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Abstract

Autonomous vehicles (AVs) can solve a lot of problems related to traffic safety, comfort and
congestion. While the sensors used by these vehicles are getting cheaper, more accurate, and
software is improving, the first completely automated vehicle does not exist yet. When AVs
start gradually driving on the roads, there will be a mixed traffic situation consisting of AVs
and human driven vehicles. To understand the implications on the traffic performance, this
thesis will implement a Model Predictive Controller (MPC) and the behavioural models for
AVs into a numerical simulation in SUMO. The MPC can be used to control multiple AVs in
larger traffic simulations to analyse the effects of certain penetration rates and traffic densities
when changing the AVs driving behaviour. Both the Post-Encroachment Time (PET) and
Time To Collision (TTC) will be used for decision making in overtaking and collision avoidance
strategies. In this thesis, the MPC which is solving a quadratic programming problem has
proven to successfully overtake other vehicles in an on- and off-ramp highway scenario which
results in a smaller average travel time for the AVs than for the human drivers. It is shown
that the decrease in average travel time for the AVs was not at the cost of the Human
Vehicles (HVs). This is done by decreasing the TTC used by the AVs as a headway for
longitudinal overtaking behaviour, and the PET used for lateral lane changing behaviour,
independently to a minimum of 0.1 seconds to guaranty safety, and measure the average
travel times for both HVs and AVs. Multiple simulations using different penetration rates
ranging from 0 to 40 percent also show that the decrease in average travel time for the AVs
was not at the cost of the HVs. We can conclude that using an MPC integrated together with
the behavioural rules of human drivers into numerical simulation can give a good indication
of the implications that AVs have on traffic performance.
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“In the future, airplanes will be flown by a dog and a pilot. And the dog’s job will
be to make sure that if the pilot tries to touch any of the buttons, the dog bites
him.”
— Scott Adams





Chapter 1

Introduction

In this introduction, we start with the research motivation for this thesis, and formulate the
research questions. Next we take a look at the current state of the art. Then, the contributions
of this thesis will be discussed. We will finish with the structure of this thesis.

1-1 Research motivation

The first generations of autonomous driving cars have been driving on the roads for a few
years now, and keep improving over time. Where the simplest versions of these cars started
with some driver assistance like Lane-Keeping (LK) or Adaptive Cruise Control (ACC) at
SAE level 1 [45], automated vehicles are slowly evolving to partial automation where the
vehicle takes on more tasks from the driver. The next goal is of course to create fully auto-
mated vehicles that can drive safely under all different circumstances and in every situation
without monitoring from the human driver. Since the developments will happen gradually,
in the coming decades it is expected that we will see a mixed traffic situation consisting of
both AVs and human driven vehicles. To get a better understanding of the implications of
this mixed traffic situation on the traffic performance, this thesis will implement a controller
using Model Predictive Control (MPC) and the behavioural models of AVs into a numerical
simulation in SUMO, which will be used to run the simulation.

Apart from the extra comfort that Autonomous Vehicles (AVs) can bring and saving time
from the driver which can be used for other activities, they have a lot more potential for being
safe compared to human driven vehicles. Especially collision avoidance is a huge issue leading
to accidents because of human errors such as misjudging situations, a delayed reaction time,
unable to predict the Time To Collision (TTC) or misestimate the headway necessary for
overtaking [59].

Next to comfort and traffic safety, AVs can solve a lot more problems that are caused by
traveling by car. Where some highly densely populated countries like the Netherlands al-
ready have many highways and a good road structure, it falls short in solving the traffic

Master of Science Thesis Martijn Vonk



2 Introduction

congestion during rush hours. Since building more roads due to a lack of space is not an
option, we have to use the roads already there more efficiently. This is where AVs could be
used to increase the road capacity. Where human drivers have to keep a safe distance from
other vehicles as a result of their reaction time, AVs could decrease this gap and therefore
increase the capacity because they are able to react a lot quicker. This will lead to a higher
highway capacity which could solve some congestion issues and traffic jams.

When we take a look at the physical limitations for AVs in the sense of sensor develop-
ment, some huge progress has been made in reducing the production cost and improving the
accuracy [3][25]. The more accurate and cheaper these sensors can be produced, the safer
and better the autonomous vehicles can perform. Especially Light Detection of Laser Imaging
And Ranging (LIDAR) is getting significantly cheaper [12][46]. LIDAR plays a huge role for
AVs since it can be used to detect objects and estimate distances.

Finally the software used to control the autonomous vehicles is very important. Where
companies like Tesla [69] update their software frequently, also a lot of research has been
done on Artificial Intelligence (AI), sensor fusion, data analysis and a lot of different forms of
control. Both the combination of the need for fully automated vehicles and the possibility to
actually create one, lead to an acceleration of developments. When fully automated vehicles
are finally available they will only gradually start driving on the roads. Some research is
necessary to analyse the effects of different penetration rates of autonomous vehicles and how
to implement the behavioural rules necessary for them to drive next to human drivers. These
rules can be used to decide when to start a lane changing manoeuvre or how close can be
driven behind another vehicle.
To conclude, all these research motivations have led to the following research question, which
will be tested by running multiple simulations of a highway scenario:

What are the implications on traffic performance when implementing an MPC
and human drivers’ behavioural rules into a numerical simulation?
It is already known that autonomous vehicles can increase safety and comfort for their own
passengers, but their effects on traffic performance in mixed traffic situations consisting of
both AVs and Human Vehicles (HVs) are less known. Since this mixed traffic situation is
a realistic scenario in the coming decades, this thesis will implement an MPC and human
drivers’ behavioural rules into a numerical simulation. This simulation will be run in SUMO.
While the MPC is not specifically designed to improve the traffic flow, it can be interesting
to see its implications on traffic performance.

1-2 Background

To answer the given research questions, first a controller making it possible to adjust the PET
and TTC is necessary. In the literature, MPC is often used in highway scenario’s because
of its optimal solution and for the reason that it can handle constraints well, which is useful
in collision avoidance. This can be used to fill in the gaps in research on different driving
profiles.
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1-2 Background 3

1-2-1 Potential field functions

MPC is used in multiple different traffic applications, both in urban areas and highway sce-
nario’s. Especially in highway scenario’s, MPC is often used for collision avoidance because
it can handle constraints well. Simpler forms of MPC are used for realistic trajectory plan-
ning while keeping the computation times low which can be useful when implementing MPC
real-time. More complex versions of MPC could be used, depending on the complexity of the
vehicle model and the way the constraints are shaped. Sometimes a different model is used
for trajectory planning than for motion control [37]. Since path planning using a shortest
path algorithm can take a lot of time, Potential Functions (PFs) could be used to obtain the
solution quicker [55]. They are often used in collision avoidance for robotic control and not
that much in autonomous driving, but using them in autonomous driving could be useful
because of their simplicity. These functions can model a 2D or 3D risk field which could be
used for real-time path generation. While this is useful for collision avoidance, potential field
based methods do not incorporate vehicle dynamics and can not ensure that the planned
trajectory is feasible [35]. MPC could help to solve these problems by formulating the vehicle
dynamics and using collision avoidance constraints in the optimization problem.

1-2-2 Linear MPC

A more common method than using PFs to simplify the collision avoidance, is to use linear or
linearized vehicle models and constraints to simplify the computations. Although non linear
models could describe car dynamics more realistically, a non linear solving method is required
while research shows that linearized models used for trajectory planning could obtain similar
results [17].
Some research has been done on using linear point mass models for collision avoidance [57][28].
This is an extremely simplified model which describes the dynamics in both the longitudinal
and lateral direction, and needs multiple constraints to keep the model realistic. While being
simple and easily usable real time, it raises questions whether this model captures the car
dynamics correctly.
To describe the nonholonomic dynamics of a car more realistically, a linear kinematic bicycle
model could be used. In this model the front and back wheels are lumped together, and it
uses the steering angle and the longitudinal acceleration as inputs [37][35][38]. Research has
shown that the kinematic bicycle model produces consistent results for motion planning, and
generates feasible trajectories compared to a more complex 9 degrees of freedom model. This
is the case as long as the lateral acceleration stays below 0.4g [24][31], which makes it ideal for
highway driving. More research confirms that using a bicycle model is less computationally
expensive than existing methods while giving realistic results [24].

1-2-3 Collision avoidance constraints

The hardest part in autonomous driving is using the right constraints for collision avoidance.
Where avoiding the shape of a car or an elliptical zone on a highway would lead to non-convex
constraints [28], a non linear solver is necessary or the constraints need to be simplified by
approximating them by a convex function. This can be done by exploiting the road structure
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information and combine rear-end and side collision constraints together into one constraint,
which reduces the optimization times drastically [57]. Using linear constraints, a quadratic
programming problem could be formulated and solved efficiently.

1-2-4 Driving profiles

Multiple kinds of research have been done on different driving profiles. The most common
driving profiles in the literature are the more aggressive driving profiles, and their influence
on fuel consumption and the emission of air pollutants. Research has shown that aggressive
driving in urban areas can lead to an increase in fuel consumption and an increase in pollutant
emissions up to 30-40% compared to calm driving [68]. Other research obtains similar results
comparing safe and aggressive driver styles [9]. Most of these kinds of research are based
on environmental aspects and traffic safety [40], and only includes the aggressiveness of the
driving style.
This is where Surrogate Safety Measures (SSM) can be used. SSM are measurements which
uses microscopic traffic parameters such as the headway in distance or time headway, or
vehicle speed or acceleration. These parameters can be used to describe the relation between
multiple vehicles during traffic events to indicate the chance and severity of a possible traffic
accident. While SSM are usually used to describe traffic safety for human drivers, they could
also be used to describe overtaking behaviour for autonomous vehicles. Where autonomous
vehicles have a shorter reaction time than human drivers, they could safely keep a shorter
distance while following other vehicles. Where this could increase the road capacity and allow
for more mobility in lane changing, it is not known whether this affects the other road users.

1-3 Results of this study

The goal of this thesis is to implement an MPC controller and human drivers’ behavioural
rules into a numerical simulation. The MPC will be used for overtaking and collision avoid-
ance in an on- and off-ramp highway scenario. Using the PET for the lateral lane change
behaviour and the TTC for the longitudinal lane change behaviour, different penetration
rates of AVs used in different traffic densities are tested in traffic simulations in SUMO. The
contributions of this thesis can be summarized by answering the research question:

What are the implications on traffic performance when implementing an MPC
and human drivers’ behavioural rules into a numerical simulation?
We can conclude that implementing the MPC and the behavioural rules of human drives into
a numerical simulation with mixed traffic driving in an on- and off-ramp highway scenario
gives a good overview of the effects that AVs have on the other road users. At high traffic
flow situations, AVs have a lower average travel time than HVs because they can keep smaller
headways than the human drivers. Next to this benefit for the AVs, lowering the PET that the
AVs keep for lateral lane changing behaviour also decreases the average travel time of the HVs
slightly. When the penetration rate increases, the average travel time of the HVs is decreased
even further. While this is a positive effect of AVs, the decrease in travel time is very small
and would not be a significant benefit for human drivers in a real world situation. For the
longitudinal collision avoidance, linear constraints are used to keep a minimal TTC from a
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possible leading vehicle. Because of these linear constraints, a decrease of the minimal TTC
that an AV should keep from another vehicle, leads to a very small increase of the average
travel time for other road users. This could be explained by the behavioural rules of the AVs
caused by the linear constraints used in this thesis. When the traffic flow is relatively low we
found that the effects caused by AVs keeping a low minimal headway are different since the
maximum speed and other behavioural rules play a more important role.

1-4 Thesis structure

This thesis is organised in the following way. At first Chapter 2 will discuss all the research
methodology necessary for this thesis, and is divided into 4 parts. Chapter 2-1 will describe
the overview of this thesis, and how all building blocks are combined together to run the
simulations. Finally the scenario will be discussed, and the details about the simulations are
explained.

Next Chapter 2-2 will describe the vehicle models. To control the automated vehicles, a
realistic vehicle model for both decision making and following the trajectories is necessary.
To create some realistic human driving behaviour, different car-following models and lane
change models are compared. Simulation of Urban Mobility (SUMO), a simulation program
will be controlling these human driven vehicles.

Chapter 2-3 gives an overview of the traffic turbulence on highways and the SSM used in
this thesis. Both traffic turbulence and SSM could be used to describe traffic quality, and can
be included in the decision making process of the AVs. The SSM used for this thesis are the
PET and TTC.

In Chapter 2-4, the control method used to control the AVs is explained. For this thesis,
MPC will be used. The quadratic programming problem will be shown in this chapter,
together with the cost function and constraints. Also the different variations of MPC are
discussed.

Next, in Chapter 3 the results will be presented. An overtaking simulation is executed such
that the MPC can successfully overtake other vehicles while using the right driving behaviour.
Next some larger simulations are run to answer the 3 research questions.

Finally in Chapter 4 the work of this thesis will be summarized. The conclusions about
the results are discussed, and some future challenges and recommendations are given.
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Chapter 2

Research Methodology

In this chapter, the research methodology will be explained. This chapter is divided into 4
parts. First we will discuss the scenario and give an overview of the simulation. Next the
vehicle models for both the human drivers and automated vehicles will be explained. After
that we take a look at the surrogate safety measures which will be used to describe the vehicle
behaviour. Finally the MPC will be discussed which will control the AVs in the simulation.

2-1 Scenario

In the first section of this chapter, the scenario will be described. An overview of all the
different components necessary to answer the research questions will be given. How all these
different components are connected to each other to gather the necessary data will be discussed
in the next subsections. To run the simulations and generate data, Simulation of Urban
Mobility (SUMO) will be used to control the humen drivers. NetEdit will be used to create
a suitable traffic scenario and Matlab will be used to create the controllers to control the
Autonomous Vehicles (AVs) and to gather and process the data. To make SUMO and Matlab
connect with each other, Traci4Matlab will be used. But first an overview of this thesis will
be given.

2-1-1 Overview

The goal of this thesis is to answer the research questions formulated in Chapter 1. To an-
swer the research questions, we need to create a controller to control multiple AVs, and a
simulation to test which effect it has on the other road users. To control the AVs, Model
Predictive Control (MPC) will be used. The fact that MPC can find an optimal solution and
can handle constraints, makes this a suitable and very popular choice for collision avoidance.
To be able to use AVs using the desired behaviour, we have to translate this behaviour into
some mathematical equations which can be used in the cost function. Next to the benefit of
finding an optimal solution, there is also the possibility to implement constraints. This can
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be useful to help the AVs stay within the road boundaries and avoid collisions. How the MPC
will be designed, will be discussed in more detail in Chapter 2-4.

The decision making process during a time step consists of 4 different parts. The first step
is to get the necessary information from nearby vehicles. In the real world, AVs could gather
information about the world around them through sensors like camera, lidar or radar [48].
This data can be used in the cost function and the constraints of the MPC to generate an
optimal input to control the vehicle as desired. Instead of using the real world, we are using
SUMO to run the simulations which will make it a lot easier to gather the necessary data
without uncertainties. These data containing the information of nearby vehicles are led to
the MPC which can execute the next step.

The second step is to run the optimization algorithm to obtain an optimal input to con-
trol the AVs. To create a realistic driving trajectory, a vehicle model is necessary. Because
a car is nonholonomic, it is not possible to drive in lateral direction without moving in lon-
gitudinal direction. Since linear models require a lot less computation time than non linear
models when using optimization, a linear vehicle model will be used by the MPC for trajec-
tory planning. With this linear model, a cost function, the constraints and the information
about nearby vehicles, it will be possible for the MPC to run an optimization algorithm to
obtain an optimal input. This optimal input can be used in the next step to control the vehicle.

In the third step a non linear vehicle model will be used to calculate the actual trajectory of
the vehicle. Since non linear models are more realistic because they include more complex
behaviour, the optimal input will be used in a non linear model to calculate the trajectory of
the vehicle. This will also demonstrate whether a linear model used for trajectory planning
could result in realistic trajectories in the real non linear world. Or in this thesis, a non linear
simulation. Both the linear and the non linear vehicle models used for this thesis will be
further described in Chapter 2-2.

Finally, the trajectory obtained by the non linear model can be sent to SUMO to change
the location of the vehicle in the simulation. Next SUMO will control all the other vehicles in
the simulation which represent the human driven vehicles and proceed to the next simulation
step. At that next time step the AVs can gather the data of the surrounding vehicles again
which closes the circle. In Figure 2-1 the complete process containing the 4 steps is shown.

In the next section, the highway scenario and the corresponding traffic flows used in SUMO
will be discussed.

2-1-2 On- and off-ramp scenario

To tune and test if the controller created in Matlab could work, running a simulation pre-
senting a highway as realistic as the real world would be necessary. Since we want to use the
traffic turbulence and some Surrogate Safety Measures (SSM), creating a scenario where the
traffic density is relatively high would be useful for some increased traffic turbulence to occur.
Usually at the bottlenecks, which could be an on-ramp, off-ramp or weaving segment, an
increase in traffic turbulence can be found [71]. At these bottlenecks the total road capacity
drops and the traffic density increases. This is because human drivers naturally increase their
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Figure 2-1: Simulation overview

headway to the leading vehicle or need to slow down. When the headway is too small and
vehicles collide, or the road capacity exceeds its maximum capacity, traffic jams occur. The
benefit of AVs is that since their reaction time is a lot smaller than that of human drivers,
headways could be safely reduced, depending on the sensors and computation power. When
headways are lowered, the road capacity will be increased since the same amount of vehicles
occupy less space. Since some countries are densely populated, it is not always possible to
construct more highways. This is where AVs could solve some problems.

For this thesis, an on- and off-ramp scenario is created. To keep the computations for a
given simulation time reasonable, it is desirable to chose a small but realistic scenario. In the
Netherlands there are also some guidelines for designing highways. These are described in
’Richtlijn Ontwerp Autosnelwegen’ [63]. To keep the simulation small, a highway consisting
of one lane with an on- and off-ramp will be created. This scenario is illustrated in Figure
2-2.

According to Rijkswaterstaat [63], a minimum road segment of 400 meter in length would
be enough using this number of lanes. To make sure that all vehicles in the simulation have
enough time to chose the right lane for their destination and for the traffic to stabilize, a
length of 500m is chosen. This road segment is shown as segment 2 in Figure 2-2. Leading to
this segment, we have segment 1. This segment will be only 100m in length since it consists of
only one lane. This is the same for segment 3, which is where the main highway continuous.
Both road segments leading to the on-ramp and continuing from the off-ramp are also 100
meter long.
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Figure 2-2: Highway scenario

Traffic flows

Next to the right scenario, which follows from the guidelines [63], the right traffic flows have to
be selected. According to these same guidelines, the maxmium capacity of a scenario shown in
Figure 2-2, consisting of 2 lanes, would be 4830 vh/h since the scenario is short, and assuming
that the percentage of trucks will be 0 percent in this simulation. This maximum capacity
has been verified using the on- and off-ramp scenario in SUMO. Because 4830 vh/h is the
maximum capacity and we want some free space available for lane changing or accelerating.
Usually around 75 percent of the maximum capacity is used. For comparison reasons, multi-
ple different traffic flows will be used in this Thesis. The 2 most used traffic flows will be 1800
veh/h for some low density simulations and 3200 veh/h for some high density simulations. A
possible realistic way to divide these flows is to make 75 percent of this flow start at segment
1, and 25 percent starts at the on-ramp. From both these flows, 75 percent has as destination
segment 3, while 25 percent has the off-ramp as destination. An overview of the distribution
of these flows can be seen in Table 2-1.

Total flow Seg 1 - Seg 3 Seg 1 - Off On - Seg 3 On - Off
1800 1013 338 338 113
3200 1800 600 600 200

Table 2-1: Overview of the different traffic flows

For the total traffic flow of 3200 vh/h, a total of 1800 + 600 = 2400 vh/h will start on the
main highway which is segment 1, and consists of 1 lane. Since 2400 vh/h is around the
maximum capacity of a 1 lane road, and when using a distribution as described above, 3200
vh/h as a total flow will be the maximum that we can test with this distribution. This is

Martijn Vonk Master of Science Thesis
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because 600 + 200 = 800 vh/h start from the on-ramp using this distribution. Only when
the on-ramp flow is also at the maximum capacity, which is not realistic, 4830 vh/h will be
reached.
All the traffic flows in Table 2-1 are the total traffic flows used in the simulation, containing
both AVs and human drivers. To show the effects of the AVs, different penetration rates of
AVs will be used. For example, when a penetration rate of 10 percent will be used, 10 percent
of all the traffic flows in Table 2-1 will consist of AVs. Over all these separate traffic flows,
these AVs are chosen randomly, to make sure they can both influence each other, and the
human drivers.

Simulation time

Now that we have discussed the scenario and the traffic flows, we have to chose a realistic
simulation time. Often in traffic, some small effects can evolve over time and cause some huge
effects like shock waves or traffic jams. For this reason it is important to create a simulation
time which captures all these behaviours. To make sure the traffic flows in the simulation are
stabilized, a warm up round of 10 minutes will be used. After this warm up round, all data
will be gathered over the time span of 1 hour. According to [63], this would be long enough
to make sure that most possible changes of traffic are captured in the data.

2-1-3 Software

In this next section, the software used for this Thesis will be described. To design and tune
the controllers, Matlab will be used. For the simulations, SUMO, a microscopic simulation
program is found suitable. To generate the network, NetEdit is chosen. And finally to make
it possible to connect the controller in Matlab with the simulation in SUMO, Traci4Matlab
will be used. These different tools will all be described below.

SUMO

To run the simulations, the simulation program SUMO will be used. SUMO is an open
source simulation program, used to simulate microscopic traffic models, and is developed by
the German Aerospace Center. Since it is open source, many packages are available to use
together with SUMO. This is necessary when creating the MPC controller to control the AVs
in Matlab. Different programs can be used to design a scenario, which can then be imported
into SUMO. The output data is given in XML, which can be easily converted into CSV which
can be opened and analysed in for example Excel or Matlab. When the scenario is imported,
it is possible to add some vehicles or vehicle flows. Also routes and different vehicle types are
included. For different kinds of driving behaviour, different vehicle models can be used. it is
also possible to create own vehicle models.

NetEdit

The highway scenario used for the simulation in SUMO will be designed in NetEdit [5].
NetEdit is easy to use and often used in combination with SUMO. The network, vehicle flows
and vehicle types can be created in NetEdit and then used by SUMO.
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Traci4Matlab

In SUMO it is only possible to run simulations of road networks and load the necessary demand
elements. To connect SUMO to Matlab to control the AVs, Traci4Matlab is necessary [2].
This is an implementation of the Trafic control interface that allows the user to interact with
SUMO. This can be done in a client-server scenario where Matlab acts as the client, and
SUMO as the server. In Matlab, several different functions can be used to gather data, give
inputs to vehicles in SUMO and control all the settings of the simulation.

2-1-4 Summary

In this section, a quick overview of this thesis is given. It is visually shown how all different
parts are connected to each other to run the simulations and gather the data. The on- and
off-ramp scenario is explained, together with the different vehicle flows and the important
details on how to set up the simulation. In the next chapter, Chapter 2-2, the different
vehicle models used by the human drivers and the AVs are shown.
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2-2 Vehicle models

The next step after creating the scenario is to create a model for the vehicle trajectories. First
we will discuss the different kind of models that could be used to describe the dynamics of
a car. Different models will be discussed and their pros and cons compared. As explained
in Chapter 2-1 at the overview, a linear model is preferred for the MPC to decrease the
computational load. But since we want realistic dynamics to get a better approximation of
the real world, we use a more complex model for the execution of the trajectories.
Next the different possibilities for the vehicle models in SUMO are discussed. To describe
the behaviour of the human drivers, controlled by SUMO, another other vehicle model is
necessary. This model will describe the decision making for the human drivers, and can be
divided into two separate models. One model for the longitudinal behaviour, and a second
model to describe the lateral lane changing behaviour. These models will be discussed at the
end of the chapter, but first the vehicle models for the AVs.

2-2-1 Vehicle models for the AVs

To simulate cars, a lot of different vehicle models could be used. It is important to select the
right model that is as simple as possible, but complex enough to capture the right dynamics.
One of the simpler models is the point mass model. This is a model that is often used for
collision avoidance in combination with MPC to keep a low computational load [57] [28]. This
model describes the vehicle as a point mass, which means that all mass is located in one point.
When using second order equations, forces can act on this mass to create an acceleration.
Usually a state space model is created where the acceleration in x- and y-direction are used
as an input and where the position and velocity are used as states. A point mass model could
look like this in discrete time:

vx(k + 1) = vx(k) + ax(k)∆t (2-1)
x(k + 1) = x(k) + vx(k)∆t (2-2)
vy(k + 1) = vy(k) + ay(k)∆t (2-3)
y(k + 1) = y(k) + vy(k)∆t (2-4)

In these equations, vx is the velocity in x-direction, ax is the acceleration in x-direction,
and vy and ay are the velocity and acceleration in y-direction. These acceleration and ve-
locities that are constant during a time step can be used to calculate the x-coordinate and
y-coordinate. While these equations are very simple, the question is whether a model like this
is realistic enough to describe a car. Since cars are non holonomic, which means they have
wheels and can not drive sideways, some adjustments would be necessary to make this model
realistic. When used for MPC, this can be done by using some constraints that only allow
lateral movement in combination with some longitudinal movement. Even then the question
remains whether this kind of model is realistic enough.

Next to some very easy models like the point mass models, also a lot more complex models
are used. This could be necessary for trajectory planning when for example the forces on

Master of Science Thesis Martijn Vonk



14 Research Methodology

the body, tyre dynamics or wheel slip or all of them are included in the model [31][61]. For
the given highway scenario, described in Chapter 2-1, this is not necessary. It is important
to capture some realistic non holonomic behaviour and describe some simple trajectories for
collision avoidance and overtaking. For this reason a kinematic bicycle model is chosen [37].
This model is often used in the literature for obstacle avoidance because its simplicity and
realism [35][38]. Compared to the point mass model, a kinematic bicycle model provides a
suitable compromise between model order and accuracy [37]. This is a simpler version of the
dynamic bicycle model which is similar, but uses more parameters because it also takes the
tyre dynamics into account. Since this is not strictly necessary for highway manoeuvres and
obstacle avoidance, the kinematic bicycle model is chosen. This model will be described in
the next section.

Kinematic bicycle model

In this section the kinematic bicycle model will be explained. A bicycle model is a simplified
model of a car, where the two front wheels and back wheels are lumped together, such that it
looks like a bicycle, as can be seen in Figure 2-3. This vehicle models assumes no slip between
the tyres and the road when the lateral acceleration ay is within certain bounds (|ay| ≤ 0.4g)
[24][31], which makes this model suitable for highway driving. The kinematic bicycle model
can be described by the following equations:

Figure 2-3: Kinematic bicycle model [37]
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ẋ = vcos(ψ + β) (2-5)
ẏ = vsin(ψ + β) (2-6)

ψ̇ = v

lr
sin(β) (2-7)

v̇ = ax (2-8)

β̇ = tan−1( lr
lf + lr

tan(δf )) (2-9)

Under normal highway driving conditions, the steering angle δf , heading angle ψ and side
slip angle β are small, which means we can use the small angle approximation for the sinus
and cosine and substitute Equation 2-9 into Equation 2-5, 2-6 and 2-7 to obtain the following
equations:

ẋ = v (2-10)

ẏ = vψ + lr
lf + lr

vδf (2-11)

ψ̇ = 1
lf + lr

vδf (2-12)

v̇ = ax (2-13)

In the first equation 2-10, we see that the longitudinal displacement of the center of gravity ẋ
equals the speed of the vehicle v. The second equation 2-11 describes the lateral displacement
of the center of gravity ẏ, which depends on the speed v, the heading angle ψ, the steering
angle δf , and lf and lr which are distances from the center of gravity to the front and rear
axles. In Equation 2-13, the change in velocity depends on the longitudinal acceleration ax.
For this system, the steering angle δf and the longitudinal acceleration ax can be used as
inputs.

Non linear discrete time kinematic bicycle model

To make the AVs follow the right trajectory, a non linear kinematic bicycle model will be
used. Since the model above is given in continuous time, the model has to be converted to
discrete time first to use it in Matlab. This can be done using Zero Order Hold (ZOH) for
a sample time ∆t, which is the most common method. At every time step, a sample of the
continuous time signal is taken, as can be seen in Figure 2-4. The continuous time signal
can be reconstructed from these samples by holding a sample for a certain time until the
next sample is received. This leads to the following discrete time non linear kinematic bicycle
model:
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x(k + 1) = x(k) + v(k)∆t (2-14)

y(k + 1) = y(k) + v(k)ψ(k)∆t+ lr
lf + lr

v(k)δf (k)∆t (2-15)

ψ(k + 1) = ψ(k) + 1
lf + lr

v(k)δf (k)∆t (2-16)

v(k + 1) = v(k) + ax(k)∆t (2-17)

In these equations, x(k), y(k), ψ(k), v(k), ax(k) and δf (k) all depend on k which is the time
step. This is the non linear model that will be used to describe the trajectories of the AVs.
When the MPC calculates the most optimal inputs ax(k) and δf (k) at a certain time step k,
these can be used to calculate the new x- and y-position and heading angle of the vehicle.

Figure 2-4: Zero Order Hold [51]

Sampling time

To obtain the best results, which can be done by minimizing the processing time while having
a maximum accuracy, it is important to chose the right sampling time ∆t. According to (M.
Verhaegen and V. Verdult 2007), as a rule of thumb, the sampling frequency ωs should be 10
times as high as the frequency band ωb [72]. Using the step response, when we select about 8
or 9 samples during the time period from 0 to the steady state, we sample about 10ωb [72]. An
example of what a step response looks like is visually illustrated in Figure 2-5. When taking
the time it takes to perform a lane changing manoeuvre or to accelerate for a short period
of time into account, a sampling time of 0.2 seconds is selected. This is the same order of
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magnitude compared to other sampling times used for collision avoidance for highway driving
[37] [38].

Figure 2-5: Step Response for selecting the sampling time [72]

Linear discrete time kinematic bicycle model

For the trajectory planning done by the MPC a simpler model than the non linear kinematic
bicycle model is preferred. This can be done by linearizing the non linear model around
a constant longitudinal speed. This makes it possible to use a quadratic cost function with
linear constraints which can be solved using simpler optimization methods and has the benefit
of not getting stuck in a local minimum. When linearizing around a constant longitudinal
speed, it is important to note that this might lead to some inaccuracies in lateral and headway
predictions which could lead to unsafe or unfeasible trajectories. Using the right constraints
[13] which will be described in Chapter 2-4, the non linear model can be rewritten as a Linear
Time Invariant (LTI) system. For the states, ξ , [x(k), vx(k), y(k), ψ(k)] ∈ X ∈ R4 will be
used and the input will be u , [a(k), δf (k)] ∈ U ∈ R2, where X and U are the linear state
and input constraint sets. This leads to the following LTI system:

ξ(k + 1) = Aξ(k) +Bu(k) (2-18)

ξ(k + 1) =


1 ∆t 0 0
0 1 0 0
0 0 1 vconst∆t
0 0 0 1



x(k)
vx(k)
y(k)
ψ(k)

 +


0 0

∆t 0
0 vconst

lr
lf +lr

∆t
0 vconst

lf +lr
∆t


[
a(k)
δf (k)

]
(2-19)

In these equations, vconst is the constant longitudinal velocity. Since the first state, x(k) is
not of importance for the lane changing and trajectory planning done by the MPC, this state
is removed which results in the following LTI system:

Master of Science Thesis Martijn Vonk



18 Research Methodology

ξ(k + 1) =

1 0 0
0 1 vconst∆t
0 0 1


vx(k)
y(k)
ψ(k)

 +

∆t 0
0 vconst

lr
lf +lr

∆t
0 vconst

lf +lr
∆t

 [
a(k)
δf (k)

]
(2-20)

This linear state space system consisting of 3 states and 2 inputs defined as ξ , [vx(k), y(k), ψ(k)] ∈
X ∈ R3 and u , [a(k), δf (k)] ∈ U ∈ R2 will be used by the MPC. In these equations, ∈Rn

means the states or inputs are a member of the set of real numbers in a given number of
dimensions n. In the next section the vehicle models for the human drivers will be discussed.

2-2-2 Vehicle models for the human drivers

The vehicle models used by the human drivers in SUMO will be described next. Since these
vehicle models should present human driving behaviour, it is important that these models are
as realistic as possible. For the longitudinal behaviour, the Krauss model will be used. The
lateral driving behaviour will be described by the lane changing model.

Krauss

In the literature, a lot of different car-following models for longitudinal behaviour have been
used. To get as realistic human driving behaviour as possible in our simulation, it is impor-
tant to chose the right model. In SUMO a lot of research have been done on realistic driving
behaviour [47], where the hardest part is to find a simple model that is realistic enough for
the right scenario [50]. While one model could excel in for example urban areas, it could
perform worse compared to other models in for example a highway scenario. It is important
to select the right model for the right circumstances.

A very common and widely used model is the Intelligent Driver Model (IDM) [16], which
is developed by Treiber, Hennecke and Helbing in 2000 as an improvement for other intel-
ligent driver models such as the Gipps’ model which has been developed in the late 1970’s.
While being that widely used, some downsides of the IDM are the ill-posedness where veloc-
ities become negative and can converge to −∞ [34]. Of course some adjustments have been
made over the years, but some issues remain.

Next to the IDM, another widely used car-following model is the Krauss model [49], which
is also the default car-following model in SUMO. In Urban areas, it has been shown that
the IDM can perform better than the Krauss model when there are intersections involved
[10][53]. These results are obtained by calibrating the IDM using a genetic algorithm. While
the IDM gives good results in urban areas using this calibration, the results are far from
perfect in other scenario’s. Since this thesis is about AVs used in highway scenario’s, it is
important to compare these models in a similar scenario, and also test how well these models
can be implemented in SUMO. There are papers written that show that IDM outperforms
Krauss at describing realistic human driving behaviour on highways [32], but also papers
which claim the opposite [15]. This last research also states that IDM has some troubles
when implemented in SUMO, where Krauss is the default model and is used a lot more for
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research in SUMO [67]. Since both car-following models are evenly matched, but Krauss has
the advantage in preventing implementation issues, the Krauss model is chosen for this thesis.

As with the IDM and other car-following models, the Krauss model has got some improve-
ments over the years. This improved model is the default in SUMO and will be explained
in this section. Like all other car-following models, the Krauss model determines its speed
relatively to the vehicle ahead. This speed will be called the safe speed vsafe, and can be
used to keep the right distance and a safe speed to the vehicle in front. The safe speed can
be calculated using the following equation:

vsafe = −b(tr + ti
2 ) +

√
b2(tr + 1

2 ti)
2 + 2bg (2-21)

In this equation, b is the maximum deceleration of the ego vehicle, g is the headway to the
leading vehicle in seconds, tr is the drivers reaction time and ti is the time it takes to actually
press the brake until maximum deceleration is reached. This formula is based on the variation
of deceleration of the whole braking process [49] where different braking phases have been
analyzed. Since this ’safe’ speed could exceed the maximum legal speed for that highway or
can be larger than the highest reachable speed of the car given its maximum acceleration,
another equation is necessary to prevent this kind of situations. This can be done using the
following equation:

vdes = min[vmax, v + at, vsafe] (2-22)

As can be seen, the minimum of these three different values is taken, as the desired speed vdes.
In Equation 2-22, the maximum legal speed is given by vmax and to keep the acceleration
within the physical limits of the car, v + at can be used. According to (Song J. et al. 2015),
simulation results can conclude that this models outperforms other models in describing real-
istic human driving behaviour on the highway. This leads to good results in wait time, travel
time, lane-change number and safe speed [49].

Where the Krauss model can only be used for car-following. A second model is necessary for
the lateral behaviour of the human drivers in SUMO. This can be done using a lane changing
model.

Lane changing model

While there is a lot of research done on car-following models and a lot of these have been
created, to describe lane changing behaviour there are a lot less common models available.
Since lane changing and deciding when to change lanes is a lot more complex than keeping a
safe longitudinal distance or speed, and the lateral driving behaviour is also depending on the
longitudinal behaviour, most lane changing models are more like a combination of different
rules which try to describe the lane changing process well. To make it even more complex,
not all human lane changing behaviour is exactly the same, since humans experience safety
and possibilities different depending on their behaviour. Since there where some issues on
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implementing car-following models in SUMO, other than the default, it could be wise to chose
the default lane changing model in SUMO, LC2013 [11]. This model is based on the older
model, DK2008, and since it is the default in SUMO, it is often used for research in SUMO
[18][73], where it delivers some good results.

The main idea of this model which will be explained in this thesis, is that it makes use
of a 4-layered hierarchy of motivations to determine the lane changing behaviour of the vehi-
cles during each time step. This motivations are based on the urgency to make a lane change.
A lane change is considered urgent when the following relation is true [11]:

d− o < lookaheadspeed ∗ abs(bestlaneoffset) ∗ f (2-23)

At the left side of this equation, d is the distance to the dead end of a lane, where o is a
parameter which describes the occupation on the target lane. At the right side we have the
look-ahead speed which is the presumed speed when driving near the point where a lane
stops. Next the best lane offset is a parameter that describes the occupation of the best lane
to switch to and finally, f is a factor that describes the time necessary to perform a successful
lane change manoeuvre. This factor f is necessary since the amount of time necessary can vary,
depending on a lot of difference circumstances and the fact that changing lanes to the left or
right are not similar. When it is not possible to make the desired lane change, for example be-
cause the desired lane is blocked, the speed has to be adjusted according to the circumstances.

According to some research [11], this model has a better control over speed adjustments
when the desired lane is blocked and also more deadlocks are avoided compared to other
models. A deadlock is a situation where a vehicle has driven itself stuck in traffic and has
to go with the flow to prevent any collisions from happening. Another strong aspect of this
model are the choices made in overtaking other vehicles, which is better compared to other
lane changing models.

2-2-3 Summary

This chapter was divided into two parts: the first part about the vehicle models most suitable
to control the AVs, and the second part about the vehicle models that will describe human
drivers as realistic as possible and can be used to control the human driving behaviour in
SUMO. For the trajectory planning, done by the MPC, a kinematic linear bicycle model is
used since this describes some realistic car behaviour, while keeping the computational load
low by using an optimization problem with a quadratic cost function and linear constraints
which will be explained in Chapter 2-4. To create the vehicle trajectories using the optimal
inputs given by the MPC, a non linear version of the kinematic bicycle model will be used.
For the human driving behaviour, the Krauss model will be used to describe the longitudinal
behaviour. Finally for the lane changing decision making, the LC2013 model which is also
the default in SUMO, is selected.
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2-3 Surrogate safety measures

When using the kinematic bicycle model, it is important to give it inputs that will not only
control the vehicle realistically, but also safe. MPC can be used to optimize a certain cost
function that creates a desired driving behavior. Next to driving on the right side of the
highway when possible, it is also preferred to stay in the middle of your lane and keep a safe
distance from the other road users to decrease the chance of accidents. The benefit of an
autonomous vehicle is not only that it can react a lot quicker than a human driver could
without getting tired or making mistakes, but also that the cost function can be shaped in a
way that it can improve traffic quality, and thus help the other road users. An improvement
in traffic quality could be measured in a lot of different ways, and could mean for example
that the amount of accidents decreases. In this thesis the cost function and the constraints of
the MPC will be designed in such a way that that the AVs will not only reach their destination
as quick as possible, but will also try to decrease the chance an accident will occur and the
severity of possible accidents. This can be realized by using traffic turbulence and different
SSM. In the following subsections will be explained what traffic turbulence and SSM are,
how these can be measured and how this can be used to improve the traffic quality.

2-3-1 Traffic turbulence

The first method that will be discussed that can describe traffic quality is the traffic tur-
bulence. Because the total travel time of all road users together could increase when the
traffic turbulence increases and traffic safety could decrease, it would be useful to prevent the
AVs from making unnecessary lane changes and accelerating, where the latter is also called
acceleration noise. Usually a highway is designed such that it allows high speeds under safe
circumstances, because intersections are removed and replaced by on- and off-ramps. There
are also multiple lanes, both traffic directions are separated and the bends in the highway are
more gentle. By making use of ramp spacing, where on- and off-ramps are placed far enough
from each other and using an extra lane, the traffic turbulence can be reduced. Since all these
aspects that can improve traffic safety by creating a more predictable road are more costly, a
consideration between the extra cost and traffic safety should be made.
Next to road design, there are also some traffic rules that should be followed to increase traffic
safety. From example keeping below the legal speed limit and try to stay on the right lane as
much as possible, unless overtaking. Because of this last rule, traffic will be separated based
on driving speed which improves traffic safety. It is important to implement these rules into
the behaviour of the AVs, to get a desired result. Some research shows by using GPS-equipped
vehicles, that acceleration noise can be influenced by vehicle and driver characteristics, and
that its degree of impact can be affected by the traffic levels [26]. Another study shows
that when using acceleration noise as a standard deviation of accelerations resulted in the
best measure to quantify congestion. This can also be used to study the impacts on fuel
consumption and vehicle emissions.

Definition of traffic turbulence

While there is no real definition of traffic turbulence, according to (van Beinum A. 2018)
[71], a more specific definition of turbulence can be given by: ’individual changes in speed,
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headways, and lanes (i.e. lane-changes) in a certain road segment, regardless the causes of
the change’. Next the level of turbulence according to (van Beinum A. 2018) is given by:
’the frequency and intensity of individual changes in speed, headways and lane-changes in
a certain road segment, over a certain period of time’. This definition could be translated
to some mathematical equations and used in the cost function of the MPC. Since changes
in speed, headways and lane changing always occur in traffic, there is always a minimum
amount of traffic turbulence. By minimizing a cost functions which includes these, this thesis
will combine them with SSM and show the benefits in the total travel time for the human
drivers on the highway. The SSM will be further explained in the next subsections.

2-3-2 Surrogate Safety Measures

Next to the traffic turbulence, SSM can be used to improve the traffic quality by improving
on traffic safety. Traffic safety has been studied mostly by using crash data. This data can
be used to find the cause that has lead to a crash. While traffic safety has been studied a
lot with the use of this crash data, it also has some limitations [1] [6]. As can be seen in
2-6, which describes the relation between severity and frequency of crashes, the real accidents
are only the top of the pyramid, while traffic safety is a lot more than only the accidents
that actually happened. By making dangerous decisions in traffic, dangerous situations can
occur which could lead to an accident. This is why non-crash data could also be useful for

Figure 2-6: Safety pyramid [14]

analysing traffic safety and where SSM come into play. SSM are measurements which uses
microscopic traffic parameters such as the headway in distance or time headway, or vehicle
speed or acceleration. These parameters can be used to describe the relation between multiple
vehicles during traffic events to indicate the chance and severity of a possible traffic accident.
These traffic events could be anything, for example a lane change manoeuvre or two vehicles
crossing each other closely at an intersection. The microscopic traffic parameters that can
be used to analyse traffic safety can also be measured real time by for example radar by
an autonomous vehicle. By understanding how to use this data, and implementing these
measurements into the MPC, the autonomous vehicle could possibly decrease the frequency
of accidents or decrease the severity. In this Thesis the MPC will make use of the Time To
Collision (TTC) and Post-Encroachment Time (PET) which are both SSM. These will be
explained in the following subsections.
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Time To Collsion

The TTC is the time it takes when two vehicles, moving in the same direction, would make a
collision when continuing with a constant speed, at which they are traveling at this moment.
As said above, the size of the TTC can be used to measure the severity of a conflict. When
a TTC value is low, that indicates that the probability of a collision is high. When the TTC
value is higher, there is a smaller chance that a collision would occur. Usually, a TTC value
of less than 1 second, is considered as a severe conflict [64]. To clarify this safety measure,
Figure 2-7 shows two vehicles driving in the same lane. The leading vehicle in blue, has a
velocity of 10 m/s while the following vehicle in black has a velocity of 15 m/s. Since the
difference in speed is 5 m/s and the gap between both vehicles is 7.5 m, it will take 1.5
seconds until the black vehicles collides with the blue vehicle, thus the TTC is equal to 1.5
seconds. For human drivers it is important to keep the gap between the leading vehicle and
themselves, large enough for them to react. Of course for autonomous vehicles, a safe TTC
value could be a lot smaller since their reaction time is a lot smaller, depending on the sensors
and computing power.
In the example in Figure 2-7, both vehicles are driving in the same lane. This safety measure
could be used for an autonomous vehicle approaching another vehicle to decide when the
headway gets to small and it has to change lanes, for example to overtake, or if it will decrease
its speed instead. For this thesis, the TTC will be used as a time-varying constraint for the
MPC to prevent collisions in the same lane. This constraint will be discussed in Chapter 2-4.
When both vehicles are driving in a different lane, but heading into the same direction, it is
not useful to calculate the TTC. For this reason another SSM can be used to determine if it is
safe to change lanes when there are vehicles nearby in adjacent lanes. To make this decision,
the PET will be used.

Figure 2-7: Time to collision

Post-Encroachment Time

For the AVs to decide if it is safe to make a lane change, the Post-Encroachment Time will
be used. This is necessary since the trajectories of two vehicles driving in a different lane
and staying there will never intersect. Where the TTC used the relative speed between two
vehicles, the PET will use only the speed of a vehicle approaching another vehicle. When
another vehicle is driving at an adjacent lane, an encroachment line perpendicular to the road
as can be seen in Figure 2-8, can be drawn for example at the rear bumper where a collision

Master of Science Thesis Martijn Vonk



24 Research Methodology

could happen. The PET will be the time that it takes the ego vehicle, which is the vehicle
that we are interested in, to cross that line. Whether the vehicle in the other lane will move
and at which speed does not matter, since that encroachment line will stay at that exact
location. Since the encroachment line is vertical and crosses all lanes, it also does not matter
where the ego vehicle will cross this line. These properties make the PET more suitable to use
as a SSM for collision avoidance while lane changing than the TTC. This concept is visualised
in Figure 2-8. As can be seen in the figure, there are four different possibilities in which the
PET can be used. This is shown with four different vehicles A-D where vehicle O is changing
lanes. While vehicle O is changing lanes, it it possible to calculate the PET for all four
vehicles. When the PET equals zero, the ego vehicle made contact with the encroachment
line with a nearby vehicle. The higher the PET, the smaller the probability that a collision
would occur. This means that the PET also indicates the severity of a conflict, similar to
the TTC. But because of the differences between the TTC and the PET, the TTC would be
more suitable for the longitudinal collision constraints, while the PET is more suitable for
the lateral collision constraints, used by the AVs.

Figure 2-8: Post-Encroachment Time [52]

2-3-3 Summary

In this chapter, some possibilities to describe the behaviour of the AVs are discussed. The traf-
fic turbulence, consisting of the acceleration noise and unnecessary lane changing behaviour
could be used in the cost function to reduce for example the total travel time for all the
vehicles in the scenario given in Chapter 2-1. For the collision avoidance, the TTC can be
used for the longitudinal collision avoidance constraints while the PET can be used for the
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lateral collision avoidance constraints. How the cost function and constraints are designed
will be discussed in Chapter 2-4.
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2-4 MPC

Now that we have got all the ingredients for the MPC, we have to set up the optimization
problem. First we will dive into the literature to explain the state of the art of MPC in traffic
applications. A lot of research has been done on collision avoidance in highway scenario’s,
which could be useful for not reinventing the wheel again. Next we will give an overview of
the optimization problem which has to be solved by the MPC. All the different components
and some pseudo code will be shown to get a clearer view of the problem that has to be solved.
After that we take a look at output MPC, which is necessary for reference tracking. This is
important to make the AVs speed converge to a certain reference speed, which could be the
legal driving speed for example, or make the lateral position converge to the right coordinate
to prevent the vehicle staying in the left lane or in between different lanes. Finally the cost
function and constraints used for this thesis will be discussed.

2-4-1 MPC in traffic applications

The first question that we have to ask is which form of MPC would be the most suitable
for this thesis project. Because of its optimal solution, versatility and the reason that it
can handle constraints, it is a popular method used in traffic applications. But since it is
so versatile, it is important to analyse the state of the art to find out how MPC is mostly
used in collision avoidance. The most common MPC methods used in traffic applications
are distributed MPC, Robust MPC, non linear MPC, linear MPC and hybrid MPC. These
different methods will be discussed in the following sections.

Distrubuted MPC

A lot of research has been done on distributed MPC [7]. Distributed MPC has the advantage
that it is easy to scale. Since there are multiple MPC controllers distributed over multiple
vehicles, they all have to solve a smaller part of an optimization problem. Usually these
vehicles can communicate with other vehicles nearby, to share some variables. Hierarchical
structures can be used to make this process more efficiently, which can be seen in Figure 2-9.
In this figure, a lot of different levels of control are used to control different plants, which
could be multiple AVs for this thesis. Despite the fact that distributed MPC is highly scalable
and could be used for huge simulations, it increases the computational load for some smaller
simulations. This method is mostly used in highway scenario’s: for example for highway
manoeuvres [19] or cooperative platooning [60].

Robust MPC

The next method of MPC that could be used is robust MPC. This has been proven to be
successful when combining longitudinal and lateral driving behaviour, by ensuring that the
given trajectory is feasible [36]. Robust MPC is mostly used when there are some uncertainties
involved. For example weather influences or the uncertainty in decision making of nearby road
users. These kinds of uncertainties can be handled by robust mpc and is mostly researched
in highway scenario’s for for example cruise control [4] and lane changing [30]. This method
could also be used in urban areas [43].
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Figure 2-9: Hierarchical distributed control structure [70]

Non linear and linear MPC

Another form of MPC is non linear MPC [39]. Since this method needs more complex
optimization methods to obtain the optimal solution and could get stuck in some local minima,
it takes a lot more computational power to solve these kind of problems. This could be
a problem since the MPC has to be run real time when applied to AVs. Because of its
complexity, it could have the advantage of being more realistic than MPC with linearized
models. Research shows that this is not always the case, and that some linear versions work
equally well as non linear MPC [17]. Sometimes the non linear models can also be linearized
to a linear but time-varying system [42]. Both linear and non linear models used for MPC
can be used in highway scenario’s and urban areas, since they are both very general.

Hybrid MPC

The last version of MPC discussed in this thesis that is applied in traffic scenario’s is hybrid
MPC. There are different forms of hybrid models, each with its own advantages, which could
be useful when separating the longitudinal and lateral behaviour. Sometimes non linear
models can be simplified by using Piecewise-affine (PWA) or Mixed Logical and Dynamical
(MLD) functions [20] to reduce the computational load. But the real benefit is to use hybrid
control to achieve results that can not be achieved by regular linear of non linear controllers
[58].

MPC for this thesis

Many of these different methods discussed above have been used successfully for different
kind of highway scenario’s like obstacle avoidance [27][21], platooning [29] and minimizing fuel
[22] consumption for trucks, and seem to work well in simulations. Often in these highway
scenario’s, the constraints used in any MPC method can be used to bound the physical limits
of the vehicle and for passenger comfort [54].
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Because the simulation used for this thesis is small and contains only a small number of
vehicles at the same time, distributed MPC seems not the right choice. Where uncertainty
is not necessarily in the scope of this project, and it is important to run a lot of different
simulations with a simulation time of 1 hour, the simplicity of MPC using a linear model
is preferred. As shown above, this could work equally well as the more complex non linear
MPC, and we will use a non linear vehicle model to get more realistic driving trajectories.
Because a linear state space model will be used, a quadratic programming problem can be
formulated where a least squares algorithm will be used to find the optimal solution.
In the next section will be explained how this form of MPC using a linear model works.

2-4-2 The MPC problem

As explained earlier, MPC stands for Model Predictive Control. This means that this type
of controller tries to predict the future, using an internal model. This model describes the
dynamics of the system that has to be controlled. Usually the equations of a system are known,
obtained by knowledge of the system or can be approximated by system identification [62].
Using this model, it can be predicted in which state you will end when using a certain sequence
of inputs and knowing the initial state ξ0. How many time steps in the future the MPC has
to predict is determined by the prediction horizon. This is different in comparison with an
Linear-Quadratic Regulator (LQR) controller which uses an infinite prediction horizon. In
Figure 2-10 is shown how a discrete time MPC prediction horizon works.

Figure 2-10: Discrete time MPC [56]

As can be seen from the figure, the current time step is k. At this point in time, the MPC
makes a prediction of the states until a time step k + p where p is the prediction horizon.
To calculate the states in the prediction horizon, the intern model will be used. Using a cost
function Jp based on the prediction horizon, which is a function depending on the input and
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the different states within the control horizon, an optimal input u can be calculated. To
tune the MPC, multiple weights can be used in the cost function to create the right driving
behaviour. When the MPC minimizes the cost function while keeping the constraints into
account, an optimal sequence of inputs is given. Since the MPC has to use these inputs real
time, only the first input or inputs from this sequence at time step k are used. Then the
controller will shift to the next moment in real time where it can make a decision again, and
will predict the optimal solution for the new time step. This process will be repeated for as
long as necessary.
To clarify a few things, the pseudo code of the optimal control problem is shown in Equation
2-24:

Pp(ξ0, k) :



min
up

Jp(ξ0,up)

s.t. ξ(k + 1) = Aξ(k) +Bu(k)
Fξ(k) ≤ e
Gu(k) ≤ a
ξ(p) ∈ Xf

(2-24)

In these equations, the cost function Jp has be be minimized using the initial state ξ0 and a
sequence of inputs up with its length depending on the prediction horizon p. From this input
sequence up, only the first inputs at the current time step will be used. In the case of this
thesis, the inputs are the steering angle δf (k) and the longitudinal acceleration a(k). This
optimization problem is subject to the system dynamics which are ξ(k+ 1) = Aξ(k) +Bu(k)
which is the linear kinematic vehicle model given in Chapter 2-2. Next there are state con-
straints Fξ(k) ≤ e and input constraints Gu(k) ≤ a and the terminal constraints ξ(p) ∈ Xf .
The terminal constraints are useful to guarantee stability. This happens when the final state
at time instant p is inside a set of states Xf .

Usually a controller steers the states to an equilibrium point which could be the origin for
example. But sometimes you want to steer the states to a certain reference, which is shown
in red in Figure 2-10. This could be a certain location, or a speed of 100 km/h for example.
Using the past measured outputs, shown in yellow, the optimization problem has to be solved
to converge the predicted output to the reference output. How this reference tracking works
exactly, will be shown in the next section.

2-4-3 Output MPC

For this thesis, a reference of the desired longitudinal speed and the lateral position will be
necessary. Using a reference for the longitudinal speed will make the AVss speed converge to
the legal speed limit as fast as possible, while also taking the constraints into account. The
lateral position is important for collision avoidance and staying in the middle of the lane.
This kind of reference tracking can be done using output MPC, where we use the output η(k)
to converge to the ηref . Since ηref = Cξref , we also need a ξ(k) that converges to ξref , This
will be a steady state where ξref = Aξref + Buref , which means that to make the system
converge to a certain reference output, a reference state and reference input are necessary. It
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is important for these references that the constraints are satisfied: (ξref , uref ) ∈ X× U =: Z
and Cξref ∈ Y. To find these target states and inputs, an Optimal Target Selection (OTS) is
necessary. We can formulate this optimal target selection as an optimization problem:

(ξref , uref )(ηref ) ∈



argmin
ξr,ur

J(ξr, ur)

s.t.
[
I −A −B
C 0

] [
ξr

ur

]
=

[
0
ηref

]
(ξr, ur) ∈ Z
Cξr ∈ Y

(2-25)

In this optimization problem, we use the ηref as given parameter. For the cost function J , we
chose J = 1

2u
T
r Rrefur where the Rref is a weight matrix used to weight the different inputs.

For this thesis, just the identity matrix is used as reference for the input weights. This cost
function is subject to ξr = Aξr +Bur and Cξr = ηref which is written differently in Equation
2-25 to obtain a sequence of reference states and inputs. For these sequences of reference
states and inputs it is important that the constraints are satisfied.

This optimization problem could be solved offline, when the ηref which consists of a yref

and vxdes, is given and constant. Since this is not the case for this thesis it has to be solved
again when the reference changes. The yref will be selected using the following algorithm
[28]:

ηref (k) =
[
vxdes(k)
yref (k)

]
(2-26)

yref (k) = argmin
yCL

(y(k)− yCL) (2-27)

where

yCL ∈ {yCL1, yCL2, ...} (2-28)

Here, yCLi is the y-coordinate of the center line of each lane and y(k) is the y-coordinate of
the ego vehicle. This algorithm is necessary to make the vehicle drive in the middle of the lane
where it is currently driving. The reference for the longitudinal speed vxref will be constant
at 100 km/h = 27.78 m/s, which is the legal speed limit. To steer the ego vehicle to an
adjacent lane for overtaking or to stay right, the cost function and constraints are necessary
which will be explained in the next sections.

2-4-4 Cost function

The cost function of the MPC will describe the behaviour of the vehicle. Since we want the
vehicle to drive in the middle of the lane and keep a certain driving speed, we include these
in the cost function. The quadratic cost function Jp of this thesis will be shown below:

Martijn Vonk Master of Science Thesis



2-4 MPC 31

Jp = min
u1,u2

p−1∑
k=0

q1(y(k)− yref (k))2 + q2(vx(k)− vxdes(k))2

+q3ψ(k)2 + Pξ(p)2 + r1u1(k)2 + r2u2(k)2

(2-29)

where

Q =

q1 0 0
0 q2 0
0 0 q3

 R =
[
r1 0
0 r2

]
(2-30)

Here Q and R are the weight matrices, where Q will be used for the states and R for the
inputs. P is the weight matrix used for the final state ξ(p) at the prediction horizon, and is
the solution of the Discrete Algebraic Riccati Equation (DARE). This equation is given by:

P = (A+BK)TP (A+BK) + (Q+KTRK) (2-31)
K = −(BTPB +R)−1BTPAT (2-32)

and depends on the system matrices A and B of the state space model given in Chapter 2-2
and the weight matrices Q and R.
The cost function in Equation 2-29 will be minimized using the inputs u1 and u2. The first
2 terms at the right hand side will be used to make the vehicle go to the middle of the lane
which is yref and tries to keep its longitudinal speed vx(k) as close to vxdes(k) = 27.78m/s as
possible. The q3ψ(k)2 will have the effect that the heading angle ψ(k) will converge to zero to
make the vehicle drive straight. Finally, r1u1(k)2 and r2u2(k)2 will penalize accelerating and
steering when overused, to prevent the vehicle from wasting fuel and keeping the acceleration
noise as low as possible. While this creates the preferred driving behaviour, we also expect
the AVs to prevent colliding with other vehicles and staying on the road. This can be done
by using constraints, which will be explained in the next section.

2-4-5 Constraints

For the constraints we make a distinction between 3 different kind of constraints. First the
input constraints will be explained. Next the state constraints will be shown to keep the
vehicle within certain bounds, and finally the collision constraints are discussed. As a recap,
the LTI state space model being used is given by:

ξ(k + 1) =

1 0 0
0 1 vconst∆t
0 0 1


vx(k)
y(k)
ψ(k)

 +

∆t 0
0 vconst

lr
lf +lr

∆t
0 vconst

lf +lr
∆t

 [
a(k)
δf (k)

]
(2-33)

where ξ(k) are the states, and u(k) the inputs.

Input constraints

The first constraints are the input constraints. To make sure that the inputs are realistic
and don’t exceed the physical limits of the vehicle some constraints are necessary. It is
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also important to keep the maximum acceleration low to increase comfort for the passengers
driving the vehicle [8]. When the maximum acceleration and deceleration are to high, the
AVs looks more like a roller coaster, but when they are too small, some dangerous situations
could occur. For this reason the same values used by the Krauss model in SUMO for the
acceleration will be used:

−2.6 ≤ u1(k) ≤ 3 (2-34)

Where these constraints are in m/s2. Next for the steering angle δf , the following constraints
are used:

−0.02 ≤ u2(k) ≤ 0.02 (2-35)

which are both in radians. These values are very small because driving on the highway
involves small steering inputs to make sure that the lateral acceleration stays within bounds
[37].

State constraints

Next the state constraints are used to keep the vehicle within certain bounds. Since we want
to use the cost function to create the right driving behaviour, the legal driving speed is not
used as a state constraint. Instead a physical limit for the driving speed is used:

0 ≤ ξ1(k) ≤ 40 (2-36)

which is 40 m/s. A minimum of 0 m/s is used to prevent the vehicle to drive in reverse.
Next some constraints are necessary to keep the vehicle within the road boundaries. Of
course the MPC tries to keep the vehicle in the middle of the lane, but for safety reasons and
preventing the vehicle from unfeasible lane changes the road boundaries are included in the
state constraints [28]:

ymin + 1
2Ly ≤ ξ2(k) ≤ ymax −

1
2Ly (2-37)

In this equation, Ly is the width of the vehicle, and ymin and ymax are the road boundaries.
These constraints are also used when there is a vehicle in one of the adjacent lanes. When
another vehicle is within sensors range Lsc, and within a safe range Lsx,P ET , that lane will
be blocked to prevent the ego vehicle from lane changing and colliding with another vehicle.
The Lsx,P ET can be determined by:

Lsx,P ET (k) = vx(k)tP ET (2-38)

In this equation, the longitudinal speed of the ego vehicle will be used and multiplied by a safe
PET tP ET in seconds, to obtain a distance Lsx,P ET , which can be used to block an adjacent
lane when another vehicle is too close to perform a successful lane changing manoeuvre to
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that lane. This means that the ymin or ymax from Equation 2-37 can be changed when there
is a vehicle in the lane next to the ego vehicle [28]:

ymax =
{
ymax − Lsy if |xri(k)| ≤ Lsx,P ET

ymax otherwise
(2-39)

or a vehicle in the lane right to the ego vehicle:

ymin =
{
ymin + Lsy if |xri(k)| ≤ Lsx,P ET

ymin otherwise
(2-40)

Where Lsy is the lane width and xri(k) the relative longitudinal distance between both ve-
hicles. When a low tP ET is chosen, the distance Lsx,P ET gets smaller depending on the
longitudinal speed of the ego vehicle. This parameter can be adjusted to change the mini-
mum PET the AVs should keep from vehicles in an adjacent lane.

Collision avoidance constraints

The last constraints that need to be discussed are the collision avoidance constraints. For
these constraints, we will make use of the relative distances and speeds between the ego
vehicle and the leading vehicle in the same lane. These relative distances and speeds can be
described using the following equations [28]:

vxri(k + 1) = vxri(k) + (axi(k)− u1(k))∆t (2-41)
xri(k + 1) = xri(k) + vxri(k)∆t (2-42)

yri(k + 1) = yri(k) + (vconstψ(k)− vconst
lr

lf + lr
u2(k))∆t (2-43)

Here the relative x- and y-coordinate between both vehicles are given by xri(k) and yri(k),
where the relative speeds in x- and y-direction are given by vxri(k) and vyri(k). The axi(k) is
the acceleration of the leading vehicle. This can be used to create the following time varying
collision avoidance constraints [28]:

xri(k)± Lsx

Lsy
yri(k) ≤ −Lsx (2-44)

The ± is a minus sign when the left lane is available for overtaking, and a plus sign when the
right lane is available. The constraints are also shown in Figure 2-11 for clarification.

In Figure 2-11, the host vehicle which is the ego vehicle is driving in the right lane, where
a slower driving vehicle S1 is driving in the same lane. The collision avoidance constraints
described by Equation 2-41 - 2-43 create a diagonal line as shown in Figure 2-11. The steepness
of this line depends on the Lsy which is chosen to be the lane width in this thesis, and the
Lsx, which can be described by the following equation:

Lsx(k) = vxri(k)tT T C (2-45)

The Lsx depends on the relative longitudinal speed between both vehicles, multiplied by the
TTC tT T C . The TTC will be chosen and varied in this thesis to analyse its effects on the

Master of Science Thesis Martijn Vonk



34 Research Methodology

Figure 2-11: Collision avoidance constraints [28]

travel time of the other road users. This diagonal constraints are used to force the vehicle
to the left lane to overtake the slower vehicle. When the ego vehicle enters the left lane, the
constraint disappears and the lateral reference coordinate will be changed to the middle of
the left lane. Now the right lane will be blocked by the state constraints described above,
by adjusting the road boundaries. When the yellow ego vehicle has passed the blue vehicle
by a distance Lsx,P ET , the right lane will be unblocked and the ego vehicle can change lanes
to the right again, by changing the lateral reference coordinate. The yref will always be the
middle of the lane where the AVs is currently driving, unless the right lane is unblocked and
it is possible to keep right.

For the change in relative y-distance between both vehicles, used in Equation 2-43, only
the lateral speed of the ego vehicle is used and not the lateral speed of the leading vehicle.
If the lateral speed of the leading vehicle was also used, the collision avoidance constraints
would push the ego vehicle driving on the left lane off-road when getting cut by another vehi-
cle coming from the right lane, because the constraints keep moving upward. While using the
lateral speed of the leading vehicle works in the research of (M. Jalalmaab et al. 2015)[28],
this does not work when using other vehicles which are also changing lanes.

2-4-6 Summary

In this chapter we have discussed the state of the art for MPC applied in traffic scenario’s.
A linear state space model (the linear kinematic bicycle model) will be used together with a
quadratic cost function and linear constraints, such that a least squares algorithm can be used
to solve the optimization problem. Next the reference tracking, used by the MPC is explained
and the necessary input and state constraints are discussed. Finally the time-varying collision
avoidance constraints are shown to get a complete overview of how the MPC controlling the
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AVs in this thesis works. In the next chapter we take a look at the results when running
different scenario’s in SUMO.
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Chapter 3

Results

Now that the complete MPC and all components necessary for the simulations are discussed,
the results can be obtained. First, an easy scenario with one human driver and one AVs
will be run in a simulation to test if the controller can overtake a vehicle as expected. Next,
the scenario as discussed in Chapter 2-1 will be run with multiple AVs. This is necessary
to answer the research question. First is tested whether lowering the PET and TTC has
any effects on the human drivers in the simulation. The next batch of simulations has to
show whether an increase in penetration rate increases the effect on the human drivers. And
finally will be tested if the traffic flow influences effect on the human drivers, given the same
penetration rates.

3-1 Testing the controller

The first test for the MPC is to overtake another vehicle, when driving on a highway with 2
lanes. In this scenario the cyan AV is starting at the right lane with an initial speed of 100
km/h. On the same lane, another blue vehicle is driving with a constant speed of 80 km/h,
starting 100 meter ahead, as can be seen in Figure 3-1.

Figure 3-1: Overtaking a slower vehicle
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The objective of the AVs is to overtake the slower vehicle, while keeping its speed constant.
For this test a PET of 1 second is used and a TTC of 5 seconds is used. For the prediction
horizon, 10 time steps are used. When tuning the controller, the weights used in the cost
function that obtained the best results are given in Table 3-1.

q1 200
q2 0.02
q3 10
r1 1.5
r2 200

Table 3-1: Weights used for the overtaking test

Running the simulation using this set up shows that the AVs has no trouble keeping the
desired longitudinal speed, while overtaking the slower vehicle successfully. As can be seen
in Figure 3-2, the constraints push the vehicle to the left lane to avoid a collision. As soon
as the AVs crosses the boundary to the left lane, the lateral reference position changes to the
center line of the left lane. When the AVs has passed the other vehicle and the PET > 1, the
reference position switches back to the middle of the right lane as can be seen in the figure.

Figure 3-2: Lateral position

In Figure 3-3 the change in steering angle is illustrated. The AVs seems to have some trouble
choosing the right steering angle which could be caused because of the time-varying constraints
or the fact that the non linear model used in the simulation is not exactly the same as the
linear model used for the trajectory planning. When the AVs crosses the line from the right
to the left lane and the lateral reference position is changed, the vehicle fluidly steers to the
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middle of the left lane. This lane changing manoeuvre was executed while staying away from
the maximum steering angle which is 0.02 radians. When the AVs performs its second lane
change back to the right lane, a more fluid steering motion is used.

Figure 3-3: Steering angle

The effect of the steering angle on the vehicle angle is shown in Figure 3-4. Where the first
steering action was not that fluid, a non fluid change in vehicle angle can be seen. This first
lane changing manoeuvre consists of 2 parts. First when the collision avoidance constraints
are used and the vehicle is pushed to the left lane, we see an increase in vehicle angle, and a
small decrease in vehicle angle to steer the vehicle back. Then around 13.5 seconds when the
vehicle passes the line to the left lane, the reference is changed and the vehicle makes a fluid
motion to the middle of the left lane. When the lateral reference is changed for the second
time to return to the right lane, also a more fluid graph of the vehicle angle can be seen.

Although the steering inputs could describe a more fluid motion, the effects on the lateral
position are small since the steering angles are also small (0.02 rad = 1.15 degrees). When
tuning the controller differently, it is possible to get a more fluid steering motion which results
in a more fluid vehicle angle. This comes at the cost of increasing the time necessary for a
lane changing manoeuvre.
The controller succeeds in keeping the longitudinal speed constant, because the first input
which is the longitudinal acceleration or deceleration is unused. In the next sections, some
larger and more complex simulations are run to test the effects of a smaller TTC and PET.
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Figure 3-4: Vehicle angle

3-2 Full simulation

Now that we have seen that the MPC is successful in overtaking other vehicles without
colliding, the full simulation with the scenario described in Chapter 2-1 can be run. To
clarify some things, the scenario is shown again in Figure 3-5, as can be seen below.

Figure 3-5: Recap highway scenario
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When the vehicles in the simulation enter the highway from Segment 1 or the on-ramp, they
enter segment 2 which has a length of 500 meter and consists of 2 lanes. For the first 400
meter on segment 2, the AVs will stay on the right lane unless the MPC decides to overtake,
for example because it wants to keep a constant speed. After 400 meter, the MPC will switch
its lateral reference to the left or right lane, depending on its destination.
At the start of the simulation, the highway is completely empty. When the simulation starts
and the first vehicles enter the simulation, they are created at the start of segment 1 or on the
on-ramp with an initial speed of 100 km/h. Different vehicle flows are used, and the vehicles
are randomly distributed over the full simulation time. For all the simulations, a warm up
round of 10 minutes will be used to make sure that the traffic is stabilized enough to create
a realistic scenario. After that 10 minutes, a complete simulation of 1 hour will be run where
all the data will be measured. The first tests have to point out whether lowering the PET or
TTC has a positive result.

For the human drivers controlled by SUMO, the parameters used are displayed in Table
3-2.

Length 5.00 m
Min gap 2.50 m

Max speed 55.56 m/s
Max acceleration 2.60 m/s2

Max deceleration 4.50 m/s2

Sigma 0.50
Tau 1.00 s

Table 3-2: Parameters used for the human drivers

The length of the vehicles in SUMO is 5m, and the min gap when standing still is 2.50m.
The sigma describes the driver imperfection which is given by a value between 0 and 1. A
sigma of 0 denotes perfect driving. Finally the tau is the drivers desired (minimum) headway
in seconds. These are the default parameters used in SUMO and should represent realistic
human driving behaviour.

When running the first tests of the full simulations, it can be concluded that some simplifica-
tions are necessary. While the idea of time-varying constraints that takes the acceleration of
the other vehicles into account seems good for some simple simulations, it did not work for
the more complex highway scenario’s with a lot more vehicles involved. When the ego vehicle
is driving at the left lane, and another human driven vehicle in front of you also changes lane
to your lane in front of you, the collision avoidance constraints will push you off road since the
constraints keep moving with the predicted lateral speed of the vehicle changing lanes in front
of you. These time-varying constraints had to be made constant in lateral direction to prevent
this from happening in more complex simulations. For this reason, the collision avoidance
constraints in Chapter 2-4 are described without the influence of the lateral acceleration of
another vehicle.
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3-2-1 Lowering the PET and TTC for AVs

For these simulations, a vehicle flow of 3200 vehicles per hour will be used. It is expected
that when the flow is high, the benefits of the extra mobility gained by decreasing the PET
and TTC will be easier to show. Realistic headways on highways can vary between less than
a second and 2-3 seconds depending on the vehicle density [65][41], and other research shows
that realistic PET and TTC values are also in the range of less than a second to 2-3 seconds
[33][23].
First we will keep the minimal TTC at 0.1 seconds with a varying minimal PET for the AVs.
Next some simulations will be run with a PET at 0.1 seconds and a varying TTC. As a recap,
the PET is used for lateral collision avoidance, and the TTC is used for the longitudinal
collision avoidance. The results of these simulations are shown in Table 3-3 and Table 3-4
and illustrated in the scatter plots in Figure 3-6 and Figure 3-7. In these tables and figures
the average travel time of the HVs and AVs is shown.

PET [s] TTC [s] Average Travel Time HVs (σ)[s] Average Travel Time AVs (σ)[s]
1.5 0.1 25.805 (0.769) 25.185 (0.280)
1 0.1 25.756 (0.766) 25.196 (0.281)
0.5 0.1 25.681 (0.749) 25.184 (0.285)
0.1 0.1 25.655 (0.729) 25.188 (0.262)

Table 3-3: Changing the PET for a constant TTC at a penetration rate of 10% and a flow 3200
vh/h

PET [s] TTC [s] Average Travel Time HVs (σ)[s] Average Travel Time AVs (σ)[s]
0.1 3 25.596 (0.692) 25.211 (0.292)
0.1 2 25.609 (0.695) 25.196 (0.290)
0.1 1 25.643 (0.722) 25.189 (0.296)
0.1 0.1 25.655 (0.729) 25.188 (0.262)

Table 3-4: Changing the TTC for a constant PET at a penetration rate of 10% and a flow 3200
vh/h

The first thing that can be noticed from the tables, is that the average travel times of the
AVs are in all cases smaller than the average travel times of the HVs. This is caused by the
fact that the AVs can keep a shorter TTC or PET from other vehicles than the HVs. Next we
take a look at the effect that a decrease in a minimal PET or TTC used by the AVs has on
the HVs. As can be seen from both tables, when using a flow of 3200 vehicles per hour and
a penetration rate of 10%, decreasing the PET while keeping the TTC constant, a decrease
in average travel time for the human driven vehicles has been measured. Also the standard
deviation σ is shown between brackets next to the average travel time. As can be seen from
the table, the effect of decreasing the PET on the average travel time of the human drivers is
very small. Although the effect is small, for every decrease in PET for the AVs, the average
time of the Human Vehicles (HVs) is decreased. This was expected since keeping a smaller
PET gives more flexibility in overtaking. Since the decrease in average travel time for the
HVs is very small at a penetration rate of 10%, lowering the PET for AVs would not benefit

Martijn Vonk Master of Science Thesis



3-2 Full simulation 43

HVs that much in a real world situation. Although the HVs do not benefit by a significant
decrease in travel time, it is important that is shown that the faster travel times of the AVs
are not at the cost of the HVs.

Next we take a look at different values for the TTC used by the AVs. When decreasing only
the TTC while keeping the PET constant, a small increase in average travel time by all human
drivers in the simulation is measured. As can be seen in Figure 3-8, this effect is smaller than
when the PET is decreased and the TTC is kept constant. It was not expected that a decrease
in TTC for the AVs, would lead to an increase in travel time for the HVs, since this should also
give the AVs more possibilities to overtake because a shorter headway is allowed. This result
could occur due to other behaviours of the AVs which have a larger impact on the average
travel time of HVs than decreasing the TTC. One of these possible behaviours could be caused
by the collision avoidance constraints. Since the overtaking constraint gradually pushes the
AV to the left lane when overtaking on the right lane, the steepness of this constraint depends
on the allowed TTC used by the AV. It could be the case that when programming collision
avoidance using linear constraints as done in this thesis, the AVs hinder the other road users
less when a higher TTC is used, because this reduces the steepness of this constraint and will
create a slower and more predictable overtaking manoeuvre which makes it easier for human
drivers to adjust.
To compare the effects on the HVs between decreasing the TTC and the PET for the AVs,
both figures are combined in Figure 3-8.

Figure 3-6: TTC scatter plot of 3200 vh/h with a penetration rate of 10%, comparing the
average travel times of the HVs with AVs

The trend lines show the trend when both SSM vary. As can be seen in Figure 3-8, the effects
of decreasing the TTC are smaller compared to decreasing the PET.
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Figure 3-7: PET scatter plot of 3200 vh/h with a penetration rate of 10%, comparing the
average travel times of the HVs with AVs

Figure 3-8: Combined PET and TTC scatter plot of 3200 vh/h with a penetration rate of 10%,
showing the average travel times of the HVs
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3-2-2 Increasing the penetration rate

The next simulations have to show the effect of an increased penetration rate. A penetration
rate of 0%, when there are no AVs driving in the simulation, will be used for comparison
against simulations with different penetration rates. A value of 0.1 seconds for both the PET
and TTC will be used by the AVs to test different penetration rates at a flow of 3200 vehicles
per hour. The results are shown below in Table 3-5.

Penetration rate [%] Average Travel Time HVs (σ) [s] Average Travel Time AVs (σ) [s]
0 25.717 (0.677) -
5 25.660 (0.687) 25.164 (0.247)
10 25.655 (0.729) 25.188 (0.262)
15 25.616 (0.765) 25.179 (0.282)
20 25.521 (0.745) 25.149 (0.265)
30 25.485 (0.742) 25.138 (0.264)
40 25.429 (0.821) 25.128 (0.298)

Table 3-5: Different penetration rates for 3200 vh/h with a PET and TTC of both 0.1 s

As can be seen from the table, an increase in penetration rate decreases the average travel
time of the human drivers in the simulation. This is also shown in Figure 3-9.

Figure 3-9: Different penetration rates for a flow of 3200 vh/h

Although this decrease in average travel time is relatively small, even at a penetration rate
of 5%, a decrease in average travel time for the HVs can be noticed. When increasing the
penetration rate even further to 40%, a decrease of 1.120% in average travel time has been
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measured, compared to the situation with only HVs and no AVs. The trend is shown by the
trend line in Figure 3-9. This figure shows that that the decrease in average travel time for
the AVs at different penetration rates is not at the cost of the average travel times of the HVs.

To show the distribution of the travel time of the human drivers compared to the AVs and
the complete traffic flow, a box plot is shown in Figure 3-10. The average travel time and
standard deviation are also shown Table 3-6.
The box plot shows that the median (the red horizontal line) of the travel time of AVs is lower
than that of the HVs. The table also shows that the average travel time is smaller for the
AVs than for the HVs. The boxplot shows that the standard deviation σ is a lot smaller for
the AVs than for the HVs because they are all programmed with the same driving behaviour
while human driving behaviour varies more. The data of the HVs has more outliers while the
data of the AVs is spread closer around the median.

Figure 3-10: A boxplot comparing the travel time for Human Vehicles, AVs and both together
for a flow of 3200 vh/h at a penetration rate of 40%

Vehicles Penetration rate [%] PET [s] TTC [s] Average Travel Time (σ)[s]
HVs 60 - - 25.429 (0.821)
AVs 40 0.1 0.1 25.128 (0.299)

All traffic 100 - - 25.311 (0.682)

Table 3-6: The average travel time for Human Vehicles, AVs and both together for a flow of
3200 vh/h at a penetration rate of 40%
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3-2-3 Changing the traffic flow

The last simulations have to show the effect of a decrease in traffic flow. When the traffic
flow of 3200 vehicles per hour is used, the density of vehicles is relatively high. When the
traffic flow is smaller and not as close to the roads maximum capacity, it is expected that
vehicles have a lot more space to switch lanes or overtake other vehicles, which could decrease
the effect of using a small TTC and PET. The next simulations will be run with different
traffic flows at a penetration rate of 0%. The results from these simulations can be compared
with simulations using a penetration rate of 10% and a PET and TTC of 0.1 seconds. Using
data with no AVs and 10% Avs at each traffic flow, the improvement can be calculated. The
results are shown below in Table 3-7 and Table 3-8.

Flow [vh/h] Average Travel Time (σ) [s]
1800 24.630 (1.110)
1900 24.655 (1.044)
2000 24.718 (1.115)
2100 24.775 (1.001)

Table 3-7: Average travel times at 0% penetration rate for different flows

Flow [vh/h] P. rate [%] PET [s] TTC [s] Average Travel Time (σ) [s] Improvement [%]
1800 10 0.1 0.1 24.637 (1.106) -0.028
1900 10 0.1 0.1 24.659 (1.052) -0.016
2000 10 0.1 0.1 24.711 (1,135) 0.028
2100 10 0.1 0.1 24.757 (1.015) 0.073

Table 3-8: Improvement for different vehicle flows using a 10% penetration rate

Where a 10% penetration rate resulted in a decrease of the average travel time at a flow of
3200 vehicles per hour, the effects seem different at smaller vehicle flows. This result is also
shown in Figure 3-11.

As can be seen from the figure at both 1800 and 1900 vh/h, a penetration rate of 10% has a
negative effect on the average travel time of the human drivers. At a vehicle flow of 2000 vh/h,
we have measured a positive effect. This effect is increased when the traffic flow increases
further to 2100 vh/h. Where the maximum capacity of the scenario used in this thesis is at
4830 vh/h, positive effects on the average travel time of other road users can be measured
above around 40% of this maximum capacity, using the AVs from this thesis.

The negative effects at the lower traffic flows could be explained by the fact that a cer-
tain amount of the human driven vehicles controlled by SUMO exceeds the legal speed limit.
Where the legal speed limit is 27.78m/s, an overview of the average driving speed at the
traffic flows of 3200 vh/h and 1800 vh/h, both with no AVs are shown in the histogram in
Figure 3-12. As can be seen in the figure, many vehicles exceed the legal speed limit at
both traffic flows. This happens because SUMO assigns different speed factors to individual
vehicles, such that 95% of the vehicles drives between 80% and 120% of the legal speed limit
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Figure 3-11: Different vehicle flows and their improvement at a penetration rate of 10%

Figure 3-12: A histogram of the average vehicle speed of the vehicles controlled by SUMO at
3200 and 1800 vh/h. The red line is the legal speed limit of 27.78m/s.

[66]. According to SUMO, having a distribution of speed factors is beneficial to the realism
of a simulation. People exceeding the legal speed limit is also common in the real world. This
could be a reason why the AVs have a negative effect at lower traffic flows, since none of the
AVs exceeds this limit in any of the simulations in this thesis.
Where the average speed of the human drivers at a flow of 3200 vh/h is 27.11 m/s when there
are no AVs involved, the average speed increases to 28.34 m/s at a flow of 1800 vh/h when
there are no Avs involved. This means that the average speed of the human drivers at 1800
vh/h is higher than that of the Avs, since the human drivers drive faster than the legal speed
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limit. This means that the AVs will slow down the human drivers as a result. For the vehicle
flows of 1800 and 1900 vh/h, this effect seems bigger than that of the decreased PET, having
a negative effect as a result.

3-3 Summary

In this section, we have been analysing the results of this thesis. In the first section, a
successful overtake manoeuvre of the MPC is shown. This was later used in more complex
and bigger simulations to answer the research question: How does decreasing the PET and
TTC, used in the behaviour of autonomous vehicles, influences the travel time of the whole
simulation? Some more complex simulations showed that decreasing the PET has a positive
effect, while decreasing the TTC has a small negative effect, which could occur due to the
linear collision avoidance constraints. Next was shown that an increase in penetration rate
has a positive effect on the average travel time of the human drivers, which increases when
the penetration rate increases. Finally has been shown, that the effects mentioned above
where only present when the density of vehicles was high. When the traffic flow is low and
the vehicles have enough space to switch lanes or overtake other vehicles, the effects were
different. Although it is questionable how much AVs would actually help HVs in highway
scenario’s, it is important to get a good overview of the implications on traffic performance
when AVs start driving gradually on the highway next to HVs. In the next chapter, we take
a look at the summary of this thesis, the conclusion that can be made from the results, and
we discuss some interesting changes that could be applied for further research.
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Chapter 4

Discussion and Conclusion

In this chapter we start with a summary of this thesis. An overview is given of all the
different choices that have been maid during the process of this research. Next we will discuss
the results, the research question will be answered and some conclusions can be made. Finally
the there is a section with future challenges and recommendations which will point out how
to progress on these results and how the MPC can be improved to obtain an even better
controller.

4-1 Summary

In this work, an MPC is created to control multiple AVs in a simulation containing an on-
ramp and off-ramp scenario, to research the implications on traffic performance. To run the
controller and the simulations containing both AVs and human drivers, SUMO and Matlab
are used. To create a realistic human driving behaviour, the Krauss car-following model is
used to describe the longitudinal driving behaviour for all the different simulations. Next the
LC2013 lane changing model is used for the lateral driving behaviour. These human drivers
are all controlled by SUMO. To control the AVs, MPC is used because of its optimal solution
and for the reason that it can handle constraints, which is useful for collision avoidance. The
kinematic bicycle model has been used because it can describe the non holonomic driving
behaviour realistically, while being simple enough to keep the computational load low. A
Linear Time Invariant (LTI) state space model has been used by the MPC for the trajectory
planning, next to a quadratic cost function and linear, time-time varying constraints for
collision avoidance. To actually control the AVs by realistic trajectories using the optimal
inputs given by the MPC, a non linear kinematic bicycle model has been used to show
that using a linear kinematic bicycle model in the MPC for trajectory planning gives some
accurate results. The input constraints of the MPC are used to make sure that the physical
limitations of the vehicle (maximum acceleration and steering) are not exceeded, and driver
comfort is secured. While the time-varying linear constraints for collision avoidance have
its limitations, they have been proven effective in successfully overtaking vehicles in highway
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scenario’s. Finally some more complex simulations are run on an on- and off-ramp scenario,
where is shown that lowering the PET while still guarantying traffic safety by not lowering
it beyond the minimum of 0.1 seconds, has a positive effect on the average travel time of the
human drivers when the vehicle density is relatively high. Also increasing the penetration
rate of AVs using this decreased PET has a positive effect on the average travel time of the
human drivers under the same circumstances. Although the effects were very small, they were
consistently shown running simulations of 1 hour simulation time.

4-2 Discussion

The goal of this thesis was to investigate the implications on traffic performance when inte-
grating an MPC and the behavioural rules of human drivers into a numerical simulation. This
is important because situations with mixed traffic consisting of both AVs and HVs become
realistic when autonomous vehicles start driving on the highways gradually. To reach this
goal, the following research question should be answered:

What are the implications on traffic performance when implementing an MPC
and human drivers’ behavioural rules into a numerical simulation?

The main contribution of this thesis, is the implementation of the MPC and the human
drivers’ behavioural rules into a numerical simulation. To measure the effects of the MPC on
the performance of the mixed traffic scenario, we first decreased the PET and TTC which
the AVs should keep for collision avoidance. A minimum allowable PET is used by the AVs
for lateral collision avoidance which unblocks the adjacent lane for overtaking. A minimum
allowable TTC is used for longitudinal collision avoidance to decide whether the AV has to
slow down or can overtake when it approaching a leading vehicle. The traffic flow used for
these simulations is 3200 vehicles per hour. While the MPC is not specifically designed to
improve the traffic flow, decreasing the minimum allowable PET and TTC did decrease the
average travel time of the other road users, while also decreasing the average travel time of
the AVs itself. This thesis shows us that, when decreasing the PET while keeping the TTC
constant, a small but positive effect on the travel time of other road users can be measured,
when using a penetration rate for the AVs of 10%. The next step was to also decrease the
TTC while keeping the PET constant. Decreasing the TTC, which is used for longitudinal
collision avoidance, increased the average travel time of other road users. This could be caused
by other driving behaviours of the AVs, probably due to the linear collision avoidance con-
straints. The increase in average travel time of the HVs caused by decreasing the TTC of the
AVs was small compared to the decrease in average travel time of the HVs when decreasing
the PET of the Avs.

Because the decrease in average travel time of the human drivers is very small, it is un-
likely that AVs could be used to help HVs decrease their travel time, when using an MPC
as used in this thesis. When changing the linear collision avoidance constraints, it could be
possible to get a decrease in travel time for the HVs when decreasing the TTC used by AVs for
longitudinal collision avoidance. For example, more complex non linear constraints could be
used to change the driving behaviour of the AVs, as are used in (M. Ammour et al. 2021) [57].
The downside of an approach with non convex constraints is an increase in computation time.
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While this could work for a single AV, running simulations with hundreds or even thousands
of AV would increase the computation times even more.
It is also possible to change the cost function to help the other road users even more. Where
the time-varying linear constraints that are used for collision avoidance depend on the relative
speeds and distances between the AV and nearby cars, these relative states could also be used
in the cost function of the MPC. In this case the cost function can influence the other road
users directly instead of indirectly by tuning the weights.

While the decrease in average travel time of the HVs by decreasing the PET of AVs is already
shown at a penetration rate of 5%, this effect gradually increases when the penetration rate
is further increased, as was expected. At a penetration rate of 40%, a 1.120% decrease in
average travel time for the other road users is measured at a flow of 3200 vehicles per hour.
This decrease is too small to be meaningful for human drivers in the real world. What is
more important is that can be shown how human drivers react when driving in mixed traffic
situations next to AVs. We can conclude that the AVs reach their destination quicker than
their human counterparts when the traffic is relatively dense. And although the decrease in
average travel time for the HVs as a result of using different penetration rates of AVs is small,
we can exclude unforeseen negative effects.

Finally, when using the on- and off-ramp scenario described in this thesis, positive effects
on the average travel time of other road users can be measured above around 40% of the
maximum capacity, using the AVs from this thesis at a penetration rate of 10%. When the
traffic flow is further increased above 40% of the maximum capacity, the positive effects im-
prove. When the traffic flow is below 40% of the maximum capacity, other driving behaviours
like the maximum speed of the AVs seem to play a bigger role than decreasing the PET and
TTC used for collision avoidance. It can be seen that in realistic human driving behaviour,
speeding above the legal speed limit happens. This happens mostly outside rush hours when
the traffic flows are low. When the vehicle density is low and less overtaking and lane changing
is necessary, the speed at which a vehicle is driving influences the average travel time more
than keeping a smaller headway does. When AVs are programmed to drive below the legal
speed limit and a percentage of the HVs do not, the AVs will slow down these human drivers.
This could be prevented when the decision making of the AVs is improved, for example when
they can detect a vehicle approaching with a high relative distance compared to its own speed.
This could be improved when implementing relative states in the cost function of the MPC.
These will be described further in the recommendations section.

4-3 Conclusion

We can conclude that implementing the MPC and the behavioural rules of human drives into
a numerical simulation with mixed traffic driving in an on- and off-ramp highway scenario
gives a good overview of the effects that AVs have on the other road users. At high traffic
flow situations, AVs have a lower average travel time than HVs because they can keep smaller
headways than the human drivers. Next to this benefit for the AVs, lowering the PET that the
AVs keep for lateral lane changing behaviour also decreases the average travel time of the HVs
slightly. When the penetration rate increases, the average travel time of the HVs is decreased
even further. While this is a positive effect of AVs, the decrease in travel time is very small
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and would not be a significant benefit for human drivers in a real world situation. For the
longitudinal collision avoidance, linear constraints are used to keep a minimal TTC from a
possible leading vehicle. Because of these linear constraints, a decrease of the minimal TTC
that an AV should keep from another vehicle, leads to a very small increase of the average
travel time for other road users. This could be explained by the behavioural rules of the AVs
caused by the linear constraints used in this thesis. When the traffic flow is relatively low we
found that the effects caused by AVs keeping a low minimal headway are different since the
maximum speed and other behavioural rules play a more important role.

4-4 Future challenges and recommendations

For this thesis a simple algorithm is used, but it could be made a lot more complex to see if
this would decrease the travel time of the other road users even more. In this thesis, the cost
function of the AVs takes care of only the ego vehicle itself. It could be useful to create a cost
function that uses, like the time-varying constraints with relative positions and speeds, more
relative states. In this case the cost function could have a positive effect on the other vehicles
directly, since the equations describing how the AVs will influence other vehicles are integrated
into this cost function and can be optimized. This would be different from the method used
in this thesis where only the states describing the dynamics of the AVs are integrated into
the cost function, and the indirect effects of the AVs on the other road users are measured
when the simulation is finished. By using the relative states in the cost function, we could
improve the average travel time of the other road users even more. For example when a faster
vehicle is approaching the AV (which is overtaking a vehicle) from behind on the left lane.
The state vxri(k) that described the relative longitudinal speed between both vehicles could
be used with the weight q4 to converge the speed of the AV with the speed of the approaching
vehicle. This is shown in the cost function below:

Jp = min
u1,u2

p−1∑
k=0

q1(y(k)− yref (k))2 + q2(vx(k)− vxdes(k))2

+ q3ψ(k)2 + Pξ(p)2+q4vxri(k)2

+ r1u1(k)2 + r2u2(k)2

(4-1)

When the weight q4 is larger than the weight q2, it will overrule converging to the desired
speed and will converge to the speed of the approaching vehicle. In this case the AV prevents
blocking the lane for the approaching vehicle, and will return to the right lane when it has
finished its overtaking manoeuvre. Using this relative state in the cost function will probably
also result in exceeding the legal speed limit for the AV. Where this is usually undesired, it
might be desired in cases as described above to improve traffic safety. It is also possible to
prevent that the AV exceeds the legal speed limit in such cases by making some changes in
the decision making process of the AV before starting the lane change manoeuvre.

Next there are also some parts which have been simplified for this thesis. While the idea
of time-varying constraints that take the acceleration of the other vehicles into account seems
good for some simple simulations [28], it did not work for the more complex highway scenario’s
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with a lot more vehicles involved. When another vehicle makes a lane changing manoeuvre
and ends within sensor range in front of an AV, the constraints of the MPC will push the AV
of the road since the constraints are moving with the predicted lateral speed of the vehicle
changing lanes in front of you. These time-varying constraints had to be made constant in
lateral direction to prevent this from happening in more complex simulations.

Where the simulation times were 1 hour in simulation time, the actual time running these
simulations using higher penetration rates could easily exceed 3-4 days. This depends on the
computational power of the computer and is caused by the fact that multiple AVs need to
be controlled at the same time, which takes more time than running the MPC for one AV
which could be done in real time. Especially the communication between SUMO and Matlab,
and the fact that Matlab has to run the optimization algorithms takes a lot of time. Next to
using a faster computer, it would be useful to integrate the MPC in a simulation program to
decrease communication between various applications. This will increase the amount of data
that can be gathered for a larger variation of simulations.

Finally the AVs can only overtake on the left side, but not on the right side. In certain
situations, driving behaviour could be improved when overtaking on the right side is allowed.
For example in traffic jams or when pre-sorting to the right lane. This could be done by
running two different MPC problems, and mirroring the collision constraints over the longi-
tudinal line. This would give two optimal solutions from which one could be chosen. When
taking the final destination into account, it could be necessary to also add a path finding
algorithm to decide which solution to chose.
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Appendix A

Matlab Files

A-1 Main File

1 clc
2 clear all
3
4 % Parameters
5 lr = 2 . 1 ; % [m] Distance front axle to CoG
6 lf = 2 . 1 ; % [m] Distance rear axle to CoG
7 min_speed = 0 ; % [m/s]
8 max_speed = 40 ; % [m/s]
9 car_width = 1 . 8 ; % [m]

10 car_length = 5 ; % [m]
11 lane_width = 3 . 2 ; % [m]
12 roadbounds = [−6.4 −3.2 0 ] ; % [m] lower , middle , upper bound
13 max_acc = 2 . 6 ; % [m/s^2]
14 max_dec = 3 ; % [m/s^2]
15 min_delta = 0 . 0 2 ; % [rad] = 1.1459 degrees
16 max_delta = min_delta ; % [rad]
17 Lsy = lane_width ; % [m]
18
19 % Control data
20 h = 0 . 2 ; % Sample time
21 T = (3600+600)/h ; % Simulation horizon
22 dim . N = 10 ; % Control horizon
23 t = 0 : h : T∗h ; % Time vector for plots
24
25 % Weight matrices and PET
26 flow = 3200 ; % Main flow
27 p_rate = 0 . 3 0 ; % Penetration rate
28 safe_PET = 0 . 1 ; % Allowable PET
29 safe_TTC = 0 . 1 ; % Allowable TTC
30 weight . Q = diag ( [ 2 00 0 .02 10 ] ) ; % Weight on states: vx,

y, theta
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31 weight . R = diag ( [ 1 . 5 200 ] ) ; % weight on input: a,
delta

32
33 % Output only x1-2 for reference tracking
34 LTI . C = eye ( 2 , 3 ) ;
35 LTI . D = zeros ( 2 , 2 ) ;
36 [ dim . ny , dim . nx ] = size ( LTI . C ) ; % order or the system
37 [ ~ , dim . nu ] = size ( LTI . D ) ; % output dimension
38
39 % Input constraints
40 inputc . G = [ eye ( dim . nu∗dim . N ) ;−eye ( dim . nu∗dim . N ) ] ;
41 inputc . a = [ repmat ( [ max_acc ; max_delta ] , dim . N , 1 ) ; repmat ( [ max_dec ; min_delta

] , dim . N , 1 ) ] ;
42 Z1 = kron ( eye ( dim . N ) , eye ( 2 , 3 ) ) ; % State

constraints on only x1 and x2
43
44 % Create a list of the AV
45 [ AV ] = randAVlist (flow , p_rate ) ; % Creates a list

beforehand to check which vehicles in the simulation need to be
controlled by the MPC

46 p ( 1 : length (AV ) ) = true ; % Variable to
measure only the first state

47 %% SUMO
48
49 % Start Scenario
50 [ scenarioPath , ~ , ~ ] = fileparts ( which ( mfilename ) ) ;
51 cd ( scenarioPath ) ;
52 traci . start (’sumo-gui -c ./FlowScenario3200.sumocfg --step-length 0.20 --

lateral -resolution 1.6 --tripinfo -output Data.xml --start’ ) ; % This
runs the right configuration file containing the simulation details.
Next the step length is given. The lateral resolution is necessary to
switch to the sublane model to make lane changing behaviour vissable.
By default vehicles teleport when they perform a lane change. The
tripinfo saves the data into an XML file. Finally the simulation will
be started.

53 traci . gui . setSchema (’View #0’ , ’real world’ ) ; % Changes the view to make
the simulation look like the real world

54 % SUMO Loop.
55 for i = 1 : T % This is a for loop controlling

the time steps of the simulation
56 traci . simulation . step ( ) ; % This makes the simulation go to

the next time step
57
58 % Vehicle List
59 vehicles = traci . vehicle . getIDList ( ) ; % Creates a list of all

vehicles currently in the simulation
60
61 for k = 1 : length (AV ) % Loop to go through the AV list
62
63 %% Measurements ego vehicle
64 if any ( strcmp ( vehicles , AV{k}) ) % Check if the AV needs to be

controlled , by checking if the vehicle ID is on the AV list
created above
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65 angle = ( traci . vehicle . getAngle (AV{k})−90)∗(pi /180) ; % Change the
coordinate system that SUMO uses to the system that is preffered
for the vehicle model

66 lane = traci . vehicle . getLaneID (AV{k}) ;
67 ego_lane = traci . vehicle . getLaneIndex (AV{k}) ;
68 edgeID = traci . lane . getEdgeID ( lane ) ;
69 pos = traci . vehicle . getPosition (AV{k}) ; % Contains both

the x- and y-position
70 speed = traci . vehicle . getSpeed (AV{k}) ;
71 acc = traci . vehicle . getAcceleration (AV{k}) ;
72 Lsx2 = car_length+speed∗safe_PET ; % Safe range for

lane changing
73 v_const = max ( speed+acc , 0 . 0 1 ) ; % Update speed

for A matrix (max function necessary to solve the DARE)
74 traci . vehicle . setColor (AV{k } , [ 2 5 5 , 0 , 0 , 2 5 5 ] ) ; % Change the

vehicle colour to red
75
76 if pos (1 ) > 100 && pos (1 ) < 570 % Check if the AV is at

the right road segment to be controlled
77 if p (k ) == true % Only measure the state

the first time, is necessary because the trajectory planning
tries to predict and SUMO has data describing the old trajectories

78 x ( : , k ) = [ speed+acc ; pos (2 ) ; angle ] ; % current state
79 p (k ) = false ; % To make sure the

measuring happens only once for each vehicle
80 end
81 x_0 = x ( : , k ) ; % Select the right

initial state
82
83 %% Measurements nearby vehicles
84 j = length ( vehicles ) ; % Amount of

vehicles in the simulation
85 no_overtake_up = false ; % Unblock

left lane
86 no_overtake_down = false ; % Unblock

right lane
87 collision_constraint = false ; % Set the

parameter for detection vehicles in the same lane to false which
means no vehicles detected

88 xr = 65 ; % Sensor
measuring distance

89 for l = 1 : j
90 pos2 = traci . vehicle . getPosition ( vehicles{l}) ; %

Position other vehicle
91 other_lane = traci . vehicle . getLaneIndex ( vehicles{l}) ; % Lane

index other vehicle
92
93 % Collision constraints , vehicle same lane
94 if pos (1 ) < pos2 (1 ) && ( pos2 (1 ) − pos (1 ) )< 65 && ego_lane ==

other_lane
95 speed2 = traci . vehicle . getSpeed ( vehicles{l}) ; % Speed x

direction other vehicle
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96 acc2 = traci . vehicle . getAcceleration ( vehicles{l}) ; %
Acceleration other vehicle

97
98 xr = pos (1 ) − pos2 (1 ) ; %

Relative x position
99 yr = pos (2 ) − pos2 (2 ) ; %

Relative y location
100 vxr = speed − speed2 ; %

Relative speed x direction
101
102 x_0r = [ xr ; vxr ; yr ; angle ] ; % Initial

relative states
103 Lsx = max ( car_length+vxr∗safe_TTC , car_length ) ; % Safe

longitudinal distance
104 Z2 = kron ( eye ( dim . N ) , [ 1 0 −Lsx/Lsy 0 ] ) ; %

Collision constraint transformation matrix
105 d = kron ( ( 1 : dim . N ) ’ , [ 0 ; − acc2∗h ; 0 ; 0 ] ) ; %

Disturbance matrix for collision constraints
106 collision_constraint = true ; % Set to

true to create the collision avoidance constraints later
in the code

107 end
108
109 % Left lane blocked road constraints
110 if abs ( pos (1 ) − pos2 (1 ) )< Lsx2 && other_lane > ego_lane
111 road_upperbound = roadbounds (2 )+car_width /2 ; % Block left

lane
112 no_overtake_up = true ; % Set true to

update road boundaries later
113 end
114
115 % Right lane blocked road constraints
116 if abs ( pos (1 ) − pos2 (1 ) )< Lsx2 && other_lane < ego_lane
117 road_lowerbound = roadbounds (2 )−car_width /2 ; % Block right

lane
118 no_overtake_down = true ; % Set true to

update road boundaries later
119 end
120 end
121
122 %% Update road boundaries when lanes are not blocked
123 if no_overtake_up == false
124 road_upperbound = roadbounds (3 ) ; % Reset road upper boundary

when a lane is no longer blocked
125 end
126 if no_overtake_down == false
127 road_lowerbound = roadbounds (1 ) ; % Reset road lower boundary

when a lane is no longer blocked
128 end
129
130 %% Update state space with current constant speed
131 LTI . A = [1 0 0 ;0 1 v_const∗h ; 0 0 1 ] ; %

states: vx, y, theta
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132 LTI . B = [ h 0 ;0 h∗v_const∗lr /(lr+lf ) ; 0 h∗v_const /(lr+lf ) ] ; %
inputs: a, delta

133 weight . P = dare ( LTI . A , LTI . B , weight . Q , weight . R ) ; %
DARE solution for stability

134
135 % Update collision constraints with current constant speed
136 con . A = [1 h 0 0 ;0 1 0 0 ;0 0 1 v_const∗h ; 0 0 0 1 ] ; %

states: xr, vxr, yr, theta
137 con . B = [0 0 ; h 0 ;0 h∗v_const∗lr /(lr+lf ) ; 0 h∗v_const /(lr+lf ) ] ; %

inputs: a, delta
138
139 %% State boundary constraints
140 upx = [ max_speed road_upperbound−car_width / 2 ] ’ ; % State

constraint upper bound
141 lowx = [ min_speed −(road_lowerbound+car_width /2) ] ’ ; % State

constraint lower bound
142 [ V , W , M , N ] = statecon (LTI , dim , upx , lowx ) ; % Create

state constraint matrices
143
144 %% Collision constraints
145 if collision_constraint == true % Check if

there is a vehicle in the same lane in sensor range
146 dim . nx = 4 ; % Change

state dimensions to be able to use the statecon function
147 [ V2 , W2 , ~ , ~ ] = statecon (con , dim , upx , lowx ) ; % Create the

collision avoidance constraints matrices
148 dim . nx = 3 ; % Change

state dimensions back to the LTI system for trajectory
planning

149
150 statec . F = [ Z1∗W;−Z1∗W ; Z2∗W2 ] ; % Create

constraints with collsion avoidance
151 statec . e = [ M−Z1∗V∗x_0 ; N+Z1∗V∗x_0 ;−Z2∗V2∗x_0r−Z2∗d−Lsx∗ones ( dim . N

, 1 ) ] ;
152 else
153 statec . F = [ Z1∗W;−Z1∗W ] ; % Create

constraints without collision avoidance when there is no
vehicle in sensor range in the same lane

154 statec . e = [ M−Z1∗V∗x_0 ; N+Z1∗V∗x_0 ] ;
155 end
156
157 %% Reference selection normal conditions
158 if ego_lane == 0 | | no_overtake_down == false % If youre right

or no one is right
159 LTI . yref = [ 1 0 0 / 3 . 6 ; roadbounds (2 ) −1 .6 ] ; % 100km/h, right

lane
160 end
161 if ego_lane == 1 && no_overtake_down == true % If youre left

and right is blocked
162 LTI . yref = [ 1 0 0 / 3 . 6 ; roadbounds (2 ) +1 . 6 ] ; % 100km/h, left

lane
163 end
164
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165 % Reference selection when near destination
166 if pos (1 ) > 400 && mod (AV{k }(6) ,2 ) == 1 && no_overtake_down == false

% Go right for destination if possible
167 LTI . yref = [ 1 0 0 / 3 . 6 ; roadbounds (2 ) −1 .6 ] ; % 100km/h, right

lane
168 end
169 if pos (1 ) > 400 && mod (AV{k }(6) ,2 ) == 0 && no_overtake_up == false %

Go left for destination if possible
170 LTI . yref = [ 1 0 0 / 3 . 6 ; roadbounds (2 ) +1 . 6 ] ; % 100km/h, left

lane
171 end
172
173 ref ( : , i ) = LTI . yref ;
174
175 % OTS (Optimal Target Selection)
176 [ xr , ur ] = OTS (LTI , dim ) ; % Could also be

done offline
177
178 %% MPC
179 [ H , hx0 , hh ] = costfun (LTI , weight , dim ) ; % Creare

cost function
180 u = sdpvar ( dim . nu∗dim . N , 1 ) ; % Define

optimization variable
181 Constraint = [ inputc . G∗u<=inputc . a , statec . F∗u<=statec . e ] ; % Define

constraints
182 Objective = 0.5∗ u ’∗ H∗u+(hh ∗ [ x_0 ; xr ; ur ] ) ’∗ u ; % Define

cost function
183 optimize ( Constraint , Objective ) ; % Solve

the problem
184 u = value (u ) ;
185 u_rec = u ( 1 : dim . nu ) ; % Select

the first input only
186
187 %% Nonlinear model
188 xpos (k ) = pos (1 ) + x (1 , k ) ∗h ; %

Updates the x-position
189 x (2 , k ) = x (2 , k ) + x (1 , k ) ∗x (3 , k ) ∗h+(lr /(lr+lf ) ) ∗x (1 , k ) ∗u (2 ) ∗h ; %

Updates the y-position
190 x (3 , k ) = x (3 , k ) + (x (1 , k ) ∗u (2 ) ∗h ) /(lr+lf ) ; %

Updates the vehicle angle
191 x (1 , k ) = x (1 , k ) + u (1 ) ∗h ; %

Updates the longitudinal speed
192
193 %% Next state in SUMO
194 traci . vehicle . moveToXY (AV{k} , edgeID , 1 , xpos (k ) ,x (2 , k ) , ( x (3 , k ) ∗(180/pi )

) +90 ,1) ; % This gives the next position and orientation of the AV
back to SUMO, a change of coordinates is used again for the
vehicle angle

195
196 clear u % Reset the input generated by the MPC to prevent

mistakes
197
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198 end % End of the loop to check if the AV has entered the main
part of the highway

199 end % End of the loop to check if AV is on any road segement
in the simulation

200 end % Loop through AV list
201
202 end
203 traci . close ( ) % This stops the simulation when the simulation time T

given above is over
204
205 %% Functions
206 %% lateralspeed.m
207 function latspeed = lateralspeed (i , pos , h )
208 if i == 1
209 latspeed = 0 ;
210 else
211 latspeed = ( pos (2 , i ) − pos (2 ,i−1) ) /h ;
212 end
213 end
214
215 %% lateralacc.m
216 function latacc = lateralacc (i , latspeed , h )
217 if i == 1
218 latacc = 0 ;
219 else
220 latacc = ( latspeed (i ) − latspeed (i−1) ) /h ;
221 end
222 end
223
224 %% costfun.m
225 function [ H , hx0 , hh ] = costfun (LTI , weight , dim )
226
227 % Weights over control horizon
228 Qbar = blkdiag ( kron ( eye ( dim . N ) , weight . Q ) , weight . P ) ;
229 Rbar = kron ( eye ( dim . N ) , weight . R ) ;
230
231 % Prediction matrix x0
232 T = zeros ( dim . nx ∗( dim . N+1) , dim . nx ) ;
233 for k = 0 : dim . N
234 T (k∗dim . nx+1:(k+1)∗dim . nx , : ) = LTI . A^k ;
235 end
236
237 % Controllability matrix
238 S = zeros ( dim . nx ∗( dim . N+1) , dim . nu ∗( dim . N ) ) ;
239 for k = 1 : dim . N
240 for i = 0 : k−1
241 S (k∗dim . nx+1:(k+1)∗dim . nx , i∗dim . nu+1:(i+1)∗dim . nu ) = LTI . A^(k−1−i

) ∗LTI . B ;
242 end
243 end
244
245 % Cost Matrices
246 H = S ’∗ Qbar∗S+Rbar ;
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247 hx0 = S ’∗ Qbar∗T ;
248
249 % Optimal Target Selection
250 hxref = −S ’∗ Qbar∗kron ( ones ( dim . N+1 ,1) , eye ( dim . nx ) ) ;
251 huref = −Rbar∗kron ( ones ( dim . N , 1 ) , eye ( dim . nu ) ) ;
252 hh = [ hx0 hxref huref ] ;
253 end
254
255 %% OTS.m (Optimal Target Selection)
256 function [ xr , ur ] = OTS (LTI , dim )
257
258 % Eq constraints
259 eq_A = [ eye ( dim . nx )−LTI . A −LTI . B ; LTI . C zeros ( dim . ny , dim . nu ) ] ;
260 eq_b = [ zeros ( dim . nx , 1 ) ; LTI . yref ] ;
261
262 % Cost function for target selection
263 H = blkdiag ( zeros ( dim . nx ) , 0 . 5∗ eye ( dim . nu ) ) ;
264 h = zeros ( dim . nx+dim . nu , 1 ) ;
265
266 % Solver
267 options1 = optimoptions ( @quadprog ) ;
268 options1 . OptimalityTolerance = 1e−20;
269 options1 . ConstraintTolerance = 1.0000e−15;
270 options1 . Display = ’off’ ;
271 xur = quadprog (H , h , [ ] , [ ] , eq_A , eq_b , [ ] , [ ] , [ ] , options1 ) ;
272
273 % Select state and input target
274 xr = xur ( 1 : dim . nx ) ;
275 ur = xur ( dim . nx+1:end ) ;
276 end
277
278 %% statec.m
279 function [ V , W , M , N ]=statecon (LTI , dim , upx , lowx )
280 % Prediction matrix x0
281 V = zeros ( dim . nx∗dim . N , dim . nx ) ;
282 for k = 1 : dim . N
283 V ( ( k−1)∗dim . nx+1:k∗dim . nx , : ) = LTI . A^k ;
284 end
285
286 % Controllability matrix
287 W = zeros ( dim . nx∗dim . N , dim . nu∗dim . N ) ;
288 for k = 1 : dim . N
289 for i = 0 : k−1
290 W ( ( k−1)∗dim . nx+1:k∗dim . nx , i∗dim . nu+1:(i+1)∗dim . nu ) = LTI . A^(k−1−i

) ∗LTI . B ;
291 end
292 end
293
294 M = repmat (upx , dim . N , 1 ) ;
295 N = repmat (lowx , dim . N , 1 ) ;
296 end
297
298 %% AVlist.m
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299 function [ AV ] = AVlist (flow , p_rate )
300
301 flow2 = round ( flow ∗0 . 75∗0 . 25 ) ; % (A to D)
302 flow3 = round ( flow ∗0 . 25∗0 . 75 ) ; % (B to C)
303 flow4 = round ( flow ∗0 .25^2) ; % (B to D)
304 flow = round ( flow ∗0 .75^2) ; % (A to B)
305
306 % Create a list of the AV
307 for i = 1 : round ( flow∗p_rate ) % AV list from flow 1
308 AV{i} = sprintf (’flow_0.%d’ , round ( flow /6)+round ( ( i−1)/p_rate ) ) ;
309 end
310 j = length (AV ) ;
311 for i = 1 : round ( flow2∗p_rate ) % AV list from flow 2
312 AV{j+i} = sprintf (’flow_1.%d’ , round ( flow2 /6)+round ( ( i−1)/p_rate ) ) ;
313 end
314 j = length (AV ) ;
315 for i = 1 : round ( flow3∗p_rate )% AV list from flow 3
316 AV{j+i} = sprintf (’flow_2.%d’ , round ( flow3 /6)+round ( ( i−1)/p_rate ) ) ;
317 end
318 j = length (AV ) ;
319 for i = 1 : round ( flow4∗p_rate ) % AV list from flow 4
320 AV{j+i} = sprintf (’flow_3.%d’ , round ( flow4 /6)+round ( ( i−1)/p_rate ) ) ;
321 end
322
323 end
324
325 %% randAVlist.m
326 function [ AV ] = randAVlist (flow , p_rate )
327
328 flow2 = round ( flow ∗0 . 75∗0 . 25 ) ; % (A to D)
329 flow3 = round ( flow ∗0 . 25∗0 . 75 ) ; % (B to C)
330 flow4 = round ( flow ∗0 .25^2) ; % (B to D)
331 flow = round ( flow ∗0 .75^2) ; % (A to B)
332
333 P1 = randperm (flow , round ( flow∗p_rate ) ) ; % randomize AV flow 1
334 P2 = randperm ( flow2 , round ( flow2∗p_rate ) ) ; % randomize AV flow 2
335 P3 = randperm ( flow3 , round ( flow3∗p_rate ) ) ; % randomize AV flow 3
336 P4 = randperm ( flow4 , round ( flow4∗p_rate ) ) ; % randomize AV flow 4
337 for i = 1 : length (P1 ) % AV list from flow 1
338 AV{i} = sprintf (’flow_0.%d’ , round ( flow /6)+P1 (i ) ) ;
339 end
340 for i = 1 : length (P2 ) % AV list from flow 2
341 AV{length (P1 )+i} = sprintf (’flow_1.%d’ , round ( flow2 /6)+P2 (i ) ) ;
342 end
343 for i = 1 : length (P3 ) % AV list from flow 3
344 AV{length (P1 )+length (P2 )+i} = sprintf (’flow_2.%d’ , round ( flow3 /6)+P3 (i

) ) ;
345 end
346 for i = 1 : length (P4 ) % AV list from flow 4
347 AV{length (P1 )+length (P2 )+length (P3 )+i} = sprintf (’flow_3.%d’ , round (

flow4 /6)+P4 (i ) ) ;
348 end
349
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350 end

A-2 Functions

A-2-1 Cost function

[44]
1 function [ H , hx0 , hh ] = costfun (LTI , weight , dim )
2
3 % This function calculates the prediction matrix x0 and the

controllability
4 % matrix necessary to determine all the states over a prediction horizon ,
5 % given a list of inputs over the prediction horizon. These matrices can

be
6 % used in the cost function , combined with the state references and input
7 % references from the Optimal Target Selection
8
9 % Weights over control horizon

10 Qbar = blkdiag ( kron ( eye ( dim . N ) , weight . Q ) , weight . P ) ;
11 Rbar = kron ( eye ( dim . N ) , weight . R ) ;
12
13 % Prediction matrix x0
14 T = zeros ( dim . nx ∗( dim . N+1) , dim . nx ) ;
15 for k = 0 : dim . N
16 T (k∗dim . nx+1:(k+1)∗dim . nx , : ) = LTI . A^k ;
17 end
18
19 % Controllability matrix
20 S = zeros ( dim . nx ∗( dim . N+1) , dim . nu ∗( dim . N ) ) ;
21 for k = 1 : dim . N
22 for i = 0 : k−1
23 S (k∗dim . nx+1:(k+1)∗dim . nx , i∗dim . nu+1:(i+1)∗dim . nu ) = LTI . A^(k−1−i

) ∗LTI . B ;
24 end
25 end
26
27 % Cost Matrices
28 H = S ’∗ Qbar∗S+Rbar ;
29 hx0 = S ’∗ Qbar∗T ;
30
31 % Optimal Target Selection
32 hxref = −S ’∗ Qbar∗kron ( ones ( dim . N+1 ,1) , eye ( dim . nx ) ) ;
33 huref = −Rbar∗kron ( ones ( dim . N , 1 ) , eye ( dim . nu ) ) ;
34 hh = [ hx0 hxref huref ] ;
35 end

A-2-2 Optimal Target Selection

[44]
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1 function [ xr , ur ] = OTS (LTI , dim )
2
3 % This function is used for the optimal target selection in the MPC.
4 % Because of the reference tracking with output MPC and the output

references are
5 % known , an offline optimization algorithm can be run to calculate the
6 % state reference and input reference , which can be used in the cost
7 % function of the MPC
8
9 % Eq constraints

10 eq_A = [ eye ( dim . nx )−LTI . A −LTI . B ; LTI . C zeros ( dim . ny , dim . nu ) ] ;
11 eq_b = [ zeros ( dim . nx , 1 ) ; LTI . yref ] ;
12
13 % Cost function for target selection
14 H = blkdiag ( zeros ( dim . nx ) , 0 . 5∗ eye ( dim . nu ) ) ;
15 h = zeros ( dim . nx+dim . nu , 1 ) ;
16
17 % Solver
18 options1 = optimoptions ( @quadprog ) ;
19 options1 . OptimalityTolerance = 1e−20;
20 options1 . ConstraintTolerance = 1.0000e−15;
21 options1 . Display = ’off’ ;
22 xur = quadprog (H , h , [ ] , [ ] , eq_A , eq_b , [ ] , [ ] , [ ] , options1 ) ;
23
24 % Select state and input target
25 xr = xur ( 1 : dim . nx ) ;
26 ur = xur ( dim . nx+1:end ) ;
27 end

A-2-3 State constraints

[44]
1 function [ V , W , M , N ]=statecon (LTI , dim , upx , lowx )
2
3 % This function creates the prediction matrix x0 and the controllability
4 % matrix to calculate the next states for the given prediction horizon ,

given a list of inputs. These states
5 % can be used for the state constraints in the MPC.
6
7 % Prediction matrix x0
8 V = zeros ( dim . nx∗dim . N , dim . nx ) ;
9 for k = 1 : dim . N

10 V ( ( k−1)∗dim . nx+1:k∗dim . nx , : ) = LTI . A^k ;
11 end
12
13 % Controllability matrix
14 W = zeros ( dim . nx∗dim . N , dim . nu∗dim . N ) ;
15 for k = 1 : dim . N
16 for i = 0 : k−1
17 W ( ( k−1)∗dim . nx+1:k∗dim . nx , i∗dim . nu+1:(i+1)∗dim . nu ) = LTI . A^(k−1−i

) ∗LTI . B ;
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18 end
19 end
20
21 M = repmat (upx , dim . N , 1 ) ; % Upper bound state constraints
22 N = repmat (lowx , dim . N , 1 ) ; % Lower bound state constraints
23 end

A-2-4 AV list

1 function [ AV ] = AVlist (flow , p_rate )
2
3 % This function creates a list of all AV that has to be controlled by the
4 % MPC, but not chosen randomly within each of the 4 traffic flows ,

depending on the
5 % penetration rate and the total flow in the simulation
6
7 flow2 = round ( flow ∗0 . 75∗0 . 25 ) ; % (Main highway to off-ramp)
8 flow3 = round ( flow ∗0 . 25∗0 . 75 ) ; % (On-ramp to main highway)
9 flow4 = round ( flow ∗0 .25^2) ; % (On-ramp to off-ramp)

10 flow = round ( flow ∗0 .75^2) ; % (Main highway to main)
11
12 % Create a list of the AV
13 for i = 1 : round ( flow∗p_rate ) % AV list from flow 1
14 AV{i} = sprintf (’flow_0.%d’ , round ( flow /6)+round ( ( i−1)/p_rate ) ) ;
15 end
16 j = length (AV ) ;
17 for i = 1 : round ( flow2∗p_rate ) % AV list from flow 2
18 AV{j+i} = sprintf (’flow_1.%d’ , round ( flow2 /6)+round ( ( i−1)/p_rate ) ) ;
19 end
20 j = length (AV ) ;
21 for i = 1 : round ( flow3∗p_rate )% AV list from flow 3
22 AV{j+i} = sprintf (’flow_2.%d’ , round ( flow3 /6)+round ( ( i−1)/p_rate ) ) ;
23 end
24 j = length (AV ) ;
25 for i = 1 : round ( flow4∗p_rate ) % AV list from flow 4
26 AV{j+i} = sprintf (’flow_3.%d’ , round ( flow4 /6)+round ( ( i−1)/p_rate ) ) ;
27 end
28
29 end

A-2-5 Random AV list

1 function [ AV ] = randAVlist (flow , p_rate )
2
3 % This function creates a list of all AV that has to be controlled by the
4 % MPC, chosen randomly within each of the 4 traffic flows , depending on

the
5 % penetration rate and the total flow in the simulation
6
7 flow2 = round ( flow ∗0 . 75∗0 . 25 ) ; % (Main highway to off-ramp)
8 flow3 = round ( flow ∗0 . 25∗0 . 75 ) ; % (On-ramp to main highway)
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9 flow4 = round ( flow ∗0 .25^2) ; % (On-ramp to off-ramp)
10 flow = round ( flow ∗0 .75^2) ; % (Main highway to main)
11
12 P1 = randperm (flow , round ( flow∗p_rate ) ) ; % randomize AV flow
13 P2 = randperm ( flow2 , round ( flow2∗p_rate ) ) ; % randomize AV flow 2
14 P3 = randperm ( flow3 , round ( flow3∗p_rate ) ) ; % randomize AV flow 3
15 P4 = randperm ( flow4 , round ( flow4∗p_rate ) ) ; % randomize AV flow 4
16
17 for i = 1 : length (P1 ) % AV list from flow 1
18 AV{i} = sprintf (’flow_0.%d’ , round ( flow /6)+P1 (i ) ) ;
19 end
20
21 for i = 1 : length (P2 ) % AV list from flow 2
22 AV{length (P1 )+i} = sprintf (’flow_1.%d’ , round ( flow2 /6)+P2 (i ) ) ;
23 end
24
25 for i = 1 : length (P3 ) % AV list from flow 3
26 AV{length (P1 )+length (P2 )+i} = sprintf (’flow_2.%d’ , round ( flow3 /6)+P3 (i

) ) ;
27 end
28
29 for i = 1 : length (P4 ) % AV list from flow 4
30 AV{length (P1 )+length (P2 )+length (P3 )+i} = sprintf (’flow_3.%d’ , round (

flow4 /6)+P4 (i ) ) ;
31 end
32
33 end

A-2-6 Lateral speed

1 function latspeed = lateralspeed (i , pos , h )
2
3 % This function calculates the lateral speed in SUMO, given the y-

position
4 % of the vehicle over 2 different time steps
5
6 if i == 1
7 latspeed = 0 ;
8 else
9 latspeed = ( pos (2 , i ) − pos (2 ,i−1) ) /h ;

10 end
11
12 end

A-2-7 Lateral acceleration

1 function latacc = lateralacc (i , latspeed , h )
2
3 % This function is used to determine the lateral acceleration in SUMO,
4 % given the lateral speed over 2 different time steps
5
6 if i == 1
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7 latacc = 0 ;
8 else
9 latacc = ( latspeed (i ) − latspeed (i−1) ) /h ;

10 end
11
12 end
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