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Abstract— Background: A brain-computer interface (BCI) is a
system that enables humans to control a computer by their brain
signals. This can be achieved by modulating the sensorimotor
rhythm (SMR) through both motor execution and motor im-
agery. The potential enhancement of spinal reflexes and motor
control through SMR training is attributed to the hypothesis that
activity-dependent brain plasticity guides spinal plasticity during
motor skill learning. However, the signal processing needed for
conversion from raw brain signals to a robust control signal is
challenging. The recorded electroencephalogram (EEG) signals
are contaminated by multiple unknown sources and suffer from
inter-subject variability, complicating the development of the BCI.
Objective: To obtain a robust control signal the study 1) investi-
gated the relation between event-related desynchronization (ERD)
and mechanical stretch reflex size in the flexor carpi radialis across
four muscle pre-loads consisting of 0%, 5%, 25% and 40% of
maximum voluntary contraction (MVC), 2) investigated the ability
of three offline signal processing paradigms in distinguishing
between periods of rest and activity using EEG data associated
with motor execution and motor imagery, 3) built a pseudo-online
signal processing paradigm to simulate real-time signal processing
based on a single trial and a continuous data stream.
Method: Mechanical stretch perturbations were applied to the
wrist under four percentages of MVC during motor execution
and imagery conditions in six healthy subjects. The data anal-
ysis encompassed signal processing techniques including pre-
processing with a large Laplacian filter, feature extraction through
autoregressive modelling (AR), power spectral density (PSD), or
discrete wavelet transform (DWT), and classification using linear
discriminant analysis (LDA).
Results: Mechanical stretch reflex sizes and ERD amplitude
significantly increased with increasing percentage of MVC for
motor execution trials. For motor imagery trials, no significant
correlation was found between the stretch reflex size and ERD
amplitude. The offline signal processing paradigms resulted in
classification accuracies of 73.55% (PSD), 71.96% (DWT) and
57.13% (AR). The classification accuracies significantly increased
with increasing percentage of MVC. The pseudo-online paradigm
resulted in a mean classification accuracy of 51.38%.
Conclusions: The EEG-based BCI shows potential for enhancing
the functional recovery of patients with motor disorders. The find-
ings demonstrate that feature extraction methods PSD and DWT
could effectively distinguish between periods of rest and activity in
motor execution data. Nevertheless, for the intended application,
including real-time processing based on single trial motor imagery
data, BCI performance should be improved. Future research
should focus on motor imagery EEG data encompassing motor
imagery training and feedback on motor imagery performance.

Keywords— AR, BCI, DWT, Feature extraction, Motor imagery,
PSD, Sensorimotor rhythm, Stretch reflex

I. INTRODUCTION

Brain-computer interfaces (BCIs) have emerged as a product
of developments in neuroscience and technology. The BCI
provides a direct communication channel between the human
brain and external devices. By detecting and interpreting the

electrical potentials of the brain with the use of electroen-
cephalography (EEG), BCIs can translate motor intentions of
the user into commands that can be used to control an external
device. BCIs make use of sensory motor rhythms (SMRs) to
detect motor intention. SMRs are oscillatory events in EEG sig-
nals that arise from motor cortical brain areas associated with
initiation, preparation, control and execution of the intended
movement [1]. Motor preparation and execution reduce the mu
oscillation (8-13 Hz) amplitude and beta oscillation (14-30 Hz)
amplitude over the sensorimotor cortex, a phenomenon referred
to as event-related desynchronization (ERD) [2]. As motor
execution ends, the SMR increases in amplitude; a phenomenon
referred to as event-related synchronization (ERS).

These ERD and ERS phenomena are also observed during
motor imagery [3]. The neural activity in the sensorimotor
cortex resulting from motor imagery is spatiotemporally similar
to the neural activity resulting from motor execution. Motor
imagery involves the imagination of the movement of a body
part without carrying out physical output. There exist two
types of motor imagery; visual motor imagery (VMI) and
kinesthetic motor imagery (KMI) [4]. VMI involves imaging
what the movement looks like. Individuals visualize themselves
performing a specific motor task, thereby imaging movement
details such as the trajectory and speed. While KMI involves
imaging what the movement feels like, such as feeling the
movement of muscles and joints involved in the movement.
Several studies have demonstrated that KMI, and not VMI,
modulates corticomotor excitability [5, 6]. KMI occurs in the
sensorimotor area of the brain whereas VMI does not show a
clear spatial pattern [7].

As BCIs operate on motor imagery, they could offer a
non-invasive and non-pharmacological treatment method for
individuals with neuromuscular disorders. An example of a
neuromuscular disorder is spasticity which is related to hyper-
reflexia. The human stretch reflex is an important mechanism
in the regulation of maintaining posture and muscle tone as the
reflex provides a response 20-50 ms after muscle stretch onset
[8]. When a mechanical stretch is applied to a muscle, two
responses are typically observed in the electromyogram (EMG);
the short latency M1 stretch response and the long latency M2
stretch response [9, 10]. M1 involves monosynaptic activation
of alpha motor neurons. The activation leads to contraction of
extrafusal muscle fibers to immediately counteract the stretch.
M2 is polysynaptic as it involves both alpha motor neurons and
interneurons. M2 attributes to sustained and prolonged muscle
response that helps maintain muscle tone. In healthy humans,
the magnitude of the neural reflex response to stretch is sug-
gested to increase with the contraction level of the muscle until
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25% of maximum voluntary contraction (MVC) after which
the magnitude saturates [11, 12]. This automatic gain-scaling,
where the same muscle stretch will elicit larger responses when
muscle activity before the perturbation is increased, is essential
[13]. Without this mechanism, the reflex response would be
excessive during low contraction levels and insufficient during
high contraction levels. It is believed that a disturbance in the
stretch reflex may result in spasticity [14, 15]. Spasticity is
a motor disorder characterized by exaggerated tendon jerks,
muscle hypertonia and velocity-dependent resistance of the
muscle to stretch leading to spastic movement disorders includ-
ing increased reflex sizes. BCI-based SMR training might help
to improve motor function recovery in people suffering from
motor disorders by guiding activity-dependent brain plasticity,
which is the ability of the brain to reorganize and adapt its
structure in response to learning and experience [16, 17].

Understanding the relation between the SMR and the stretch
reflex size across multiple percentages of MVC becomes
paramount in designing effective BCIs for enhanced control.
Previous studies demonstrate that the percentage of MVC
influences the SMR amplitude [18, 19, 20, 21, 22]. The stud-
ies report that the SMR amplitude decreases with increasing
percentage of MVC. Moreover, literature demonstrates that the
SMR amplitude in the mu and beta frequency range is inversely
correlated with cortical activation [23]. High SMR, correspond-
ing to ERS, reflects synchronization of the brain rhythm which
is associated with cortical inhibition. Conversely, low SMR,
corresponding to ERD, is associated with cortical activation.
When the SMR amplitude decreases, cortical drive to spinal
motoneurons increases [24, 25]. Therefore, it is hypothesized
that an increased cortical drive to motoneurons by a demanding
motor task results in a smaller reflex size. In line with this
hypothesis, previous studies confirm that the H-reflex is larger
during rest compared to motor imagery trials [26, 27]. However,
the correlation between SMR amplitude and mechanical stretch
reflex size remains unclear.

To fill this knowledge gap and establish a robust control
signal for EEG-based brain-computer interfaces, this study
will perform a two-fold investigation. First (Experiment 1),
the study will explore the potential of SMR modulation to
guide stretch reflex activity by examining the impact of SMR
amplitude on the stretch reflex size. The correlation between
SMR, expressed in ERD amplitude, and the mechanical stretch
reflex size in the flexor carpi radialis (FCR) across four muscle
pre-loads consisting of 0%, 5%, 25% and 40% of MVC during
motor execution and motor imagery trials will be investigated.
Hypothesized is that an increase in percentage of MVC will
result in an increased ERD amplitude. Moreover, it is expected
that the stretch reflex size in motor execution trials will increase
until 25% of MVC after which the stretch reflex size will
saturate. In addition, it is hypothesized that an increase in the
ERD amplitude will correspond to a reduction in the stretch
reflex size in motor imagery trials. Second (Experiment 2),
an offline BCI with three feature extraction methods will be
implemented for offline detection of SMR amplitude modula-
tions. The ability of three offline signal processing paradigms
in distinguishing between periods of rest and activity during
motor execution and motor imagery will be investigated. Signal
processing of EEG data consists of three steps; pre-processing,

feature extraction and classification. Pre-processing involved
band-pass filtering and application of a large Laplacian filter.
Feature extraction methods autoregressive modelling (AR),
power spectral density (PSD) and discrete wavelet transform
(DWT) were compared to one another. Linear discriminant
analysis (LDA) was used as classifier. DWT takes into account
both the spectral and temporal dynamics of the signal, whereas
PSD exclusively focuses on spectral information and AR solely
on temporal information. Therefore, it is hypothesized that
feature extraction method DWT will outperform PSD and AR
based on classification accuracy. In the end, a pseudo-online
environment was simulated to process motor imagery EEG data
in real-time to show its performance in the intended application
domain including signal processing on a single trial and a
continuous data stream.

The paper is organized as follows. Section II describes the
methods. Section III presents the obtained results which will
be discussed in Section IV. The conclusion can be found in
Section V.

II. METHODS

A. Subjects

Six healthy subjects were recruited for the experiments
(Experiment 1: mean age 23.3 ± 0.5 y, 3 females; Experiment
2: mean age 22.0 ± 1.4 y, 3 females). Two subjects participated
in both experiments. All subjects were right handed. Visual or
neuromuscular impairment as well as recent injuries to the right
hand or arm were specified as exclusion criteria. The subjects
had no prior experience with BCIs. Prior to the experimental
procedures the subjects gave informed consent. The experi-
ments were conducted in accordance with the Declaration of
Helsinki.

B. Experimental setup

Mechanical stretch perturbations were applied to the wrist by
the wrist manipulator (Figure 1.a) [28]. The alignment between
the axis of rotation of the wrist manipulator and the axis of
rotation of the wrist ensured that a rotation of the manipulator
by a certain amount of degrees resulted in an identical angular
displacement of the wrist. Ramp and hold perturbations were
given through the handle of the manipulator.

The EEG of the brain, the EMG of the FCR and extensor
carpi radialis (ECR) and the velocity of the manipulator were
recorded and sampled at 1024 Hz on a TMSi Refa Amplifier
(TMSi, Odenzaal, The Netherlands). The EEG was recorded
with 64 electrodes of a 128-electrode waveguard cap (Ant
Neuro, Hengelo, The Netherlands). Electrodes were attached
to the scalp according to the 10-10 international system. The
ground electrode was fixed to the right mastoid. The EMG was
recorded with four surface electrodes (CardinalHealth, Kendall
30 x 24 mm ECG electrodes H124SG). The bellies of the FCR
and ECR were identified by the researcher and marked, after
which the skin was cleaned with an abrasive gel and alcohol.
The positive electrode was placed on the muscle belly and the
negative electrode was placed near the upper insertion of the
muscle. The EMG signals were band-pass filtered (20-450 Hz)
prior to sampling.
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(a)

(b)

(c)

Figure 1. Experimental setup for Experiment 1 and Experiment 2. (a) Experimental setup of wrist manipulator. The displacement of the manipulator induced a
mechanical stretch to the flexor carpi radialis (FCR). The mechanical stretch was applied in extension direction. The subject was asked to maintain a constant
percentage of maximum voluntary contraction (MVC) by filling the red rectangular until the green line. The red block could be filled with a white color by
applying force to the handle of the wrist manipulator. (b) Computer screen experiment setup. (b.1) Target appears and subject moves to target; (b.2) Target
position must be held for a certain amount of time; (b.3) Rest between motor execution and motor imagery; (b.4) Subject imagines percentage of MVC without
applying force to the wrist manipulator. (b.A) 40% MVC target; (b.B) 25% MVC target; (b.C) 5% MVC target; (b.D) 0% MVC target. (c.I) Movement paradigm
during Experiment 1. (c.II) Movement paradigm during Experiment 2.

C. Experimental protocol

In both Experiment 1 and Experiment 2, the subjects were
seated in a chair holding the handle of the manipulator with
their right hand (Figure 1.a). The lower arm was fixed in an arm
support to ensure alignment between the axis of rotation of the
wrist and the manipulator. The subjects were positioned in front
of a computer screen (Dell 19-inch LCD Monitor) on which a
cursor and target were presented. An MVC measurement was
performed before the start of Experiment 1 and Experiment 2.
In the MVC measurement, the MVC value was determined by
performing three maximum wrist flexions within a 5-second
timeframe. Experiment 1 and Experiment 2 involved rest and
activity tasks at multiple percentages of MVC. The subjects
were instructed to perform unilateral wrist flexion by moving
the cursor to a green target corresponding to either 0%, 5%,
25% or 40% of MVC starting from the wrist in its neutral posi-
tion at 0° flexion (Figure 1.b). Mechanical stretch perturbations
were applied during each trial. All perturbations were applied
in extension direction. The perturbations were executed with an
angular velocity of 2.0 rad/s and a ramp amplitude of 0.08 rad,
implemented over a duration of 40 ms. No feedback of EMG or
EEG data was provided to either the subject or the researcher.
In the end, a second MVC measurement was conducted to
assess whether the subject had experienced fatigue during
the experiment. Muscle and mental fatigue were minimized
by allowing sufficient rest between adjacent trials. To avoid
anticipatory response, trials were pseudo-randomized and the
mechanical stretch perturbations were applied at different time-
intervals.

C.1. Experiment 1: Effect of MVC percentage on stretch reflex
size and SMR amplitude

Experiment 1 was designed to determine the effect of 0%,
5%, 25% and 40% of MVC on the 1) SMR, expressed in ERD
amplitude indicating a decrease in power of the EEG signal, and
2) stretch reflex size of the short latency M1 and the medium
latency M2 reflex response in the FCR. The stretch perturbation
was repeated 20 times for each of the four MVC conditions
(0%, 5%, 25%, 40% of MVC), resulting in a total number of
80 trials. Step 1 and 2 of Figure 1.b were executed during
Experiment 1. Experiment 1 did not contain motor imagery
trials. The interval between the start of the trial and the onset
of the perturbation was at randomized time between 5.0 and
8.0 s (Figure 1.c.I).

C.2. Experiment 2: Offline detection of SMR amplitude modu-
lations by three signal processing paradigms

Experiment 2 was conducted to investigate the robustness
of three signal processing paradigms. The signal processing
paradigms should detect SMR amplitude modulations, which
implies that the paradigms should be able to distinguish be-
tween (imaginary) activity and rest trials. Steps 1, 2, 3 and
4 from Figure 1.b were executed during Experiment 2. In
contrast to motor execution trials (Figure 1.b.2), subjects were
instructed to imagine the percentage of MVC on the FCR
without performing wrist flexion during motor imagery trials
(Figure 1.b.4). The subjects were asked to maintain the cursor
at the initial position rather than moving the cursor towards
the green target. No feedback on motor imagery performance
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was given during motor imagery trials. The subjects used the
preceding motor execution as a reference to the KMI. The
stretch perturbation was repeated 30 times for each MVC con-
dition and in both execution and imagery conditions, resulting
in a total number of 240 trials. The movement paradigm is
illustrated in Figure 1.c.II. The interval between the start of
the trial and the onset of the perturbation was of randomized
duration between 8 and 11 s for the motor execution trial
and between 22 and 25 s for the motor imagery trial. To
assess motor imagery ability, five visual and kinesthetic mental
exercises of the Kinesthetic and Visual Imagery Questionnaire
(KVIQ) [29] were performed before the start of Experiment 2.
The experimenter provided the subject with imagery training
and assessment instructions in accordance with the assessment
procedures corresponding to KVIQ. The subject should indicate
the intensity of the imagery sensation ranging from 1 (”no
sensation”) to 5 (”as intense as executing the action”).

D. Data analysis

The EMG data of both Experiment 1 and Experiment 2
underwent identical processing (Section II-D.1). The offline
EEG signal processing of Experiment 1 and Experiment 2 is de-
scribed in Section II-D.2. Additionally, the data of Experiment
2 was used for a pseudo-online BCI simulation (Section II-
D.3). Further analysis involved calculation of MVC value and
KVIQ scores. The MVC value was calculated as the maximum
force applied during the MVC measurement. The vividness
of kinesthetic motor imagery was evaluated by summing the
KVIQ scores for the five KMI questions.

D.1. EMG data processing

EMG data was processed using Matlab R2021a (The Math-
Works, Inc., Natick, Massachusetts, U.S.A.) and EEGLAB
2023.0 [30]. The recorded signals (EMG and velocity of
the wrist manipulator) were separated from the original data,
starting 200 ms prior to and ending 150 ms after the onset of
each stretch perturbation. The separated EMG segments were
rectified and low-pass filtered at 80 Hz (recursive third order
Butterworth filter) [31]. Each segment was normalized by the
mean EMG data of the 200 ms prior to the perturbation onset of
a fixed trial at 0% MVC. Segments in which the mean position
of the cursor, representing the amount of muscle force, prior
to onset of the perturbation deviated more than 10% of the
target were rejected. Furthermore, if EMG activity was detected
during 50% or more in the motor imagery time window, the
EEG was contaminated and therefore excluded. The normal-
ized segments were averaged over 20 or 30 repetitions for
Experiment 1 and Experiment 2, respectively. Two metrics were
derived from the rectified and normalized EMG of the FCR
to quantify the M1 and M2 responses. The magnitude of the
M1 response, AM1, was defined as the mean amplitude of the
normalized EMG in the time window between 20 and 50 ms
after stretch onset. The magnitude of the M2 response, AM2,
was determined as the mean value of the normalized EMG
between 55 and 100 ms after stretch onset.

D.2. Offline EEG data processing

EEG data was processed offline using Matlab R2021a (The
MathWorks, Inc., Natick, Massachusetts, U.S.A.) and EEGLAB
2023.0 [30]. The SMR modulation was computed as described

in Section D-II.2.i and Section D-II.2.ii. The data of Experiment
2 was processed with three signal processing paradigms. The
offline signal processing pipeline is illustrated in Figure 2.
The signal processing paradigms consisted of three steps; pre-
processing (Section II-D.2.i), feature extraction (Section D-
II.2.iii) and classification (Section II-D.2.iv). The three feature
extraction methods included; PSD, AR and DWT. The pre-
processing and classification methods were identical for the
three signal processing paradigms.

D.2.i. Pre-processing

The aim of pre-processing was to enhance the signal to
noise ratio by removing artifacts from the raw EEG data and
reduce the effects of noise, thereby increasing the accuracy and
robustness of the BCI system. As the BCI is interested in mu
(8-13 Hz) and beta (14-30 Hz) rhythms, the frequency range of
1 to 40 Hz was analyzed. Pre-processing of the data involved
band-pass and notch filtering. A low-pass filter (338th order
finite impulse response (FIR) filter) of 40 Hz was applied to the
raw EEG data, followed by downsampling to 256 Hz, a high-
pass filter (846th order FIR filter) of 1 Hz and a notch filter
(846th order band-pass 49-51 Hz FIR filter) at 50 Hz. Epochs
were extracted starting from 3000 ms (data from Experiment
1) or 6000 ms (data from Experiment 2) before until the onset
of each stretch perturbation. Electrode C3, positioned over the
left sensorimotor cortex, was selected for further processing.
The channel selection was based on the fact that SMR in the
hand area of sensorimotor cortices decreases during movement
planning and execution [22].

D.2.ii. ERD calculation

To detect SMR modulation between rest and multiple activity
conditions, the ERD amplitude over the C3 electrode was
computed. ERD calculation included data from Experiment 1
and Experiment 2. In addition to the pre-processing in Section
II-D.2.i, common average reference (CAR) was applied as
reference. The ERD was quantified by a proposed method
in a previous study [2]. The calculation of ERD involved
five steps: (1) band-pass filtering (subject-specific 3Hz wide
frequency band, calculation see Section II-D.3.ii) of each trial,
(2) squaring of amplitude samples to obtain power samples, (3)
averaging of power samples over all trials, (4) averaging over
time samples, (5) calculation of ERD which is described as
power decrease percentage of a target period (A) to a reference
period (R), (Equation 1). The target period was defined as 3000
ms (data from Experiment 1) or 6000 ms (data from Experiment
2) before until the onset of each stretch perturbation. The
reference period was defined as the 3000 or 6000 ms before
stretch onset during the 0% MVC condition.

ERD =
A−R

R
· 100% (1)

D.2.iii. Feature extraction

The offline paradigms PSD, AR and DWT all used the same
pre-processing pipeline. Additional pre-processing to Section
II-D.2.i was applied before the features were extracted. A
large Laplacian filter was applied to channel C3, where the
mean activity of a set of next-nearest-neighbor electrodes was
subtracted from the activity of electrode C3 resulting in a
filtered channel C3′ (Equation 2). The next-nearest-neighbor
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Figure 2. Three signal processing paradigms. The processing pipeline started with the raw electroencephalogram (EEG) signal. Pre-processing involved low-pass
filtering, downsampling, high-pass filtering, notch filtering, extraction of epochs and large Laplacian filtering. Feature extraction methods included autoregressive
modelling (AR), power spectral density (PSD), or discrete wavelet transform (DWT). The classifier employed was linear discriminant analysis (LDA) and labeled
the previous obtained feature to either rest or activity. The output vector included information about the predicted state of the feature; either rest (0% of maximum
voluntary contraction (MVC)) or activity (5%, 25% or 40% of MVC).

electrodes included electrodes F3, Cz, P3 and T7. A large
Laplacian was more suited compared to a small Laplacian.
A small Laplacian attenuates activity from nearest neighbor
electrodes and therefore does not match the topographical
extent of the control signal [32]. Furthermore, large Laplacian
was chosen as spatial filter, because it outperforms CAR and
ear reference based on spatial resolution and noise reduction
thereby improving the accuracy of the BCI [32, 33].

C3′ = C3− F3 + Cz + P3 + T7

4
(2)

The aim of feature extraction was to extract features from the
pre-processed EEG data which provided distinct properties of
the signal to form a set of features on which classification could
be carried out. The three feature extraction methods employed
distinct from one another in the way they estimated the power
spectrum of the recorded EEG signal. The non-parametric PSD
is a frequency-based feature extraction method and used a
Fourier transform to convert the EEG signal from time domain
to frequency domain. The parametric AR analysis identified
the temporal dynamics of the EEG signal by estimating au-
toregressive coefficients, which could then be converted to the
frequency domain. DWT is a multi-resolution approach that
captured both time and frequency domain information through
wavelet decomposition.

1) PSD paradigm: First, an PSD algorithm was employed
to estimate the mu and beta amplitude modulations. The power
spectrum estimation calculated by the PSD paradigm was based
on Welch averaging instead of Fast Fourier Transform (FFT) as
FFT is based on linear and stationary system assumption while
the brain delivers nonlinear and nonstationary signals. Welch
averaging accounts for the nonstationarity by dividing the
signal in multiple segments. It computes the spectral estimation
for each segment using FFT and the results are averaged to
obtain a smoother estimate of the PSD compared to computing
the FFT of the whole signal at once.

The PSD of each epoch was calculated with the use of
Welch averaging (pWelch; window length 256 samples, overlap
25% of samples). The power in a 3 Hz wide frequency band
was extracted as feature. In a previous study it was demon-
strated that selecting subject-specific frequency bands over
fixed standard bands resulted in higher ERD detection success
rate [2]. The center of the frequency band was determined
with the coefficient of determination, R2. The coefficient of

determination was calculated as the squared Pearson’s corre-
lation coefficient (Equation 3), where X(f) is a vector with
measured EEG powers during rest and activity and Y (f) is
a vector with arbitrary condition labels (1, 2). Vector X(f)
contains the EEG power obtained from motor execution trials
(90 trials; 5%, 25% and 40% of MVC times 30 repetitions)
and the EEG power obtained from the rest trials (30 trials; 0%
MVC times 30 repetitions) for frequency f . The correlation
coefficient was determined between the conditions rest and
activity over a frequency range of 0-40 Hz. A high value for
R2 at a particular frequency indicated that at this frequency the
power of the EEG signal was most distinguishable between rest
and activity. The frequency that corresponded to the maximum
coefficient of determination was chosen as the subject-specific
target frequency and used as the center of the 3 Hz wide
frequency band. The features were calculated as the sum of
amplitudes, by taking the square root of the power, in the
subject-specific 3 Hz wide frequency band.

R2(f) =
cov(X,Y )2

var(X)var(Y )
(3)

2) AR paradigm: Second, an AR model fitted with the Burg
method was used as the algorithm to estimate the mu and beta
amplitude modulations [34], similar as in a previous study [26].
Autoregressive spectral estimation was employed to estimate
the power spectrum P̂ (ejω) as in Equation 4, where ap(k)
represents the estimated filter coefficients and p is the AR
model order [35]. The model order refers to the number of prior
predictions used in the model. Model order 16 was chosen as
the model order, based on a literature that showed that higher
model orders produced increased performance and indepen-
dence in each condition [36]. The power was normalized with
respect to the average power in 8-30 Hz frequency band during
0% MVC trials, similar to a previous study [27]. EEG features
consisted of amplitudes within a 3 Hz wide frequency band.
The 3 Hz wide frequency band of interest, which showed the
most significant SMR modulation over the mu or beta band was
determined with the coefficient of determination (Equation 3).
The features were obtained by taking the square root of the sum
of power in the 3 Hz wide subject-specific frequency band to
obtain the amplitude in the band.

P̂ (ejω) =
1

| 1−
∑p

k=1 ap(k)e
−jkω |2

(4)
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Table I. Table of wavelet coefficients (approximation coefficients Ai and
detail coefficients Di) with corresponding frequency bands and EEG rhythms
at different decomposition levels for Daubechies wavelet order 4 (db4) and
sampling frequency of 256 Hz.

Wavelet Coefficient Frequency Band [Hz] EEG Rhythm

D1 64-128 γ

D2 32-64 γ

D3 16-32 β

D4 8-16 µ

D5 4-8 θ

A5 0-4 δ

3) DWT paradigm: Third, an DWT algorithm was employed
to estimate the mu and beta amplitude modulations. Modula-
tions were computed from wavelet coefficients corresponding
to mu- and beta rhythm. DWT is a time-frequency feature
extraction method where the signal is decomposed in a number
of sub-bands at different scales depending on the number of de-
composition levels. Each detail scale of the DWT corresponded
to a frequency band [fm/2 : fm], where fm was determined
by the equation fm = fs/2

l + 1. Here, fs represented the
sampling frequency and l represented the decomposition level.
Wavelet decomposition of level 5 (l = 5) was applied to
each trial. There exist several wavelet bases including Haar,
Biorhogonal, Daubechies, Symlets and Coiflet. Daubechies 4
(db4) was chosen as wavelet basis, because it has been pointed
out that db4 is most suitable for identifying changes in EEG
signals [37, 38]. Moreover, when considering computational
efficiency, the db4 wavelet stands out as the most suitable
option among the available wavelet bases [39, 40]. Wavelet
coefficients and corresponding sub-frequency bands obtained
are displayed in Table I, where Ai represents the approximation
coefficient and Di represents the detail coefficient. The mu and
beta rhythms required to identify motor execution and imagery
from EEG signals are in the decomposition levels D4 and D3,
respectively. The statistical features derived from these sub-
bands alone were applied to the LDA classifier to identify SMR
modulations. The feature vector consisted of the average power
of the coefficients and standard deviation of the coefficients
in every sub-band. The coefficients represented the temporal
and spectral characteristics of the EEG signals in the sensori-
motor regions. The average power of the wavelet coefficients
represented the frequency distribution of the signal, while the
standard deviation of the wavelet coefficient represented the
amount of change in frequency distribution. The rows of the
feature matrix were normalized using z-score normalization to
ensure that each row had a mean value of zero and a standard
deviation of one.

D.2.iv. Classification

LDA, also called Fisher discriminant analysis, was employed
as classifier to classify the obtained features as rest (0% MVC)
or activity (5%, 25%, 40% MVC) [41, 42]. The aim was
to discriminate between (imaginary) activity and rest. Linear
classifiers are generally more robust and need less computation
time and memory compared to nonlinear classifiers such as
neural networks and support vector machines. This is due to the

Figure 3. Illustration of simulation of pseudo-online electroencephalogram
(EEG) signal processing. The data buffer contained 500 ms of EEG data.
Every 100 ms the buffer moved 100 ms forward and calculated the feature
value based on the previous 500 ms.

fact that linear classifiers have less parameters to tune and are
therefore less prone to overfitting. For each subject separately,
the dataset was divided into test and training subsets. For the
analysis, the first 40% of the dataset was used as training data.
The remaining 60% of the dataset was used as testing data
for the offline analysis. Only the test dataset was analyzed to
evaluate the performance of the paradigm. The performance
of the offline EEG signal processing paradigms was evaluated
with the use of confusion matrices. The confusion matrices
contained true positive (TP ), true negative (TN ), false positive
(FP ) and false negative (FN ) values. Classification accuracy
(ACC, Equation 5) was calculated from the values of the con-
fusion matrices as performance metric for the offline paradigm.
Classification accuracy of or above 70% is considered as the
lower limit for reliable communication in BCIs [43].

ACC =
TP + TN

TP + FP + FN + TN
· 100% (5)

D.3. Pseudo-online EEG data processing

A pseudo-online signal processing paradigm was build in
Matlab R2021a (The MathWorks, Inc., Natick, Massachusetts,
U.S.A.) to simulate real-time procedure in which features were
extracted using continuous data to detect mu and beta amplitude
modulations. The simulation of an online BCI with real-time
constraints was conducted to demonstrate the performance of
the paradigm in its intended application. To induce neuroplas-
ticity, BCIs must detect movement intentions from continuous
EEG signals and instantaneously generate real-time feedback.
Real-time feedback is crucial as users receive information about
the outcomes of their neural signals in real time, allowing
them to make rapid adjustments and corrections leading to
more efficient control of the BCI. A real-time robust BCI
system should be able to track time, frequency and spatial
nonstationarities of the EEG signal adaptively.

The feature extraction method that resulted in the highest
classification accuracy in offline EEG signal processing was
chosen as feature extraction method in the pseudo-online
paradigm. The motor imagery EEG data from subject D, E and
F from Experiment 2 was used for pseudo-online analysis. The
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motor execution trials were removed, because in the intended
application the BCI must operate on imagery data alone as
patients may not be able to perform motor execution due
to their disease. In contrast to offline processing, none of
the motor imagery trials were excluded in the pseudo-online
paradigm. The dataset consisted of 6 + x s periods of hand
motor imagery under four MVC conditions (0%, 5%, 25%,
40%) and 5 s periods of rest. x is the time period between t = 22
s and the onset of the reflex (Figure 1.c). Each dataset contained
30 trials for each MVC condition. Two classes were defined:
periods of motor imagery activity (5%, 25%, 40% MVC) and
periods of rest (0% MVC and the 5 s rest period).

The pseudo-online pipeline consisted of two components;
implementation of a buffer and SMR amplitude modulation
detection. The EEG data was incrementally generated, in
contrast to offline evaluations where the entire EEG dataset
was acquired at once. Data preparation included setting up a
real-time data streaming pipeline to continuously receive EEG
data. A buffer was implemented to hold the incoming data and
process the data in chunks. The pre-processing of the buffered
data must not exceed the buffer update speed, otherwise real-
time operation became impossible. Consequently, the length of
the data buffer becomes a trade-off between filtering the signal
uniformly and processing the signal within the time constraints
of the buffer update speed. A data buffer that is too short fails
to capture sufficient data to represent the entire trace. On the
other hand, a long data buffer would increase computational
complexity, resulting in a pre-processing time that exceeds the
buffer update speed. After empirical evaluation, the buffer size
was set to 500 ms. The data in the buffer was incrementally
updated at the tail every 100 ms as the buffer moved forward
(Figure 3). Delay in visual feedback must be below 200 ms as
delays in visual feedback have been reported to degrade motor
learning [44, 45]. Consequently, computational time may not
exceed 200 ms. Therefore, every 100 ms, the EEG data from
the previous 500 ms was processed.

The feature was calculated every 100 ms using 500 ms of
data. The pre-processing was identical to pre-processing in
offline environment as described in Section II-D.2.i. In addition,
a large Laplacian filter on electrode C3 was applied on the
buffered data (Equation 2). Features were extracted using PSD
with the use of Welch averaging (pWelch; window length 256
samples, overlap 25% of samples) in the subject-specific 3 Hz
wide frequency band. To obtain a control signal with zero mean
and unit variance, the data was normalized by subtracting the
mean of the previous 3 s and division by the standard deviation.

To investigate the performance of the pseudo-online
paradigm, a binary threshold was implemented. The threshold
was implemented offline after the pseudo-online processing.
The predetermined threshold decided whether the feature rep-
resented rest or motor imagery activity. The threshold was de-
termined by calculating the average of the power during rest in
the subject-specific frequency band. The threshold was defined
as threshold = 0.8 · PSDrest. The real-time binary detection
results were compared with the true states to calculate the
performance of the real-time EEG signal processing paradigm.
The performance of the real-time processing paradigm was
evaluated with the use of a confusion matrix from which
classification accuracy ACC (Equation 5), precision (Positive

Predictive Value (PPV ), Equation 6) and sensitivity (True
Positive Rate (TPR), Equation 7) were calculated.

PPV =
TP

TP + FP
· 100% (6)

TPR =
TP

FN + TP
· 100% (7)

E. Statistical analysis

Statistical analysis was conducted with IBM SPSS (Sta-
tistical Package for the Social Sciences) Statistics version
28.0.1.1. All data was normally distributed (by Shapiro-Wilk
test, p > 0.05) and had equal variance (Levene’s test, p >
0.05), therefore parametric statistical methods were utilized.
The effects of MVC percentages on the stretch reflex size
amplitude AM1 during motor imagery and motor execution
trials were tested with a repeated measures analysis of variance
(ANOVA). The analysis was repeated for AM2 stretch reflex
size amplitudes. To determine if the stretch reflex size during
motor imagery trials could be attributed to SMR control, the
background EMG level should not be significant between the
four percentages of MVC. One-way ANOVA was used as
statistical measure for this task. The statistical significance
of the ERD values across the four percentages of MVC was
evaluated with repeated measures ANOVA for motor execution
as well as motor imagery trials. To determine if a subject
had experienced fatigue, a paired samples t-test was employed
to determine the statistical significance of the MVC value
before and after the experiment. A Pearson correlation analysis
was performed to examine the correlation between the stretch
reflex size amplitude and the SMR amplitude in the frequency
bands. Another repeated measures ANOVA was employed to
evaluate the statistical significance of classification accuracies
obtained through different offline feature extraction methods,
across three experimental conditions and under motor execu-
tion or motor imagery condition. Post hoc comparisons were
performed using Bonferroni. A Pearson correlation analysis,
between mean classification accuracy value reached by AR,
PSD, DWT and corresponding KVIQ-10 KMI score, was
applied to investigate whether correlation exists between offline
classification accuracy for motor imagery and the reported KMI
ability. For all tests, a significance level of α = 0.05 was used.

III. RESULTS

A total of 4% of the motor execution trials from Experiment
2 were rejected because the force prior to stretch onset deviated
more than 10% of the instructed MVC target. All motor
imagery trials were included as none of the trials showed more
than 50% EMG activity in the motor imagery time window.
The MVC value before the start of the experiment was not
higher compared to the MVC value after the experiment (p =
0.249).

A. Stretch reflex size related to percentage of MVC

For motor execution trials, background EMG levels did
significantly differ among the four percentages of MVC (p =
0.004). Figures 4.a and 4.b show the normalized magnitudes
of M1 and M2 against the four MVC conditions, respectively.
Both AM1 and AM2 significantly increased with larger per-
centage of MVC (p = 0.043, p = 0.017, respectively).
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For motor imagery trials, background EMG levels did not
differ among the four MVC conditions (p = 0.976). The
normalized magnitude of M1 and M2 against the MVC con-
ditions during motor imagery are illustrated in Figure 5. No
significant relation between stretch reflex sizes, AM1 and AM2,
and percentage of MVC was found (p = 0.387, p = 0.330,
respectively).

B. ERD amplitude related to percentage of MVC

Figure 6 shows the relative power, representing SMR modu-
lations including ERD and ERS, in channel C3 over a subject-
specific 3 Hz wide frequency band in the mu or beta rhythms
under the four MVC conditions during motor execution (subject
A-F) and motor imagery (subject D-F). The center of the 3
Hz wide frequency band was determined by the coefficient of
determination based on data of the PSD features. For subject
A the maximum coefficient of determination, R2

max, value was
0.012 found at f = 9.83 Hz. The target-frequency for subject B
and C was found at 9.50 Hz and 12.00 Hz, respectively. Subject
D had a maximum R2

max of 0.14 at a frequency of 12.83 Hz,
while subject E achieved R2

max of 0.34 at 14.67 Hz, and subject
F obtained R2

max of 0.33 at 11.83 Hz. For motor execution
tasks, all subjects showed an increase in ERD amplitude as
the MVC percentage increased (p < 0.001). Subject C showed
ERS instead of ERD between 25% and 40% of MVC compared
to 0% of MVC. The maximum ERD ranged between -10.69%
(subject B, 40% MVC) and -58.76% (subject E, 40% MVC).
The result of the motor imagery data was not significant (p =
0.273). All three subjects showed different SMR modulations
during motor imagery tasks.

C. Stretch reflex size related to SMR modulation

Stretch reflex sizes during motor execution trials significantly
increased with decreasing SMR amplitude. A statistically sig-
nificant correlation was found between AM1 reflex amplitude
and SMR amplitude (p = 0.012, R = -0.506). In addition,
a negative correlation was found between AM2 and SMR
amplitude (p = 0.009, R = -0.524). For motor imagery trials,
no significant correlation was found between SMR amplitude
and the stretch reflex sizes AM1 (p = 0.695) and AM2 (p =
0.295).

D. Performance of offline signal processing paradigms

The center of the 3 Hz wide frequency band was determined
by the coefficient of determination for PSD and AR separately.
Coefficients of determination and corresponding frequencies
are displayed in Table II. Coefficients of determination and
corresponding frequency for AR include an R2

max of 0.15 at
13.00 Hz for subject D. Subject E reached an R2

max value of
0.28 at a frequency of 13.00 Hz and subject F obtained an
R2

max value of 0.0088 at 12.00 Hz. The classification accuracies
found, for the three subjects and AR, PSD and DWT signal
processing paradigm, between 0%-5%, 0%-25% and 0%-40%
MVC are displayed in Table III. The classification accuracy
was significant across MVC conditions (p = 0.010). Pairwise
comparisons using Bonferroni showed that the classification
accuracy of condition 0-40% MVC was higher compared
to condition 0-5% (p = 0.026). The classification accuracies
were not significantly different between motor execution and

Table II. Table of coefficients of determination R2 and corresponding target
frequency f for each subject based on feature extraction methods power
spectral density (PSD) and autoregressive modelling (AR).

Subject D Subject E Subject F

Method R2 f [Hz] R2 f [Hz] R2 f [Hz]

AR 0.15 13.00 0.28 13.00 0.0088 12.00

PSD 0.14 12.83 0.34 14.67 0.33 11.83

motor imagery conditions (p = 0.529). In addition, classifi-
cation accuracies were not significantly different between the
three feature extraction methods (p = 0.409). The PSD signal
processing paradigm resulted in a classification accuracy for
motor execution trials of 73.55%, followed by DWT (71.96%)
and AR (57.13%). For motor imagery trials, the PSD signal
processing paradigm resulted in a classification accuracy of
63.31%, followed by AR (60.07%) and DWT (59.54%).

Table III. Table of classification accuracies for three offline signal processing
paradigms during motor execution and motor imagery trials for MVC condi-
tions 0% - 5%, 0% - 25% and 0% - 40%.
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D 0-5 52.78 69.44 52.78 75.00 44.44 52.78

0-25 63.89 75.00 66.67 66.67 69.44 63.89

0-40 69.44 83.33 58.33 80.56 55.56 63.89

E 0-5 63.89 55.56 63.89 52.78 50.00 47.22

0-25 38.89 52.78 75.00 50.00 86.11 61.11

0-40 63.89 44.44 86.11 55.56 91.67 66.67

F 0-5 60.00 52.94 77.14 55.88 74.29 41.18

0-25 47.06 57.14 94.12 65.71 88.24 71.43

0-40 54.55 50.00 87.88 67.65 87.88 67.65

Group 0-5 58.89
± 4.60

59.31
± 7.24

64.60
± 9.96

61.22
± 9.83

56.24
±12.96

47.06
± 4.74

0-25 49.88
±10.32

61.64
± 9.61

78.60
±11.49

60.79
± 7.64

81.26
±8.41

65.48
± 4.36

0-40 62.63
± 6.14

59.26
±17.17

77.44
±13.53

67.92
±10.21

78.37
±16.20

66.67
± 1.59

mean 57.13 60.07 73.55 63.31 71.96 59.54

E. Correlation between KVIQ score and offline classification
accuracy

The KVIQ scores of subjects D, E and F are displayed
in Table IV. The mean KVIQ-10 score was 35.7 out of 50.
The mean KVIQ-10 score for KMI was 15.3 out of 25. The
mean KVIQ-score for VMI was 20.3 out of 25. For the PSD
paradigm, the classification accuracy significantly increased
with increasing KMI score (R = 0.998, p = 0.040). For AR
and DWT, no significant correlation was found between KVIQ-
score and classification accuracies obtained (p = 0.225, p =
0.355, respectively).
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(a) (b)

Figure 4. Stretch reflex sizes of flexor carpi radialis (FCR) across four percentages of maximum voluntary contraction (MVC) during motor execution trials.
(a) Normalized FCR AM1 stretch reflex size during 0% (yellow), 5% (pink), 25% (blue) and 40% (green) MVC in subjects (A-F) and the group average. (b)
Normalized FCR AM2 stretch reflex size during 0% (yellow), 5% (pink), 25% (blue) and 40% (green) MVC in subjects (A-F) and the group average.

(a) (b)

Figure 5. Stretch reflex sizes of flexor carpi radialis (FCR) across four percentages of maximum voluntary contraction (MVC) during motor imagery trials. (a)
FCR AM1 stretch reflex size during 0% (yellow), 5% (pink), 25% (blue) and 40% (green) MVC in subjects (D-F) and the group average. (b) Normalized FCR
AM2 stretch reflex size during 0% (yellow), 5% (pink), 25% (blue) and 40% (green) MVC in subjects (D-F) and the group average.

Table IV. Table of KVIQ-scores for subjects D-F. The maximum achievable
score for KVIQ-10 = 25, for KVIQ-10 KMI = 25 and for KVIQ-10 VMI =
25.

Subject KVIQ-10
(total = 50)

KVIQ-10 KMI
(total = 25)

KVIQ-10 VMI
(total = 25)

D 40 19 21

E 33 12 21

F 34 15 19

Group 35.7 ± 3.1 15.3 ± 2.9 20.3 ± 0.9

F. Performance of pseudo-online signal processing paradigm

Based on the highest achieved classification accuracy during
motor imagery, PSD was chosen as paradigm for online sim-
ulation of real-time data processing. The computation time for
the calculation of one feature in a buffersize of 500 ms took
7.9 ms. The classification accuracy, precision and sensitivity are
displayed in Table V. The group classification accuracy (mean
± standard deviation) reached by the pseudo-online EEG signal

Table V. Table of online classification accuracies (ACC), positive predictive
values (PPV ) and true positive values (TPR) for subjects D-F and the group
average.

Subject ACC
[%]

PPV
[%]

TPR
[%]

D 53.84 48.25 81.72

E 48.57 42.59 51.70

F 51.73 46.89 80.88

Group 51.38 ± 1.88 45.91 ± 2.09 71.43 ± 12.09

processing paradigm was 51.38% ± 1.88. The average PPV
was 45.91% ± 2.09 and the average TPR found was 71.43% ±
12.09. Figure 7 illustrates the performance of the pseudo-online
paradigm. The predicted state represents the extracted feature.
Features above the threshold were classified as periods of rest,
while features below the threshold were classified as periods
of motor imagery activity.
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Figure 6. Event-related desynchronization (ERD) obtained from subject-specific 3 Hz wide frequency band across 0% (yellow), 5% (pink), 25% (blue) and 40%
(green) of maximum voluntary contraction (MVC) during motor execution (ME) trials (subjects A-F) and motor imagery (MI) trials (subjects D-F).

Figure 7. Chunk of simulation of pseudo-online EEG signal processing over
time. Above threshold represents the rest state. Below threshold represents
active state. The grey area indicates a time period in which the true condition
was rest.

IV. DISCUSSION

The aim of the study was to investigate the correlation
between mechanical stretch reflex size and SMR amplitude
to explore the potential of SMR modulation to guide stretch
reflex activity. The mechanical stretch reflex size and SMR,
expressed in ERD amplitude, across four muscle pre-loads
consisting of 0%, 5%, 25% and 40% of MVC applied to the
FCR for motor execution as well as motor imagery tasks were
investigated. Hypothesized was that the ERD amplitude and

stretch reflex size would increase with increasing percentages
of MVC in motor execution trials. The study demonstrated that
the stretch reflex sizes AM1 and AM2 increased with increasing
percentage of MVC on the FCR (p = 0.043 for AM1; p =
0.017 for AM2). Furthermore, it was found that an increased
MVC percentage resulted in an increase in ERD amplitude,
indicating a reduction in the power of the EEG signal (p <
0.001). The study demonstrated that the stretch reflex size
significantly increased as the ERD amplitude increased during
motor execution trials (p = 0.012, R = -0.506 for AM1; p =
0.009, R = -0.524 for AM2). Next to motor execution data,
motor imagery data was investigated. For motor imagery trials
it was hypothesized that an increase in ERD amplitude would
correspond to a reduction in the stretch reflex size. However,
no significant relation between the stretch reflex sizes and
percentages of MVC was found (p = 0.387 for AM1; p =
0.330 for AM2). Additionally, no significant relation was found
between MVC percentage and ERD amplitude (p = 0.273).
Therefore, no significant correlation was found between ERD
amplitude and stretch reflex sizes during motor imagery trials.
A main finding is that the hypotheses were confirmed in the
context of motor execution trials but did not hold true in case
of motor imagery trials.

In addition, three offline signal processing paradigms were
evaluated on their ability in distinguishing between periods of
rest and activity. Hypothesized was that the DWT paradigm
would yield the highest classification accuracy, indicating the
superior ability to extract signal features for distinguishing
between rest and activity. However, classification accuracies did
not differ significant between the feature extraction methods
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AR, PSD and DWT (p = 0.409). Moreover, no significant
distinction was found between performance of the paradigms
based on motor execution or based on motor imagery data
(p = 0.529). The study demonstrated that for motor execution
trials, the offline signal processing paradigm PSD resulted in a
classification accuracy of 73.55%, followed by DWT (71.96%)
and AR (57.13%). The PSD and DWT paradigms resulted
in classification accuracies above 70%, indicating that these
feature extraction methods could establish a reliable commu-
nication in BCIs. For motor imagery trials, the PSD paradigm
resulted in a classification accuracy of 63.31%, followed by
AR (60.07%) and DWT (59.54%). Additionally, it was found
that the classification accuracy increased as the percentage of
MVC increased (p = 0.010). To demonstrate the performance
of the PSD paradigm in its intended application, a pseudo-
online signal processing method was generated to simulate real-
time processing of the EEG signal. The pseudo-online signal
processing paradigm resulted in a mean classification accuracy
of 51.38% for a binary task.

A. Effect of MVC percentage on stretch reflex size

For motor execution trials, the baseline EMG levels exhibited
a significant variation across the four MVC conditions (p =
0.004), indicating that as the MVC percentage increased, the
subjects flexed their FCR muscle to a greater extent resulting
in increased muscle activity. The stretch reflex sizes, AM1 and
AM2, increased significantly as the MVC percentage increased
(Figure 4). This increase in reflex size when muscle activity
before the perturbation is higher is a result of automatic gain-
scaling. However, an increased stretch reflex size was expected
up to 25% MVC, but a saturation was expected between 25%
MVC and 40% MVC [11]. A previous study [46] investigated
the stretch reflex of the FCR under multiple MVC percentages
ranging from 5 - 95% in steps of 5%. The study showed
that the group average reflex gain increased until 31% of
MVC and then saturated. However, inspection of individual
data of the same study revealed that reflex gain increased
until 60% and then decreased at higher contraction levels. This
finding is in line with our study. The absence of saturation in
stretch reflex size in our study raises possibilities for increased
modulation potential. The absence of saturation in stretch reflex
size suggests that the neuromuscular system has not reached its
upper limit of responsiveness. This lack of saturation implies
that there may be room for further adaptation within the
neuromuscular system. Individuals may be capable of achieving
more significant levels of modulation in their muscle responses,
which could be valuable for rehabilitation. The potential for
increased modulation suggests that the neuromuscular system
may be more adaptable and responsive to training, allowing for
more effective rehabilitation outcomes.

For motor imagery trials, the baseline EMG levels did not
show a significant variation across the four MVC conditions (p
= 0.976) which indicates that the muscle activity was similar
across the four percentages of MVC. The difference in stretch
reflex size among the MVC conditions could therefore be
attributed to SMR control. However, the stretch reflex size did
not differ significant between percentages of MVC (Figure 5).
This result implies the SMR was not modulated or did not
affect the reflex size. As SMR was not modulated or did not
affect the reflex size, there could not be a significant effect

between stretch reflex sizes obtained from the four imaginary
MVC percentages, because in motor imagery trials the pre-load
of the muscle was constant across all MVC percentages.

There was considerable inter-subject variability in the reflex
gains. This is likely a result of different muscle fiber compo-
sitions. The amount of fast- and slow-twitch muscle fibers in
the FCR can vary due to genetic factors and training history.
Moreover, inter-subject variability may have resulted from
underestimation of the percentage of MVC. Fatigue did not play
a role as no fatigue was experienced during the experiment,
as indicated by the non-significant difference between MVC
values before and after the experiment.

B. Effect of MVC percentage on ERD amplitude

The hypothesis regarding the influence of MVC percentage
on the ERD is accepted for motor execution tasks, as statistical
analysis revealed a significant effect of the percentage of MVC
on the ERD amplitude. During motor execution, an increased
ERD amplitude was observed as the MVC percentage increased
(Figure 6). This decrease in EEG power indicates neural
activity associated with movement. The finding aligns with the
results reported in previous studies [20, 21, 22]. The variations
in ERD amplitudes among subjects were anticipated, stem-
ming from small disparities in electrode placement, impedance
between the scalp and electrodes, and the extent of mu-beta
modulation. It is worth noting that the results from subject
C showed ERS rather than the expected ERD between the
25% and 40% MVC conditions, which contradicts the findings
reported in the existing literature.

There was no significant difference found between imaging
the percentages of MVC and the ERD amplitude suggesting
that motor imagery has no significant influence on the ERD am-
plitude. As illustrated in Figure 6, the absolute ERD amplitude
increased between 0% and 5% of MVC but decreased between
5% and 25% of MVC for subject D. Subject E showed ERS
instead of ERD between 5% and 25% of MVC as compared
to 0% of MVC. Subject F showed ERD until 25% of MVC
after which the absolute ERD amplitude decreased during the
40% of MVC. This result is in contrast with a prior study
where imagery of 30% of MVC resulted in a larger absolute
ERD amplitude in both mu and beta rhythms compared to
imagery of 10% of MVC [18]. In addition, the result is in
contrast with the findings of a previous study which reported
that the ERD could be observed during motor imagery and ERS
during rest [3]. The finding of this study that no significant
difference of ERD was found across the percentages of MVC
is a result of two factors. First, the lack of training before the
experiment presumably negatively affected the ERD. Previous
studies showed that motor imagery training sessions did affect
cortical activation patterns for healthy subjects [47, 48, 49].
Motor imagery training resulted in a stronger ERD, especially
for subjects with relatively low BCI performance (classification
accuracy < 70%). Second, the absence of feedback during
the trial could have had a negative impact on the ERD. A
previous study showed that ERD was significantly larger during
trials in which feedback about imagery performance was given
compared to motor imagery trials without feedback [50]. In
summary, the finding of a consistent ERD across the four
MVC percentages in motor imagery trials is highly likely a

11



consequence of two critical factors: the lack of motor imagery
training and the absence of feedback during the trials.

In addition to the aforementioned factors, it is worth con-
sidering the potential influence of the duration of the ERD
phenomenon on the results. In previous research subjects were
asked to extend their wrist and keep that position until they
were told to relax after 10 seconds [51]. It was found that when
the movement was sustained, the power in mu and beta bands
returned to baseline values within 5 seconds. As the motor
execution period and motor imagery period lasted 6 seconds
in our study, it might be questioned whether the decrease
in power persisted throughout the entire duration of these
periods. Furthermore, another study discovered that the ERD
lasted longer when subjects were tasked with a load of 130
g compared to a no-load (0 g) condition [19]. These findings
may offer additional insights into why no discernible difference
in ERD was observed across various percentages of MVC for
motor imagery data, as opposed to motor execution data. In
motor execution trials, the ERD likely did not return to baseline
values within the activity time period due to the high level
of muscular activity required by the task. Conversely, during
motor imagery trials, it could be that ERD returned to baseline
values before the end of the activity time period, because no
muscular activity was required by the task. Thereby yielding
no significant variation in ERD across different percentages of
MVC. However, further investigation into the duration of the
ERD phenomenon is needed before conclusions can be drawn.

C. Correlation between ERD amplitude and stretch reflex size

The stretch reflex size significantly increased with increasing
ERD amplitude in motor execution trials (p = 0.012, R = -
0.506 for AM1; p = 0.009, R = -0.524 for AM2). The minus
sign of the correlation coefficient indicates a reduction in SMR
amplitude, which in turn implies a decrease in EEG power.
This decrease in EEG power corresponds to an increase in
ERD amplitude. The result is in agreement with the hypothesis
that ERD amplitude and stretch reflex size would increase
with increasing percentages of MVC. Assumed was that mo-
tor imagery trials would yield similar effects. However, this
was found incorrect. For motor imagery data, no significant
correlation was found between ERD amplitude and stretch
reflex size (p = 0.695 for AM1; p = 0.295 for AM2). The
finding indicates that, in this experimental setup, motor imagery
activity could not reduce the stretch reflex size of the FCR
muscle. It is important to emphasize that no significant SMR
modulation was found in motor imagery trials. Therefore, it
is highly likely that there was no increase in cortical drive to
motor neurons. Consequently, also no increase in excitation of
Ia inhibitory interneurons that could have reduced the stretch
reflex size. Therefore no conclusion can be drawn whether the
SMR modulation could have affected the reflex size. The result
is in contrast with a previous study [26] where SMR modulation
affected the H-reflex size which is the electrical analogue of
the stretch reflex size. The difference in results may be caused
due to 10 - 30 training sessions the participants underwent prior
to the experiment until they gained 80% accuracy of control
over ERD and ERS. This underlines the importance of motor
imagery training sessions.

D. Offline performance of signal processing paradigms

All three offline signal processing paradigms contained sim-
ilar steps for pre-processing and classification of the EEG
data. The feature extraction method was the only part of the
calculation that differed between each paradigm. Differences
in performance between the paradigms could therefore be at-
tributed to the feature extraction method. DWT focused on both
spectral and temporal information. Therefore, it was hypothe-
sized that DWT would outperform the AR and PSD feature
extraction method. However, the hypothesis did not align with
the results. The classification accuracies resulting from DWT
were not significantly different from AR and PSD. DWT was
not significantly different from PSD likely as a consequence
of the use of Welch averaging for the PSD calculation. By
averaging over multiple periodograms, Welch method reduced
the the variations in the signal and provided a more reliable
estimate compared to traditional FFT method. The overlapping
segments used in the Welch method captured the variations in
the frequency content of the signal over time. Therefore, Welch
method smooths over non-systematic noise and is more robust
to nonstationarities compared to FFT eventually resulting in
an increased performance of the PSD paradigm. Furthermore,
PSD and AR extracted features from a 3 Hz wide frequency
band, while DWT extracted features from wavelet coefficients
D3 and D4 capturing the frequencies 8-32 Hz. DWT therefore
contains more non-reactive frequency content. Illustrative is the
phenomenon that when the subject showed both mu and beta
modulations, DWT resulted in a higher classification accuracy
compared to when a subject only showed mu modulations.
Additionally, only the mean and standard deviation of the
wavelet coefficients were taken into account for the feature
vector of DWT. Higher order statistics such as skewness and
kurtosis of the coefficients were not considered. However, it
is worth noting that their inclusion, as was demonstrated in
a study [52], might have resulted in a higher classification
accuracy. In that study, the inclusion of skewness and kurtosis
improved the classification accuracy from 64.7% to 82.0%.

Another interesting finding is that PSD resulted in a classifi-
cation accuracy of 73.55% and AR in a classification accuracy
of 57.13%. The outcomes for the PSD paradigm, which em-
ployed Welch averaging as the feature extraction method, align
with findings from previous research [53]. Their study reported
classification accuracies of 77.1% for motor execution trials and
57.3% for motor imagery trials, similar to our study (73.55%
for motor execution; 63.31% for motor imagery trials). Another
previous research which employed AR as feature extraction
method and LDA as classifier, reported a classification accuracy
of 76% [54]. AR is better suited for capturing rapid changes or
variations in the signal over time, providing a higher level of
detail about the temporal dynamics compared to PSD. Despite
its temporal sensitivity, AR did not yield as high an accuracy as
PSD. The lower classification accuracy of AR is a consequence
of the coefficient of determination in which the target frequency
for the 3 Hz wide frequency band is extracted. Coefficients
of determination calculated with AR resulted in much lower
coefficient of determination values (R2

mean = 0.15) compared to
PSD (R2

mean = 0.27). This suggests that AR has a lower ability
to distinguish between periods of rest and activity, ultimately
leading to a decreased classification accuracy.
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Although classification accuracies did not differ significant
between feature extraction methods, it can be concluded that
AR is not suitable as feature extraction method for BCI as the
classification accuracy (57.13%) did not cross the lower limit
for reliable communication (ACC ≥ 70% [43]). The offline
PSD and DWT feature extraction methods that operated on
motor execution data did cross the lower limit and are therefore
reliable signal processing paradigms for BCIs in an offline
setting. Noteworthy, is that there was no significant difference
found in classification accuracies between motor execution
and motor imagery (p = 0.529). The result is in contrast
with previous results of the study which showed that motor
execution data showed significant SMR modulation across the
MVC percentages and imagery data did not. Although the
results imply that a BCI could operate on motor imagery data
as effective as on motor execution data, it must be noted that
the classification accuracies resulting from all feature extraction
methods operating on motor imagery data resulted in classifi-
cation accuracies below 70%. Indicating that the BCI could
not sufficiently discriminate between activity and rest based
on motor imagery data. Therefore, it cannot be concluded that
BCIs work as efficient on motor imagery data as compared to
motor execution data. However, if the classification accuracies
of motor imagery data would be above the 70% threshold
the result implies that, contrary to the conventional belief that
motor imagery may not be as reliable as motor execution in
motor-related tasks, the findings of this study suggest that motor
imagery and motor execution data are equally effective. These
findings emphasize the potential of motor imagery-based BCIs.

Variations in performance across subjects remain substantial.
The variability in classification accuracies between subjects
for the DWT paradigm is a result of whether the subject
showed only mu modulation or also showed a peak in the beta
frequency band. Subject E showed a peak in the mu and the
beta frequency band resulting in a classification accuracy of
91.67% for condition 0%-40% MVC. Whereas subject D only
showed a peak in the mu frequency band, thereby obtaining
a classification accuracy of 55.56% for the same condition.
The variability in classification accuracies between subjects for
the AR and PSD paradigm holds a similar argumentation. The
variations in performance are a result of the subject-specific
reactive frequency band. If the subject has a distinct reactive
frequency, the paradigm can easier discriminate between two
states as the power at rest distinct more from activity. This
is also captured in the higher value of the coefficient of
determination R2. However, if a subject does not have one
strong reactive frequency, but multiple reactive bands with with
smaller amplitude modulations, then it is harder to discriminate
between rest and activity.

Differences between classification accuracies of different
MVC conditions (0%-5%, 0%-25%, 0%-40% MVC) were
found significant (p = 0.010). This result is in line with the
previous found result that ERD amplitude increases as the
percentage of MVC increased during motor execution (p <
0.001). The findings imply that it is advisable to choose 40%
of MVC over 5%, resulting in an improved performance of
the BCI in distinguishing between rest and activity. As the
stretch reflex size did not saturate at 40% of MVC, future
research should investigate the effect of ERD on the stretch

reflex size at MVC percentages above 40%. Eventually, the
classification accuracy might improve as the difference between
ERD between rest and activity becomes larger.

Considering the effect of motor imagery ability of the subject
on the performance of the BCI, it is interesting to note the
difference in VMI and KMI scores (Table IV). All subjects
scored higher on VMI (KVIQ-10 VMI = 20.3/25) compared to
KMI (KVIQ-10 KMI = 15.3/25). This highlights the difficulty
of kinesthetic imagery, eventually negatively affecting the clas-
sification accuracy results. For PSD the classification accuracy
significantly increased as the KVIQ score increased (R = 0.998,
p = 0.040). A similar outcome was reported in the study [6],
where it was concluded that healthy individuals with higher
motor imagery ability from a first-person perspective resulted in
a larger magnitude SMR ERD during motor imagery. Contrary,
no significant correlation was found between classification
accuracies of AR and DWT and the KVIQ score (p = 0.225
for AR, p = 0.355 for DWT), similar to the outcomes in
study [55] where feature extraction method Common Spatial
Pattern did not show a significant correlation with KVIQ-
10 scores. The results suggest that the performance of the
PSD paradigm depends on the motor imagery ability of the
subject, while the AR and DWT paradigm do not. Therefore, it
should be questioned whether KVIQ is a reliable motor imagery
assessment tool for BCI control.

The classification accuracies obtained were also affected by
the choices for the classifier. It could be questioned whether sin-
gle hold-out method, which samples some trials to the training
set and the remaining trials to the test set, was the most optimal
data resampling technique for assessing model prediction ac-
curacy. Another resampling technique, k-fold cross-validation,
samples some epochs from the dataset for the training set and
the remaining for the test set. The process is iterated until every
fold has functioned as the test set [56]. Next, the average of
the classification accuracies is taken to obtain the classification
accuracy for the signal processing paradigm. By averaging
results over multiple folds, k-fold cross-validation provides a
more robust estimate of model performance compared to single
hold-out method.

E. Simulation of online motor imagery BCI

A pseudo-online environment was simulated to process mo-
tor imagery EEG data in real-time to show its performance
in the intended application domain including processing on
a single trial and a continuous data stream. The time delay
for feedback to the subject would be 7.9 ms. This lag in
receiving information about the outcome of the neural signals
of the subject is below the threshold of 200 ms for making
rapid adjustments and corrections leading to more efficient
control of the BCI. This outcome suggests that, based on
computational complexity, the paradigm could be implemented
online. However, the classification accuracy reached by the
pseudo-online paradigm was 51.38%. The result does not reject
the random chance for a binary classification task. Moreover,
a sensitivity of 71.43% was found, indicating that the model
could relatively good identify true positives. However, the
precision found was 45.91%, indicating a high rate of false
positives. The model is prone to making Type I errors, where it
classifies features as activity while the true state is rest (Figure
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7). This performance is not desirable for implementation of a
BCI for rehabilitation as the system is not reliable.

Although the frequency resolution in the online environment
was higher (fs = 1024 Hz) compared to offline environment
(fs = 256 Hz), the classification accuracy reached by PSD
on imagery data in online environment (51.38%) was lower
compared to offline environment (63.31%). Offline classifica-
tion accuracies were higher compared to online classification
accuracies, because averaging over trials was applied to get
rid of variability. In the pseudo-online EEG data processing
the features were calculated based on 500 ms of data. While
in the offline setting, the features were calculated over 30
trials of 6000 ms each. The averaging removed the outliers
thereby resulting in a higher classification accuracy compared
to single-trial online EEG data processing. Furthermore, in
the offline environment trials were excluded if they showed
EMG activity in the time window for motor imagery and
trials were excluded if the position of the cursor deviated
more than 10% of the MVC target. This does not reflect
the performance of a signal processing paradigm in a real-
time setting. Therefore, the offline results can answer generic
questions of neurophysiological interest, but are blind to the
dynamics and variability to single-trial analysis methods. The
study demonstrates that a certain classification in an offline
environment does not indicate a similar classification accuracy
in an online setting.

F. Limitations

Although, the experimental setup and procedures were cho-
sen to obtain the desired signals and corresponding BCI perfor-
mance, limitations were identified during the experiment and
the data analysis. To offer refinements and opportunities for
future research, limitations that may influence the interpretation
of the findings will be discussed.

A limitation of the study is the small sample size, consisting
of six healthy female subjects. Consequently, the results may
not be generalizable to a broader population. Moreover, the
study included healthy individuals and did not encompass
analysis within patient populations, restricting the broader
applicability of the findings to clinical contexts. In addition, this
study was restricted to EEG signals originating from the left
hemisphere. It is worth noting that previous research showed
that left-handed individuals present weaker ERD in the mu band
during motor imagery compared to right-handed individuals
[57]. Therefore, to make BCI-based rehabilitation available to
a wider range of individuals, it is essential to extend research
to include the right hemisphere.

A constraint within the experimental setup involved that
subjects were instructed to imagine the motor execution they
had performed a few seconds before. This might not be suitable
for the intended application. People suffering from a motor
disorder might not be able to perform motor execution. Kines-
thetic imagery might also be difficult if the patient was born
with a motor disorder and never moved the limb voluntary. The
lack on an EOG signal is another limitation of the experiment
setup. Ocular artifacts could not be removed. This resulted in
a distorted EEG signal, making it challenging for the classifier
to detect SMR modulation. Moreover, in the online setting
eyeblinks in the sliding window of the buffer could also not
be detected. For future research it is recommended to stop the

activity detection until the eye blink is no longer in the current
sliding window in an online setting.

In the data analysis of the EEG signals, the large Laplacian
filter was chosen as spatial filter, because this filter requires
less electrodes compared to a CAR as spatial filter. The
large Laplacian filter needs five EEG channels whereas the
CAR becomes more accurate as the number of channels
increases since outliers are averaged out. As the EEG signal
processing paradigm is intended for real-time application where
computational complexity and corresponding computation time
should be below 200 ms, the large Laplacian was more suited
compared to CAR. However, during several trials it occurred
that one of the five channels needed for the calculation of
the large Laplacian had a impedance larger than 15 kOhm,
especially electrode T7. This was corrected during the break
between the trials, but resulted in less accurate detection of
the electrical potential. Another limitation in the data analysis
is that it was assumed that the subject-specific 3 Hz wide
frequency band was the same for motor imagery as compared
to motor execution. However, since the study revealed that the
ERD pattern for motor imagery trials is different as compared
to motor execution trials across four MVC conditions, this
assumption might be questioned. Last, no test re-test reliability
was included to investigate the stability of the performance
over multiple days.

All in all, it could be discussed whether motor imagery
EEG-based BCIs have a potential for improving functional
recovery of patients with neuromuscular disorders thereby
offering a non-invasive and non-pharmacological treatment
method. While motor execution trials met the hypotheses,
motor imagery trials did not. Further research into the
correlation between SMR and stretch reflex size during
motor imagery is needed. To improve the motor imagery
classification accuracy, future research should include motor
imagery training sessions. In addition, future research should
include feedback on the motor imagery performance during
the trial. Furthermore, corticomuscular coherence should be
investigated as the motor imagery EEG data did not result in
similar ERD patterns as motor execution EEG data.

V. CONCLUSION

In conclusion, the mechanical stretch reflex size and ERD
amplitude increased significantly across 0%, 5%, 25% and 40%
of MVC for motor execution trials. The findings demonstrate
that the stretch reflex size increases with decreasing SMR
amplitude for motor execution trials. However, no significant
correlation between SMR amplitude and stretch reflex size was
found for motor imagery trials. In addition, three offline signal
processing paradigms processed EEG data containing periods
of rest and activity. A large Laplacian filter was applied for pre-
processing and LDA classified the features. The offline signal
processing paradigms resulted in classification accuracies of
73.55% (PSD), 71.96% (DWT) and 57.13% (AR) for motor
execution trials. The PSD and DWT feature extraction method
resulted in classification accuracies above 70%, indicating that
these feature extraction methods were able to detect SMR
amplitude modulations in an offline setting and therefore could
establish a reliable communication in BCIs. The classifica-
tion accuracies did not significantly differ between feature
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extraction methods, but significantly increased as the MVC
percentage increased. Therefore it is recommended to choose
40% of MVC over 5% to obtain an improved BCI performance.
Furthermore, a simulation of the intended real-time single trial
application domain resulted in a mean classification accuracy
of 51.38% based on motor imagery data. It can be concluded
that in theory the EEG-based BCI, that operates on a PSD or
DWT signal processing paradigm on motor execution data in
offline setting, could enhance the functional recovery of patients
with motor disorders. Nevertheless, since these patients might
not be able to perform motor execution due to their disease,
and considering the real-time operational demands of the BCI,
further research in real-time motor imagery performance is
needed. Future research should encompass motor imagery
training and real-time implementation of feedback on imagery
performance to improve the classification accuracy for EEG
signals resulting from motor imagery tasks.
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