model shifts. We also test to what extent it may be 

beneficial to combine ideas underlying the various generators. 

VI. EXPERIMENTS 

Below, we first present our main experimental findings 

regarding these questions. We conclude this section with a 

brief recap providing answers to all of these questions. 

A. Endogenous Macrodynamics 
We start this section off with the key high-level observa­

tions. Across all datasets (synthetic and real), classifiers and 

counterfactual generators we observe either most or all of the 

following dynamics at varying degrees: 
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• Statistically significant domain and model shifts as mea­

sured by MMD. 

• A deterioration in out-of-sample model performance as 
measured by the F-Score evaluated on a test sample. In 

many cases this drop in performance is substantial. 

• Significant perturbations to the model parameters as well 

as an increase in the model's decisiveness. 

• Disagreement between the original and retrained model, 

in some cases large. 

There is also some clear heterogeneity across the results: 

• The observed dynamics are generally of the highest 

magnitude for the linear classifier. Differences in results 

for the MLP and Deep Ensemble are mostly negligible. 

• The reduction in model performance appears to be most 

severe when classes are not perfectly separable or the 

initial model performance was weak, to begin with. 

• Except for the Greedy generator, all other generators gen­
erally perform somewhat better overall than the baseline 

(Wachter) as expected. 

Focusing first on synthetic data, Figure 3 presents our 

findings for the dataset with overlapping classes. It shows the 

resulting values for some of our evaluation metrics at the end 

of the experiment, after all T = 50 rounds, along with error 

bars indicating the variation across folds. 
The top row shows the estimated domain shifts. While it is 

difficult to interpret the exact magnitude of MMD, we can see 

that the values are different from zero and there is essentially 

no variation across our five folds. For the domain shifts, the 

Greedy generator induces the smallest shifts. In general, we 

have observed the opposite. 
The second row shows the estimated model shifts, where 

here we have used the grid approach explained earlier. As with 

the domain shifts, the observed values are clearly different 

from zero and variation across folds is once again small. In 

this case, the results for this particular dataset very much 

reflect the broader patterns we have observed: Latent Space 

(LS) generators induce the smallest shifts, followed by DiCE, 

then Wachter and finally Greedy. 
The same broad pattern also emerges in the third row: we 

observe the smallest deterioration in model performance for 

LS generators, albeit we still find a reduction in the F-Score of 

around 5-10 percentage points on average. Related to this, the 

bottom two rows indicate that the retrained classifiers disagree 

with their initial counterparts on the classification of up to 

nearly 25 per cent of the individuals. We also note that the 

final classifiers are more decisive, although as we noted earlier 

this may to some extent just be a byproduct of retraining the 

model throughout the experiment. 
Figure 3 also indicates that the estimated effects are 

strongest for the simplest linear classifier, a pattern that we 

have observed fairly consistently. Conversely, there is virtually 

no difference in outcomes between the deep ensemble and the 

MLP. It is possible that the deep ensembles simply fail to 

capture predictive uncertainty well and hence counterfactual 

generators like Greedy, which explicitly addresses this quan­

tity, fail to work as expected. 
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Fig. 3. Results for synthetic data with overlapping classes. The shown model 
MMD (PP MMD) was computed over a mesh grid of 1,000 points. Error bars 
indicate the standard deviation across folds. 

The findings for the other synthetic datasets are broadly 
consistent with the observations above. For the Moons data, 
the same broad patterns emerge, although in this case, the 
Greedy generator induces comparably strong shifts in some 
cases. For the Circles data, model shifts and performance 
deterioration are quantitatively much smaller than what we can 
observe in Figure 3 and in many cases insignificant. For the 
Linearly Separable data we also find substantial domain and 
model shifts, but almost no reduction in model performance.9 

Finally, it is also worth noting that the observed dynamics 
and patterns are consistent throughout the experiment. That 
is to say that we start observing shifts already after just a 
few rounds and these tend to increase proportionately for the 
different generators over the course of the experiment. 

Turning to the real-world data we will go through the 
findings presented in Figure 4, where each column corresponds 
to one of the three data sets. The results shown here are for 
the deep ensemble, which once again largely resemble those 
for the MLP. Starting from the top row, we find significant 
domain shifts of varying magnitudes. Latent Space search 
induces shifts that are orders of magnitude higher than for 
the other generators, which generally induce significant but 
small shifts. 

Model shifts are shown in the middle row of Figure 4: the 

9You can find a granular overview of all results including 
bootstraps in our online companion: https://www.paltrneyer.com/ 
endogenous-macrodynamics-in-algorithmic-recourse/. 
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Fig. 4. Results for deep ensemble using real-world datasets. The shown model 
MMD (PP MMD) was computed over actual samples, rather than a mesh grid. 
Error bars indicate the standard deviation across folds. 

estimated PP MMD is statistically significant across the board 
and in some cases much larger than in others. We find no 
evidence that LS search helps to mitigate model shifts, as 
we did before for the synthetic data. Since these real-world 
datasets are arguably more complex than the synthetic data, 
the generative model can be expected to have a harder time 
learning the data-generating process and hence this increased 
difficulty appears to affect the performance of REVISE/CLUE. 

The out-of-sample model performance also deteriorates 
across the board and substantially so: the largest average 
reduction in F-Scores of more than 10 percentage points is 
observed for the Credit Default dataset. For this dataset we 
achieved the lowest initial model performance, indicating once 
again that weaker classifiers may be more exposed to endoge­
nous dynamics. As with the synthetic data, the estimates for 
logistic regression are qualitatively in line with the above, but 
quantitatively even more pronounced. 

To recap, we answer our research questions: firstly, endoge­
nous dynamics do emerge in our experiments (RQ IV.l) and 
we find them substantial enough to be considered costly (RQ 
IV.2); secondly, the choice of the counterfactual generator mat­
ters, with Latent Space search generally having a dampening 
effect (RQ IV.3). The observed dynamics, therefore, seem to 
be driven by a discrepancy between counterfactual outcomes 
that minimize costs to individuals and outcomes that comply 
with the data-generating process (RQ IV.4). 

VII.  MITIGATION STRATEGIES AND EXPERIMENTS 

Having established in the previous section that endogenous 
macrodynamics in AR are substantial enough to warrant our 
attention, in this section we ask ourselves: 

Research Question VII.l (Mitigation Strategies). What are 
potential mitigation strategies with respect to endogenous 
macrodynamics in AR? 
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We propose and test several simple mitigation strategies. All 
of them essentially boil down to one simple principle: to avoid 
domain and model shifts, the generated counterfactuals should 
comply as much as possible with the true data-generating pro­
cess. This principle is really at the core of Latent Space (LS) 
generators, and hence it is not surprising that we have found 
these types of generators to perform comparably well in the 
previous section. But as we have mentioned earlier, generators 
that rely on separate generative models carry an additional 
computational burden and, perhaps more importantly, their 
performance hinges on the performance of said generative 
models. Fortunately, it turns out that we can use a number 
of other, much simpler strategies. 

A. More Conservative Decision Thresholds 
The most obvious and trivial mitigation strategy is to 

simply choose a higher decision threshold I· This threshold 
determines when a counterfactual should be considered valid. 
Under 1 = 0.5, counterfactuals will end up near the decision 
boundary by construction. Since this is the region of maximal 
aleatoric uncertainty, the classifier is bound to be thrown off. 
By setting a more conservative threshold, we can avoid this 
issue to some extent. A drawback of this approach is that a 
classifier with high decisiveness may classify samples with 
high confidence even far away from the training data. 

B. Classifier Preserving ROAR (ClaPROAR) 
Another strategy draws inspiration from ROAR [14]: to 

preserve the classifier, we propose to explicitly penalize the 
loss it incurs when evaluated on the counterfactual x' at given 
parameter values. Recall that extcost( ·) denotes what we had 
defined as the external cost in Equation (4). Formally, we let 

extcost(f(s')) = l (M(f(s')) , y') (6) 

for each counterfactual k where l denotes the loss func­
tion used to train M. This approach, which we refer to 
as ClaPROAR, is based on the intuition that (endogenous) 
model shifts will be triggered by counterfactuals that increase 
classifier loss. It is closely linked to the idea of choosing a 
higher decision threshold, but is likely better at avoiding the 
potential pitfalls associated with highly decisive classifiers. It 
also makes the private vs. external cost trade-off more explicit 
and hence manageable. 

C. Gravitational Counterfactual Explanations 
Yet another strategy extends Wachter as follows: instead of 

only penalizing the distance of the individuals' counterfactual 
to its factual, we propose penalizing its distance to some 
sensible point in the target domain, for example, the subsample 
average x* = mean(x), x E D1 : 

extcost(f(s')) = dist(f(s') ,  x*) (7) 

Once again we can put this in the context of Equation 
(4): the former penalty can be thought of here as the private 
cost incurred by the individual, while the latter reflects the 
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Fig. 5. illustrative example demonstrating the properties of the various 
mitigation strategies. Samples from the negative class (y = 0) are marked 
in orange while samples of the positive class (y = 1) are marked in blue. 

external cost incurred by other individuals. Higher choices of 
A2 relative to A1 will lead counterfactuals to gravitate towards 
the specified point x* in the target domain. In the remainder 
of this paper, we will therefore refer to this approach as 
Gravitational generator, when we investigate its usefulness 
for mitigating endogenous macrodynamics 10• 

Figure 5 shows an illustrative example that demonstrates the 
differences in counterfactual outcomes when using the various 
mitigation strategies compared to the baseline approach, that 
is, Wachter with 1 = 0.5: choosing a higher decision threshold 
pushes the counterfactual a little further into the target domain; 
this effect is even stronger for ClaPROAR; finally, using the 
Gravitational generator the counterfactual ends up all the way 
inside the target domain in the neighbourhood of x* 1 1 •  Linking 
these ideas back to Example 1.2, the mitigation strategies help 
ensure that the recommended recourse actions are substantial 
enough to truly lead to an increase in the probability that the 
admitted student eventually graduates. 

Our findings indicate that all three mitigation strategies 
are at least at par with LS generators with respect to their 
effectiveness at mitigating domain and model shifts. Figure 6 
presents a subset of the evaluation metrics for our synthetic 
data with overlapping classes. The top row in Figure 6 
indicates that while domain shifts are of roughly the same 
magnitude for both Wachter and LS generators, our proposed 
strategies effectively mitigate these shifts. ClaPROAR appears 
to be particularly effective, which is positively surprising since 
it is designed to explicitly address model shifts, not domain 
shifts. As evident from the middle row in Figure 6 model 
shifts can also be reduced: for the deep ensemble LS search 
yields results that are at par with the mitigation strategies, 
while for both the simple MLP and logistic regression our 
simple strategies are more effective. The same overall pattern 
can be observed for out-of-sample model performance. Con­
cerning the other synthetic datasets, for the Moons dataset, 
the emerging patterns are largely the same, but the estimated 
model shifts are insignificant as noted earlier; the same holds 
for the Circles dataset, but there is no significant reduction 
in model performance for our neural networks; in the case of 

10Note that despite the naming conventions, our goal here is not to 
provide yet more counterfactual generators. Rather than looking at them as 
isolated entities, we believe and demonstrate that different approaches can be 
effectively combined. 

11 In order for the Gravitational generator and ClaPROAR to work as ex­
pected, one needs to ensure that counterfactual search continues, independent 
of the threshold probability 'Y· 
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Fig. 6. The differences in counterfactual outcomes when using the various 
mitigation strategies compared to the baseline approach, that is Wachter with 
"Y = 0.5. Results for synthetic data with overlapping classes. The shown 
model MMD (PP MMD) was computed over a mesh grid of points. Error 
bars indicate the standard deviation across folds. 
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Fig. 7. Combining various mitigation strategies with LS search. Results for 
synthetic data with overlapping classes. The shown model MMD (PP MMD) 
was computed over a mesh grid of points. Error bars indicate the standard 
deviation across folds. 

linearly separable data, we find the Gravitational generator to 
be most effective at mitigating shifts. 

An interesting finding is also that the proposed strategies 

have a complementary effect when used in combination with 

LS generators. In experiments we conducted on the synthetic 

data, the benefits of LS generators were exacerbated further 

when using a more conservative threshold or combining it 

with the penalties underlying Gravitational and ClaP ROAR. In 

Figure 7 the conventional LS generator with 1 = 0.5 serves 

as our baseline. Evidently, being more conservative or using 

one of our proposed penalties decreases the estimated domain 

and model shifts, in some cases beyond significance. 

Finally, Figure 8 shows the results for our real-world data. 

We note that for both the California Housing and GMSC data, 
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Fig. 8. The differences in counterfactual outcomes when using the various 
mitigation strategies compared to the baseline approach, that is Wachter with 
"Y = 0.5. Results for the MLP using real-world datasets. The shown model 
MMD (PP MMD) was computed over actual samples, rather than a mesh 
grid. Error bars indicate the standard deviation across folds. 

ClaP ROAR does have an attenuating effect on model perfor­

mance deterioration 12. Overall, the results are less significant, 

possibly because a somewhat smaller share of individuals from 

the non-target group received recourse than in the synthetic 

case13 • 

VIII. DISCUSSION 

Our results in Section VI indicate that state-of-the-art ap­

proaches to Algorithmic Recourse induce substantial domain 

and model shift if implemented at scale in practice. These 

induced shifts can and should be considered as an (expected) 

external cost of individual recourse. While they do not affect 

the individual directly as long as we look at the individual 

in isolation, they can be seen to affect the broader group of 

stakeholders in automated data-driven decision-making. We 

have seen, for example, that out-of-sample model performance 

generally deteriorates in our simulation experiments. In prac­

tice, this can be seen as a cost to model owners, that is the 

group of stakeholders using the model as a decision-making 

tool. As we have set out in Example 1.2 of our introduction, 

these model owners may be unwilling to carry that cost, and 

hence can be expected to stop offering recourse to individuals 

altogether. This in turn is costly to those individuals that would 

otherwise derive utility from being offered recourse. 

So, where does this leave us? We would argue that the 

expected external costs of individual recourse should be 

shared by all stakeholders. The most straightforward way 

to achieve this is to introduce a penalty for external costs 

in the counterfactual search objective function, as we have 

set out in Equation (4). This will on average lead to more 

costly counterfactual outcomes, but may help to avoid extreme 

scenarios, in which minimal-cost recourse is reserved to a tiny 

minority of individuals. We have shown various types of shift­

mitigating strategies that can be used to this end. Since all 
of these strategies can be seen simply as a specific adaption 

12Estimated domain shifts (not shown) were largely insubstantial, as in 
Figure 4 in the previous section. 

13 In earlier experiments we moved a larger share of individuals and the 
results more clearly favoured our mitigation strategies. 
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of Equation (4), they can be applied to any of the various 

counterfactual generators studied here. 

IX. LIMITATIONS AND FUTURE WORK 

While we believe that this work constitutes a valuable 

starting point for addressing existing issues in Algorithmic 

Recourse from a fresh perspective, we are aware of several of 

its limitations. In the following, we highlight some of these 

and point to avenues for future research. 

A. Private vs. External Costs 
Perhaps the most crucial shortcoming of our work is that we 

merely point out that there exists a trade-off between private 

costs to the individual and external costs to the collective of 

stakeholders. We fall short of providing any definitive answers 

as to how that trade-off may be resolved in practice. The 

mitigation strategies we have proposed here provide a good 

starting point, but they are ad-hoc extensions of the exist­

ing AR framework. An interesting idea to explore in future 

work could be the potential for Pareto optimal Algorithmic 

Recourse, that is, a collective recourse outcome in which no 

single individual can be made better off, without making at 

least one other individual worse off. This type of work would 

be interdisciplinary and could help to formalize some of the 

concepts presented in this work. 

B. Experimental Setup 
The experimental setup proposed here is designed to mimic 

a real-world recourse process in a simple fashion. In practice, 

models are updated regularly [14] . We also find it plausible to 

assume that the implementation of recourse happens periodi­

cally for different individuals, rather than all at once at time 
t = 0. That being said, our experimental design is a vast over­

simplification of potential real-world scenarios. In practice, 

any endogenous shifts that may occur can be expected to 

be entangled with exogenous shifts of the nature investigated 

in Upadhyay et al. [14]. We also make implicit assumptions 

about the utility functions of the involved agents that may well 

be too simple: individuals seeking recourse are assumed to 

always implement the proposed Counterfactual Explanations; 

conversely, the agent in charge of the model M is assumed to 
always treat individuals that have implemented valid recourse 

as if they were truly now in the target class. 

C. Causal Modelling 
In this work, we have focused on popular counterfactual 

generators that do not incorporate any causal knowledge. 

The generated perturbations therefore may involve changes to 

variables that affect the outcome predicted by the black-box 

model, but not the true outcome. The implementation of such 

changes is typically described as gaming [36], although they 

need not be driven by adversarial intentions: in Example 1.2, 
student applicants may dutifully focus on acquiring credentials 

that help them to be admitted to university, but ultimately 

not to improve their chances of success at completing their 

degree [37]. Preventing such actions may help to avoid the 

dynamics we have pointed to in this work. Future work would 

likely benefit from including recent approaches to AR that 

incorporate causal knowledge such as Karimi et al. [13]. 

D. Classifiers 
For reasons stated earlier, we have limited our analysis to 

differentiable linear and non-linear classifiers, in particular 

logistic regression and deep neural networks. While these sorts 

of classifiers have also typically been analyzed in the existing 
literature on Counterfactual Explanations and Algorithmic 

Recourse, they represent only a subset of popular machine 

learning models employed in practice. Despite the success and 

popularity of deep learning in the context of high-dimensional 

data such as image, audio and video, empirical evidence 

suggests that other models such as boosted decision trees may 

have an edge when it comes to lower-dimensional tabular 

datasets, such as the ones considered here ([38], [39]). 

E. Data 
Largely in line with the existing literature on Algorithmic 

Recourse, we have limited our analysis of real-world data to 
three commonly used benchmark datasets that involve binary 

prediction tasks. Future work may benefit from including novel 

datasets or extending the analysis to multi-class or regression 

problems, the latter arguably representing the most common 

objective in Finance and Economics. 

X.  CONCLUDING REMARKS 

This work has revisited and extended some of the most 

general and defining concepts underlying the literature on 

Counterfactual Explanations and, in particular, Algorithmic 

Recourse. We demonstrate that long-held beliefs as to what 

defines optimality in AR, may not always be suitable. Specif­

ically, we run experiments that simulate the application of 
recourse in practice using various state-of-the-art counterfac­

tual generators and find that all of them induce substantial 

domain and model shifts. We argue that these shifts should 

be considered as an expected external cost of individual 

recourse and call for a paradigm shift from individual to 

collective recourse in these types of situations. By proposing 

an adapted counterfactual search objective that incorporates 

this cost, we make that paradigm shift explicit. We show that 

this modified objective lends itself to mitigation strategies that 

can be used to effectively decrease the magnitude of induced 

domain and model shifts. Through our work, we hope to 
inspire future research on this important topic. To this end 

we have open-sourced all of our code along with a Julia 

package: AlgorithmicRecourseDynamics. jl. Future 

researchers should find it easy to replicate, modify and extend 

the simulation experiments presented here and apply them to 

their own custom counterfactual generators. 
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APPENDIX 

Granular results for all of our experiments can be found 

in this online companion: https://www.paltmeyer.com/ 
endogenous-macrodynamics-in-algorithmic-recourse/. The 

Github repository containing all the code used to produce the 

results in this paper can be found here: https://github.com/ 

pat-alt/endogenous-macrodynamics-in-algorithmic-recourse. 
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